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In the electricity sector, energy conservation through technological
and behavioral change is estimated to have a savings potential of
123 million metric tons of carbon per year, which represents 20%
of US household direct emissions in the United States. In this
article, we investigate the effectiveness of nonprice information
strategies to motivate conservation behavior. We introduce
environment and health-based messaging as a behavioral strategy
to reduce energy use in the home and promote energy conserva-
tion. In a randomized controlled trial with real-time appliance-
level energy metering, we find that environment and health-based
information strategies, which communicate the environmental
and public health externalities of electricity production, such as
pounds of pollutants, childhood asthma, and cancer, outperform
monetary savings information to drive behavioral change in the
home. Environment and health-based information treatments
motivated 8% energy savings versus control and were particularly
effective on families with children, who achieved up to 19%
energy savings. Our results are based on a panel of 3.4 million
hourly appliance-level kilowatt–hour observations for 118 residen-
ces over 8 mo. We discuss the relative impacts of both cost-savings
information and environmental health messaging strategies with
residential consumers.

energy conservation | decision making | health information disclosure |
environmental behavior | randomized controlled trials

In the electricity sector, energy conservation through techno-
logical and behavioral change is estimated to have a savings

potential of 123 million metric tons of carbon per year, which
represents 20% of US household direct emissions (1). Although
some scholars contend that improvements in energy-generation
technologies offer the greatest potential for carbon emission
reductions (2), others argue that household-level behavioral
changes can also produce significant and immediate emission
reductions (1). In residential electricity markets, however, pro-
moting conservation through behavior change is particularly
challenging. Traditional economic incentives for household en-
ergy conservation are typically small and subject to problems of
inattention or imperfect information, which economists often
classify as information or market failures (3–7). Tailored in-
formation strategies could solve problems of imperfect in-
formation in markets—by disclosing the unobserved costs of
individual consumption decisions to consumers (8). However,
because electricity demand is relatively price inelastic (9), non-
price information strategies using normative, intrinsic, or social
motivations might prove effective alternatives (10, 11). In this
article, we compare the effectiveness of environmental and
health information disclosures on residential energy consump-
tion to more traditional cost-based information strategies.
Public environmental and health damages from energy gen-

eration, which include premature mortality and morbidity (such
as cancer, chronic bronchitis, asthma, and other respiratory
diseases), have not traditionally been the focus of energy con-
servation policies. However, decades of research on environment
and health effects of air pollution have shown electricity gener-
ation to be one of the most important sources of pollution and
with recognized impacts on global health such as childhood
asthma and cancer. Since the 1990s, prospective cohort studies,
time-series studies, and rigorous epidemiological data have

provided strong causal evidence of the associated health effects
of ambient air pollution (12). These include both “somatic
effects”—for example, those occurring in the persons exposed—
along with “genetic effects”—those occurring in at-risk populations
(12). Global health damages are by far the most prominent exter-
nalities, primarily due to air pollution from coal and natural gas,
which constitute a majority of the current energy system. Health
damage estimates already exceed $120 billion in 2005 US dollars
(13), with electricity price structures that do not necessarily reflect
these costs.

Health Externalities: A Missing Link in Consumer Choice
The link between individual electricity use and the resulting
impacts on human health (via energy-related industrial emis-
sions) remains elusive for most consumers. Household electricity
use is typically “invisible,” meaning consumers have limited in-
formation about the external effects of their individual electricity
consumption. In this article, we investigate whether information
about the environmental health effects of energy consumption
could impact conservation behavior.
Behavioral theory suggests that disclosing environment and

health-based externalities to consumers can be effective at
shifting conservation preferences and reducing the perceived
costs and/or moral benefits of individual consumption (14). Prior
literature also points to important differences in the effective-
ness of environmental cues, according to the type of information
provided and the context in which the information is communi-
cated (15–17). In the context of energy consumption, we argue
that policies that correct information asymmetries between in-
dividual consumption and pollution externalities can encourage
conservation by reframing and creating new mental accounts on
the perceived costs and benefits of household actions to conserve
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energy. In pursuing tailored information disclosures related to
environment and health externalities, we examine whether moral
norms and moral choice can affect how individual consumption
decisions are made and subsequently evaluated by consumers.
There is a rich literature on the importance of moral payoffs

and moral norms on household consumption decisions. Research
in psychology (18–23), economics (24–27), marketing (28–30),
sociology (31–34), philosophy (35, 36), and neuroscience (37, 38)
has shown that normative strategies can motivate human be-
havior in the interests of the long-term benefits of the social
group rather than the short-term, self-interested behavior of one
person. Learning that one’s marginal consumption imposes so-
cial costs on others can lead to different moral sensitivities to
external health damages. However, moral sensitivity to reducing
harm in others is to be distinguished from purely altruistic
motivations such as in philanthropy or charitable giving, as the
benefits of individual conservation actions bestow not only social
benefits onto others but also private benefits on the individual
(i.e., lower costs, reduced pollution, cleaner air, etc.).
We consider two psychology-based mechanisms: The first is

amplification of prosocial conservation preferences that is mo-
tivated by a need to reduce harm on others (or activate behavior
that aids others); the second is amplification of private benefits
from reduced marginal consumption, which also provide private
benefits to the individual (e.g., fewer emissions leading to known
health damages). This amplification strategy serves dual pur-
poses and could apply equally to populations with greater sen-
sitivities to the greater good and to those households who also
stand to gain from cleaner air and the reduction of health ex-
ternalities, which could represent a broad segment of the pop-
ulation. Particular examples of such study subjects could be
urban communities and, in particular, affected populations such
as the elderly or families with children. Targeting urban com-
munities and families with children, we test the effectiveness of
environment/health-related social messaging on household en-
ergy conservation in a real market setting.

Experimental Evidence
A large number of energy conservation studies have been con-
ducted using various information strategies to reduce energy use
(10, 39–45). These studies provide users with energy-saving tips,
historical individual use, real-time energy use, and peer use, in-
cluding social comparisons. Despite a growing body of literature
on nonprice strategies with tailored information campaigns,
researchers have not yet tested the effectiveness of consumer
information disclosures based on environment and health ex-
ternalities (45). Therefore, the empirical evidence of moralized
consumer choice using environmental health cues remains as yet
largely undetermined. Expanding the ensemble of large-scale
behavioral strategies, we present experimental field evidence
with residential electricity customers in a major US city. We
demonstrate that nonprice-based environment and health mes-
saging can have substantial and economically meaningful
reductions in demand at the household level. Our central contri-
bution is to test the role of information disclosure about envi-
ronment and health damages as a new class of nonprice strategies
for household energy conservation.

Measuring Conservation Behavior
In the energy conservation context, prior field studies have been
limited in their ability to measure high frequency behavior and to
provide residents with timely feedback about their electricity use.
Prior studies often use data obtained from long or infrequent
residential billing cycles, indirectly using energy modeling tech-
niques or self-reported surveys about intentions to conserve.
More generally, the lack of appliance-level energy metering data
in US households and businesses has been a long-standing
problem for modeling and understanding consumer behavior in

residential and commercial buildings (46). In the current study,
new technology developments allow us to observe kilowatt–hour
(kWh) electricity behavior in real time, at the appliance level
(47). A kWh is the most common unit of electricity used by
electric utilities in residential and commercial billing.
Behavioral experiments in energy research are now tran-

sitioning from small-scale laboratory experiments to large-scale
field studies (48–50), with randomized controlled trials (RCTs)
emerging as a powerful approach for policy evaluation of in-
formation treatments. RCTs enhance the credibility of findings
by modeling actual consumer behavior at scale and, under re-
alistic settings, often in contrast to controlled laboratory studies.
However, RCTs are usually more costly to conduct versus non-
experimental observational studies. This is because archival data
are often cheaper per unit of observation, so it is possible to have
more observations for the same unit cost over a broader setting
or population than might be available in a RCT, particularly in
cases when there are limits to sampling, measurement error, or
treatment imbalance. For a discussion of strengths and limi-
tations of RCT, see refs. 51 and 52. Sound inference comes from
triangulating multiple sources of evidence. This is why we com-
bine RCTs with survey data, not only to provide richer evidence
of the effects of a treatment before and after an intervention but
also as a way to optimize the treatment itself. In the current
study, we conduct a high-frequency, high time-resolution RCT
study at a multiple-building, family apartment residential field
site. We observe consumer behavioral responses to information
treatments in real time with appliance-level metering capabilities
not previously available. We integrate a behavioral science-based
consumer messaging strategy, which connects the causal chain
between energy use and associated environment and health
consequences at the individual household level.
Our sample consists of Los Angeles Department of Water and

Power (LADWP) customers who pay their electricity bills, and
our experimental results represent outcomes of real-life con-
sumption decisions in their natural settings. Our field experi-
mental site, University Village, is a large family housing
community in Los Angeles with 1,102 units. On a per capita
electricity basis, University Village residents are typical of
California multifamily renter populations (SI Appendix, Table
S9) and are only slightly below the national average (due to the
milder climate in the State of California). (For more information
on the characteristics of our sample, please see SI Appendix.)
Our 118 participating households consist of single, married, and
domestically partnered graduate college students with and
without children in the home. Residents are younger and more
educated than the US population but are typical of users of in-
formation devices. Our target population represents the next
generation of homeowners who are used to working with mobile
electronic devices and increasingly rely on electronic communi-
cations in their consumption habits. Thus, our experimental
results are indicative of how future residential electricity con-
sumers can respond to high-frequency information, especially
as electric utilities begin using smart metering data with in-
formation and communication technologies.
Building an intelligent, wireless sensor network, we gave

consumers real-time access to detailed, appliance-level in-
formation about their home electricity consumption. Our results
are based on a panel of 440,059 hourly kWh observations (or
3.43 million underlying appliance-level kWh observations) for
118 residences over a time span of 8 mo. We also conducted the
analysis at higher frequency toward the limit of the technology
(metering and data processing) at 1/30 Hz—for example, one
reading every 30 s—to evaluate the optimal span of inference. Our
optimal unit of observation in this study is hourly, which balances
several competing requirements and considerations, not the least
of which are the span of decision making for conservation be-
havior, the technical capabilities of the metering equipment, the
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precision of the estimates, computational burdens, and other
practical considerations. We provided treated households with
high-resolution information about costs (weekly cost estimates as
opposed to monthly billing) or environmental and health impacts
(weekly emissions and listing of particular health consequences;
e.g., childhood asthma and cancer). Informational messages
were delivered via a specialized, consumer-friendly website with
monitored page views and analytics and weekly accessible emails
by personal computer and portable electronic devices (SI
Appendix, Fig. S1). Information feedback was specific to each
consumer. Once randomly assigned to receive either cost savings
or environment- and health-related information, households
could not cross over between treatments. Building on previous
literature and to provide all treated households with a reference
point for their consumption, we compared our participants to the
top 10% most energy efficient-similar neighbors in the complex.
(Households were provided with factual evidence-based numbers
that depended on their weekly kWh electricity consumption.
Equivalent cost savings were calculated using household con-
sumption data and the published LADWP electric rate schedules
for residential customers. LADWP is the nation’s largest public
utility. Equivalent non–base-load emissions were calculated us-
ing emission factors from the Emissions & Generation Resource
Integrated Database maintained by the US Environmental Pro-
tection Agency.) After a 6-mo baseline monitoring period, the
treatment period was ∼100 d, which is the typical duration of an
information campaign during peak summer or winter months.
Our treatment period is also greater than 60% of comparable
studies from 1975 to 2012 (45).

Results and Discussion
We find that health and environment messages, which commu-
nicate the public health externalities of electricity production
such as childhood asthma and cancer, outperform monetary
savings information as a driver of behavioral change in the home.
Participants who received messages emphasizing air pollution
and health impacts associated with energy use reduced their
consumption by 8.2% over the 100-d experimental monitoring
period versus control (Fig. 1 and SI Appendix, Table S4, column
1). These net energy savings, which invoke considerations of
health damages as a psychological mechanism, are at the high
end of prior nonprice strategies using social comparisons (39,
40). To give a practical sense for what these savings mean for
a typical two-bedroom family apartment, an 8% conservation
effect would be equivalent to plugging out a laptop computer for
an additional 87 h/wk, plugging out a flat-screen TV for an ad-
ditional 36 h/wk, or turning off one standard 60-W light bulb for
an additional 72 h/wk. [For these equivalencies, we used name-
plate wattages for typical household consumer appliances com-
piled by the US Department of Energy (available at http://
energy.gov/energysaver/articles/estimating-appliance-and-home-
electronic-energy-use).] Using published price elasticities for
California (53, 54), this conservation effect on the treated is
equivalent to a long-run electricity price increase of 20.5% or
a 60-d short-run price increase between 30% and 60%. Consis-
tent with our predictions, health and environment messaging was
particularly effective on families with children, who collectively
achieved up to 19% energy savings (Fig. 1) in our target pop-
ulation. Our results are robust to various estimation procedures
and specifications. [We estimate treatment effects by difference-
in-differences panel regression. The full set of statistical controls
for observable characteristics include hourly weather controls
(e.g. heating and cooling degree hours), time fixed effects,
apartment size, and occupancy characteristics, including a proxy
for household environmental leaning. Any unobserved charac-
teristics common to the community are captured in the control
group monitoring. Supporting materials and methods and further
robustness checks are available in SI Appendix.] In particular, our

results are robust to sampling frequency, and we do not rely on
our panel’s high time dimension to achieve statistical significance
(SI Appendix, Table S12). Although we expect some attenuation
of these effects across larger study populations, we demonstrate
the behavioral principle of using health damages and moral-
ized consumer choice as a promising behavioral strategy for
residential energy consumption. By contrast, participants who
received messages informing them about monetary savings did
not produce significant conservation by the end of the experi-
mental period, net of all statistical controls (materials and
methods are available in SI Appendix). This result of conserva-
tion in one group and no net conservation in another leads us to
seek a deeper understanding of the underlying heterogeneity and
individual behaviors driving household actions.
The lack of a significant conservation effect with cost savings

information, which might initially be a surprising result, is con-
sistent with over 35 y of experimental evidence in the behavioral
literature in energy conservation (45). Although cost savings has
historically been an important economic incentive for household
energy conservation, in practice the actual realizable dollar
savings for most US households, compared with the top 10%
most energy efficient-similar neighbors, is typically small. In the
current experiment, for example, household cost savings poten-
tial for a two-bedroom family apartment with an average con-
sumption was US$5.40 to US$6.60/mo in direct kWh charges,
which is roughly equivalent to a fast food combo meal or two
gallons of fortified whole milk, based on the consumer price
index average price data. [The consumer price index average
price data, published by the Bureau of Labor Statistics, provides
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Fig. 1. Effects of informational messages on study households (n = 490,994
hourly kWh observations, 118 apartments by random assignment into
treatment and control groups). Mean treatment effects are reported versus
control households before and after treatment following a 6-mo baseline
monitoring period. The cost savings information group shows no significant
conservation behavior after the 100-d treatment period. The health group
shows significant conservation behavior of 8.2% energy savings (significant
at **P < 0.05) after the 100-d experimental period. Health-related in-
formation treatments are particularly effective on families with children,
achieving 19% energy savings relative to control (significant at **P < 0.05).
All panel regression estimates include statistical controls for household
characteristics (apartment size, apartment layout, and building floor), oc-
cupancy (number of persons living in the household), hourly weather
controls (e.g., heating and cooling degree hours), time fixed effects, and
environmentalist ideology (head of household reports being an active
member of an environmental organization). Materials and methods are
available in SI Appendix.
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monthly data on prices paid by urban consumers for a repre-
sentative basket of goods and services (available at www.bls.gov/
cpi/).] On an annual basis, the savings estimate for the current
multifamily residential housing complex, which is at the mid-
range of national per capita electricity consumption (55), is
a modest $65 to $80/y. These energy savings in dollar terms,
although small relative to the US household budget, are realistic
for most US households, suggesting that information about small
monetary savings, especially over longer time horizons (weeks to
months), may not sufficiently motivate household behavioral
change and may be heavily discounted by consumers or subject to
energy rebounds. Gneezy et al. (56) provide other examples on
when and why monetary incentives do not work to modify be-
havior. Further work is needed to understand the thresholds that
prompt informed consumers to change behavior, to disentangle
the level of the incentive from incentive type.

Heterogeneous Effects on Households. Although average treatment
effects vary for households with and without children (Fig. 1), we
also investigated whether heterogeneous effects could be un-
covered for different household use patterns. Heterogeneous
responses to information treatments are well known in the be-
havioral literature on energy conservation. Using cross-sectional
quantile regression, we evaluated the distributional impact of
informational messages on treated households (Fig. 2 and SI
Appendix, Table S8). We find that health and environment
messaging produced statistically significant conservation effects
in all but the lowest decile of household electricity use (e.g.,
households who are already the most energy efficient). Weekly
cost savings messages, on the other hand, led to increased
electricity use relative to control (Fig. 2). These deviations from
mean treatment effects and positive splurging behaviors were
particularly striking among families with children (Fig. 1) and the
highest deciles of household electricity use (Fig. 2), whereas in
contrast to health-based messages, monetary savings information
was ineffective for the most energy-intensive households. To
further understand what changes in behavior may be driving

these results, we evaluated the experimental treatment effects by
appliance and by time of day.

Appliance-Level Behavior. The average electricity consumption
across all households is 0.3157 kWh/h or ∼230.4 kWh/mo across
one-, two-, and three-bedroom units ranging from 595 to 1,035
square feet. Because we have separately metered appliances, we
can further decompose the appliance-level consumption. In Fig.
3, we provide the breakdown of the appliance-level readings for
all apartments in the study. Major appliances (e.g., refrigerator,
dishwasher), the plug load (e.g., charging devices, consumer
electronics, etc.), and lighting make up a significant share of
household direct energy use (73%). The results shown in Fig. 3
represent experimentally observed appliance-level electricity
readings and are not the result of survey estimates or modeling as
in traditional approaches to obtain such data. By the current state
of technology, there is no centralized appliance-level metering
capability in US homes or residential electricity markets (46). This
study is one of the first, to our knowledge, to have experimentally
measured appliance-level data in a large energy study.
For decades, heating and cooling (e.g., space conditioning)

was considered to be the major source of household electricity
use, based on national data from the Residential Energy Con-
sumption Survey. Estimates from the most recent Residential
Energy Consumption Survey suggest that the share of residential
electricity use for heating and cooling is declining nationally in
the United States, down to 48% in 2009 from 58% in 1993 (55).
In California, due to the milder climate, the share of heating and
cooling makes up a smaller fraction of energy use (31%), across
all single and multifamily households, and only 19% in our
multifamily residential field site (Fig. 3). Although space heating
and cooling is declining nationally, the share of energy use for
appliances and electronics continues to rise. Consistent with
these estimates, by direct measurement, we show that plug load
is already the largest share (36%) of appliance-level electricity
consumption for residential apartments at our field site (Fig. 3).
For households randomly assigned to receive health messages,

energy conservation occurs primarily through plug load and
lighting behavioral changes (SI Appendix, Table S5). Whereas
our environment and health strategy was most effective in re-
ducing plug load, we observe markedly different appliance be-
havior with the monetary savings strategy. For households
randomly assigned to receive cost savings information, we iden-
tify conservation effects at the appliance level only in lighting (SI
Appendix, Table S5). However, as lighting is only a minor share
of total household energy consumption (15%), any observed
behavioral changes in lighting conservation are not enough to
overcome observed splurging behavior in other consumption
categories such as heating and cooling, resulting in no net con-
servation with monetary savings information by the end of the
experiment, and in some cases increasing electricity use relative
to control. This empirical result of conservation in one or more
appliances (e.g., lighting) but no net conservation in the house-
hold aggregate energy use motivates further research into dy-
namic responses to information treatments and habit formation.
Results from our focus group indicated that people were unclear
on how to operate the refrigerator controls, for example, and we
observed an 8% increase in refrigerator use (SI Appendix, Table
S5), which could be an opportunity for manufacturers to improve
designs. The recent work of Attari et al. highlights the impor-
tance of consumer perception and cognitive ability on the ef-
fectiveness of environmental cues (17, 57). One could ask the
obvious question: Why should health-based information lead to
different observed appliance-level behaviors? One explanation
for this empirical result is that health-based strategies lead
morally sensitized consumers to be more cognizant of household
energy uses that might be perceived as “wasteful” sources of
electricity—for instance, unused lights, phantom loads, or
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Fig. 2. Quantile treatment effects on the treated (n = 490,994 hourly kWh
observations, 118 apartments). We observe significant conservation effects
in the health treatment group across all quantiles of electricity use, except
for the lowest decile (most energy efficient observations). By contrast, by the
end of the experiment, we observe no significant conservation effect with
the monetary savings group and observe splurging behavior, particularly
among the highest use quantiles. Significance levels are as follows: ***P <
0.01, **P < 0.05, *P < 0.1.
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standby power sources. Consistent with this hypothesis, in post-
study participant interviews, the most commonly reported be-
havioral changes in the health information group were turning
off unused lights, unplugging electronics, and charging devices
when not in use. Our metering technology has opened the pos-
sibility to study behavioral phenomena at very high resolution.

Implications for Load Shifting. We also decompose the appliance-
level treatment effects by time of day to evaluate implications of
our information treatments on possible load-shifting behavior.
Load shifting of household electricity use from peak hours to off-
peak hours is desirable for electric utilities to manage system
power loads and reduce the risk of blackouts, brownouts, or
overvoltages on the grid. For households randomly assigned to
environment and health messages, we observe daily conservation
effects, versus control households, beginning from about 12:00
AM (midnight) through 12:00 PM (noon). In-treatment energy
savings persist overnight and during peak morning demand hours
(SI Appendix, Table S6), where a local peak load period occurs
for the community at ∼9:00 AM (SI Appendix, Fig. S3). These
changes in electric consumption patterns via appliance-level
reductions in plug load and lighting behavior, particularly during
morning peak hours, offers some evidence for habituation within
treatment. Conservation treatment effects for our environment
and heath group are also maintained overnight, consistent with
our evidence of plug load conservation, suggesting both load-
shifting behavior and conservation. By contrast, we find limited
evidence of any load-shifting behavior with cost savings in-
formation treatments by the end of the experiment.

The Attitude–Behavior Gap. In the conservation literature, there is
often a dichotomy between what people say they do and what
they actually do (58). This so-called attitude–behavior gap is
uniquely revealed in this field setting. Before the study, we
conducted a stated preference survey asking independent, ran-
dom samples of participants to choose messages that would be
most likely to change their behavior and motivate conservation

in the home. When pushed to state their energy preferences, we
find that consumers do state a willingness to change behavior
and that financial savings are at the top of their concerns.
However, when faced with decision making in an actual market
setting, only our nonmonetary, environment, and health strategy
produced a lasting conservation effect. This distance between
what people say they would do and what they actually do is re-
ferred to as hypothetical bias. As long argued by psychologists
and behavioral economists, monetary savings, which by standard
accounts should motivate rational decision making in the home,
can often fail with ordinary consumers (11, 14, 56). The idea that
a nonmonetary, information strategy centered on environment
and health could produce energy conservation without a signifi-
cant change in existing economic incentives advances our un-
derstanding of the range of large-scale behavioral science-based
interventions that can be carefully applied at scale. Energy
conservation strategies can be guided not only by traditional
economic incentives such as rebates and price-based incentives
but also by nonprice-based consumer disclosures concerning
environmental and health damages not necessarily reflected in
prices for electricity services.
Our study shows that nonprice incentives can effectively in-

duce energy conservation, but it is not without limitations. First,
our experiment provides both novel and repeated information to
participants, making it difficult to separate the effect of learning
from salience. Our participants acknowledged learning about
appliance-level use and indicated that the appliance-level in-
formation was the most useful piece of information provided on
the website. Most of them conveyed that they were surprised by
how much or little electricity-specific appliances were being
used. In addition, the information provided on the dashboard
was updated in real time, and participants received weekly
emails. Further research should seek to disentangle the effect of
learning about the energy use of different appliances from the
saliency of the information we provided, which reminded them
repetitively about their energy consumption. This raises the im-
portant question of how often should people be reminded about
their electricity use to form energy conservation habits. Our exit
survey indicates that the combination of weekly emails with the
possibility to access real-time data on a website was sufficient in
our setting. Further research is needed to understand energy use
habit-forming behavior with repeated information provision.
Second, we report behavioral outcomes within the 100-d treat-
ment period but do not study the persistence of these household
behavior changes after the conclusion of the experiment. We
therefore do not know whether energy conservation persisted
after the end of the experiment. However, the results from the
exit survey indicate that some actions undertaken during the
experiment could have potential lasting effects on energy con-
sumption. Indeed, the majority of the participants described that
they achieved reduced energy use by unplugging electronics,
changing the power savings settings of their computer or other
electronics, or programming different temperature settings on
their thermostat. This is important because it suggests that the
savings resulting from these changes could persist even without
taking further action.

Policy Implications. The relationship between electricity use and
impacts on the environment and global health remains an elusive
concept for many consumers. The generation of fine particulate
air pollution and its effects on health are usually removed from
ordinary daily consumer decision making. This low consumer
awareness stands in contrast to strides in our scientific un-
derstanding. We show that providing consumers specific,
tailored, and scientifically verifiable information about the
associated environmental and health effects of their electricity
consumption can influence and motivate behavioral decision
making about daily electricity use. More generally, this research
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Heating Cooling
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Lighting
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Refrigerator
19%
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Fig. 3. Appliance-level electricity measurements (n = 490,994 hourly kWh
observations, 118 apartments). Plug load is the largest share of household
electricity use. The average kWh consumption is 230.4 kWh/mo across one-,
two-, and three-bedroom units ranging from 595 to 1,035 square feet.
Appliance-level data for multifamily residences in this study are among the
first field demonstrations of comprehensive appliance-level metering capa-
bilities not previously available. Results above represent a weighted average
of all household electricity uses obtained by direct measurement and are not
based on engineering estimates by modeling.
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advances our understanding of the effectiveness of information-
based policies for conservation based on the principle that
making information about the external damages of activities
more salient to consumers can encourage conservation through
household behavioral changes (59, 60). It has been argued that
given the relative price inelastic behavior of electricity consumers
in both the United States and the European Union, public pol-
icies to encourage energy conservation will require more than
increases in electricity retail prices (9). Consumer information
strategies can inform environmental policy about conservation
efforts and can be used particularly where price-based strategies
may not be politically feasible or effective. We argue that behav-
ioral strategies in household electricity markets can be com-
plements rather than substitutes for regulatory or price-based
solutions. Energy conservation is desirable in the economy as
an alternative to costly capital investments in new power

generation and can help delay managerial investment decisions
for new generation capacity. Although nonprice behavioral strat-
egies can be viable alternatives to new capital projects by pro-
moting peak load shifting and conservation, they can also be
implemented immediately, at scale and at relatively low cost (11).
Behavioral strategies enabled through information technologies
can be an effective component of sustainable development path-
ways and do not require long lead times typical of new capital
investments in energy generation, distribution, and storage.
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SUPPORTING INFORMATION 

 

Materials and Methods 

We outfitted 118 family apartments with wireless energy metering technology at a 
residential housing community in Los Angeles. We measured electricity use data in real-time 24 
hours a day at the appliance level. The randomized controlled trial was conducted from October 
2011 to July 2012 and weekly treatment messages were sent to participants. The first group of 
apartments was given detailed energy use feedback along with information about monetary 
savings. The second group was given feedback with a health message about emissions and its air 
quality impacts such as childhood asthma. The third group served as a statistical control 
following a six-month baseline period and random assignment. Fig. S1 shows screen shots of the 
website shown to participants and Fig. S2 shows a time series of the community consumption. 
No financial transfers or monetary rewards were offered for participation.  

Field Site. Our field experimental site, University Village, is a large residential 
community located in proximity to public transportation, local businesses, parks and schools. It 
is a multiple building, family apartment/condo-style housing complex with 1,102 units. The 
community spans two census block groups serviced by the Los Angeles Department of Water 
and Power (LADWP), the nation’s largest public utility. Although the facilities are owned and 
operated by the University of California, the University does not subsidize living costs for the 
community and offers market-based rental rates. All utilities are paid by the tenant, including 
electricity. While apartments vary in size and layout, all units are furnished with a common set of 
appliances—a refrigerator, gas stove, dishwasher, and microwave oven. This allows for 
standardization in the housing capital stock. We monitor direct electricity usage in each of the 
participant households.  

Treatment Messages. Information treatments received by households contain: (i) a 
neighbor comparison, which provides a reference point for their household consumption, and (ii) 
a stated impact of electricity use, either in terms of potential cost savings or public health 
externalities. The specific treatment messages are listed in Table S1. Neighbor comparisons are 
standardized in the following form: “Last week, you used ___% more/less electricity than your 
efficient neighbors” Neighbor comparisons in the energy conservation context have gained broad 
use in (i) small-scale lab or field studies, typically in applied social psychology, building-science 
and engineering, and (ii) utility-scale pilot projects, typically in economics and related fields. 
Impacts described were presented to households in numerical and scientifically verifiable terms. 
Unlike many lab studies where numerical impacts may be the subject of manipulation, we 
provided households with factual evidence-based numbers that depend on their weekly 
consumption. Equivalent cost savings were calculated using household-level consumption data 
and the published LADWP electric rate schedules for residential customers. Equivalent pounds 
of air pollutant emissions were calculated using emission factors from the Emissions & 
Generation Resource Integrated Database (eGRID) maintained by the U.S. EPA and based on 
LADWP electricity fuel mix. Treatment messages were also pre-tested in a series of 
questionnaires for clarity, comprehension and stated willingness-to-save energy with 
independent populations. 
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Participant Recruitment. Households were recruited to participate in the study. In order 
to prevent biases in recruitment selection, no direct environmental messaging was used. The 
recruitment process occurred within the context of several community events and information 
campaigns during the summer months prior to the start of the 2011-2012 academic year. To meet 
all Institutional Review Board (IRB) ethics requirements regarding research with human 
subjects, participation was strictly voluntary and no personally identifiable information (PII) was 
collected or shared. We conducted an enrollment survey to capture basic apartment 
demographics and occupancy characteristics for the community at-large, including households 
who opted in and those who opted out of the study. We recruited many more willing participants 
than there were active equipment allotments. Among the 1,102 households at University Village, 
226 households volunteered to participate and another 88 households in our entry survey chose 
not to participate. This equals a participation rate of 20%. We randomly selected 118 
participating households from these 226 volunteers. The participating households in our 
experiment represent 10.7% of the population at University Village. Household assignment into 
treatment and control groups was then randomized.  

While households could at any point withdraw their consent to participate, no households 
dropped from the study for the entire duration of the experiment. 

We tested for potential differences between the population of households at our field site 
and our sample of volunteer participants. We compared the monthly electricity meter readings of 
the entire population of University Village to those of our participants as well as other 
characteristics such as the size of the apartment, the number of occupants, the apartment floor 
and the location of the apartment in the complex. As shown in Table S2, there are no significant 
differences between participating and non-participating households. This analysis is based on 
electricity meter readings for 12 months prior to the start of the experiment.  

Empirical Strategy. We modeled the household behavioral outcomes as a time series of 
electricity consumption before and after the start of information treatments. Our general 
empirical strategy consists of panel regressions of total and appliance-level electricity loads on a 
series of treatment group indicators and important statistical controls, namely, household and 
occupancy characteristics, a proxy for household environmental leaning and seasonal variables 
including weather and time trends. Table S7 lists descriptive statistics for all variables in this 
study. To estimate the treatment effects on the study population, we use an analytical approach 
by difference-in-differences (DD). We define “treatment” to mean weekly updating 
informational messages about household energy use defined previously. Treatments are 
exhaustive and mutually exclusive, meaning each household receives only one randomly 
assigned treatment. Once assigned, there is no crossover between treatments. A control group is 
also monitored alongside the treatment groups, but receives no information other than their 
standard utility bill.  

Identification. In keeping with our identification strategy, we define treatment dummies 
denoting treatment group and event time status. Let  be the binary treatment group indicator, 

equal to 1 if household is a member of treated group i, and 0 otherwise. Let  be the binary 
post-treatment indicator, equal to 1 after the start of information treatments (i.e., post-treatment 
period), and 0 during the baseline period (i.e., pre-treatment period). Let  denote the 
expectations operator. The behavioral response function  for household j is allowed to be 


T

i

P
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heterogeneous at the household level. Conditioning on observables, we define the average 
treatment effect on the treated (ATET) as: 

 

  (post-treatment period) 

 
 (pre-treatment period) (1.1) 

Treatment is identified when the group-time interaction  equals 1 over all feasible 

treatments (i.e., monetary savings or health). The ATET in Equation 1.1 is the 

population average difference in the control group before and after treatment minus the 

population average difference in the treated group  before and after treatment. We condition 

on household level covariates, X. Any common unobservable characteristics are also captured in 
the control group. 

Dependent Variable. Our dependent variable and behavioral response measure is the 
total kilowatt-hour (kWh) electric power consumption. A kilowatt-hour (kWh) is the most 
common unit of electricity used by electric utilities in commercial and residential billing. We 
aggregate real-time electricity measurements into hourly observations. Our total kWh signal for 
each household is further decomposed into one of six major appliance categories. By direct 
measurement, the appliance-level kWh consumption categories are: (i) lighting, (ii) heating and 
cooling, (iii) plug load, (iv) refrigerator, (v) dishwasher, and (vi) other kitchen (including the 
microwave and kitchen outlets). These six appliance categories make up the complete circuit 
breaker distribution for all electricity uses in the household. We note that this level of granularity 
in kWh measurement is unique to our installed metering technology and wireless sensor network. 
We normalize our dependent variable by dividing by the average post-treatment control group 
consumption, and multiplying by 100, allowing us to interpret our regression coefficients directly 
as percentages versus control group. We do not use logs as monotonic transformations of the 
hourly kWh measurements since appliance-level electricity loads in the range [0, R+) can 
frequently be equal or close to zero, for example, when the dishwasher or other appliance is off. 
For other examples of this normalization approach with electricity metering data, see (1). The 
distribution of dependent variables is shown in Table S3. 

Independent Variables. The variables of interest are the treatment group indicators, 
observable household characteristics, and seasonal controls including weather and time trends. 
Household occupancy includes the number of adults (ranging from 0 to 3), and number of 
children (ranging from 0 to 4). Apartment size indicates the number of bedrooms in the unit, 
ranging from 1 to 3 bedrooms. Building floor captures apartment elevation, ranging from 1 to 3, 
where 1st floor indicates ground level. Floor plan captures differences in apartment layout, 
measured in nominal square footage. Because political leaning or ideology can significantly 
impact energy use attitudes and behaviors (2-4), we include statistical controls for household 
environmentalist ideology to account for the fact that greener participating households might 
have more proclivities toward conservation. To this end, member environmental organization is 
a proxy variable which captures a fixed measure of household environmentalist ideology or 
orientation. It is equal to 1 if the head of household reports being an active member of an 
environmental non-governmental organization (NGO), and 0 otherwise.  

{(

T

i
 1) (P 1)}

  {i  1,2}

T

i
 0


T

i
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 Seasonality and Time Trends. Electricity demand (in kWh per unit time) exhibits 
seasonal fluctuations and serial correlation that depends on outside factors such as time of day or 
weather. Modeling electricity loads with high time-resolution data requires special consideration 
of seasonality and time-varying characteristics on consumption, most notably, the effects of 
outside temperatures on hourly energy demand. Even with the milder climate in Los Angeles, 
heating and cooling hours capture significant seasonal variation on electricity consumption. We 
calculate heating and cooling degree hours, using quality-controlled local weather data from the 
Santa Monica Municipal Airport weather station, as maintained by the National Climatic Data 
Center (NCDC). Outside dry bulb temperatures were recorded hourly at the Santa Monica 
Municipal Airport weather station, located less than 1 mile from the study site. Archival access 
was provided by the National Oceanic and Atmospheric Administration (NOAA’s) Quality 
Controlled Local Climatological Data (QCLCD), which contains hourly, daily and monthly 
summaries of outside weather conditions for the specific station. Mean degree-hours are a 
fundamental measure in building energy management that expresses the magnitude of expected 
heating or cooling load at a given location. Degree-hours capture seasonal heating or cooling 
requirements at a finer resolution than degree-days, making our hourly kWh observations 
compatible with outside weather variation. The weather vector is  where: 

  

 (1.2) 

As shown in Equation 1.2, the larger the indoor heating or cooling requirement, the larger the 
distance between the measured mean hourly outside temperature  and a given base 

temperature . By U.S. convention, the indoor base temperature  is defined as 65˚F (18.3˚C) 

(5). When outside temperatures rise above the given indoor base temperature, cooling degree 
hours are strictly positive and heating degree hours are zero. Conversely, when outside 
temperatures fall below the base temperature, heating degree hours are strictly positive and 
cooling degree hours are zero. In this way, differential effects of heating and cooling load on 
electricity consumption are decomposed in a meaningful way over a 24-hour period. By 
rigorously specifying heating and cooling degree hours, we mitigate issues of seasonality and 
serial correlation in the disturbances of the regression model and address some methodological 
limitations previously identified in the literature (6). 

 Econometric Model. The basic econometric specification for household j, in treatment 
group i, at time t, is  

     (1.3) 

The dependent variable, , represents hourly panel observations of total and appliance-level 

electricity loads. Our main coefficient of interest, , indicates the average treatment effect on 
the treated and the coefficient  indicates the post-treatment on the population.  is the 
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vector of household covariates and  is the weather vector. We include degree hours of the 

study period and day of the week time dummies to control for common time trends. Time 
dummies offer a convenient and robust control for community-wide effects. The regression 
constant is denoted by c and the residual error is captured in . We mitigate the effects of serial 

correlation—a common source of estimation bias in difference-in-differences models (7) by fully 
specifying important seasonal weather variables on consumption and clustering the standard 
errors at the household level. Our standard errors are satisfactory due to a number of important 
design considerations. First, we have very high-resolution measurement, down to individual 
appliances, in which both make and model of all appliances have been standardized across the 
community. This provides for more precise behavioral estimates than are otherwise available in 
comparable studies with monthly residential billing data. Second, we control for the impact of 
seasonality and time-varying characteristics on consumption by use of degree hours, which 
offers a finer resolution controls for weather variability than typical approaches that use heating 
and cooling degree-days, or that have no weather controls at all (6). In addition to seasonal 
degree-hours, we also specify time dummies to capture common time trends (or cycles) in the 
data and any calendar shocks on consumption. We estimate treatment effects in Equation 1.3 
conservatively by difference-in-differences using the standard feasible generalized least squares 
estimator (FGLS),  (8). We note that GLS panel estimation is feasible 

because the panel’s time dimension is larger than the cross-sectional dimension of N households, 
a characteristic of our high time-resolution data set. In the next section, we also present 
alternative results and show robustness checks using OLS.  

 Baseline Characteristics. Table S10 shows descriptive statistics for both treated and 
control households during the 6-month baseline period. As shown in Table S10, the covariates 
and electricity consumption are reasonably balanced between treated and control households. In 
particular, the average electricity consumption is statistically indistinguishable between groups 
along with other important household fixed effects. The last column in Table S10 shows the 
results of a regression testing for significant differences between groups. As given by the F-test 
p-value of 0.2485, we reject a hypothesis of imbalance between groups. One exception is the 
variable representing membership of an environmental organization, which is significant at the 
10 percent level. We note that households who report membership in an environmental 
organization represent a very minor share (~8%) of households in the study. In separate results, 
we computed the effect of belonging to an environmental organization as a proxy for green 
behavior. These results show no significant interaction with either treatment (results available 
from the authors upon request). This indicates that environmentalist households are not driving 
the study’s main results. 

  Robustness checks.  Table S11 shows the ATE specifications using OLS. Table S11 
lists results of standard protocols with robust standard errors clustered at the household level, 
starting with a simple comparison between treatment and control groups and subsequently 
adding covariates. Column I shows a simple comparison between treatment and control groups in 
the post-period, without adjustment for the covariates. We obtain a -9.9% point estimate of the 
treatment effect in the health treatment group, and no significant conservation result in the cost 
savings group. We then add covariates to reduce standard errors. Specifications II to V present 
the estimates with covariates, which are robust to different configurations of fixed effects and 


t

 jt
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controls. In Column V in Table S11, we include heating and cooling degree hours in addition to 
hourly fixed effects. As described above, degree hours capture both the magnitude and direction 
of heating and cooling loads on electricity consumption due to outside weather variation. We 
note that our use of degree-hour bins instead of hourly dummies leads to more conservative 
estimates of the treatment effects -8.2% treatment effect (Table S11, column V) versus -9.8% 
(Table S11, column IV). Here we confirm why usage of rigorous degree hours might be 
preferable to usage of time dummies alone. 

We carefully considered the impact of a large effective sample size for this case given a 
fixed N and large T dimension across households. The issue of autocorrelation, cross-sectional 
correlation and finding appropriate controls has been in the household energy consumption 
literature for some time (9). As robustness checks on our estimates, we considered both a range 
of sampling intervals and clustering options in order to distinguish statistically trivial from 
substantively important treatment effects. First, we compared results based on different 
frequencies. Second, we evaluated some of the pitfalls of panel data analysis identified in 
Bertrand, Duflo, and Mullainathan (7), particularly autocorrelation variance estimation. Third, 
we implemented multi-way clustering as described by Cameron, Gelbach and Miller (10) and 
Thompson (11) to account for dependence in both group and time dimensions. 

In order to check for the potential effects of large sample size on our estimates, Table S12 
shows OLS estimates at various sampling frequencies. To do this, we re-sampled our electricity 
time series at monthly, weekly, daily, hourly, minute, and 30-second intervals. As expected, our 
clustered standard errors decrease as the sampling frequency increases, and we show that our 
ATE estimates are robust even at the lower-frequency sampling rate. While the precision of our 
estimates is improved by our panel’s time dimension, we do not rely on high T to demonstrate 
statistical significance. As such, we differentiate statistically trivial from substantively important 
effects, particularly for the health group in which the ATE estimates range from 8-11%. We 
report the most conservative ATE estimates in this study.  

Comments on External Validity. Our sample population consists of Los Angeles 
Department of Water and Power (LADWP) customers who pay their electricity bills. They are a 
California multi-family renter population with typical housing characteristics and demographics 
(age, income, household composition, per capita electricity usage, etc.). Our population has been 
described as one of five recognizable U.S. lifestyle consumers: young urban families –new baby, 
new car, smaller unit, newer appliances, fast food, frozen food, travel for commuting, shopping 
and visiting (12). Importantly, our participants are part of the information generation of 
consumers who regularly use Internet-based devices in their consumption habits. 

Here we compare the housing characteristics of our multi-family renter community with 
broader populations. For example, 42.1% of housing units in Los Angeles County and 30.9% of 
housing units in California are in multi-unit housing structures, making the multi-unit housing 
communities meaningful to study (U.S. Census, 2014). More generally, there are 28.1 million 
multi-family housing units in the United States (Residential Energy Consumption Survey 2013, 
2009 data) and 24.3 million of these housing units are renter occupied. According to data from 
the American Community Survey 2013, 52.7% of American housing units are renter-occupied. 
Among these renter-occupied households nationally, the average number of occupants was 2.84 
persons, which falls very close to the average occupancy of 2.42 persons in our sample at 
University Village. We also note that 90% of all multi-family housing units in the United States 
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are 1-, 2- and 3-bedroom units (Residential Energy Consumption Survey 2009), with the most 
common type being 2-bedrooms (there are 12.7 million 2-bedroom units in the U.S.). In our 
sample at University Village, all multi-family apartments are 1-,2- and 3-bedroom units, with 2-
bedroom units being the most common type (N=101 households, 86% of all units in the study). 
In terms of square footage, the average size of multi-family homes in the U.S. (with 5 or more 
units) is 811 sq. ft. (Residential Energy Consumption Survey 2009). In our sample, the average 
sq. footage of multi-family homes at University Village is 835 (ranges from 595-1035 sq. ft.).  

In terms of sample demographics, we also compared the age range of our sample 
participants to a broader population. For example, the median age in our sample of participants 
(heads of household) is 31 (ranges from 22 to 47); while the median age in California is 35.2 and 
in the U.S. is 37.2 (U.S. Census 2010). We note that persons aged 18 to 44, who are the most 
common age span of our sample participants, make up 38.7% of the entire population in 
California (14.4 MM people), and 36.5% of the U.S. population (112.8 MM people) based on 
Census data. In terms of their educational attainment status, our participants at University 
Village are more highly educated than the general U.S. population, having all received a 
bachelors degree or higher. We note however, that this is still a population of interest. Persons 
with a bachelor’s degree or higher (age 25+) represent about 1/3 of the population: 29.5% of the 
population in Los Angeles county, 30.5% of the population in California and 31.7% of the 
population in the U.S. as a whole (U.S. Census 2010). 

Our sample population is also a fast growing demographic in the. Between 2003 and 
2013, there has been a 28% increase in the population of males seeking advanced degrees and 
52.2% increase in females seeking advanced degrees. Thus, while educational attainment status 
represents about 1/3 of the population in the U.S., our sample participants who are seeking 
advanced degrees, are also a growing demographic. 

Our final demographic variable we consider is family income. Because income disclosure 
was voluntary, we had very few respondents (N=46, or 38% of population) who provided family 
income information. Among those participants who chose to disclose the information: the 
median annual household income for University Village participants is $50,000 to $74,000 
(ranging from under 25,000 to 100,000 or more). By comparison, the median household income 
in the U.S. was $51,017 in 2012 (US Census 2014), which places our sample participants in the 
middle range of income in the U.S. Because our self-reported income data is a biased sample due 
to nonresponse, we report the average household income for the two nearest Census block 
groups. The average income for University Village block group 1 is $51,182 (U.S. Census 2010) 
and the average income for University Village block group 2 is $61,467 (U.S. Census 2010), 
which also places our sample in the mid-range of earners in the U.S. 
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Fig. S1. Website Information Graphic with Appliance-Level Metering 

 
The weekly treatment message is highlighted in the rectangular box. Appliance-level feedback is shown as  
an interactive pie chart with clickable elements. Historical consumption information, including real-time  

feedback, is also accessible from the left pane of the website. 
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Fig. S2. Time Series of kWh Consumption by Group  

 

 
During the baseline period, the mean hourly consumption is overlapping for all three groups.  
After treatment begins, the mean hourly consumption diverges for all three groups. Treatment  
effects are identified by difference-in-differences using a before-after-control-impact design. 
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Fig. S3. University Village Daily Load Profile 
 

 
Peak daily consumption for the community occurs at 9:00am and 9:00pm 

 
  

0.
25

0.
30

0.
35

0.
40

0.
45

H
ou

rl
y 

M
ea

n 
kW

h 
C

on
su

m
pt

io
n

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of the Day



12 
 

 
 
 
 

Table S1. Treatment Messages 

Group Treatment Message 
Monetary Savings Group “Last week, you used 66% more/less electricity than your efficient 

neighbors. In one year, this will cost you (you are saving) $34 dollars 
extra.”* 

Health Group “Last week, you used 66% more/less electricity than your efficient 
neighbors. You are adding/avoiding 610 pounds of air pollutants which 
contribute to health impacts such as childhood asthma and cancer.”* 

Control Group None. 

* ‘Efficient neighbors’ in this context means households in the top 10th percentile of household weekly  
average kWh consumption (households with the lowest electricity use) for similar size apartments in the community.  
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Table S2. Comparison of Participating versus Non-Participating Households 
at University Village (Meter Readings Data) 

 

 
Participating 
Households 
(S.D.) 

Non-
Participating 
Households 
(S.D.) 

Difference 
(S.D.) 

 
   

(S.E.) 

Electricity Consumption §      
      Average kWh per day 8.429 

(15.2) 
8.737 
(28.7) 

0.3070 
(32.5) 

 
 

-.0004 
(0.0004) 

      kWh per square foot 0.2007 
(0.339) 

0.2043 
(0.479) 

0.0036 
(0.587) 

 
 

.0833 
(0.198) 

      kWh per person 42.53 
(68.5) 

44.72 
(108.8) 

2.18 
(128.6) 

 
 

-0.0003 
(0.0009) 

Square Footage 859.79 
(106.3) 

868.83 
(98.54) 

9.04 
(144.9) 

 -0.0001 
(0.0002) 

Number of bedrooms 1.97 
(0.379) 

1.97 
(0.343) 

-0.003 
(0.511) 

 -0.0263 
(0.160) 

Number of bathrooms 1.60 
(0.490) 

1.65 
(0.474) 

0.05 
(0.681) 

 .0143 
(0.040) 

Number of occupants 4.03 
(0.566) 

4.01 
(0.512) 

-0.02 
(0.763) 

 -0.0107 
(0.126) 

Building Floor 2.08 
(0.808) 

2.08 
(0.786) 

0.002 
(1.12) 

 -0.0308 
(0.021) 

Location in Complex  
       (1 if Sawtelle, 0 if Sepulveda) 

0.543 
(0.498) 

0.596 
(0.491) 

0.053 
(0.699) 

 -0.041 
(0.040) 

Number of Households 118 986 1,102  1,102 
Number of Observations 5,533 46,184 51,718  51,718 
F-test p-value - - -  0.669 

§ Based on 12 months of independent electricity meter readings. Coefficients for kWh per square foot and kWh 
per person are based on independent regressions. No significant differences are found. 
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Table S3. Distributions of Dependent Variables (hourly kWh measurements) 
 

Percentiles 

Percentiles Total 
Heating  
Cooling 

Lighting
Plug  
Load 

Refrigerator Dishwasher 
Other  

Kitchen 

1% 0.0044 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5% 0.0824 0.0007 0.0000 0.0075 0.0050 0.0000 0.0000 
10% 0.1038 0.0029 0.0000 0.0160 0.0187 0.0000 0.0000 
25% 0.1442 0.0083 0.0008 0.0337 0.0446 0.0000 0.0000 

50% 0.2288 0.0156 0.0160 0.0616 0.0675 0.0000 0.0041 
75% 0.4017 0.0239 0.0702 0.1197 0.0894 0.0060 0.0149 
90% 0.6321 0.1807 0.1351 0.2200 0.1275 0.0134 0.0742 
95% 0.8236 0.3704 0.1850 0.2941 0.1455 0.0487 0.1402 
99% 1.3374 0.8098 0.3091 0.6311 0.1794 0.1167 0.3857 

Mean 0.3157 0.0622 0.0471 0.1105 0.0701 0.0084 0.0277 
Std. Dev. 0.2746 0.1622 0.0700 0.2739 0.0402 0.0297 0.1061 

Observations  490,994   490,994   490,994  490,994  490,994   490,994   490,994  
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Table S4. Heterogeneous Treatment Effects on Families with Children 

 

  (1) (2) (3) 

Study Variables Total kWh Total kWh Total kWh 

Experimental 

     Post-Treat*Monetary Savings Group 3.785 1.688 3.771 

(4.391) (5.221) (4.391) 

     Post-Treat*Health Group -8.215** -8.206** -1.419 

(4.120) (4.119) (4.862) 

          Post-Treat*Monetary Savings Group*Children=1 or more 7.831 

(11.32) 

          Post-Treat*Health Group*Children=1 or more -19.07** 

(8.998) 

     Monetary Savings Group 1.853 1.531 2.478 

 (7.814) (7.722) (7.844) 

     Health Group -1.383 -1.542 -0.844 

 (8.033) (8.022) (8.053) 

Household Characteristics 

     Adults 4.003 3.705 3.400 

(8.556) (8.419) (8.557) 

     Children (1 or more) 17.91** 16.63** 21.42*** 

(7.494) (6.923) (7.780) 

     Apartment Size (No. of bedrooms) 33.01* 32.44* 32.03* 

(16.95) (16.96) (17.06) 

     Floor Plan (Nominal square footage) -0.0109 -0.00983 -0.00852 

(0.0612) (0.0610) (0.0613) 

     Building Floor 9.854*** 9.732*** 9.265*** 

(3.400) (3.384) (3.426) 

Ideology 

     Member Environmental Organization -7.222 -7.464 -8.908 

(9.076) (8.937) (8.884) 

Hourly Weather Controls 

     Heating Degree Hours 0.284 0.286 0.281 

(0.255) (0.254) (0.255) 

     Cooling Degree Hours -0.811*** -0.809*** -0.813*** 

(0.186) (0.186) (0.186) 

Time Dummies 

 Day-by-Week Yes Yes Yes 

Constant 12.94 14.59 13.83 

(33.75) (33.45) (33.48) 

Observations 490,994 490,994 490,994 

Number of Apartments 118 118 118 

R2 0.0437 0.0451 0.0454 
Robust standard errors clustered at the household level in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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 Table S5. Treatment Effects by Appliance 
 
  (4) (5) (6) (7) (8) (9) 

Study Variables Heating Cooling Lighting Plug Load Refrigerator Dishwasher Other Kitchen

Experimental 
          Post-Treat*Monetary Savings Group 5.331* -11.46*** 0.414 8.844*** 3.260 0.987 

(2.779) (4.274) (2.395) (2.153) (3.918) (3.056) 
          Post-Treat*Health Group -2.567 -9.011*** -4.719** 8.673*** -3.790 -1.370 

(2.554) (2.324) (2.152) (1.981) (2.471) (4.454) 
     Monetary Savings Group 3.248 -20.61 -81.42 18.37* -16.68 -38.79 
 (3.189) (17.73) (51.13) (9.372) (24.42) (25.29) 
     Health Group 6.370** -19.32 -87.15* 15.41* -37.06* -37.81 
 (3.129) (14.29) (48.52) (9.161) (22.20) (24.93) 
Household Characteristics 
     Adults -0.839 -6.284 -2.518 16.83* -11.89 16.16 

(3.165) (16.27) (18.95) (10.13) (14.45) (17.74) 
     Children (1 or more) 3.982 0.650 -22.42 11.11* -4.389 -1.703 

(2.909) (14.67) (27.07) (6.722) (14.02) (14.67) 
     Apartment Size (No. of bedrooms) 3.792 53.26 -80.41 40.39*** 28.58 39.46 

(6.700) (43.85) (56.84) (14.94) (29.88) (28.09) 
     Floor Plan (Nominal square footage) 0.00887 -0.0676 0.226 -0.102* 0.00103 -0.105 

(0.0232) (0.0958) (0.231) (0.0547) (0.102) (0.0975) 
     Building Floor 1.661 -8.622 -5.106 13.81*** 5.492 3.162 

(1.553) (8.345) (22.40) (4.016) (8.502) (8.908) 
Ideology 
     Member Environmental Organization -6.223** -10.97 -0.228 -3.647 -14.51 3.426 

(2.742) (9.532) (16.15) (11.24) (15.75) (17.68) 
Weather Controls 
     Heating and Cooling Degree Hours Yes No No Yes No No 
Time Dummies 
     Hour-by-Day, Day-by-Week Yes Yes Yes Yes Yes Yes 
Constant -10.08 128.5*** 169.5 50.52* 67.38 95.00 

(12.59) (41.70) (141.8) (30.67) (53.80) (68.10) 
Observations 490,994 490,994 490,994 490,994 490,994 490,994 
Number of Apartments 118 118 118 118 118 118 
R2 0.0163 0.145 0.0316 0.0964 0.0159 0.0124 
Robust standard errors clustered at the household level in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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  Table S6. Treatment Effects by Time of Day 
 
  (10) (11) (12) (13) (14) (15) (16) (17) 

Study Variables 
Midnight - 

3:00am 
3:00- 

6:00am 
6:00- 

9:00am 
9:00-

12:00pm 
12:00-

3:00pm 
3:00-

6:00pm 
6:00-

9:00pm 
9:00-

Midnight 

Experimental 
          Post-Treat*Monetary Savings Group -6.919 -0.351 4.434 1.965 8.999* 15.46*** 20.22*** 5.346 

(4.960) (4.890) (5.241) (5.953) (4.865) (5.215) (6.024) (6.099) 
          Post-Treat*Health Group -17.51*** -12.01** -11.43* -10.13* -1.689 6.665 5.027 -5.725 

(4.328) (5.048) (6.131) (6.110) (4.132) (4.354) (5.028) (4.871) 
     Monetary Savings Group 2.845 -5.393 -2.503 2.788 2.180 0.467 2.420 5.663 
 (9.320) (8.854) (8.023) (9.561) (9.127) (9.267) (10.12) (10.34) 
     Health Group -1.928 -0.428 5.402 -2.706 -3.751 -4.329 -3.850 -5.858 
 (9.900) (9.620) (9.740) (9.513) (8.211) (8.317) (9.220) (10.18) 
Household Characteristics 2.845 -5.393 -2.503 2.788 2.180 0.467 2.420 5.663 
     Adults 3.251 -8.546 -9.369 -0.283 7.129 12.16 15.51 13.51 

(9.976) (9.802) (10.04) (10.83) (10.06) (10.59) (12.69) (9.828) 
     Children 14.38* 10.79 15.81** 24.16*** 18.79** 18.75** 21.73** 18.74* 

(7.690) (6.931) (6.373) (9.312) (9.292) (9.383) (10.32) (9.836) 
     Apartment Size (No. of bedrooms) 28.36 28.26 38.97** 34.30 24.86 22.91 36.21 49.94** 

(19.41) (17.44) (16.59) (20.93) (20.01) (20.36) (22.79) (20.15) 
     Floor Plan (Nominal square footage) -0.0352 -0.0410 -0.0402 -0.00901 0.0143 0.0236 0.0222 -0.0177 

(0.0689) (0.0605) (0.0561) (0.0697) (0.0694) (0.0727) (0.0816) (0.0782) 
     Building Floor 9.115** 6.130* 11.25*** 8.551** 7.538* 8.820** 12.79*** 14.81*** 

(3.737) (3.533) (3.462) (4.260) (3.927) (4.259) (4.840) (4.358) 
Ideology 
     Member Environmental Organization -7.491 -4.355 -7.588 -4.960 -4.180 -2.367 -10.66 -15.94 

(9.676) (9.151) (9.098) (10.14) (9.862) (11.07) (12.95) (10.92) 
Hourly Weather Controls 
     Heating Degree Hours 0.800*** 1.251*** 0.746*** 1.258*** 0.188 0.119 0.765** 0.579 

(0.290) (0.269) (0.269) (0.241) (0.219) (0.219) (0.356) (0.395) 
     Cooling Degree Hours 2.662 -5.304*** 3.932*** -0.245 -0.157 0.517** -0.591 0.180 

(4.208) (1.936) (0.764) (0.181) (0.189) (0.260) (0.681) (1.294) 
Time Dummies 
      Day-by-Week Yes Yes Yes Yes Yes Yes Yes Yes 
Constant 48.54 49.73 25.34 9.612 -5.217 -23.34 -39.93 -2.685 

(38.41) (36.16) (34.22) (38.02) (37.89) (41.02) (45.58) (41.68) 
Observations 60,942 60,433 61,206 61,543 61,402 61,581 61,891 61,996 
Number of Apartments 118 118 118 118 118 118 118 118 
R2  0.0404 0.0521 0.0762 0.0616 0.0558 0.0542 0.0567 0.0630 
Robust standard errors clustered at the household level in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table S7. Means, Standard Deviations, and Correlations
 

 
 
     Mean S.D. Min Max (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1) Total kWh (normalized) 103.11 89.71 0.0 3489.1 1.00 

Experimental 

(2) Health Group 0.37 0.48 0.0 1.0 -0.06* 1.00 

(3) Monetary Savings Group 0.38 0.49 0.0 1.0 0.02* -0.61* 1.00 

(4) Control Group 0.24 0.43 0.0 1.0 0.04* -0.44* -0.45* 1.00 

Household Characteristics 

(5) Number of Adults 1.93 0.29 1.0 3.0 -0.01* -0.18* 0.12* 0.07* 1.00 

(6) Number of Children 0.52 0.81 0.0 4.0 0.14* -0.04* -0.08* 0.13* -0.10* 1.00 

(7) Apartment Size (beds) 1.97 0.38 1.0 3.0 0.15* -0.14* 0.04* 0.12* -0.09* 0.30* 1.00 

(8) Floor Plan (Nominal sq.ft.) 862.3 104.49 595 1035 0.14* -0.14* 0.05* 0.10* 0.06* 0.20* 0.83* 1.00 

(9) Building Floor 2.07 0.81 1.0 3.0 0.08* 0.04* -0.13* 0.10* 0.07* -0.05* 0.03* 0.05* 1.00 

Ideology 

(10) Member Env. Organization 0.09 0.28 0.0 1.0 -0.02* 0.00 0.10* -0.11* -0.15* -0.01* 0.02* -0.03* -0.05* 1.00 

Weather Controls 

(11) Heating Degree Hours 7.15 5.76 0.0 26.0 0.03* -0.01* -0.01* 0.02* 0.00 0.00* 0.00 0.00 -0.01 -0.01 1.00 

(12) Cooling Degree Hours 0.6 1.94 0.0 26.0 -0.02* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.39* 1.00 

N = 440,059 panel observations (118 apartments) 
* p <.05 
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Table S8. Quantile Regression Estimates 

 

  Quantiles 

Study Variables 0.10 0.25 0.50 0.75 0.90 

Experimental 

          Post-Treat*Monetary Savings Group 3.835*** 2.597*** 2.006*** -1.031 4.912*** 

(0.153) (0.174) (0.382) (0.801) (1.587) 

          Post-Treat*Health Group 1.907*** -0.428** -5.898*** -13.98*** -15.52*** 

(0.170) (0.175) (0.339) (0.632) (1.200) 

     Monetary Savings Group -2.551*** -2.980*** -5.655*** -2.029*** 18.34*** 

 (0.112) (0.159) (0.331) (0.667) (1.212) 

     Health Group -3.137*** -2.574*** -5.780*** -6.069*** 7.288*** 

 (0.174) (0.117) (0.268) (0.541) (0.978) 

Household Characteristics 

     Adults -0.908*** 0.622*** -5.351*** -2.349*** 10.28*** 

(0.174) (0.141) (0.563) (0.760) (1.598) 

     Children 4.465*** 8.248*** 20.37*** 26.86*** 32.90*** 

(0.0942) (0.139) (0.256) (0.595) (0.920) 

     Apartment Size (No. of Bedrooms) 6.211*** 11.92*** 27.41*** 40.44*** 36.51*** 

(0.353) (0.289) (0.511) (0.941) (1.231) 

     Floor Plan (Nominal square footage) 0.00368*** 0.00481*** -0.0121*** -0.00597* 0.0626*** 

(0.00124) (0.000914) (0.00166) (0.00337) (0.00439) 

     Building Floor 3.760*** 4.814*** 6.871*** 10.16*** 14.93*** 

(0.0810) (0.0748) (0.125) (0.226) (0.343) 

Ideology 

     Member Environmental Organization 0.850*** -1.488*** -0.260 -6.505*** -23.09*** 

(0.135) (0.155) (0.377) (0.469) (1.182) 

Hourly Weather Controls 

     Heating Degree Hours -0.0523*** -0.0566*** -0.0626*** 0.687*** 1.642*** 

(0.00894) (0.00895) (0.0196) (0.0473) (0.0763) 

     Cooling Degree Hours -0.252*** -0.380*** -0.823*** -1.129*** -0.580*** 

(0.0287) (0.0231) (0.0507) (0.116) (0.223) 

Time Dummies 

      Day-by-Week Yes Yes Yes Yes Yes 

Constant 13.65*** 9.360*** 28.95*** 31.59*** -4.360 

(0.687) (0.521) (1.369) (2.381) (4.052) 

Observations 490,994 490,994 490,994 490,994 490,994 

Number of Apartments 118 118 118 118 118 

Pseudo R-squared .0119 .0199 .0337 .0403 .0397 

Quantile treatment effects with bootstrap standard errors. *** p<0.01, ** p<0.05, * p<0.1
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Table S9. Per Capita Residential Electricity Consumption 

  

Region 
2010 Population 
(in thousands) 

Annualized kWh kWh per capita 

United States* 308,746 3,749,985 x 106 12,146 

California* 37,254 250,384 x 106 6,721 
LADWP* 1400 8017.65 x 106 5,726 

University Village 0.518 2910.782 5,619 

 
* Source: California Energy Commission data, 2010 
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Table S10. Comparison of Baseline Usage Characteristics  
Between Treated and Control Households 

 

 

Control 
Group 
(S.D.) 

Treatment 
Group 1:  

(S.D.) 

Treatment 
Group 2: 

(S.D.) 

Difference 
Treat 1-

Control (S.D.)

Difference 
Treat 2 -
Control  
(S.D.) 

 
(S.E.) 

Average kWh usage/Day 8.660 7.543 7.457 -1.118 -1.204 -0.000377 

(7.623) (6.485) (6.672) (10.01) (10.13) (0.00195) 

Apartment Size (bedrooms) 2.043 1.980 1.914 -0.063 -0.128 -0.153 

(0.394) (0.339) (0.358) (0.520) (0.532) (0.205) 

No. of Adults 1.968 1.970 1.847 0.002 -0.122 -0.105 

(0.175) (0.271) (0.360) (0.322) (0.401) (0.106) 

No. of Children 0.653 0.425 0.480 -0.227 -0.172 -0.0562 

(0.800) (0.874) (0.713) (1.184) (1.072) (0.0572) 

Floor Plan (Square Footage) 877.66 867.17 846.04 -10.49 -31.62 0.000203 

(97.451) (97.019) (108.761) (137.51) (146.03) (0.000674) 

Building Floor 2.163 1.919 2.103 -0.244 -0.060 -0.0494 

(0.861) (0.813) (0.760) (1.184) (1.148) (0.0501) 

Member Environmental 
Organization 

0.024 0.119 0.082 0.096 0.058 0.157* 

(0.152) (0.324) (0.274) (0.358) (0.313) (0.0835) 

Number of Observations 119,609  187,684  183,701 307,293  426,902  371,385  

Number of Households 33 43 42 76 75 118 

F-test p-value 0.2485 

6 month baseline period (no electricity use feedback) *** p<0.01, ** p<0.05, * p<0.1 
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Table S11. ATE Specifications, OLS (Hourly Sampling) 
 

I II III IV V 

Total kWh Total kWh Total kWh Total kWh Total kWh 

Post-Treat*Cost Savings Group 5.210 3.917 3.915 3.822 5.297 

(5.019) (4.966) (4.968) (4.972) (4.533) 

Post-Treat*Health Group -9.958** -9.694** -9.682** -9.833** -8.192* 

(4.656) (4.648) (4.647) (4.652) (4.306) 

Treat Cost Savings  -7.302 2.801 2.797 2.902 2.238 

(8.488) (7.303) (7.303) (7.298) (7.382) 

Treat Health Group -8.469 -0.157 -0.173 -0.035 -0.795 

(8.870) (8.085) (8.086) (8.090) (8.060) 

Degree-hour bins No No No No Yes 

Apartment fixed effects No Yes Yes Yes Yes 

Day x Week time dummies No No Yes Yes Yes 

Hour x Day time dummies No No No Yes No 

Observations 490,994 490,994 490,994 490,994 490,994 

R2 0.005 0.043 0.044 0.094 0.044 

F-statistic 2.549 3.627 9.117 27.480 8.985 

Number of households 118 118 118 118 118 
Robust standard errors clustered at the household level *** p<0.01, ** p<0.05, * p<0.1 

Sampling frequency: hourly kilowatt-hour electricity consumption. 
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Table S12. ATE Estimates at Various Sampling Frequencies, OLS  

 

I II III IV V VI 

Monthly Weekly Daily Hourly Minute 30 sec 

Post-Treat*Cost Savings Group 5.669 4.111 3.914 2.962 2.961 2.972 

(4.808) (4.696) (4.720) (4.455) (4.455) (4.471) 

Post-Treat*Health Group -8.673* -9.131** -9.474** -10.54** -10.54** -10.58** 

(4.409) (4.376) (4.429) (4.177) (4.176) (4.191) 

Treat Cost Savings  -0.314 0.4611 0.580 0.994 0.994 0.998 

(7.377) (7.478) (7.499) (7.542) (7.542) (7.569) 

Treat Health Group -2.431 -2.186 -1.991 -1.523 -1.523 -1.529 

(7.85) (7.859) (7.879) (7.864) (7.864) (7.892) 

Apartment fixed effects Yes Yes Yes Yes Yes Yes 

Degree-hour bins Yes Yes Yes Yes Yes Yes 

Day by Week time dummies Yes Yes Yes Yes Yes Yes 

Observations 855 3,320 21,437 490,994 26,718,555 53,437,110 

R2 0.003 0.023 0.023 0.048 0.024 0.024 

F-statistic 3.176 4.319 11.30 12.93 12.93 12.93 

Number of households 118 118 118 118 118 118 
Robust standard errors clustered at the household level *** p<0.01, ** p<0.05, * p<0.1 

 

 




