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Abstract of the Dissertation

P-Recursive Integer Sequences and Automata

Theory

by

Scott Michael Garrabrant

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Igor Pak, Chair

An integer sequence {an} is called polynomially recursive, or P-recursive, if it

satisfies a nontrivial linear recurrence relation of the form

q0(n)an + q1(n)an−1 + . . . + qk(n)an−k = 0 ,

for some qi(x) ∈ Z[x], 0 ≤ i ≤ k. The study of P-recursive sequences plays a

major role in modern Enumerative and Asymptotic Combinatorics. P-recursive

sequences have D-finite (also called holonomic) generating functions.

This dissertation is on the application of automata theory to the analysis of

P-recursive integer sequences, and is broken into three self-contained chapters.

Chapters 1 and 2 contain negative results, simulating Turing machines within

combinatorial structures to show these structures are not counted by a P-recursive

sequence. In Chapter 1, we answer a question of Maxim Kontsevich by showing

[1]un is not always P-recursive when u ∈ Z[GL(k,Z)]. In Chapter 2, we disprove

the celebrated Noonan-Zeilberger conjecture by showing that pattern avoidance

is not P-recursive. These two chapters give the first results that disprove P-

recursiveness using automata theory. Historically, results of this form have been

mostly proven using analysis of the asymptotics.
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Chapter 3 gives a full analysis of the class of integer sequences counting ir-

rational tilings of a constant height strip. This class is a subset of P-recursive

sequences, and we prove the equivalence of three definitions of this class: count-

ing functions of irrational tilings, binomial multisums, and diagonals of N-rational

generating functions. In this analysis, we count paths through a labelled graph

in a way that is equivalent to counting strings accepted by a given deterministic

finite automaton where each letter appears n times.
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CHAPTER 1

Words in Linear Groups, Random Walks, and

P-Recursiveness
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1.1 Introduction

An integer sequence {an} is called polynomially recursive, or P-recursive, if it

satisfies a nontrivial linear recurrence relation of the form

(∗) q0(n)an + q1(n)an−1 + . . . + qk(n)an−k = 0 ,

for some qi(x) ∈ Z[x], 0 ≤ i ≤ k. The study of P-recursive sequences plays a

major role in modern Enumerative and Asymptotic Combinatorics, see e.g. [FS,

Ges2, Odl, Sta1]. They have D-finite (also called holonomic) generating series

A(t) =

∞
∑

n=0

an t
n ,

and various asymptotic properties (see Section 1.5 below).

Let G be a group and Z[G] denote its group ring. For every g ∈ G and

u ∈ Z[G], denote by [g]u the value of u on g. Let an = [1]un, which denotes

the value of un at the identity element. When G = Zk or G = Fk, the sequence

{an} is known to be P-recursive for all u ∈ Z[G], see [Hai]. Maxim Kontsevich

asked whether {an} is always P-recursive when G ⊆ GL(k,Z), see [S2]. We give

a negative answer to this question:

Theorem 1.1.1. There exists an element u ∈ Z[SL(4,Z)], such that the sequence

{ [1]un} is not P-recursive.

We give two proofs of the theorem. The first proof is completely self-contained

and based on ideas from computability. Roughly, we give an explicit construction

of a finite state automaton with two stacks and a non-P-recursive sequence of

accepting path lengths (see Section 1.3). We then convert this automaton into a

generating set S ⊂ SL(4,Z), see Section 1.4. The key part of the proof is a new

combinatorial lemma giving an obstruction to P-recursiveness (see Section 1.2).
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Our second proof of Theorem 3.1.2 is analytic in nature, and is the opposite

of being self-contained. We interpret the problem in a probabilistic language,

and use a number of advanced and technical results in Analysis, Number Theory,

Probability and Group Theory to derive the theorem. Let us briefly outline the

connection.

Let S be a generating set of the group G. Denote by p(n) = pG,S(n) the

probability of return after n steps of a random walk on the corresponding Cayley

graph Cay(G, S). Finding the asymptotics of p(n) as n → ∞ is a fundamental

problem in probability, with a number of both classical and recent results (see

e.g. [Pete, Woe]). In the notation above, we have:

p(n) =
an
|S|n , where an = [1]un and u =

∑

s∈S
s.

Since P-recursiveness of {an} implies P-recursiveness of {p(n)}, and much is known

about the asymptotic of both p(n) and P-recursive sequences, this connection

can be exploited to obtain non-P-recursive examples (see Section 1.5). See also

Section 3.11 for final remarks and historical background behind the two proofs.

1.2 Parity of P-Recursive Sequences

In this section, we give a simple obstruction to P-recursiveness.

Lemma 1.2.1. Let {an} be a P-recursive integer sequence. Consider an infinite

binary word w = w1w2 . . . defined by wn = an textrmmod 2. Then, there exists a

finite binary word v which is not a subword of w.

Proof. Let η(n) denote the largest integer r such that 2r|n. By definition, there

3



exist polynomials q0, . . . , qk ∈ Z[n], such that

an =
1

q0(n)

(

an−1q1(n) + . . . + an−k qk(n)
)

, for all n > k.

Let ℓ be any integer such that qi(ℓ) 6= 0 for all i. Similarly, let m be the

smallest integer such that 2m > k, and m > η(qi(ℓ)) for all i. Finally, let d > 0

be such that η(qd(ℓ)) ≤ η(qi(ℓ)) for all i > 0.

Consider all n such that:

n = ℓ mod 2m, wn−d = 1 and wn−i = 0 for all i 6= 0, d. (⋆)

Note that η(qi(n)) = η(qi(ℓ)) for all i, since qi(n) = qi(ℓ) mod 2m and η(qi(ℓ)) <

m. We have

η(an) = η
(

an−1q1(ℓ) + . . .+ an−kqk(ℓ)
)

− η(q0(ℓ)).

Since η(an−dqd(ℓ)) < η(an−iqi(ℓ)) for all i 6= d, this implies that

η(an) = η(an−dqd(ℓ))− η(q0(ℓ)) = η(qd(ℓ))− η(q0(ℓ)).

Therefore, wn = 1 if and only if η(qd(ℓ)) = η(q0(ℓ)). This implies that wn is

independent of n, and must be the same for all n satisfying (⋆). In particular, this

means that at least one of the words 0k−d10d−11 and 0k−d10d cannot appear in w

ending at a location congruent to ℓ modulo 2m.

Consider the word v = (0k−d10k10d−1)2
m

. Note that 0k−d10k10d−1 has odd

length, and contains both 0k−d10d−11 and 0k−d10d as subwords. Therefore, the

word v contains both 0k−d10d−11 and 0k−d10d in every possible starting location

modulo 2m. This implies that v cannot appear as a subword of w.

4



1.3 Building an Automaton

In this section we give an explicit construction of a finite state automaton with

the number of accepting paths given by a binary sequence which does not satisfy

conditions of Lemma 2.2.1.

Let X ≃ F3 be the free group generated by x, 1x, and 0x. Similarly, let Y ≃ F3

be the free group generated by y, 1y, and 0y. We assume that X and Y commute.

Define a directed graph Γ on vertices {s1, . . . , s8}, and with edges as shown in

Figure 1.1. Some of the edges in Γ are labeled with elements of X, Y , or both.

For a path γ in Γ, denote by ωX(γ) the product of all elements of X in γ, and by

ωY (γ) denote the product of all elements of Y in γ. By a slight abuse of notation,

while traversing γ we will use ωX and ωY to refer to the product of all elements

of X and Y , respectively, on edges that have been traversed so far.

Finally, let bn denote the number of paths in Γ from s1 to s8 of length n, such

that ωX(γ) = ωY (γ) = 1. For example, the path

γ : s1
xy−→ s1 → s2

1yx−1

−−−→ s4
1−1
y 1x−−−→ s4

y−1

−−→ s5 → s6
1−1
x−−→ s8

is the unique such path of length 7, so b7 = 1.

Lemma 1.3.1. For every n ≥ 1 we have bn ∈ {0, 1}. Moreover, every finite

binary word is a subword of b = b1b2 . . .

Proof. To simplify the presentation, we split the proof into two parts.

(a) The structure of paths. Let γ be a path from s1 to s8. Denote by k the

number of times γ traverses the loop s1
xy−→ s1. The value of ωX after traversing

these k loops is xk, and the value of ωY is yk.

There must be k instances of the edge s4
y−1

−−→ s5 in γ to cancel out the yk.

Further, any time the path traverses this edge, the product ωY must change from

5



s1 s2 s3

s4s5s6

s7s8

xy

0−1
x 1y

1yx
−1

1−1
x 0y

x−1

1−1
x 1y

0−1
x 0y

y−1

1−1
y 1x

0−1
y 0x

1−1
x

1−1
x

0−1
x

1−1
x

0−1
x

Figure 1.1: The graph Γ.

some yj to yj−1, with no 0y or 1y terms. Therefore, every time γ enters the vertex

s4, it must traverse the two loops s4
1−1
y 1x−−−→ s4 and s4

0−1
y 0x−−−→ s4 enough to replace

any 0y and 1y terms in ωY with 0x and 1x terms in ωX . This takes the binary

word at the end of ωY , and moves it to the end of ωX in the reverse order.

Similarly, any time γ traverses the edge s3
x−1

−−→ s4 or s2
1yx−1

−−−→ s4, the prod-

uct ωX must change from some xj to xj−1, with no 0x or 1x terms. Every time

γ enters the vertex s2, it must remove all 0x and 1x terms from ωX before tran-

sitioning to s4. The s2 and s3 vertices ensure that as this binary word is deleted

from ωX , another binary word is written at the end of ωY such that the reverse of

the binary word written at the end of ωY is one greater as a binary integer than

the word removed from the end of ωX .

Every time γ traverses the edge s4
y−1

−−→ s5, the number written in binary at

the end of ωX is incremented by one. Thus, after traversing this edge k times, the

X word will consist of k written in binary, and ωY will be the identity. At this

6



point, γ will traverse the edge s5
y−1

−−→ s6.

After entering the vertex s6, all of the 0x and 1x terms from ωX will be removed.

Each time a 1x term is removed, γ can move to the vertex s8. From s8, the 0x

and 1x terms will continue to be removed, but γ will traverse two edges for every

term removed, thus moving at half speed. After all of these terms are removed,

the products ωX(γ) and ωY (γ) are equal to identity, as desired.

(b) The length of paths. Now that we know the structure of paths through Γ,

we are ready to analyze the possible lengths of these paths. There are only two

choices to make in specifying a path γ : first, the number k = k(γ) of times the

loop from s1 to itself is traversed, and second, the number j = j(γ) of digits still

on ωX(γ) immediately before traversing the edge from s6 to s8. The number j

must be such that the j-th binary digit of k is a 1.

When γ reaches s5 for the first time, it has traversed k + 4 edges. In moving

from the i-th instance of s5 along γ to the (i + 1)-st instance of s5, the number

of edges traversed is 3 + ⌊1 + log2(i)⌋ + ⌊1 + log2(i + 1)⌋, three more than the

sum of the number of binary digits in i and i+1. Therefore, the number of edges

traversed by the time γ reaches s6 is equal to

k + 5 +

k−1
∑

i=1

(3 + ⌊1 + log2(i)⌋ + ⌊1 + log2(i+ 1)⌋).

If j = 1, the edge from s6 to s8 is traversed at the last possible opportunity

and ⌊1 + log2(k)⌋ more edges are traversed. However, if j > 1, there are an

additional j − 1 edges traversed, since the s7 and s8 states do not remove ωX

terms as efficiently as s6. In total, this gives |γ| = L(k(γ), j(γ)), where

L(k, j) = j−1+ ⌊1+log2(k)⌋+k+5+
k−1
∑

i=1

(

3+ ⌊1+log2(i)⌋+ ⌊1+log2(i+1)⌋
)

.
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This simplifies to

L(k, j) = j + 6k + 2
k
∑

i=1

⌊log2 i⌋ .

Since 1 ≤ j ≤ ⌊1 + log2(k)⌋, we have L(k + 1, 1) > L(k, j) for all possible values

of j. Thus, there are no two paths of the same length, which proves the first part

of the lemma.

Furthermore, we have bn = 1 if and only if n = L(k, j) for some k ≥ 1 and

j such that the j-th binary digit of k is a 1. Thus, the binary subword of b at

locations L(k, 1) through L(k, ⌊1 + log2(k)⌋) is exactly the integer k written in

binary. This is true for every positive integer k, so b contains every finite binary

word as a subword.

Example 1.3.2. For k = 3 and j = 2, we have L(k, j) = 24. This corresponds

to the unique path in Γ of length 24:

s1
xy−→ s1

xy−→ s1
xy−→ s1 → s2

1yx−1

−−−→ s4
1−1
y 1x−−−→ s4

y−1

−−→ s5 → s2

1−1
x 0y−−−→ s2

1yx−1

−−−→ s4
1−1
y 1x−−−→ s4

0−1
y 0x−−−→ s4

y−1

−−→ s5 → s2
0−1
x 1y−−−→ s3

1−1
x 1y−−−→ s3

x−1

−−→ s4
1−1
y 1x−−−→ s4

1−1
y 1x−−−→ s4

y−1

−−→ s5 → s6
1−1
x−−→ s8

1−1
x−−→ s7 → s8 .

1.4 Proof of Theorem 3.1.2

1.4.1 From automata to groups

We start with the following technical lemma.

Lemma 1.4.1. Let G = F11 × F3. Then there exists an element u ∈ Z[G], such

that [1]u2n+1 is always even, and w = w1w2 . . . given by wn =
(

1
2
[1]u2n+1

)

mod 2,

is an infinite binary word that contains every finite binary word as a subword.

Proof. We label the generators of F11 as {s1, s2, s3, s4, s5, s6, s7, s8, x, 0x, 1x} and
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label the generators of F3 as {y, 0y, 1y}. Consider the following set S of 19 elements

of G:

(1) z1 = s−1
1 xys1,

(2) z2 = s−1
1 s2,

(3) z3 = s−1
2 1−1

x 0ys2,

(4) z4 = s−1
2 0−1

x 1ys3,

(5) z5 = s−1
3 1−1

x 1ys3,

(6) z6 = s−1
3 0−1

x 0ys3,

(7) z7 = s−1
3 x−1s4,

(8) z8 = s−1
2 1yx

−1s4,

(9) z9 = s−1
4 1−1

y 1xs4,

(10) z10 = s−1
4 0−1

y 0xs4,

(11) z11 = s−1
4 y−1s5,

(12) z12 = s−1
5 s2,

(13) z13 = s−1
5 s6,

(14) z14 = s−1
6 1−1

x s6,

(15) z15 = s−1
6 0−1

x s6,

(16) z16 = s−1
6 1−1

x s8,

(17) z17 = s−1
7 s8,

(18) z18 = s−1
8 1−1

x s7,

(19) z19 = s−1
8 0−1

x s7.

Let Γ be as defined in the previous section. For every edge from si
r−→ sj in Γ,

there is one element of S equal to s−1
i rsj. We show that the number of ways to

multiply n terms from S to get s−1
1 s8 is exactly bn.

First, we show that there is no product of terms in S whose F11 component is

the identity. Assume that such a product exists, and take one of minimal length.

If there are two consecutive terms in this product such that si at the end of one

term does not cancel the s−1
j at the start of the following term, then either the

si must cancel with a s−1
i before it or the s−1

j must cancel with a sj after it. In

both cases, this gives a smaller sequence of terms whose product must have F11

component equal to the identity. If the si at the end of each term cancels the s−1
j

at the beginning of the next term, then this product corresponds to a cycle γ ∈ Γ

such that ωX(γ) is the identity. Straightforward analysis of Γ shows that no such

cycle exists, so there is no product of terms in S whose product F11 component

equal to the identity.

This also means that the si at the end of each term must cancel the s−1
j at the

start of the following term, since otherwise ether the si must cancel with a s−1
i
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before it or the s−1
j must cancel with a sj after it, forming a product of terms in

S whose F11 component is equal to the identity.

Since each si cancels with an s−1
i at the start of the following term, the product

must correspond to a path γ ∈ Γ. If γ is from si to sj, the product will evaluate

to s−1
i ωX(γ)ωY (γ)sj . Therefore, the number of ways to multiply n terms from S

to get s−1
1 s8 is equal to bn.

We can now define u ∈ Z[G] as

u = 2s−1
8 s1 +

∑

zi∈S
zi .

We claim that 1
2
[1]u2n+1 = b2n mod 2. We already showed that one cannot get

1 by multiplying only elements of S, so the 2s−1
8 s1 term must be used at least

once. If this term is used more than once, then the contribution to [1]u2n+1 will

be 0 mod 4. Therefore, we need only consider the cases where this term is used

exactly once, so 1
2
[1]u2n+1 is equal modulo 2 to the number of products of the

form

2 = zi1 . . . zik−1
(2s−1

8 s1)zik+1
. . . zi2n+1

. (⋆⋆)

This condition holds if and only if

zik+1
. . . zi2n+1

zi1 . . . zik−1
= s−1

1 s8,

which can be achieved in b2n ways.

There are 2n + 1 choices for the location k of the 2s−1
8 s1 term, and for each

such k, there are b2n solutions to (⋆⋆). This gives

1

2
[1]u2n+1 = (2n+ 1)b2n = b2n mod 2,

which implies wn = b2n. By Lemma 1.4.1, we conclude that w is an infinite binary
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word which contains every finite binary word as a subword.

1.4.2 Counting words mod 2

We first deduce the main result of this paper and then give a useful minor exten-

sion.

Proof of Theorem 3.1.2. The group SL(4,Z) contains SL(2,Z)×SL(2,Z) as a sub-

group. The group SL(2,Z) contains Sanov’s subgroup isomorphic to F2, and thus

every finitely generated free group Fℓ as a subgroup (see e.g. [dlH]). Therefore,

F11 × F3 is a subgroup of SL(4,Z), and the element u ∈ Z[F11 × F3] defined in

Lemma 1.4.1 can be viewed as an element of Z[SL(4,Z)].

Let an = [1]un. By Lemma 1.4.1, the number a2n+1 is always even, and the

word w = w1w2 . . . given by wn = 1
2
a2n+1 mod 2 is an infinite binary word which

contains every finite binary word as a subword. Therefore, by Lemma 2.2.1, the

sequence
{

1
2
a2n+1

}

is not P-recursive. Since P-recursivity is closed under taking

a subsequence consisting of every other term, the sequence {an} is also not P-

recursive.

Theorem 1.4.2. There is a group G ⊂ SL(4,Z) and two generating sets 〈S1〉 =
〈S2〉 = G, such that for the elements

u1 =
∑

s∈S1

s , u2 =
∑

s∈S2

s ,

we have the sequence {[1]un
1} is P-recursive, while {[1]un

2} is not P-recursive.

Proof. Let G = F11 × F3 be as above. Denote by X1 and X2 the standard gener-

ating sets of F11 and F3, respectively. Finally, let S1 = (X × 1) ∪ (1× Y ),

w1 =
∑

x∈X1

x, w2 =
∑

x∈X2

x.
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Recall that if {cn} is P-recursive, then so is {cn/n!} and {cn · n!}. Observe that

∞
∑

n=0

[1]un
1

tn

n!
=

( ∞
∑

n=0

[1]wn
1

tn

n!

)( ∞
∑

n=0

[1]wn
2

tn

n!

)

,

and that {[1]wn
1 } and {[1]wn

2 } are P-recursive by Haiman’s theorem [Hai]. This

implies that {[1]un
1 } is also P-recursive, as desired.

Now, let S2 = 2S1 ∪ S, where S is the set constructed in the proof of

Lemma 1.4.1, and 2S1 means that each element of S1 is taken twice. Observe

that [1]un
2 = [1]un mod 2, where u is as in the proof of Theorem 3.1.2. This

implies that {[1]un
1 } is not P-recursive, and finishes the proof.

1.5 Asymptotics of P-recursive sequences and the return

probabilities

1.5.1 Asymptotics

The asymptotics of general P-recursive sequences is undersood to be a finite sum

of the terms

A (n!)s λn eQ(nγ) nα (log n)β ,

where s, γ ∈ Q, α, λ ∈ Q, β ∈ N, and Q(·) is a polynomial. This result goes back

to Birkhoff and Trjitzinsky (1932), and also Turrittin (1960). Although there are

several gaps in these proofs, they are closed now, notably in [Imm]. We refer

to [FS, §VIII.7], [Odl, §9.2] and [Pak] for various formulations of general asymp-

totic estimates, an extensive discussion of priority issues and further references.

For the integer P-recursive sequences which grow at most exponentially, the

asymptotics have further constraints summarized in the following theorem.
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Theorem 1.5.1. Let {an} be an integer P-recursive sequence defined by (∗), and

such that an < Cn for some C > 0 and all n ≥ 1. Then

an ∼
m
∑

i=1

Ai λ
n
i n

αi (log n)βi ,

where αi ∈ Q, λi ∈ Q and βi ∈ N.

The theorem is a combination of several known results. Briefly, the generating

seriesA(t) is a G-functions in a sense of Siegel (1929), which by the works of André,

Bombieri, Chudnovsky, Dwork and Katz, must satisfy an ODE which has only

regular singular points and rational exponents (see a discussion on [And, p. 719]

and an overview in [Beu]). We then apply the Birkhoff–Trjitzinsky theorem, which

in the regular case has a complete and self-contained proof (see Theorem VII.10

and subsequent comments in [FS]). We refer to [Pak] for further references and

details.

1.5.2 Probability of return

Let G be a finitely generated group. A generating set S is called symmetric if

S = S−1. Let H be a subgroup of G of finite index. It was shown by Pittet and

Saloff-Coste [PS2], that for two symmetric generating sets 〈S〉 = G and 〈S ′〉 = H

we have

(⋄) C1pG,S(α1n) < pG,S′(n) < C2pG,S(α2n),

for all n > 0 and fixed constants C1, C2, α1, α2 > 0. For G = H , this shows,

qualitatively, that the asymptotic behavior of pG,S(n) is a property of a group.

The following result gives a complete answer for a large class of groups.

Theorem 1.5.2. Let G be an amenable subgroup of GL(k,Z) and S is a symmet-

ric generating set. Then either G has polynomial growth and polynomial return
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probabilities:

A1n
−d < pG,S(2n) < A2n

−d ,

or G has exponential growth and mildly exponential return probabilities:

A1ρ
3
√
n

1 < pG,S(2n) < A2ρ
3
√
n

2 ,

for some A1, A2 > 0, 0 < ρ1, ρ2 < 1, and d ∈ N.

The theorem is again a combination of several known results. Briefly, by

the Tits alternative, group G must be virtually solvable, which implies that it

either has a polynomial or exponential growth (see e.g. [dlH]). By the quasi-

isometry (⋄), we can assume that G is solvable. In the polynomial case, the lower

bound follows from the CLT by Crépel and Raugi [CR], while the upper bound

was proved by Varopoulos using the Nash inequality [V1] (see also [V3]). For

the more relevant to us case of exponential growth, recall Mal’tsev’s theorem,

which says that all solvable subgroups of SL(n,Z) are polycyclic (see e.g. [Sup,

Thm. 22.7]). For polycyclic groups of exponential growth, the upper bound is

due to Varopoulos [V2] and the lower bound is due to Alexopoulos [Ale]. We

refer to [PS3] and [Woe, §15] for proofs and further references, and to [PS1] for a

generalization to discrete subgroups of groups of Lie type.

1.5.3 Applications to P-recursiveness

We can now show that non-P-recursiveness for amenable linear groups of expo-

nential growth.

Theorem 1.5.3. Let G be an amenable subgroup of GL(k,Z) of exponential

growth, and let S be a symmetric generating set. Then the probability of return

sequence
{

pG,S(n)
}

is not P-recursive.

Proof. It is easy to see that H has exponential growth, so Theorem 1.5.2 applies.

14



Let an = |S|npG,S(n) ∈ N as in the introduction. If {pG,S(n)} is P-recursive, then

so is {a2n}. On the other hand, Theorem 1.5.1 forbids mildly exponential terms

ρ
3
√
n in the asymptotics of a2n, giving a contradiction.

To obtain Theorem 3.1.2 from here, consider the following linear group H ⊂
SL(3,Z) of exponential growth:

H =





























x1,1 x1,2 y1

x2,1 x2,2 y2

0 0 1











s.t.





x1,1 x1,2

x2,1 x2,2



 =





2 1

1 1





k

, k ∈ Z



















(see e.g. [Woe, §15.B]). Observe that H ≃ Z ⋉ Z2, and therefore solvable. Thus,

H has a natural symmetric generating set

E =

































2 1 0

1 1 0

0 0 1











±1

,











1 0 ±1
0 1 0

0 0 1











,











1 0 0

0 1 ±1
0 0 1

































.

By Theorem 1.5.3, the probability of return sequence
{

pH,E(n)
}

is not P-recursive,

as desired.

1.6 Final Remarks

1.6.1

Kontsevich’s question was originally motivated by related questions on the “cate-

gorical entropy” [DHKK]. In response to the draft of this paper, Ludmil Katzarkov,

Maxim Kontsevich and Richard Stanley asked us if the examples we construct sat-

isfy algebraic differential equations (ADE), see e.g. [Sta1, Exc. 6.63]. We believe

that the answer is No, and plan to explore this problem in the future.
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1.6.2

The motivation behind the proof of Theorem 3.1.2 lies in the classical result of

Mihăılova that G = F2×F2 has an undecidable group membership problem [Mih].

In fact, we conjecture that the problem whether
{

[1]un
}

is P-recursive is unde-

cidable. We refer to [Hal] for an extensive survey of decidable and undecidable

matrix problems.

1.6.3

Following the approach of the previous section, Theorem 1.5.3 can be extended

to all polycyclic groups of exponential growth and solvable groups of finite Prüfer

rank [PS4]. It also applies to various other specific groups for which mildly

exponential bounds on p(n) are known, such as the Baumslag–Solitar groups

BSq ⊂ GL(2,Q), q ≥ 2, and the lamplighter groups Ld = Z2 ≀ Zd, d ≥ 1, see

e.g. [Woe, §15]. Let us emphasize that P-recursiveness fails for all symmetric gen-

erating sets in these cases. In view of Theorem 1.4.2, the P-recursiveness fails for

some generating sets of non-amenable groups containing F2 × F2. This suggests

that P-recursiveness of all generating sets is a rigid property which holds for very

few classes of group. We conjecture that it holds for all nilpotent groups.

1.6.4

Lemma 2.2.1 can be rephrased to say that the subword complexity function c
w
(n) <

2n for some n large enough (see e.g. [AS, BLRS]). This is likely to be far

from optimal. For example, for the Catalan numbers Cn = 1
n+1

(

2n
n

)

, we have

w = 101000100000001 . . . In this case, it is easy to see that the word complexity

function c
w
(n) = Θ(n), cf. [DS]. It would be interesting to find sharper upper

bounds on the maximal growth of c
w
(n), when w is the infinite parity word of a

P-recursive sequence. Note that c
w
(n) = Θ(n) for all automatic sequences [AS,
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§10.2], and that the exponentially growing P-recursive sequences modulo almost all

primes are automatic provided deep conjectures of Bombieri and Dwork, see [Chr].

1.6.5

The integrality assumption in Theorem 1.5.1 cannot be removed as the following

example shows. Denote by an the number of fragmented permutations, defined

as partitions of {1, . . . , n} into ordered lists of numbers (see sequence A000262

in [OEIS]). It is P-recursive since

an = (2n− 1)an−1 − (n− 1)(n− 2)an−2 for all n > 2.

The asymptotics is given in [FS, Prop. VIII.4]:

an
n!
∼ 1

2
√
eπ

e2
√
n n−3/4 .

This implies that the theorem is false for the rational, at most exponential P-

recursive sequence {an/n!}, since in this case we have mildly exponential terms.

To understand this, note that
∑

n an t
n/n! is not a G-function since the lcm of

denominators of an/n! grow superexponentially.

1.6.6

Proving that a combinatorial sequence is not P-recursive is often difficult even in

the most classical cases. We refer to [B+, BRS, BP, FGS, Kla, MR] for various

analytic arguments. As far as we know, this is the first proof by a computability

argument.
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CHAPTER 2

Pattern avoidance is not P-recursive
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2.1 Introduction

Combinatorial sequences have been studied for centuries, with results ranging

from minute properties of individual sequences to broad results on large classes

of sequences. Even just listing the tools and ideas can be exhausting, which

range from algebraic to bijective, to probabilistic and number theoretic [Rio].

The existing technology is so strong, it is rare for an open problem to remain

unresolved for more than a few years, which makes the surviving conjectures all

the more interesting and exciting.

The celebrated Noonan–Zeilberger Conjecture is one such open problem. It is

a central problem in the area of pattern avoidance, which has been very popular

in the past few decades, see e.g. [Bóna, Kit]. The problem was first raised as

a question by Gessel in 1990, see [Ges2, §10]. In 1996, it was upgraded to a

conjecture and further investigated by Noonan and Zeilberger [NZ], see also §??.

There are now hundreds of papers in the area with positive results for special sets

of patterns. Here we use Computability Theory to disprove the conjecture.

Let σ ∈ Sn and ω ∈ Sk. Permutation σ is said to contain the pattern ω if

there is a subset X ⊆ {1, . . . , n}, |X| = k, such that σ|X has the same relative

order as ω. Otherwise, σ is said to avoid ω. Fix a set of patterns F ⊂ Sk. Denote

by Cn(F) the number of permutations σ ∈ Sn avoiding the patterns ω ∈ F .

The sequence {Cn(F)} is the main object in the area, extensively analyzed from

analytic, asymptotic and combinatorial points of view (see §2.9.1).

An integer sequence {an} is called polynomially recursive, or P-recursive, if it

satisfies a nontrivial linear recurrence relation of the form

q0(n)an + q1(n)an−1 + . . . + qk(n)an−k = 0 ,

for some qi(x) ∈ Z[x], 0 ≤ i ≤ k. The study of P-recursive sequences plays a
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major role in modern Enumerative and Asymptotic Combinatorics (see e.g. [FS,

Odl, Sta1]). They have D-finite (also called holonomic) generating series and

various asymptotic properties (see §2.9.2).

Conjecture 2.1.1 (Noonan–Zeilberger). Let F ⊂ Sk be a fixed set of patterns.

Then the sequence {Cn(F)} is P-recursive.

The following is the main result of the paper.

Theorem 2.1.2. The Noonan–Zeilberger conjecture is false. More precisely, there

exists a set of patterns F ⊂ S80, such that the sequence {Cn(F)} is not P-

recursive.

We should mention that in contrast with most literature in the area which

studies small sets of patterns, our set F is enormously large and we make no

effort to decrease its size (cf. §2.9.5). To be precise, we construct two large sets

F ,F ′ ⊂ S80 and show that at least one of them gives a counterexample to the

conjecture. In fact, it is conceivable that a single permutation pattern ω = (1324)

may be sufficient for non-P-recursiveness (see §2.9.4).

The proof of Theorem 2.1.2 is based on the following idea. Roughly, we show

that every two-stack automaton M can be emulated by a finite set of permutation

patterns. More precisely, we show that the number of accepted paths of M is equal

to Cn(F) mod 2, for a subset of integers n forming an arithmetic progression (see

Main Lemma 2.3.2). This highly technical construction occupies much of the

paper. The rest of the proof is based on our approach in Chapter 1, where we

resolved Kontsevich’s problem on the P-recursiveness of certain numbers of words

in linear groups. The ability to emulate any two-stack automaton M in the weak

sense described above is surprisingly powerful (see below).

We apply our results to the following decidability problem. Two sets of pat-

terns F1 and F2 are called Wilf–equivalent, denoted F1 ∼ F2, if Cn(F1) = Cn(F2)
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for all n. In [V2], Vatter asked whether it is decidable when two patterns are

Wilf–equivalent. Here we resolve a mod-2 version of this problem (cf. Section 2.8

and §2.9.7).

Theorem 2.1.3. The problem whether Cn(F1) = Cn(F2) mod 2 for all n ∈ N,

is undecidable.

The rest of the paper is structured as follows. We begin with an explicit

construction of a two-stack automata with a non-P-recursive number of accepted

paths (Section 2.2). In Section 2.3, we reduce the proof of Theorem 2.1.2 to

the Main Lemma 2.3.2 on embedding two-stack automata into pattern avoidance

problems. The proof of the Main Lemma spans the next four sections. We first

present the construction in Section 2.4. In Section 2.5, we prove the lemma modulo

a number of technical results. We illustrate the construction in a lengthy example

in Section 2.6, and prove the technical results in Section 2.7. We proceed to prove

Theorem 2.1.3 in Section 2.8 We conclude with final remarks and open problems

in Section 2.9.

2.2 Two-stack automata

In this section we construct an automaton with a non-P-recursive number of

accepted paths. The construction is technical, but elementary. Although it is

more natural if the reader is familiar with basic Automata Theory (see e.g. [HMU,

Sip]), the construction is completely self-contained and is given in the language of

elementary Graph Theory. The proof, however, is not self-contained and follows

a similar proof in Chapter 1.

To be precise, we give an explicit construction of a graph, where the vertices

have certain variables as weights. We then count the number an of paths of length

n between two fixed vertices, where only certain weight sequences are allowed (we
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call these balanced paths). The non-P-recursiveness of an mod 2 is explained

below.

2.2.1 The motivation

It is relatively easy to present a construction of an automaton which produces

a non-P-recursive sequence {an} of balanced paths. Our goal in this section is

stronger – the sequence {an} we get is not equal to any P-recursive sequence

modulo 2. Somewhat informally, we call such automaton non-P-recursive. The

advantages afforded by the modulo 2 property are technical and will become clear

later in this paper.

Our main tool for building a non-P-recursive two-stack automaton is the fol-

lowing result.

Theorem 2.2.1 (Lemma 1.2.1 of Chapter 1). Let {an} be a P-recursive integer

sequence. Consider an infinite binary word α = (α1α2 . . .), defined by αn :=

an mod 2. Then, there exists a finite binary word which is not a subword of α.

What follows is a construction of a two-stack automaton such that the corre-

sponding binary sequence α contains every finite binary subword by design. There

are many such automata, in fact. We give a complete description of this one as

we need both its notation and additional properties of the construction later on.

2.2.2 The setup

Let Γ be a finite directed graph with vertices v1, . . . , vm. Let X denote the set

of labels of the form xi and let X−1 denote the set of labels of the form x−1
i ,

where i is any integer. Define Y and Y −1 similarly. Label each vertex of Γ with

an element of X ∪X−1 ∪ Y ∪ Y −1 ∪ {ε}.

Let ρ(v) denote the label on vertex v. We say that w1 ∼ w2 if w1, w2 ∈ X∪X−1

25



or if w1, w2 ∈ Y ∪ Y −1. If Γ has an edge from vi to vj , we say that vi → vj .

Contrary to standard notation, we refer to a path γ = γ1 . . . γn, where each γi

is a vertex, not an edge, and we say that such a path is of length n, even though

it only has n− 1 edges.

We further require that ρ(v1) = ρ(v2) = ε, and that there is no edge vi → vj ,

with ρ(vi) ∼ ρ(vj). A graph Γ satisfying all of the above conditions is called a

two-stack automaton.

As we traverse a path γ, we keep track of two words wX ∈ X⋆ and wY ∈ Y ⋆,

which start out empty. Whenever we enter a vertex with label xi, we append xi

to the end of wX . When we enter a vertex with label x−1
i , we remove xi from the

end of wX . We modify wY similarly when entering vertices with label yi or y−1
i .

When we enter a vertex with label ε, we do nothing. A path is called balanced if

every step of this process is well defined and both wX and wY are empty at the

end of the path. Let G(Γ, n) denote the number of balanced paths in Γ from v1

to v2 of length n.

Define an involution πγ ∈ Sn as follows. If the above process writes an instance

of a label to wX or wY at some time ti, and removes the same instance of that

label for the first time at time tj, then π(ti) = tj and π(tj) = ti. If the process does

not write or remove anything at a time step tk, then π(tk) = tk. For example, if

ρ(γ1)ρ(γ2) . . . ρ(γ9) = εx1y1x1y
−1
1 x−1

1 εx−1
1 ε, then πγ = (2 8)(3 5)(4 6). This gives

the following alternate characterization of balanced paths.

Proposition 2.2.2. A path γ is balanced if and only if there exists an involu-

tion πγ ∈ Sn such that:

(1) ρ(γi) = ε for all πγ(i) = i ,

(2) ρ(γi) ∈ X ∪ Y and ρ(γπγ(i)) = ρ(γi)
−1, for all πγ(i) > i, and

(3) There are no i and j with ρ(γi) ∼ ρ(γj) such that i < j < πγ(i) < πγ(j).
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Further, this involution πγ is uniquely defined for each balanced γ.

The proof is straightforward.

2.2.3 Non-P-recursive automaton

We are now ready to present a construction of such automaton Γ1, which is given

in Figure 2.1. The construction is based on a smaller automaton Γ2 we introduced

in Chapter 1.

Lemma 2.2.3. There exists a two-stack automaton Γ1, such that αn := G(Γ1, n) ∈
{0, 1} for all n, and such that the word α = (α1α2 . . .) is an infinite binary word

which contains every finite binary word as a subword.

Proof. We give an explicit automaton Γ1 in Figure 2.1. This automaton is formed

by modifying the automaton Γ2, given in Chapter 1. Here we use ε1, . . . , ε8 to

denote the same trivial label ε; we make this distinction only for the purpose of

illustration. The vertex v1 is the shaded vertex labelled ε1, and the vertex v2 is

the shaded vertex labelled ε8. The vertex labelled εi in Γ1 corresponds to the

vertex labelled si in Γ2.

The primary difference between Γ1 and Γ2 is that Γ1 has labels on vertices

while Γ2 has labels on edges. The labels were also changed by replacing 0x, 1x,

and x with x0, x1, and x2 respectively, and similarly for y. Since the lengths of

the paths change slightly, we get a slightly different formula, but the analysis is

similar.

In counting paths we follow the proof of Lemma 1.3.1 in Chapter 1. The valid

paths through Γ2 have

µ = j + 6k + 2

k
∑

i=1

⌊log2 i⌋ edges,
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Figure 2.1: The automata Γ1 (top), and Γ2 (bottom).
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for some positive integers j and k such that the j-th binary digit of k is a 1. Every

path through Γ1 will similarly have (µ+ 1) vertices with label ε.

Such paths will also have a total of 4k vertices labelled x2, x−1
2 , y2 or y−1

2 ,

since k copies each of x2 and y2 are written and removed in the computation.

Similarly, every binary integer from 1 to k is written and removed from both

tapes, so the vertices with the remaining 8 labels are used

ν = 4k + 4

k
∑

i=1

⌊log2 i⌋ times in total.

In summary, we have G(Γ1, n) = 1 for all n = (µ+ 1)+ ν + 4k, where j and k

are positive integers such that the j-th binary digit of k is a 1, and G(Γ1, n) = 0

otherwise. The word α = (α1α2 . . .) then contains the positive integer k written

out in binary starting at location

n = 2 + 14k + 6

k
∑

i=1

⌊log2 i⌋ ,

and will therefore contain every finite binary word as a subword.

Finally, note that in the notion of “valid path” from Chapter 1, it was possible

for some instance of x−1 to cancel with a later instance of x. For our purposes,

this difference is irrelevant since the words defined by paths in Γ2 do not have

such cancellations.

2.3 Main Lemma and the proof of Theorem 2.1.2

In this section we first change our setting from pattern avoidance to slightly more

general but equivalent notion of partial pattern avoidance. We state the Main

Lemma 2.3.2 and show that it implies Theorem 2.1.2.
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2.3.1 Partial patterns

A 0-1 matrix is called a partial pattern if every row and column contains at most

one 1. Clearly, every permutation pattern is also a partial pattern. We say that a

permutation matrix M contains a partial pattern L, if L can be obtained from M

by deleting some rows and columns; we say that M avoids L otherwise. Given

a set F of partial patterns, let Cn(F) denote the set of n × n matrices M which

avoid all partial patterns in F . By analogy with the usual permutation patterns,

let Cn(F) = |Cn(F)|.

Proposition 2.3.1. Let F1 be a finite set of partial patterns. Then there exists

a finite set of the usual permutation patterns F2, such that Cn(F1) = Cn(F2) for

all n ∈ N.

Proof. First, let us prove the result for a single partial pattern. Let L be a partial

pattern of size p × q, and let k = p + q. Denote by Pn(L) be the set of n × n

permutation matrices containing L. Let us show by induction that for all n ≥ k,

every permutation matrix M ∈ Pn(L) contains a matrix in Pk(L). Indeed, the

claim is trivially true for n = k. For larger n, observe that every n×n permutation

matrix M which contains L must also contain some i-th row and j-th column,

such that Mp,q = 1, and neither i-th row nor j-th column intersect L. This follows

from the fact that otherwise rank(M) ≤ i+j < n. Deleting these row and column

gives a smaller permutation matrix which contains L, proving the induction claim.

We conclude that F2(L) := ∪ℓ≤kPℓ(L) is the desired set of matrices for F =

{L}. In full generality, take F2 = ∪L∈FF2(L). The details are straightforward.

It therefore suffices to disprove the Noonan–Zeilberger Conjecture 2.1.1 for

partial patterns.

Lemma 2.3.2 (Main Lemma). Let Γ be a two-stack automaton. Then there exist
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sets F and F ′ of partial patterns, and some integers c, d ≥ 1, such that

Ccn+d(F)− Ccn+d(F ′) = G(Γ, n) mod 2, for all n ∈ N.

The proof of the Main Lemma is given in Section 2.5.

2.3.2 Proof of Theorem 2.1.2

By Lemma 2.2.3, there exists a two-stack automaton Γ1, such that the infinite

binary word α = (α1α2 . . .) given by αn = G(Γ1, n), contains every finite binary

word as a subword. By Lemma 2.3.2, there exist integers c and d and two sets F
and F ′ of partial patterns such that Ccn+d(F)−Ccn+d(F ′) = G(Γ1, n) mod 2, for

all n.

If Conjecture 2.1.1 is true, then both {Cn(F)} and {Cn(F ′)} are P-recursive

sequences. Since P-recursive sequences are closed under taking the differences and

subsequences with indices in arithmetic progressions (see e.g. [Sta1, §6.4]), this

means that the sequence {an}, defined as an = {Ccn+d(F) − Ccn+d(F ′)}, is also

P-recursive. On the other hand, from above, we have αn = an mod 2. This gives

a contradiction with Theorem 2.2.1.

The second part of the theorem requires a quantitative form of the Main

Lemma and is given as Corollary 2.4.4.

2.4 The construction of an automaton in the Main Lemma

2.4.1 Notation

The construction of sets of matrices F ,F ′ has two layers and is quite involved,

so we try to simplify it by choosing a clear notation. We use Ag to denote a

certain subset of g × g matrices, which we call an alphabet and use as building
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blocks. We use English capitals with various decorations, notably A, A′, B, B′,

E, L, P, Q, R, S, Tk and Zp, to denote 0-1 matrices of size at most g× g. We use

script capital letters Fi,F ′
i,Wi,W ′

i, to denote the sets of larger matrices (partial

patterns) which form sets F ,F ′. Each is of size at most 8g× 8g, and some of the

matrices are denoted Wi and W ′
i .

On a bigger scale, we use M = M(∗, ∗) to denote large block matrices, with

individual blocks M i,j being either zero or matrices in the alphabet Ag. For the

proof of Theorem 2.1.2 we take g = 10, but for Theorems 2.1.3 we need larger g.

When writing matrices, we use a dot (·) within a matrix to represent a single 0

entry, and a circle (◦) to represent a g × g submatrix of zeros.

2.4.2 The alphabet

A permutation matrix is called simple if it contains no permutation matrix as

a proper submatrix consisting of consecutive rows and columns, other than the

trivial 1× 1 permutation matrix.

Define an alphabet Ag of all g× g simple permutation matrices which contain

the following matrix as a submatrix:

L =





























· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1

· · · 1 · · ·
1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·





























.

Proposition 2.4.1. We have: |Ag| → g!/e2 as g →∞.

Proof. It was shown in [AAK] that the probability that a random g× g permuta-

tion matrix M is simple tends to 1/e2 as g →∞ (see also [OEIS, A111111]). On
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the other hand, the probability that M avoids L tends to 0 as g →∞. Thus, the

probability that M ∈ Ag tends to 1/e2, as desired.

By the proposition, we can fix an integer g large enough that |Ag| > 5+m+r,

where m is the number of vertices in Γ and r is the number of distinct labels in

X ∪ Y on vertices of Γ.

We build our forbidden partial patterns out of elements of Ag as follows.

Choose five special matrices P,Q,B,B′, E ∈ Ag, as well as two classes of ma-

trices, T1, . . . , Tm ∈ Ag, and Z1, . . . , Zr ∈ Ag. Here the matrices T1, . . . , Tm rep-

resent the m vertices in Γ. Let Ti denote the matrix corresponding to vi. The

matrices Z1, . . . , Zr represent the r labels in X ∪ Y . Let s(Zp) denote the label

which corresponds to Zp. Let us emphasize that these choices are arbitrary as the

only important properties of these (5 +m+ r) matrices is that they are all in Ag

and distinct.

2.4.3 Forbidden matrices

Let F1 denote the set of all g × (g + 1) or (g + 1)× g partial patterns formed by

taking a matrix A in Ag, and inserting a row or column of all zeros somewhere in

the middle of A.

Let F2 denote the set of all (2g + 1)× (5g + 1) or (5g + 1)× (2g + 1) partial

patterns whose bottom left g × g consecutive submatrix is a B or B′ and whose

top right g × g consecutive submatrix is Tj for some j.

Let F3 denote the four element set consisting of the (2g+1)×g and g×(2g+1)

partial pattern formed by inserting g+1 rows of zeros below Q, inserting g+1 rows

of zeros above P , inserting g + 1 columns of zeros to the right of Q, or inserting

g + 1 columns of zeros to the left of P .

Let F4 =W1 ∪W2 ∪W3 ∪W4 ∪W5 , where Wi are defined as follows. Let W1,

W2 and W3 denote the sets of matrices of the form W1, W2 and W3, respectively:
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W1 =

































◦ ◦ Ti ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Tj ◦ ◦
L ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Zp

◦ ◦ ◦ ◦ ◦ ◦ Tk ◦
◦ B′ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ R ◦ ◦ ◦
◦ ◦ ◦ Zp ◦ ◦ ◦ ◦

































, W2 =

































◦ ◦ ◦ ◦ Zp ◦ ◦ ◦
◦ ◦ ◦ Ti ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ Tj ◦
◦ L ◦ ◦ ◦ ◦ ◦ ◦
Zp ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Tk

◦ ◦ B′ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ R ◦ ◦

































,

W3 =





























◦ ◦ Ti ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Tj ◦
L ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ E ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ Tk

◦ B′ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ R ◦ ◦





























.

In all three cases, we require L,R ∈ {B,B′} and vi → vj → vk. In W1, we require

ρ(vj) = s(Zp). In W2, we require ρ(vj) = (s(Zp))
−1. In W3, we require ρ(vj) = ε.

Similarly, letW4 andW5 denote the set of all matrices of the form W4 and W5

respectively:

W4 =























◦ ◦ ◦ ◦ T1 ◦
◦ P ◦ ◦ ◦ ◦
◦ ◦ E ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Tk

B′ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ R ◦ ◦























, W5 =























◦ ◦ Ti ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ T2

L ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ E ◦ ◦
◦ ◦ ◦ ◦ Q ◦
◦ B′ ◦ ◦ ◦ ◦























.

Here, in W4, we require R ∈ {B,B′} and v1 → vk, and in W5, we require L ∈
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{B,B′} and vi → v2. Finally, let F5 denote the set of all patterns of the form







◦ Zp ◦
◦ ◦ Zq

B ◦ ◦






,







◦ Zp ◦
◦ ◦ Zq

B′ ◦ ◦






or







◦ ◦ Tj

Zp ◦ ◦
◦ Zq ◦






, where s(Zp) ∼ s(Zq).

Lemma 2.4.2 (Explicit Construction). Given a two-stack automaton Γ, let

F := F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 and F ′ := F ∪ {B,B′},

where F1, . . . ,F5, B, B′ are defined as above. Then, for all n, we have:

Cm(F)− Cm(F ′) = G(Γ, n) mod 2, where m = (3n+ 2)g .

The Main Lemma 2.3.2 follows immediately from this result.

2.4.4 Counting Partial Patterns

We will now analyze the above construction in the specific case of Γ1.

Theorem 2.4.3. There exists a set F of at most 6854 partial patterns of size at

most 80× 80 such that {Cn(F)} is not P-recursive.

Converting these partial patterns into the usual permutation patterns would

require many more patterns. However all the patterns avoided would still be size

at most 80× 80.

Corollary 2.4.4. There exists a set F of 80× 80 permutation matrices such that

the sequence {Cn(F)} is not P-recursive. In particular, |F| < 80! < 10119.

Proof of Theorem 2.4.3. Observe that Γ1 has 31 vertices and uses 6 labels in X ∪
Y . Therefore we need 5 + 31 + 6 = 42 matrices in Ag. Let g = 10. Consider the
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following simple 9× 9 pattern

L′ =



























· · · · · 1 · · ·
· 1 · · · · · · ·
· · · · · · 1 · ·
· · · · · · · · 1
· · · · 1 · · · ·
1 · · · · · · · ·
· · 1 · · · · · ·
· · · · · · · 1 ·
· · · 1 · · · · ·



























.

Note that there are 60 ways to insert 1 into L′ to form a simple 10×10 pattern.

Indeed, the 1 may inserted anywhere other than the 4 corners or the 36 locations

that would form a 2×2 consecutive submatrix. All 60 of these 10×10 are distinct

and in Ag.

For F1, we actually only need to include the 42 matrices in A10 which are

actually used, so |F1| = 42 · 9 · 2 = 756. Similarly, for F2, there are 2 choices

for the bottom left 10 × 10 consecutive submatrix and 31 choices for the top

right 10 × 10 consecutive submatrix. There are 41 entries in the middle and

at most one of them can be a 1, which can be satisfied in 42 ways. Therefore,

|F2| = 2 · 31 · 2 · 42 = 5208. Clearly, |F3| = 4.

Let us show that |F4| = 292. Indeed, a matrix in W1 ∪W2 ∪W3 is defined by

the path vi → vj → vk and the choices for L and R. There are 71 paths in Γ of

length 3, so we have |W1 ∪W2 ∪W3| = 71 · 4 = 284. A matrix in W4 is defined

by the vertex vk and the choices for R, so we have |W4| = 4. Similarly, a matrix

in W5 is defined by the vertex vi and the choices for L, so |W5| = 4.

Finally, for F5, there are 6 choices for Zp, 3 choices for Zq and 31 + 2 choices

for the B, B′ or Tj. Therefore, |F5| = 6 · 3 · 33 = 594. In total, F consists of

|F| = 756 + 5208 + 4 + 292 + 594 = 6854 partial patterns of dimensions at most

80×80. The set F ′ has two extra matrices, but can be made smaller than F since

avoiding B′ makes all matrices Wi ∈ F4 redundant.
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2.5 Proof of the Explicit Construction Lemma 2.4.2

In this section we give a proof of Lemma 2.4.2 by reducing it to three technical

lemmas which are proved in Section 2.7. Briefly, since F ⊂ F ′, we have Cn(F ′) ⊆
Cn(F) for all n. Denote Dn = Cn(F ′)rCn(F). We construct an explicit involution

φ on Dn and analyze the set of fixed points D′
n. We show that the set D′

n has a

very rigid structure emulating the working of a given two-stack automaton Γ.

2.5.1 Preliminaries

The key idea of an involution φ defined below is a switch B ↔ B′ between

submatrices B and B′, in such a way that the fixed points D′
n of φ avoid B′. The

remaining copies of B create a general diagonal structure of the matrices in D′
n,

and enforce the location of all other submatrices from the alphabet. We invite the

reader to consult the example in the next section to have a visual understanding

of our approach.

We also need a convenient notion of a marked submatrix. Such marked sub-

matrix will always be a B, and is located at a specific position in forbidden

matrices Wi. This is best illustrated in the matrix formulas below, where marked

submatrix B is boxed.

Let F ′
4 = W ′

1 ∪W ′
2 ∪W ′

3 ∪W ′
4 ∪W ′

5, where W ′
i ⊆ Wi are defined to have no

submatrices B′ (so L = R = B in the notation above), and where the elements

of W ′
4 have a unique marked submatrix B. Precisely, let W ′

1, W ′
2 and W ′

3 denote
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the set of matrices of the form W ′
1, W

′
2 and W ′

3, respectively:

W ′
1 =

































◦ ◦ Ti ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Tj ◦ ◦
B ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Zp

◦ ◦ ◦ ◦ ◦ ◦ Tk ◦
◦ B ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ B ◦ ◦ ◦
◦ ◦ ◦ Zp ◦ ◦ ◦ ◦

































, W ′
2 =

































◦ ◦ ◦ ◦ Zp ◦ ◦ ◦
◦ ◦ ◦ Ti ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ Tj ◦
◦ B ◦ ◦ ◦ ◦ ◦ ◦
Zp ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Tk

◦ ◦ B ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ B ◦ ◦

































,

W ′
3 =





























◦ ◦ Ti ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Tj ◦
B ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ E ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ Tk

◦ B ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ B ◦ ◦





























.

Similarly, let W ′
4, and W ′

5 denote the set of matrices of the form W ′
4 and W ′

5,

respectively:

W ′
4 =























◦ ◦ ◦ ◦ T1 ◦
◦ P ◦ ◦ ◦ ◦
◦ ◦ E ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Tk

B ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ B ◦ ◦























, W ′
5 =























◦ ◦ Ti ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ T2

B ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ E ◦ ◦
◦ ◦ ◦ ◦ Q ◦
◦ B ◦ ◦ ◦ ◦























.

Of course, all these W ′
i satisfy the same conditions as Wi in the previous section.

2.5.2 Construction of the involution φ

From this point on, let m = (3n + 2)g. Given a m ×m permutation matrix M ,

let M i,j refer to the g× g submatrix in rows g(i− 1)+ 1 through gi, and columns

g(j − 1) + 1 through gj.

38



First, observe that Dn := Cm(F) r Cm(F ′) is the set of all m × m matrices

avoiding F with at least one submatrix B or B′. Since Dn avoids F1, every

submatrix B or B′ in a matrix in Dn must be a consecutive g × g block. A

submatrix B or B′ in a matrix M of Dn is called blocked if replacing it with B′

or B, respectively, would result in a matrix not in Dn.

Lemma 2.5.1. Consider the map φ on Dn which takes the leftmost unblocked

submatrix B or B′ and replaces it with B′ or B respectively. The map φ is an

involution on Dn. Furthermore, the fixed points of φ are the m×m matrices M

such that:

(1) matrix M avoids F ,

(2) matrix M avoids B′,

(3) matrix B is a submatrix of M , and

(4) every submatrix B inside M is a marked submatrix of a matrix in F ′
4.

Let D′
n = Fix(φ) denote the set of all fixed points of φ. Since φ is an invo-

lution, we conclude that |Dn| = |D′
n| mod 2, so it suffices to show that |D′

n| =
G(Γ, n) mod 2.

2.5.3 The structure of D′
n

Let γ be a path from v1 to v2 which is not necessarily balanced, and let π ∈ Sn.

Denote by M := M(γ, π) the m×m permutation matrix given by:

(1) M2,2 = P ,

(2) M3n+1,3n+1 = Q,

(3) M3i+2,3i−2 = B for all i,

(4) M3i−2,3i+2 = Tj for all i, where γi = vj ,
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(5) M3i,3j = E whenever ρ(γi) = ε and π(i) = j,

(6) M3i,3j = Zp whenever ρ(γi) = s(Zp) and π(i) = j,

(7) M3i,3j = Zp whenever ρ(γi) = (s(Zp))
−1 and π(i) = j,

(8) M i,j = 0 is a zero matrix otherwise.

Lemma 2.5.2. Every matrix in D′
n is of the form M(γ, π), where γ is a path of

length n in Γ, and π ∈ Sn.

Note, however, not every matrix M(γ, π) is in D′
n. The following lemma gives

a complete characterization. Recall that given a balanced path γ, there is a unique

permutation πγ associated with γ given in Proposition 2.2.2.

Lemma 2.5.3. Let γ be a path in Γ of length n, and let π ∈ Sn. Then, M(γ, π) ∈
D′

n if and only if γ is balanced and π = πγ.

Lemmas 2.5.1, 2.5.2 and 2.5.3 easily imply the Main Lemma.

2.5.4 Proof of Lemma 2.4.2

We have Cm(F)− Cm(F ′) = |Dn| by definition. Lemma 2.5.1 shows that φ is an

involution, so |Dn| = |Fix(φ)| = |D′
n| mod 2. Combining lemmas 2.5.2 and 2.5.3,

we get |D′
n| = G(Γ, n). Thus, Ccn+d(F)−Ccn+d(F ′) = G(Γ, n) mod 2, as desired.

2.6 Example

Let us illustrate the construction in a simple case. Consider a two-stack au-

tomaton Γ3 given in Figure 2.2. Note that Γ3 has a unique balanced path

γ = v1v3v5v3v6v4v2v4v2.
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v1 v3 v6 v4 v2

v5

ε x1 y−1
1 x−1

1 ε

y1

Figure 2.2: The two-stack automaton Γ3.

Let us show that the following matrix M = M(γ, πγ) is unique in the set of

fixed points D′
9. Here we have s(Z1) = x1 and s(Z2) = y1.

M =























































































◦ ◦ ◦ ◦ T1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ P ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ E ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ T3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Z2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Z2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T2 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T4 ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T2
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Q ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦























































































.

As in the definition of M(γ, πγ), observe that M has a diagonal of B entries

below the main diagonal, and a diagonal of Ti entries above the main diagonal.
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The Ti entries give the vertices of the path γ, in order. Observe that M also has

a P in the top left and Q in the bottom right, as in the definition of M(γ, πγ).

We have here the involution πγ = (2 8)(3 5)(4 6), and the locations of the E, Z1

and Z2 matrices form the permutation matrix for πγ . Each matrix E corresponds

to a time when the path γ visited a vertex labelled ε. Similarly, each Zp above

the diagonal corresponds to a pair of times when a given instance of a label was

written and removed from one of the stacks.

The red and blue squares in M connect each Zp with the corresponding times

along γ that the label was written and removed. Red represents X, while blue

represents Y , as defined in Section 2.2. Notice that when two of these squares

cross (marked black), it means that the first label written was also the first label

removed. This can only happen when the two labels are written on different

stacks, so squares of the same color cannot cross.

The matrix M avoids F2, since the only copes of P and Q are near the top

left and bottom right corner. Similarly, matrix M avoids F3, since no Ti is too

far up and to the right of any B. Clearly, M avoids B′, so M avoids F4.

Now recall the matrix L in the definition of the alphabet Ag:

L =





























· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1

· · · 1 · · ·
1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·





























.

Observe that M avoids F1, since there is no submatrix where each 1 comes from

a different g× g block. Finally, the fact that M avoids F5 corresponds to the fact

that the lines coming out of Zp and Zq never cross when Zp ∼ Zq.
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Clearly, matrix M contains B and avoids B′. One can verify that every sub-

matrix B in M is a marked submatrix in some matrix F ′
4. Since M satisfies all of

the conditions of Lemma 2.5.1, we conclude that M ∈ D′
n.

2.7 Proofs of technical lemmas

2.7.1 Proof of Lemma 2.5.1.

First, let us show that every matrix M which satisfies the following properties, is

a fixed point of φ :

(1) matrix M avoids F ,

(2) matrix M avoids B′,

(3) matrix B is a submatrix of M , and

(4) every submatrix B in M is a marked submatrix in some matrix F ′
4.

Observe that (1) and (3) imply that M avoids F but not F ′ = F ∪ {B,B′}.
Therefore, we have M ∈ Dn. Further, (2) and (4) imply that M is a fixed point

of φ, since M has no B′, and replacing any B with a B′ will create a matrix in F4.

Next, we show that every matrix in Dn which violates the above criteria is

fixed by φ2 but not by φ. Observe that a matrix M ∈ Dn which satisfies (2) also

satisfies (1) and (3). Consider now a matrix M ∈ Dn which violates either (2)

or (4). Clearly, we have φ(M) ∈ Dn. It suffices to show that φ(M) 6= M and

that φ2(M) = M .

Let N be a matrix in Dn. Denote by A a submatrix B or B′ in N . Let N ′

be the matrix formed by replacing A with B′ or B, respectively. Similarly, let A′

denote this submatrix B or B′ in N ′.

43



Assume that N ′ did not avoid F1. Then there would exist a submatrix S ∈ Ag

of N ′ which is not a consecutive g × g block. Note that S must intersect A′.

Consider the submatrix S ∩ A′. This must be a permutation matrix, since S

and A′ are permutation matrices. Furthermore, S ∩ A′ must be a consecutive

submatrix of S, since A′ is a consecutive submatrix of N ′. Since S is simple, we

have that S ∩ A′ is a single 1 entry. This entry might be a 0 in N , but it does

not matter because we could replace it with another 1 entry from A, to form a

non-consecutive submatrix S in N . Thus, N does not avoid F1, contradicting the

assumption that N ∈ Dn.

Since N ′ avoids F1, any instance of a matrix from F2, F3, or F5 intersecting A′

in N ′ must contain A′ or intersect A′ in a single row or column. In either case,

replacing A with A′ gives another matrix in F2, F3, or F5, contradicting the fact

that N ′ avoids F2, F3 and F5.

Therefore, if the submatrix A is blocked it must be because A′ is contained

in a matrix in F4. Since F4 is closed under replacing any B with a B′, it must

be that A = B and A′ = B′. Any matrix which violates (2) therefore contains

a instance of B′, which is necessarily unblocked, and so is not fixed by φ. For

matrices in Dn which satisfy (2), containing an unblocked instance of B is equiv-

alent to violating (4). Therefore, any matrix which violates (4) is not fixed by φ,

so φ(M) 6= M .

Let η(N) denote the leftmost unblocked instance of B or B′ in N , and let A =

η(N). Observe that A′ is also clearly unblocked in N ′. Assume that A′ 6= η(N ′).

There must be another unblocked instance S of B or B′, which is further to the left

than A′. However, S would also be unblocked in N , contradicting the assumption

that A = η(N). Therefore, A′ = η(N ′), which implies that φ(N ′) = N . We

conclude that φ(φ(M)) = M for all M .

In summary, every matrix M satisfying (1) through (4) is fixed by φ, and every

matrix in Dn not satisfying (1) through (4) is fixed by φ2 but not φ. Therefore,

44



map φ is an involution whose fixed points are exactly the matrices satisfying (1)

through (4).

2.7.2 Proof of Lemma 2.5.2.

Let M be a matrix in D′
n. Lemma 2.5.1 shows that

(1) matrix M avoids F ,

(2) matrix M avoids B′,

(3) matrix B is a submatrix of M , and

(4) every instance of B in M is the marked submatrix in some matrix in F ′
4.

Observe that every matrix in F ′
4 has a B or a P above the marked submatrix B .

Therefore, for every instance of B in M , there must be another B or a P some-

where above it. Since there is at least one B in M , there must be at least one P

in M . This P must have at least g rows above it and g columns to the left, since

it is contained in some matrix in W ′
4. Note that matrix P cannot have any more

rows above it or columns to the left, since M avoids F3. Therefore, M2,2 is the

unique instance of P in M . Similar analysis shows that M3n+1,3n+1 is the unique

instance of Q in M .

Similarly, every matrix in F ′
4 has a Tj at least 4g rows above and 4g columns

to the right of the B . Since M avoids F2, there can be no more rows or columns

inserted in between this B and Tj. Therefore, for every instance of B in M , there

must be some Tj exactly 4g rows above and 4g columns to the right. In particular,

this means that if M i,j = B, then M i−4,j+4 = Tj for some j.

The T1 above the P must be 4g rows above and 4g columns to the right of

the B to the left of the P . This is only possible if this B is in location M5,1, and

the T1 is in location M1,5.
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If M i,j = B and i 6= n, then there must another instance of B exactly 3g

columns to the right, and some Tk exactly g rows above, since every matrix inW ′
1,

W ′
2,W ′

3 orW ′
4 has this pattern. We know that these submatrices cannot be further

away because they are squeezed between the B and the Tj . The new Tk must be

4g rows below and 4g columns to the right of the new instance of B. This can

only be achieved by letting M i+3,j+3 = B and M i−1,j+7 = Tk.

Thus, the instances of B in a matrix M in D′
n are exactly the matrices M3i+2,3i−2,

for 1 ≤ i ≤ n. Similarly, we have M3i−2,3i+2 = Tj for some j. Let γi denote the

vertex in Γ corresponding to the matrix M3i−2,3i+2. The restrictions in F ′
4 about

adjacent vi ensure that γ = γ1 . . . γn is a path from v1 to v2.

When we specify this path γ, we uniquely define all of the submatrices M i,j

except for those of the form M3i,3j . Further, the restrictions from F ′
4 tell us that

each M3i,3j is either a matrix of zeros or equal to E or Zp. If the matrix at

location M3i,3j is nonzero, then it is uniquely determined by the restrictions from

F ′
4 on the rows of M .

Let π be the permutation such that π(i) is the unique j, such that M3i,3j is E

or Zp. Let us prove that M = M(γ, π). We already showed that M2,2 = P ,

M3n+1,3n+1 = Q, and M3i+2,3i−2 = B for all i. We know that M3i−2,3i+2 = Tj

where γi = vj, by the definition of γ.

By definition, submatrix M3i,3j is non-zero if and only if π(i) = j. The restric-

tions on E and Zp from F ′
4 imply that M3i,3j = E for ρ(γi) = ε, M3i,3j = Zp

for ρ(γi) = s(Zp), and M3i,3j = Zp for ρ(γi) = (s(Zp))
−1. We have a total

of m entries 1′s, so all remaining M i,j are zeros matrices. This implies that

M = M(γ, π).
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2.7.3 Proof of the only if part of Lemma 2.5.3.

First, we show that if M(γ, π) ∈ D′
n, then γ is balanced and π = πγ . By Propo-

sition 2.2.2, it suffices to show that the permutation π satisfies the following four

properties:

(1) ρ(γi) = ε for all π(i) = i ,

(2) ρ(γi) ∈ X ∪ Y and ρ(γπ(i)) = ρ(γi)
−1, for all π(i) > i,

(3) there are no i and j with ρ(γi) ∼ ρ(γj) such that i < j < π(i) < π(j), and

(4) permutation π is an involution.

Proof of (1): Consider the case where π(i) = i. The submatrix M3i,3i is non-zero

then. In this case, the B at M3i+2,3j−2 must be the marked submatrix B in some

instance of a matrix in W ′
3, W ′

4 or W ′
5. Thus, M3i,3i = E and M3i−2,3j−2 = Tj ,

where ρ(γi) = ρ(vj) = ε, so π satisfies (1).

Proof of (2): Consider the case where π(i) > i, so M3i,3π(i) is non-zero. In this

case, the submatrix B at M3i+2,3i−2 must be B in some instance of a matrix

in W ′
1. Thus, M3i,3π(i) = Zp, and M3i−2,3i+2 = Tj , where ρ(γi) = ρ(vj) = s(Zp).

Similarly, the submatrix B at M3π(i)+2,3π(i)−2 must be a marked submatrix in some

matrix in W ′
2. Thus, M3π(i)−2,3π(i)+2 = Tk, where ρ(γπ(i)) = ρ(vk) = (s(Zp))

−1.

We conclude that ρ(γi) ∈ X ∪ Y and ρ(γπ(i)) = ρ(γi)
−1, so π satisfies (2). Similar

analysis shows that if π(i) < i, then ρ(γπ(i)) ∈ X ∪ Y and ρ(γi) = ρ(γπ(i))
−1, so

π−1 satisfies (2) as well.

Proof of (3): Assume that there exist i and j with ρ(γi) ∼ ρ(γj) such that

i < j < π(i) < π(j). Let s(Zp) = ρ(γi) and s(Zq) = ρ(γj). We have M3i,3π(i) = Zp

and M3j,3π(j) = Zq. Observe that M3j+2,3j−2 = B. Since 3i < 3j < 3j + 2 and

3j − 2 < 3π(i) < 3π(j), these three matrices together form a pattern which is

in F5, a contradiction. This implies that π satisfies (3). Similar analysis shows
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that there are no i and j with ρ(γi) ∼ ρ(γj), such that π(i) < π(j) < i < j, so π−1

satisfies (3) as well.

Proof of (4): Note that the conditions on π only mention values i for which π(i) ≥
i. Therefore, even if π were not an involution, the permutation π would have to

agree with πγ at all i such that π(i) ≥ i, by the uniqueness of the involution πγ .

However, a similar analysis shows that π−1 must also satisfy conditions (1), (2)

and (3), so π−1 also agrees with πγ at all i such that π−1(i) ≥ i. Combining these

two observations, we conclude that π = π−1 = πγ .

2.7.4 Proof of the if part of Lemma 2.5.3.

It remains to prove that M(γ, πγ) ∈ D′
n. Clearly, matrix B is a submatrix of

M(γ, ξπγ). In addition, matrix M(γ, πγ) has exactly n submatrices B, and each

of them is the marked submatrix B in some matrix in F ′
4.

Recall that there is a unique P and Q in M(γ, πγ), and they are sufficiently

close to the edge to ensure that M(γ, πγ) avoids F2. Similarly, we know the

locations of all submatrices B and Ti, and they ensure that M(γ, πγ) avoids F3.

Clearly, matrix M(γ, πγ) avoids B′, and therefore also avoids F4. Also, if M(γ, πγ)

did not avoid F5, this would contradict the fact that there are no i and j with

ρ(γi) ∼ ρ(γj) such that i < j < πγ(i) < πγ(j).

Finally, we need to show that M(γ, πγ) avoids F1. Assume that M(γ, πγ) does

not avoid F1, and that A is a g× g submatrix of M(γ, πγ), such that A ∈ Ag and

A is not a consecutive g × g block in M(γ, πγ). Since A is simple, every 1 in A

comes from a different block M i,j . By definition of Ag, matrix L is a submatrix

of A (see §2.4.1). Assume the 1 in the center of L is above or on the main diagonal

of M . It must therefore be in an E, Tj , or Zp. The top three 1’s in L must be in

matrices of the form Zq, since there is not enough room for any of them to be in

a Tk.
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Since the relation “∼” partitions the set of Zp’s into two equivalence classes,

two of these 1’s must be in some Zp and Zq with Zp ∼ Zq. However, there is a

submatrix B that is below and to the left of both Zp and Zq. Together they form

a matrix in F5, contradicting the fact that M(γ, πγ) was shown above to avoid F5.

Similar analysis gives a contradiction if the 1 in the center of L is below the main

diagonal.

We conclude that M(γ, πγ) satisfies all four conditions from Lemma 2.5.1. This

implies M(γ, πγ) ∈ D′
n, as desired.

2.8 Decidibility

2.8.1 Simulating Turing Machines

It is well known and easy to see that two-stack automata can simulate (nonde-

terministic) Turing machines. This simulation works by using the two-stacks to

represent the tape of the Turing machine (see e.g. [HMU]). To recap, let one

stack contain everything written on the tape to the left of the head, while the

other stack contains everything written to the right. Moving the head of the Tur-

ing machine left or right corresponds to removing a symbol from one stack and

writing a (possibly different) symbol on the other stack. This simulation is direct

and can be done in polynomial time. We refer to [HMU, Sip] for the definitions

and details.

2.8.2 Proof of Theorem 2.1.3

Let M be an arbitrary deterministic Turing machine, with no input. Consider

the two-stack automaton which simulates M . If M does not halt, G(Γ, n) = 0

for all n. If M eventually halts, then Γ will have a single balanced path, and

G(Γ, n) = 1 for some n.
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Construct the F and F ′ associated with this Γ as in Lemma 2.3.2. By analogy,

we then have Cn(F) = Cn(F ′) mod 2 for all n = d mod c if and only if M does

not halt. Recall also that the halting problem is undecidable (see e.g. [Sip]).

Therefore, by the argument above, the construction in the proof of Lemma 2.3.2

can be emulated by a Turing machine, and the construction satisfies Cn(F) =

Cn(F ′) mod 2 for all n 6= d mod c. Thus, given M , we can construct finite sets

F and F ′ permutation patterns, such that Cn(F) = Cn(F ′) for all n ≥ 1 if and

only if M does not halt. Therefore, it is undecidable whether Cn(F) = Cn(F ′)

for all n ≥ 1.

2.8.3 Implications and speculations

Theorem 2.1.3 has rather interesting implications for our understanding of pattern

avoidance (cf. §2.9.7). For example, a standard argument (see e.g. [Poon, p. 2]),

gives the following surprising result:

Corollary 2.8.1. There exist two finite sets of patterns F and F ′, such that the

problem of whether Cn(F) = Cn(F ′) mod2 for all n ∈ N, is independent of ZFC.

These results give us confidence in the following open prolems, further extend-

ing Theorem 2.1.3.

Conjecture 2.8.2 (Parity problem). The problem of whether Cn(F) = 0 mod 2

for all n ∈ N, is undecidable.

We believe that our tools may prove useful to establish this conjecture, likely

with a great deal more effort. This goes beyond the scope of the paper.

Conjecture 2.8.3 (Wilf–equivalence problem). The problem of whether Cn(F1) =

Cn(F2) for all n ∈ N is undecidable.

This conjecture is partly motivated by the recently found unusual examples of
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Wilf–equivalence [BP]. It is more speculative than Conjecture 2.8.2, since in our

construction Cn(F)− Cn(F ′) grows rather rapidly.

In a different direction, it would be also very interesting to resolve the parity

and the Wilf–equivalence problems when only one permutation is avoided. In this

case, we believe that both are likely to be decidable.

Conjecture 2.8.4. For forbidden sets with a single permutation |F| = |F ′| = 1,

both the parity and the Wilf-equivalence problems are decidable.

To clarify and contrast the conjectures, let us note that non-P-recursiveness

is quite possible and rather likely for permutation class avoiding one or two per-

mutations (see §2.9.4). However, the undecidability is a much stronger condition

and we do not believe one permutation has enough room to embed all logical

axioms. This “small size is hard to achieve” phenomenon is somewhat similar to

aperiodicity and undecidability for plane tilings (see §2.9.6).

2.9 Final remarks and open problems

2.9.1

Despite a large literature on pattern avoidance, relatively little is known about

general sets of patterns. Notably, the Stanley–Wilf conjecture proved by Mar-

cus and Tardos shows that Cn(F) are at most exponential [MT], improving

on an earlier near-exponential bound by Alon and Friedgud [AF]. Most re-

cently, Fox showed that for a random permutation ω ∈ Sn, we have Cn(F) =

exp
(

kΘ(1)n
)

[Fox] (see also [V3, §2.5]).
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2.9.2

For an integer P-recursive sequence {an}, the generating series A(t) =∑∞
n=0 an t

n

is D-finite (holonomic), i.e. satisfies a linear ODE (see e.g. [FS, Sta1]). In the case

an = eO(n), the series A(t) is also a G-function, an important notion in Analytic

Number Theory (see e.g. [Gar]).

2.9.3

The most celebrated example of Wilf-equivalence is (123) ∼ (213). It follows

from results of MacMahon (1915) and Knuth (1973), that Cn(123) = Cn(213) =

1
n+1

(

2n
n

)

, the n-th Catalan number, see e.g. [Kit, Sta1]. Many other Wilf-equivalent

classes are known now, see e.g. [Kit].

2.9.4

There are three Wilf-equivalence classes of patterns in S4. Two of them are known

to give P-recursive sequences, but whether {Cn(1324)} is P-recursive remains a

long-standing open problem in the area (see e.g. [Ste, V3]).

We should mention that there seems to be some recent strong experimental

evidence against sequence {Cn(1324)} being P-recursive. Numerical analysis of

the values for n ≤ 36 given in [CG] suggest the asymptotic behavior

Cn(1324) ∼ A · λn · µ
√
n · nα ,

where A ≈ 8, λ ≈ 11.6, µ ≈ 0.04, and α ≈ −1.1. If this asymptotics holds, this

would imply non-P-recursiveness by Theorem 1.5.1. in Chapter 1, which forbids

µ
√
n terms.

For larger sets, the leading candidates for non-P-recursiveness are the se-

quences {Cn(4231, 4123)} and {Cn(4123, 4231, 4312)} which were recently com-
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puted for n ≤ 1000 and 5000, respectively [A+].

2.9.5

The bound |F| < 10119 in Corollary 2.4.4 can easily be improved down to a bit

under 30,000 by refining the proof of Theorem 2.4.3 and using small technical

tricks. While it is possible that a single permutation suffices (see above), it is

unlikely that the tools from this paper can be used.

2.9.6

It is worth comparing the non-P-recursiveness of pattern avoidance with the his-

tory of aperiodic tilings in the plane. Originally conjectured by Wang to be im-

possible [Wang], such tilings were first constructed by Berger in 1966 by an un-

decidability argument [Ber]. Note that Berger’s construction used about 20,000

tiles. In 1971, by a different undecidability argument, Robinson was able to reduce

this number to six [Rob]. Most recently, Ollinger established the current record

of five polyomino tiles [Oll]. Without undecidability, Penrose famously used only

two tiles to construct aperiodic tilings (see e.g. [GS]). Whether there exists one

tile which forces aperiodicity remains open. This is the so-called einstein problem

(cf. [ST] and [Yang, §7.5]).

2.9.7

In [EV], Zeilberger asks to characterize pattern avoiding permutation classes (of

single permutations) with g.f.’s rational, algebraic, or D-finite. We believe a com-

plete characterization of the latter class is impossible.

Open Problem 2.9.1. The problem of whether {Cn(F)} is P-recursive is un-

decidable.
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Let us note that our results offer only a weak evidence in favor of the open

problem, since Theorem 2.2.1 gives only a necessary condition on P-recursiveness.

It would be interesting to see if any of Zeilberger’s problems are decidable. A rare

decidability result in this direction is given in [BRV] (see also a discussion in [V3,

§3]).
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CHAPTER 3

Irrational Tiles

58



3.1 Introduction

The study of combinatorial objects enumerated by rational generating functions

(GF) is classical and goes back to the foundation of Combinatorial Theory. Rather

remarkably, this class includes a large variety of combinatorial objects, from inte-

ger points in polytopes and horizontally convex polyominoes, to magic squares and

discordant permutations (see e.g. [Sta1, FS]). Counting the number of tilings of a

strip (rectangle [k × n] with a fixed height k) is another popular example in this

class, going back to Golomb, see [Gol, §7] (see also [BL, CCH, KM, MSV]). The

nature of GFs of such tilings is by now completely understood (see Theorem 3.1.1

below).

In this paper we present an unusual generalization to tile counting functions

with irrational tiles, of rectangles [1× (n+ ε)], where ε ∈ R is fixed. This class of

functions turns out to be very rich and interesting; our main result (theorems 3.1.2

and 3.1.3 below) is a complete characterization of these functions. We then use

this result to construct a number of tile counting functions useful for applications.

Let us first illustrate the notion of tile counting functions with several exam-

ples. Start with Fibonacci number Fn which count the number of tilings of [1×n]

with the set T of two rectangles [1× 1] and [1× 2], see Figure 3.1.

[1× 10]T

Figure 3.1: Fibonacci tiles T and a tiling of [1× 10].

Consider now a more generic set of tiles as in Figure 3.2, where each tile

has height 1 and rational side lengths. Note that the dark shaded tiles here are

bookends, i.e. every tiling of [1 × n] must begin and end with one, and they are

not allowed to be in the middle. Also, no reflections or rotations are allowed, only

parallel translations of the tiles. We then have exactly fT (n) =
(

n−2
2

)

tilings of

[1× n], since the two light tiles must be in this order and can be anywhere in the
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sequence of (n− 2) tiles.

[1× 14]

T

Figure 3.2: Set T of 5 rational tiles and two bookends; a tiling of [1× 14] with T .

More generally, let fT (n) be the number of tilings on [1 × n] with a fixed set

of rational tiles of height 1 and two bookends as above.1 Denote by F1 the set of

all such functions. It is easy to see via the transfer-matrix method (see e.g. [Sta1,

§4.7]), that the GF FT (x) = f(0) + f(1)x+ f(2)x2 + . . . is rational:

FT (x) =
P (x)

Q(x)
for some P,Q ∈ Z[x] .

In the two examples above, we have GFs 1/(1− x− x2) and x4/(1− x)3 , respec-

tively.

Note, however, that the combinatorial nature of f(n) adds further constraints

on possible GFs FT (x). The following result gives a complete characterization of

such GFs. Although never stated in this form, it is well known in a sense that it

follows easily from several existing results (see §3.11.2 for references and details).

Theorem 3.1.1. Function f(n) is in F1, i.e. equal to fT (n) for all n ≥ 1 and

some rational set of tiles T as above, if and only if its GF F (x) = f(0)+ f(1)x+

f(2)x2 + . . . is N-rational.

Here the class R1 of N-rational functions is defined to be the smallest class of GFs

G(x) = g(0) + g(1)x+ g(2)x2 + . . . , such that:

1For simplicity, we allow bookends in T to be empty tiles. In general, bookends play the role
of boundary coloring for Wang tilings [Wang] (cf. [GaP, PY]). Note that irrational tilings are
agile enough not to require them at all. This follows from our results, but the reader might
enjoy finding a direct argument.
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(1) 0, x ∈ R1,

(2) G1, G2 ∈ R1 =⇒ G1 +G2, G1 ·G2 ∈ R1,

(3) G ∈ R1, g(0) = 0 =⇒ 1/(1−G) ∈ R1 .

This class of rational GFs is classical and closely related to deterministic finite au-

tomata and regular languages, fundamental objets in the Theory of Computation

(see e.g. [MM, Sip]), and Formal Language Theory (see e.g. [BR1, SS]).2

We are now ready to state the main result. Let T be a finite set of tiles as

above (no bookends), which all have height 1 but now allowed to have irrational

length intervals in the boundaries. Denote by f(n) = fT,ε(n) the number of tilings

with T of rectangles [1 × (n + ε)], where ε ∈ R is fixed. Denote by F the set of

all such functions.

Observe that F is much larger than F1. For example, take 2 irrational tiles
[

1× (1
2
±α)

]

, for some α /∈ Q, 0 < α < 1/2, and let ε = 0 (see Figure 3.3). Then

f(n) =
(

2n
n

)

, and the GF equal to F (x) = 1/
√
1− 4x.

[

1× (1
2
− α)

]

[

1× (1
2
+ α)

] [1× 4]

Figure 3.3: Set of 2 irrational tiles; a tiling of [1× 4] with 8 tiles.

LetRk denote the multivariate N-rational functions defined as a as the smallest

class of GFs F ∈ N[[x1, . . . , xk]], which satisfies condition

(1′) 0, x1, . . . , xk ∈ R1.

and conditions (2), (3) as above.

Main Theorem 3.1.2. Function f = f(n) is in F if and only if

f(n) =
[

xn
1 . . . x

n
k

]

F (x1, . . . , xk) for some F ∈ Rk .

2Although we never state the connection explicitly, both theories give a motivation for this
work, and are helpful in understanding the proofs (cf. §3.11.2).
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The theorem can be viewed as a multivariate version of Theorem 3.1.1, but strictly

speaking it is not a generalization; here the number k of variables is not specified,

and can in principle be very large even for small |T | (cf. §3.11.7). Again, proving

that F is a subset of diagonals of rational functions F ∈ Z[x1, . . . , xk] is relatively

straightforward by an appropriate modification of the transfer-matrix method,

while our result is substantially stronger.

Main Theorem 3.1.3. Function f = f(n) is in F if and only if it can be written

as

f(n) =
∑

(v1,...,vd)∈Zd

r
∏

i=1

(

ai1v1 + . . .+ aidvd + a′in + a′′i
bi1v1 + . . .+ bidvd + b′in+ b′′i

)

,

for some r, d ∈ N, and aij , bij, a
′
i, b

′
i, a

′′
i , b

′′
i ∈ Z, for all 1 ≤ i ≤ r, 1 ≤ j ≤ d.3

The binomial multisums (multidimensional sums) as in the theorem is a special

case of a very broad class of holonomic functions [PWZ], and a smaller class

of balanced multisums defined in [Gar] (see §3.11.6). For examples of binomial

multisums, take the Delannoy numbers Dn (sequence A001850 in [OEIS]), and

the Apéry numbers An (sequence A005259 in [OEIS]) :

(♦) Dn =

n
∑

k=0

(

n+ k

n− k

)(

2k

k

)

, An =

n
∑

k=0

k
∑

j=0

(

n

k

)(

n+ k

k

)(

k

j

)3

.

In summary, Main Theorems 3.1.2 and 3.1.3 give two different characteriza-

tions of tile counting functions fT,ε(n), for some fixed ε ∈ R and an irrational set

of tiles T . Theorem 3.1.2 is perhaps more structural, while Theorem 3.1.3 is easier

to use to give explicit constructions (see Section 3.3). Curiously, neither direction

of either main theorem is particularly easy.

The proof of the main theorems occupies much of the paper. We also present

a number of applications of the main theorems, most notably to construction of

3The binomial coefficients here are defined to be zero for negative parameters (see §3.2.1 for
the precise definition); this allows binomial multisums in the r.h.s. to be finite.
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tile counting function with given asymptotics (Section 3.4). This requires the full

power of both theorems and their proofs. Specifically, we use the fact that this

class of functions are closed under addition and multiplication – this is easy to

see for the tile counting functions and the diagonals, but not for the binomial

multisums.

The rest of the paper is structured as follows. We begin with definitions and

notation (Section 3.2). In the next key Section 3.3, we expand on the definitions

of classes F , B and Rk, illustrate them with examples and restate the main

theorems. Then, in Section 3.4, we give applications to asymptotics of tile counting

functions and to the Catalan numbers conjecture (Conjecture 3.4.6). In the next

four sections 3.5–3.8 we present the proof of the main theorems, followed by the

proofs of applications (sections 3.9 and 3.10). We conclude with final remarks in

Section 3.11.

3.2 Definitions and notation

3.2.1 Basic notation

Let N = {0, 1, 2, . . .}, P = {1, 2, . . .}, and let A = Q be the field of algebraic

numbers. For a GF G ∈ Z[[x1, . . . , xk]], denote by
[

xc1
1 . . . xck

k

]

G the coefficient

of xc1
1 . . . xck

k in G, and by [1]G the constant term in G.

For sequences f, g : N→ R, we use notation f ∼ g to denote that f(n)/g(n)→
1 as n→∞. Here and elsewhere we only use the n→∞ asymptotics.

We assume that 0! = 1, and n! = 0 for all n < 0. We also extend binomial
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coefficients to all a, b ∈ Z as follows:

(

a

b

)

=



























a!
(a−b)!b!

if 0 ≤ b ≤ a,

1 if a = −1, b = 0,

0 otherwise.

CAVEAT: This is not the way binomial coefficients are normally extended to

negative inputs; this notation allows us to use
(

a+b−1
b

)

to denote the number of

ways to distribute b identical objects into a distinct groups, for all a, b ≥ 0.

3.2.2 Tilings

For the purposes of this paper, a tile is an axis-parallel simply connected (closed)

polygon in R2. A region is a union of finitely many axis-parallel polygons. We

use |τ | to denote the area of tile τ .

We consider only finite sets of tiles T = {τ1, . . . , τr}. A tiling of a region Γ

with the set of tiles T , is a collection of non-overlapping translations of tiles in T

(ignoring boundary intersections), which covers Γ. We use T (Γ) to denote the

number of tilings of Γ with T .

A set of tiles T is called tall if every tile in T has height 1. We study only

tilings with tall tiles of rectangular regions Ra = [1× a], where a > 0.

3.2.3 Graphs

Throughout the paper, we consider finite directed weighted multi-graphs G =

(V,E). This means that between every two vertices v, v′ ∈ V there is a finite

number of (directed) edges v → v′, each with its own weight. A path γ in G is a

sequence of oriented edges (v1, v2), (v2, v3), . . . , (vℓ−1, vℓ); vertices v1 and vℓ are

called start and end of the path. A cycle is a path with v1 = vℓ. The weight of a
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path or a cycle, denoted w(γ), is defined to be the sum of the weights of its edges.

3.3 Three classes of functions

3.3.1 Tile counting functions

Fix ε ≥ 0 and let T be a set of tall tiles. In the notation above, f(n) = T (Rn+ε)

is the number of tiling of of rectangles [1 × (n + ε)] with T . We refer to f(n) as

the tile counting function. In notation of the introduction, F is the set of all such

functions.

Example 3.3.1. We define functions g1, . . . , g6 : N→ N as follows:

g1(n) =











1 if n is even

0 if n is odd
g2(n) = 2 , g3(n) = n2 ,

g4(n) = 2n g5(n) = Fn g6(n) =

(

2n

n

)

,

where Fn is the n-th Fibonacci number. Let us show that these functions are all

in F .

First, function g1 counts tilings of a length n rectangle by a single rectangle

R2. Second, consider a set of six tiles T2 as in Figure 3.4, with dark shaded tiles

of area α > 0, α /∈ Q, the light shaded tiles of area 1, and set ε = 2α. Now

observe that Rn+ε rectangle can be tiled with T2 in exactly two ways: one way

using either the first or the second triple of tiles.

Third, take any two rationally independent irrational numbers α > β > 0, and

set ε = α+β. Consider the set of three rectangles T3 = {R1,R1+α,R1+β ,R1+α+β}.
Now observe that there are exactly n2 tilings of Rn+α+β. Fourth, take a set T4

with one unit square and two tiles which can only form a unit square, and observe
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that Rn has exactly 2n tilings. The remaining two examples are given in the

introduction.

1

12 α

1 + β 1 + α 1 + α+ β

T1 T2

T3 T4

Figure 3.4: Tile sets T1, . . . , T4 in the example.

3.3.2 Diagonals of N-rational generating functions

As in the introduction, letRk be the smallest class of GFs in k variables x1, . . . , xk,

satisfying

(1) 0, x1, . . . , xk ∈ Rk ,

(2) If F,G ∈ Rk, then F + F and F ·G ∈ Rk.

(3) If F ∈ Rk, and [1]F = 0, then 1
1−F
∈ Rk.

A GF in Rk is called an N-rational generating function in k variables. Note that

if G(x1, . . . , xk) ∈ Rk, then so is G(xm
1 , . . . , x

m
k ),for all integer m ≥ 2.

A diagonal of G ∈ N[[x1, . . . , xk]] is a function f : N→ N defined by

f(n) =
[

xn
1 . . . x

n
k

]

G(x1, . . . , xk) .

Denote by N the set of diagonals of all N-rational generating functions, over all

k ∈ P.

Example 3.3.2. In notation of Example 3.3.1, let us show that g1, . . . , g6 ∈ N :

g1(n) =
[

xn]
1

1− x2
, g2(n) =

[

xn
] 1

1− x
+

1

1− x
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g3(n) =
[

xnyn
]

x

(

1

1− x

)2

y

(

1

1− y

)2

, g4(n) =
[

xn
] 1

1− 2x

g5(n) =
[

xn
] 1

1− x− x2
, g6(n) =

[

xnyn
] 1

1− x− y
.

3.3.3 Binomial multisums

Following the statement of Main Theorem 3.1.3, denote by B the set of all functions

f : N→ N that can be expressed as

f(n) =
∑

v∈Zd

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

,

for some αi = aiv + a′in+ a′′i , βi = biv + b′in + b′′i , where r, d ∈ N, ai,bi : Z
d → Z

are integer linear functions, and a′i, b
′
i, a

′′
i , b

′′
i ∈ Z, for all i.

Note that the summation over all v ∈ Zd is infinite, so it is unclear from the

definition whether the multisums f(n) are finite. However, the binomial coeffi-

cients are zero for the negative values of βi and αi − βi, so the summation is in

fact over integer points in a convex polyhedron defined by these inequalities.

Example 3.3.3. In notation of Example 3.3.1, it follows from the definition that

g2, g6 ∈ B. To see g1, g3, g4, g5 ∈ B, note that

g1(n) =
∑

v∈Z

(

n

2v

)(

2v

n

)

, g3(n) =

(

n

1

)(

n

1

)

,

g4(n) =
∑

v∈Z

(

n

v

)

, g5(n) =
∑

v∈Z

(

n− v

v

)

.

For the last formula for the Fibonacci numbers g5(n) = Fn is classical, see e.g.

[Rio, p. 14] or [Sta1, Exc. 1.37].
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3.3.4 Main theorems restated

Surprisingly, the class B of binomial multisums as above coincides with both tile

counting functions and diagonals of N-rational functions, and plays an intermedi-

ate role connecting them.

Main Theorem 3.3.4. F = N = B.

The proof of Main Theorem 3.3.4 is split into three parts. Lemmas 3.5.1, 3.6.1

and 3.7.1 state F ⊆ B, N ⊆ F and B ⊆ N , respectively. Each is proved in a

separate section, and together they imply the Main Theorem.

Corollary 3.3.5. The classes of functions F = N = B are closed under addition

and (pointwise) multiplication.

This follows from the Main Theorem 3.3.4 and Lemma 3.7.2, which proves the

claim for diagonals f ∈ N .

Before we proceed to further applications, let us obtain the following elemen-

tary corollary of the Main Theorem 3.3.4. Note that each of these tile counting

five functions can be constructed directly via ad hoc argument in the style of

Example 3.3.1. We include it as an illustration of the versatility of the theorem.

Corollary 3.3.6. The following functions f1, . . . , f5 : N → N are tile counting

functions:

(i) f1 has finite support,

(ii) f2 is periodic,

(iii) f3(n) = apn
p + . . .+ a1n+ a0, where ai ∈ N,

(iv) f4(n) = mn, where m ∈ N,

(v) f5(n) = mn − 1, where m ∈ N, m ≥ 1.
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Proof. By the main theorem, it suffices to show that each function fi is in N .

Clearly, function f1 is the diagonal of a polynomial, so f1 ∈ N .

The functions

fk,p(m) =











1 if m = k mod p

0 otherwise

are the diagonals of the generating functions xk

1−xp , for all 0 ≤ k < p, so are clearly

in N , and f2 can be expressed as a sum of these fk,p functions. Since N is closed

under addition, this implies f2 ∈ N . Similarly, the polynomial f(n) = 1 and

f(n) = n are the diagonals of 1/(1 − x) and x/(1 − x)2 respectively, and thus

in N . Since N is closed under addition and multiplication, we have f3 ∈ N .

The function f4 is the diagonal of 1
1−mx

, and therefore in N . Similarly, the

function f5 satisfies the recurrence f5(n + 1) = mf5(n) + (m − 1), and thus the

diagonal of the generating function G(x) satisfying G = mxG+ (m− 1)/(1− x).

Note that

G(x) = (m− 1) · 1

(1− x)
· 1

(1−mx)
.

Therefore, G ∈ R1, which implies f5 ∈ N .

3.3.5 Two more examples

Recall that our definition of binomial coefficients is modified to have
(−1

0

)

= 1,

see §3.2.1. This normally does not affect any (usual) binomial sums, e.g. the

Delannoy and Apéry numbers defined in the introduction remain unchanged when

the summations in (♦) are extended to all integers. Simply put, whenever
(−1

0

)

appears there, some other binomial coefficient in the product is equal to zero.

The proof of Main Theorem 3.3.4 is constructed by creating a large number

of auxiliary variables for the N-rational functions, and auxiliary indices for the

binomial multisums. These auxiliary indices are often constrained to a small
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range, and
(−1

0

)

does appear in several cases.

Example 3.3.7. Denote by Ln the Lucas numbers Ln = Ln−1 + Ln−2, where

L1 = 1 and L2 = 3, see e.g. [Rio, §4.3] (sequence A000204 in [OEIS]). They have

a combinatorial interpretation as the number of matchings in an n-cycle, and are

closely related to Fibonacci numbers Fn :

(⊚) Ln = Fn + Fn−2 for n ≥ 2.

From Corollary 3.3.5, the function f(n) := Ln is in F . In fact, it is immediate

that Ln ∈ R1 :

Ln = [xn]
1 + x2

1− x− x2
.

To see directly that Lucas numbers are in F , take five tiles as in Figure 3.5, with

two right bookends, emulating (⊚). On the other hand, finding a binomial sum is

less intuitive, as B is not obviously closed under addition. In fact, we have:

Ln =
∑

(k,i)∈Z2

(

n− k − 2i

k

)(

1

i

)

,

where we use (⊚), the formula for g5(n) in Example 3.3.3, and make i constrained

to {0, 1}. Note that we avoid using
(−1

0

)

.

Figure 3.5: Five tiles giving Lucas numbers Ln.

Example 3.3.8. Let f(n) = 2n + 3n. Checking that f ∈ F and f ∈ N is

straightforward and similar to g4(n) in the examples above. However, finding a

binomial multisum is more difficult:

f(n) =
∑

(i,j,k,ℓ,m)∈Z5

(

n

i

)(

m

j

)(

1

k

)(

m− k

m

)(

ℓ+ k − 1

ℓ

)(

i

m+ ℓ

)(

m+ ℓ

i

)

.
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Note here that the term
(

1
k

)

gives k ∈ {0, 1}. Also,
(

i
m+ℓ

)(

m+ℓ
i

)

terms give m+ℓ = i.

Similarly,
(

m−k
m

)(

ℓ+k−1
ℓ

)

give that m = 0 if k = 1, and ℓ = 0 if k = 0. Therefore,

f(n) =
∑

(j,m)∈Z2

(

n

m

)(

m

j

)

+
∑

ℓ∈Z

(

n

ℓ

)

= 2n + 3n ,

where two sums correspond to the cases k = 0 and k = 1, respectively. Note

that
(−1

0

)

= 1 is essential in this calculation. It would be interesting to see if

Theorem 3.1.3 holds without modification.

3.4 Applications

3.4.1 Balanced multisums

Define a positive multisum to be a function g : N→ N that can be expressed as

g(n) =
∑

v∈Zd

r
∏

i=1

αi(v, n)!

βi(v, n)!γi(v, n)!
,

for some αi = aiv + a′in + a′′i , βi = biv + b′in + b′′i , γi = civ + c′in + c′′i , where

r, d ∈ N, ai,bi, ci : Z
d → Z are integer linear functions, and a′i, . . . , c

′′
i ∈ Z, for

all i. Here the sum is over all v ∈ Zd for which αi(v, n), βi(v, n), γi(v, n) ≥ 0, for

all i.

Positive multisum is called balanced if αi = βi + γi for all i. Denote by B′ the

set of finite sums of balanced positive multisums:

f(n) = g1(n) + . . . + gk(n).

Theorem 3.4.1. B = B′.

The Delannoy and Apéry numbers defined in equation (♦) in the introduction
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are examples of balanced multisums, as are Lucas numbers, see Example 3.3.7.

These formulas use only one balanced positive multisum, i.e. have k = 1. However,

as Example 3.3.8 suggests, the sums f(n) = 2n + 3n can we written with k = 2,

as the lengthy binomial multisum for f(n) involves using the
(−1

0

)

= 1 notation.

Therefore, one can think of Theorem 3.4.1 as a tradeoff : we prohibit using the
(−1

0

)

notation, but now allow taking finite sums of balanced multisums (cf. §3.11.6).

We give direct proof of the theorem in Section 3.10. Note that B′ is trivially

closed under addition and multiplication, so Theorem 3.4.1 together with the main

theorem immediately implies Corollary 3.3.5.

3.4.2 Growth of tile counting functions

We say that a function f is eventually polynomial if there exist an N ∈ N and

a polynomial q such that for all n ≥ N , we have f(n) = q(n). We say that a

function f grows exponentially, if there exist c1, c2 > 0 and N ∈ N, such that for

all n ≥ N , we have ec1n ≤ f(n) ≤ ec2n.

Theorem 3.4.2. Let f ∈ F be a tile counting function. There exists an integer

m ≥ 1, such that every function fi(n) := f(nm+ i) either grows exponentially or

is eventually polynomial, where 0 ≤ i ≤ m− 1.

In particular, Theorem 3.4.2 implies that the growth of f is at most exponen-

tial. Further, if the growth of f is subexponential, then f must have polynomial

growth. This rules out many natural combinatorial and number theoretic se-

quences, e.g. the number of partitions p(n), or the n-th prime pn, cf. [FGS].

The proof of Theorem 3.4.2 uses the geometry of integer points in convex

polyhedra; it is given in Section 3.9. The theorem should be contrasted with the

following asymptotic characterization of diagonals of rational functions, which

follows from several known results:
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Theorem 3.4.3 (See §3.11.3). Let f(n) be a diagonal of P/Q, where P,Q ∈
Z[x1, . . . , xk]. Suppose further that f(n) = expO(n) as n→∞. Then there exists

an integer m ≥ 1, s.t.

f(n) ∼ Aλnnα (log n)β , for all n = i mod m, 0 ≤ i ≤ m− 1,

where α ∈ Q, β ∈ N, and λ ∈ A.

In our case, the subexponential growth implies λ = 1, which gives asymptotics

Anα (log n)β. Theorem 3.4.2 implies further that α ∈ N, β = 0, and A ∈ Q in

that case.

Example 3.4.4. The following binomial sums show that nontrivial exponents

α /∈ Z and β > 0 can indeed appear for f ∈ F and λ > 1 :

(

2n

n

)

∼ 1√
π
4nn−1/2 ,

n
∑

k=1

(

2k

k

)2

16n−k ∼ 1

π
16n log n .

Following these examples, we conjecture that α is always half-integer:

Conjecture 3.4.5. Let f ∈ F be a tile counting function. Then there exists an

integer m ≥ 1, s.t.

f(n) ∼ Aλnnα (log n)β , for all n = i mod m, 0 ≤ i ≤ m− 1,

where α ∈ Z/2, β ∈ N, and λ ∈ A.

See §3.11.3 for a brief overview of related asymptotic results.
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3.4.3 Catalan numbers

Recall the Catalan numbers:

Cn =
1

n+ 1

(

2n

n

)

.

We make the following mesmerizing conjecture.

Conjecture 3.4.6. The Catalan numbers Cn is not a tile counting function.

Several natural approaches to the conjecture can be proved not to work. First,

we show that the naive asymptotic approach cannot be used to prove Conjec-

ture 3.4.6.

Proposition 3.4.7. For every ε > 0, there exists a tile counting function f ∈ F ,

s.t.

f(n) ∼ A · Cn for some A ∈ (1− ε, 1 + ε) .

In a different direction, we show that Conjecture 3.4.6 does not follow from

elementary number theory considerations.

Proposition 3.4.8. For every m ∈ N, there exists a tile counting function f ∈ F ,

s.t. f(n) = Cn mod m.

Proposition 3.4.9. For every prime p, there exists a tile counting function f ∈
F , s.t. ordp

(

f(n)
)

= ordp(Cn), where ordp(m) = max{d : pd|m}.

The results in this subsection are proved in Section 3.10. See §3.11.10 for more

on the last proposition.
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3.4.4 Hypergeometric functions

We use the following special case of the generalized hypergeometric function:

p+1Fp(a1, . . . , ap, 1; b1, . . . , bp; r) =
∞
∑

m=0

m−1
∏

k=0

(k + a1)(k + a2) . . . (k + ap)r

(k + b1)(k + b2) . . . (k + bp)
.

Let p be a positive integer and λ = (λ1, . . . , λℓ) ⊢ p be a partition of p. Denote

by Υλ the following multiset of p rational numbers:

Υλ =

ℓ
⋃

i=1

{

1

λi
,
2

λi
, . . . ,

λi − 1

λi
, 1

}

.

For example, if λ = (5, 4, 2, 1) ⊢ 12, then

Υλ =

{

1

5
,
2

5
,
3

5
,
4

5
, 1,

1

4
,
1

2
,
3

4
, 1,

1

2
, 1, 1

}

.

Theorem 3.4.10. Let µ = (µ1, . . . , µk) ⊢ p, and let ν = (ν1, . . . , νℓ) ⊢ p be a

refinement of µ. Write

Υµ = {a1, . . . , ap}, Υν = {b1, . . . , bp},

and fix r = r1/r2 ∈ Q. Denote A = p+1Fp(a1, . . . , ap, 1; b1, . . . , bp; r), and suppose

that A < ∞ is well defined. Finally, let c ∈ N be a multiple of all prime factors

of µ1 · µ2 · . . . · µk · r2. Then, there exists a tile counting function f ∈ F , s.t.

f(n) ∼ Acn .

The proof of Theorem 3.4.10 is given in Section 3.10.

Corollary 3.4.11. There exists a tile counting function f ∈ F , such that

f(n) ∼
√
π

Γ(5/8)Γ(7/8)
128n.
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Proof. Let p = 4, let µ = (4), ν = (2, 1, 1), and set r = 1/2. Then Υµ =

{1/4, 1/2, 3/4, 1} and Υν = {1/2, 1, 1, 1}. Since any even c is allowed, we can take

c = 128. Then, by Theorem 3.4.10, there exists f ∈ F , s.t.

f(n)

128n
∼ 5F4

(1

4
,
1

2
,
3

4
, 1, 1;

1

2
, 1, 1, 1;

1

2

)

= 2F1

(1

4
,
3

4
; 1;

1

2

)

=

√
π

Γ(5/8)Γ(7/8)
,

as desired.

Since the proof of Theorem 3.4.10 is constructive, we can obtain an explicit

tile counting function f(n) as in the corollary:

f(n) =

n
∑

k=0

(

4k

k

)(

3k

k

)

128n−k ∼
√
π

Γ(5/8)Γ(7/8)
128n .

The corollary and the theorem suggest that there is no easy characterization of

constants A in Conjecture 3.4.5, at least not enough to obtain Conjecture 3.4.6

this way. Here is yet another quick variation on the theme.

Corollary 3.4.12. There exists a tile counting function f ∈ F , such that

f(n) ∼ Γ(3/4)3

3
√
2 π

6n.

Proof. Take p = 3, µ = (3), ν = (1, 1, 1), and proceed as above.

3.5 Tile counting functions are binomial multisums

In this section, we prove the following result towards the proof of Main Theo-

rem 3.3.4.

Lemma 3.5.1. F ⊆ B.
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The proof first restates the lemma in the language of counting cycles in multi-

graphs G (see §3.2.3), and then uses graph theoretic tools to give a binomial-

multisum formula for the latter.

3.5.1 Cycles in graphs

We first show how to compute tile counting functions in the language of cycles in

weighted graph.

Lemma 3.5.2. For every tile counting function f(n) there exists a finite weighted

directed multi-graph GT with vertices v0, . . . , vN , such that f(n) is the number of

paths of weight n + ε, which start and end at v0.

Proof. Fix an f(n) = T (Rn+ε). Recall that each tile τ ∈ T has height 1. Denote

by ∂L(τ) and ∂R(τ) the left boundary and right boundary curves of τ of height 1,

respectively. A sequence of tiles (τ0, . . . , τℓ) is a tiling of Rn+ε if and only if

(1) ∂R(τi) = ∂L(τi+1) for 0 ≤ i ≤ ℓ− 1,

(2) ∂L(τ0) is a vertical line,

(3) ∂R(τℓ) is a vertical line,

(4) |τ0|+ . . .+ |τℓ| = n+ ε.

Here the first condition implies that all the tiles fit together with no gaps, the

second and third conditions imply that the union of the tiles is actually a rectangle,

and the fourth condition implies that the rectangle has length n + ε.

We now construct a weighted directed multi-graph GT corresponding to T as

follows. The vertices of GT are exactly the set of left or right boundaries of tiles

(up to translation). Denote them v0, . . . , vN , where v0 is the vertical line. Let

the edge eij = (vi, vj) in GT correspond to tile τ ∈ T , such that ∂L(τ) = vi,
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∂R(τ) = vj , and let weight(eij) = |τ |. Note that edges eij and e′ij , corresponding

to tiles τ and τ ′, can have different weight. By construction, the paths in GT of

weight n+ ε, which start and end at v0, are in bijection with tilings of Rn+ε .

3.5.2 Irreducible cycles

To count the number of cycles in a directed multi-graph starting at v0 of weight

n+ ε, we factor the cycles into irreducible cycles.

Let G = (V,E) be a finite directed multi-graph, and let V = {v0, . . . , vN}. A

cycle γ in G is called positive if it starts and ends at vi, and only passes through

vertices vj with j ≥ i. Cycle γ is called irreducible if it is a positive and contains

no positive shorter cycle γ′; we refer to γ′ as subcycle of γ.

Lemma 3.5.3. There are finitely many irreducible cycles in G.

Proof. We proceed by induction on the number N +1 of vertices in G. The claim

is trivial for N = 0. Suppose N ≥ 1 and let γ be an irreducible cycle in G. If

γ does not contain every vertex in G, we can delete an unvisited vertex vi and

apply inductive assumption to a smaller graph G
′ = G− vi. Thus we can assume

that γ contains all vertices.

Since γ is positive and contains all vertices, it must start at v0. Since γ is

irreducible, it never come back to v0 until the end. Note that γ passes through

v1 exactly one, since otherwise it is not irreducible. Identify vertices v0 and v1,

and denote by H the resulting smaller graph. The cycle γ is then mapped into

a concatenation of two irreducible cycles in H . Applying inductive assumption

to H gives the result.
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3.5.3 Multiplicities of irreducible cycles

Let ρ be an irreducible subcycle of a positive cycle γ. Define γ − ρ to be the

positive cycle given by traversing γ, but skipping over ρ. The multiplicity of ρ in

γ, denoted m(ρ, γ), is defined to be:

ρ(γ) =



























1 if γ = ρ,

0 if γ is irreducible and not equal to ρ,

m(ρ, γ′) +m(ρ, γ − γ′) if γ′ is an irreducible positive subcycle of γ.

Lemma 3.5.4. The multiplicity m(ρ, γ) is well defined.

In other words, the multiplicity m(ρ, γ) represents the number of times ρ

appears in the decomposition of γ. This allows us to count cycles in GT , which

start and end at v0, that decompose into a given list of irreducible cycles.

Proof of Lemma 3.5.4. By contradiction, assume γ is the smallest positive cycle

with irreducible decompositions ρ1, . . . , ρk and ρ′1, . . . , ρ
′
ℓ, giving different multi-

plicities.

We claim that ρ′1 must appear on the first list as ρi and does not intersect

(edge-wise) any of the previous cycles ρj , j < i. Indeed, neither ρj can contain ρ′1

or vice versa since both are irreducible. However, if they have non-empty overlap,

one of them must contain the end of another which contradicts positivity. Since

the edges of ρ′1 have to be eventually removed, we have the claim.

By construction, we now have a new positive cycle γ′ = γ−ρ′1 with irreducible

decompositions ρ1, . . . , ρi−1, ρi+1, . . . , ρk and ρ′2, . . . , ρ
′
ℓ, giving different multiplic-

ities. This contradicts the assumption that γ is minimal.
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3.5.4 Counting cycles

Let T be a tall set of tiles and f(n) = T (Rn+ε). Consider graph GT constructed

in Lemma 3.5.2, and let ρ1, . . . , ρr be the list of irreducible cycles in GT , ordered

lexicographically. Denote by BT (z1, . . . , zr) the number of cycles γ in GT , which

start at v0 and have multiplicity m(ρi, γ) = zi.

For each 0 < j < i, let ai,j be the number of times the first vertex in ρi is

visited in ρj , where the first and last vertex in ρj is considered to be visited exactly

once. Let ai,0 = 1 if the first vertex of ρi is v0 and let ai,0 = 0 otherwise.

Lemma 3.5.5. We have

BT (z1, . . . , zr) =
r
∏

i=1

(

ai,0 + ai,1z1 + . . .+ ai,i−1zi−1 + zi − 1

zi

)

.

Proof. Given a cycle γ in GT starting at v0 with m(ρj , γ) = zj for all j, we can

remove irreducible subcycles of γ one at a time, until we are left with the empty

cycle at v0. Reversing the process, we can also speak of “adding” irreducible cycles

to build γ.

Let i, 0 ≤ i ≤ r, be maximal index, such that zi > 0. By definition, every

vertex in ρi has index greater than every vertex at the start of a irreducible cycle

with positive multiplicity in γ. Thus, irrespectively of order in which we add the

irreducible cycles, no cycles are inserted in the middle of a copy of ρi. Therefore,

we may assume that the copies of ρi are added last. Further, one can take the

cycle γ and determine the cycle with all of the copies of ρi removed, and the

locations where the ρi(γ) copies of ρi were inserted.

Let γ′ be the cycle γ with all copies of ρi removed, and let vk be the start of ρi.

Note that the number of vk in γ′ is exactly

ai,0 + ai,1z1 + . . .+ ai,i−1zi−1 ,
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since adding the cycle ρj adds ai,j more vertices vk. Therefore, the number of

ways to add zi copies of ρi to γ′ is equal to

(

ai,0 + ai,1z1 + . . .+ ai,i−1zi−1 + zi − 1

zi

)

. (⋆)

We conclude that BT (z1, . . . , zr) is (⋆) times the number of possible strings you

can get after removing all zi copies of ρi. This gives the recursive formula:

BT (z1, . . . , zi, 0, . . . , 0) =

(

ai,0 + ai,1z1 + . . .+ ai,i−1zi−1 + zi − 1

zi

)

BT (z1, . . . , zi−1, 0, . . . , 0).

Since BT (0, . . . , 0) = 1, iterating the above formula gives the result.

We can now count all cycles γ which start at v0 by summing over all lists of

irreducible cycles as above giving decompositions of γ.

Lemma 3.5.6. Every tile counting function f ∈ F can be written as

f(n) =
∑

r
∏

i=1

(

ai,0 + ai,1z1 + . . .+ ai,i−1zi−1 + zi − 1

zi

)

,

where the sum is over all (z1, . . . , zr) ∈ Zr satisfying c1z1 + . . . + crzr = n + ε,

where all ci ∈ R and ai,j ∈ N.

Proof. By Lemma 3.5.2, the function f(n) counts the number of cycles γ in GT

which start at v0 of weight n+ ε. In notation above, we have for such γ :

w(γ) = w(ρ1)m(ρ1, γ) + . . .+ w(ρr)m(ρr, γ) = n+ ε.,

Therefore,

f(n) =
∑

BT (z1, . . . , zr) ,
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where the summation is over all (z1, . . . , zr) such that w(ρ1)z1 + . . .+ w(ρr)zr =

n+ ε. Now Lemma 3.5.5 implies the result.

3.5.5 Proof of Lemma 3.5.1

In notation above, denote by Zn the set of of all vectors z = (z1, . . . , zr) ∈ Zr

satisfying c1z1 + . . . + crzr = n + ε, where all ci ∈ R and ai,j ∈ N. By Lemma

3.5.6, every f ∈ F can be written as

f(n) =
∑

z∈Zn

r
∏

i=1

(

ai,0 + ai,1z1 + . . .+ ai,i−1zi−1 + zi − 1

zi

)

.

Without loss of generality, we may assume that cr = ε and cr−1 = 1, since if

this were not the case, we could add two tiles to T of area ε and 1, each with a

new boundary that only fits together with itself. This adds two disjoint loops to

G, and we can label the vertices so that these two disjoint loops are the last two

irreducible cycles. Note that for any n, the set Zn is nonempty. In particular, it

contains the vector (0, 0, . . . , n, 1).

Consider the set W ⊂ Zr of all integer vectors (w1, . . . wr) with c1w1 + . . . +

crwr = 0. This set forms a lattice, and therefore has a basis, b1, . . . ,bd. Note that

the set Zn is exactly the set of all vectors z = v1b1+v2b2+. . .+vdbd+(0, . . . , n, 1),

with each vi ∈ Z, and each vector is expressible uniquely in this way. Thus,

each coordinate zi = βi(v1, . . . , vd, n) is an integer coefficient affine function of

(v1, . . . , vd, n). This implies

ai,0 + ai,1z1 + . . .+ ai,i−1zi−1 + zi − 1 = αi(v1, . . . , vd, n) ,

where αi is also integer coefficient affine functions of (v1, . . . , vd, n). Therefore,

f(n) =
∑

v∈Zd

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

,
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where αi, βi and r, d ∈ P are as desired. �

3.6 Diagonals of N-rational functions are tile counting func-

tions

In this section, we make the next step towards the proof of Main Theorem 3.3.4.

Lemma 3.6.1. N ⊆ F .

In other words, we prove that every diagonal f of an N-rational generating func-

tion, is also a tile counting function.

3.6.1 Paths in networks

Let W = (V,E) be a directed weighted multi-graph with a unique source v1 and

sink v2. Further, assume that the edges of W are colored with k colors. We call

such graph a k-network. We need the following technical lemma.

Lemma 3.6.2. Let G(x1, . . . , xk) ∈ Rk. Then there exists a k-network W, such

that for all (n1, . . . , nk) ∈ Nk, n1 + . . . + nk ≥ 1, the number of paths from v1 to

v2 with exactly ni edges of color i is equal to
[

xn1

1 . . . xnk

k

]

G.

Proof. Let Qk be the set of GFs, for which there is a k-network as in the lemma.

We show that Qk satisfies the three conditions in the definition of N-rational

generating function, which proves the result.

Condition (1) is trivial. To get 0 ∈ R′
k, take the graph with vertices v1 and v2

and no edges. Similarly, to get xi ∈ R′
k, take the graph with vertices v1 and v2

and a unique edge (v1, v2) of color i.

For (2), let F,G ∈ Qk, and let U,W be the corresponding k-networks. Attach-

ing sinks and sources, and the rest of U and W in parallel, gives F +G ∈ Qk (see
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Figure 3.6). Similarly, if [1]F = [1]G = 0, attaching U and W sequentially gives

GF F · G. More generally, for a = [1]F and b = [1]G not necessarily zero, write

aG = G + . . .+G (a times), and use

F ·G = (F − a) · (G− b) + aG + bF .

to obtain the desired k-network.

For (3), let F ∈ Qk and [1]F = 0. To obtain 1/(1− F ), write:

1

1− F
= 1 + F + F · F +

F 3

1− F 2
+ F · F 3

1− F 2
.

For F 3

1−F
, arrange four copies of k-network U as shown in Figure 3.6. The details

are straightforward.

UU

U

U

U

U

U

W

W
W

F ·G F +GF

G F 3

1−F 2

Figure 3.6: Networks giving F ·G, F +G and F 3/(1− F 2).

3.6.2 Proof of Lemma 3.6.1

Let G ∈ Rk be such that f(n) =
[

xn
1 . . . x

n
k

]

G. By Lemma 3.6.2, there is a k-

network W with source v1 and sink v2, such that there are exactly f(n) paths

from v1 to v2, which pass through n edges of color i, for all i.

Let ε, α1, . . . , αk > 0 be irrational numbers, such that the only rational linear

dependence between them is α1 + . . . + αk = 1. Assign weight αi to each edge
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in W with color i. Add vertex v0 and edges (v0, v1) (v2, v0), both of weight ε/2.

Denote the resulting graph by W0.

Note that cycles in W0 which start at v0 of weight n + ε are in bijection with

paths from v1 to v2 in W with exactly n edges of each color. Therefore, there are

exactly f(n) of them.

In notation of the proof of Lemma 3.5.2, we associate a different tile boundary

∂i with vertices vi, 1 ≤ i ≤ N , and the vertical line segment with the vertex v0.

We can always ensure width(∂i) < 1
3
min{ε/2, α1, . . . , αk}.

For every edge e = (vi, vj) in W0 with weight we, denote by τe the unique tile

with height 1, ∂L(τe) = ∂i, ∂R(τe) = ∂j and area |τe| = we. Note that such tile

exists by the width condition above. Let T be the set of tiles τe. From above, for

all n ≥ 1, the number of tilings of Rn+ε by T is equal to the number of cycles in

W0 starting at v0 of weight n+ ε, which is equal to f(n) by assumption.

When n = 0, this tile set has zero tilings. Since a := [1]F ∈ N, we can make

the number of tilings of Rε equal to a by adding a copies of a 1 × ε rectangle to

T . This does not change the number of tilings for any n ≥ 0, since every tiling

for n ≥ 0 must already has two tiles of area ε/2, and thus cannot contain more

tiles of area ε.

Finally, if T has multiple copies of the same tile, replace each copy with two

tiles which only fit together with each other, to make a copy of that tile. We can

always do this in such as way to make all new tiles distinct. This implies that

f ∈ F , as desired. �
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3.7 Binomial multisums are diagonals of N-rational func-

tions

In this section, we prove the following result towards the proof of Main Theo-

rem 3.3.4.

Lemma 3.7.1. B ⊆ N .

The proof of the lemma follows easily from five sub-lemmas, three on diagonals

and two on binomial multisums. While the former are somewhat standard, the

latter are rather technical; we prove them in the next section.

3.7.1 Diagonals

We start with the following three simple results.

Lemma 3.7.2. The set of diagonals of an N-rational generating functions is closed

under addition and multiplication.

Proof. Let f, g ∈ N . We have

f(n) =
[

xn
1 . . . x

n
k

]

F (x1, . . . , xk), g(n) =
[

yn1 . . . y
n
ℓ

]

G(y1, . . . , yℓ) ,

for some F ∈ Rk and G ∈ Rℓ. Consider A(x1, . . . xk, y1, . . . , yℓ) defined as

A(x1, . . . xk, y1, . . . , yℓ) =

(

ℓ
∏

i=1

1

1− yi

)

F
(

x1, . . . , xk

)

+

(

k
∏

i=1

1

1− xi

)

G
(

y1, . . . , yℓ
)

.

It follows from the definition of N-rational functions, that A ∈ Rk+ℓ. We have

[

xn
1 . . . x

n
ky

n
1 . . . y

n
ℓ

]

A =
[

xn
1 . . . x

n
k

]

F
(

x1, . . . , xk

)

+
[

yn1 . . . y
n
ℓ

]

G
(

y1, . . . , yℓ
)

= f(n) + g(n) .
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Similarly, define

B(x1, . . . xk, y1, . . . , yℓ) = F
(

x1, . . . , xk

)

·G
(

y1, . . . , yℓ
)

,

and observe that
[

xn
1 . . . x

n
ky

n
1 . . . y

n
ℓ

]

B = f(n) · g(n) ,

as desired.

A function f is called a quasi-diagonal of an N-rational generating function if

f(n) =
[

xcn
1 . . . xcn

k

]

F (x1, . . . , xk),

for some fixed constant c ∈ P.

Lemma 3.7.3. For every function f which is the quasi-diagonal of F ∈ Rk, there

exists ℓ ∈ P and G ∈ Rℓ, such that f is the diagonal of G.

Proof. First, we show that for every F ∈ Rk, there exists a function F◦ ∈ Rk+1,

such that for all c0, c1, . . . , ck ∈ N :

[

xc0
0 . . . xck

k

]

F◦(x0, x1, x2, . . . , xk) =











[

xc0+c1
1 xc2

2 . . . xck
k

]

F (x1, . . . , xk) if c1 ≥ 1,

0 otherwise.

We prove this by structural induction in the definition of Rk. For case (1), let

F◦ = 0 for F = xi, i ≥ 2, and F◦ = x1 for F = x1. In case (2), let F◦ = G◦ +H◦

for F = G+H . For F = G ·H , let

F◦(x0, . . . , xk) = G◦(x0, . . . , xk)H(x1, x2, . . . , xk)+G(x0, x2, . . . , xk)H◦(x0, . . . , xk).
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For case (3), for F = 1/(1−G), let

F◦(x0, . . . , xk) = F (x0, x2, . . . , xk)G◦(x0, . . . , xk)F (x1, x2, . . . , xk).

It is clear that this works for case (1), for F = G + H , and when c1 = 0, so

we only need to worry about the cases where c1 > 0 and where F = G · H or

F = 1/(1−G).

For F = G ·H , recall that

[

xc0+c1
1 xc2

2 . . . xck
k

]

F (x1, . . . , xk)

equals the sum over all (d1 + e1, . . . , dk + ek) = (c0 + c1, c2, . . . , ck)

[

xd1
1 xd2

2 . . . xdk
k

]

G(x1, . . . , xk)
[

xe1
1 xe2

2 . . . xek
k

]

H(x1, . . . , xk).

Note that in F◦, all instances of x0 in G◦(x0, . . . , xk)H(x1, x2, . . . , xk), come from

the G◦(x0, . . . , xk). Thus, if there are d1 instances of x0 or x1 in the first summand,

exactly d1−c0 instances of x1 come from G◦. Similarly, if there are e1 instances of

x0 or x1 in the second summand, exactly e1 − c1 instances of x0 must come from

H◦.

We break the contributions to F◦ into two cases: (a) with d1 > c0, and (b)

with d1 ≤ c0. In the case (a), note that

[

xc0
0 x

d1−c0
1 xd2

2 . . . xdk
k

]

G◦(x0, . . . , xk) =
[

xd1
1 xd2

2 . . . xdk
k

]

G(x1, . . . , xk),

and
[

xe1−c1
0 xc1

1 x
e2
2 . . . xek

k

]

H◦(x0, . . . , xk) = 0.
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In the case (b), we similarly have:

[

xc0
0 x

d1−c0
1 xd2

2 . . . xdk
k

]

G◦(x0, . . . , xk) = 0,

and

[

xe1−c1
0 xc1

1 x
e2
2 . . . xek

k

]

H◦(x0, . . . , xk) =
[

xe1
1 xe2

2 . . . xek
k

]

H(x1, . . . , xk).

Therefore, in the case (a), we have

[

xc0
0 x

d1−c0
1 xd2

2 . . . xdk
k

]

G◦(x0, . . . , xk)
[

xe1
1 xe2

2 . . . xek
k

]

H(x1, . . . , xk)

=
[

xd1
1 xd2

2 . . . xdk
k

]

G(x1, . . . , xk)
[

xe1
1 xe2

2 . . . xek
k

]

H(x1, . . . , xk),

and

[

xd1
1 xd2

2 . . . xdk
k

]

G(x1, . . . , xk)
[

xe1−c1
0 xc1

1 x
e2
2 . . . xek

k

]

H◦(x0, . . . , xk) = 0.

In the case (b), we get a similar result with the r.h.s.’s interchanged. We conclude:

[

xc0
0 x

c1
1 x

c2
2 . . . xck

k

]

F◦(x0, x1, x2, . . . , xk) =
[

xc0+c1
1 xc2

2 . . . xck
k

]

F (x1, . . . , xk).

For case (3), we think of any contribution to F as coming from Gr for some

r ∈ N, and break into cases based on how many copies of G we go through in this

Gr before we have seen more than c0 instances of x1. We then proceed similarly.

Now, for every fixed m ≥ 2, F ∈ Rk and a function f(n) defined as

f(n) =
[

xmn
1 . . . xmn

k

]

F (x1, . . . , xk),

we may recursively apply the above result to split each variable xi into m variables
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xij , for j = 1, . . . , m. We get a function G ∈ Rmk satisfying

[

xc11
11 xc12

12 · · · xckm

km

]

G(x11, x12, . . . , xkm) =
[

xc1
1 . . . xck

k

]

F (x1, . . . , xk),

whenever ci1 + . . . + cim = ci and cij ≥ 1, for all i and j. In particular, for all

cij = n ≥ 1, this gives

[

xn
11x

n
12 · · · xn

km

]

G(x11, x12, . . . , xkm) = f(n).

Further [1]G = 0, so we can simply add the constant term f(0) to get the desired

function with the diagonal f(n).

Lemma 3.7.4. Let f ∈ N and g : N → N satisfy f(n) = g(n) for all n ≥ 1.

Then g ∈ N .

Proof. The functions

j(n) =











1 if n = 0,

0 otherwise
and h(n) =











0 if n = 0,

1 otherwise

are trivially diagonals of functions 1 and x/(1− x) ∈ R1. Writing

g(n) = g(0)j(n) · f(n) + h(n) · f(n) ,

implies the result by Lemma 3.7.2.

3.7.2 Finiteness of binomial multisums

Next, we find a bound on which terms can contribute to a binomial multisum.
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Lemma 3.7.5. In notation of §3.3.3, let

f(n) =
∑

v∈Zd

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

be finite for all n ∈ N. Then there exists a constant c ∈ N, such that for all n ∈ P,

and |vi| > cn for all i, the product on the right hand side is zero.

Finally, we show that binomial sums bounded as in Lemma 3.7.5 are in fact

quasi-diagonals of N-rational generating functions.

Lemma 3.7.6. In notation of §3.3.3, let f(n) : N→ N be defined as

f(n) =
∑

v∈Zd,|vi|≤cn

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

,

for all n ∈ P. Then f(n) agrees with a quasi-diagonal of an N-rational generating

function at all n ≥ 1.

Both lemmas are proved in the next section.

3.7.3 Proof of Lemma 3.7.1

By Lemmas 3.7.5 and 3.7.6, every function f(n) as in Lemma 3.7.5 agrees with a

quasi-diagonal of an N-rational generating function at all n ≥ 1. By Lemma 3.7.3,

any function of this form agrees with a diagonal of an N-rational generating func-

tion at all n ≥ 1. By Lemma 3.7.4, any such function is in N .

3.8 Proofs of lemmas 3.7.5 and 3.7.6

3.8.1 A geometric lemma

We first need the following simple result; we include a short proof for completeness.
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Lemma 3.8.1. Let α1, . . . , αr : Rd → R be integer coefficient affine functions.

Let P ⊂ Rd be the (possibly unbounded) polyhedron of points satisfying αi ≥ 0 for

all i. If P contains a positive finite number of integer lattice points, then P is

bounded.

Proof. Suppose P is not bounded. Without loss of generality, assume that at the

origin O ∈ P . Consider the base cone CP of all infinite rays in P starting at O (see

e.g. [Pak, §25.5]). Since P is a rational polyhedron, the cone CP is also rational

and contains at least one ray of rational slope. This ray contains an integer point

and has a rational slope, and therefore contains infinitely many integer points, a

contradiction.

3.8.2 Proof of Lemma 3.7.5

Let S be a subset of {1, . . . , r}, and let PS be the set of all points (v, n) ∈ Rd+1

satisfying αi(v, n), βi(v, n) ≥ 0 for i 6∈ S, satisfying αi(v, n) = −1 and βi(v, n) = 0

for i ∈ S, and satisfying n ≥ 0. Let |v| denote maxi |vi|.

Note that we have 2r polytopes PS, and the integer lattice points in PS form a

cover for the set of all (v, n) ∈ Zd+1 which contribute a positive amount to f(n).

For each PS, we prove that there exists a constant c such that any integer lattice

point in PS, with n ≥ 1 satisfies |vi| ≤ cn. Since f is finite, we know that PS

contains finitely many integer lattice points for any fixed value of n.

We can assume that there are two distinct values n1 < n2, such that there

exist integer lattice points in PS with n = n1 and with n = n2, since otherwise PS

only contains finitely many lattice points. Let (v1, n1) be an integer point in PS.

Consider the set of all points in PS satisfying n = n2. This is a not necessarily

bounded polytope with a positive finite number of integer lattice points, so by

Lemma 3.8.1, it is bounded. Thus, there exists a cS, such that |v2 − v1| < cS for

all (v2, n2) in PS.
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This implies that |v − v1| < cS(n − n1) for all (v, n) in PS with n > n2.

Indeed, otherwise the line segment connecting (v1, n1) to (v, n) would intersect

the hyperplane n = n2 at a point (v2, n2) in PS but not satisfying |v2 − v1| < cS.

Take a c′S such that c′S > c, and all finitely many integer lattice points (v, n) in

PS with 1 ≤ n < n2, including (v1, n1), satisfy |v| ≤ c′Sn. Then, all integer lattice

points (v, n) in PS with n ≥ 1, satisfy |v| ≤ c′Sn. Taking c = maxS{c′S}, proves

the result. �

3.8.3 Proof of Lemma 3.7.6

Let f(n) : N→ N be a function such that for all n ≥ 1,

f(n) =
∑

v∈Zd,|vi|≤cn

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

,

where αi and βi are integer coefficient affine functions of v and n. We construct

a function g in d+ 2r + 1 variables x1, . . . , xd, a1, . . . ar, b1, . . . , br, y. Let

G(x1, . . . , xd, a1, . . . ar, b1, . . . , br, y) = Π1 · Π2 ·Π3 · Π4 ,

where

Π1 =
d
∏

j=1

1

1− xjhj

, Π2 =
d
∏

j=1

1

1− xjh
′
j

,

Π3 =
r
∏

i=1

(

1 + ai
ai + biai

1− (ai + biai)

)

, and Π4 = yq
1

1− yq′
.

The terms hj , h′
j , q, and q′ are monomials in variables ai and bi, to be determined

later.

We consider the coefficients of terms in which the exponent on each xj variable

is 2cn. The Π1 part will contribute some number of these xj factors, and the Π2

will contribute the rest. This choice will represent the variable vj . We will use
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cn+ vj to denote the number of factors of xj coming from Π1, so then cn− vj will

be the number of factors of xj coming from Π2. Note that vj can be any integer

between −cn and cn.

Define all the monomials in such a way that the ai monomial needs to be

repeated αi(v, n) + 1 times in the Π3 term, while that bi monomial needs to be

repeated βi(v, n) times in the Π3 term. By the definition in §3.2.1, this is exactly
(

αi

βi

)

.

We choose the monomials hj, h′
j , q, and q′ a follows. Let

βi(v, n) = βi,0 + βi,1v1 + . . .+ βi,dvd + βi,d+1n.

First, consider the case where βi,j ≤ 0, for all 0 ≤ j ≤ d. In this case, we put bi in

hj with multiplicity |βi,j|, put βi in q with multiplicity |β0,j |, and not put any bi

terms in h′
j or q′. This implies that outside of the Π3 term, the number of times

bi appears is exactly

−βi,0 +

d
∑

j=1

(cn + vj)(−βi,j) = n

(

−βi,d+1 −
d
∑

j=1

cβi,j

)

− β(v, n).

Thus, for the coefficient of a term with total multiplicity n
(

−βi,d+1 −
∑d

j=1 cβi,j

)

of bi, we have β(v, n) of the bi terms must come from the Π3 term.

We only consider coefficients where the multiplicity of the y term is n. If βi,0

is positive, then we can swap the multiplicity of bi in q and q′. Since the q′ term

is necessarily repeated n− 1 times in the Π4 term, this implies that outside of the

Π3 term, bi appears exactly

(n− 1)βi,0 +
d
∑

j=1

(cn+ vj)(−βi,j) = n

(

βi,0 − βi,d+1 −
d
∑

j=1

cβi,j

)

− β(v, n)

times. Therefore, for the coefficient of a term with n
(

βi,0 − βi,d+1 −
∑d

j=1 cβi,j

)
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total multiplicity of bi, we again have β(v, n) of the bi terms must come from the

Π3 term.

If any of the βi,j terms, with 1 ≤ j ≤ d are actually positive, we swap the

multiplicity of bi in hj and h′
j, which gives the same analysis with vj negated.

Using the same method, we can require that the number of ai terms coming from

the Π3 term is αi + 1, for all i.

In summary,

f(n) =
[

xnc1
1 . . . xncd

d a
ncd+1

1 . . . ancd+r
r b

ncd+r+1

1 . . . bncd+2r
r yncd+2r+1

]

G.

Take c′ to be a common multiple of all ci and make a substitution xi ← x
c′/ci
i ,

aj ← a
c′/cd+j

j , etc. This gives a desired quasi-diagonal. �

3.9 Proof of Theorem 3.4.2

3.9.1 Preliminaries

We start with the following simple result:

Lemma 3.9.1. Let f ∈ F be a tile counting function. Then f(n) ≤ Cn, for all

n ∈ P for some C > 0.

Proof. Let T = {τ1, . . . , τs}, and let µ = mini |τi| be the minimum area of a tile

in T . Every tiling of Rn+ε with T corresponds to a unique sequence of tiles in the

tilings, listed from left to right. The length of this sequence is at most (n+ ε)/m.

Therefore, fT (n) ≤ (s+ 1)(n+ε)/µ = eO(n).

Theorem 3.4.2 shows that this upper bound is usually tight, and every function

growing slower than this must be eventually quasi-polynomial. The following

lemma is a special case of Theorem 1.1 in [CLS];
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Lemma 3.9.2 ([CLS]). Let g(n) be the number of integer points (x1, . . . , xr, n) ∈
Zr+1 satisfying m inequalities ai(x, n) > ci where ai is an integer coefficient linear

function and ci is an integer for all i = 1, . . . , m. Then g(n) is eventually quasi-

polynomial.

The proof of the lemma uses a generalization of Ehrhart polynomials. We refer

to [Bar] for a review of the area and further references.

3.9.2 Proof setup

From Main Theorem 3.3.4, function f can be expressed as

(⊛) f(n) =
∑

v∈Zd

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

,

where each αi and βi is an integer coefficient affine function of v and n.

From Lemma 3.9.1, function f ≤ ecn for some c. Therefore, it suffice to show

that f is either greater than ecn for some c > 0, or is eventually polynomial.

Furthermore, it suffices to show that f is either greater than ecn for some c, or

eventually quasi-polynomial. We can decompose f into even more functions, by

multiplying p by the periods of all of the quasi-polynomials, which proves that each

component function that does not grow exponentially is eventually polynomial.

Denote by k the number of indices i in (⊛), such that αi, βi, and γi = αi − βi

are three non-constant functions. We use induction on k.

3.9.3 Step of Induction

Let M be a constant integer satisfying M > |βi(0, 0)|, |γi(0, 0)|, for all i. We

decompose f into a sum of (M +2)2r functions depending on the values of βi and

γi, for all i. For each βi and γi, we either require that βi ≥M or that the value of
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βi be some constant < M . There are M + 2 possibilities for each function, since

only values ≥ −1 give non-zero binomial coefficients, giving (M + 2)2r bound as

above.

To ensure that βi = z ≥ −1 for some constant z, we replace βi(v, n) by z, and

multiply the binomial coefficients
(

βi(v,n)+1
z+1

)

and
(

z+1
βi(v,n)+1

)

to the existing product.

This works because
(

βi(v,n)+1
z+1

)(

z+1
βi(v,n)+1

)

is 1 if γi = z, and 0 otherwise.

Similarly, to ensure that γi = z ≥ −1, we replace αi(v, n) with βi + z, and

multiply the binomial coefficients
(

γi(v,n)+1
z+1

)

and
(

z+1
γi(v,n)+1

)

to the existing product.

Finally, to ensure that βi ≥M , we multiply the binomial coefficient
(

βi−M−1
0

)

to the existing product. This binomial coefficient is 1 if βi −M − 1 ≥ −1, and 0

otherwise. Similarly for enforcing that γi ≥M .

Note that when we require that βi or γi equal to a constant, we reduce k by 1,

and when we specify that βi ≥ M or γi ≥ M , we keep k the same. Therefore of

these (M +2)2r functions which add to g, we get by induction that all but one of

them is quasi-polynomial. The only one we have to worry about is the function

g in which each βi and γi is specified to be at least M, and we show that this

function is identically 0.

Assume by way of contradiction that g is not identically 0. Then, there exists

some (v1, n1) such that

r
∏

i=1

(

αi(v1, n1)

βi(v1, n1)

)

> 0, βi(v1, n1)− βi(0, 0) > 0, and γi(v1, n1)− γi(0, 0) > 0,

for all i. Adding (v1, n1) to any point (v, n) would increase every βi(v, n) and

γi(v, n) by at least 1. Consider the sequence of points (vt, nt) = (tv1, tn1), where t

is a positive integer. Note that every βi(vt, nt) and every γi(vt, nt) is at least t.

Therefore,
(

α1(vt,nt)
β1(vt,nt)

)

≥
(

2t
t

)

, so f(n1t) ≥
(

2t
t

)

≥ 2t, contradicting the fact that

f(n) < ecn for all positive c.
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3.9.4 Base of Induction:

Now consider the case k = 0. In notation of (⊛), this means

f(n) =
∑

v∈Zd

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

,

where for each i, at least one of αi, βi, and γi is constant. Without loss of

generality, we can assume that either αi or βi are constant.

When αi is a nonzero constant, then we can write f as a sum of functions where

we condition on the value of βi to be z, by replacing βi with z and multiplying

the existing product by
(

0
βi(v,n)−z

)

. Since
(

αi

z

)

is a constant, we can again express

our functions as a sum of
(

αi

z

)

copies of that function with the
(

αi

z

)

term removed.

Therefore, we can assume that if αi is constant, that constant is 0.

We can also replace every
(

0
βi(v,n)

)

with
(

βi(v,n)−1
0

)(−βi(v,n)−1
0

)

, since we are re-

placing the indicator that βi = 0 with the indicators βi−1 ≥ −1 and −βi−1 ≥ −1.
Therefore, we may assume that every βi is a constant.

In summary,

f(n) =
∑

v∈Zd

r1
∏

i=1

(

αi(v, n)

0

) r
∏

i=r1+1

(

αi(v, n)

zi

)

,

where each αi and βi is an integer coefficient affine function of v and n, and each

zi ∈ P.

Note that each
(

αi(v,n)
0

)

term is just an indicator function that αi(v, n) ≥ −1.
Therefore,

f(n) =
∑

v∈Pn

r2
∏

i=r1+1

(

αi(v, n)

zi

)

,

where Pn is the polytope of all integer points such that αi(v, n) ≥ −1 for all

1 ≤ i ≤ d1.

Also, note that
(

αi(v,n)
zi

)

is equal to the number of integer points (x1, . . . , xzi),

98



such that

0 ≤ x1 < x2 < . . . < xzi < αi(v, n).

Therefore, f(n) is equal to the number of points in the polytope

Pn × Zzr1+1 × . . .× Zzr ,

where v is the point in Pn, and the coordinates (x1, . . . , xzi) satisfying

0 ≤ x1 < x2 < . . . < xzi < αi(v, n).

By Lemma 3.9.2, f(n) is eventually quasi-polynomial. This proves the base of

induction, and completes the proof of Theorem 3.4.2.

3.10 Proofs of applications

3.10.1 Proof of Theorem 3.4.1

First, we show that B′ ⊆ B. Since B is closed under addition, it suffices to show

that every balanced multisum

g(n) =
∑

v∈Zd

r
∏

i=1

αi(v, n)!

βi(v, n)!γi(v, n)!

is in B. This follows since

αi(v, n)!

βi(v, n)!γi(v, n)!
=

(

αi(v, n)

βi(v, n)

)(

αi(v, n)− 1

0

)

.

The second factor ensures that αi ≥ 0, so the first factor is never
(−1

0

)

.
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To show that B ⊆ B′, take

g(n) =
∑

v∈Zd

r
∏

i=1

(

αi(v, n)

βi(v, n)

)

.

Denote by S the set of all subsets of {1, . . . , r}, and γi = αi− βi. For each s ∈ S,

let

gs(n) =
∑

v∈Zd

es(v, n) ·
∏

i∈s

αi(v, n)!

βi(v, n)!γi(v, n))!
, where

es(v, n) =
∏

i 6∈s

[

0!

(αi(v, n) + 1)!(−αi(v, n)− 1)!

] [

0!

βi(v, n)!(−βi(v, n))!

]

.

Observe that es(v, n) = 1 if αi(v, n) = −1 and βi(v, n) = 0, and es(v, n) = 0

otherwise.

For every v, let sv be the set of indices i ∈ {1, . . . , r} for which αi(v, n), βi(v, n) ≥
0. Then

es(v, n) ·
∏

i∈s

αi(v, n)!

βi(v, n)!γi(v, n)!
=

(

αi(v, n)

βi(v, n)

)

when s = sv ,

and 0 otherwise. Therefore,

g(n) =
∑

s∈S
gs(n) .

This implies that g ∈ B′, and completes the proof. �

3.10.2 Getting close to Catalan numbers

Before we prove Proposition 3.4.7, we need the following weaker result.

Lemma 3.10.1. There exists a tile counting function f such that

f(n) ∼ 3
√
3

π
Cn , as n→∞ .
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Proof. Consider the following three binomial multisums f1, f2, f3 ∈ B :

f1(n) =
∑

v∈Z

(

n

3v

)(

3v

n

)(

2v

v

)3

, f2(n) = 4
∑

v∈Z

(

n− 1

3v

)(

3v

n− 1

)(

2v

v

)3

,

and f3(n) = 16
∑

v∈Z

(

n− 2

3v

)(

3v

n− 2

)(

2v

v

)3

.

Let f = f1 + f2 + f3. By Main Theorem 3.3.4 and Corollary 3.3.5, we know that

f ∈ F .

Observe that f1(n) 6= 0 only when n is a multiple of 3. We have:

f1(n) =

(

2n/3

n/3

)3

∼
(

4n/3
√

n/3
√
π

)3

∼ 3
√
3

π
Cn , for 3|n.

Analyzing f2 and f3 gives the same result when n = 1, 2 mod 3, respectively.

3.10.3 Proof of Proposition 3.4.7

Let f ∈ F be the tile counting function from Lemma 3.10.1. For each i ∈ N,

let gi(n) = f(n − i) if n ≥ i, and let gi(n) = 0 otherwise. Each gi is also a tile

counting function, since we can take the exact same tile set, and replace ε with

ε+ i.

Denote ξ = 3
√
3/π. Note that gi(n) ∼ f(n)/4i ∼ Cnξ/4

i. Given any ε > 0, we

can take i large enough so that ξ/4i < ε, and m ∈ P such that 1 − ε < mξ/4i <

1+ ε. This gives mgi(n) ∼ Cnξm/4i which is between 1− ε and 1+ ε, as desired.

Finally, we have mgi ∈ F since B = F is closed under addition. �
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3.10.4 Proof of Proposition 3.4.8

Given an m ≥ 1, let

f(n) =

(

2n

n

)

+ (m− 1)

(

2n

n+ 1

)

.

Note that f is a tile counting function, since it is a finite sum of binomial coeffi-

cients of affine functions of n. Since Cn =
(

2n
n

)

−
(

2n
n+1

)

, we have that f(n) and Cn

differ by m
(

2n
n

)

, and are therefore congruent modulo m. �

3.10.5 Proof of Proposition 3.4.9

Given a prime p ≥ 2, let

f(n) =

(

2n

n

)

+ (p2n − 1)

(

2n

n+ 1

)

.

By Corollary 3.3.6, p2n − 1 ∈ B, and binomial coefficients are in B by definition.

Since B is closed under addition and multiplication, we obtain f ∈ B. Note that

p2n > Cn, so adding or subtracting an integer multiple of p2n to Cn does not

change the order of p. Therefore,

ordp(Cn) = ordp

(

Cn + p2n
(

2n

n + 1

))

= ordp(f(n)) ,

as desired. �

3.10.6 Proof of Theorem 3.4.10

We start with the case where k = 1 and ℓ = 2. Let r = r1/r2, c = µµ1

1 r2, and let

f(n) =

n
∑

ℓ=0

(

µ1ℓ

ν1ℓ

)

cn−ℓ(νν1
1 νν2

2 r1)
ℓ =

∑

ℓ∈Z

(

ℓ− 1

0

)(

n− ℓ− 1

0

)(

µ1ℓ

ν1ℓ

)

cn−ℓ(νν1
1 νν2

2 r1)
ℓ .
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First, let us prove that f is a tile counting function. Replace cn−ℓ with

∑

v1,...,vc∈Z

(

n− ℓ

v1

)(

n− ℓ− v1
v2

)

. . .

(

n− ℓ− v1 − v2 − . . .− vc−1

vc

)

.

We can ignore the fact that
(−1

0

)

= 1, since if we take the least i such that

n− ℓ− v1 − v2 − . . .− vi = −1, we have
(

n−ℓ−v1−v2−...−vi−1

vi

)

= 0. We then make a

similar replacement for (νν1
1 νν2

2 r1)
ℓ. Therefore, f ∈ F by the Main Theorem 3.3.4.

Letting

g(ℓ) =

(

µ1ℓ

ν1ℓ

)

c−ℓ(νν1
1 νν2

2 r1)
ℓ,

we get

f(n) =

n
∑

ℓ=0

g(ℓ)cn .

Note that g(0) = 1, and

g(ℓ+1)/g(ℓ) =
νν1
1 νν2

2 r
∏µ1

i=1(µ1ℓ+ i)

µµ1

1

∏ν1
i=1 (ν1ℓ+ i)

∏ν2
i=1 (ν2ℓ+ i)

=
(ℓ+ a1)(ℓ+ a2) . . . (ℓ+ ap)r

(ℓ+ b1)(ℓ+ b2) . . . (ℓ+ bp)
.

Therefore,

f(n)/cn =

n
∑

ℓ=0

ℓ−1
∏

k=0

(k + a1)(k + a2) . . . (k + ap)r

(k + b1)(k + b2) . . . (k + bp)
→ A as n→∞ .

In general, let each part µi be subdivided into ℓi parts νi,1, . . . , νi,ℓi. Let r = r1/r2,

and let c = (µ1)
µ1 . . . (µk)

µkr2. Similarly to in the previous case, we define f as

f(n) =
n
∑

ℓ=0

cnrℓ1r
−ℓ
2

p
∏

i=1

gi(ℓ),

where each

gi(ℓ) =

(

µiℓ

νi,1

)(

µiℓ− νi,1ℓ

νi,2ℓ

)

. . .

(

µiℓ− νi,1ℓ− . . .− νi,ℓi−1ℓ

νi,li

)

(µµi

i )−ℓ (ν
νi,1
i,1 . . . ν

νi,ℓi
i,ℓi

)ℓ
.
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This is a tile counting function for reasons similar to in the previous case. Note

that all the negative exponents are canceled out by the cn term. We have:

gi(ℓ+ 1)/g(ℓ) =
ν
νi,1
i,1 . . . ν

νi,ℓi
i,ℓi

∏µi

j=1 (µiℓ+ j)

µµi

i

∏νi,1
j=1 (νi,1ℓ+ j) · · ·∏νi,ℓ1

j=1 (νi,ℓiℓ+ j)
.

Therefore,

rℓ+1
1 r

−(ℓ+1)
2

∏p
i=1 gi(ℓ)

rℓ1r
−ℓ
2

∏p
i=1 gi(ℓ)

=
(ℓ+ a1)(ℓ+ a2) · · · (ℓ+ ap)r

(ℓ+ b1)(ℓ+ b2) . . . (ℓ+ bp)
.

Since

r01 r
0
2

p
∏

i=1

gi(0) = 1,

we have

f(n)/cn =
n
∑

ℓ=0

ℓ−1
∏

k=0

(k + a1)(k + a2) . . . (k + ap)r

(k + b1)(k + b2) . . . (k + bp)
→ A as n→∞ .

The base of exponent we get from this construction is c = (µ1)
µ1 . . . (µk)

µkr2.

However, note that it is easy to multiply c by any positive integer N , simply by

multiplying f by Nn. In particular, let L be the product of all primes which are

factors of µ1 . . . µkr2. Then there exists some positive integer d, such that Ld is

a multiple of (µ1)
µ1 . . . (µk)

µkr2. This implies that there exists a function h ∈ F
with h(n) ∼ ALdn.

Note now, that we can scale all the tiles horizontally by d, and scale ε by d, to

get a new function f0(n) such that f0(dn) = h(n). We may assume that f0(n) = 0

when n is not a multiple of d, because we can multiply f0 by the indicator that

d|n. We can similarly get a function fi for i = 1, . . . , d − 1, such that fi(n) is

nonzero only when n = i mod d, and fi(nd+ i) = Lih(n). We have

f(n) =
d−1
∑

i=0

fi(n) ∈ F ,
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and by the way we constructed f we obtain f(n) ∼ ALn. Thus, we can take

c = L or any integer multiple of L, as desired. �

3.11 Final Remarks

3.11.1

The idea of irrational tilings was first introduced by Korn, who found a bijection be-

tween Baxter permutations and tilings of large rectangles with three fixed irrational

rectangles [Korn, §6].

3.11.2

For Theorem 3.1.1, much of the credit goes to Schützenberger [Schü] who proved the

equivalence between regular languages and the (weakest in power) deterministic finite

automata (DFA). He used the earlier work of Kleene (1956) and the language of semir-

ings; the GF reformulation in the language of N-rational functions came later, see [SS].

We refer to [BR1, SS] for a thorough treatment of the subject and connections to GFs,

and to [Pin] for a more recent survey.

Now, the relationship between (polyomino) tilings of the strip, regular languages (as

well as DFAs) were proved more recently in [BL, MSV]. Theorem 3.1.1 now follows as

combination of these results in several different ways.

Let us mention here that in the usual polyomino tiling setting there is no height

condition, so in fact Theorem 3.1.1 remains unchanged when rational tiles of smaller

height are allowed. In the irrational tiling setting, the standard “finite number of cut

paths” argument fails. Still, we conjecture that Theorem 3.1.2 also extends to tiles with

smaller heights.
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3.11.3

The history of Theorem 3.4.3 is somewhat confusing. In fact, it holds for integer G-

sequences defined as integer D-finite (holonomic) sequences with at most at most ex-

ponential growth. It is stated in this form since diagonals of all rational GFs are D-

finite [Ges1] and at most exponential. We refer to [FS, Sta1] for more on D-finite

sequences, examples and applications, and to [DGS, Gar] for G-sequences.

The asymptotics of D-finite GFs go back to Birkhoff and Trjitzinsky (1932), and

Turrittin (1960). See [FS, §VIII.7] and [Odl, §9.2] for various formulations of general

asymptotic estimates, and an extensive discussion of priority and validity issues. How-

ever, for G-sequences, the result seems to be accepted and well understood, see [BRS,

§2.2] and [Gar].

3.11.4

Note that D-finite sequences can be superexponential, e.g. n!. They can also have

exp(nγ) terms with γ ∈ Q, e.g. the number an of involutions in Sn :

an ∼ 2−1/2e−1/4
(n

e

)n/2
e
√
n ,

(see [Sta1] and A000085 in [OEIS]).

In notation of Theorem 3.4.3, the α ∈ Q conclusion cannot be substantially strength-

ened even for k = 2 variables. To understand this, recall Furstenberg’s theorem (see [Sta1,

§6.3]) that every algebraic function is a diagonal of P (x, y)/Q(x, y), and that by The-

orem 2 in [BD] there exist algebraic functions with asymptotics Aλnnα, for all α ∈
Qr{−1,−2, . . .}. For example, the number g(n) of Gessel walks (see A135404 in [OEIS])

is famously algebraic [BK], and has asymptotics

g(n) ∼ 22/3Γ(13 )

3π
16nn−7/3 .
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3.11.5

There is more than one way a sequence can be a diagonal of a rational function. For

example, the Catalan numbers Cn are the diagonals of

1− x/y

1− x− y
and

y(1− 2xy − 2xy2)

1− x− 2xy − xy2
.

The former follows from Cn =
(2n
n

)

−
( 2n
n−1

)

, while the second is given in [RY].

3.11.6

There is a vast literature on binomials sums and multisums, both classical and modern,

see e.g. [PWZ, Rio]. It was shown by Zeilberger [Zei] (see also [WZ]), that under certain

restrictions, the resulting functions are D-finite, a crucial discovery which paved a way

to WZ algorithm, see [PWZ, WZ]. A subclass of balanced multisums, related but larger

than B′, was defined and studied in [Gar]. Note that the positivity is the not the only

constraint we add. For example, balanced multisums in [Gar] easily contain Catalan

numbers:
(2n)! 1!

n!(n+ 1)!
= Cn .

We refer to [B+, §5.1] and [BLS] for the recent investigations of binomial multisums

which are diagonals of rational functions, but without N-rationality restriction.

3.11.7

The class R1 of N-rational GFs does not contain all of N[[x]] (Berstel, 1971); see [BR2,

Ges2] for some examples. These are rare, however; e.g. Koutschan investigated “about

60” nonnegative rational GFs from [OEIS], and found all of them to be in R1, see [Kou,

§4.4]. In fact, there is a complete characterization of R1 by analytic means, via the

Berstel (1971) and Soittola (1976) theorems. We refer to [BR1, SS] for these results and

further references, and to [Ges2] for a friendly introduction.

Unfortunately, there is no such characterization of N , nor we expect there to be one,
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as singularities in higher dimensions are most daunting [FS, PW]. Even the most natural

questions remain open in that case (cf. Conjecture 3.4.5). Here is one such question.

Open Problem 3.11.1. Let f ∈ F such that the corresponding GF F (x) ∈ N[[x]].

Does it follow that f ∈ F1?

Personally, we favor a negative answer. In [Ges2], Gessel asks whether there are

(nonnegative) rational GF which have a combinatorial interpretation, but are not N-

rational. Thus, a negative answer to Problem 3.11.1 would give a positive answer to

Gessel’s question.4 Of course, what’s a combinatorial interpretation is in the eye of the

beholder; here we are implicitly assuming that our irrational tilings or paths in graphs

(see §3.5.1) are nice enough to pass this test (cf. [Ges2]). We plan to revisit this problem

in the future.

3.11.8

There are over 200 different combinatorial interpretation of Catalan numbers [Sta2],

some of them 1-dimensional such as the ballot sequences. A quick review suggests that

none of them can be verified with a bounded memory read only TM. For example, for

the ballot 0–1 sequences one must remember the running differences (#0 − #1), which

can be large. This gives some informal support in favor of our Conjecture 3.4.6. Let us

make following, highly speculative and priceless claim.5

Conjecture 3.11.2. There is no tile counting function f ∈ F which is asymptotically

Catalan:

f(n) ∼ Cn as n→∞.

We initially tried to disprove the conjecture. Recall that by Lemma 3.10.1 and the

technology in Section 3.10, it suffices to obtain the constant π
3
√
3

as the product of values

of the hypergeometric functions given in Theorem 3.4.10. While 1
3
√
3

is easy to obtain,

4Christophe Reutenauer writes to us that according the “general metamathematical principle
that goes back to Schützenberger” (see [BR2, p. 149]), the logic must be reversed: a negative
answer to Gessel’s question implies that the answer to Problem 3.11.1 must be positive.

5Cf. http://tinyurl.com/mc3h8tn.
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our hypergeometric sums seem too specialized to give value π. This is somewhat similar

to the conjecture that 1
π is not a period [KZ].

We should mention here that it is rare when we can say anything at all about the

constant A in Conjecture 3.4.5. The constant in Corollary 3.4.12 is an exception: is

known to be transcendental by the celebrated 1996 result of Nesterenko on algebraic

independence of π and Γ(14), see [NP].

3.11.9

The proof of Lemma 3.5.3 uses a generalization of a standard argument in combinatorial

linear algebra, for computing the number of rational tilings:

F (x) =

∞
∑

n=0

fT (n)x
n =

∞
∑

n=0

(Mn)00 xn =

(

1

1−Mx

)

00

=
det(1−M00x)

det(1−Mx)
,

where M is the weighted adjacency matrix of GT . It is thus not surprising that we use a

cycle decomposition argument somewhat similar but more general than that in [CF, KP].

In the same vein, the “well-defined multiplicities” argument in the proof of Lemma 3.5.4

is similar to the “cycle popping” argument in [Wil] (see also [GoP, Mar]). The details

are quite different, however.

3.11.10

The values ordp(Cn) in Proposition 3.4.9 were computed by Kummer (1852); see [DS]

for a recent combinatorial proof.

109



References

[BD] C. Banderier and M. Drmota, Formulae and asymptotics for coefficients
of algebraic functions, to appear in Combin. Probab. Comput.; available
at http://tinyurl.com/kny2xum.

[Bar] A. Barvinok, Integer points in polyhedra, European Mathematical Soci-
ety, Zürich, 2008.

[BL] K. P. Benedetto and N. A. Loehr, Tiling problems, automata, and tiling
graphs, Theoret. Comput. Sci. 407 (2008), 400–411.

[BR1] J. Berstel and C. Reutenauer, Rational series and their languages,
Springer, Berlin, 1988.

[BR2] J. Berstel and C. Reutenauer, Noncommutative rational series with ap-
plications, Cambridge Univ. Press, Cambridge, 2011.

[B+] A. Bostan, S. Boukraa, G. Christol, S. Hassani and J.-M. Maillard, Ising
n-fold integrals as diagonals of rational functions and integrality of series
expansions, Journal of Physics A 46 (2013), 185202, 44 pp.; extended
version is available at arXiv:1211.6031, 100 pp.

[BK] A. Bostan and M. Kauers, The complete generating function for Gessel
walks is algebraic, with an appendix by M. van Hoeij, Proc. AMS. 138

(2010), 3063–3078.

[BLS] A. Bostan, P. Lairez and B. Salvy, Représentations intégrales des sommes
binomiales, talk slides (11 April, 2014, Séminaire Teich, Marseille); avail-
able at http://tinyurl.com/n5l7kyt.

[BRS] A. Bostan, K. Raschel and B. Salvy, Non-D-finite excursions in the quar-
ter plane, J. Combin. Theory, Ser. A 121 (2014), 45–63.

[CCH] P. Callahan, P. Chinn and S. Heubach, Graphs of tilings, Congr. Nu-
mer. 183 (2006), 129–138.

[CF] P. Cartier and D. Foata, Problèmes combinatoires de commutation et
réarrangements, Lecture Notes in Mathematics, No. 85, Springer, Berlin,
1969; available at http://tinyurl.com/ntklmwv

[CLS] S. Chen, N. Li and S. V. Sam, Generalized Ehrhart polynomials, Trans.
AMS 364 (2012), 551–569.

[DS] E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin num-
bers and related sequences, J. Number Theory 117 (2006), 191–215.

110



[DGS] B. Dwork, G. Gerotto and F. J. Sullivan, An introduction to G-functions,
Princeton Univ. Press, Princeton, NJ, 1994.

[FGS] P. Flajolet, S. Gerhold and B. Salvy, On the non-holonomic character of
logarithms, powers, and the nth prime function, Electron. J. Combin. 11

(2004/06), A2, 16 pp.

[FS] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge
Univ. Press, Cambridge, 2009.

[Gar] S. Garoufalidis, G-functions and multisum versus holonomic sequences,
Advances Math. 220 (2009), 1945–1955.

[GaP] S. Garrabrant and I. Pak, Counting with Wang tiles, in preparation.

[Ges1] I. Gessel, Two theorems of rational power series, Utilitas Math. 19 (1981),
247–254.

[Ges2] I. Gessel, Rational functions with nonnegative integer coefficients, in
Proc. 50th Sém. Lotharingien de Combinatoire (March 2003); available
at http://tinyurl.com/krlbvvl.

[Gol] S. W. Golomb, Polyominoes, Scribner, New York, 1965.

[GoP] I. Gorodezky and I. Pak, Generalized loop-erased random walks and
approximate reachability, Random Structures Algorithms 44 (2014), 201–
223.

[KM] D. A. Klarner and S. S. Magliveras, The number of tilings of a block with
blocks, European J. Combin. 9 (1988), 317–330.

[KP] M. Konvalinka and I. Pak, Non-commutative extensions of the MacMa-
hon Master Theorem, Advances Math. 216 (2006), 29–61.

[KZ] M. Kontsevich and D. Zagier, Periods, IHES preprint M/01/22 (May
2001), 38 pp.; available at http://tinyurl.com/k7h7gvx.

[Korn] M. R. Korn, Geometric and Algebraic properties of poly-
omino tilings, Ph.D. thesis, MIT, 2004; available at
http://dspace.mit.edu/handle/1721.1/16628.

[Kou] C. Koutschan, Regular languages and their generating functions: the in-
verse problem, Master thesis, University of Erlangen-Nuremberg, Ger-
many, 2005; available at http://tinyurl.com/pj6l6gl.

[Mar] P. Marchal, Loop-erased random walks and heaps of cy-
cles, Preprint PMA-539, Univ. Paris VI, 1999; available at
http://tinyurl.com/o54deou.

111



[MSV] D. Merlini, R. Sprugnoli and M. Verri, Strip tiling and regular grammars,
Theoret. Comput. Sci. 242 (2000) 109–124.

[MM] C. Moore and S. Mertens, The nature of computation, Oxford Univ.
Press, Oxford, UK, 2011.

[NP] Yu. V. Nesterenko and P. Philippon (Eds.), Introduction to algebraic
independence theory, Springer, Berlin, 2001.

[Odl] A. M. Odlyzko, Asymptotic enumeration methods, in Handbook of Com-
binatorics, Vol. 2, Elsevier, Amsterdam, 1995, 1063–1229.

[Pak] I. Pak, Lectures on Discrete and Polyhedral Geometry, monograph in
preparation; available at http://www.math.ucla.edu/˜pak/book.htm.

[PY] I. Pak and J. Yang, Tiling simply connected regions with rectangles,
J. Combin. Theory, Ser. A 120 (2013), 1804–1816.

[PW] R. Pemantle and M. C. Wilson, Analytic combinatorics in several vari-
ables, Cambridge Univ. Press, Cambridge, UK, 2013.

[PWZ] M. Petkovšek, H. S. Wilf and D. Zeilberger, A = B, A K Peters, Welles-
ley, MA, 1996.

[Pin] J.-E. Pin, Finite semigroups and recognizable languages: an introduction,
in Semigroups, formal languages and groups, Kluwer, Dordrecht, 1995,
1–32.

[Rio] J. Riordan, Combinatorial identities, John Wiley, New York, 1968.

[RY] E. Rowland and R. Yassawi, Automatic congruences for diagonals of
rational functions, to appear in J. Théor. Nombres Bordeaux ; available
at arXiv:1310.8635.

[SS] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal
Power Series, Springer, New York, 1978.

[Schü] M. P. Schützenberger, On the definition of a family of automata, Infor-
mation and Control 4 (1961), 245–270

[Sip] M. Sipser, Introduction to the Theory of Computation, PWS, 1997.

[OEIS] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://oeis.org.

[Sta1] R. P. Stanley, Enumerative combinatorics, Vol. 1 and 2, Cambridge Univ.
Press, Cambridge, UK, 1997 and 1999.

112



[Sta2] R. P. Stanley, Catalan Numbers, monograph in preparation; an
early draft titled Catalan Addendum is available at http://www-
math.mit.edu/˜rstan/ec/catadd.pdf.

[Wang] H. Wang, Games, logic and computers, in Scientific American
(Nov. 1965), 98–106.

[WZ] H. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeomet-
ric (ordinary and q) multisum/integral identities, Inventiones Math. 108

(1992), 575–633.

[Wil] D. B. Wilson, Generating random spanning trees more quickly than the
cover time, in Proc. 28th STOC, ACM, 1996, 296–303.

[Zei] D. Zeilberger, Sister Celine’s technique and its generalizations, J. Math.
Anal. Appl. 85 (1982), 114–145.

113




