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Abstract

Two-component signaling (TCS) is the primary means by which bacteria sense and respond to the environment. TCS
involves two partner proteins working in tandem, which interact to perform cellular functions whereas limiting interactions
with non-partners (i.e., cross-talk). We construct a Potts model for TCS that can quantitatively predict how mutating amino
acid identities affect the interaction between TCS partners and non-partners. The parameters of this model are inferred
directly from protein sequence data. This approach drastically reduces the computational complexity of exploring the
sequence-space of TCS proteins. As a stringent test, we compare its predictions to a recent comprehensive mutational
study, which characterized the functionality of 204 mutational variants of the PhoQ kinase in Escherichia coli. We find that
our best predictions accurately reproduce the amino acid combinations found in experiment, which enable functional
signaling with its partner PhoP. These predictions demonstrate the evolutionary pressure to preserve the interaction
between TCS partners as well as prevent unwanted cross-talk. Further, we calculate the mutational change in the binding
affinity between PhoQ and PhoP, providing an estimate to the amount of destabilization needed to disrupt TCS.

Key words: statistical inference, mutational phenotypes, interaction specificity, epistasis, fitness landscape, bacterial
signaling.

Introduction

Early theoretical work on protein folding postulated that pro-
teins have evolved to be minimally frustrated (Bryngelson and
Wolynes 1987; Bryngelson et al. 1995; Onuchic et al. 1997), i.e.,
evolved to have favorable residue-residue interactions that
facilitate folding into the native state whereas having minimal
non-native energetic traps. The principle of minimal frustra-
tion provides intuition as to why protein sequences are not
random strings of amino acids. The evolutionary constraint to
fold into a particular, stable three-dimensional structure
whereas minimizing the number of frustrated interactions
greatly restricts the sequence-space of a protein (Leopold
et al. 1992; Bryngelson et al. 1995; Onuchic et al. 1997).
Satisfaction of these constraints results in correlated amino
acid identities within the sequences of a protein family. These
correlated identities occur between different positions in a
protein such as, for example, native contacts (Gobel et al.
1994; Neher 1994; Shindyalov et al. 1994). We refer to these
quantifiable amino acid correlations as coevolution.

Of course, coevolution does not only arise from the con-
straint to fold. Proteins also fulfill cellular functions, which act

as additional constraints on the sequences of proteins
(Ferreiro et al. 2014; Sikosek and Chan 2014; Wolynes 2015).
In the context of signal transduction, proteins have evolved to
be able to preferentially bind to a signaling partner(s) as well
as catalyze the chemical reactions associated with signal
transfer. An important example is two-component signaling
(TCS) (Hoch 2000; Stock et al. 2000; Laub and Goulian 2007;
Casino et al. 2010; Szurmant and Hoch 2010; Capra and Laub
2012), which serves as the primary means for bacteria to sense
the environment and carry out appropriate responses. TCS
consists of two partner proteins working in tandem: a histi-
dine kinase (HK) and a response regulator (RR). Upon the
detection of stimulus by an extracellular sensory domain, the
HK generates a signal via autophosphorylation. Its RR partner
can then transiently bind to the HK and receive the signal (i.e.,
phosphoryl group), thereby activating its function as a tran-
scription factor. The HK has also evolved to catalyze the re-
verse signal transfer reaction (i.e., phosphatase activity), acting
as a sensitive switch to turn off signal transduction. To pre-
vent signal transfer with the wrong partner (i.e., cross-talk),
TCS partners have mutually evolved amino acids at their
respective binding surfaces that confer interaction specificity
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(Laub and Goulian 2007; Szurmant and Hoch 2010; Capra and
Laub 2012). Thus, the collection of protein sequences of TCS
partners contains quantifiable coevolution between the HK
and RR sequences.

In principle, the determinants of interaction specificity for
TCS can be quantified by a probabilistic model of sequence
selection (Cheng et al. 2014). Assuming that nature has suf-
ficiently sampled the sequence-space of TCS proteins, the
collection of protein sequences of TCS partners can be viewed
as being selected under quasi-equilibrium from a Boltzmann
distribution:

PðSTCSÞ ¼ Z�1 exp ð�HðSTCSÞÞ (1)

where STCSis the concatenated amino acid sequence of a
HK and RR protein, P is the probability of selecting STCS,
and �H is proportional to the additive fitness landscape
that governs the evolutionary sequence selection for TCS
partners. Specifically, equation (1) was previously derived
using simple models of evolutionary biology (Sella and
Hirsh 2005), where H ¼ �vx, v is the population size of
the genotypes and x is the additive fitness (i.e., the negative
log of the fitness); See “Materials and Methods” section for
more details. H is referred to in our work as a coevolution-
ary landscape.

Recently, maximum entropy-based approaches referred to
as Direct Coupling Analysis (DCA) (Weigt et al. 2009; Morcos
et al. 2011; Ekeberg et al. 2013) have been successfully applied
to infer the parameters of H (a Potts model) that governs the
empirical amino acid sequence statistics. This has allowed for
the direct quantification of the coevolution in protein se-
quence data [See Review: (de Juan et al. 2013)]. Early work
using DCA to study TCS primarily focused on identifying the
key coevolving residues between the HK and RR (Weigt et al.
2009). Highly coevolving residue pairs have been used as
docking constraints in a molecular dynamics simulation to
predict the HK/RR signaling complex (Schug et al. 2009), the
autophosphorylation structure of a HK (Dago et al. 2012), and
the homodimeric form (transcription factor) of the RR (dos
Santos et al. 2015). DCA has also been applied to quantify the
determinants of interaction specificity between TCS proteins
(Procaccini et al. 2011; Cheng et al. 2014), building on earlier
coevolutionary approaches (Li et al. 2003; Burger and van
Nimwegen 2008). In particular, DCA was used to predict
the effect of point mutations on TCS phosphotransfer in vitro
as well as demonstrate the reduced specificity between HK
and RR domains in hybrid TCS proteins (Cheng et al. 2014).

The experimental effort to determine the molecular origin
of interaction specificity in TCS proteins [See Reviews: (Laub
and Goulian 2007; Casino et al. 2010; Szurmant and Hoch
2010; Podgornaia and Laub 2013)] precedes the recent com-
putational efforts. Full knowledge of the binding interface
between HK and RR was made possible through X-ray crys-
tallography (Casino et al. 2009). Scanning mutagenesis studies
(Tzeng and Hoch 1997; Qin et al. 2003; Capra et al. 2010)
provided insight on the subset of important interfacial resi-
dues that determine specificity. These key residues were mu-
tated to enable a TCS protein to preferentially interact with a

non-partner in vitro (Skerker et al. 2008; Capra et al. 2010).
However, the extent of possible amino acid identities that
allow TCS partners to preferentially interact in vivo has re-
mained elusive until recent comprehensive work by
Podgornaia and Laub (2015). Their work focused on the
PhoQ/PhoP TCS partners in E. coli, which control the re-
sponse to low magnesium stress. PhoQ (HK) phosphorylates
and dephosphorylates PhoP (RR) under low and high mag-
nesium concentrations, respectively. Using exhaustive muta-
genesis of four residues of PhoQ (204¼160,000 mutational
variants) at positions that form the binding interface with
PhoP, Podgornaia and Laub (2015) were able to characterize
all mutants based on their functionality in E. coli. It was found
that roughly 1% of all PhoQ mutants were functional, en-
abling E. coli to exhibit comparable responses to magnesium
concentrations as the wild type PhoQ. This finding uncovered
a broad degeneracy in the sequence-space of the HK protein
that still maintained signal transfer efficiency as well as inter-
action specificity with its partner.

We ask whether amino acid coevolution inferred using
DCA could capture the functional mutational variants ob-
served in the comprehensive mutational study of PhoQ and if
so, to what extent? Capturing this functionality requires that
information gleaned from coevolution is sufficient to estimate
the effect of mutations to PhoQ on its interactions with PhoP
as well as on unwanted cross-talk. Hence, our question is
important to determine if coevolutionary methods can be
extended from studying two interacting proteins to studying
an interaction network (e.g., systems biology). Further, this
question is of particular interest to those who want to engi-
neer novel mutations in TCS proteins that can maintain or
encode the interaction specificity of a TCS protein to its part-
ner or a non-partner, respectively.

To answer this question, we first infer a Potts model,
H (eq. 1), which forms the basis for quantifying how muta-
tions affect the interaction between a HK and RR protein.
Focusing on the parameters of H that are related to interpro-
tein coevolution, we construct a coevolutionary landscape to
quantify TCS interactions, HTCS, for a given sequence of an HK
and RR protein. HTCS serves as a proxy for signal transfer
efficiency, allowing us to quantify the effect on fitness of
the interaction between any HK and RR protein. Further,
we can assess how mutations affect fitness due to changes
in the HK/RR interaction by computing the mutational
change in HTCS between the mutant sequence, Smutant

TCS , and
the wild type sequence, SWT

TCS:

DHTCS ¼ HTCSðSmutant
TCS Þ � HTCSðSWT

TCSÞ: (2)

Considering the concatenated sequence of PhoQ and
PhoP, we compute equation (2) for the 204 PhoQ mutational
variants. We find that mutants with the most favorable D
HTCS (e.g., most negative) were classified as functional HKs by
Podgornaia and Laub (2015)—i.e., true positive predictions.
Next, we focus on mutations predicted to be favorable by
equation (2) that were classified as non-functional in exper-
iment. Expanding our analysis of the PhoQ mutants beyond
its interaction with PhoP, we consider how mutations affect
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the signal transfer efficiency, HTCS, between PhoQ and all of
the RR proteins in E. coli. We find that many of these non-
functional mutants exhibit cross-talk interactions according
to our model, accounting for their non-functionality. If we
exclude these promiscuous variants, we can better isolate the
true positive predictions that are functional from false posi-
tives that are non-functional. Our predictions also capture
context-dependent mutational affects that were observed in
experiment, i.e., epistasis. Finally, we estimate the mutational
change in binding affinity in the PhoQ/PhoP bound complex
using the Zone Equilibration of Mutants (ZEMU) method
(Dourado and Flores 2014), a combined physics- and
knowledge-based approach for free energy calculations.
Consistent with what we would expect, we find that mutations
that destabilize the HK/RR interaction tend to be non-functional
with very high statistical significance. Non-functional mu-
tants are on average destabilized by�2 kcal/mol with respect
to functional mutants.

The work described herein demonstrates that a coevolu-
tionary model (i.e., additive fitness landscape) built from se-
quence data can directly connect molecular details at the
residue-level to mutational phenotypes in bacteria. This has
broad applications in systems biology, but also in synthetic
biology since our computational framework can be used to
select mutations that enhance or suppress interactions be-
tween TCS proteins. A more detailed description of our com-
putational approaches can be found in the “Materials and
Methods” section.

Results

Mutational Change in Coevolutionary Landscape,
DHTCS, for PhoQ/PhoP Interaction
We first focus on the parameters of the inferred Potts
model (eq. 3) that describe the coevolution between
the Dimerization and Histidine phosphotransfer domain
(DHp) and the Receiver (REC) domain (fig. 1A), which
form the HK/RR binding interface (fig. 1B). The interpro-
tein statistical couplings (fig. 1C) of equation (3) are used
to construct a coevolutionary landscape, HTCS (eq. 4), as a
proxy for signal transfer efficiency. For each of the 1,659
functional and 158,341 non-functional PhoQ-mutational
variants identified by Podgornaia and Laub (2015), we
compute the mutational change, DHTCS, between PhoQ
and PhoP. As an initial step, we only consider the PhoQ/
PhoP sequence, i.e., we do not yet consider other RR pro-
teins than PhoP. A histogram of DHTCS is generated for all
mutational variants (fig. 2A). The distribution of the func-
tional mutants tends more towards favorable DHTCS than
the distribution of non-functional mutants, but more in-
terestingly, the most favorable predictions of our model
contain mostly functional mutations. This is made clear
by a plot of the Positive Predictive Value (PPV) for the top
N mutational variants ranked by DHTCS (fig. 2B) from
most favorable to most deleterious. The top 25 muta-
tional variants ranked by DHTCS contain 20 functional
mutants and 5 non-functional mutants (i.e., PPV¼ 0.8).

System-Level Analysis Using DHTCS: Functional
Mutants Limit Cross-Talk
Mutations that may enhance signal transfer efficiency be-
tween PhoQ and PhoP in vitro may still result in a non-
functional PhoQ/PhoP system in vivo. This would occur if
the mutations to PhoQ sufficiently encoded it to preferen-
tially interact with another RR in E. coli. For this reason, we
focused our computational analysis on the subset of muta-
tional variants that preserve PhoQ/PhoP specificity by limit-
ing cross-talk according to our coevolutionary model.

We first calculate the proxy for signal transfer efficiency,
HTCS, between the wild type PhoQ sequence and all of the
non-hybrid RR proteins in E. coli (fig. 3A). We find that for
wild type PhoQ, the most favorable HTCS (most negative) is
with its known signaling partner, PhoP. As a consistency
check, we also plot HTCS for different combinations of the
cognate partner TCS proteins in E. coli (supplementary fig. S1,
Supplementary Material online). This result is consistent with
previous computational predictions that used information-

A

B C

FIG. 1. TCS domain interactions of interest. We focus only on HK
proteins that have the following domain architecture from N to C
terminus: sensor, HAMP, DHp, and ATPase. Likewise, we consider RR
proteins that consist of a REC domain followed by an effector domain.
(A) The interaction between the DHp and REC domains of the HK
and RR proteins, respectively, form the TCS complex. Sequences of
TCS partners are collected and stored as the concatenated sequence
of the DHp and REC domains, STCS (See “Materials and Methods”
section). (B) A representative structure of the HK/RR TCS complex
previously predicted for the KinA/Spo0F complex in B. subtilis (Cheng
et al. 2014). The HK homodimer is shown in red and blue whereas the
receiver domain of the RR is shown in gray. The dashed box highlights
the DHp and REC interface. This predicted complex is consistent with
the experimentally determined crystal structure of HK853/RR468 of
T. maritima (Casino et al. 2009) as well as another computationally
predicted TCS complex (Schug et al. 2009). (C) Our proxy for signal
transfer efficiency, HTCS (eq. 4), is composed of the statistical coupling
parameters that describe coevolution between interprotein residues
(depicted in green). Hence, HTCS naturally captures the context-de-
pendence of mutating a residue in the HK when a residue in the RR is
also mutated, or vice versa (See “Materials and Methods” section for
more details).
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based quantities (Procaccini et al. 2011; Cheng et al. 2014) to
quantify interaction specificity.

Extending upon figure 3A, we assess cross-talk in our
model by calculating HTCS between each PhoQ mutant and
all of the non-hybrid RR in E. coli. We exclude all mutant-
PhoQ variants that have a more favorable HTCS with a non-
partner RR. These excluded mutants are excellent candidates
for engineering specificity in E. coli. Applying our exclusion
criterion, we find that only 181 functional and 1,532 non-
functional variants remain, i.e., 89% and 99% of the functional
and non-functional variants, respectively, were removed. A
histogram of the remaining (cross-talk excluded) mutants as a
function of DHTCS (fig. 3B) shows that a filter based on inter-
action specificity is better able to isolate the true positive
(functional) variants. Notably, the first 17 ranked variants
are all functional. Once again, ranking the filtered variants
by DHTCS from the most favorable to the least favorable,
we can plot the PPV (fig. 3C) for the top N ranked variants.
We find that the cross-talk excluded PPV tends to lie above
the original PPV from figure 2B.

Mutational Context-Dependence in the
Coevolutionary Landscape

A significant finding of the Podgornaia and Laub study was
the context-dependent nature of the many of the mutations.
For example, individual mutations that may result in a non-
functional phenotype may result in a functional phenotype
when combined. It is well known that mutations may exhibit
such a context dependence, or epistasis, i.e., mutations intro-
duced together have an effect on fitness that is not simply the
combined effect of each mutation alone. Such effects would
restrict the connectivity between functional mutations and
act as constraints on TCS evolution (Podgornaia and Laub
2015).

We find that the functional predictions in figure 3 tend to
be 3- and 4-point mutations, highlighting their non-trivial
nature (fig. 4A). Whereas the effect of mutating a HK protein
when its partner RR is mutated (and vice versa) is naturally
captured in our model through interprotein statistical cou-
plings (fig. 1C), the intraprotein couplings that capture the
context-dependence of HK only or RR only mutations are not
explicitly contained within equation 4. Even with these lim-
itations, the model is still able to distinguish between func-
tional multi-point mutations that are composed of non-
functional single-point mutations for the most favorable pre-
dictions, in accordance with experiment (Podgornaia and
Laub 2015). One example is provided in figure 4B for the
mutation of WT PhoQ from AVST at residues 284, 285, 288
and 289, respectively, to SVGY (i.e., a 3-point mutation). For
single point mutations from AVST, HTCS correctly predicts
that SVST and AVSY are functional whereas AVGT is non-
functional. For two point mutations, HTCS correctly predicts
that SVSY is functional whereas SVGT is non-functional.
More interestingly, HTCS finds that when the non-functional
2-point mutation SVGT is combined with a Tyrosine muta-
tion to position 289 (i.e., SVGY), the functionality is recovered.
It should be noted that the two-point mutation AVGY is
predicted to have a favorable DHTCS between PhoQ and
PhoP, but is predicted to undergo cross-talk, and thus, is
discarded despite being functional in experiment.

We next consider a model where epistasis between the 4-
mutational sites explored by Podgornaia and Laub are explic-
itly introduced into equation (4) (See eq. 5 in the “Materials
and Methods” section). The epistatic effects of multiple HK
mutations are captured by the statistical couplings of the
Potts model that describe the pairwise coevolution between
the HK mutational sites. This is illustrated schematically in fig.
4C. We find that such a model, H

ðepistasisÞ
TCS (eq. 5), is consistent

with the original model, HTCS, in terms of its predictions and
predictive quality (fig. 4D). In particular, the prediction of
functional phenotypes for the example in figure 4B yields
identical results. Nevertheless, this model provides additional
epistatic mutational effects that are not simply the added
sum of the individual mutational effects.

Finally, we examine a model that only considers HK co-
evolution in the SI Main Text. This model naturally includes
the epistasis between the 4-mutational sites explored in ex-
periment (Podgornaia and Laub 2015). From this model, we
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FIG. 2. Effect of mutations on the PhoQ/PhoP interaction. (A)
Considering the concatenated sequence of PhoQ/PhoP, a histogram
of DHTCS (eq. 4) is plotted for the functional (blue) and non-func-
tional (red) mutational variants reported by Podgornaia and Laub
(2013). The purple area shows parts of the plot where the blue and red
histograms overlap. The dashed line roughly partitions the 200 most
favorable mutational variants given by DHTCS, which contains more
functional than non-functional mutants. By definition, DHTCS ¼ 0 cor-
responds to the wild-type PhoQ/PhoP and DHTCS < 0 corresponds to
mutations that we predict to be more favorable to PhoQ/PhoP signaling
than the wild type. (B) We plot the positive predictive value (PPV) as a
function of the N mutational variants ranked by DHTCS from the most to
least favorable for the first 200 mutants. PPV¼TP/(TPþ FP), where true
positives (TP) and false positives (FP) refer to the fraction of mutants
that are functional or non-functional, respectively, in the top N ranked
variants. The thin red lines denote that the top 25 ranked mutational
variants have a PPV of 0.8.
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find that coevolution between HK residues alone is insuffi-
cient for capturing the functional phenotypes observed in
experiment.

Mutational Change in the Binding Affinity Using a
Combined Physics- and Knowledge-Based Approach
We used ZEMu (See “Materials and Methods” section) to
compute the mutation-induced change in the binding affin-
ity, DDGZEMu

TCS , between PhoQ and PhoP. The calculation
converged for 42,985 mutants (702 functional and 42,283
non-functional) from a randomly selected subset of
the 204 variants. We first examined a scatter plot of DHTCS

vs. DDGZEMu
TCS (supplementary fig. S6, Supplementary Material

online) to observe whether a functional relationship can be
deduced from the computational data alone. The mutational
change in the coevolutionary landscape, DHTCS, would in prin-
ciple exhibit a non-linear dependence on DDGZEMu

TCS , whereas
also depending on many other quantities including the bind-
ing affinity with other proteins. We find no obvious relation-
ship between the two quantities in our current analysis.

A histogram of DDGZEMu
TCS is plotted for the 42,985 mutants

in figure 5. A histogram of DHTCS for the same subset of
mutants is shown in supplementary figure S7,
Supplementary Material online. On the population level,
functional mutations exhibit a mean DDGZEMu

TCS of 1.76 6 0.
06 kcal/mol lower than that of the non-functional mutants,
with a Wilcoxon rank-sum test P-value< 2:2� 10�16. This
indicates that destabilizing mutations of�2 kcal/mol are suf-
ficient for disrupting TCS. Furthermore, destabilizing muta-
tions that are more than two standard deviations greater
than the mean DDGZEMu

TCS for functional variants are signifi-
cantly less likely to be functional, with a P-value< 10�6

computed from a cumulative binomial distribution (based
on the 6157 mutants above this threshold, 19 of which are
functional).

We next examine the potentially deleterious effect of mu-
tations that overly stabilize the binding affinity between PhoQ
and PhoP. Although we find that all 56 mutants with DD
GZEMu

TCS < �5 kcal=mol are non-functional (fig. 5), this has
no statistical significance (P-value � 0.4). Figure 5 illustrates
our point that the functional mutations tend to have a neu-
tral affect on DDGZEMu

TCS , whereas high DDGZEMu
TCS is strongly

associated with the loss of function. Although very low DD
GZEMu

TCS may visually appear to be enriched with non-
functional mutants, this is based on a small number of mu-
tants and does not have statistical significance.

Discussion
Treating a large collection of amino acid sequence data for
TCS partner proteins as independent samples from a
Boltzmann equilibrium distribution, we infer a coevolutionary
landscape, HTCS. Specifically, HTCS is proportional to the neg-
ative of the additive fitness landscape, which captures the
coevolving amino acid combinations that give rise to inter-
action specificity in TCS systems. In the past, we were able to
predict how a point mutation to a TCS protein affects its
ability to transfer signal to its partner in vitro (Cheng et al.
2014). Our present work shifts the paradigm of coevolution-
based analysis towards systems biology by extending our anal-
ysis to include how those mutations affect cross-talk in a
bacterial organism. We demonstrate that our most favorable
predictions for multiple site mutations can accurately capture
in vivo TCS functionality, consistent with the comprehensive

A

B
C

FIG. 3. Excluding mutational variants that are inferred to cross-talk. (A) A grid plot showing HTCS (eq. 4) computed for the wild type PhoQ sequence
with all of the non-hybrid RR protein sequences in E. coli, respectively. The most favorable interaction (most negative) given by HTCS is between
PhoQ and its partner PhoP. (B) We plot the cross-talk excluded subset (181 functional 1,532 non-functional) in a histogram as a function of the
DHTCS similar to figure 2A. (C) We plot the PPV as a function of the N top mutational variants ranked by DHTCS for the first 200 mutants. The PPV
for the cross-talk excluded mutational variants from figure 3B is plotted in green whereas the original PPV (fig. 2B) is shown in black.
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mutational study of Podgornaia and Laub (2015). This is not a
trivial computational task, since inferring coevolutionary in-
formation from sequence data is highly underdetermined and

estimates �107 parameters (for eq. 3) from �103 sequences
of TCS partners. Adding to the problem complexity, it is
plausible that the full functional sequence space has not
yet been explored by evolutionary process (Capra and Laub
2012; Echave, et al. 2016). Despite this, the coevolutionary
landscape is predictive and identifies mutational variants
that are not found in nature, e.g., none of the mutational
sequences are included as input data in our model. We have
demonstrated the feasibility of generating predictions using
coevolution and the predictive power of such an approach
will only systematically improve as more sequences of TCS
partners are collected.

Similar predictions to those discussed herein can readily be
used to engineer novel protein–protein interactions in TCS
systems. Such a strategy would potentially complement al-
ready existing strategies to match novel inputs with outputs
via modular engineering (Tabor et al. 2011; Whitaker et al.
2012; Ganesh et al. 2013; Schmid et al. 2014; Hansen and
Benenson 2016). The strength of our coevolutionary ap-
proach is that it makes possible an efficient search of
sequence-space for mutations at arbitrary positions in either
the HK or RR that desirably enhance or suppress its interac-
tion with a RR or HK, respectively. It can also readily be ap-
plied to study the in vivo, system-level effect of mutating a
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FIG. 4. Capturing epistatic mutational effects. (A) Histograms of the 0, 1, 2, 3, and 4-site mutants are plotted for the 181 functional and 1,532 non-
functional mutational variants in our cross-talk excluded subset that is predicted using HTCS (eq. 4). (B) An example of mutational context-
dependence predicted by HTCS is shown here, considering residues 284, 285, 288 and 289 of PhoQ, which have the WT amino acid configuration
AVST, respectively. Green arrows drawn from AVST indicate single point mutations that are correctly predicted to result in a functional
phenotype. Successive green arrows indicate double and triple point mutations from the WT that are correctly predicted to be functional.
Likewise, red arrows indicate single point mutations from an amino acid configuration that are correctly predicted to result in a non-functional
phenotype. The AVGY mutation (dashed line and circle) was found to be functional in experiment but is predicted to cross-talk by HTCS. (C) The
schematic shows intraprotein coevolution (red) between residues i and k (of the HK) and interprotein coevolution (green) between residues i and j
as well as k and j. As previous described in figure 1C, interprotein coevolution captures the effects of mutating the HK when the RR is also mutated
(or vice versa). Epistasis between HK and RR proteins are naturally incorporated within HTCS. On the other hand, epistasis between the 4-
mutational sites of the Podgornaia and Laub experiment is described in our model through the statistical couplings between the 4-mutational sites
(red in schematic). These additional parameters are added to HTCSto obtain H

ðepistasisÞ
TCS (See “Materials and Methods” section). (D) We plot the PPV

as a function of the N top mutational variants ranked by DHTCS for the first 200 mutants. The PPV predicted by HTCS (fig. 3C) is shown in green
whereas the PPV predicted by H

ðepistasisÞ
TCS is shown in blue.

FIG. 5. Mutational change in binding affinity for PhoQ/PhoP interac-
tion. A histogram of DDGZEMu

TCS (See “Materials and Methods” section),
is plotted for the 702 functional (blue) and 42,283 non-functional
(red) mutational variants analyzed in our study. The dashed lines
denote 62 standard deviations from the mean of the functional
(blue) distribution.
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TCS protein on insulating its interaction with a desired part-
ner or enabling cross-talk with non-partners. Our study high-
lights an intuitive but key principle for selecting mutations to
a TCS protein that encodes specificity in vivo: mutations must
be selected to enhance protein–protein interactions with a
desired partner whereas limiting protein–protein interactions
with undesired partners. Although intuitive, we also demon-
strate that mutations that significantly destabilize the binding
affinity result in the loss of signaling. Further, we estimate that
destabilization of�2 kcal/mol in the binding affinity between
TCS partners is sufficient to disrupt TCS.

It is also important to note that coevolutionary methods
described here for identifying mutational phenotypes (e.g.,
response to magnesium stress) are not particular to TCS sys-
tems. This framework is transferable to other systems where
molecular interactions coevolve to preserve function, open-
ing the window to a large set of open problems in molecular
and systems biology. Our results further extend the idea that
a combination of coevolutionary based methods, molecular
modeling and experiment can be used to identify the proper
amino acids sites and identities that can be used to identify
mutational phenotypes. Our study highlights the important
role of coevolution in maintaining protein–protein interac-
tions, as in the case of bacteria signal transduction. Statistical
methods that probe coevolution not only allow us to connect
molecular, residue-level details to mutational phenotypes,
but also to explore the evolutionary selection mechanisms
that are employed by nature to maintain interaction specific-
ity, e.g., negative selection (Zarrinpar et al. 2003). Further in-
vestigations of other systems that are evolutionarily
constrained to maintain protein–protein interactions could
elucidate the extent at which our methods can be used in
alternative systems. One potential example is the toxin-
antitoxin protein pairs in bacteria, which was the focus of
recent experimental work (Aakre et al. 2015) elucidating the
determinants of interaction specificity.

Materials and Methods

Sequence Database for HK and RR Inter-Protein
Interactions: DHp and REC
We obtain multiple sequence alignments (MSA) from Pfam
(Finn et al. 2014) (Version 28), focusing on the DHp (PF00512)
and REC (PF00072) domains of the HK and RR, respectively
(fig. 1A). The first four positions (columns) of PF00512 were
removed due to poor alignment of the PhoQ sequence at
those positions. The remaining DHp MSA has a length of
LDHp ¼ 60. Each REC MSA had a default length of
LREC ¼ 112. Here, we considered HK proteins that have the
same domain architecture as the PhoQ kinase from E. coli, i.e.,
DHp domain sandwiched between an N-terminal HAMP do-
main (PF00672) and a C-terminal ATPase domain (PF02518).
The remaining HK (DHp) sequences were paired with a TCS
partner RR (REC) by taking advantage of the observation that
TCS partners are typically encoded adjacent to one another
under the same operon (Skerker et al. 2005; Yamamoto et al.
2005), i.e., ordered locus numbers differ by 1. Further, we
exclude all TCS pairs that are encoded adjacent to multiple

HKs or RRs. Each DHp and REC sequence that was paired
in this fashion was concatenated into a sequence (fig. 1A),
STCS ¼ ðA1;A2; . . .;AL�1;ALÞ of total length L where Ai is
the amino acid at position i which is indexed from 1 to q ¼ 21
for the 20 amino acids and MSA gap. The DHp sequence is
indexed from positions 1 to LDHp and REC sequence from po-
sitions LDHp þ 1 to the total length of L ¼ LDHp þ LREC ¼ 172.
Our remaining dataset consisted of 6,519 non-redundant con-
catenated sequences.

Inference of Parameters of Coevolutionary Model
An amino acid sequence s ¼ ðA1;A2; . . .;ALÞ for a pro-
tein or interacting proteins can be viewed as being se-
lected from a Boltzmann equilibrium distribution, i.e.,
PðsÞ ¼ Z�1 exp ð�HðsÞÞ. The Boltzmann form of P was pre-
viously derived for an evolving population in the limit where
the product of the population size and mutation rate is very
small (Sella and Hirsh 2005). Specifically, it was shown (Sella
and Hirsh 2005) that HðsÞ ¼ �vxðsÞ, where v is the popula-
tion size and xðsÞ is the additive fitness landscape (i.e., log of
the fitness). A high population size suggests many viable se-
quences that a protein can mutate to, which makes the pop-
ulation more robust to deleterious mutations. Related work
(Halpern and Bruno 1998) modeled site-specific selection of
sequences, which has been extended by numerous works
(Tamuri et al. 2012; Spielman and Wilke 2015; Bloom 2016).

Under certain limiting conditions, HðsÞ appears to share a
correspondence with the energetics of protein folding [See
review: (Sikosek and Chan 2014)]. Assuming that the se-
quence diversity is completely due to stability considerations,
HðsÞ ¼ bEðsÞ where EðsÞ is the energy of the folded protein
with respect to the unfolded state and b ¼ ðkBTselÞ�1 is the
inverse of the evolutionary selection temperature from pro-
tein folding theory (Pande et al. 1997, 2000; Morcos et al.
2014). Several studies have reported strong linear correlation
between mutational changes in HðsÞ with mutational
changes in protein stability (Lui and Tiana 2013; Morcos
et al. 2014; Contini and Tiana 2015). However, HðsÞ ¼ bEðsÞ
may not be an appropriate approximation for proteins that
have evolved with interacting partners, for which sequence
selection is plausibly influenced by additional factors such as
binding affinities as well as binding/unbinding rates.

Often it is of interest to solve the inverse problem of in-
ferring an appropriate HðsÞwhen provided with an abundant
number of protein sequences. Typical approaches to this
problem have applied the principle of maximum entropy
to infer a least biased model that is consistent with the input
sequence data (Weigt et al. 2009; Morcos et al. 2011), e.g.,
the empirical single-site and pairwise amino acid probabilities,
PiðAiÞ and PijðAi;AjÞ, respectively. The solution of which is
the Potts model:

HðsÞ ¼ �
XL�1

i¼1

XL

j¼iþ1

JijðAi;AjÞ �
XL

i¼1

hiðAiÞ (3)

where Ai is the amino acid at position i for a sequence in the
MSA, JijðAi;AjÞ is the pairwise statistical couplings between
positions i and j in the MSA with amino acids Ai and Aj,
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respectively, and hiðAiÞ is the local field for position i . We
estimate the parameters of the Potts model, fJ; hg, using the
pseudo-likelihood maximization Direct Coupling Analysis
(plmDCA) [See Ref: (Ekeberg et al. 2013) for full computa-
tional details]. It is important to note that the mutational
context-dependence (epistasis) between residues i and j is
naturally captured in the model through the statistical cou-
plings, JijðAi;AjÞ.

Previous studies have applied DCA to a number of prob-
lems in structural biology. DCA has been used to identify
highly coevolving pairs of residues to predict the native state
conformation of a protein (Marks et al. 2012; Sulkowska et al.
2012; Sutto et al. 2015), including repeat proteins (Espada
et al. 2015), as well as identify additional functionally relevant
conformational states (Morcos et al. 2013; Malinverni et al.
2015; Sutto et al. 2015) and multi-meric states (Schug
et al. 2009; Weigt et al. 2009; Morcos et al. 2011; dos
Santos et al. 2015; Malinverni et al. 2015). Structural and
coevolutionary information share complementary roles in
the molecular simulations of proteins [See review: (Noel
et al. 2016)]. The Potts model (eq. 3) obtained from DCA
has been related to the theory of evolutionary sequence se-
lection (Morcos et al. 2014) as well as mutational changes in
protein stability (Lui and Tiana 2013; Morcos et al. 2014;
Contini and Tiana 2015). Additional work has applied DCA
to protein folding to predict the effect of point mutations on
the folding rate (Mallik et al. 2016) as well as construct a
statistical potential for native contacts in a structure-based
model of a protein (Cheng et al. 2016) to better capture the
transition state ensemble.

DCA and inference methods have also been applied to
study problems in systems biology, such as the identification
of relevant protein-protein interactions in biological interac-
tion networks (Procaccini et al. 2011; Feinauer et al. 2016).
Recently, a number of studies have focused on inferring quan-
titative landscapes that capture the effects of mutations on
biological phenotypes (Ferguson et al. 2013; Cheng et al. 2014;
Figliuzzi et al. 2016) by constructing models from sequence
data (eq. 3). Two separate studies, which focused on antibi-
otic drug resistance in E. coli (Figliuzzi et al. 2016) and viral
fitness of HIV-1 proteins (Ferguson et al. 2013), respectively,
inferred a Potts model (i.e., additive fitness landscape), H, and
calculated mutational changes as DH. This approach is anal-
ogous to the approach adopted in this study. Likewise, a study
examining the mutational effects on TCS phosphotransfer
(Cheng et al. 2014) constructed a mutational landscape
from an information-based quantity. All of these approaches
capture epistatic effects and rely on the accuracy of the in-
ferred Potts model (eq. 3) from sequence data.

Mutational Changes in Coevolutionary Landscape
For the concatenated sequences of HK (DHp) and RR (REC)
(fig. 1A), we infer a Potts model (eq. 3). We focus on a
subset of parameters in our model consisting of the inter-
protein couplings, Jij, between positions in the DHp and REC
domains (fig. 1C) that are in close proximity in a represen-
tative structure of the TCS complex (fig. 1B). All local fields
terms, hi, are included to partially capture the fitness effects

that give rise to the amino acid composition observed at
each site. These considerations allow us to construct coevo-
lutionary landscape for TCS, which is a negative, additive
fitness landscape:

HTCSðSTCSÞ ¼ �
XLDHp

i¼1

XLDHpþLREC

j¼LDHpþ1

JijðAi;AjÞ �Hðc� rijÞ

�
XLDHpþLREC

i¼1

hiðAiÞ (4)

where STCS is the concatenated sequence of the DHp and
REC domains, the double summation is taken over all
interprotein statistical couplings between the DHp and REC
domains, H is a Heaviside step function, c is the a cutoff
distance of 16 Å which was determined in a previous study
(Morcos et al. 2014), and rij is the minimum distance between
residues i and j in the representative structure. Mutational
changes in equation (4) are then computed as
DHTCSðSmutant

TCS Þ ¼ HTCSðSmutant
TCS Þ � HTCSðSWT

TCSÞ. Hence, muta-
tional changes in the signal transfer efficiency are approxi-
mated from mutational changes in the additive fitness.

An additional model is considered to analyze the epistatic
effects of the 4-point mutations explored in experiment
(Podgornaia and Laub 2015). Whereas equation (4) naturally
captures the epistatic effect of mutating a residue in the HK
when the RR has also been mutated (or vice versa), it does not
explicitly contain the statistical couplings that capture the
epistatic effects of HK only mutations. Hence, the statistical
couplings between the 4-mutational sites of the HK are ex-
plicitly added to equation (4):

fepistasisðSTCSÞ ¼ �
X

i;j2mutational sites

JijðAi;AjÞ (5a)

H
ðepistasisÞ
TCS ðSTCSÞ ¼ HTCSðSTCSÞ þ fepistasisðSTCSÞ (5b)

In equation (5a), the summation contains the six statistical
couplings between the 4-mutational sites explored by
Podgornaia and Laub, i.e., positions 14, 15, 18, and 19 in our
MSA of TCS partners, which map to positions 284, 285, 288,
and 289 of PhoQ.

Zone Equilibration of Mutants (ZEMu) Calculation
ZEMu consists of a multiscale minimization by dynamics,
restricted to a flexibility zone of five residues about each
substitution site (Dourado and Flores 2014), which is followed
by a mutational change in stability using FoldX (Guerois et al.
2002). ZEMu has been used to explain the mechanism of
Parkinson’s disease associated mutations in Parkin (Caulfield
et al. 2014; Fiesel et al. 2015). The minimization is done in
MacroMoleculeBuilder (MMB), a general-purpose internal
coordinate mechanics code also known for RNA folding
(Flores and Altman 2010), homology modeling (Flores et al.
2010), morphing (Tek et al. 2016), and fitting to density maps
(Flores 2014).

We use the ZEMu (Dourado and Flores 2014) method to
predict the mutational change in binding energy between
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PhoQ and PhoP. ZEMu first treats mutations as small per-
turbations on the structure by using molecular dynamics
simulations [See Ref. Dourado and Flores (2014) for full
computational details] to equilibrate the local region
around mutational sites. ZEMu can then estimate the
binding affinity between the mutant-PhoQ/PhoP,
DGZEMu

TCS ðmutantÞ, and the wild type-PhoQ/PhoP,
DGZEMu

TCS ðWTÞ, using the knowledge-based FoldX
(Guerois et al. 2002) potential. This allows for the
calculation of the mutational change in binding affinity
as: DDGZEMu

TCS ¼ DGZEMu
TCS ðmutantÞ � DGZEMu

TCS ðWTÞ.
ZEMu calculation was performed according to Ref:

(Dourado and Flores 2014), with the following two differ-
ences. First, due to the large number of mutations we capped
the computer time permitted to 3 core-hours per mutant,
whereas in (Dourado and Flores 2014) the limit was 48 h. This
meant that of 122,802 mutants attempted, 42,923 completed
within the time limit, whereas in (Dourado and Flores 2014),
almost all mutants converged. The major reason for non-
convergence in the current work involved mutation to bulky
or constrained residues. Steric clashes produced by such res-
idues force the error-controlled integrator (Flores et al. 2011)
to take small time steps and hence use more computer time.
Exemplifying this, the amino acids F, W, and Y are the most
common residues for non-converging mutations at positions
285 and 288 in PhoQ. The second difference was that we
permitted flexibility in the neighborhood of all four possible
mutation sites, even when not all of them were mutated,
whereas in (Dourado and Flores 2014) only the mutated po-
sitions were treated as flexible. This allowed us to compare all
of the mutational energies to a single wild-type simulation,
also performed with flexibility at all four sites.

Database of TCS partners, Potts model, and code for cal-
culating equation (4) can be obtained from: http://utdallas.
edu/~faruckm/PublicationDatasets.html; last accessed
August 10, 2016.

Supplementary Material
Supplementary figures S1–S7 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjournals.
org/).
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