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ABSTRACT OF THE DISSERTATION

Interannual-to-Decadal Changes in Phytoplankton Phenology, Fish Spawning Habitat,

and Larval Fish Phenology

Rebecca G. Asch

Doctor of Philosophy in Oceanography

University of California, San Diego, 2013

Professor David Checkley, Chair

Phenology is the study of seasonal, biological events and how they are influenced

by climate. Climate change has prompted an earlier arrival of spring in numerous

ecosystems. It is uncertain whether such changes are occurring in coastal upwelling

ecosystems, because these regions are subject to decadal climate oscillations and regional
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climate models predict later seasonal upwelling. To answer this question, chapter 1
investigated decadal changes in the phenology of 43 larval fish species in southern
California. The first principal component of this dataset showed a progression towards
the earlier appearance of larvae, although 18% of phenological events exhibited seasonal
delays. These changes were best explained by a secular trend towards earlier warming of
surface waters. Species with earlier phenology were characterized by an offshore,
epipelagic distribution, while fishes with delayed phenology were more likely reside in
coastal, demersal habitats.

Chapter 2 focused on improving understanding of how oceanic factors affect fish
spawning habitat. Spawning habitat models can be applied to examine variations in fish
phenology. Using data from spring cruises conducted between 1998-2004, dynamic
height was investigated as a variable affecting the spawning habitat of anchovy, sardine,
and jack mackerel. The greatest probability of encountering anchovy, sardine, and jack
mackerel eggs occurred at dynamic heights of 79—83 cm, 84-89 cm, and 89-99 cm,
respectively. Dynamic height explained more variance than any other variable (e.g.,
temperature, salinity, chlorophyll, zooplankton volume, geographic currents, eddies) in
models of sardine and anchovy spawning habitat.

Chapter 3 examined variations in phytoplankton phenology across the North
Pacific using a hindcast of the Community Earth System Model 1.0 (CESM1) forced with
atmospheric observations. Comparisons with SeaWiFS chlorophyll indicated that
CESM1 could simulate mean dates of phytoplankton bloom initiation with as much skill
as it could predict mean bloom magnitude. The first principal component for each of five

phenological metrics (bloom initiation, midpoint, termination, duration, and magnitude)

Xviii



was either correlated with the Multivariate ENSO Index or displayed a long-term trend.
Compared to terrestrial ecosystems, long-term trends in phytoplankton phenology were
noteworthy due to their rapid rate of change and greater prevalence of delayed

phenology.
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INTRODUCTION - A HISTORICAL OVERVIEW OF THE STUDY OF

PHENOLOGY

Phenology refers to the study of recurring, biological events and the effects of
climatic and meteorological conditions on those events. The term phenology is derived
from the ancient Greek word “phainesthai”, which means “to appear.” The word was
originally coined in 1853 by Charles Morren, a Belgian botanist, who first used the term
“phenology” in a scientific paper describing an exceptionally warm winter where plants
flowered for a second time in a year (Demarée and Rutishauser, 2009). Despite the 19"
century origin of the word phenology, this scientific discipline has much older historical
roots reflecting the fact that successful agriculture required accurate knowledge of the
seasonal cycle of plants, livestock, and agricultural pests. In fact, Aldo Leopold once
quipped that the first “paper” on phenology was the Book of Solomon in the Old
Testament, which contains the following verse:

For, lo, the winter is past,

The rain is over and gone;

The flowers appear on the earth;

The time of the singing of birds is come

And the voice of the turtle is heard in our land.

(Solomon, 2:12, quoted in Leopold and Jones, 1947)

The oldest known calendar of phenological events was developed in China in the
11" century B.C. (Yoshino, 2004). This calendar divides the year into 24 periods called

Jjiequi, which were further subdivided into a set of five-day periods called hou. Each hou

corresponded to a particular phenological event or agricultural activity (Yoshino, 2004).



Similarly, the date of the first flowering of cherry trees has been recorded on an annual
basis in Kyoto, Japan since the 9" century (Aono and Kazui, 2008). This 732-year record
of cherry tree phenology has been used to reconstruct spring temperatures in Japan prior
to the beginning of instrumental records. In France, Switzerland, and Germany, records
of the date of the first wine grape harvest each year have been officially registered by
parishes and municipalities, with some records extending as far back as 1221 (Pfister,
1988). Using a reconstruction of spring-summer temperatures based on grape harvest
phenology from Burgundy, France, Chuine ef al. (2004) determined that the 2003 heat
wave in Europe was unprecedented in this time series that began in 1370.

The first scientific network of sites dedicated to monitoring phenology was
developed by Carolus Linnaeus in 1750. This network recorded the timing of first
flowering, leafing, fruiting, and leaf fall at 18 sites across Sweden. Linnaeus also
published a methodological guide for studying phenology and encouraged students to
write dissertations about phenology in several Nordic countries (Terhivuo et al., 2009).

The history of British phenology extends back to 1789 when two important
phenological treatises were published. During this year, Gilbert White, England’s first
ecologist, published The Natural History and Antiquities of Selbourne, which contains
notes describing the phenology of > 400 plant and animal species that White studied over
a 25-year period. Also in 1789, the British Royal Society published a manuscript by
Robert Marsham, a British landowner, whose family monitored 27 biological indicators
of spring on their property over the course of seven generations. The Marsham time
series covers the period between 1736-1947, with a few gaps in this record (Sparks and

Carey, 1995). A recent re-analysis of the Marsham dataset revealed that the phenology of



plants was more closely correlated with local temperature than the phenology of animals,
reflecting the migratory behavior of many of the animal species monitored by the
Marsham family (Sparks and Carey, 1995).

A second historical, phenological dataset, recently been rediscovered and
reanalyzed, was developed by the American philosopher and writer Henry David
Thoreau. Between 1852-1858, Thoreau recorded the first flowering dates of > 500 taxa in
Concord, Massachusetts. Thoreau had intended to publish a manuscript on this work, as
well as an accompanying calendar of phenological events, but he died of tuberculosis
before this project was completed. The area surveyed by Thoreau was studied between
2004-2006 by Miller-Rushing and Primack (2008). Since Thoreau’s lifetime,
temperatures in Concord had warmed by 2.4° C. This change in temperature
corresponded to a mean advancement of phenological events by 7 days (Miller-Rushing
and Primack, 2008). A companion study by Willis et al. (2008) noted that plant species
that did not adjust their phenology to changing climatic conditions were more likely to
have become locally extinct in Concord.

Another well known American naturalist and philosopher who made extensive
phenological observations was Aldo Leopold. Between 1935-1945, Leopold investigated
328 phenological events at two field sites, one of which was located near his home in
Sauk County, Wisconsin. The other field site was located at the University of
Wisconsin—Madison, where Leopold worked. In 1947, Leopold published a monograph
describing his phenological investigations (Leopold and Jones, 1947). In addition to
documenting phenological patterns observed in central Wisconsin, this monograph

outlines the characteristics of species that make them ideal candidates for inclusion in



phenological monitoring programs, discusses common sources of error in phenological
studies, and introduces a new type of graph for visualizing variations in phenology.
Leopold and Jones (1947) also presented the results of a set of “natural experiments”
where they compared years with contrasting seasonal temperature and precipitation
patterns in order to distinguish between the effects of these two climatic factors on plant
phenology. To the best of my knowledge, this paper also represents the first study of
decadal variations in phenology, since Leopold and Jones (1947) compared their work
with a set of observations made at the Wisconsin College of Agriculture in the early
1880s. Due to warmer temperatures in February through May during the 1935-1945
period, Leopold and Jones (1947) observed that phenological events occurred two weeks
earlier than they had in the 1880s. Aldo Leopold’s daughter, Nina Leopold Bradley,
continued to make phenological observations in the area surrounding her family home
between 1976-1998. An analysis of this time series published in 1999 documented that 17
of 55 phenological events occurred significantly earlier in the year at the end of the time
series due to warming temperatures (Bradley ef al., 1999).

Like terrestrial phenology, the study of seasonality in the ocean also has a long
history, although these two disciplines developed along separate paths with relatively
little interaction between each other. As a result, the term “phenology” is not used
frequently in the literature on biological oceanography even when seasonal patterns are
described. Victor Henson, the German scientist who first coined the term “plankton”,
conducted the first study of seasonality among pelagic organisms (Mills, 1989). Between
1883-1886, Henson and his colleagues conducted 34 cruises off Kiel, Germany on a

roughly monthly basis to study the seasonal cycle of phytoplankton abundance. A spring



peak in diatom abundance and an autumn maximum in dinoflagellate concentration were
noted. However, Henson believed that these seasonal maxima reflected sampling error,
because he had assumed that the seasonal cycle in the ocean would be analogous to that
on land (Mills, 1989). Franz Schiitt, a German oceanographer who collected many of
these seasonal plankton samples on behalf of Henson, did recognize the seasonal pattern
associated with spring and fall plankton blooms and wrote about this in a book entitled
Analytische Plankton-Studien (Mills, 1989). Schiitt also described the seasonal
succession of different phytoplankton species, stating, ““...with just as absolute certainty
as the cherries bloom before the sunflowers, so Skeletonemas arrive at their yearly peak
earlier than the Ceratiums” (Schiitt, 1892 quoted in Mills, 1989).

Another prodigious effort to sample seasonal patterns of plankton abundance was
undertaken by Sir William Herdman and his colleagues who collected macroplankton
samples six days a week between 1907-1921 off the Isle of Man in the Irish Sea.
Johnstone et al. (1924) published a book based on this work that was mainly intended to
serve as a guide to plankton identification in the Irish Sea. However, this book also
included graphs and tables documenting the monthly abundance of 38 plankton taxa over
the 14-year period of this study. Like Schiitt, Johnstone et al. (1924) described the
seasonal succession of plankton species in detail. However, unlike their predecessors,
Johnstone et al. (1924) also emphasized interannual variability in phenology, noting, for
example, that peaks in the diatom Chaetoceros would occur in March during some years
and in May during other years. Johnstone ef al. (1924) expressed an interest in correlating

interannual variations in plankton abundance and phenology with hydrographic



conditions, but they were unable to pursue this research due to a lack of concurrent
sampling of physical oceanographic conditions around the Isle of Man.

Ultimately, the modern theory of how phytoplankton seasonality is influenced by
oceanographic and meteorological conditions was developed by Harald Sverdrup.
However, Sverdrup’s work was influenced by a number of predecessors, most notably
H.H. Gran who developed the idea of compensation depth and Gordon Riley who
recognized that phytoplankton growth is often inversely proportional to mixed layer
depth (MLD) (Mills, 1989). Sverdrup (1953) developed the critical depth hypothesis to
explain the timing of the spring phytoplankton bloom that is typically observed each year
in temperate areas of the ocean. The critical depth is defined as the location where depth-
integrated primary production is equal to depth-integrated community respiration.
Respiration rates were assumed by Sverdrup to be constant throughout the water column,
whereas photosynthesis decreases exponentially with depth due to light limitation. As a
result, critical depth is a function of solar irradiance and the transparency of the water
column. Sverdrup (1953) argued that a phytoplankton bloom cannot occur when the
MLD exceeds the critical depth since depth-integrated respiration will be greater than
primary production. Such conditions exist in winter when MLD reaches its seasonal
maximum. As winter ends, the MLD shoals due to increased stratification reflecting
surface warming of the water column and/or decreases in salinity due to melting of snow
and sea ice. At the same time, the critical depth becomes deeper as solar irradiance
increases in the spring. Sverdrup (1953) tested this hypothesis using field data collected
in 1949 aboard Weather Ship “M” in the Norwegian Sea. He found that the critical depth

increased from 30-40 m in March to approximately 300 m in May. MLD shoaled below



the critical depth in late April. By mid-May, copepod abundance had increased so that
phytoplankton growth was suppressed by heavy grazing (Sverdrup, 1953). Sverdrup’s
critical depth hypothesis is still cited as the predominant explanation for spring blooms in
temperate ocean ecosystems, although, in the last three years, alternative hypotheses have
been proposed to explain observations of increased phytoplankton growth prior to the
shoaling of MLD (Behrenfeld, 2010; Taylor and Ferrari, 2011; Mahadevan et al., 2012).
In the field of fisheries oceanography, interest in seasonal cycles stemmed from
the development of the match-mismatch hypothesis by David Cushing in 1974. This
hypothesis seeks to explain how order-of-magnitude variations in fish recruitment are
connected to fluctuations in ocean climate (Cushing, 1974). Cushing observed that
populations of sockeye salmon, Atlantic herring, and plaice had seasonal peaks in
spawning that varied between years with less than a 1-week standard deviation. These
spawning peaks typically coincided with the time of the spring bloom, but the bloom
exhibited more interannual variability in its seasonal occurrence. Cushing proposed that,
when there was a seasonal mismatch between plankton production and fish egg and larval
production, this would result in poor feeding conditions for larval fishes and would
increase their mortality due to starvation (Cushing, 1974). The reduced survival of larvae
would then lead to lower recruitment once this year class grew to a size where it would
be susceptible to the capture by fisheries. Support for the mismatch hypothesis has been
provided by research on a variety of commercially important fishes, including Atlantic
cod (Beaugrand et al., 2003), haddock (Platt ef al., 2003), and coho salmon (Chittenden
et al., 2010). However, it is also widely recognized that, while mismatches often result in

poor recruitment, seasonal matches between phytoplankton blooms and larval production



do not guarantee high recruitment given that recruitment is controlled by a number of
oceanographic variables that influence fishes throughout several life history stages
(Houde, 2008). In studies of terrestrial phenology, seasonal mismatches between predator
and prey species, as well as between plants and pollinators, have been documented
(Durant et al., 2007), although many of these terrestrial studies fail to recognize and cite
that the extensive and older marine ecological literature on the match-mismatch
hypothesis (e.g., Visser ef al., 1998).

In both marine and terrestrial ecosystems, climate change has led to a renewed
interest in phenology given that warming temperatures are expected to lead to the earlier
occurrence of spring conditions. Noting this point, Miller-Rushing and Primack (2008)
declared, “Of [the] biological responses to climate change, changes in the timing of
phenological events are the most widely reported and probably the most easily
detectable.” In terrestrial habitats, several meta-analyses have confirmed that spring
phenological events are indeed responding to climate change by occurring earlier in the
year (Parmesan and Yohe, 2003; Root ef al., 2003; Parmesan, 2007; Cleland et al., 2012;
Cook et al., 2012; Wolkovich et al., 2012). However, a number of gaps exist in these
meta-analyses due to the fact that they mainly analyzed data from temperate Northern
Hemisphere ecosystems, often excluded fall and winter phenological events, and included
relatively little data from marine ecosystems and arid, terrestrial habitats.

Eastern Boundary Current upwelling systems may experience shifts in phenology
due to climate change that differ from those observed in terrestrial ecosystems, because
regional climate models have predicted a delayed onset of seasonal upwelling. This issue

was first examined by Snyder ef al. (2003) in a model of the California Current



Ecosystem (CCE) that investigated the effects of a doubling of atmospheric CO, on
wind-driven upwelling. This model simulation suggested that upwelling is likely to
decrease during April-May and increase during July-October in the northern CCE,
resulting in a one-month delay in the spring transition. A more complex regional climate
model, which accounted for positive feedbacks due to changes in land cover, confirmed
these results for the northern CCE, but predicted that the southern CCE would experience
an increase in early-season upwelling and a decrease in peak and late-season upwelling
(Diffenbaugh et al., 2004). This could cause an advance in the seasonal cycle of southern
CCE upwelling, as well as potentially dampen its seasonal pattern.

The predictions of these regional climate models also seem to be echoed in the
unusual upwelling patterns observed in the northern CCE in 2005. During this year, the
spring transition did not occur until May 24, over a month later than normal, while the
initiation of substantial upwelling was delayed two months (Kosro et al., 2006; Barth et
al., 2007). These events were accompanied by a positive 2° C anomaly in nearshore
waters off central Oregon, a 50% decrease in surf-zone chlorophyll, and a 30% reduction
in spring nitrate (Barth et al., 2007). A northward shift in the jet stream’s position caused
stronger-than-average upwelling to begin in mid-July, such that by September cumulative
upwelling reached the climatological mean. This shift in the seasonal pattern of
upwelling affected all trophic levels. The zooplankton assemblage between northern
California and British Columbia was characterized by reduced abundance of fauna with a
northern biogeographic affinity and a shift in the life cycles of some species to earlier in
the year (Mackas et al., 2006). Fish assemblages responded with increases in the

abundance of offshore species, such as ocean sunfish, Pacific pomfret, opah, and
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yellowtail (Brodeur et al., 2006). Many southern fish species shifted their distribution
northward. For example, larvae of Pacific hake and jack mackerel were found off Oregon
and British Columbia. These species typically spawn in the Southern California Bight
(SCB), so this represents a ~1,000-km shift in distribution (Brodeur et al., 2006).
Similarly, sardine and anchovy were captured as far north as Southeast Alaska. The
unusual events of 2005 induced delays in the timing of the reproduction and recruitment
of mussels and barnacles (Barth et al., 2007). Breeding success of Cassin’s auklet was
severely disrupted by reduced krill abundance resulting from delayed upwelling
(Sydeman et al. 2006).

The research presented in this dissertation is primarily focused on identifying
long-term changes and interannual-to-decadal variations in the phenology of
phytoplankton and fishes found in the North Pacific. In Chapter 1, biological and
physical oceanographic data collected by California Cooperative Ocean Fisheries
Investigations (CalCOFTI) are used to investigate changes in larval fish phenology
between 1951-2008. I analyzed this dataset on a decadal basis since quarterly CalCOFI
surveys were often conducted during different months in successive years. Through
decadal averaging, I was able to generate a monthly time series of larval fish
concentration for 43 species. In addition to examining long-term trends in larval fish
phenology, this chapter also investigates whether local oceanic variables (e.g., sea surface
temperature, coastal upwelling, mesozooplankton displacement volume) and basin-scale
climate oscillations (e.g., El Nifio-Southern Oscillation, Pacific Decadal Oscillation,

North Pacific Gyre Oscillation) affect fish phenology. The chapter concludes with an
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examination of what ecological characteristics of fishes are associated with phenological
sensitivity to climate change.

Chapter 1 principally focused on assemblage-wide changes in fish phenology
because decadal averaging reduced the amount of phenological data available for each
species (e.g., one estimate of fish phenology per decade per species). In contrast, Chapter
2 took a more species-specific approach examining interannual variations in the
spawning habitat of three small pelagic fishes (e.g., Sardinops sagax, Engraulis mordax,
and Trachurus symmetricus). The spatial distribution of fish spawning habitat was
compared to variations in dynamic height during spring CalCOFI cruises between 1998-
2004. Dynamic height was hypothesized to influence the location of spawning habitat,
because it is related fluctuations in temperature, salinity, primary and secondary
production, and geostrophic current flow. These are all oceanic variables that have been
previously shown to affect the distribution of the spawning habitat of small pelagic fishes
(Lluch-Belda et al., 1991; Checkley et al., 2000; Lynn, 2003; Reiss et al., 2008; Weber
and McClatchie, 2010; Zwolinski et al., 2011). Generalized linear models were used to
assess how much variance in fish spawning habitat could be explained by each of these
oceanic variables. An improved understanding of the relationship between oceanic
variables and spawning habitat can contribute to the investigation of fish phenology since
oceanic variables are monitored on a more routine basis than fishes by remote sensing
and in situ measurements by gliders. Habitat models can then be applied to examine the
phenology of spawning habitat availability based on the higher temporal resolution data

on oceanic variables.
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Since chlorophyll concentration has only been monitored regularly in the CCE
since 1984, Chapter 1 did not directly evaluate whether there have been changes in
phytoplankton phenology that could produce mismatches with the timing of fish
spawning. To explore this question in greater depth, variations in phytoplankton
phenology were investigated in Chapter 3 using a hindcast of the ocean component of the
Community Earth System Model 1.0 (CESM1) that was forced with atmospheric
observations made between 1961-2007. The 1° spatial resolution of the current
generation of global climate models, such as CESM1, is too coarse to characterize
physical processes associated with coastal upwelling, resulting in the overestimation of
SST in Eastern Boundary Current upwelling systems (Wang et al., 2010; Stock et al.,
2011). As a result, the examination of phytoplankton phenology with CESM1 focused on
a larger spatial scale, investigating variations in the timing of phytoplankton blooms
throughout the North Pacific. Chapter 3 first validates whether CESM1 can accurately
assess phytoplankton phenology through a comparison with remotely sensed SeaWiFS
chlorophyll. This chapter then examines whether phytoplankton phenology across
different regions of the North Pacific was correlated with interannual-to-decadal climate

oscillations or exhibited a long-term, phenological trend.
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Abstract

Climate change has prompted an earlier arrival of spring in numerous ecosystems.
It is uncertain whether such changes are occurring in Eastern Boundary Current
upwelling ecosystems, because these regions are subject to decadal climate oscillations
and regional climate models predict seasonal delays in upwelling. To answer this
question, the phenology of 43 species of larval fishes was investigated between 1951-
2008 in southern California. The first principal component of this dataset showed a
progression towards the earlier appearance of larvae. 39% of phenological events
indicated increasingly early peaks in larval abundance, while 18% exhibited delayed
phenology. These changes were best explained by a secular trend towards earlier
warming of surface waters rather than by decadal climate cycles, such as the Pacific
Decadal Oscillation and the North Pacific Gyre Oscillation. Species displayed similar
changes in phenology at both the decadal scale and the interannual scale associated with
El Nifio. Species with earlier phenology were characterized by an offshore, epipelagic
distribution, while species with delayed phenology were more likely reside in coastal,
demersal habitats. Earlier spawning was correlated solely with changes in sea surface
temperature (SST). A combination of SST and upwelling were responsible for delays in
fish phenology. Since species with earlier phenology were not changing their seasonal
abundance synchronously with upwelling and mesozooplankton, they may be
increasingly subject to mismatches with their prey in the future. Among species with no
long-term phenological trends, a contraction in the length of their spawning season was

detected, which could increase recruitment variability.
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1. Introduction

Phenology is the study of seasonal, biological processes and how they are
influenced by climate and weather. Since warmer temperatures are frequently associated
with earlier phenological events, changes in phenology are common indicators of the
effects of climate change on ecological communities (Parmesan and Yohe, 2003; Root et
al., 2003; Menzel et al., 2006; Parmesan, 2007). Meta-analysis has showed that
phenological events have advanced at a rate of 2.8 + 0.4 SE days decade™ relative to
historical baselines (Parmesan, 2007). Among species for which phenological changes
were detected, >80% of these shifts occurred in a direction consistent with climate
change (Parmesan and Yohe, 2003; Root et al., 2003).

Despite the inclusion of hundreds of species in meta-analyses examining climate
change effects on phenology, gaps in knowledge persist because most long-term studies
of phenology have monitored spring events affecting terrestrial species residing in
temperate habitats in the northern hemisphere (Root et al., 2003; Parmesan, 2007).
Marine species are particularly underrepresented in these meta-analyses (Richardson and
Poloczanska, 2008). For example, one meta-analysis examined the phenology of 694
species of which only one exclusively resides in marine habitats (Root et a/., 2003).
Underrepresentation of marine species is problematic not only due to their ecological
importance, but also because recent studies suggest shifts in phenology may occur more
rapidly in marine environments than terrestrial ecosystems (Edwards and Richardson,
2004; Burrows et al., 2011). Compared to other marine organisms, there is a longer

history of studying the phenology of teleost fishes, since the seasonal coincidence
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between phytoplankton blooms and fish spawning can affect recruitment to commercial
fisheries (Cushing, 1974; Cushing, 1990; Stenseth and Mysterud, 2002; Durant et al.,
2007). Nevertheless, little research has investigated the impact of anthropogenic climate
change on fish phenology and, with a few exceptions (Greve et al., 2005; Genner et al.,
2010), studies have been limited to a small set of commercially fished species. To address
this issue, this study investigated the influence of local and basin-scale climatic and
oceanic factors on the phenology of 43 fish species whose larval abundance has been
monitored off southern California since 1951.

In the California Current Ecosystem (CCE), wind-driven upwelling is one of the
predominant physical processes regulating the seasonal cycle of primary and secondary
productivity. The seasonal onset of upwelling, referred to as the “spring transition”, is
associated with the commencement of southward, alongshore winds that induce offshore
Ekman transport of coastal waters (Huyer et al., 1979). This coincides with a decrease in
coastal sea surface temperature (SST) by 1.5-4°C, the development of a nearshore,
southward oceanic jet, and an increase in fluorescence indicative of elevated primary
production in the coastal zone (Lynn et al., 2003). In the central and northern CCE (>35°
N), upwelling intensifies through summer until wind direction reverses in the fall. In the
southern CCE (<35° N), upwelling is observed in all seasons, but its intensity diminishes
in fall and winter (Snyder et al., 2003; Henson and Thomas, 2007). One area less affected
by seasonal upwelling dynamics is the Southern California Bight (SCB), which is located
south of Point Conception (Fig. S1.1; Chelton et al., 1982; Schwing and Mendelssohn,
1997; Mantyla et al., 2008). Seasonal primary production in the SCB is influenced by the

shoaling of isopycnals associated with cyclonic circulation and winter convection, which
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both transport nutrients to surface waters (Mantyla et al., 2008). This leads to a spring
maximum in chlorophyll concentration occurring between March and May (Hayward and
Venrick, 1998; Mantyla et al., 2008; Kim et al., 2009). The peak in phytoplankton is
followed by a summer maximum in mesozooplankton abundance between May and July
(Chelton et al., 1982; McGowan et al., 2003). Fishes spawn in the southern CCE year
round, although most species exhibit distinct seasonal patterns of larval abundance
(Moser et al., 2001).

There is increasing evidence that seasonal cycles of temperature, sea surface
height (SSH), and chlorophyll concentration may not be stationary in the CCE
(Mendelssohn et al., 2004; Venegas ef al., 2008). Empirical observations and regional
climate models suggest that climate change is leading to intensification of upwelling
during spring and/or summer months, but not other seasons (Bakun, 1990; Schwing and
Mendelssohn, 1997; Snyder et al., 2003; Diffenbaugh et al., 2004). A model simulation
that doubled atmospheric CO; indicated that upwelling off northern California is likely to
increase during July-October, but decrease in April-May, resulting in a one-month delay
in the spring transition (Snyder ef al., 2003). When feedbacks due to changes in land
cover were accounted for, similar results were obtained for the northern CCE, but model
predictions suggested that the southern CCE would experience an increase in early-
season upwelling and a decrease in peak and late-season upwelling (Diffenbaugh ef al.,
2004). This could cause an advance in the seasonal cycle of southern CCE upwelling, as
well as potentially dampen its seasonal amplitude. Empirical observations of ocean
temperature and the Bakun upwelling index validate these model results indicating delays

in the onset and peak of upwelling, particularly in the northern CCE (Mendelssohn ef al.,
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2004; Bograd et al., 2009). In accordance with model predictions of earlier upwelling in
the southern CCE, phytoplankton blooms were observed 1-2 months earlier in the late
1990s in this region compared to previous years (Kim et al., 2009).

In addition to anthropogenic climate change, oceanography in the CCE is affected
by climate oscillations with interannual-to-decadal periods, including El Nifo-Southern
Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the North Pacific Gyre
Oscillation (NPGO). El Nifio is frequently accompanied by delays in seasonal upwelling
(Schwing et al., 2006; Bograd et al., 2009), although lower frequency climate
oscillations, such as the PDO, do not have as pronounced of an effect on upwelling
seasonality (McGowan et al., 2003; Bograd et al., 2009). Due to delayed and reduced
upwelling, El Nifio can be associated with later spring phytoplankton blooms, although
this effect varies between regions and has not been observed in all years (Henson and
Thomas, 2007; Yoo et al., 2008). While little research has been conducted in the CCE
investigating PDO effects on phytoplankton bloom timing, this climate oscillation
influences phytoplankton phenology elsewhere in the North Pacific (Sasaoka et al., 2011;
Chiba et al., 2012). Among zooplankton in the southern CCE, the 1977 change from a
negative to positive PDO conditions coincided with a two-month shift towards earlier
maximum displacement volume of zooplankton (McGowan et al., 2003), as well as the
earlier occurrence of the copepod Neocalanus plumchrus (Mackas et al., 2007). At the
next trophic level, climate oscillations are known to influence the phenology of two fish
species in the CCE. Earlier than usual spawning of northern anchovy (Engraulis mordax)
was observed during the 1983 El Nifio (Brodeur ef al., 1985). Similarly, early spawning

migrations of chinook salmon (Oncorhynchus tshawytscha) are weakly correlated with
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warm PDO anomalies (Keefer et al., 2008). The physiological mechanism responsible for
these changes in phenology likely reflects the fact that warmer temperatures promote
rapid gonadal development among fishes, leading to earlier spawning (Ware and
Tanasichuk, 1989; Hutchings and Myers, 1994; Lange and Greve, 1997; Gillet and
Quétin, 2006). The NPGO is a recently defined climate oscillation based on the second
mode of variability of SSH in the Northeast Pacific (Di Lorenzo et al., 2008). In the
southern CCE, the NPGO is more closely correlated to variations in salinity, nutrients,
and chlorophyll than the PDO. Whether this mode of climate variability has an impact on
the phenology of marine organisms is a subject yet to be investigated.

The match-mismatch hypothesis provides a mechanism explaining how climate-
induced changes in fish and plankton phenology could potentially alter the abundance of
fish stocks (Cushing, 1974; Cushing, 1990). This hypothesis proposes that fishes spawn
during peak seasonal plankton production, which increases the likelihood that their larvae
will encounter sufficient prey. However, due to interannual variability in the timing of
plankton production and fish spawning, these events do not always coincide. During such
“mismatches”, first-feeding larvae may experience increased vulnerability to starvation or
slower growth, which can heighten susceptibility to predation (Houde, 1987; Anderson,
1988). Poor larval survival can result in reduced recruitment and decreased fishery
landings in subsequent years. While many other processes during the early life history of
fishes influence recruitment (Houde, 2008), variations between in plankton phenology
can result in order-of-magnitude changes in the recruitment and survival of commercially

important fishes (Beaugrand et al., 2003; Logerwell et al., 2003; Platt et al., 2003).
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Climate change could increase phenological mismatches through two
mechanisms. First, certain seasonal cues, such as solar insolation and day length, will not
be affected by global warming, whereas other seasonal processes will likely exhibit
distinct rates of change (e.g., surface vs. bottom temperatures) (Mackas et al., 2007;
Koeller et al., 2009). Since predators and prey may use different environmental factors as
signals to initiate seasonal behaviors, this can lead to a higher frequency of mismatches if
these indicators become decoupled (Durant et al., 2007; Mackas et al., 2007). Second,
individual species inevitably have distinct climate sensitivities that result in differing
rates of phenological response to climate change. These differences can lead to non-linear
responses where even small changes in climate can unbalance established patterns of
synchrony (Durant ef al., 2007).

To investigate whether climate change and variability may be leading to increased
mismatches between larval fishes and their prey, this study examined decadal changes in
the phenology of 43 species of fish larvae off California. Other objectives of this study
were to: 1) determine whether such changes were correlated with variations in regional
climate indices and the seasonality of SST, coastal upwelling, and zooplankton
abundance; 2) assess which life history characteristics of fishes are linked to changes in
phenology, and; 3) forecast 21*' century changes in fish phenology based on predicted
changes in seasonal SST and upwelling. Several hypotheses can be proposed regarding
how fish phenology has changed since 1951, when ichthyoplankton surveys began in the

southern CCE:
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* Hy: The phenology of larval fishes will remain constant regardless of variations in
seasonal oceanographic conditions. This would be expected if photoperiod were
the predominant factor affecting fish phenology (de Vlaming, 1972).

* Ha;: Fish larvae will uniformly occur earlier during periods with warmer
temperature, reflecting earlier spawning. This could arise due to accelerated
oocyte growth under warmer temperatures (Ware and Tanasichuk, 1989;
Hutchings and Myers, 1994; Lange and Greve, 1997; Gillet and Quétin, 2006) or
the tendency of spawning to track phytoplankton blooms, which have occurred
earlier in the southern CCE in recent years (Kim et al., 2009).

* Hao: Spring-spawning fishes will exhibit earlier larval phenology during periods
with warmer temperatures, while fall-spawning species will exhibit delayed
phenology, reflecting a later onset of cooler, fall conditions.

e Has: Delays in upwelling will lead to later spawning and occurrence of larvae.

* Ha4: The phenology of larval fishes will display interannual-to-decadal variability

synchronous with climate oscillations, such as ENSO, PDO, and/or NPGO.

2. Results

2.1. Detection of Phenology Trends

Surveys of fish larvae were conducted between 1951-2008 on a monthly-to-

quarterly basis (with some gaps between 1967-1983) by the California Cooperative

Oceanic Fisheries Investigations (CalCOFTI) (Fig. S1.1; Kramer et al., 1972; Hewitt,
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1988). Monthly abundance of 43 fish species was calculated by decadally averaging data
from quarterly surveys conducted in different months in successive years. This dampened
the influence of interannual variability, while highlighting decadal changes. Since eight
species exhibited two peaks in larval abundance each year, a total of 51 phenophases
(e.g., phenological events) were examined (Table S1.1). Changes in phenology were
detected based on the central tendency (CT) of seasonal larvae occurrence each decade
(Edwards and Richardson, 2004; Genner et al., 2010; Jansen and Gislason, 2011). Since
calculating CT relative to decadal means led to a small sample size for each phenophase
(n = 6) and reduced statistical power, this study did not focus on species-level changes in
phenology. Instead, each phenophase was treated as a replicate for examining
assemblage-wide patterns. Variations in CT were treated as a proxy for spawning time,
since CalCOFI mainly collects young, pre-flexion larvae (Methot, 1983; Koslow et al.,
2011) and the egg stage of many species lasts 2-4 days at temperatures in the southern
CCE (Zwiefel and Lasker, 1976). Depending on the species and temperature, flexion
occurs between 3-25 days post-hatch (Zwiefel and Lasker, 1976; Moser, 1996; Love et
al., 2002).

The first principal component of this dataset, which accounted for 32.6% of its
variance, indicated that larvae are progressively appearing earlier in the year (Fig. 1.1).
Similarly, linear regression of CT anomalies (calculated relative to the multi-decadal
mean) versus year showed that on average fishes have advanced their phenology by 7.2
days since the initiation of the CalCOFI time series (¥ =9.3305 — 0.0047X, FF = 6.5, d.f. =
288, p <0.05). CT anomalies suggested that this trend is mainly due to changes over the

last two decades (Fig. S1.2¢).
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Since divergent trends among species would not be evident when examining
assemblage means, most ensuing analyses were performed on three groups of
phenophases that shared similar decadal patterns. This categorization was based on the
correlation between the CT of each phenophase and time, where phenophases with a
correlation coefficient » > 0.5 were classified as having later phenology, » <-0.5
indicated earlier phenology, and intermediate values corresponded to phenophases with
no long-term, linear changes. Twenty phenophases fell into the earlier phenology group;
9 were classified as exhibiting later phenology, and; 22 did not show a trend (Table S1.1).
Regressions of CT anomalies versus decade for each group demonstrated that changes
were statistically significant for earlier and later groups (earlier species: ¥ =38.6701 —
0.0195X, F=80.1, d.f. = 108, p <0.001; later species: Y =-31.9468 + 0.0161.X, F = 36.9,
d.f. =50, p <0.001). Among species with earlier phenology, the rate of phenological
change varied between -2.8 to -12.4 days decade™, with a mean of -6.4 days decade™
(Fig. 1.2a). Commercially fished species with earlier phenology included jack mackerel
(Trachurus symmetricus), Pacific hake (Merluccius productus), Pacific mackerel
(Scomber japonicus), and three rockfishes (Sebastes aurora, S. diploproa, and S.
Jjordani).

Species with later phenology shifted their spawning times at a slightly slower rate
(mean: 5.1 days decade™; range: 3.0-7.2 days decade™) than the earlier phenology group
(Fig. 1.2¢). The time series of CT anomalies for later species showed an abrupt shift
between the 1970s and 1980s (Fig. S1.21). Species with later phenology targeted by
commercial fisheries included chilipepper (Sebastes goodei) and the spring phenophase

of California halibut (Paralichthys californicus). The 90% confidence intervals of
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changes in CT were estimated to be +2.8-3.1 days decade™ based on a Monte Carlo
simulation of modeled larvae with generic characteristics (Supplemental Information [SI]
text, Table S1.2). These confidence intervals corresponded closely to the minimum rate
of change observed among species in the earlier and later phenology groups.

For species with no long-term trend in phenology, the histogram showing rates of
change was centered at 0 days decade™ (Fig. 1.2b). However, some species in this group,
such as Sardinops sagax, exhibited large, non-linear fluctuations in spawning times.
Other commercially important species in this group were northern anchovy (E. mordax),
California halibut (P. californicus, summer phenophase), Pacific sanddab (Citharichthys
sordidus, both phenophases), English sole (Parophrys vetulus), and bocaccio (Sebastes
paucispinis).

In addition to shifts in phenology, changes in the seasonal duration of peak larval
abundance were also examined. This metric remained constant throughout this time series
for fishes with earlier and later phenology (F < 1.4, p > 0.25). However, among species
with no long-term trends in phenology, season duration contracted by 22 days since the
1950s (Fig. 1.3; Y=30.9781 - 0.0147X, F=4.1, d.f. = 126, p < 0.05). This result should
be viewed with some caution due to the low capacity to detect changes in the duration of
peak larval abundance given the frequency of CalCOFI sampling (SI text, Fig. S1.3b,

Table S1.3).

2.2. Relationships between Phenology, Climate, Oceanic Conditions, and Ecological

Traits
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Fish phenology changed markedly during El Nifio events, but the direction of
these changes depended on phenology group. For species that exhibited a shift towards
earlier phenology at the decadal scale, El Nifio was also associated with earlier
occurrence of larvae (Fig. 1.4a). Based on a Kruskal-Wallis test, this was significant at p
<0.05 (X*=7.5, d.f. =2,57). This suggested that fishes in this group reacted similarly to
warming at the interannual scale associated with ENSO and the decadal scale. In contrast,
species in the two other phenology groups experienced significant delays in spawning
during El Nifio (Fig. 1.4b-c; species without a linear trend: F 53 = 6.3, p < 0.01; later
species: F2,=15.3, p <0.05).

Attributing changes in phenology to the PDO is complicated by the fact that
CalCOFI started during a negative, cold PDO period that persisted through 1976 and was
followed by a positive, warm PDO phase continuing through 1998. Prior to 1998, the
signal of anthropogenic climate change and warming related to the PDO were
confounded. The return of negative PDO conditions in 1999 allowed for clearer
distinction between these potential influences on phenology (Stewart et al., 2005). If the
PDO was responsible for changes in phenology, then the timing of larval occurrence
during recent, negative PDO years should be similar to that observed during the earlier,
negative PDO. To examine this, ANOVAs were performed comparing fish phenology
during the first negative PDO phase (1951-1976), the second negative PDO phase (1999-
2002 and 2007-2008), and the warm PDO phase (1977-1998) (Fig. 1.4d-f). These
ANOVAs indicated that there were significant changes in phenology across these periods
for both species with long-term delays and advances in phenology (earlier species: F» 57 =

21.5, p <0.001; later species: F52,=11.4, p <0.001). No significant effects were
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observed for species without linear trends in phenology (F>3 = 0.1, p = 0.88). For
advancing species, Tukey-Kramer multiple comparison tests revealed that these
differences were due to changes in phenology between the recent, negative PDO and all
previous years (Fig. 1.4d). Phenology during the first, negative PDO differed from all
subsequent periods among species with later phenology (Fig. 1.4f). In neither case were
the first and second negative PDO periods similar to each other, suggesting that trends in
phenology could be better attributed to secular warming than the PDO.

A similar analysis was conducted to evaluate whether fish phenology was
influenced by negative, neutral, or positive NPGO conditions. ANOV As examining this
were not significant for any phenology group (Fig. S1.4). Again, this confirmed that
assemblage-wide changes in phenology were more indicative of long-term trends than
decadal climate oscillations.

To further investigate what factors were responsible for changes in fish
phenology, the effects of three locally measured oceanic variables (e.g., CalCOFI SST,
CalCOFI mesozooplankton displacement volume, and the Bakun upwelling index) were
examined. CT anomalies of these variables were calculated and regressed against time to
assess decadal changes in seasonal patterns. Changes in SST CT indicated that ocean
temperatures are now warming 25.9 days earlier than in the 1950s (Fig. 1.5a; Y =33.7200
—0.0170X, F=11.0, d.f. =4, p <0.05). Upwelling did not exhibit a significant trend in
decadal phenology (Fig. S1.5a; F = 1.2, d.f. =4, p = 0.34), although peak upwelling
during the 1980s and 2000s occurred slightly later than at the start of the time series. The
CT of zooplankton volume was characterized by delayed phenology in the 1970s and

early phenology in the 1980s (Fig. S1.5b), possibly reflecting changes related to the 1977
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PDO shift (McGowan et al., 2003). The CT of zooplankton volume was close to zero in
other decades, with no long-term trend (¥ = 1.0, d.f. =4, p = 0.30).

Species in the earlier phenology group displayed a significant, positive correlation
with SST CT (Fig. 1.5b), but were not influenced by upwelling or zooplankton volume
(data not shown). Species whose phenology was delayed since the 1950s spawned later
when the onset of upwelling also occurred later (Fig. 1.5d). In addition, this phenology
group was inversely correlated with SST CT, such that fishes spawned earlier in years
when seasonal temperatures remained cool for a longer time (Fig. 1.5¢). CT anomalies
for species with no long-term trends in phenology were not correlated with any oceanic
variables (|7 <0.08, d.f. = 130, p > 0.35).

Next, this study investigated whether species that displayed phenological changes
shared certain ecological traits. The characteristics examined included the six most
common taxonomic orders, season of maximal larval abundance, the amplitude of each
species’ seasonal cycle, trophic level, habitat of adult fishes, cross-shore distribution of
larvae, biogeographic affinity (e.g., warm-water, cool-water, or widespread distribution),
frequency of larval occurrence during surveys, fishing status, changes in abundance of
unfished species, and historical shifts in species range (Table S1.1). One of the most
important characteristics associated with changes in phenology was whether a species
used epipelagic, mesopelagic, or demersal habitats as an adult. Epipelagic species were
more likely to exhibit earlier spawning, whereas as demersal fishes were more likely to
show delayed phenology (Fig. 1.6b; F; 45 = 3.4, p <0.05). The cross-shore distribution of
larvae was a second habitat-related characteristic that affected phenology. Larvae in

coastal areas were more likely to exhibit delayed phenology than species in coastal-
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oceanic habitats, although this result was only marginally significant at p = 0.07 (Fig.
1.6¢; F> 45 = 2.8). There is some overlap between these two habitat categories, since most
demersal fishes surveyed by CalCOFI occurred in coastal habitats, while epipelagic and
mesopelagic species were frequently found in coastal-oceanic and oceanic habitats,
respectively. In addition, phenology was significantly affected by taxonomy (Fig 1.6a;
Fs539=2.9, p <0.05). Flatfishes in the order Pleuroniformes tended to display later
phenology. Stomiiformes, an order including bristlemouths, hatchetfishes, and
dragonfishes, were the group most likely to show earlier phenology. Shifts towards
earlier spawning were especially common among the most frequently occurring species
(Fig. 1.6d). One final characteristic of the earlier phenology group was that they were
more likely to undergo range shifts in response to changes in climatic and oceanic
conditions (Hsieh et al., 2008; Hsieh et al., 2009; one-tailed binomial test: n =16, p <
0.05). No other ecological characteristics had a statistically significant relationship with

phenology.

2.3. Projections of 21*-Century Changes in Phenology

The Intergovernmental Panel on Climate Change (IPCC) A1B scenario was used
to forecast future changes in fish phenology. This is a medium-range emissions scenario,
where atmospheric CO; stabilizes at 720 ppm (IPCC, 2007). Projections were based on
the empirical relationship between species with earlier phenology and SST and the
relationships between species with delayed phenology, SST, and upwelling. Changes in

mean phenology between 2000-2009 and 2090-2099 were forecasted using outputs from
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12 IPCC models. Models unanimously projected that SST would continue to warm
earlier in the year through the 21% century. Predicted changes in SST CT between the
2000s and 2090s ranged between -1.5 and -18.0 days (mean = -10.5 days). In contrast,
model outputs indicated high uncertainty in future changes in upwelling seasonality in the
southern CCE, with 15 model runs predicting earlier upwelling and 11 runs predicting
later upwelling. Mean change in upwelling CT between 2000-2009 and 2090-2099 was -
3.9 days, with a range of -18.9 to 11.8 days. Projections for species with earlier
phenology indicated that fishes would advance their phenology by -9.0 days on average
relative to current conditions (Fig. S1.6a; range: -0.8 to -15.8 days). Due to
inconsistencies between models when forecasting changes in upwelling CT, projections
suggested that species with later phenology may spawn anywhere between 29.2 days

earlier to 28.1 days later compared to current conditions (Fig. S1.6b; mean = -1.8 days).

3. Discussion

3.1. Evaluation of Hypotheses.

The null hypothesis (Hy) stated that larval fish phenology would remain nearly
constant through time if photoperiod were the primary factor affecting the timing of
reproduction. Photoperiod may influence fish phenology either through physiological
processes associated with gonadal development (de Vlaming, 1972) or mediated through
food web effects, since the timing of diatom spore germination and growth and copepod

diapause are regulated by photoperiod among some species (Greve, 2003; Ji et al., 2010).
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The current study provides equivocal support for this null hypothesis since 57% of fish
phenophases showed decadal trends in phenology. Furthermore, even species in the
phenology group with no long-term trend exhibited interannual variations in larval
occurrence associated with El Nifo (Fig. 1.4b), indicating that their phenology was not as
steadfast as suggested by Hy. Also, some species in this phenology group, such as S.
sagax, displayed large interdecadal fluctuations in phenology that were non-linear.
Before evaluating alternative hypotheses, it is important to examine whether
phenological trends could be due to variations in the intensity of CalCOFI sampling.
During periods of greater sampling effort, there is a higher likelihood of detecting
precocious individuals who spawn early even if no change in the mean distribution of
spawning occurred (Leopold and Jones, 1947; Miller-Rushing et al., 2008). CalCOFI
survey effort was greatest in the 1950s when 3,952 ichthyoplankton samples were
collected in the southern CCE. Effort dropped during the 1960s and 1970s, such that
1,614 samples were collected during the latter decade. Following the resumption of
annual sampling in 1984, between 2,228 and 2,651 samples per decade were collected.
As a result, trends in phenology cannot be attributed to a linear increase or decrease in
sampling effort. Similarly, the increasingly standardized timing of cruises, which led to
gaps in monthly sampling during the 2000s, did not have a major effect on the first
principal component of this dataset nor the three phenology groups (Fig. S1.2, SI text).
Ha proposed that earlier occurrence of larvae would be observed during periods
with warm temperatures. Support for Ha; was provided by the positive correlation
between SST CT and species with earlier phenology (Fig. 1.5b). Similar relationships

between temperature and fish phenology were identified among ichthyoplankton in the
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North Sea and English Channel (Greve ef al., 2005; Genner ef al., 2010). However, these
studies considered a much smaller area (1-3 sites) and their time series were not long
enough to differentiate between the effects of global warming and climate oscillations.
Other studies of fish phenology have linked the gonadal maturation of individual species
to cumulative temperature often measured in degree days (Ware and Tanasichuk, 1989;
Hutchings and Myers, 1994; Lange and Greve, 1997; Gillet and Quétin, 2006), providing
a physiological mechanism that may explain the relationships observed here.
Alternatively, the effect of SST CT on larval phenology could reflect temperature-
induced changes in the duration of the egg and larval stages among poikilotherms. While
a shortened duration of these life history stages under warmer temperatures could be
partially responsible for phenological advances, it is unlikely that changes in stage
duration alone could result in the observed rates of 3-12 days decade™ of phenological
change. This is because the egg stage of many fishes only lasts 2-4 days at temperatures
in the southern CCE (Zwiefel and Lasker, 1976). Also, larger, late-stage larvae that
would be more affected by changes in stage duration were rare in CalCOFI samples
(Hewitt, 1980).

In addition to direct physiological effects, the influence of temperature on
phenology may be mediated through other oceanic and biological processes. For
example, temperature can affect swimming speed during seasonal migrations, which can
in turn impact travel time required to reach spawning grounds (Jansen and Gislason,
2011). Similarly, temperature can alter the migratory routes used by fishes in estuarine
and shelf habitats, leading to changes in spawning phenology (Hutchings and Myers,

1994; Genner et al., 2010). Among anadromous species and fishes that spawn in river
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plumes, temperature effects on spawning time may reflect the fact that earlier river flow
has been documented throughout the western USA due to earlier snow melt (Stewart et
al., 2005; Kaltenberg et al., 2010; Moody and Pitcher, 2010). Lastly, temperature could
affect fish phenology by altering the seasonal availability of prey, which could influence
spawning time (Carscadden et al., 1997).

Two hypotheses were proposed to explain delays in fish phenology. Ha»
suggested that fishes spawning in fall may exhibit delayed phenology if climate change
leads to an extended period of warm summer temperatures, whereas Has asserted that
delayed phenology would result from a later onset of upwelling. This study provided
scant support for Ha,, because the season of maximal larval abundance did not have a
significant effect on fish phenology. Only two of the nine phenophases with delayed
phenology were fall-spawning fishes. While a long-term trend in upwelling seasonality
was not observed (Fig. S1.5a), species with delayed phenology showed a positive
correlation with upwelling CT (Fig. 1.5d), providing support for Ha3. Upwelling could
affect fish phenology through two mechanisms, with one mechanism primarily operating
among species who spawn during winter and the second affecting spring and summer
spawners. Among the coastal, demersal fishes that were more likely to show delayed
phenology (Fig. 1.6b-c), it is imperative to develop life history strategies that minimize
advection of larvae into unsuitable, offshore habitats. Since upwelling results in cross-
shore transport, many coastal fishes spawn during winter when upwelling is minimal to
increase retention (Parrish et al., 1981). The phenology of these species may be positively
correlated with the timing of upwelling to maintain their reproductive activity in

synchrony with the winter lull in upwelling. For species whose larvae are most abundant
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in spring and summer, upwelling likely affects phenology through its impact of primary
and secondary production, which in turn increases prey availability. While this effect on
fish phenology has not been previously documented, the breeding phenology of seabirds
in the CCE is similarly influenced by winter preconditioning where small pulses of
winter upwelling extend the season of high biological productivity (Abraham and
Sydeman 2004; Schroeder et al., 2009; Black et al., 2011).

Ha4 proposed that, in lieu of long-term trends, interannual-to-decadal variations in
phenology associated with basin-scale climate cycles would be observed. While ENSO
was related to significant fluctuations in fish phenology, the PDO and NPGO did not
have clear-cut effects (Fig. 1.4). This finding may initially seem surprising since the PDO
and NPGO affect the abundance and geographic distribution of several species
considered here (Moser et al., 2001; Koslow et al., 2011; Hsieh et al., 2008; Hsieh et al.,
2009; Koslow et al., 2013). However, time series of CCE ocean temperature (a key factor
controlling fish phenology) indicate that, although there have been PDO-like oscillations
in the magnitude of this variable, there was also a concurrent, secular shift in the phase of
its seasonal cycle relative to a 1950s baseline (Fig. 1.5a; Mendelssohn et al., 2004). This
long-term phase shift may explain why the seasonality of larval fishes is less sensitive to
the PDO. This result may be part of a more generalized pattern, since the PDO has a
weak effect on the phenology of spring chinook salmon (O. tshawytscha) (Keefer et al.,
2008; Anderson and Beer, 2009), a species whose abundance is strongly influenced by

this climate cycle (Mantua et al., 1997).

3.2. Rates of Current and Future Phenological Change
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In the southern CCE, fishes that spawn earlier during warm conditions advanced
their phenology at a mean rate of 6.4 days decade™, while species whose phenology was
influenced by upwelling experienced mean delays of 5.1 days decade™. Since this region
warmed by 1.3° C between 1949-2000 (Di Lorenzo et al., 2005), this translated into a
mean temperature sensitivity of 24.6 days per °C for the earlier phenophases (range:
10.8-47.7 days per °C) and 19.6 days per °C for later phenophases (range: 11.5-27.7 days
per °C). When examining all phenology groups jointly using absolute values of
phenological change, a mean of 4.3 +£3.0 S.D. days decade™ or 16.7 + 11.4 S.D. days per
°C was obtained. These rates were comparable to results from other studies of the
phenology of marine and freshwater fishes and meroplankton (Edwards and Richardson,
2004; Gillet and Quétin, 2006; Genner et al., 2010; Frederiksen ef al., 2011; Jansen and
Gislason, 2011), but much faster than phenological rates from terrestrial ecosystems
(Sparks et al., 2000; Parmesan and Yohe, 2003; Menzel et al., 2006; Parmesan, 2007;
Miller-Rushing and Primack, 2008; Wolkovich ef al., 2012). Although a sensitivity
analysis suggested that this study may have limited power to detect shifts smaller than ~3
days decade™ (Table S1.2, SI text), it is unlikely that the phenological rates calculated
here were biased fast since center of gravity metrics, such as CT, are usually conservative
and estimate slower rates than examining the start date of phenological events (Miller-
Rushing et al., 2008; Ji et al., 2010). Instead, the rapid changes observed in this and other
marine systems were more likely due to the smaller amplitude of the seasonal
temperature changes in marine habitats. This weak seasonal gradient implies that marine

species need to undergo large phenological shifts to ensure that temperature-sensitive



39

activities continue to occur at a constant temperature (Burrows et al., 2011). Furthermore,
the high fecundity and dispersal capacity of fishes may allow them to adapt more rapidly
than terrestrial organisms to changing conditions (Richardson and Poloczanska, 2008).

Another way in which these results differed from most terrestrial studies was that
a lower percentage of phenophases responded to warming by occurring earlier. In the
southern CCE, 39% of phenophases advanced their phenology. In contrast, >60% of
species have responded to warming temperatures by advancing their phenology in most
terrestrial systems (Parmesan and Yohe, 2003; Menzel et al., 2006; Miller-Rushing and
Primack, 2008; Wolkovich et al., 2012), as well as in some marine and aquatic systems
(Greve et al., 2005; Thackeray ef al., 2010). Studies of the changing geographic
distribution of fishes in the southern CCE also showed that slightly less than half of the
species were responsive to climate forcing (Hsieh et al., 2008; Hsieh ef al., 2009). This
suggests that the large percentage of non-responsive species may be characteristic of the
southern CCE and possibly other Eastern Boundary Currents (EBCs). This may be due to
weak seasonality in EBCs, their high proportion of mesopelagic fishes that may be less
exposed to variations in upper ocean climate (Koslow et al., 2011; Koslow et al., 2013),
or opposing trends in SST and upwelling seasonality.

Future projections indicated that fishes in the earlier phenology group would
advance their phenology at a mean rate of -1.0 days decade™ (range: 0.1-1.8 days
decade™), which is slower than their current rate of change. For the later phenology
group, predictions were highly variable between model runs (Fig. S1.6). Both the varying
projections for delayed species and the slower rate of predicted change for the advancing

species may be related to the relatively low spatial resolution (>1°) of most IPCC general
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circulation models (GCMs). This resolution limits the ability of models to represent fine-
scale oceanographic dynamics associated with coastal upwelling (Wang et al., 2010;
Stock et al., 2011). As a result, most GCMs overestimate temperatures in EBCs (Stock et
al.,2011). Overestimation of current temperatures could potentially lead to an
underestimation of future changes in temperature and phenology in these regions. Also,
the limited resolution of GCMs is likely related to the high variability between modeled
upwelling rates observed here and in Wang et al. (2010). This suggests that future
predictions of fish phenology may be improved by either using regional climate models
or the next generation of IPCC models, some of which will have resolutions as low 0.1° x
0.1°. Nevertheless, the accuracy of such projections may still be limited if there are non-
linear thresholds beyond which fishes are no longer able to adapt to changing conditions

by altering their phenology (Sparks et al., 2000; Stenseth and Mysterud, 2002).

3.3. Implications for Fisheries Management and Marine Ecology

Species with earlier phenology were influenced by variations in the seasonality of
SST, but not upwelling or zooplankton volume. The diverging phenological trajectories
of zooplankton and this phenology group suggests that climate change may lead to an
increasing frequency of mismatches between trophic levels. Increased mismatches are
less likely to occur among the other phenology groups, given the lack of a long-term
trend in zooplankton phenology and the fact that the delayed phenology group tracked
upwelling CT, another proxy for lower trophic level productivity. During the early life

history of fishes, mismatches can result in decreased foraging efficiency, slower growth,
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starvation, increased vulnerability to predators, and lower survival (Platt et al., 2003;
Abraham and Sydeman, 2004; Durant et al., 2007; Sullivan et al., 2007; Chittenden et al.,
2010). These impacts may eventually lead to poor recruitment, declines in abundance,
and even local extinctions (Beaugrand et al., 2003; Philippart et al., 2003; Sullivan et al.,
2007; Burkle et al., 2013). At times, mismatches between fishes and zooplankton can be
transmitted up the food web to higher trophic levels (Frederiksen ef al., 2011).
Nevertheless, zooplankton volume is a bulk measure of a myriad of species, including
both predators and prey of larval fishes. Phenological monitoring of individual
zooplankton species is needed to confirm whether mismatches between larval fishes and
their prey are truly becoming more frequent.

Species that did not exhibit long-term trends in phenology may also be vulnerable
to global warming due to their reduced capacity to adapt to changing conditions. One
indication of this is that the duration of the peak period of larval abundance appears to
have contracted among these species (Fig. 1.3). A shorter spawning season increases the
likelihood that in some years there will be little-to-no temporal overlap between larvae
and environmental conditions conducive to growth and survival. As a result, contracted
spawning periods are often accompanied by greater recruitment variability (Mertz and
Myers, 1994). Climate-induced range contraction of species has been linked to reduced
genetic diversity (Rubidge et al., 2012). It is possible that phenological contractions
could have similar effects on genetic diversity. In addition, a lack of adaptive
phenological change in some species has been associated with declining abundance

(Willis et al., 2008; Cleland et al., 2012).
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These factors suggest that phenological plasticity may be a useful metric for
predicting which species may benefit from or be impaired by climate change (Cleland et
al., 2012). Further evidence of this comes from the fact that fishes with earlier spawning
were more likely to shift their range in response to climatic variations (Hsieh et al., 2008;
Hsieh et al., 2009), suggesting a link between these two modes of adapting to climate
change. Commonalities between species in each phenology group may prove useful for
discerning how species yet to be studied will react to climate change. Characteristics that
affected phenology were habitats used by larvae and adults, taxonomy, and relative
abundance (Fig. 1.6). Habitat not only influenced phenology, but is also a major factor
affecting synchronous variations in fish abundance in the CCE (Koslow ef al., 2013).
Epipelagic species using coastal-oceanic habitats were the group most likely to exhibit
earlier spawning. Their phenological plasticity may reflect the fact that many of these
species are batch spawners that can reproduce as frequently as once a week (Hunter and
Goldbert, 1980). These species also live in the upper water column where they are
exposed to larger changes in climate. Lastly, epipelagic species typically have short life
spans allowing for possible genetic adaptation to changing conditions. Other studies of
climate change effects on fishes have indicated that pelagic species possess heightened
climate sensitivity (Murawski, 1993; Cheung et al., 2009).

While taxonomic order was indicated as a species characteristic that influenced
phenology, the importance of this characteristic is uncertain given that habitat use co-
varies across taxonomic groups. In addition, different species in the same genera (e.g.,
Sebastes), as well as different phenophases of the same species, were often classified as

belonging to separate phenology groups (Table S1.1). Terrestrial studies have produced
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divergent results regarding whether phylogenetic relatedness affects phenological
plasticity (Willis et al., 2008; Cleland et al., 2012).

Frequency of occurrence in CalCOFI samples was the third species trait related to
phenological change (Fig. 1.6d). While this could potentially reflect difficulties in
detecting trends among rarer species, this seems unlikely given that even the least
frequently occurring species in this analysis was sampled 185 times. A more likely
explanation is that abundant species in this region are adapted to large natural,
interannual-to-decadal variations in climate in the CCE, such that they have developed
behavioral strategies that allow them to shift phenology in response to changing
temperatures. This responsiveness to natural variability may ensure that these species will
exhibit greater flexibility in adapting to secular trends in climate.

Current and future changes in fish phenology will require that fishery managers
implement precautionary and adaptive management approaches. Management activities
that may be affected by changing phenology include: 1) seasonal fishing closures
designed to protect sensitive life stages or maintain sustainable escapement, 2) stock
assessment surveys timed to coincide with seasonal migrations or the occurrence of a key
life history stage (e.g., daily egg production method surveys), and; 3) optimizing the
release time of hatchery reared fish for stock enhancement (Chittenden et al., 2010;
Kaltenberg et al., 2010). Monitoring long-term changes in phenology and periodically
adjusting the timing of seasonal closures, surveys, and hatchery releases will be important
for ensuring that management tactics remain effective. In cases where fish phenology is
linked to cumulative, seasonal changes in temperature or other variables, it may be

possible to develop short-term, operational forecasts to predict when a fishery should
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open or when a stock assessment survey should occur (Anderson and Beer, 2009; Greve
et al., 2004). In cases where climate change leads to increased phenological mismatches
and resulting recruitment failure, the carrying capacity of an ecosystem may be reduced,
necessitating changes to harvest guidelines. Longer rebuilding times of depleted stocks
may also be needed if mismatches lead to prolonged periods of poor recruitment (Holt
and Punt, 2009).

In conclusion, long-term, secular changes in the spawning phenology of fishes
were apparent in the CCE even though this region is strongly influenced by decadal
climate oscillations. Among species whose phenology has become earlier since the
1950s, the mean rate of change was 6.4 days decade™. This rate was much faster than
rates from many terrestrial ecosystems, but was comparable to phenological studies of
other marine organisms, indicating that climate change may lead to a rapid reorganization
of seasonal patterns in marine communities. In contrast to other ecosystems, both
sustained advances and delays in phenology were observed in the CCE, reflecting the
opposing influences of temperature and upwelling on phenology. Similar changes are
likely to occur in other EBCs if global warming alters the seasonal intensity of upwelling.
Among species with no long-term shifts in phenology, a shortened seasonal peak in larval
abundance could lead to heightened recruitment variability. Since zooplankton phenology
did not change in synchrony with fishes that are spawning earlier, these species may be

subject to increased mismatches with their prey.

4. Materials and Methods



45

Ichthyoplankton samples were collected by CalCOFI along six transects (i.e.,
lines 76.7-93.3), which extended offshore of California between San Diego (33.0° N) and
north of Point Conception (35.1° N). During each cruise, 66 stations were typically
surveyed with oblique tows of bongo or ring nets (Fig. S1.1). Kramer et al. (1972)
describes methods used to catch, preserve, and identify ichthyoplankton. Throughout this
time series, two modifications were made to sampling methods. First, tow depth was
increased from 140 m to 210 m in 1969. This was accompanied by a change from using a
net with 550-pm silk mesh to a nylon net with a 505-pum mesh. Second, the 1.0-m ring
net initially used to sample ichthyoplankton was replaced with a 0.71-m bongo net in
1977 (Ohman and Smith, 1995). While slightly more larvae >6.75 mm TL were caught
with the bongo net, large larvae made up such a small fraction of total abundance that
there was not a significant difference between the number of larvae captured by the two
nets (Hewitt, 1980). The change in tow depth also had a minimal effect on abundance
because most larvae resided at depths <125 m (Ahlstrom, 1959; Koslow et al., 2013).
Data were averaged decadally to develop a monthly time series.

Only taxa identified to species level were included in this analysis to avoid
confounding changes in species composition with shifts in phenology (Edwards and
Richardson, 2004). Cumulative rank occurrence of ichthyoplankton taxa sampled
between 1951-1998 was used to select species for inclusion in this study. The 90"
percentile of the cumulative rank occurrence curve included 43 species, which were
examined here. Due to improvements over time in identifying larval fishes, some taxa
were not consistently identified during the first two decades of CalCOFI. As a result,

insufficient data were available to analyze three species during the 1950s (Argyropelecus
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sladeni, Lestidiops ringens, and Oxyjulis californica) and an additional three species
during both the 1950s and 1960s (Cyclothone signata, Danaphos oculatus, and
Melamphaes lugubris). Three criteria were used to determine whether a species with
several seasonal peaks in abundance should be classified as having multiple phenophases.
First, peaks in abundance must be separated by >3 months. Second, the amplitude of each
peak must be >50% of the annual range in larval abundance. Third, the dip in abundance
between peaks must encompass >35% of the annual range. Mean seasonal abundance
from the full time series was used to evaluate these criteria.

CT was used as the main measure of phenology in this study because it accounted
for data collected during all seasons, can be calculated from a time series with a monthly
resolution, and is a conservative metric that is unlikely to overestimate the rate of
phenological change (Ji et al., 2010). The CT of each phenophase was calculated with the

formula (Edwards and Richardson, 2004):

12 12
CT = E(ml. >"ai)/zai,
i=1 i=1

where a; was mean abundance of larvae in month m;, such thati=1, 2, ...12 denoted
January, February, ... December. For species with two phenophases, each year was
divided into two six-month periods (typically January-June and July-December) for
which the CT was computed. For species whose abundance increased between December
and January, the CT was calculated so that i = 1 referred to the month when the seasonal
rise in abundance started. Phenological anomalies were calculated relative to the mean of
the CTs from the six decades examined. This ensured that each decade was weighted

equally regardless of whether fish abundance was high or low. An anomaly of 1 indicated
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a 1-month change in phenology. To convert monthly anomalies into daily values, they
were multiplied by 30.44. The duration of peak larval abundance was used as a second
metric to examine changes in fish phenology. This was defined as the number of months
when mean abundance of larvae was >70% of its annual maximum.

All statistical analyses were conducted in MATLAB (MathWorks, Inc., Natick,
MA, USA). Two approaches were applied to examine assemblage-wide trends in
phenology. First, a linear regression was performed in which decadal CT anomalies of all
phenophases were regressed against year. The slope of this regression was used to
estimate the mean rate of change in days decade™. For all statistical tests, p < 0.05 was
considered significant, while p < 0.10 was classified as marginally significant. Principal
components analysis (PCA) was employed as a second method for assessing assemblage-
wide changes. The CT of each phenophase was normalized by its mean and standard
deviation to give equal weight to all phenophases in the PCA (Clarke and Warwick,
2001). Species with missing data from the 1950s and 1960s were excluded from this
analysis, so that the correlation matrix for the PCA would be complete.

Phenophases were classified into three groups based on correlations between CT
and year. Phenophases with » < -0.5 were categorized as exhibiting earlier phenology;
correlations between -0.5 and 0.5 indicated no long-term, linear changes, and;
phenophases with » > 0.5 were classified as displaying later phenology. Note that |r| > 0.5
does not correspond to a specific threshold of statistical significance, but is instead
intended to provide a liberal indication of the direction of phenological change. As was
done for the assemblage-wide mean, the slope of regressions between CT anomalies and

year were used to estimate rates of change for phenophases in each group. Regression
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was also used to investigate changes in the duration of peak larval abundance. Based on
the regressions, the mean and standard error of changes in CT and season duration were
calculated for phenology groups. Monte Carlo simulation was used to determine
confidence intervals for long-term changes in CT and the duration of peak larval
abundance (SI text, Fig. S1.3, Tables S1.2-S1.3). The SI text and Fig. S1.2 also include
an evaluation of potential bias due to missing data from May, September, and December
during the 2000s.

This study examined how three basin-scale climate oscillations, three local
oceanic variables, and 11 ecological characteristics affected the phenology of larval
fishes. Details of each analysis are described in the SI text. Climate indices (e.g., ENSO,
PDO, NPGO) were partitioned into a set of three categorical variables for use in
ANOVA. Lilliefors’ test, Bartlett’s test, and plots of residuals were used to ascertain
whether the ANOVA assumptions of normality, homoscedasticity, and independence of
residuals were met (Sokal and Rohlf, 1995). If an ANOVA indicated a significant climate
effect, Tukey-Kramer multiple comparison tests were employed post-hoc to determine
which climate phases exhibited significant phenological differences. The CT of local
oceanic variables (e.g., SST, zooplankton volume, coastal upwelling) was calculated on a
decadal basis for the years 1951-2008 to identify long-term trends and fluctuations in the
seasonality of these variables. Linear regressions were performed to investigate the
relationship between the CT of oceanic variables and the CT of fishes in each phenology
group. The effects of ecological characteristics on fish phenology were either evaluated
with linear regression or ANOVA depending on whether each independent variable was

categorical or continuous.
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Projections of 21* century changes in phenology were based on a multi-model
dataset developed during phase 3 of the World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project (CMIP3) (http:/www-

pcemdi.llnl.gov/ipcc/about ipcc.php). Of the 25 models included in CMIP3, 12 were

selected for examination due to their ability to replicate the spatial signature of the PDO
with a correlation of » > 0.7 (Wang et al., 2010). Data on SST and coastal upwelling
derived from meridional wind speed were extracted from CMIP3 to serve as predictors of
changes in fish phenology. Monthly SST and meridional wind speed from the A1B
scenario were examined during 2000-2009 and 2090-2099 and averaged over 30-35° N
and 117-125° W. Projections of seasonal upwelling were unaffected by whether winds
were extracted from this area or solely the area west of Point Conception, where
upwelling is maximal off southern California (Mantyla et al., 2008). To calculate the
volume of offshore Ekman transport (Qy), wind stress (z) was first computed with the
formula: 7, = pair Ca vz, where v is meridional wind speed at an atmospheric pressure of
100 kPa, p,;, is the density of air, and Cy is a drag coefficient (1.2 x 107) (Trenberth et
al., 1989; Stewart, 2004). O, was calculated from the equation: O, =7, * (pf)", where p is
the density of seawater and f'is the Coriolis parameter (Pond and Pickard, 1995). A mean
surface water density of 1,024.5 kg m™ and an fof 7.83 * 10° s (based on a mean
latitude of 32.5° N) were assumed for the CalCOFI region. O, was multiplied by 100
since the Bakun upwelling index examined Ekman transport over 100 m of coastline
(Bakun, 1973). The CT of SST and upwelling were calculated from decadally averaged
CMIP3 data for the 2000s and 2090s. The linear regression between SST CT and species

with earlier phenology (Fig. 1.5b) was used to predict the extent of phenological changes
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between these decades. For species with delayed phenology, a multiple regression using
the CT of SST and the Bakun upwelling index as independent variables was developed
from CalCOFI data. The resulting regression equation was ¥ = -0.0092 — 0.5503.X; +
1.7836.X>, where Y was the CT anomalies of species with delayed phenology, X; was SST
CT, and X, was the upwelling CT (F =13.2, d.f. =49, p <0.001). This formula was then
applied to forecast changes in the CT of delayed species between the 2000s and 2090s

with CMIP3 data.
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Figure 1.1. First principal component of the central tendency of larval fishes. Positive
values of eigenvectors on the y-axis indicate later occurrence of larvae, where negative
values indicate earlier occurrence.
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Figure 1.2. Histograms showing the rate of phenological change in days decade™ among

species with phenophases displaying (A) earlier phenology (n = 20); (B) no long-term,
linear change in phenology (n = 22), and; (C) later phenology (n =9).
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Figure 1.3. Decadal changes in the duration of peak larval abundance for species that did
not exhibit long-term, linear changes in phenology based on central tendency. The
duration of peak larval abundance was estimated as the number of months when larval
abundance >70% of its annual maximum. Standard errors are shown. n = 128.
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Oscillation (PDO; D-F) on species displaying earlier phenology (left column; n = 60), no

long-term, linear change in phenology (middle column; n = 66), and later phenology
(right column; n = 27). In each box plot, the darkened line indicates the median; boxes
show the inter-quartile range; whiskers indicate the expected extent of 99% of the data

for a Gaussian distribution, and; crosses show outliers. Two outliers fall outside the range
displayed in A. Capital letters below boxes indicate means that differ significantly at p <

0.05 based on Tukey-Kramer multiple comparison tests. (A-C) Duration of El Nifo,

neutral (Neut), and La Nifia conditions is based on the Oceanic Nifio Index. (D-F) Negl —
Cold-phase PDO between 1951-1976; Pos — Warm-phase PDO from 1977-1998; Neg2 —
Cold-phase PDO during 1999-2002 and 2007-2008.
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Figure 1.5. Responses of the phenology of larval fishes to changes in the central tendency
(CT) of sea surface temperature (SST) and the Bakun upwelling index at 33° N and 119°
W. Units of all CT anomalies (CTa) are days. (A) Decadal changes in SST CT. Standard
errors from bootstrap analysis are shown. (B) Relationship between SST CT and species
with earlier phenology. Regression line: ¥'=0.0201 + 0.9122X, F=75.3, p <0.001, n =
120. (C) Relationship between SST CT and species with later phenology. Regression
line: Y=-0.0064 — 0.6544X, F=20.1, p <0.001, n = 57. (D) Relationship between
upwelling CT and species with later phenology. Regression line: ¥ =-0.0061 + 2.7568X,
F=10.1,p<0.01,n=57.
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larval fish phenology: (A) taxonomic order (n = 45); (B) adult habitat (n = 51); (C) cross-

shore distribution (n = 51), and; (D) frequency of larval occurrence in samples from

California Cooperative Oceanic Fisheries Investigations (n = 51). Box plots are the same

as in Figure 1.4. Lower case letters below boxes indicate means that differ at p < 0.1
based on Tukey-Kramer multiple comparison tests. (A) Orders: Stomi — Stomiiformes;
Perci — Perciformes; Scorp — Scorpaeniformes; Mycto — Myctophiformes; Argen —
Argentiniformes; Pleur — Pleuronectiformes. (D) Regression line: ¥ =43.2874 —

17.4528*logo(X), F = 4.4, p < 0.05.
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CHAPTER 1 APPENDIX:

SUPPLEMENTAL INFORMATION FOR THE MANUSCRIPT CLIMATE CHANGE

AND DECADAL SHIFTS IN THE PHENOLOGY OF LARVAL FISHES IN THE

CALIFORNIA CURRENT ECOSYSTEM
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S1. Precision of Estimates of Phenological Change and Evaluation of Bias due to

Gaps in Sampling

A sensitivity analysis based on Monte Carlo simulation was conducted to quantify
observation error related to noise from variations in larval abundance and the sparse,
seasonal sampling resolution of California Cooperative Oceanic Fisheries Investigations
(CalCOFI). First, the seasonal distribution of a simulated larval species was modeled with
a Gaussian curve where June 15 was initially the mean date of larval occurrence and
there was a 1-month standard deviation. This implied that 95% of larvae would be
observed within + 2 months of the mean. The Gaussian curve was multiplied by 10 to
more realistically approximate larval abundance in the CalCOFI region. Variations in
larval abundance that could affect the calculation of seasonal central tendency (CT) were
stochastically generated from a coefficient of variation (C.V.) ranging between 0.05—
0.60. Twelve C.V.’s separated by 0.05 intervals were used. This range was selected based
on the empirical C.V. of monthly larval abundance for representative species sampled by
CalCOF¥FI (e.g., Argentina sialis, Engraulis mordax, Lipolagus ochotensis, Scomber
Jjaponicus, Tetragonurus cuvieri). Next, shifts in phenology at rates of 0-12 days decade™
were simulated over six decadal time steps. For each time step, the CT was calculated
from monthly mean values extracted from the underlying continuous, Gaussian
distribution. This process was repeated 1,000 times for each C.V. and rate of
phenological change. The 90% and 95% confidence intervals of CT were calculated
based on these simulated values to assess the precision of this estimate of phenological

change.
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The median CT from the Monte Carlo simulations accurately estimated the
underlying changes in the Gaussian curve across all C.V.’s tested (Fig. S1.3a). For the
largest C.V. considered, the 90% and 95% confidence intervals of CT always fell within
+2.8-3.1 and +3.3-3.6 days decade™, respectively, of the simulated change in phenology
(Table S1.2). The 90% confidence intervals corresponded closely to the minimum rate of
change observed among species categorized as displaying earlier or later phenology (Fig.
1.2). This confirmed that, despite the coarse, seasonal sampling resolution of CalCOFI,
this study was able to obtain reliable estimates of which species exhibited shifts in
phenology.

A second Monte Carlo simulation was performed to assess how precisely changes
in phenophase duration could be estimated. Here the mean of the underlying Gaussian
curve was kept constant, but the standard deviation was varied between 1.5 and 1 months,
corresponding to an approximately 2-month contraction in the period when 95% of larvae
would be observed. For each decadal time step of the simulation, the number of months
when larval abundance was >70% of its maximum was calculated to determine how well
this metric was able to approximate changes in the underlying standard deviation.
Decadal trends in the 70% metric were then estimated with linear regression across the
six time steps for a simulated assemblage of 20 species. All other steps in this simulation
were the same as those described above for the Monte Carlo simulation performed on
CT.

The 70% metric used to approximate the duration of peak larval abundance
consistently underestimated simulated changes in phenophase duration (Fig. S1.3b, Table

S1.3). This was particularly true when larger C.V.’s were considered. The 70% metric
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was also unable to detect significant changes in phenophase duration if the C.V. of
simulated larval fish abundance was larger than 0.3 (Table S1.3). Conversely, the 90%
and 95% confidence intervals for season duration were only significantly different from
zero and contained the simulated rate of change when the C.V. was small (i.e., C.V. =
0.05) and the underlying change was large (i.e., >8 days decade™). This limited capacity
to detect simulated changes may reflect a need for higher resolution, temporal sampling.
Consequently, the observed change in season duration for the phenology group with no
long-term trends (Fig. 1.3) should be viewed with caution. The underestimation of
changes detected with the 70% metric may imply that this phenology group has actually
undergone a much larger contraction in season duration. It is possible that other
phenology groups may have experienced undetected shifts in phenophase duration since
the 70% metric has a low capacity to detect significant changes.

A second potential source of error stemmed from the fact that no CalCOFI
surveys were conducted in May, September, or December during the 2000s. This could
skew estimates of CT from this decade and bias inter-decadal trends. To evaluate this
bias, I recalculated CT after removing these months from the entire time series so that all
decades would have an identical monthly distribution of data. The first principal
component of this new dataset accounted for 29.9% of variance and continued to show a
progression towards earlier phenology (Fig. S1.2b). However, phenological advancement
was no longer evident when examining the mean CT for all 43 species (Fig. S1.2d). For
the three phenology groups, decadal trends in CT were extremely similar regardless of
whether the missing months were included or excluded from the analysis, indicating

resiliency to this potential source of bias (Fig. S1.2e-j). In addition to being able to detect
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divergent trends obscured by the mean, this is another reason why this analysis
principally focused on the three phenology groups when investigating long-term,
ecological changes.

Measurements of CalCOFI sea surface temperature (SST) and mesozooplankton
displacement volume were also unavailable during May, September, and December in the
2000s. Again, these months were removed from the time series in its entirety and CT was
recalculated to detect potential biases resulting from gaps in sampling. Figure 1.5 only
presents results where there was consistency between the full and partial time series in

terms of the significance of environmental effects on fish phenology.

S2. Relationships between Phenology, Climate, Oceanic Conditions, and Ecological

Traits

The effects of three basin-scale climate oscillations (e.g., ENSO, PDO, NPGO)
and three local environmental variables (e.g., SST, zooplankton volume, coastal
upwelling) on fish phenology were examined. ENSO events were characterized with the
Oceanic Nifo Index (ONI) produced by the National Centers for Environmental

Prediction (http://www.cpc.ncep.noaa.gov/products/analysis monitoring/ensostuft/

ensoyears.shtml). This index was selected because it defines the onset and termination of

El Nifio and La Nifia on a monthly basis. The PDO index was obtained from the Joint
Institute for the Study of the Atmosphere and Ocean (Mantua et al., 1997,

http://jisao.washington.edu/pdo/PDO.latest). The NPGO index was developed and made

available by Emanuele Di Lorenzo at the Georgia Institute of Technology (Di Lorenzo et
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al., 2008; http://www.o3d.org/npgo/npgo.php). SST and mesozooplankton displacement

volume were measured at CalCOFT stations where ichthyoplankton samples were
collected. Gelatinous organisms with biovolumes >5 cm® were excluded from
measurements of zooplankton volume (Kramer et al., 1972). Zooplankton volume from
1969-1977 was multiplied by a correction factor of 1.366 to account for changes in net
type and tow depth (Ohman and Smith, 1995). The monthly Bakun upwelling index from
33° N and 119° W was obtained from the Environmental Research Division at the

Southwest Fisheries Science Center (Bakun, 1973; http://www.pfeg.noaa.gov/products/

pfel/modeled/indices/upwelling/upwelling.html). This index estimates offshore Ekman

volume transport based on atmospheric pressure fields. At 33° N and 119° W, the Bakun
upwelling index overestimates offshore transport due to a discontinuity in the
atmospheric pressure gradient related to the presence of coastal mountains (Bakun,
1973). Nevertheless, this index is still correlated with upwelling measured with the
QuikSCAT scatterometer (r = 0.6; Pérez-Brunius et al., 2007). Also, the CT of
QuikSCAT upwelling over the CalCOFI region during the 2000s fell within the 95%
confidence interval of the Bakun upwelling index CT from this decade (Fig. S1.5).

Each climate index was partitioned into three categorical variables for use in
ANOVA. The ONI was divided into La Nifia, El Nifio, and neutral periods. PDO
categories included: 1) a negative PDO between 1951-1976; 2) a positive PDO between
1977-1998, and; 3) a second, negative PDO in 1999-2002 and 2007-2008 (Peterson,
2009). The years 2003-2006 were excluded since there were insufficient data to construct
a monthly time series of larvae during this second, positive PDO. Positive, neutral, and

negative NPGO periods were defined on a monthly basis according to whether this index
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had a value > 0.5, between 0.5 and -0.5, or <-0.5, respectively. These thresholds were
selected so that there were an approximately equal number of months in each NPGO
category. For each climate index, CT anomalies were calculated for fish phenophases.
Initially, crossed, two-way ANOV As were performed using climate index and phenology
group as independent variables. Since significant interactions were observed between
most phenology groups and climate indices, separate one-way ANOV As were performed
to evaluate climate effects on each phenology group. Lilliefors’ test, Bartlett’s test, and
plots of residuals were used to ascertain whether the assumptions of normality,
homoscedasticity, and independence of residuals were met (Sokal and Rohlf, 1995).
Lilliefors’ test indicated that the assumption of normality was violated for the ANOVA
examining ENSO effects on the earlier phenology group. As a result, a non-parametric
Kruskall-Wallis test was performed in lieu of ANOVA. If an ANOVA or Kruskall-Wallis
test revealed a significant climate effect, Tukey-Kramer multiple comparison tests were
employed post-hoc to determine which climate phases exhibited significant phenological
differences. The effects of the PDO and NPGO on individual species were also examined
over time lags of 0 and 1 year. However, this analysis is not presented since results were
not significant for any species after applying corrections for multiple hypothesis testing
(Benjamini and Hochberg, 1995).

SST, zooplankton volume, and the Bakun upwelling index were selected as the
local, environmental variables to be examined due to known interannual-to-decadal
variations in their seasonality (McGowan et al., 2003; Mendelssohn et al., 2004; Venegas
et al., 2008; Bograd et al., 2013; Liu and Peterson, 2010) and their potential to affect fish

phenology through physiological and trophic pathways. The CT of these variables was
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calculated decadally for years between 1951-2008. Unlike upwelling and larval fish
abundance, measurements of SST and zooplankton volume never approached zero during
any month of the year. This weakened the weighting of these variables by month when
calculating the CT, resulting in a CT skewed towards the middle of the year. To increase
the influence of monthly weights, the minimum monthly mean value (e.g., 13° C for SST
and 38 cm’ per 1,000 m® of seawater strained for zooplankton volume) was subtracted
from the decadally averaged time series prior to calculating the CT. After computing the
CT of each variable, its standard error was estimated with a bootstrap approach (Efron
and Tibshirani, 1993). Linear regressions were performed to investigate changes in the
CT of environmental variables over time. A second set of regressions examined the
relationship between the CT of environmental variables and the CT of fishes in each
phenology group.

Seven characteristics of species related to their phylogeny, ecology, and fishery
status were evaluated with ANOVA to assess whether they affected rates of phenological
change. These characteristics included taxonomic order, season of maximal larval
abundance, trophic level, habitat use by adult fishes, cross-shore distribution,
biogeographic affinity, and fishing status. Table S1.1 describes classification of fishes
with respect to these characteristics. Trophic level was divided into three categories (e.g.,
<3.1, 3.1-3.5, and >3.5) for use in ANOVA. Initially, the mesopelagic category of
habitats used by adult fishes was farther subdivided into vertically migrating and non-
migratory mesopelagic species. These classifications were later merged since no
significant difference was observed between migratory and non-migratory mesopelagic

fishes in terms of phenological changes. The ANOVA examining taxonomic order only
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evaluated orders for which there were data available on at least five phenophases. In the
ANOVA on the season of maximal abundance, winter included December-February,
spring encompassed March-May, summer covered June-August, and fall comprised
September-November. Again, Lilliefors’ test of normality, Bartlett’s test of homogeneity
of variances, and plots of residuals were used to verify that ANOVA assumptions were
met. Since only two categorical variables were used to assess fishing status and these
categories had unequal variances, a Behrens-Fisher test was used in lieu of ANOVA
(Sokal and Rohlf, 1995). Tukey-Kramer multiple comparison tests were conducted post-
hoc to evaluate which categories in ANOV As were significantly different.

Four additional species characteristics that could not be easily reduced to
categorical variables for inclusion in ANOVA were also examined. Research on
terrestrial ecosystems has suggested that species that shift their phenology to track
changing conditions often have higher reproductive output and faster growth, leading to
increased abundance (Willis et al., 2008; Cleland et al., 2012). To evaluate whether
phenological shifts were more common among abundant species, the log;o transformed
frequency of larval occurrence during CalCOFI surveys was regressed against changes in
CT. Since fishing also affects abundance, a second test only examined unfished species.
This test assessed whether long-term trends in fish phenology were linked to changes in
larval abundance. The mean decadal abundance of each unfished phenophase was
regressed against time. The slope of the regressions was used to calculate a mean rate of
changes in abundance and a 95% confidence interval for each phenology group to
determine if any group exhibited a significant long-term decline or increase in the

abundance of its constituent species.
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The amplitude of a species’ seasonal cycle of abundance is another ecological
trait that may affect its likelihood to undergo a shift in phenology. This is especially
relevant since some mesopelagic species (e.g., Danaphos oculatus, Diogenichthys
atlanticus) exhibited weak seasonality and their larvae were present year round in the
southern CCE. To test the hypothesis that species with a small amplitude of seasonal
abundance will be less likely to display phenological shifts in either direction, the log.
(x+1) transformed, mean amplitude of seasonal abundance was regressed against the
absolute value of changes in the CT of larval fishes.

Lastly, this study explored whether species that underwent shifts in phenology
were more likely to change their geographic range in response to fluctuating climatic
conditions. This was accomplished through a comparison with Hsieh et al. (2008, 2009),
who investigated climate-related shifts in the distribution of 35 of the species examined
here (Table S1.1). One-tailed binomial tests were used to evaluate whether there was a

>50% probability that species in each phenology group exhibited a range shift.



Point Conception
34°N
32°Nf| .
30°N T . L\ 1
124°W 122°W 120°W 118°W

68

Figure S1.1. Sites where larval fish abundance was sampled. The rectangular box in the

inset map shows the location of the study region relative to the West Coast of North

America.
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Figure S1.2. Decadal trends in the central tendency (CT) of larval fishes based on the full
dataset (left column) and a partial dataset where May, September, and December were
removed (right column). The partial dataset was used to examine any biases due to lack
of sampling during these months in the 2000s. (A-B) Eigenvectors for each decade from
the first principal component of the CT of larval fishes. Decadal means and standard
errors of the CT of all fish species (C-D; n = 290), species with earlier phenology (E-F; n
= 110), species with no long-term, linear trend in phenology (G-H; n = 128), and species
with later phenology (I-J; n = 52).
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Figure S1.3. Median values of detected and simulated changes in (A) central tendency
(CT) and the (B) duration of larval occurrence. Units on the x- and y-axes are days
decade™. Medians were generated from 1,000 Monte Carlo simulations each for rates of
phenological change between 0-12 days decade™. Results are shown for coefficients of
variance of 0.05 (black circles), 0.30 (inverted, black triangles), and 0.60 (black squares).
The dotted line shows a 1:1 relationship between simulated and detected changes. Note
that these lines overlap in (A).
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Figure S1.4. Effects of the North Pacific Gyre Oscillation (NPGO) on the seasonal
central tendency (CT) of fish species displaying earlier phenology (A; n = 60), no long-
term, linear change in phenology (B; n = 66), and later phenology (C; n =27). In each
box plot, the darkened line indicates the median; boxes show the inter-quartile range;
whiskers indicate the expected extent of 99% of the data for a Gaussian distribution, and;
crosses show outliers. Neg — NPGO index < -0.5; Neut — NPGO index between -0.5 and
0.5; Pos — NPGO index > 0.5. ANOVA results for earlier species: F 57 = 1.6, p =0.22;
species without a linear trend: F; 43 = 0.2, p = 0.81; later species: F,2,=0.5, p=0.61.
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Figure S1.5. Decadal changes in the central tendency (CT) of the Bakun upwelling index
at 33° N and 119° W (A) and zooplankton volume from California Cooperative Oceanic
Fisheries Investigations (CalCOFI; B). 95% confidence intervals from bootstrap analysis
are shown. The white circle in (A) denotes the decadal CT of upwelling velocity within
the CalCOFT area based on data from the QuikSCAT scatterometer.
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Figure S1.6. Projected changes in the phenology of larval fishes between 2000-2009 and

2090-2099 based on climate models from the Intergovernmental Panel of Climate

Change Fourth Assessment Report (IPCC AR4). All predictions are for [IPCC scenario

A1B. Abbreviated IPCC names for each model are shown. (A) Species whose phenology
became earlier during the 20™ century. (B) Species whose phenology became later during

the 20™ century.



74

¥9°0- Jaquisydeg
120 ,SOA  pausiun ,0€ Jorem-uiep ojuead olbejadossy youepy ejeubis auoyjojofn
aeplewolsouoy)
sawLIolIWO0)S
G/ 0- ,SOA  paysiun Ve ,481em-1009 oluead olbejadossy yolep sIsuajoyoo snbejodi]
Juonnauisip oluUB8d

€20 (SOA  paysiun % o4 BpIM -[eiseo) oibejadosspy youepy sniqs snssojboinay
29°0 ,ON  paysiun Z8 ,4e1em-j0o0) ojuead olbejadossy Anp 1yjesem snbejAyieg
¥8°0 ,ON  paysyun ot ,491em-1009 olueao( olbejadoss|y yolen snoljioed snbejAyieqg

2epIIewWo}SooIN
guonngiisip
920 ¢SOA  pausiun s kB apIM [e1seo0) [esiaweQ yorep sieis eunuably
aepiunuabiy
sawojiunuabiay

oluB8d
L€0- SOA paysi4 oyl T lolem-uLep -[eiseo) oibejadidg judy xebes sdouipies
aepiadn|)
¢ Luonnquisip o|uead(
6€°0- SOA paysi4 08 apIM -[eiseo) o16ejedidg youep xepJouw sinelbug
aepinesbug
sawoyan|)
4 uonnquisip ;Shieis [9A9) Anuyye uonnguisip - 1ejdey jnpy  eduepunge se10edg
ul buiysi4q olydosy  aydeubosboig 910ys-Ss01) [eAJe)
sebueyo unpy wnwixew
peiejal 10
-ejewl|D (s)upuopy

"douepUNQR [BATR] UT Jedd [RUOSEBIS

(OB JOJ PAPN[OUI I SIUIIDIFJI0D uone[a1109 desedas ‘saseydouayd om) yim sa10ads 10 "9 = u "A30j0udyd ur dFueyd JBIUI] W)
-3U0] Ou PAIBIIPUI G'() > .L > G- ‘pue ‘AS0j0udyd JS1[IBS PAJRIIPUI G- > £ ‘AS0Joudyd Jo)e| SPIeMO) PYIYS B PAJedIPUl ¢°() < £ Jey)
yons ‘sdnoi3 A5ojouayd ojur pOpIATIP 1M SA10AAS "UMOYS I8 IPLIIP PUB SIA[BWOUR AOUIPUI) [BIIUID UIIMII(Q SUOISSAISI WOIJ

A SJUSIOIJO0D UOTIR[AIIOD UOSIBIJ "SILIS W} AINUD Y} JOJ sutdpied [euoseas ueaw uo paseq st aseydouayd yoes J0J douepunge
[eATR] WNWIXBW JO YIUOJA “AS0[oudyd [eAIe] UI SIJIYS [EPLIIP UO 11D JIdY) UIWIAIIP O} PIIS) SONSLIAIRIRYD $3103dS '['1S QR



75

L UoNNGLISIP

18°0- ,SOA  pausiun Ve apIM oluead olbejedossy yorep U8y wnjyoeiqouueN
guonnguisip
0L'0 V/N paysuyun OB apIM oluead() olbejedoss Ainp  giebai wniyoriqouuen
LG0 laquiejdeg
0.°0- ,ON  paysiun 218 Aelem-uuep oluead olbejedoss judy  snonueye sAyyoiusboiq
 uonnquisip 1pUBSUMO]}
10°0- ,ON  paysiun ,S°€ apIM oluead olbejedoss|y 1snbny snjadoosojels)
aepiydoroAp
sawojiydoyo Ay
guonngusip
G9°0- V/N paysuun s, apIM olueed olbejedoss|y 1snbny suabuu sdoipise
aepipidajeieyq
sawoydo|ny
220 ,ON  pausiun L0 orem-uuep oluesd olbejpdoss yorepy 18]UBALIIE SBIWO]S
uonnquisip snwojsoijue
¥ 0- ,ON  paysiun ,8€ BpPIN olueao( olbejadosapy 1snbny snyjueoeIp|
LL0- ,SOA  paysyun LY ,481em-100) oluead olbejpdossp 1snbny unooew snpoiney?n
aeplwols
€G°0- ,SOA  pausiun ,0€ Jerem-uep olueed olbejadossp 1snbny Bl1oon| elIanbiouip
aepiAyydisoyd
guonnguisip
9/'0- V/N paysyun JOE apIM olueed( olbejodosspy  JOqUIBAON snjenoo soydeueq
29°0- laquienoN
,uonnguisip
99'0- ,SOA  pausyun b8 apIM oluead olbejadossp yoleyy  1uspels snosjadoifbiy
aepiysfidoulals
4 uonnqiisip ;Shieis [9A8) Auyge ,uonnguisip - jeliqey ynpy  eduepunqge seoadg
ul buiysi4 olydosy  oydesbosbolg 910YS-SS0.1) [eAle|
sebueyo unpy wnwixew
peiejel 10
-ajewl|) (s)upuopy

(Panunuod) 11§ d[qeL



76

620 ¢ON paysi4 58 ¢ J91EM-]00D [e1SBOD [esiawa( Aenuep sjuidsioned sa)seqes
LG 0- ON paysi4 48 8 ¢ -, 101eM-1000 [e1se0) [esiswaq Areniged iuepiof sajseqas
850 V/N paysi4 ,S°€ Jerem-100D [e1se0) [esiswaQ Arenige4 18p00b sajseqas
8/°0- V/N paysi4 876 Jorem-100D [e1se0) [esiswe( 19q0100 eo.dojdip sejseqas
£€8°0- SOA paysi4 458 ¢ - 181eM-]000 [ei1se0) [eslewe( Aepy BJoine Sv8)Seqas

aepiuaedioss
sawojiuded.ioos

€50 laquiejdeg
900 ,SOA  paysyun B8 erem-wrem olueed() olbejedosep youep s1qnbny seeydwejayy
aepreydwesy
sauwuojvMiaqoueydals
,uonnquisip oluUB82Q
99'0- <SOA paysi4 suwB B apIMA -[e1se0) olbejedidg Alenige snjonpo.d snioonjispy
aeplooNa
saw.ojipen
¥6°0- ,SOA  Paysyun L8 Aorem-ue olueeod( olbejedosely Jeqweldeg  snuedixew sninjoydu |
89°0 aunr
sue|nualo
v 0- ,SOA  paysiyun JE ,J81em-1009 oluead olbejadosep yosep BlUBBQUO}BlIB |
290 Ainp
sIsualuIo}ieo
06°0- ,SOA  paysiun b8 ,4e1em-j0o) oluead olbejadossp [dy snioydojoquifs
sniesdoongj
0€°0- ,SOA  paysyun ,9°€ ,J8rem-1009 oluead olbejadose yosep sniyoeiqousls
119X0040
G2 0- ,SOA  paysiun S8 ,181em-|00) olueed() olbeadossy Aenuep wnydojoAwojoid
4 uohnquisip ZShiels [9A9) Auyge ,uonnquisip  jelgey ynpy  8duepunge seloedg
ul pbuiysiq olydosy  oydesbosboig 810Ys-Ss01D) [eAse|
sebueyd unpy winwixew
pejejel 10
-ejewl|O (s)uruon

(panunuoo) ['1§ d1qeL



77

¥€0 Ainp
260 SOA paysi4 ¢SV, plOrem-wiep [e1SB0) [esiowaQ Yole|N  Snojulojied sAypyoiereq
G000
- V/N paysiyun Ve ,Jejem-1009 [erseo) [esiewaQ 18qo0Q  sneewbys sAyyoueyiD
0S50 18q0100
80°0 V/N paysi4 Ve ,Jejem-1009 [e1se0) |esiowaQ Arenige snpipios sAyyoLeyiD
aepiAyyodijesed
SauwLIoo9uoInad|d
oluUB9d(
820 ON  pausyun ¢+8€ ¢ Jo1rem-1009 -le1seon oibejedidg 1970100 1IBIAND snunuobeja |
aepunuobena|
Juonnquisip oluBad(
¥9°0- ON paysyun aryl B 8pIM -lejseo) olBejedidy aunp 1uojbunyoo] sAypyoioy
aepiydojonua)
oluBad(
¥9°0- ¢SPA paysi4 VB Aorem-uLe A -leiseo) olbejadid3 Aep snojuodef 1equioos
aepLquoas
G/0- V/N paysiun L+ ,Jejem-1009 [erseo) |esiewaQ 1snbny BoJUIOJIIBD SIINIAXO
sepuqeT
GS'0 ¢SOA  Paysyun cplT g J0IeM-ULB [e1se0) |lesiaweq 1snbny siuuidipound siwoay)
aepliuasewod
¢ uonnguisip o|UB92Q
18°0- «ON paysi4 gvl'E apIM -[eiseo) oibejadidg aunp SNoLIJBWIWAS sninyoel |
aepibuete)
sawLIoy1943d
4 uonnquisip ,Sniels [9A9) Auiye ,uonnquisip  jeliqey jnpy  8duepunge se10edg
ul buiysiy olydosn  owydesboaboig 810Ys-SS04) [eAsg)
sebueyo ynpy wnwixew
peejal 10
-elewl| (s)uruon

(panunuoo) 1§ d[qeL



78

(1007) 10 12 19SOIN

(6002) v 12 Yo1sH |

(9002) 1 12 P1RU

(9007) 1 12 Ya1sH
WOJ'3SBqUSL /MMM :301N0S |
(8007) 17 12 Y91SH

(1107) 10ymoT

(5002) v 12 Y31SH |

/80 (ON  paysyun L Jorem-uwe [e1se0) [esiewaq yole|N  SieoiueA sAypyoiuoinald
G2 o- ¢SOA peusly . ,E€€ ,Jejem-100o [e1SB0D [esiowaQ yore snjmaa sAiydoseq
AR ON  paysiun ¢»9€ ¢ 491BM-|00D [e1seo) [esiowag udy sijixe ejjesdoA]
aepnioauoInd|d
4 uonnquisip ;Snels [OA9] Auiye ,uonnquisip  jeligey npy  8duepunge seloadg

ul sebueyo buiysiy olydosy  owydeisbosboig 810Ys-SS019) [eAle|

peiejal Unpy wnwixewl

-8jewl|o 0

(s)upuopy

(panunuoo) ['1§ A[qeL



79

Table S1.2. 95% confidence intervals for detecting simulated changes in the mean date of

larval fish abundance. Changes in simulated fish phenology were estimated based on
central tendency (CT). Confidence intervals were generated from 1,000 Monte Carlo
simulations each for fishes whose abundance varied according to 12 sets of coefficients

of variance and 13 rates of phenological change.

Simulated phenological change (days decade™)

0 1 2 3 4

0.05 -0.3-0.3 0.7-1.3 1.7-23 27-33 3.7-43

0.10 -0.5-0.5 05-1.5 1.5-25 24-3.6 3.5-4.5
S 0.15 -0.8-0.7 03-1.8 1.2-2.8 22-37 3.2-438
S 0.20 -1.0-1.1 -0.1-2.1 0.9-3.1 1.9-4.1 3.0-5.1
§ 0.25 -1.3-14 -0.3-22 0.7-34 1.6-4.3 26-54
5 0.30 -1.6-1.7 -0.7-2.6 0.4-3.5 1.4-4.6 24-56
‘qc: 0.35 -2.0-1.9 -09-29 -0.1-3.9 1.1-5.0 21-59
S 0.40 -21-24 -1.3-3.2 -0.1-4.5 0.8-5.2 1.9-6.2
"003 0.45 -26-24 -1.6-35 -0.6-44 05-54 1.3-6.7
o 0.50 -2.6-3.0 -2.0-3.8 -0.7-4.9 0.2-5.9 1.1-6.8

0.55 -3.2-33 -2.0-4.1 -1.0-52 0.2-6.6 11-72

0.60 -3.4-3.3 -2.3-45 -1.5-5.3 -0.2-6.6 05-74

Simulated phenological change (days decade™)
5 6 7 8 9

0.05 47-53 58-6.2 6.7- 7.3 7.7- 83 8.7- 93

0.10 45-55 55-6.5 6.5- 75 74- 85 85- 95
S 0.15 42-58 51-6.8 6.2- 7.8 72- 88 8.2- 938
S 0.20 3.9-6.0 48-7.1 59- 8.1 6.9- 9.1 8.0-10.0
§ 0.25 35-6.4 47-74 57- 84 6.7- 9.4 7.6-10.2
5 0.30 3.5-6.5 43-76 53- 8.6 6.4- 9.6 7.3-10.6
‘qc: 0.35 3.0-7.1 40-7.8 52- 89 6.1- 9.9 7.2-10.9
S 0.40 28-75 3.9-8.2 48- 93 5.6-10.2 6.6-11.4
"003 0.45 24-76 3.3-83 46- 9.8 5.6-10.5 6.4-11.6
o 0.50 23-78 3.3-8.9 41- 99 49-11.0 6.3-11.7

0.55 1.9-8.0 3.1-94 3.7-10.1 45-111 5.8-12.1

0.60 1.6-8.5 26-97 3.5-10.5 46-11.3 5.8-12.3




Table S1.2 (continued)

Simulated phenological change (days

decade'1)
10 11 12
0.05 9.8-10.3 10.7-11.3 11.7-12.3
0.10 9.5-10.5 10.5-11.5 11.4-12.5
S 0.15 9.2-10.8 10.2-11.8 11.2-12.9
S 0.20 8.9-11.0 9.9-121 11.0-13.0
§ 0.25 85-11.3 9.6-12.3 10.6 - 13.4
S 0.30 8.3-11.6 9.3-12.8 10.4-13.8
‘qc: 0.35 8.1-11.9 8.9-13.0 10.1 - 14.0
S 0.40 7.8-121 8.8-13.1 9.8-14.2
"003 0.45 76-127 8.5-13.6 9.5-145
O 0.50 7.0-129 8.3-13.9 9.2-15.0
0.55 6.7-13.0 7.9-14A1 8.8-15.0
0.60 6.5-13.5 7.7-145 8.5-15.3
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Table S1.3. 95% confidence intervals for detecting simulated changes in the season
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duration of peak larval abundance. Changes in simulated season duration were estimated
with the same method as in Figure 1.3. Confidence intervals were generated from 1,000

Monte Carlo simulations each for an assemblage of 20 simulated fish species whose
abundance varied based on 12 sets of coefficients of variance and 13 rates of change in
season duration.

Simulated change in season duration (days decade™)

0 1 2 3 4

0.05 -0.8-0.8 -0.7-1.2 -0.5-1.5 -0.3-2.1 02-28

0.10 -1.9-1.8 -1.7-21 -1.4-26 -1.1-3.2 -0.6-34
S 0.15 -22-22 -21-24 -1.8-2.7 -1.5-3.1 -1.2-3.5
S 0.20 24-24 -23-26 -22-27 -1.8-3.2 -1.6-3.0
§ 0.25 -25-23 -24-25 -21-27 -1.7-2.8 -1.9-33
5 0.30 -23-24 -24-29 -21-29 -1.9-29 -2.0-3.1
‘qc: 0.35 27-24 -23-27 -22-27 -1.9-3.2 -1.9-3.2
S 0.40 -25-27 24-24 -24-29 -2.0-2.8 -1.8-3.2
"003 0.45 -25-24 -24-27 -23-29 -21-2.8 -1.9-3.0
o 0.50 -28-26 -22-26 -22-26 -21-27 -1.8-2.8

0.55 -24-25 -25-25 -21-2.6 -21-2.8 -1.8-2.8

0.60 -25-25 -22-2.6 -21-27 -1.9-27 -1.9-2.8

Simulated change in season duration (days decade™)
5 6 7 8 9

0.05 0.8-3.8 1.7-5.0 3.1-6.7 43-8.3 6.4-10.0

0.10 -0.1-4.4 0.6-4.9 1.3-5.8 21-6.6 29- 76
S 0.15 -0.6-3.8 -0.5-44 0.1-47 0.7-54 1.2- 6.0
5 0.20 -1.4-35 -1.2-3.6 -0.5-4.0 -0.3-4.7 0.1- 438
§ 0.25 -1.6-34 -1.4-3.7 -0.9-3.7 -0.8-39 -05- 44
5 0.30 -1.6-3.2 -1.5-34 -1.3-3.6 -12-37 -08- 3.8
‘QE> 0.35 -1.8-3.1 -1.6-3.5 -1.3-3.2 -13-36 -1.1- 3.9
© 0.40 -1.7-3.0 -1.6-34 -1.4-34 -14-36 -12- 36
“"aoza 0.45 -1.6-3.0 -1.7-3.2 -1.4-3.3 -12-36 -1.0- 36
O 0.50 -1.7-3.0 -1.8-3.0 -1.5-3.2 -14-36 -12- 36

0.55 -1.7-3.3 -1.5-2.9 -1.3-3.2 -12-35 -12- 36

0.60 -1.7-3.0 -1.5-3.0 -1.4-3.3 -11-34 -12- 33




Table S1.3 (continued)

Simulated change in season duration

(days decade'1)

10 11 12
005 | 84-115 101-127 11.2-134
010 | 41- 85 53- 94 6.3-10.2
S 015 |21-68 27- 74 3.4- 80
Z 020 |07-53 13- 58 16- 6.3
5 025 |-03- 45 0.1- 5.1 0.7- 5.4
5 030 |-06- 41 -02- 45 0.2- 5.0
£ 035 |-08- 42 -04- 42 -03- 45
S 040 |-09- 36 -09- 41  -07- 4.1
§ 045 |[-11- 36 -10- 38 -06- 40
© 050 |-1.0- 36 -07- 38  -0.8- 3.9
055 |-1.0- 35 -08- 36  -0.8- 35
060 |-1.0- 35 -10- 34  -07- 35
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Small pelagic fishes off southern California exhibit interannual variations in the regions they occupy. An
enhanced understanding of these fluctuations could improve fisheries management and predictions of
fish's responses to climate change. We investigated dynamic height as a variable for identifying the
spawning habitat of northern anchovy (Engraulis mordax), Pacific sardine (Sardinops sagax), and jack
mackerel (Trachurus symmetricus). During cruises between 1998 and 2004, dynamic height was
calculated from temperature and salinity profiles, while fish egg concentration was measured with
obliquely towed bongo nets and the Continuous, Underway Fish Egg Sampler. Dynamic height ranged
between 68 and 108 cm, with values increasing offshore. The greatest probability of encountering
anchovy, sardine, and jack mackerel eggs occurred at dynamic heights of 79-83 cm, 84-89 cm, and
89-99 cm, respectively. Four mechanisms were proposed to explain how dynamic height affects egg
distribution: (1) dynamic height is a proxy for upper water column temperature and salinity, which are
known to influence spawning habitat. (2) Low dynamic heights are indicative of coastal upwelling,
which increases primary and secondary productivity. (3) Egg concentration is greater at dynamic
heights coincident with geostrophic currents that transport larvae to favorable habitats. (4) Eddies
delineated by dynamic height contours retain eggs in productive habitats. To evaluate these mechan-
isms, a generalized linear model was constructed using dynamic height, temperature, salinity,
chlorophyll, zooplankton volume, geostrophic currents, and eddies as independent variables. Dynamic
height explained more variance than any other variable in models of sardine and anchovy spawning
habitat. Together temperature, salinity, and chlorophyll accounted for 80-95% of the dynamic height
effect, emphasizing the importance of the first two mechanisms. However, dynamic height remained
statistically significant in the models of anchovy and jack mackerel spawning habitat after considering
the effects of all other variables. Dynamic height shows promise as an ecological indicator of spawning
habitat, because it integrates the effects of multiple oceanic variables, can be remotely sensed, and is
predicted by ocean circulation models.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

early life history stages of fishes have a narrower tolerance to
many environmental conditions than adults (Pértner and Farrell,

Populations of Pacific sardine (Sardinops sagax) and northern
anchovy (Engraulis mordax) exhibit decadal-scale fluctuations
in abundance related to low-frequency climate oscillations
(Schwartzlose et al., 1999; Chavez et al., 2003; Alheit et al.,
2009). In the California Current Ecosystem (CCE), these changes
in stock size have been accompanied by shifts in the geographic
extent of the habitat occupied by these species (MacCall, 1990;
Rodriguez-Sanchez et al., 2002). Examining spawning habitat may
be propitious for gaining an understanding of how oceanic
conditions influence these changes in fish distribution, since the

* Corresponding author. Tel.: +1 617 697 8375; fax: +1 858 822 0562.
E-mail address: rgasch@ucsd.edu (R.G. Asch).

0967-0637/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.dsr.2012.08.006

2008).

Temperature has long been identified as a factor affecting
sardine spawning habitat. Tibby (1937) first noted that Pacific
sardine spawning was limited to temperatures > 13 °C. While
temperature can have a profound impact on fish physiology,
several researchers have suggested that temperature may be a
proxy for other environmental cues that more directly affect
sardine (Fiedler, 1983; Jacobson and MacCall, 1995; Rodriguez-
Sanchez et al., 2002). Consequently, recent research on spawning
habitat of small pelagic fishes has focused on combinations of
oceanic variables. Lluch-Belda et al. (1991) found sardines spawn
across an array of temperatures, but their eggs only occur within a
narrow range of upwelling. In contrast, the spawning habitat
of anchovy corresponds to a narrower temperature range, but
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spawning occurs at both high and low upwelling. Checkley et al.
(2000) observed that sardine and anchovy eggs are found in water
masses with distinct temperatures and salinities. Weber and
McClatchie (2010) modeled the relationship between sardine
and anchovy eggs and a suite of biological and physical variables,
including temperature, salinity, geostrophic flow, mean chloro-
phyll concentration, and depth of the chlorophyll maximum. Reiss
et al. (2008) and Zwolinski et al. (2011) developed models using
satellite observations of sea surface temperature (SST), ocean
color, and gradients of sea surface height anomalies (SSHa) that
accurately predicted seasonal and inter-annual changes in sardine
and anchovy spawning area. Similarly, the boundaries of spawning
habitat can be delineated by a combination of SST and zooplankton
concentration for sardine (Lynn, 2003) and SST and chlorophyll
concentration for anchovy (Fiedler, 1983).

One environmental variable related directly or indirectly to
almost all of these predictors of spawning habitat is dynamic
height. Dynamic height refers to hydrographically based mea-
surements of sea surface height (SSH). Dynamic height is calcu-
lated from vertical profiles of temperature, salinity, and pressure
that are integrated over the upper water column above a
reference depth. In this manuscript, we will use the term dynamic
height to specifically refer to these hydrographic measurements,
whereas SSH will be used in a more general sense that includes
observations from tide gauges and satellite altimetry. Since
dynamic height and integrated water column density are inver-
sely proportional (Pond and Pickard, 1995), areas with fresh,
warm seawater correspond to high dynamic heights, whereas
locations with salty, cool seawater have low dynamic heights.
Gradients in dynamic height are also proportional to geostrophic
current velocity. As a result, contours of dynamic height can be
used to identify eddies and meanders (Soto-Mardones et al.,
2004; Stegmann and Schwing, 2007). Seasonal patterns of
dynamic height in the CCE are controlled by a combination of
heating, cooling, and changes in current direction, with the first
two processes exerting a greater influence in offshore areas and
the effect of currents dominating in the coastal zone (Lynn and
Simpson, 1987).

In the CCE, chlorophyll concentration is negatively correlated
with SSH across both seasonal and interannual scales (Henson and
Thomas, 2007; Venegas et al., 2008). Meandering SSH contours
indicating the position of the California Current correspond to a
boundary between eutrophic inshore waters with high chlorophyll
and offshore waters that are more oligotrophic (Strub and James,
2000). Through bottom-up forcing, this relationship between
phytoplankton biomass and SSH can exert an influence on zoo-
plankton abundance (Chelton et al., 1982). Several mechanistic
processes can explain these relationships. First, SSH is low where
the thermocline shoals, bringing denser water closer to the surface.
Since the thermocline and nutricline are frequently co-located, this
is @ mechanism through which surface nutrient flux can increase
phytoplankton concentration in areas with low SSH (Wilson and
Adamec, 2002). For example, areas with low SSH often demarcate
coastal upwelling in the CCE (Kruse and Huyer, 1983). A second
mechanism connecting biological productivity and SSH is transport
of nutrients and organisms by currents. Strengthening of the
California Current leads to increased zooplankton volume
(Chelton et al.,, 1982) and a concurrent decrease in SSH due to
the influx of cooler water (Logerwell et al., 2003). Third, eddies
whose boundaries can be delineated by SSH contours are often
characterized by increased primary production due to upwelling
near their center. Closed circulation in eddies can retain and
concentrate plankton (Mackas et al., 2005) and advect gradients
in chlorophyll to new areas (Chelton et al., 2011).

The relationship between dynamic height and the spawning
habitat of small pelagic fishes in the CCE has not been previously

studied, although a few authors have examined the influence of
closely related variables, such as indices of geostrophic flow
(Weber and McClatchie, 2010; Zwolinski et al, 2011). Small
pelagic species may exhibit different associations with dynamic
height and geostrophic currents because spatial patterns differ
between absolute values of SSH and gradients of this variable.
Similarly, SSH and SSHa may display different geographic pat-
terns and distinct relationships with fish spawning habitat,
because spatial information is removed when subtracting mean
values to calculate anomalies.

We hypothesize that the environmental conditions repre-
sented by dynamic height can account for spatial patterns in
the spawning habitat of small pelagic fishes in the southern CCE.
Secondly, we hypothesize that temporal variations in dynamic
height explain interannual variability in the location and extent of
spawning habitat. In addition to sardine and anchovy, we also
examine the spawning habitat of jack mackerel (Trachurus sym-
metricus), which is an abundant, but poorly studied, species in the
family Carangidae. Larvae of jack mackerel were the eighth most
abundant ichthyoplankton species found between 1951 and 1998
in the southern CCE (Moser et al., 2001). The geographic distribu-
tion of jack mackerel spawning habitat has been previously
studied (Farris, 1961; Ahlstrom, 1969; Ahlstrom and Stevens,
1976), but no research has explored linkages between environ-
mental variables and their spawning habitat.

Since SSH typically varies by no more than + 1 m globally
(Stewart, 2008), it is unlikely that fishes can directly sense small
differences in dynamic height across the ~100-km scale of their
spawning habitat. Instead, any dynamic height effect on spawning
habitat could be due to dynamic height’s role as an ecological
indicator that incorporates the influence of multiple oceanic
variables. In the second half of this manuscript, we assess the
relative importance of four mechanisms that potentially explain
how dynamic height affects spawning habitat:

e Mechanism 1: dynamic height is a proxy for integrated, upper
water column temperature and salinity, factors known to
influence the spawning habitat of small pelagic fishes.
Mechanism 2: since low dynamic height is indicative of coastal
upwelling in the CCE, increases in fish eggs at particular
dynamic heights reflect an elevated concentration of plank-
tonic prey for adult fish or early life history stages following
upwelling.

Mechanism 3: given that gradients of dynamic height influ-
ence the speed and direction of geostrophic flow, increases in
fish eggs at particular dynamic heights reflect spawning in
currents that transport larvae to favorable habitats.
Mechanism 4: eddies delineated by dynamic height contours
affect spawning habitat by retaining fish eggs in biologically
productive areas.

2. Methods
2.1. Datasets

Fish eggs and hydrographic data were collected during April
cruises between 1998 and 2004. All cruises were conducted
by the California Cooperative Oceanic Fisheries Investigations
(CalCOFI). Data from April were used because eggs of all three
fish species were frequently observed this month (Moser et al.,
2001). A subset of the CalCOFI time series from 1998 to 2004 was
used because two independent measures of fish egg abundance
(i.e., bongo net samples and the Continuous, Underway Fish Egg
Sampler [CUFES]) were available these years. This period was
sufficient for capturing interannual variability in egg distribution,
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including extreme events observed during El Nifio and La Nifia.
The area sampled included six CalCOFI transects (i.e., lines 76.7,
80.0, 83.3, 86.7, 90.0, and 93.3) in southern California, which
extended offshore of the coastline between San Diego (33.0°N)
and north of Point Conception (35.1°N; Fig. 1). During a limited
number of years (i.e., 1998, 2003, and 2004), data were also
available from CalCOFI transects 60.0-73.3, which encompassed
the area in central California north of Morro Bay (35.6°N) to San
Francisco Bay (37.8°N; Supplemental information, Section S1).
Transects were separated by 72 km. Along transects, stations
were spaced 36 km apart inshore of the continental slope and
72 km apart offshore.

The 3-m long bongo net used to collect fish eggs has two
openings with a 0.71-m diameter and a mesh size of 505 um
(McGowan and Brown, 1966). This net was towed obliquely at a
45° angle to a depth of 210 m. Tow speed was ~0.5-1.0 m s~ ! for
a duration of ~20 min (Kramer et al.,, 1972). During 2004, only
one station sampled with the bongo net was positive for sardine
eggs. This reflects the fact that sardine spawning occurred

principally in the central CCE during 2004 (Lo et al., 2010). Since
measurements of habitat electivity would not be meaningful
during a year when sardine eggs were nearly absent from our
study region, bongo net data from 2004 were excluded from our
investigation of sardine spawning habitat. This decision did not
have a significant effect on the distribution of sardine eggs
observed over the full period between 1998 and 2004 (Kolmo-
gorov-Smirnov test: D=0.008, p=1.000). Also, patterns of
dynamic height usage by sardine spawning in central California
during this year closely resembled those typically observed in
southern California (Supplemental information, Section S1).
CUFES collected fish eggs along CalCOFI transects while the
research vessel was underway by pumping seawater through an
intake at 3 m depth (Checkley et al., 1997). Seawater flowed through
CUFES at ~0.5-1.0m>min~'. Fish eggs were concentrated and
filtered through a 505-um mesh. The sampling interval of CUFES
was adjusted opportunistically depending on the abundance of fish
eggs, but typically varied between 5 and 30 min (Checkley et al.,
2000). The jack mackerel time series from CUFES starts in 1999,
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Fig. 1. Maps of the concentration of eggs of northern anchovy (left column), Pacific sardine (middle column), and jack mackerel (right column) between 1998 and 2001.
Fish egg data are from spring Continuous, Underway Fish Egg Sampler (CUFES) surveys. The scale of egg concentration varies between years. Interpolated measurements of
dynamic height are shown in the background of each map. Black lines show the research cruise track, while red lines indicate the range of dynamic height across which fish
eggs of each species was most frequently observed. These ranges are 80-85 cm for anchovy, 80-90 cm for sardine, and 80-95 cm for jack mackerel.
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because this species’ eggs were not identified when CUFES surveys
first began. Comparisons between CUFES and plankton nets have
consistently demonstrated significant correlations between sampling
methods (Checkley et al., 1997; Lo et al., 2001; Curtis, 2004; Planque
et al,, 2007). On average CUFES samples were collected every 5.3 km.
Due to concerns about autocorrelation at this spatial scale
(Supplemental information, Section S2), all statistical tests were
performed on bongo net data. CUFES data were used solely for
mapping egg distribution.

While eggs <1 day old provide the closest proxy for the
distribution of spawning fishes, we used all egg data available from
CUFES and bongo net tows to identify the location of spawning
habitat for the following reasons: (1) while sardine eggs were aged
during some CalCOFI cruises, ages were not recorded for anchovy and
jack mackerel eggs (Kramer et al., 1972); (2) due to their extremely
patchy distribution, early stages of sardine eggs tended to be under-
sampled relative to later stages (Lo et al, 1996); (3) since fish eggs
passively drifted in currents, they were advected along with water
masses with approximately the same physical characteristics as
where they were spawned, and; (4) studies of diffusion have
indicated
that this process only disperses sardine and anchovy eggs hundreds
to thousands of meters (Smith, 1973; Smith and Hewitt, 1985), a
negligible distance relative to the scale of the CalCOFI grid.

Hydrographic data were collected concurrently at stations
where the bongo net was deployed. Dynamic height of the
surface, relative to 500 m, was derived from water samples
obtained from a Niskin rosette, which recorded temperature and
salinity to 500 m depth. Using the equation of state, seawater
density and specific volume anomalies were calculated. Dynamic
height was then computed by numerically integrating specific
volume anomalies across pressures found between 0 and 500 m
(Pond and Pickard, 1995). At stations with depths <500 m, linear
extrapolation from adjacent sites was used to calculate the
dynamic height relative to the 500 m reference level. For display
purposes, data presented in maps of dynamic height were linearly
interpolated to a 0.1° grid using MATLAB (The Mathworks, Inc.,
Natick, MA, USA).

Other environmental covariates examined to determine their
relative influence on spawning habitat include temperature,
salinity, chlorophyll concentration, zooplankton displacement
volume, speed and direction of geostrophic currents, and the
presence/absence of eddies. Data on temperature, salinity, and
chlorophyll concentration were acquired from CalCOFI seawater
samples from the Niskin rosette. Observations of temperature,
salinity, and chlorophyll taken at 10-m intervals from the upper
50 m of the water column were averaged, because sardine
and anchovy generally spawn at depths <50 m (Weber and
McClatchie, 2010). The bongo net was deployed to obtain
zooplankton displacement volume. We used zooplankton displa-
cement volumes where gelatinous organisms with biovolumes
>5cm® were removed (Kramer et al., 1972). Chlorophyll con-
centration and zooplankton volume were log;o transformed prior
to statistical analyses.

Geostrophic flow and the location of eddies were derived
directly from calculated values of dynamic height from hydro-
graphic measurements. Geostrophic velocity was calculated with
the formulas u=(-g/f)«(@H/ay) and v =(g/f)*(0H/ox), where u
and v are geostrophic flows in the x and y directions, respectively;
g is the gravitational acceleration; f is the Coriolis parameter, and;
H is the dynamic height (Stewart, 2008). Gradients of dynamic
height were obtained by taking the difference between dynamic
heights at adjacent stations along transects. The direction of
geostrophic currents was described with a polar coordinate
system in which 0° indicates eastward flow, 90° northward flow,
180° westward flow, and 270° (or —90°) southward flow.

We identified eddies with a method modified from Stegmann
and Schwing (2007). Locations of eddies were delineated from
closed contours of dynamic height separated by 2-cm intervals of
dynamic height. If a potential eddy’s boundaries extended beyond
the edge of our study area, it was categorized as an eddy only if its
dynamic height contour enclosed at least two-thirds of a circle.
The extent of each eddy was defined based on the minimum and
maximum latitude and longitude of closed dynamic height con-
tours. Due to the spatial resolution of the CalCOFI grid, only
mesoscale eddies could be reliably detected. Closed contours
whose longest dimension was <42 km were not counted as
eddies. This size limit corresponded to the smallest diameter of
eddies identified in the CCE by Stegmann and Schwing (2007).
Eddies were classified as cyclonic (counterclockwise) or anti-
cyclonic (clockwise) depending on whether the dynamic height
in their center was depressed or elevated, respectively. We
identified 17 eddies during spring months between 1998 and
2004. Of these eddies, eight flowed in a cyclonic direction, while
nine were anticyclonic.

2.2. Habitat electivity

Over the space and time domain of this study, dynamic height
ranged from 68 to 108 cm. Quotient curves were constructed to
assess whether eggs were observed at certain dynamic heights
more frequently than expected if fishes spawned randomly
(Drapeau, 2005). Data were binned into 2-cm dynamic height
intervals. To ensure a minimum sample size per bin, any bin
containing < 8 observations was merged with a neighboring bin.
A quotient was calculated by dividing the percent of total egg
abundance in a bin by the percent of stations in the bin. To
prevent artifacts due to sites with extremely high egg abundance,
a three-point running mean was used to smooth quotient curves
(Drapeau, 2005). Since offshore sites (CalCOFI station numbers
> 70) were principally outside the range where anchovy spawned
(Fig. 1), they were excluded from analyses of habitat electivity for
anchovy. Quotient curves were developed on a year-by-year basis
and for the 7-year time series mean. If a quotient was > 1, this
indicated positive habitat electivity within a dynamic height
interval. Positive electivity can reflect either active habitat selec-
tion by spawners or increased survival of eggs in an area.
Conversely, quotients < 1 suggested avoidance by spawning fish,
high mortality of eggs, or recent hatching of eggs. Since there
was some overlap between areas where each species exhibited
positive electivity, we used Kolmogorov-Smirnov tests to detect
significant differences between species in terms of the dynamic
heights used. Empirical cumulative distribution functions (CDFs)
for each species were graphed to visually portray these differences.

2.3. Generalized linear models

A generalized linear model (GLM) framework was employed to
compare the relative influence of oceanic variables on spawning
habitat and assess the merit of the four mechanisms proposed to
explain why dynamic height affects fish egg distribution. This
modeling approach was selected because quotient curves from
this study and Lluch-Belda et al. (1991) showed that the
frequency of fish egg occurrence often peaked across a distinct
range of environmental variables that could be modeled as a
quadratic function incorporated into a GLM. We used the pre-
sence/absence of eggs as the dependent variable in GLMs in order
to model the full extent of areas where spawning occurred.
Similar results were also obtained when GLMs were constructed
with data on egg concentration (Supplemental information,
Section S3). Independent variables in GLMs were selected to
correspond to the four mechanisms hypothesized to explain
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Table 1

Correlations between oceanographic variables measured during spring cruises between 1998 and 2004. n=435.

Temperature Salinity Chlorophyll Zooplankton Geostrophic Geostrophic
volume current speed current direction
Dynamic height 0.87*° —0.51%* —0.85%* —0.77*** —0.18%* 0.13**
Temperature —0.34* —0.82* —0.77** -0.19"* 0.08
Salinity 0427 —0.30™* 0.02 0.00
Chlorophyll 0.68*** 0.19** —0.05
Zooplankton volume 0.13** —0.08
Geostrophic current speed —0.06

The significance of the Pearson correlation coefficients is indicated as follows:
*
P <0.05.

<001,
% p 20,001,

how dynamic height influences spawning habitat. These inde-
pendent variables included dynamic height, temperature
(Mechanism 1), salinity (Mechanism 1), chlorophyll (Mechanism
2), zooplankton volume (Mechanism 2), speed and direction of
geostrophic currents (Mechanism 3), and presence/absence of
eddies (Mechanism 4). Prior to constructing GLMs, we examined
the covariance structure between these variables using Pearson
correlation coefficients. Both linear and quadratic terms were
incorporated into GLMs. Eddies were the one exception to this,
since they were treated as a categorical variable. Each bongo net
sample was classified as originating from either an area with no
eddies, a cyclonic eddy, or an anticyclonic eddy. The form of GLMs
was effectively a logistic regression with a binomial distribution
and logit link (McCullagh and Nelder, 1989). All GLMs were fit
within the R programming environment, version 2.11.1 (R Foun-
dation for Statistical Computing, Wien, Austria).

GLMs were varied in three ways to investigate distinct scien-
tific questions. First, oceanic variables were examined in models
individually to evaluate each variable’s relative effect on the
probability of encountering fish eggs. The peak probability of
encountering fish eggs across the range of each variable was
defined based on the area where the GLM exceeded 90% of its
maximum value. Analysis of deviance tables were used to assess
which variable(s) provided the best fit to egg presence/absence
data (McCullagh and Nelder, 1989; Bolker, 2008). Significance of
linear and quadratic terms in GLMs was examined with likelihood
ratio tests (Bolker, 2008).

Second, a full model including all statistically significant
oceanic variables and two-way interaction terms was developed
to determine whether the effect of dynamic height on egg
distribution remained significant after the influence of other
variables was taken into account. Recognizing the fact that many
oceanic variables covary spatially, we added the dynamic height
term last to these GLMs. This was done because analysis of
deviance evaluates the deviance of each term sequentially so that
a deviance estimate indicates the variation accounted for by a
corresponding variable after having eliminated the effects of all
terms previously added to the GLM (McCullagh and Nelder, 1989).
Any remaining deviance attributed to dynamic height repre-
sented the component of the dynamic height effect that could
not be explained by other oceanic variables.

A forward, stepwise process was used to develop a third set of
GLMs. These GLMs were employed to assess the mechanisms
proposed to explain how dynamic height influences the spatial
distribution of fish eggs. Again, dynamic height was added to the
model last. After the addition of each term to the GLM, the
percent reduction in the deviance attributed to dynamic height
was calculated to determine how much each environmental
variable contributed to the dynamic height effect. The stepwise
addition of terms was ended when new terms no longer resulted

in a decrease in the deviance of dynamic height or when there
were no new statistically significant terms to add. Linear, quad-
ratic, and two-way interaction terms were included in these
GLMs. In addition, Section S4 of the Supplemental information
presents results from forward, stepwise GLMs where the order in
which variables were added to the model was varied to maximize
the explanatory capacity of GLMs. However, due to the fact that
many of the variables considered here spatially covary (Table 1),
the predictive ability of the GLMs in Section S4 may be limited.

Dynamic height observations and bongo net samples of fish
eggs from spring CalCOFI cruises during 2005-2008 were used to
assess the predictive skill of GLMs that included only dynamic
height. The observed percentage of bongo net tows from 2005 to
2008 containing eggs of sardine, anchovy, and jack mackerel was
estimated in six dynamic height bins: < 78.0 cm, 78.0-82.9 cm,
83.0-87.9 cm, 88.0-92.9 cm, 93.0-97.9 cm, and > 98.0 cm. These
intervals were selected so that each bin contained a minimum of
20 observations, resulting in a precision of at least 5% for
estimates of the observed probability of fish eggs. A mean
prediction was generated using the dynamic height GLM to
estimate the probability of encountering eggs at the center of
each bin. 95% confidence intervals for predictions were developed
from the 2.5th and 97.5th percentiles of GLM predictions at the
upper and lower edges of each bin. Prediction skill was assessed
by performing a linear regression that compared the observed and
predicted probabilities of encountering eggs between 2005 and
2008 (Zagaglia et al., 2004). Separate linear regressions were
initially performed for each species. Since the slope and intercept
of regressions did not significantly differ between species,
we combined the regressions for all three species to increase
sample size.

3. Results
3.1. Habitat electivity

Spring observations of dynamic height in the southern CCE
ranged between 68 and 108 cm. Reflecting the equatorward flow
along the California coast, low dynamic heights (75-80 cm) were
usually observed nearshore, while high dynamic heights (95-
105 cm) occurred offshore (Fig. 1). More specifically, cruise-wide
minima and maxima of dynamic height were typically found
around Point Conception and the southwestern extent of our
study area, respectively. This likely reflected upwelling of cool,
saline water off Point Conception and an influx of warm, sub-
tropical water at the southwestern edge of the CalCOFI region.
While a general onshore-offshore gradient in dynamic height was
observed, the area was also characterized by meanders and eddies
that altered this gradient. The location of the transition zone
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between nearshore and offshore values of dynamic height varied
substantially between years, as was exemplified by the 1998-1999
alternation between El Nifio and La Nifia. During the 1998 El Nifio,
the region with dynamic heights > 95 cm expanded shoreward,
whereas there was a large region with dynamic heights <80 cm in
1999 (Fig. 1).

We examined data from 449 bongo net samples from cruises
between 1998 and 2004. Anchovy, sardine, and jack mackerel
eggs were found in 22.3%, 22.9%, and 47.9% of samples, respec-
tively. When egg distribution was overlaid on maps of dynamic
height, it was evident that eggs of each species were most
frequently observed in water masses characterized by particular
dynamic heights (Fig. 1). 64.1% of sardine eggs were distributed
throughout waters with dynamic heights between 80 and 90 cm.
When dynamic heights within this range contracted shoreward in
1998 and 2003, sardine eggs were found closer to the coast. During
years when dynamic heights between 80 and 90 cm covered an
extensive offshore area (1999 and 2002), the distribution of sardine
eggs also expanded offshore. Compared to sardine, anchovy eggs
were less abundant, distributed closer to shore, and most fre-
quently observed within the southern CalCOFI area. 47.0% of
anchovy eggs originated from dynamic heights between 80 and
85 cm. During 1999, 2000, and 2001, areas with peak concentra-
tions of anchovy eggs roughly tracked the 80-cm dynamic height
contour (Fig. 1). Jack mackerel eggs were located farther offshore
than other species. 63.7% of jack mackerel eggs occurred within
water with dynamic heights between 80 and 95 cm (Fig. 1). During
several years (1999, 2000, and 2002), the inshore or offshore
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Fig. 2. Annual quotient curves showing the range of dynamic height that northern
anchovy (dashed line), Pacific sardine (solid line), and jack mackerel (thick, solid
line) prefer to inhabit during spawning. Quotient curves are based on the three-
point running mean of quotients calculated for 2-cm intervals of dynamic height.
The dotted line in each subplot denotes a quotient of 1. Quotients above
1 represent dynamic heights where there is a higher concentration of eggs than
would be expected if egg distribution were random. Quotients less than 1 are
either areas avoided by fishes when spawning, areas with low survival of eggs, or
areas where eggs recently hatched. Due to the near absence of sardine eggs from
the study area in 2004, a quotient curve was not calculated for sardine in this year.

distribution of jack mackerel eggs traced the path of meandering
currents indicated by dynamic height contours.

Quotient curves were used to examine whether spawning
fishes inhabited certain dynamic heights at a disproportionately
high frequency. When data from all cruises were analyzed jointly,
quotient curves indicated that anchovy, sardine, and jack mack-
erel displayed positive spawning habitat electivity at dynamic
heights of 78-86 cm, 79-88 cm, and 84-99 cm, respectively.
During most years, the quotient curve for sardine eggs peaked
at intermediate dynamic heights in between the maximum of the
quotient curves for anchovy and jack mackerel eggs (Fig. 2).
Exceptions to this pattern occurred in 2000 and 2003 when there
was a high degree of overlap between the anchovy and sardine
quotient curves. Also, peaks in spawning habitat electivity for
sardine and jack mackerel were observed at similar dynamic
heights in 2002.

Since there was a large overlap between dynamic heights used
by anchovy and sardine when spawning, a Kolmogorov-Smirnov
test was performed to detect differences in the CDFs of these
species with respect to dynamic height. These tests found
significant differences between the CDFs of all species (anchovy-
sardine comparison: D=0.38, p <0.001; sardine-jack mackerel
comparison: D=0.32, p <0.001; anchovy-jack mackerel compar-
ison: D=0.59, p<0.001). Empirical CDFs in Fig. 3 show that
anchovy favored slightly lower dynamic heights than sardine
during spawning, while jack mackerel eggs were found at higher
dynamic heights. Similar preferred ranges of dynamic height were
observed amongst sardine and jack mackerel spawning in central
California (Table S1; Fig. S1a).

3.2. Generalized linear models

Prior to constructing GLMs, we examined correlations between
dynamic height, temperature, salinity, chlorophyll, zooplankton
volume, and geostrophic currents to better understand the
relationship between these variables. All correlations were sig-
nificant at p < 0.05, with the exception of those between salinity
and geostrophic current speed, and between geostrophic current
direction and temperature, salinity, chlorophyll, zooplankton
volume, and geostrophic current speed (Table 1). To correct for
the accumulation of type I error due to performing multiple tests,
we also evaluated correlations between variables using the
Bonferroni method to lower the « at which tests would be
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Fig. 3. Empirical cumulative distribution functions (CDFs) of the dynamic heights
across which the eggs of northern anchovy, Pacific sardine, and jack mackerel
were observed. Lines representing each species are the same as in Fig. 2.
Kolmogorov-Smirnov tests indicate that all empirical CDFs were significantly
different from each other (D > 0.32, p < 0.001).
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considered significant (n=21, &onferroni=0.002; Sokal and Rohlf,
1995). Following this correction, the correlations between geos-
trophic current speed and zooplankton volume and between
geostrophic current direction and dynamic height were no longer
significant. In order of the decreasing strength of correlations,
elevated dynamic height was associated with warmer tempera-
tures, lower chlorophyll, reduced zooplankton volume, lower
salinity, and slower geostrophic currents.

In GLMs where each variable was examined individually,
model fit was significant in all cases except for the effects of
zooplankton volume on sardine, geostrophic current direction on
jack mackerel, geostrophic current speed on sardine and jack
mackerel, and eddies on all species (Table 2). The majority of
GLMs exhibited significant quadratic terms indicating that the
probability of encountering eggs was maximized across a specific
range of each variable. GLM results were fairly consistent with
quotient curves in terms of identifying dynamic heights where
the probability of encountering eggs was maximized. The greatest
probabilities of fish eggs occurred at dynamic heights of 79-83 cm,
84-89 cm, and 89-99 cm for anchovy, sardine, and jack mackerel,
respectively (Fig. 4; Table S3).

Since many oceanic variables displayed cross-shelf gradients
and each species typically spawned at different distances from
shore, several relationships between fish eggs and environmental
variables could be interpreted in terms of these gradients. For
example, the maximum probability of anchovy and sardine eggs
occurred at 12.0-13.9°C due to the influence of cool water
associated with coastal upwelling (Fig. 4; Table S3). Jack mackerel
eggs located farther offshore peaked at warmer temperatures of
13.5-15.6 °C. Salinities <33.2 were found offshore in the rela-
tively fresh water of the California Current (Checkley et al., 2000),
whereas nearshore areas were characterized by higher salinities
from subsurface water upwelled along the coast. Jack mackerel
tended to spawn within the California Current as demonstrated
by their preference for waters with salinity < 33.1, while anchovy
eggs were most frequently observed in coastal areas with sali-
nities of 33.5-33.75. The presence of sardine eggs was greatest at

Table 2

Deviance explained by generalized linear models (GLMs) examining the presence/
absence of fish eggs. The effect of independent variables was tested individually
using quadratic and linear terms. The one exception to this was the “eddies” term,
which was incorporated into GLMs as a categorical variable. In the full model,
dynamic height was added to the model following the inclusion of all other
statistically significant independent variables and interaction terms. Therefore, the
deviance explained by dynamic height in the full model is the remaining effect of
dynamic height on the presence/absence of fish eggs after accounting for the
effects of all other oceanographic factors. Significance levels in GLMs are indicated
as follows: *p <0.05; **p < 0.01; **p < 0.001. The number of asterisks corresponds
to the most significant term in a GLM, which could be either linear or quadratic.

Independent variables ~ Anchovy Sardine Jack mackerel
(n=435) (n=378) (n=435)
Deviance
Dynamic height 119.9%* 48.9% 82.5%
Temperature 41,99 3065 52354
Salinity 35.4 22.99 90,57
Chlorophyll 81.65 36.6* 54,7
Zooplankton volume 19.3%=* 4.5 12.97%
Geostrophic current 9.1 2.8 0.6
speed
Geostrophic current 20,30 9.2% 5.7
direction
Eddies 4.7 0.6 3.7
Dynamic height in full ~ 33.6%* 1.7 11,88
model

2 Linear term significant at p < 0.05.
b Quadratic term significant at p <0.05.
¢ Linear and quadratic terms significant at p < 0.05.
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Fig. 4. Probability of encountering fish eggs based on predictions of generalized
linear models (GLMs). Each GLM was constructed using a single, independent
variable, which is displayed on the x-axis of each graph. Lines representing each
species are the same as in Fig. 2. 95% confidence intervals are shown in grey.
Graphs of GLM results are not included here if neither linear nor quadratic terms
were significant at p <0.05.

intermediate salinities of 33.0-33.4. The maximum probability of
anchovy, sardine, and jack mackerel eggs occurred at chlorophyll
concentrations of 1.2-3.9mgm~3, 06-22mgm~> and
< 0.5 mg m~3, respectively. Again, this reflected the lower con-
centration of chlorophyll in offshore waters occupied by jack
mackerel when spawning. Maps of chlorophyll concentration
revealed that areas where chlorophyll dropped below 0.3 mg m >
closely coincided with the locations of the 90- or 95-cm contours
of dynamic height (Fig. S3). Jack mackerel eggs were most
commonly observed in offshore areas with <46 cm® of zooplank-
ton per 1000 m> of seawater strained. The peak probabilities of
anchovy eggs (78-264 cm®/1000 m?) coincided with biologically
richer waters containing greater concentrations of zooplankton.

The direction of geostrophic currents was largely bi-directional
with the vast majority of observations indicative of the south-
eastward flow of the California Current (—30°) and a second, but
much smaller, mode indicative of northeastward flow (60°). The
probability of sardine eggs was maximal at < —42° (Fig. 4; Table S3),
suggesting this species spawns in southerly flow of the California
Current. Anchovy eggs occurred most often in currents flowing east
or northeast (—6° to 23°). The probability of finding anchovy eggs
also peaked in the regions with the fastest geostrophic currents
(>80cms™!). This preference to spawn in fast-flowing, eastward
currents could help maintain anchovy eggs and larvae in coastal areas
during planktonic life stages.

The relative influence of each oceanic variable on the presence/
absence of fish eggs was evaluated with analysis of deviance
(Table 2). Dynamic height explained more deviance than any other
environmental variable in models of sardine and anchovy eggs.
This result implied that dynamic height was not solely a proxy for
another variable, even though it was strongly correlated with
several oceanic processes. Dynamic height also exhibited a strong
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influence on the distribution of jack mackerel eggs, but more
deviance was explained by salinity for this species. For sardine
and anchovy, chlorophyll consistently had the second greatest
effect on egg distribution, followed by temperature and salinity.
Generally, zooplankton volume, geostrophic current direction and
speed, and eddies had weaker effects on egg presence/absence than
other variables.

Next, we assessed the deviance explained by dynamic height
when it was added last to a GLM including all statistically significant
environmental variables and interaction terms. A significant interac-
tion between temperature and chlorophyll was included in this full
model GLM for all three species, whereas anchovy and sardine both
exhibited significant temperature x salinity and salinity x chlorophyll
interactions. In addition, the distribution of anchovy and jack mack-
erel eggs was affected by significant temperature x zooplankton
volume and chlorophyll x zooplankton volume interactions. For
anchovy and jack mackerel eggs, the effect of dynamic height
remained significant at p <0.001 in the full model, although the
deviance it explained was reduced (Table 2). This suggested that the
combined effect of environmental variables could only partially
explain the impact of dynamic height on egg distribution of these
species. In contrast, dynamic height no longer had a significant effect
on sardine egg distribution once all other variables were taken into
account (Table 2).

Similarly, the forward, stepwise GLMs for anchovy and jack
mackerel revealed a decrease in the deviance explained by
dynamic height following the addition of model terms, although
the overall effect of dynamic height remained significant at
p <0.01 (Table 3). By the time the final variable was added to
the stepwise GLMs for anchovy and jack mackerel, the deviance
explained by dynamic height was reduced by 82-91% of its
original value. The influence of dynamic height on sardine egg
distribution could be completely accounted for by other oceanic
variables in the stepwise GLM, causing dynamic height to become
non-significant when added last to this model (Table 3).

Table 3

Stepwise generalized linear models (GLMs) used to evaluate which oceanographic
variables accounted for the effect of dynamic height on the spatial distribution of
fish eggs. Terms were added to the regression model in a forward, step-wise
fashion, such that dynamic height was always added last. Deviance refers to the
amount of variability in the model explained by dynamic height. The last column
refers to the percentage by which the deviance explained by dynamic height
decreased as new terms were added to the regression. Significance of dynamic
height in GLMs is indicated as follows: *p <0.05; **p <0.01; **p <0.001. The
number of asterisks corresponds to the most significant dynamic height term,
which could be either linear or quadratic.

Model step Variable added Deviance %
Anchovy

1 Dynamic height 119.9%* 0.0
2 Chlorophyll 4. 70%* 65.3
3 Salinity 33,57 721
4 Temperature 27 1bexe 774
5 Chlorophyll x salinity 2420w 79.8
6 Geostrophic current speed 227 beee 81.6
Sardine

i Dynamic height 48.95%* 0.0
2 Temperature 24.73%* 49.4
3 Salinity 17.40% 643
4 Chlorophyll 6.0 87.7
5 Temperature x salinity 2.5 95.0
6 Geostrophic current direction 22 95.5
Jack mackerel

1 Dynamic height 82i5he 0.0
2 Salinity 14.9°** 82.0
3 Temperature 73%= 91.1

2 Quadratic effect of dynamic height significant at p <0.05.
b Linear and quadratic effects of dynamic height significant at p < 0.05.

In models of all species, temperature, salinity, chlorophyll, and
their interactions collectively accounted for 80-95% of the
dynamic height effect. Geostrophic current speed or direction
was included in the stepwise GLMs of anchovy and sardine eggs,
but explained little of the deviance ( < 1.8%) originally attributed
to dynamic height. The eddy and zooplankton volume terms were
not incorporated into any stepwise GLM.

At the 261 CalCOFI stations sampled between 2005 and 2008,
dynamic height ranged between 70 and 106 cm, indicating that
there had been little change in this variable since 1998-2004
when its range extended between 68 and 108 cm. However,
between 1998-2004 and 2005-2008 the probability of encoun-
tering eggs increased from 22.9% to 37.9% for sardine and from
22.3% to 42.5% for anchovy. Concurrently, the probability of jack
mackerel eggs dropped from 47.9% to 36.4%. These changes
affected the probability of sampling fish eggs in each dynamic
height bin, but did not alter the general pattern in which the peak
probability of encountering eggs occurred at low dynamic heights
for anchovy (78-83 cm), intermediate dynamic heights for sar-
dine (83-88 cm), and elevated dynamic height for jack mackerel
(88-93 cm) during 2005-2008 (Fig. 5). Thus, GLMs provided
robust predictions of the spatial distribution of eggs in any given
year and the dynamic heights favored by spawning fishes, but
could not predict interannual variations in the mean probability
of encountering eggs. This may reflect differences between
realized and potential spawning habitat, where realized spawning
habitat is more strongly affected by interannual and seasonal
variations in spawning stock biomass (SSB; Planque et al., 2007).
Our model predictions correspond to Planque et al.’s definition of
potential spawning habitat, while the observations from 2005 to
2008 describe realized spawning habitat.
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Fig. 5. Predicted probability of encountering fish eggs within binned intervals of
dynamic height during the years 2005-2008. Black squares indicate the mean
predicted probability of encountering eggs at the center of bins, while error bars
denote 95% confidence intervals at the edges of each bin. Predictions are based on
generalized linear models originally developed with data from 1998-2004.
Asterisks show the observed percent of bongo net samples from 2005 to 2008
that contained fish eggs within each dynamic height bin. In these graphs, the
asterisks have been offset by 1.2 cm from the bin centers so that predictions and
observations can be viewed at the same time.
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Fig. 6. Linear regression comparing the predicted and observed probability of
encountering fish eggs during the spring cruises between 2005 and 2008.
Predictions are based on generalized linear models originally developed with data
from 1998-2004. Since regression coefficients did not significantly differ between
species, data on all three species of fishes have been pooled. Triangles, circles, and
squares denote observations of anchovy, sardine, and jack mackerel eggs,
respectively. Linear regression formula: Y=0.0225+0.7119X, r’=0.60, p=0.0002.

Similar results were attained from the linear regression that
compared GLM predictions to the observed probability of encoun-
tering eggs between 2005 and 2008 (Fig. 6; r°=0.60, F=23.6,
n=18, p<0.001). The regression intercept (0.02, 95% confidence
interval: —0.12 to 0.17) was not significantly different from zero,
while its slope (0.71, 95% confidence interval: 0.40-1.02) did
not differ from one. This implied that there was essentially a
1:1 relationship between observed and predicted probabilities.
However, the predictions slightly underestimated the probability
of encountering eggs due to changes between time periods
described above.

4. Discussion
4.1. Influence of dynamic height on spawning habitat

Each species of small pelagic fish in the CCE exhibited positive
spawning habitat electivity across a range of dynamic heights
where they were sited at a disproportionately high frequency.
This range differed among species, with spawning sardine favor-
ing intermediate dynamic heights relative to anchovy and jack
mackerel. Our results indicate that dynamic height was the single
best oceanic variable for identifying the spawning habitat of
anchovy and sardine. SSH has also been linked to variations in
the distribution, abundance, or recruitment of fishes, squid, and
seabirds in the California Current, Northwest Pacific, and equa-
torial Atlantic (Logerwell et al, 2003; Zagaglia et al., 2004;
Schirripa and Colbert, 2006; Yen et al., 2006; Laidig et al., 2007;
Zainuddin et al., 2008; Chen et al., 2009; Wei et al., 2009;
Zwolinski et al., 2011). Like our study, several of these papers
reported that SSH explained more variability in the distribution,
abundance, or survival of species than any other oceanic variable
examined (Logerwell et al., 2003; Schirripa and Colbert, 2006; Yen
et al., 2006; Zainuddin et al.,, 2008; Chen et al., 2009). This
suggests that the influence of SSH on habitat suitability is
widespread.

Across our study area of several 100 km, it is unlikely that
fishes can directly sense small gradients in sea level (~40 cm
along CalCOFI transects). Therefore, we proposed four mechanisms
to explain how the relationship between dynamic height and other

oceanic variables could give rise to the apparent influence of
dynamic height on fish egg distribution. These mechanisms are
that fishes may preferentially spawn in water masses with a
certain temperature or salinity (Mechanism 1), elevated primary
and secondary productivity (Mechanism 2), geostrophic currents
with a specific direction or speed (Mechanism 3), and eddies that
increase retention of ichthyoplankton (Mechanism 4). Evaluation
of these mechanisms using GLMs indicated that together the first
two mechanisms explained >80% of the influence of dynamic
height on spawning habitat, while < 1.8% could be attributed to
the latter two mechanisms (Table 3). This suggests that dynamic
height affects egg distribution via a combination of fish spawning
in areas with optimal temperatures for their growth and survival
and adequate primary production to provide prey for adult fish
and/or larvae. In addition to temperature and chlorophyll, spatial
variations in dynamic height reflect changes in salinity, which are
indicative of distinct water masses that may contain different
concentrations of ichthyoplankton. Since no single variable could
completely account for the dynamic height effect on spawning
habitat, we conclude that dynamic height functions as an ecologi-
cal indicator that is able to incorporate the influence of multiple
oceanic processes. In this way, dynamic height is similar to the
Simpson-Hunter stratification parameter, temperature-salinity
diagrams, and spiciness, which are all oceanic indices that integrate
two or more physical processes and directly or indirectly affect the
distribution of fish eggs and larvae (lles and Sinclair, 1982;
Checkley et al., 2000; Sakuma et al., 2007).

Our analysis demonstrates that anchovy, sardine, and jack
mackerel spawn in areas characterized by different dynamic
heights (Figs. 2 and 3). Use of distinct spawning habitats may
be indicative of niche partitioning between these species, where
anchovy primarily spawn in coastal waters, jack mackerel reside
in the offshore waters of the California Current when spawning,
and sardine use the transition zone between these habitats
(Fig. 1). Since water mass characteristics (i.e., temperature and
salinity) and primary production explained much of the dynamic
height effect on spawning habitat, these factors may also con-
tribute to niche differentiation among these species. In waters off
Japan, congeners of these three species have distinct niches based
on their optimal temperatures for maximizing growth (Takasuka
et al., 2007; Takasuka et al., 2008). In addition, the niches of
anchovy and sardine can be distinguished based on the size
spectrum of their prey. The gill rakers of anchovy are specialized
for filter feeding on larger plankters that occur in areas dominated
by coastal upwelling. Finer spacing between the gill rakers of
sardine allow them to retain smaller plankters found in areas
farther offshore where curl-driven upwelling predominates
(Rykaczewski and Checkley, 2008). The diet of jack mackerel is
also distinct from sardine (Carlisle, 1971). Lastly, these species
may possibly use dissimilar spawning habitats to prevent com-
petitive exclusion. However, given their distinct dietary and
temperature preferences, competition between these species
may be minimal.

While our results from the GLMs highlight the importance of
Mechanism 2, it is noteworthy that zooplankton volume was
never included in stepwise GLMs where dynamic height was
added last (Table 3). This implies that, although low dynamic
height is indicative of upwelling and increased primary produc-
tion, this analysis did not attribute any of the dynamic height
effect on egg distribution to spatial variations in secondary
production. This was unforeseen since mesozooplankton abun-
dance in the CCE sharply decreases coincident with large gradi-
ents of dynamic height (Lynn, 2003). The weak effect of
zooplankton volume could reflect the ambiguous ecological role
of this indicator. Zooplankton volume is a bulk measure of the
abundance of myriad species belonging to diverse functional
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groups. Variations in species composition make it difficult to
interpret the meaning of changes in zooplankton volume. It is
often assumed that high zooplankton volume denotes increased
prey for planktivorous fishes (Lynn, 2003), but some authors have
identified negative correlations between zooplankton and the egg
distribution and recruitment of sardine (Checkley et al., 2000;
Agostini et al, 2007). These negative correlations have been
attributed to increases in predatory zooplankton that consume
fish larvae and eggs. Furthermore, spatial and temporal variations
in zooplankton volume do not correspond to fluctuations in the
carbon biomass of zooplankton (Lavaniegos and Ohman, 2007).
This is because displacement volume is often dominated
by gelatinous organisms with low carbon content and little
nutritional value.

Based on GLM results, neither geostrophic currents nor eddies
explained much of the influence of dynamic height on fish
egg distribution. This may reflect the spatial resolution of the CalCOFI
grid, since the gradients in dynamic height used to derive geostrophic
currents are more precisely measured when observations are spaced
over smaller intervals. The relatively coarse scale of the CalCOFI grid is
adequate for detecting mean flow in the California Current, nearshore
countercurrent flow, large meanders, and mesoscale eddies. However,
smaller scale jets and filaments could not be identified. Similarly, only
1-2 bongo net samples were obtained within many eddies due to the
spatial resolution of the CalCOFI grid. The scarcity of bongo net
samples in eddies may have prevented us from being able to use
GLMs to accurately attribute how much of the dynamic height effect
was related to fishes spawning in eddies. Nevertheless, an examina-
tion of eddy effects using finer resolution CUFES data suggested that
sardine, anchovy, and jack mackerel eggs were more abundant in
areas outside eddies than within cyclonic eddies, possibly due to high
predation within productive eddies. This analysis using CUFES was
inevitably affected by autocorrelation, but the fact that neither the
bongo net nor CUFES datasets indicated a tendency for fishes to
spawn in eddies implies that the results of GLMs were not strongly
influenced by spatial scale.

An advantage of using SSH as an indicator of spawning habitat
is that it can be remotely sensed by altimetry. Unlike in situ
surveys, remote sensing can provide a synoptic view of a region,
sample an area more frequently than ships, and provide
higher spatial resolution. Despite these advantages of satellite
data, there may be greater coherence between fish egg distribu-
tion and in situ measurements of dynamic height, because they
can be collected concurrently. Contemporaneous sampling is
especially important given that the egg stage of small pelagic
fishes lasts only 2-4 days at temperatures in the southern
CCE (Zweifel and Lasker, 1976), while satellite altimeters record
SSH over a 7- to 10-day repeat cycle. The reliability of altimetry
data is also reduced within 50 km of land (Martin, 2004), which
could constrain the use of altimetry for identifying the habitat of
coastal fish. In addition, there are subtle, but important, differ-
ences between remotely sensed SSH and SSHa. Remotely sensed
sea level anomalies from the Archiving, Validation, and
Interpretation of Satellite Oceanographic (AVISO) data project
are calculated relative to the mean SSH between 1993 and
1999 observed in a single pixel. Since mean SSH differs between
pixels, a spatial component of the altimetry dataset is removed
in calculating anomalies. Consequently, certain oceanic features,
such as mesoscale eddies, become more apparent in SSHa
data than SSH observations (Fig. 7b and c). However, other
features, such as onshore-offshore gradients, become obscured
in the SSHa dataset (Fig. 7c). While similar circulation patterns
can be seen in CalCOFI dynamic height measurements and AVISO
SSH (Fig. 7a and b), many of these shared features are not
detectable in maps of SSHa. A similar pattern emerged from
correlations between dynamic height during April CalCOFI cruises
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Fig. 7. Maps of (A) dynamic height from California Cooperative Oceanic Fisheries
Investigations (CalCOFI), (B) sea surface height (SSH) from the Archiving, Valida-
tion, and Interpretation of Satellite Oceanographic (AVISO) data project, and
(C) AVISO SSH anomalies (SSHa) from March 27-April 12, 2002. Data have been
interpolated onto a 0.1° grid to facilitate comparisons between remotely sensed
and in situ observations with different native, spatial resolutions.

from 1998 to 2008 and concurrent AVISO SSH and SSHa observa-
tions. Dynamic height and SSH were closely correlated (r=0.93,
p <0.001, d.f.=658), while a weaker correlation between dynamic
height and SSHa was detected (r=0.49, p < 0.001, d.f.=658). Use
of dynamic height versus SSHa may explain the differing results of
the present study and Zwolinski et al. (2011), who found SSHa
gradients to have a relatively weak effect on sardine spawning
habitat.



105

R.G. Asch, D.M. Checkley Jr. / Deep-Sea Research I 71 (2013) 79-91

4.2. Interannual variability in spawning habitat

Interannual variability in spawning habitat evident in Figs. 1 and 2
can be attributed to two factors. First, variations in spawning habitat
reflect changes in oceanic conditions. During our study, this was
exemplified by the El Nifio events of 1998 and 2002/2003. Sea level in
California is positively correlated with the strength of El Nifio with a
lag of 3-4 months (Chelton et al, 1982). During El Nifio, coastal
upwelling is reduced and the thermocline deepens in the CCE
(McPhaden et al, 2006). Consequently, coastal waters become
warmer and fresher, leading to increased dynamic height. This was
evident in 1998 when dynamic heights >95 cm expanded shore-
ward while the region with dynamic heights <80 cm contracted
(Fig. 1). This pattern recurred in 2002/2003, albeit to a much lesser
extent since this was a weaker El Nifio whose beginning and end
roughly coincided with timing of the 2002 and 2003 spring cruises,
respectively (NOAA Climate Prediction Center, 2012). These changes
reduced the extent of areas with low dynamic height, forcing fishes
that favor these habitats to either spawn in other regions, which may
be suboptimal, or increase their density in remaining areas. Spawning
sardine and jack mackerel responded to the 1998 El Nifio via the first
strategy since peaks in their quotient curves occurred at slightly
higher dynamic heights than normal (Fig. 2). Anchovy utilized the
second strategy since they remained in areas with low dynamic
heights but exhibited greater spawning habitat electivity than usual
in 1998. Song et al. (2012) observed a similar pattern, noting that
sardine eggs were more concentrated in recently upwelled waters
during El Nifio.

Second, the size of a fish stock can influence the extent of its
spawning habitat in a given year. As proposed by the basin model
(MaccCall, 1990), increased stock size may lead to density-
dependent declines in habitat quality. In response, fish either
occupy new waters that previously displayed lower habitat
electivity or the density of fish may increase in areas with the
highest electivity. An example of this was observed in 2005-2008
when the frequency of anchovy eggs increased to 42.5% compared
to earlier years when eggs occurred at 22.3% of sites. While a
stock assessment for anchovy has not been conducted since 1995
(Jacobson et al., 1995), this increased frequency of anchovy eggs is
likely due to growth of this species’ SSB. This growth was not
accompanied by a major change in the dynamic heights used by
anchovy when spawning (Fig. 5). Instead, the distribution of
anchovy eggs expanded northward, occupying a larger portion
of the region with dynamic heights < 83 cm. While this finding is
in accordance with the basin model, a more definitive test of this
model requires data from a larger proportion of anchovy’s range
(i.e., British Columbia to Baja California).

4.3. Other oceanic variables that affect spawning habitat

The novelty of our study rests in that it is the first to identify
in situ measurements of dynamic height as an important variable
influencing the spawning habitat of sardine and anchovy. How-
ever, we also used to GLMs to model the effect of several other
oceanographic variables on the spawning habitat of small pelagic
fishes. The ranges of temperature, salinity, chlorophyll concentra-
tion, zooplankton volume, and geostrophic currents preferred by
spawning anchovy and sardine in our GLMs were generally
similar those detected in previous studies (Fiedler, 1983; Lluch-
Belda et al., 1991; Checkley et al., 2000; Lynn, 2003; Reiss et al.,
2008; Weber and McClatchie, 2010; Zwolinski et al., 2011),
although one noteworthy exception is discussed below.

Unique biological communities develop in eddies due to
retention of planktonic organisms, upwelling in cyclonic eddies,
and transport of coastal species offshore. Anchovy eggs are
occasionally found offshore in eddies with similar characteristics

to the nearshore habitats where they usually spawn (Fiedler,
1986). Also, abundance and production of late-stage sardine
larvae can be extremely high in offshore, cyclonic eddies
(Logerwell and Smith, 2001; Logerwell et al., 2001). In contrast
to these studies, our results did not detect a significant effect of
cyclonic or anticyclonic eddies on the presence/absence of fish
eggs. This does not contradict Logerwell and Smith (2001)
because our work examines a different life history stage of
sardine. Our results suggest that sardine do not preferentially
spawn in eddies, but late-stage larvae could still become con-
centrated in eddies due to retention and/or reduced mortality.
Also, uplift of water in the eddy center can concentrate larvae
(Nishimoto and Washburn, 2002; Mackas et al., 2005), but the
time scale of this process may be too slow to affect the short-lived
egg stage. While Fiedler (1986) demonstrates that anchovy eggs
may sometimes become concentrated in eddies, this author
documented an unusual event that does not occur regularly.

Of the three species examined, jack mackerel has been the least
studied, with no prior research identifying how environmental factors
affect where it spawns in the CCE. Based on GLMs, jack mackerel
spawning habitat includes oceanic regions characterized by high
springtime dynamic height (89-99 cm), warm temperatures (13.5-
15.6 °C), low salinity ( < 33.1), and reduced biomass of phytoplankton
(<0.5 mgm~2 of chlorophyll) and zooplankton ( <46 cm®/1000 m*
strained). Salinity played the largest role in determining which
regions were likely to contain jack mackerel eggs (Table 2). The
prevalence of jack mackerel eggs in salinities < 33.2 suggests that
this species spawns in the main California Current, which can be
delineated by salinity within this range (Checkley et al., 2000).
Chilean jack mackerel (T. murphyi), a congener of this species, exhibits
similar habitat requirements, spawning in oceanic waters with warm
temperatures (Arcos et al.,, 2001).

5. Conclusions

Dynamic height was the single best oceanic variable for
identifying spawning habitat of anchovy and sardine. Each species
of small pelagic fish in the CCE exhibited positive spawning
habitat electivity across different dynamic heights, indicating that
they spawn in distinct portions of the environment, albeit with
some partial overlap. In accordance with our initial hypothesis,
interannual variability in the extent of each species’ preferred
range of dynamic height explained year-to-year fluctuations in
spawning habitat location. The skill of dynamic height GLMs
when making predictions for 2005-2008 demonstrated that
spawning habitat preferences remained stable across distinct
time periods. The influence of dynamic height on these species’
spawning habitat can be largely attributed to the combined
effects of temperature, salinity, and chlorophyll on fish egg
distribution. Spatial variations in zooplankton volume, geos-
trophic flow, and eddies accounted for relatively little of the
dynamic height effect on spawning habitat.

Spawning habitat models could potentially be used to predict
shifts in fish egg distribution due to climate change, assuming the
current relationship between spawning habitat and environmental
variables remains constant. Climate-induced changes in the latitude
and depth inhabited by fishes have been observed in many eco-
systems (Beare et al., 2004; Perry et al., 2005; Hsieh et al., 2008, 2009;
Nye et al, 2009). These changes are expected to accelerate under
future climate change scenarios. One obstacle related to predicting
changes in fish distribution is that many models of ocean dynamics,
including the widely used Regional Ocean Modeling System (ROMS),
are skillful at forecasting physical oceanographic conditions, but are
not able to model biological variables with comparable accuracy.
In light of this, the relationship between dynamic height and
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spawning habitat may be particularly propitious because ROMS and
other ocean general circulation models routinely output estimates
of SSH.

Improved understanding of the relationship between small
pelagic fishes and environmental variables may be useful for
transitioning from single species fisheries management to
ecosystem-based fisheries management. Sardine is one of the
few species whose stock assessment has explicitly considered
the effect of environmental variability, since the running mean of
SST from the Scripps Pier has been used to determine the fraction
of SSB to be harvested (Jacobson and MacCall, 1995; Hill et al.,
2011). Recently the reliability of Scripps Pier SST for predict-
ing the recruitment success of sardine has been challenged
(McClatchie et al., 2010). Therefore, this may be the right time to
examine how other environmental variables could be incorpo-
rated into the management of small pelagic fishes. Dynamic height
could be useful to consider within this context, because it is linked
to a variety of oceanic processes, including fluctuations in tem-
perature, salinity, biological productivity, geostrophic flow, and
eddies. Two ways in which dynamic height could be used in
fisheries management are: (1) remotely sensed observations of
SSH could help identify regions with a potentially high concentra-
tion of fish eggs prior to annual egg surveys. Data from these
surveys are used as fisheries-independent input to the sardine
stock assessment. Knowledge of environmental influences on
spawning habitat can increase the efficiency of these surveys by
allowing researchers to target areas where eggs are abundant
(Fiedler, 1983; Zwolinski et al., 2011). (2) The Magnuson-Stevens
Fishery Conservation and Management Act requires that essential
fish habitat (EFH) be identified for commercially fished species.
Currently, EFH for coastal pelagic species in the CCE is defined
based on the 10 °C isotherm (PFMC, 1998). Since dynamic height
has a greater influence on the spawning habitat of anchovy and
sardine than temperature, this variable may be useful for refining
EFH. SSH may also be helpful for delineating fish habitat in regions
with a dearth of oceanographic data given that it can be remotely
sensed and influences the distribution of a variety of species.
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KEY VARIABLE FOR IDENTIFYING THE SPAWNING HABITAT OF SMALL

PELAGIC FISHES
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S1. Sampling in the Central California Region

CTD profiles, bongo net tows, and samples from the Continuous, Underway Fish
Egg Sampler (CUFES) were available from central California during California
Cooperative Oceanic Fisheries Investigations (CalCOFTI) cruises in April of 1998, 2003,
and 2004. The latter two years surveyed the area between CalCOFT transects 60.0-73.3
[San Francisco Bay (37.8° N) to north of Morro Bay (35.6° N)], whereas only transects
66.7-73.3 [Monterey Bay (36.8° N) to north of Morro Bay] were sampled in 1998. A total
of 72 bongo net tows and 82 CTD casts were conducted in this region. With these data,
we constructed empirical cumulative distribution functions (CDFs) to examine the range
of dynamic heights inhabited by northern anchovy (Engraulis mordax), Pacific sardine
(Sardinops sagax), and jack mackerel (Trachurus symmetricus) when spawning in central
California. We also used ){2 goodness-of-fit tests to evaluate the statistical significance of
habitat electivity in both southern and central California. Separate tests were performed
for each region. For the j” tests, data were binned into four 10-cm intervals of dynamic
height. These intervals differed slightly between southern and central California,
reflecting the distribution of dynamic height in each region. Expected frequencies for ){2
tests were calculated assuming that fish spawned randomly across dynamic heights drawn
from the observed distribution in each region. Offshore habitats were excluded when
computing the expected frequency of anchovy eggs, since these habitats were outside the
normal range of spawning anchovy. Similarly, the expected frequencies of eggs used in
)(2 tests for central California excluded dynamic heights from years when a particular

species did not occur in this region (i.e., 2003 for anchovy and jack mackerel).
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During the years surveyed, dynamic height ranged between 43-97 cm in central
California. This lower range of dynamic heights relative to southern California likely
reflected both cooler temperatures in these more northerly waters and increased intensity
of upwelling. Central and northern California have been characterized as the regions
within the California Current Ecosystem (CCE) with maximal upwelling (Parrish et al.,
1981). As was the case in southern California, sardine eggs were primarily found in
regions with intermediate dynamic heights (80-90 cm), while anchovy and jack mackerel
eggs occupied areas with lower (70-85 cm) and higher (85-95 cm) dynamic heights,
respectively (Fig. S2.1a). Compared to equivalent empirical CDFs from southern
California (Fig. 2.3), the tails of the CDFs from central California were shifted towards
lower dynamic heights due to the greater availability of these low dynamic height
habitats in this region and the scarcity of areas with dynamic heights exceeding 95 cm.

The statistical significance of habitat electivity with respect to dynamic height
was evaluated with x° goodness-of-fit tests. These tests were significant at p < 0.05 for
sardine and jack mackerel in both regions of California (Table S2.1). The XZ tests also
indicated that each of these species exhibited similar patterns of habitat electivity when
spawning in southern and central California. Jack mackerel eggs were observed at a
disproportionately high frequency at dynamic heights of 90-100 cm, but this species
eschewed areas with low dynamic heights (70-80 cm) when spawning. In both south and
central California, the only dynamic height interval across which sardine exhibited
positive spawning habitat electivity was 80-90 cm (Table S2.1). In southern California,
residuals from y” tests indicated that anchovy eggs also occurred more frequently than

expected at dynamic heights between 80-90 cm and less frequently at higher dynamic
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heights. In contrast, 5 tests for anchovy in central California were not statistically
significant. This may reflect the fact that anchovy eggs were relatively rare in central
California, occurring in only 11 of the bongo net tows from this region. The scarcity of
anchovy eggs may have reduced the statistical power of the y” test.

During April 2004, sardine eggs were largely absent throughout southern
California, but were abundant along CalCOFI transects surveyed in central California (Lo
et al., 2010). Despite this change in geographic distribution, sardine continued to spawn
across the same range of dynamic height. Quotient curves constructed for the central
California region indicated that sardine displayed positive spawning habitat electivity
across dynamic heights of 79-87 cm in 2004. This is very similar to the average range of
dynamic heights (79-88 cm) across which sardine eggs exhibited positive electivity in

southern California based on quotients curves.

S2. Spatial Scale of Autocorrelation

While the fine-scale resolution of CUFES (mean resolution = 5.3 km) may be
advantageous for identifying spatial patterns, it can also lead to autocorrelation between
adjacent samples. Due to the lack of independence between autocorrelated observations,
most statistical tests will reject a null hypothesis more often than the nominal tolerance
value o when data are autocorrelated (Legendre and Legendre, 1998; Ciannelli ef al.,
2007). Previous research on Pacific sardine has shown that autocorrelation of fish egg

concentration occurs across spatial scales <22 km (Lo et al., 2001). This indicates that
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sardine data collected by CUFES would be autocorrelated, but no autocorrelation would
be evident at the larger sampling intervals of the bongo net.

Since no previous information on the maximum spatial extent of autocorrelation
exists for northern anchovy and jack mackerel eggs in the CCE, we constructed isotropic
variograms of these species using CUFES data from the year 2000. This year was chosen
because it was the first year in our time series when spatial patterns were not altered by
El Nifio or La Nifia. To ensure that fish egg data were normally distributed, egg
concentration was transformed using the natural logarithm and sites that did not contain
eggs were removed from the dataset. The latter step was taken because otherwise an
excessive number of zero counts would prevent the data from displaying a Gaussian
distribution. Since anchovy eggs were typically absent from offshore regions (i.e.,
CalCOFI station numbers > 70; Fig. 2.1), these sites were excluded from the variogram
constructed for this species. Pairs of CUFES samples separated by a Euclidean distance 4
were grouped into 5-km bins. The semivariance (y) of each bin was calculated with the

following formula:

1 2
Sl h) = .
(S1) y(h) 2|N(h)|]v<2h)(z' z,)

where N(h) is the set of pairwise Euclidean distances 4, | N(h) | is the number of pairs in
N(h), and z; and z; are fish egg concentrations at locations i and j (Kaluzny et al., 1998).
Only bins containing a minimum of 30 pairs of observations and whose value was less

than half of the maximum lag 4 were used because calculations of y(#) become

increasingly variable at large lags and in bins with a small number of observations
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(Kaluzny ef al., 1998). Empirical variograms were produced by graphing lags 4 against
y(h), while theoretical variograms were fitted with a spherical model.

In variograms of anchovy and jack mackerel eggs, the semivariance initially
increased as a function of distance between CUFES samples, but eventually reached an
asymptote (Fig. S2.2). The distance corresponding to this asymptote is known as the
range and is indicative of the maximum spatial scale of autocorrelation. Other parameters
estimated to fit a theoretical variogram were the sill and nugget, which refer to the
semivariance at the asymptote and at a lag distance of zero, respectively. For anchovy
eggs, the range was estimated to be 48 km, while the semivariance of the nugget and sill
were 0.33 and 2.49, respectively (Fig. S2.2a). The spherical variogram model for
anchovy had an /° of 0.47. Based on the range estimated by the theoretical variogram, the
scale of autocorrelation for anchovy eggs is much larger than the resolution of the
CUFES data (i.e., 5.3 km) and in between the resolution of the nearshore and offshore
CalCOFI grid (i.e., 36 and 72 km, respectively). Since anchovy eggs were rarely found
offshore, the nearshore CalCOFI grid was the most relevant scale for this species. At this
scale, the autocorrelation of anchovy egg concentration had declined by 92% relative to
its maximum at the nugget. Therefore, although a small amount of autocorrelation
persists, statistical tests are unlikely exhibit major biases when anchovy egg data were
analyzed at the scale of the nearshore CalCOFT grid.

For jack mackerel eggs, the range was estimated to be 140 km, while the nugget
and sill were 0.25 and 2.30, respectively (Fig. S2.2b). An #* of 0.94 indicated an excellent
fit between the empirical and theoretical variograms calculated for jack mackerel. The

scale of autocorrelation for jack mackerel eggs as denoted by their range is larger than the
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spatial resolution of CUFES and both the nearshore and offshore CalCOFI grid. Since
jack mackerel eggs predominantly had an offshore distribution (Fig. 2.1), the offshore
CalCOFI grid was the most relevant scale for this species. At this scale, the
autocorrelation of jack mackerel eggs had decreased by 70% relative to its maximum at
the nugget. We have assumed that statistical tests were unlikely to display major biases

for jack mackerel at the scale of the offshore CalCOFTI grid due to autocorrelation.

S3. Generalized Linear Models (GLMs) of Egg Concentration

To determine if similar oceanic variables influenced both the presence of fish
eggs and their concentration, we constructed a generalized linear model (GLM) of egg
concentration using the negative binomial distribution. This distribution is appropriate for
modeling organisms that display spatially aggregated patterns. Parameters describing the
negative binomial distribution of anchovy, sardine, and jack mackerel eggs were
estimated with R statistical software (version 2.11.1, R Foundation for Statistical
Computing, Wien, Austria). Next, the U-statistic goodness-of-fit test was used to evaluate
the null hypothesis that fish egg concentration could be described by the negative
binomial distribution (Krebs, 1999). In all cases, the null hypothesis could not be rejected
at p <0.05, so we proceeded to develop GLMs using the negative binomial distribution.
In GLMs, the relationship between egg concentration and oceanic variables was modeled
using linear and quadratic terms to allow fishes to exhibit peaks in egg concentration over
a range of a given variable. The relative fit of models of each independent variable (i.e.,

dynamic height, temperature, salinity, chlorophyll concentration, zooplankton volume,
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geostrophic current speed and direction, and eddies) was compared with the Akaike
Information Criterion (AIC) and analysis of deviance. Since comparisons based on
deviance and the AIC produced equivalent results, for conciseness we have opted only to
present results from analysis of deviance. The ranges of environmental variables
associated with peak egg concentration were identified based on the area where GLM
predictions exceeded 90% of their maximum value. Due to extremely high predictions of
egg concentration for geostrophic currents flowing in certain directions, GLM outputs
were logo transformed prior to assessing peak egg concentrations for this variable.
Table S2.2 compares the relative explanatory power that different variables have
on fish egg concentration based on the negative binomial GLMs. As was the case when
examining the presence/absence of eggs, the GLMs investigating variations in egg
concentration showed that the largest amounts of residual deviance were explained by
dynamic height, chlorophyll, temperature, and/or salinity. Less deviance was explained
by zooplankton volume, geostrophic currents, and eddies. For anchovy and jack
mackerel, dynamic height accounted for more variability in egg concentration than any
other variable (Table S2.2). Chlorophyll concentration and dynamic height explained
similar amounts of residual deviance in the negative binomial GLM for sardine. A few
variables that contributed significantly to the characterization of areas where fish eggs
were present did not explain as much variability in egg concentration. This was the case
for geostrophic current speed in the GLM examining anchovy eggs and zooplankton
volume in the jack mackerel GLM. In both the models of sardine egg concentration and
presence/absence, zooplankton volume had a marginally significant effect (0.04 <p <

0.06; Tables 2.2 and S2.2).
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The range of oceanic variables across which fishes spawned most frequently is
shown in Table S2.3 for models investigating the presence/absence of fish eggs (i.e.,
logistic regression GLMs) and egg concentration (i.e., negative binomial GLMs). These
ranges of environmental variables were generally similar regardless of which type of
model was applied. The negative binomial GLMs often predicted slightly narrower
ranges of environmental variables. This reflected the fact that eggs may be present over a
broader area than just the region where their concentration is maximal. Small differences
between predicted ranges from the logistic regressions and negative binomial GLMs may
also reflect the influence of a few study sites that contain extremely large numbers of fish
eggs. For example, 50% of anchovy eggs sampled between 1998-2004 occurred at five
study sites. Oceanic conditions at these sites may have a large influence on the GLMs
predicting anchovy egg concentration, but would be unlikely to affect models of the
presence/absence of anchovy eggs as strongly.

In addition to model predictions, empirical CDFs also indicated that the dynamic
heights used by spawning small pelagic fishes were similar regardless of whether
analyses were conducted with egg concentration data or the presence/absence of fish eggs

(Figs. 2.3 and S2.1b).

S4. Forward, Stepwise Models of the Presence/Absence of Fish Eggs

Forward, stepwise models using all predictor variables were constructed to

evaluate which variables would be included in the optimal model of egg distribution for

each species. Models were developed in a similar manner to those described in Section
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2.3 of this manuscript. The presence/absence of fish eggs was used as the dependent
variable, whereas independent variables were incorporated into each model as linear and
quadratic terms. First-order interactions between sets of two independent variables were
also included in models. Models were fit with a GLM framework in which a binomial
distribution and logit link were used (i.e., logistic regression). During the step-wise fitting
process, the contribution of linear and quadratic terms was evaluated jointly. The AIC
was used to assess whether the addition of terms improved model fit. The step-wise
process of model building was terminated when the inclusion of additional terms no
longer reduced the AIC.

These step-wise models differed from those shown in Table 2.3 where the
dynamic height term was added last to the model. The latter models were designed to
evaluate the contribution of each independent variable towards explaining the dynamic
height effect, whereas the models presented here were constructed to find the optimal
combination of variables for predicting fish egg distribution. Nevertheless, it should be
noted that the predictive capacity of these models may be limited due to collinearity
between variables that show similar spatial patterns (Table 2.1). In contrast, collinearity
between variables was explicitly incorporated into the design of GLMs in Table 2.3,
where the degree of collinearity between variables influenced how of much of the
dynamic height effect on fish egg distribution could be attributed to each variable.

Table S2.4 shows the variables incorporated into the optimal predictive models of
the distribution of anchovy, sardine, and jack mackerel eggs. Dynamic height was
included as the first term in models of anchovy and sardine eggs, where it accounted for

70.5% and 49.8% of the deviance explained by the models, respectively, for each species.
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The final step-wise model of anchovy egg distribution also contained the following
variables: zooplankton volume, temperature, geostrophic current speed, and eddies. In
addition to dynamic height, other terms included in the step-wise model of sardine eggs
were chlorophyll, salinity, geostrophic current direction, and interactions between these
variables (Table S2.4). Dynamic height was incorporated as the second term in the model
of jack mackerel egg distribution, following the addition of salinity to the model. The
remaining variables in the step-wise model of jack mackerel eggs were zooplankton
volume, chlorophyll concentration, and two interaction terms. Aside from dynamic
height, zooplankton volume was the only other variable consistently incorporated into
spawning habitat models of all three species. This suggests that, although zooplankton
volume by itself does not explain a high degree of variability in fish egg distribution
(Table 2.2), it is a secondary factor that becomes important when considered in
conjunction with other variables. Since temperature has been frequently used to describe
the spawning habitat of these fishes (Fiedler, 1983; Lluch-Belda et al., 1991; Checkley et
al.,2000; Reiss et al., 2008; Weber and McClatchie, 2010; Zwolinski et al., 2011), it is
also noteworthy that temperature was only incorporated into the predictive, step-wise
model of one of the three species. This implies that temperature may be a proxy for other
environmental factors that more directly influence the distribution of small pelagic fishes

(Fiedler, 1983; Jacobson and MacCall, 1995; Rodriguez-Sanchez et al., 2002).
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Figure S2.1. Empirical cumulative distribution functions (CDFs) of the dynamic heights
across which the eggs of northern anchovy (dashed line), Pacific sardine (solid line), and
jack mackerel (thick, solid line) were observed. (A) Presence/absence of eggs in the
central California. (B) Egg concentration (# per 10 m?) at sites where eggs were present
in southern California. Egg concentration data were log, transformed prior to
constructing CDFs in the bottom panel.
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Figure S2.2. Variograms of anchovy (A) and jack mackerel eggs (B) based on
Continuous, Underway Fish Egg Sampler (CUFES) data collected during the spring 2000
California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruise. Dots indicate
the semivariance of data in 5-km bins, while the solid line is a theoretical variogram fit to
an isotropic, spherical model. Dashed lines indicate the spatial scale of the CalCOFI grid
at nearshore and offshore sites (i.e., 36 and 72 km, respectively). Only the offshore grid

scale is displayed in (B) because jack mackerel eggs do not frequently occur in coastal
waters.
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Figure S2.3. Maps of the average chlorophyll concentration over the upper 50 m of the

water column during spring cruises between 1998-2004. Similarities in the spatial

distribution of chlorophyll and dynamic height are illustrated by the inclusion of dynamic
height contours (black lines).
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Table S2.1. Contingency table comparing the observed number of samples with fish eggs
in dynamic height bins and the number of samples that would be expected if fishes
spawned uniformly. Data in the left half of the table are from southern California, while
results from central California are shown to the right. Numbers in parentheses are the
percentage of eggs in each dynamic height category. Residuals, degrees of freedom (d.f.),
and p-values are from a Pearson’s y° test of goodness of fit. The ‘N — 1’ modification to
this test was used to account for small expected numbers in some dynamic height bins
(Campbell, 2007). N/A indicates dynamic heights > 100.0 cm that were not included in
the contingency table for anchovy, because spawning anchovies were generally absent
from offshore areas where high dynamic heights occurred.
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Table S2.2. Deviance explained by generalized linear models (GLMs) examining the
concentration of anchovy, sardine, and jack mackerel eggs. The effect of independent
variables was tested individually using quadratic and linear terms. The one exception to
this was the “eddies” term, which was incorporated into GLMs as a categorical variable.
Significance levels are indicated as follows: * p < 0.05; ** p <0.01; *** p <0.001. The
number of asterisks corresponds to the most significant term in a GLM, which could be
either linear or quadratic.

Anchovy Sardine Jack mackerel

(n=435) (n=378) (n =435)
Independent variables Deviance
Dynamic height 136.5%*** 40.8%** 43.8%**
Temperature 33.20%* 25.9%* 2570
Salinity 19.15%x* 4 8%+ 3345+
Chlorophyli 29.9%** 42 8%+ 28.8%**
Zooplankton volume 17.20%* 7.7 3.6
Geostrophic current speed 3.3 0.1 0.2
Geostrophic current direction 7,30k 5.6%** 7.6%*
Eddies 5.4 1.2 0.3

* Linear term significant at p < 0.05
® Quadratic term significant at p < 0.05
¢ Linear and quadratic terms significant at p < 0.05
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Table S2.3. Comparison of characteristics associated with the spawning habitat of small
pelagic fishes based on logistic regressions and negative binomial generalized linear
models (GLMs). The range of each oceanic variable indicates the area where logistic
regression or negative binomial GLM predictions exceeded 90% of their maximum value.
In the case of geostrophic current direction, negative binomial GLM predictions of egg
concentration were logjo transformed prior to estimating the range. N/A denotes a
variable that did not significantly affect spawning habitat.

Negative
binomial GLM

Oceanic variable Logistic
regression

Dynamic height (cm)

Anchovy 79-83

Sardine 84 — 89

Jack mackerel 89 —-99
Temperature (° C)

Anchovy 12.0-134

Sardine 12.5-13.9

Jack mackerel 13.5-15.6
Salinity

Anchovy 33.56-33.7

Sardine 33.0-334

Jack mackerel <331
Chlorophyll (mg m'3)

Anchovy 1.2-3.9

Sardine 06-22

Jack mackerel <0.5
Zooplankton volume (cm3 1,000 m’3)

Anchovy 78 — 264

Sardine N/A

Jack mackerel <46
Geostrophic current speed (cm s’1)

Anchovy >80

Sardine N/A

Jack mackerel N/A
Geostrohic current direction (°)

Anchovy -6 -23

Sardine <-42

Jack mackerel N/A

81-83
82 - 86
89 -95

13.0-13.6
12.7-134
13.8-14.9

33.4-33.5
33.2-334
33.1-33.3

1.3-24
1.1-1.9
0.1-04

163 - 297
129 - 352
N/A

N/A
N/A
N/A

9-7
<-34
<-30
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Table S2.4. Model coefficients, deviance explained, and the Akaike Information Criterion
(AIC) for variables included in the forward, step-wise models of the presence/absence of

fish eggs. In the table, the linear term for each variable is listed first followed by the
quadratic term. The significance of each term in the logistic regression models was

examined with likelihood ratio tests. * p < 0.05; ** p <0.01; *** p <0.001. The number

of asterisks corresponds to the most significant term in the regression, which could be

either linear or quadratic.

Model step  Variable added Model coefficients Deviance AIC
Anchovy
1 Intercept -201.5540 463.7
2 Dynamic height 457.5520
-302.2754 119.9%**  347.7
3 Zooplankton volume -13.7238
2.6780 26.5™** 3252
4 Temperature 6.5218
-0.2240 10.4%**  318.8
5 Geostrophic current speed -6.2928
8.4202 7.8"*  315.0
6 Eddies -198.9824
-202.9225 5.5 313.5
Sardine
1 Intercept -2,814.7882 440.8
2 Dynamic height 29.1149
-14.8834 48.9%** 3959
3 Chlorophyll -22.5160
0.1819 18.6“*  381.3
4 Salinity 165.4036
-2.4312 9.0%*  376.3
5 Zooplankton volume 116.7740
2.8384 11.2°*  369.2
6 Dynamic height x chlorophyll 29.0667 25 368.7
7 Salinity x zooplankton volume -3.8552 2.1 368.6
8 Geostrophic current direction -0.0308
0.0001 5.8%* 366.8

* Linear effect of dynamic height significant at p < 0.05
® Quadratic effect of dynamic height significant at p < 0.05
¢ Linear and quadratic effects of dynamic height significant at p < 0.05



Table S2.4 (continued)

Model step  Variable added Model coefficients Deviance AIC
Jack mackerel
1 Intercept -5,829.9103 604.5
2 Salinity 311.3174
-4.1722 90.5™** 518.0
3 Dynamic height 1,307.0140
-115.1607 14.9%*  507.2
4 Zooplankton volume 118.7881
2.0371 9.1% 502.0
5 Salinity x dynamic height -32.9709 3.9* 500.2
6 Chlorophyll -0.9883
0.4591 5.9% 498.3
7 Salinity x zooplankton volume -3.7626 3.0 497.3

* Linear effect of dynamic height significant at p < 0.05
® Quadratic effect of dynamic height significant at p < 0.05
¢ Linear and quadratic effects of dynamic height significant at p < 0.05
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CHAPTER 3. CHANGES IN PHYTOPLANKTON PHENOLOGY DETECTED WITH
THE COMMUNITY EARTH SYSTEM MODEL 1.0 (CESM1): LONG-TERM

TRENDS AND THE INFLUENCE OF CLIMATE OSCILLATIONS
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Abstract

Changes in the phenology of marine phytoplankton are ecologically important
because phytoplankton seasonality can affect total annual primary production,
sequestration of CO; through the biological pump, and abundance of higher trophic level
organisms whose reproduction is timed to coincide with plankton blooms. Most studies
of phytoplankton phenology have been too short to evaluate the prevalence of long-term
changes due to anthropogenic forcing or decadal-scale climate oscillations. Here
phytoplankton phenology in the North Pacific (5°S — 66°N, 151°E — 76°W) was
examined between 1961 and 2007 with the ocean component of the Community Earth
System Model 1.0 (CESM1) forced with atmospheric observations. Comparisons with
SeaWiFS chlorophyll concentration indicated that CESM1 could simulate mean dates of
bloom initiation and midpoint with as much skill as it could predict mean bloom
magnitude (» > 0.65). CESM1 exhibited less skill identifying mean dates of bloom
termination (» = 0.51) and duration (» = 0.18). Changes in bloom initiation date at 23-
34% of CESM1 grid cells were correlated with the Multivariate ENSO Index (MEI),
Pacific Decadal Oscillation, or North Pacific Gyre Oscillation, while 20% of grid cells
exhibited long-term trends in bloom initiation. The first principal component for each of
five phenological metrics (bloom initiation, midpoint, termination, duration, and
magnitude) was either correlated with the MEI or displayed a long-term trend. Climate
effects on bloom initiation were more pervasive than effects on bloom midpoint,

termination, and duration. Compared to terrestrial ecosystems, the long-term trends in
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phytoplankton phenology are noteworthy in terms of their rapid rate of change and

greater prevalence of delayed phenology.

1. Introduction

Phenology refers to the study of recurring, biological events and how they are
influenced by regional climate and meteorology. Traditionally, most phenological studies
examine discrete events, such as the date of first flowering and bud burst among plants or
the timing of the reproductive activity and seasonal migration among animals (Greve,
2003). In contrast, studies of phytoplankton phenology track continuous, seasonal
changes in the abundance of phytoplankton, typically focusing on variability in the dates
of spring and fall blooms. The phenology of phytoplankton has been proposed as an
indicator of pelagic ecosystem condition, which could be used to track changes in ocean
ecosystem dynamics due to natural and anthropogenic perturbations (Platt ez a/., 2009,
2010).

With regard to understanding how climate change will alter marine ecosystems,
investigating long-term changes in phytoplankton phenology will be key since seasonal
dynamics influence integrated annual rates of primary and export production. Annual
primary production is affected by both the duration and timing of phytoplankton blooms
(Yamada and Ishizaka, 2006; Song et al., 2011). For example, earlier blooms are
correlated with greater annual net primary production in the Northwest Atlantic (Song et
al.,2011). The seasonal coincidence between phytoplankton blooms, zooplankton

grazers, and viruses can influence the efficiency of export production where
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anthropogenic CO; is sequestered in the deep ocean through the biological pump (Lutz et
al.,2007; Henson et al., 2009; Sapiano et al., 2012). Later spring blooms have been
associated with greater flux of phytoplankton biomass to the benthos on the Nova Scotian
Shelf and in the Gulf of Maine (Song et al., 2011), whereas, in the Bering Sea, export
production increases in cold years with late sea ice retreat and early ice-associated
phytoplankton blooms (Hunt and Stabeno, 2002; Hunt et al., 2002). This reflects in part
the differential effects of temperature on the metabolism of phytoplankton and grazers,
which can in turn influence trophic coupling. Since there is a seasonal succession of
phytoplankton species that is difficult to accurately monitor with remote sensing,
phenological patterns may also serve as an indicator of changes in phytoplankton
community composition (Chiba ef al., 2012). Lastly, variations in plankton phenology
can affect the reproductive success of fishes and other upper trophic level predators who
often time sensitive life history stages to coincide with plankton blooms (Cushing, 1974,
1990; Platt et al., 2003; Sydeman et al., 2006; Koeller et al., 2009). Mismatches between
these events can result in starvation and reduced growth among planktivorous larval
fishes, which can in turn increase their vulnerability to predation and result in poor
recruitment to fisheries in subsequent years.

While few studies have investigated the phenological response of marine
phytoplankton to climate change (e.g., Edwards and Richardson, 2004; Hashioka ef al.,
2009), long-term monitoring has examined climate-related changes in the phenology of
primary producers throughout many temperate, terrestrial ecosystems. In terrestrial
habitats, the earlier advent of spring conditions due to warming temperatures has

stimulated an early start of the growing season among plants. Observational studies
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indicate that between 68-94% of plant species have responded to increasing temperatures
by advancing their phenology (Menzel et al., 2006; Miller-Rushing and Primack, 2008;
Cook et al., 2012; Wolkovich et al., 2012). Similarly, remote sensing of the normalized
difference vegetation index (NDVI) suggests that since 1982 advancing phenology has
prolonged the photosynthetically active period across 88% of the Arctic and 81% of
North Hemisphere boreal habitats (Xu et al., 2013). A smaller percentage (10-18%) of
terrestrial primary producers have exhibited delayed phenology due to chilling
requirements, where a plant must be exposed to cool temperatures for an extended period
before it is able to respond to spring warming (Cook et al., 2012). The most rapid rates of
terrestrial, phenological changes have been observed among species residing in high
latitudes (Root ef al., 2003; Parmesan, 2007) and those active in early spring (Wolkovich
etal. 2012).

Compared to terrestrial ecosystems, net primary production in the ocean displays
smaller seasonal fluctuations, although intraseasonal and interannual variability in marine
primary production can be quite high, reflecting the rapid turnover time of phytoplankton
(Field et al., 1998). As a result, seasonal patterns account for < 40% of the variance in
time series of chlorophyll across many regions (Venegas ef al., 2008; Sapiano et al.,
2012). The equatorial Pacific is one such area with a low-amplitude seasonal cycle,
although a small peak in chlorophyll concentration is typically observed in spring (Yoo et
al., 2008; Racault et al., 2012). The eastern equatorial Pacific, which is characterized by
enhanced primary productivity due to upwelling, exhibits a seasonal, chlorophyll
maximum during the summer or autumn (Racault et al., 2012; Sapiano et al., 2012).

Similarly, the North Pacific subtropical gyre displays a small peak in chlorophyll
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between October and December (Sapiano ef al., 2012). At latitudes > 30° N, there is a
gradual progression from late winter phytoplankton blooms to spring and summer blooms
at higher latitudes (Racault et al., 2012). A secondary fall peak in chlorophyll is also
observed in coastal areas poleward of 40° N and across the transition between the
subtropical and subpolar gyres (Henson and Thomas, 2007; Yoo et al., 2008; Sapiano et
al., 2012). North of this transition area, the spring bloom becomes progressively later,
while the fall bloom becomes earlier until they merge, resulting in a single summer
bloom (Yoo et al., 2008). The one exception to this latitudinal pattern occurs in high
nutrient, low chlorophyll (HNLC) areas, where maximal chlorophyll concentration is
detected in September and October (Yoo et al., 2008). Compared to the Atlantic Ocean,
the North Pacific is characterized by a reduced latitudinal gradient of bloom timing, a
larger area with aseasonal variation in phytoplankton abundance, and high interannual
variability in phenology (Racault et al., 2012; Sapiano et al., 2012). The reduced
latitudinal gradient in North Pacific phytoplankton phenology reflects greater control of
phytoplankton abundance by efficient grazing (Parsons et al., 1966) and altered
seasonality in HNLC regions where phytoplankton growth is limited by iron (Yoo et al.,
2008).

With a few notable exceptions (e.g., Edwards and Richardson, 2004; Wiltshire et
al., 2008; Kim et al., 2009), most research on phytoplankton phenology has relied on
remotely sensed time series, since satellites can synoptically sample the ocean globally
on a daily basis. However, the amount of phenological information that can be acquired
from remote sensing is limited by gaps in time series due to cloud cover, reduced

accuracy of satellite chlorophyll retrievals in coastal areas, a lack of information on
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seasonal variations in species composition and subsurface production, and seasonal
changes in the chlorophyll-to-carbon ratio of phytoplankton (Martin, 2004). The current
utility of remotely sensed data for detecting long-term trends related to climate change is
also limited since ocean color has only been continuously monitored by satellites since
1997. While the Coastal Zone Color Scanner (CZCS) collected data on chlorophyll
concentration between 1978-1986, comparability between CZCS and recent satellite
missions is hindered by differences in calibration techniques, atmospheric correction, and
the number of bands sensed in the visible light range (Aiken ef al., 1995). Nonetheless,
several studies have reported trends in the magnitude, seasonality, and duration of
phytoplankton blooms in the Arctic, California Current, Nova Scotian Shelf, and
elsewhere over the period since SeaWiFS began monitoring ocean color (Kahru et al.,
2009, 2011; Vargas et al., 2009; Song et al., 2011; Racault et al., 2012; Sapiano et al.,
2012). Whether trends in ocean color are connected to anthropogenic warming or
interannual-to-decadal variability remains unclear since the launch of SeaWiFS coincided
with the strong 1997/1998 El Nifio, which had a substantial impact on primary production
throughout the Pacific. Since natural climate oscillations can dampen or amplify the
signal of global warming, Henson et al. (2010) estimated that between 35-41 years of
continuous ocean color data are needed in the North Pacific to attribute trends in
chlorophyll concentration to climate change with a high degree of certainty.

Given the absence of a sufficiently long ocean color time series to detect climate-
related trends, an alternative approach is to examine mechanisms driving variations in
phytoplankton phenology with Dynamic Green Ocean Models (DGOMs). DGOMs link

nutrient-phytoplankton-zooplankton-detritus (NPZD) models with an ocean general
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circulation model (OGCM) to represent interactions between climate and ocean
biogeochemistry. In addition to providing forecasts of how pelagic ecosystems will
respond to future climate change, DGOMs can be used to hindcast past changes based on
simulations in which atmospheric forcing applied to the OGCM is constrained by
historical observations (Large and Yeager, 2009). DGOMs can also be used to explore
the underlying ocean-ecosystem dynamics responsible for changes in primary production
and phytoplankton seasonality (Marinov et al., 2010; Hashioka et al., 2012), which can
be difficult to examine mechanistically during field campaigns.

Compared to climate models used in the fourth Intergovernmental Panel on
Climate Change (IPCC) assessment, the most recent generation of DGOMs and OGCMs
exhibit improved accuracy in their ability to reproduce spatial and temporal patterns
observed in situ at regional-to-global scales. One such example is the Community Earth
System Model 1.0 (CESM1) and its ocean biogeochemistry (BGC) sub-module, which is
the DGOM used in the research described in this manuscript. The fully coupled
atmosphere-ocean version of CESM1(BGC) is able to simulate mean annual surface and
subsurface temperature, salinity, and macronutrient concentrations such that correlations
(r) with empirical observations exceed 0.8 (Moore et al., 2013). The coupled version of
this model is also able to generate mean concentrations of chlorophyll and iron where » >
0.6 when compared to in situ and satellite observations. In addition, CESM1(BGC) can
accurately reproduce the locations of HNLC regions (Moore et al., 2013) and replicate
the spatial patterns and temporal evolution of El Nifo, La Nifia, and lower frequency
modes of climate variability (Deser et al., 2012). Nevertheless, biases persist in coupled

CESM1(BGC) simulations such that oxygen minimum zones (OMZ) in the Indian and
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eastern Pacific basins are too large, sea surface temperature (SST) is too warm in coastal
upwelling ecosystems, mixed layer depth (MLD) is underestimated in the Southern
Ocean, and thermohaline mixing is overestimated in the North Atlantic (Danabasoglu et
al.,2012; Moore et al., 2013).

Along with other DGOMs, CESM1(BGC) has been able to accurately capture the
mean timing of the chlorophyll maximum in mesotrophic-to-eutrophic regions of the
ocean (Hashioka ef al., 2012). However, DGOMs have difficulty capturing the timing of
fall phytoplankton blooms in regions with dual spring and fall blooms (Henson et al.,
2009; Song et al., 2011). This reflects the fact that fall blooms are typically smaller than
spring blooms and have more variable phenology. Studies of phytoplankton phenology
using DGOMs have indicated that decadal climate oscillations, such as the North Atlantic
Oscillation (NAO) and the North Pacific Gyre Oscillation (NPGO), influence the timing
of phytoplankton blooms through their influence on regional wind strength. Increased
westerly winds during positive NAO conditions deepens MLD leading to delayed
phytoplankton phenology in the subpolar North Atlantic (Henson et al., 2009). Similarly,
the earlier onset of upwelling-favorable winds during the positive NPGO phase results in
an earlier start of seasonal phytoplankton population growth in the California Current
Ecosystem (CCE) (Chenillat ef al., 2012). Future changes in phenology have also been
examined with the NEMURO model (a DGOM), which predicted that a doubling of
atmospheric CO; relative to pre-industrial levels will cause phytoplankton to bloom 10-
20 days earlier in the Northwest Pacific (Hashioka ez al., 2009).

Here we describe the use of an ocean-ice hindcast experiment conducted with

CESMI1(BGC) to investigate variations in phytoplankton phenology across the North
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Pacific between 1961-2007. This hindcast used historical atmospheric data to calculate
air-sea fluxes of heat, freshwater, and momentum, which in turn drive the physical
oceanic component of CESM1(BGC) (Large and Yeager, 2009). Since this simulation
was forced with atmospheric observations, the temporal evolution of biological and
physical oceanographic variables outputted by CESM1(BGC) can be compared directly
to historical observations. This differs from fully coupled atmosphere-ocean simulations,
where model output and empirical observations can only be compared in a statistical
sense (i.e., means and standard deviations are comparable rather than year-to-year
variations) (Stock et al., 2011).

While a DGOM run in hindcast mode has been employed to examine climate
influences on phytoplankton phenology in the North Atlantic (Henson et al., 2009), to the
best of our knowledge, similar research has not been conducted in the Pacific Ocean. In
the North Pacific, there are three modes of climate variability that are likely to affect
phytoplankton phenology. One mode is El Nifio-Southern Oscillation (ENSO), which is
the predominant source of climate variability across periods of 2-7 years (McPhaden et
al., 2006). At the decadal scale, the Pacific Decadal Oscillation (PDO) and NPGO,
respectively, comprise the first and second modes of variability in North Pacific SST and
sea surface height (SSH) (Mantua ef al., 1997; Di Lorenzo et al., 2008).

In addition to examining the effects of interannual-to-decadal climate oscillations,
the ocean-ice hindcast will allow us to identify long-term trends in phytoplankton
phenology that may be related to anthropogenic climate change. This reflects the fact that
the 47-year duration of the ocean-ice simulation exceeds the ~40-year period of

continuous data that Henson et al. (2010) deemed necessary to detect trends in
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chlorophyll concentration due to global warming given prevailing natural variability.
Also, the 1961-2007 period of the ocean-ice hindcast includes two reversals of the sign of
the PDO, making it feasible to differentiate between a secular warming trend and the
1977 PDO phase shift that resulted in a transition from cool to warm conditions in the
eastern Pacific (Stewart et al., 2005; See first data chapter).

Objectives of this research are to: (1) compare estimates of phytoplankton
phenology based on CESM1(BGC) and SeaWiFS to validate whether CESM1(BGC) can
accurately assess the dates of phytoplankton blooms across the North Pacific; (2)
examine interannual variations in phytoplankton phenology during the years between
1961 and 2007; (3) determine how the spatial extent and magnitude of long-term trends
in phytoplankton phenology compare to the effects of climate oscillations (i.e., ENSO,
PDO, NPGO), and; (4) identify which phenological indicators (i.e., time of bloom
initiation, midpoint, termination, duration, and magnitude) are most sensitive to climate

perturbations.

2. Methods

2.1. Overview of the CESM1(BGC) Model

CESMI consists of coupled models that simulate dynamic processes occurring in
the atmosphere, ocean, cryosphere, and on land. The ocean physics component of
CESMI is based on version 2 of the Parallel Ocean Program (POP) (Smith et al., 2010).

In the ocean, CESM1 uses a curvilinear grid with a longitudinal resolution of 1.13° and a
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latitudinal resolution varying between 0.27-0.65° (Danabasoglu et al., 2012). The finest
latitudinal resolution occurs in equatorial areas. Oceanic properties and fluxes are
calculated across 60 vertical layers, whose thickness varies between 10-150 m (Moore et
al., 2013). The thinnest vertical layers are found in the upper 200 m of the water column.
Additional details about the most recent generation of the physical oceanic model
incorporated in CESM1 can be found in Danabasoglu et al. (2012).

For all analyses presented here, historical atmospheric conditions from the years
1960-2007 were forced with the Coordinated Ocean-Ice Reference Experiments (CORE),
version 2 described in Large and Yeager (2009). CORE incorporates observations of near
surface vector wind, temperature, specific humidity, and atmospheric density from the
NCEP reanalysis, but also includes satellite data on radiation, SST, sea-ice concentration,
and precipitation during periods when remotely sensed data were available. This
historical atmospheric forcing allows the seasonal and interannual evolution of the
modeled ocean state to be prescribed in a manner that is directly, rather than solely
statistically, comparable to ocean observations.

CESM1(BGC) includes three functional groups of phytoplankton: diatoms,
diazotrophs, and a small phytoplankton category, which consists of coccolithophores and
nano- and picoplankton (Moore ef al., 2002). The single zooplankton functional group in
CESM1(BGC) has differential grazing rates set for each phytoplankton category based on
a Holling type III function (Moore et al., 2002). Rates of phytoplankton growth are a
function of light intensity, nutrient concentration, and temperature in this model. Diatom
growth can be limited by the availability of iron, nitrogen, phosphate, or silicate, while

small phytoplankton growth is not affected by silicate. Neither nitrogen nor silicate limit
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diazotroph growth. In addition to these nutrients, CESM1(BGC) also tracks variations in
dissolved oxygen, alkalinity, air-sea exchange of CO, and O, dissolved inorganic carbon
(DIC), semi-labile dissolved organic matter (DOM), and sinking particulates (Moore et
al., 2013). Parameterization of CESM1(BGC) varies such that the small phytoplankton
functional group has a lower nutrient half-saturation coefficient than diatoms and
diazotrophs (Moore et al., 2002). The growth functions for diatoms and small
phytoplankton are parameterized with a steeper initial slope of their P-I curves than
diazotrophs. Qo responses to temperature are parameterized similarly for all three
phytoplankton groups. Additional information about the development of the ocean
ecosystem and biogeochemistry component of CESM1 is provided in Moore et al. (2002,
2004), while Moore et al. (2013) and Long ef al. (2013) describe changes made in the

most recent generation of this model.

2.2. Identification of Phenological Events

This study examined variations in phytoplankton phenology across the region of
the North Pacific Ocean between 5.2°S — 66.1°N and 150.7°E — 76.1°W. Data from the
CESM1(BGC) were initially outputted on a daily basis so that fine temporal resolution
changes in phenology could be investigated. Phenological metrics were calculated from
surface chlorophyll concentration that was summed across the three functional groups of
phytoplankton and then log)o transformed.

Two general classes of methods have been used to identify phenological events in

time series of plankton abundance. “Threshold approaches” detect phenological events on
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the date when a time series first surpasses a given threshold that can be based on the
maximum slope of a time series (White et al., 2009), inflection points (Rolinski ef al.,
2007), a percentage of the cumulative, annual sum of plankton abundance (Greve et al.,
2005), or a percentage of the maximum or median annual abundance (Siegel ef al., 2002;
Fuentes-Yaco et al., 2007; Kim et al., 2009). “Statistical approaches” entail fitting a
probability density function (Yamada and Ishizaka, 2006; Rolinski et al., 2007),
sigmoidal curve (Zhang et al., 2003; Ueyama and Monger, 2005), or a series of harmonic
functions (Vargas et al., 2009) to a time series and then extracting phenological
information from the fitted, statistical model. Statistical approaches often assume that
seasonal time series are unimodal, which can present problems when applying this
approach to areas with dual spring and fall phytoplankton blooms. On the other hand,
threshold approaches are sensitive to brief fluctuations in phytoplankton abundance,
which may represent high-frequency variability in response to transient weather events
rather than a seasonal pattern of variation in chlorophyll (Rolinski et al., 2007; Ji et al.,
2010; Racault et al., 2012). As a result, we initially developed one statistical method and
one threshold method to detect phenological events.

In each CESM1 grid cell, the 75™ quantile of log;o-transformed chlorophyll
measured over 8-day time steps each year was used as the threshold for defining the
initiation and termination of phytoplankton blooms. This threshold was selected for two
reasons. First, use of the 75" quantile implied that approximately one-quarter of the data
each year would be included as part of a phytoplankton bloom, ensuring that events
identified with this method would encompass approximately one season if only a single

phytoplankton bloom was detected each year. Second, since this threshold varied
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interannually and from pixel-to-pixel, we were able to detect phenological events in both
oligotrophic and eutrophic regions and during years when chlorophyll concentration was
below average. Bloom initiation was defined as the date when a time series first
surpassed this threshold. The one exception to this was if the time series immediately
dropped below the 75" quantile and did not rise above it again within any of the next five
time steps. This rule helped further safeguard against confounding seasonal patterns and
aseasonal, high-frequency fluctuations in chlorophyll concentration. Similarly, bloom
termination occurred during the last time step when chlorophyll remained above the 75
quantile, but then decreased below this threshold without exceeding this limit at any point
within the next five time steps. If there were less than five time steps separating the
beginning and end of blooms in successive years, these blooms were merged and counted
as a single phenological event. This approach for identifying phenological events is
similar to the local threshold method used in White ez al. (2009), which is one of the
methods where remotely sensed plant phenology best matched in sifu observations.

The second method used to identify phenological events involved fitting a
harmonic curve with annual and semi-annual cycles to the chlorophyll time series from
each CESM1 grid cell. Harmonic curves were fit on an annual basis to allow for year-to-
year variations in phenology. Bloom initiation was defined as the date when the slope of
the harmonic curve reached its maximum. Conversely, bloom termination occurred when
a local minimum in the harmonic curve’s slope was detected.

In addition to dates of bloom initiation and termination, three other phenological
indicators were derived for phytoplankton blooms identified with the harmonic and

threshold methods. The duration of a phytoplankton bloom was calculated as the
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difference between dates of bloom termination and initiation. The midpoint of a bloom
was defined as bloom’s start date plus half of its duration. Bloom magnitude was
computed as the mean of log;o-transformed chlorophyll concentration over the duration

of a bloom.

2.3. Model Skill Assessment of Modes of SST Variability and Phytoplankton

Phenology

Before investigating interannual-to-decadal changes in phytoplankton phenology
with the CESM1(BGC) ocean-ice hindcast, we evaluated the model’s skill at detecting
variations in oceanographic and phenological processes. Temporal and spatial variations
in North Pacific SST from the ocean-ice hindcast were compared to empirical SST data
from version 2.5 of the enhanced International Comprehensive Ocean-Atmosphere Data
Set (ICOADS). Monthly ICOADS SST with a 1° latitude/longitude resolution was

obtained from the NOAA Earth System Research Laboratory (ESRL)

(http://icoads.noaa.gov). Daily SST data from CESM1(BGC) were averaged over
monthly intervals to ensure that these datasets had the same temporal resolution. The first
five modes of SST variability were examined separately for [COADS and CESM1(BGC)
using principal component analysis (PCA). Pixels in ICOADS with data gaps for > 75%
of the monthly time steps were removed prior to PCA so that poorly sampled regions
would not have an unduly large influence on this analysis. In areas where data were
missing from fewer time steps, gaps in [COADS were filled with the inpaint nans two-

dimensional, interpolation tool from the MATLAB Central File Exchange (D’Errico,
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2004). Constraints were placed on inpaint_nans so that it could not extrapolate beyond
the minimum or maximum temperature in [COADS (e.g., -2.8 - 34° C). PCA was
performed on both raw SST data where seasonal patterns were retained and monthly SST
anomalies where the seasonal signal was removed to examine interannual-to-decadal
variability. During PCA, eigenvectors were calculated from a correlation matrix of the
spatial component of SST data or SST anomalies (Emery and Thompson, 2001).
Temporal variations in the first five principal components of ICOADS and
CESM1(BGC) were inspected using principal component scores a;, which were

calculated as follows:

Aix = Z(lpit — 0) * ¢y,
it

where ¥, is ICOADS or CESM1(BGC) SST (or the monthly SST anomaly) at time ¢ and
pixel 7, 0; is the mean SST (or monthly SST anomaly) at i, and ¢; is the corresponding
eigenvector (Emery and Thompson, 2001). Correlations between the [COADS and
CESM1(BGC) principal component scores were computed to assess whether these
datasets exhibited similar modes of variability. Similarities between ICOADS and
CESMI1(BGC) were also evaluated by mapping the spatial signature of each dataset’s
first five principal components.

Time series of the SST principal components were compared to the Multivariate
ENSO Index (MEI), PDO, and NPGO time series. Monthly anomalies of the MEI index
developed by Wolter and Timlin (1998) were obtained from the NOAA ERSL

(http://www.esrl.noaa.gov/psd/enso/mei/). The PDO index was acquired from the Joint

Institute for the Study of the Atmosphere and Ocean (Mantua et al., 1997,
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http://jisao.washington.edu/pdo/PDO.latest). The NPGO index was developed and made

available by Emanuele Di Lorenzo at the Georgia Institute of Technology (Di Lorenzo et

al., 2008; http://www.o3d.org/npgo/npgo.php).

To assess the skill of CESM1(BGC) for detecting phenological events, we
compared the dates of phenological events identified with CESM1(BGC) and SeaWiFS
ocean color data during the 1998-2007 period. SeaWiFS level-3, chlorophyll data with a
9-km resolution were obtained from the NASA Ocean Color Group

(http://oceancolor.gsfc.nasa.gov). We averaged SeaWiFS data across the footprint of each

CESM1 grid cell, so that the two datasets would have an identical spatial resolution. To
reduce the number of days when cloud cover obscured satellite imagery, SeaWiFS and
CESM1(BGC) chlorophyll concentration were averaged over 8-day time steps prior to
logio transformation. All phenological metrics were initially calculated with the 8-day
time steps and were later multiplied by 8 to convert them to ordinal dates. Following
these steps, 7.6% of oceanic pixels in the SeaWiFS dataset were obscured by clouds. In
cases where data were missing for two adjacent time steps or less, we used MATLAB
(MathWorks, Inc., Natick, MA, USA) to perform a piecewise, shape-preserving, cubic
interpolation to fill data gaps. This step further reduced the percentage of cloud-obscured
pixels to 3.4%.

One potentially confounding factor when comparing phenological events detected
with CESM1(BGC) and SeaWiFS is that SeaWiFS often identified a greater number of
blooms per year than CESM1(BGC) (Fig. 3.1). Both SeaWiFS and CESM1(BGC)
detected two blooms per year in the Bering Sea, off the coast of British Columbia and

Southeast Alaska, in the transition zone between the subtropical and subpolar gyres, and
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near the equator. However, the equatorial area where two blooms per year occurred was
much more widespread in SeaWiFS imagery than in the CESM1(BGC) ocean-ice
hindcast. Similarly, SeaWiFS identified two blooms per year throughout much of the
North Pacific subtropical gyre and CCE, whereas CESM1(BGC) typically detected one
bloom per year in these regions. Similar results were obtained for both the threshold and
harmonic approaches. Many of the additional blooms identified by SeaWiFS may
represent short, episodic pulses of increased chlorophyll concentration that have been
previously noted in subtropical regions (Racault ef al., 2012). These episodic and largely
aseasonal pulses do not seem to be fully captured by CESM1(BGC). To ensure that the
comparison between SeaWiFS and CESM1(BGC) was based on analogous phenological
events rather than aseasonal spikes in chlorophyll, we matched the first bloom of the year
identified by CESM1(BGC) to the closest phenological event in the SeaWiFS time series.
This step was performed separately for bloom initiation and termination to account for
the fact that blooms beginning in one year sometimes extended into the next calendar
year. For bloom duration, midpoint, and magnitude, we used the same indexing system as
was used for bloom initiation when matching phenological events. While bloom
matching was necessary to align blooms observed by SeaWiFS and CESM1(BGC) in
areas with multiple blooms per year, we acknowledge that a side effect of this step could
be to overstate correlations between SeaWiFS and CESM1(BGC). As a result, our
comparison between these datasets should be interpreted as a “best case” scenario

Next, we mapped the mean and median dates of phenological events during 1998-
2007 to identify regions where phytoplankton phenology differed between SeaWiFS and

CESM1(BGC). Medians were considered in addition to means because medians provided
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better indicators of winter events that may occur in either December or January during
successive years. Mean values of ordinal dates can falsely suggest that such events take
place during the middle of the calendar year. Spatial correlations between CESM1(BGC)
and SeaWiFS were calculated for each phenological metric to assess model skill. This
and all subsequent analyses focused solely on the first bloom identified each year. Since
the spatial patterns of phenological events detected with the threshold and harmonic
algorithms were generally similar and the threshold method produced higher correlation
coefficients when comparing SeaWiFS and CESM1(BGC) for most phenological metrics
(i.e., bloom initiation, midpoint, and magnitude), we opted to present only results from
the threshold method in this manuscript.

In addition to examining spatial correlations between CESM1(BGC) and
SeaWiFS, we also calculated temporal correlations between these datasets reflecting
interannual variations in the timing of phenological events that occurred between 1998
and 2007. This was done on a pixel-by-pixel basis and values of the resulting correlation
coefficients were mapped over the North Pacific. Similar maps were also produced for
correlations between CESM1(BGC) and SeaWiFS calculated based on annual and
seasonal anomalies of log;o-transformed chlorophyll. Correlation coefficients were
averaged across 2° latitudinal bins to assess meridional patterns. Within these bins, we
examined the difference between correlations based on annual and seasonal anomalies to
evaluate whether there was a degradation in model skill when considering finer-scale,

seasonal patterns.
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2.4. Detection of Long-term Phenological Trends and Correlations with Climate

Indices

Changes in phenological events were assessed using ordinal dates calculated over
either a calendar year extending between January and December or an adjusted year
spanning from July to June. When an adjusted year was used, an event occurring on July
1* would be assigned an ordinal date of 1, instead of an ordinal date of 182 for the
calendar year. Use of the adjusted year was necessary to alleviate discontinuities in
ordinal dates in areas where winter phytoplankton blooms may start during either January
or December. If the calendar year were used in such areas to calculate rates of
phenological change, a switch between bloom initiation in December (days 335-365) to
bloom initiation in January (days 1-31) would be marked incorrectly as a large advance in
phenology, instead of a smaller delay. Following Racault ef al. (2012), we used the
variance of phenological metrics to pinpoint regions where it was necessary to use the
adjusted year. Variance is inflated in regions affected by the December/January
discontinuity in ordinal dates. The Levene test of equality of variances was employed to
assess whether the variance of bloom initiation, midpoint, or termination was
significantly lower when using the adjusted time frame than when variances were
calculated with the calendar year (Quinn and Keough, 2002). A second criterion for use
of the adjusted year was that median date of a phenological event occurred between
November and February. Since measurements of bloom duration and magnitude were
unaffected by December/January discontinuities, the calendar year was used in all

analyses of these metrics. Figure 3.2 shows that the adjusted year was mainly employed
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in oligotrophic regions in the North Pacific subtropical gyre. It should be noted that
occasionally phenological changes occurring in opposite directions were observed across
adjacent pixels located near the boundary of where the adjusted year was used. In
addition to employing the adjusted time frame when investigating long-term changes in
CESM1(BGC) phenology, the adjusted time frame was also used when examining
temporal correlations between phenological events identified with CESM1(BGC) and
SeaWiFS (Section 2.3).

We examined long-term trends in phenological metrics over the years 1961-2007.
Data from 1960 (i.e., the first year of the CESM1(BGC) ocean-ice hindcast) were
excluded from our analysis due to the fact that blooms beginning in fall/winter 1959 were
characterized as having January 1960 start dates. This mischaracterization led to an initial
jump in the time series of bloom initiation dates that could confound detection of
phenological trends. The five phenological metrics (i.e., bloom initiation, midpoint,
termination, duration, and magnitude) from each ocean grid cell were regressed against
year to identify long-term, linear changes in phenology. In these regressions and all other
statistical tests, p < 0.05 was used as the threshold for establishing statistical significance.
Given that regressions were performed on a pixel-by-pixel basis, it is possible that
multiple testing could have led to accumulation of Type I error, while temporal
autocorrelation may have artificially inflated test statistics. Consequently, our
interpretation of statistical results primarily focused on identifying qualitative
geographical patterns indicative of advancing phenology, delayed phenology, or no
change in phenology. These geographical patterns were identified with maps of

correlations between phenological metrics and year. In areas with significant negative or
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positive correlations, we calculated the mean slope and standard error (SE) from the
linear regressions to estimate the rate of change in phytoplankton phenology.

A similar set of analyses was performed to evaluate the relationship between
phytoplankton phenology and the MEI, PDO, and NPGO indices. Correlations between
the five phenological metrics and these climate indices were calculated across time lags
of 0 to 6 months relative to the date of each metric. For bloom duration and magnitude,
time lags relative to the midpoint of a particular phytoplankton bloom were employed.
Time lags were necessary given that it can take several months for atmospheric
teleconnections to propagate across the North Pacific (Schwing et al., 2003). Maps were
produced displaying geographical areas where phytoplankton phenology was correlated
with each climate index. In these maps, only results from the time lag with the lowest p-
value were shown. We extracted information on the mean phenological change per a 1-
unit anomaly in each climate index. These mean rates of change were calculated
separately for locations exhibiting significant negative and positive correlations with
regard to each climate oscillation.

To develop a better understanding of how climate oscillations may
mechanistically affect phytoplankton phenology, we also examined the relationships
between the five phenological metrics and three oceanic and atmospheric variables.
These variables included NCEP wind speed at 10 m height and modeled SST and MLD
from CESM1. Since the NCEP dataset has a native resolution of 1.9° latitude/longitude,
linear interpolation was used to transfer wind speed data onto the CESM1 grid. Daily
values of these environmental variables were summed over a two-month period of the

year whose dates varied between pixels. This “degree days” approach was applied
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because previous research has shown that most phenological events are more closely
related to degree days than mean annual temperature (Wolkovich ef al., 2012). The two-
month period for calculating degree days (or MLD and wind speed days) included the
month of median bloom initiation in a given pixel and the month prior to this event. We
then examined correlations between these environmental variables and the five
phenological metrics. Correlation strength was averaged zonally across 2° latitudinal
bands to assess latitudinal variations in the relationship between phytoplankton
phenology, SST, MLD, and wind speed.

We performed a PCA on each phenological metric to verify whether any of the
climate oscillations or a long-term, linear trend was the predominant source of temporal
variability in North Pacific phytoplankton phenology. Prior to conducting the PCA, any
gaps in the time series of a phenological metric were filled with the inpaint_nans tool.
Since pixels using both the calendar year and adjusted year were included in the PCAs, z-
scores were used to standardize data from each grid cell by its mean and standard
deviation prior to conducting this analysis (Quinn and Keough, 2002). The last year of
data from the ocean-ice hindcast was removed from the PCA performed on bloom
duration, because the full duration of some phytoplankton blooms may not have been
recorded in this year, resulting in a large discontinuity in the time series of the first
principal component of bloom duration between 2006 and 2007. The first five principal
components for each phenological indicator were extracted and their correlations with the
phenological time series from each ocean grid cell were mapped. We also assessed
whether the time series of the first five principal component scores exhibited long-term,

linear trends or were correlated with the annually averaged MEI, PDO, or NPGO indices.
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When examining correlations with the climate oscillations, both time lags of 0 and 1 year

were evaluated.

3. Results

3.1. Comparison between CESM1(BGC) and Empirical Observations

3.1.1. Modes of SST Variability in ICOADS and CESM1

The PCA performed on raw SST data indicated that the first five modes of SST
variability explained 80.2% of the variance in ICOADS and 95.2% of the variance in
CESML1. 73.4% and 82.6% of the SST variance could be attributed to the first principal
component alone in ICOADS and CESM1, respectively. The next four principal
components in each dataset accounted for 0.8-8.5% of SST variability. Each principal
component from CESM1 was correlated with the equivalent principal component from
ICOADS atr>0.78 (n =576, p <0.0001, Table 3.1a, Fig. 3.3). In addition to the high
degree of temporal correlation between principal components, the spatial patterns
exhibited by each principal component were similar when comparing ICOADS and
CESMI1 (Fig. 3.4). The first principal component of both datasets described the annual
seasonal cycle of SST across all latitudes > 10° N. Negative correlations with this
principal component were also observed in southern hemisphere near the boundary of our
study area (Fig. 3.4). Principal component 2 was related to seasonal variations in SST in

the Eastern Tropic Pacific (ETP) (Fig. 3.4). The seasonal cycle in the ETP displayed a
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smaller amplitude and greater interannual variability than the seasonal cycle of principal
component 1. The third principal component of ICOADS and CESM1 SST revealed a
seasonal signal that appeared to be modulated by the inverse of the PDO, since
temperatures associated with this principal component dropped following the 1977
transition from negative to positive PDO conditions (Mantua et al., 1997; Fig. 3.3). The
principal component 3 time series subsequently increased in 1998 coincident with the
return of negative PDO conditions (Chavez et al., 2003). High frequency, intraseasonal
variability characterized the time series of the fourth and fifth principal components of
ICOADS and CESM1 SST (Fig. 3.3).

A second set of PCAs was performed on monthly SST anomalies from ICOADS
and CESMI1 to determine whether the ocean-ice hindcast could successfully replicate
empirical observations of SST variability at the interannual-to-decadal scale once the
seasonal signal in these datasets was removed. In this analysis, the first five principal
components explained much more variation in SST anomalies in CESM1 (72.4% of
variance) than in ICOADS (20.1% of variance). Nevertheless, principal components 1-3
from each of these datasets were positively correlated (» > 0.85, n = 576, p < 0.0001) and
displayed spatial patterns that resembled each other (Table 3.1b, Figs. 3.5-3.6). The fifth
principal component of [ICOADS and CESM1 SST anomalies were inversely correlated
atr=-0.62 (n=576, p <0.0001). Compared to the other principal components, the
correlation between principal component 4 from ICOADS and CESM1 was weaker (r =
0.25), albeit still statistically significant (Table 3.1b). Principal components 1 and 3 could
be clearly interpreted in terms of the predominant climate oscillations in the North

Pacific, since these principal components were highly correlated with the MEI (ICOADS:
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r=10.93; CESM1: r=0.92) and PDO (ICOADS: r =-0.64; CESM1: r = -0.70),
respectively. Similarly, the second principal component of monthly SST anomalies was
moderately correlated with the NPGO (ICOADS: = 0.33; CESM1: r = 0.48). Spatially,
this principal component highlighted differences in SST variability between the center of
the North Pacific subtropical gyre and the currents surrounding this gyre (Fig. 3.6). The
fifth principal component of both ICOADS and CESM1 SST anomalies was not closely
correlated with any North Pacific climate index. Its spatial pattern emphasized out-of-
phase variability in SST anomalies between the eastern and western Pacific at latitudes >
30° N (Fig. 3.6).

In addition to displaying similar modes of variability as evidenced by PCA,
CESM1 and ICOADS SST also exhibited similar amplitudes of their seasonal cycles

(Fig. S3.1) and similar amplitudes of interannual variability (Fig. S3.2).

3.1.2. Mean and Median Phytoplankton Phenology in SeaWiFS and CESM1(BGC)

Maps of the dates of bloom initiation, midpoint, and termination produced with
SeaWiFS and CESM1(BGC) showed similar spatial patterns with distinct phenological
regions observed in the Bering Sea, Sea of Okhotsk, subpolar gyre, subtropical gyre, and
near the equator (Fig. 3.7). The Bering and Okhotsk Seas were characterized by an initial
increase in chlorophyll concentration in May/June, with bloom termination observed
during the months of July through September. While these dates were similar in SeaWiFS
and CESM1(BGC) imagery, the regions of the Bering and Okhotsk Seas with the latest

initiation and termination of phytoplankton blooms differed between these datasets. In
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CESM1(BGC), bloom onset and termination occurred later offshore of the southern tip of
the Kamchatka Peninsula and around the Aleutian Islands. In contrast, SeaWiFS
indicated that bloom initiation and termination occurred latest in the central region of the
Bering Sea (Fig. 3.7). Generally, phenological indicators estimated by SeaWiFS and
CESMI1(BGC) differed by less than one month in this region, with the exception of the
area east of the Kamchatka Peninsula where CESM1(BGC) identified blooms with earlier
phenology.

In the North Pacific subpolar gyre, CESM1(BGC) also predicted earlier
phenology events than those observed by SeaWiFS. Throughout most of this region,
CESM1(BGC) indicated that phytoplankton blooms would begin in February and March,
whereas SeaWiFS observations displayed greater spatial variability with the mean date of
bloom initiation occurring between April and June (Fig. 3.7). A similar pattern also
emerged when examining subpolar bloom midpoints and termination. In the SeaWiFS
imagery, there was a progression from earlier to later phenology with increasing latitude
across the subpolar gyre. This latitudinal gradient was less pronounced in CESM1(BGC).
Throughout large areas of the subpolar gyre, the difference between SeaWiFS and
CESM1(BGC) phenological indicators exceeded 60 days.

The North Pacific subtropical gyre was characterized by late fall and winter
blooms of phytoplankton where chlorophyll concentration typically began to rise between
October and December (Figs. 3.7 and S3.3). Since January bloom initiation was also
prevalent in the subtropical gyre, the average dates of phenological events in this region
were sometimes misleading, implying that bloom initiation occurred in earlier in the fall

or summer (Fig. 3.7). Generally, SeaWiFS observations of phytoplankton phenology
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were slightly earlier than CESM1(BGC), with greater intra-regional variability in bloom
initiation, midpoints, and termination in SeaWiFS. CESM1(BGC) also predicted that the
extent of the subtropical gyre would be slightly larger than was observed in SeaWiFS
imagery. This difference in gyre size resulted in large discrepancies in phenology (e.g., >
120 days) near the northern and southern boundaries of the subtropical gyre. However,
sizeable expanses of the gyre center exhibited differences between CESM1(BGC) and
SeaWiFS phenology that were < 30 days.

Maps of phytoplankton phenology in the equatorial Pacific revealed much spatial
complexity, reflecting distinct oceanographic features, such as the North Equatorial
Current and the equatorial upwelling zone in the ETP (Fig. 3.7). The onset of the seasonal
increase in chlorophyll occurred in the early spring in the North Equatorial Current (e.g.,
ordinal day < 120), while blooms typically ended between ordinal days ~130-180 in this
region. In the eastern equatorial region where upwelling is strongest, phytoplankton
blooms started during summer months (e.g., June/July) and extended through fall (e.g.,
September-November). Compared to CESM1(BGC), SeaWiFS phytoplankton blooms
occurred later in the North Equatorial Current, but earlier in the ETP. Nevertheless,
differences between SeaWiFS and CESM1(BGC) in terms of equatorial phenology were
generally small (e.g., < 30 days).

Compared to other phenological metrics, bloom duration exhibited less spatial
variability across our study area. In most locations, phytoplankton blooms lasted between
75-100 days (Fig. 3.7). Slightly shorter blooms (e.g., < 60 days) were observed in the
subpolar region, especially in SeaWiFS imagery. The longest lasting phytoplankton

blooms (e.g., > 120 days) were recorded in the central equatorial region. Across > 60% of
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the North Pacific, bloom duration estimated with SeaWiFS and CESM1(BGC) differed
by no more than one month. The greatest discrepancies between these datasets in terms of
bloom duration (e.g., 50-70 days) occurred in the Bering Sea, where CESM1(BGC)
predicted longer blooms.

Geographical variations in bloom magnitude closely resembled gradients in mean
annual CESM1(BGC) and SeaWiFS chlorophyll concentration, which have been
described by Moore et al. (2013). An oligotrophic region with < 0.2 mg m” of
chlorophyll was observed throughout the North Pacific subtropical gyre (Fig. 3.7).
Mesotrophic conditions where there were ~0.3-1.0 mg m™ of chlorophyll during
phytoplankton blooms occurred throughout most of the subpolar gyre and the equatorial
upwelling region. Chlorophyll concentrations exceeding 1 mg m” were found in the
Bering Sea, Sea of Okhotsk, and off the continental shelf of North America in SeaWiFS
imagery. However, CESM1(BGC) did not resolve the elevated chlorophyll concentration
present during phytoplankton blooms in coastal regions. In addition, the bloom
magnitude estimated by CESM1(BGC) was slightly too high in the oligotrophic
subtropical gyre, but was biased low in the subpolar gyre.

Spatial correlations between SeaWiFS and CESM1(BGC) indicated that this
model had the greatest skill at resolving mean spatial patterns related to bloom initiation
(r=0.65), bloom midpoint (» = 0.67), and bloom magnitude (» = 0.65). When compared
to SeaWiFS, CESM1(BGC) exhibited an intermediate ability to reproduce geographic
patterns corresponding to bloom termination (» = 0.51) and a low capacity to reproduce
variations in bloom duration (» = 0.18). Spatial correlations between SeaWIFS and

CESM1(BGC) based on median values of phenological metrics (Fig. S3.3) were slightly
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lower than those obtained from mean values. While these spatial correlations were highly
significant for all phenological metrics (p < 0.0001) due to the large sample size (n =
15,885), less confidence should be given to trends in CESM1(BGC) phenology for

metrics that displayed weaker spatial correlations with SeaWiFS.

3.1.3. Temporal Correlations between SeaWiFS and CESM1(BGC) Phenology

In addition to examining mean and median spatial patterns in SeaWiFS and
CESM1(BGC), we also investigated whether the ocean-ice hindcast could reproduce
interannual variability in phytoplankton phenology over the 1998-2007 period when
SeaWiFS was operational. Temporal correlations between SeaWiFS and CESM1(BGC)
were calculated on a pixel-by-pixel basis using year-to-year variations in each
phenological metric. During the initiation of phytoplankton blooms, the strongest
temporal correlations between SeaWiFS and CESM1(BGC) were observed in the
subtropical gyre and the equatorial Pacific (Fig. 3.8a-b). Positive, but weaker
correlations, occurred in the eastern Bering Sea, while, in other regions of the subpolar
gyre and the North Equatorial Current, the sign of correlations was variable. Overall,
temporal correlations between SeaWiFS and CESM1(BGC) bloom initiation dates were
positive across 76.2% of pixels and had values of r > 0.5 across 37.0% of pixels (Fig.
3.9). Similar patterns were observed for bloom midpoint, although temporal correlations
averaged across 2° latitudinal bins were slightly lower than those for bloom initiation
(Fig. 3.8d). Unlike bloom initiation and midpoint where the greatest similarities between

SeaWiFS and CESM1(BGC) were found at mid-latitudes, the latitudinal band with the
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most widespread, positive correlations occurred in the Bering Sea for bloom termination
(Fig. 3.8e-f). At other locations, latitudinally averaged, temporal correlations for bloom
termination generally varied between 0.18 <r < 0.35 (Fig. 3.8f). For bloom duration, the
only regions where interannual correlations between SeaWiFS and CESM1(BGC) were
consistently large and positive occurred at 30° N and in the CCE (Fig. 3.8g-h). While
estimates of bloom magnitude based on SeaWiFS and CESM1(BGC) were highly
correlated when examining mean spatial patterns, correlations between these datasets
were much weaker when considering interannual variations in bloom magnitude (Fig.
3.81-j). Across most latitudes, interannual correlations for bloom magnitude rarely
exceeded r = 0.2 as maps of this variable contained sizable areas with both positive and
negative correlations. Generally, bloom duration and magnitude contained fewer areas
with positive, interannual correlations than did bloom initiation, midpoint and termination
(Fig. 3.9).

The supplemental information for this chapter also presents maps of correlations
between SeaWiFS and CESM1(BGC) based on annual and seasonal anomalies of log10-
transformed chlorophyll (Fig. S3.4). Correlations based on annual and seasonal
anomalies were compared to determine whether model skill declined or improved when
examining increasingly finer scale, seasonal patterns. At latitudes < 36° N, model skill
was generally greater when considering fall anomalies than when examining annual
chlorophyll anomalies (Fig. S3.5). At latitudes over 42° N and 50° N, respectively, model
skill during winter and spring exceeded the capacity of CESM1(BGC) to predict annual
anomalies. Since fall blooms characterized much of the subtropical gyre and late

winter/spring blooms occurred across subpolar latitudes, these patterns indicated that
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model skill was typically greatest during the season when chlorophyll concentration

increased towards its maximal level.

3.2. Changes in Phenology between 1961-2007 based on the Ocean-Ice Hindcast

3.2.1. Long-term, Linear Trends in Phytoplankton Phenology

Between 1961-2007, significant long-term, linear trends in the timing of bloom
initiation were observed in 19.5% of the ocean grid cells tracked by CESM1(BGC)
(Table 3.2). In Figure 3.10, regions exhibiting delays in phenology are indicated by
positive correlations between bloom initiation date and year, while earlier phenological
events are denoted by negative correlations. An approximately equal number of grid cells
displayed long-term advances (n = 1664) and delays (» = 1432) in bloom initiation. Areas
where bloom initiation became earlier during the latter half of the 20" century included
the coastal region off Central America and the southwestern extent of our study area (Fig.
3.10a). Later bloom initiation was observed most frequently in the western subpolar gyre
and the area located between 120-160° W and 0-20° N. Nevertheless, pixels with
significant, long-term trends in bloom initiation dates were largely scattered in small
patches throughout much of the study area. A similar spatial pattern was detected when
investigating long-term changes in bloom midpoint, although delays in bloom midpoint
had a wider spread distribution in the subpolar gyre (Fig. 3.10b).

Long-term trends in bloom termination differed from bloom initiation and

midpoint in two notable ways. First, only 13.6% of ocean grid cells exhibited trends in
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phenology at the end of phytoplankton blooms (Table 3.2). This percentage was
substantially lower than the equivalent percentages for bloom initiation and midpoint.
Second, delays in phenology were more common than phenological advances when
examining bloom termination (Fig. 3.10c). Delayed phenology was observed in nearly
60% of grid cells with significant changes in the date of bloom termination. Nevertheless,
the areas exhibiting delayed phenology at the end of blooms had a similar distribution as
areas identified as having delayed bloom initiation and midpoint. In contrast, advancing
phenology in tropical and subtropical areas was much more limited in spatial extent when
investigating changes in bloom termination (Fig. 3.10c). Similarities between bloom
initiation and termination phenology resulted in relatively few areas with changes in
bloom duration. Only 10.2% of CESMI1 pixels displayed long-term, linear trends in
bloom duration (Table 3.2). However, some noteworthy spatial patterns in bloom
duration were apparent. In areas with statistically significant changes in bloom duration,
blooms tended to become longer in mesotrophic-to-eutrophic regions in the subpolar gyre
and ETP, whereas shorter blooms were observed across parts of the oligotrophic
subtropical gyre (Fig. 3.10d).

Compared to other phenological metrics, long-term changes in bloom magnitude
occurred across a wider geographical area, with significant trends in 48.2% of CESM 1
grid cells (Table 3.2). The average concentration of chlorophyll during phytoplankton
blooms decreased throughout most of the North Pacific subtropical gyre during the years
1961-2007 (Fig. 3.10e). Scattered areas off the coast of British Columbia and Alaska also

exhibited reductions in bloom magnitude, while other subpolar regions experienced
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increases in chlorophyll concentration during phytoplankton blooms. Most equatorial

areas did not display any trends in bloom magnitude over the 1961-2007 period.

3.2.2. Relationships between Climate Oscillations and Phytoplankton Phenology

Correlations between phenological metrics and climate oscillations were assessed
over time lags of 0-6 months to allow for the propagation of climate anomalies across the
Pacific basin. For most climate indices and phenological metrics, the percentage of
CESMI grid cells that were significantly correlated with a climate oscillation decreased
slightly as time lags increased. However, the spatial patterns associated with climate
effects on phenology generally did not change much across time lags. As a result, we
have presented results jointly for all time lags.

The PDO and MEI, respectively, exerted a significant influence on the date of
bloom initiation across 33.9% and 26.7% of pixels in the North Pacific (Table 3.2).
Despite the PDO’s slightly more widespread effect, the spatial signature of PDO and MEI
correlations with bloom initiation were similar (Fig. 3.11). During positive anomalies of
the MEI and PDO indices, warmer than average SST was observed in the northeast
Pacific, whereas cool-to-moderate SST predominated in the northwest Pacific (Mantua et
al., 1997; Wolter and Timlin, 2011). In the subpolar gyre, earlier bloom initiation,
indicated by negative correlations with the MEI and PDO, was associated with warm
conditions in eastern Pacific, whereas later bloom initiation (i.e., positive correlations)
occurred during cool conditions in the western Pacific when the MEI and PDO were in

their positive phase. The opposite pattern was observed in the subtropical gyre and
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equatorial region. At latitudes less than ~30° N, higher SST in the eastern Pacific during
positive MEI and PDO anomalies coincided with delayed bloom initiation, while earlier
bloom initiation occurred across small patches of pixels in the west. Overall, the
similarities between the spatial signatures of the MEI and PDO indicated that
phytoplankton phenology reacted similarly to warming whether it occurred at the
interannual scale of El Nifio/La Nifa or the decadal scale of the PDO.

Analogous spatial patterns were observed when examining the effects of the PDO
and MEI on bloom midpoint and termination (Figs. S3.6-S3.7). Again, the spatial
signature of PDO and MEI effects revealed asynchronous phenological patterns across
the east and west Pacific. However, the latitudinal emphasis of PDO and MEI effects on
bloom midpoint and termination differed slightly from the pattern observed for bloom
initiation. In maps of correlations between these climate indices and bloom midpoint and
termination, significant correlations were more prevalent at high latitudes (> 40° N) for
the PDO and at lower latitudes (< 40° N) for the MEI (Figs. S3.6-S3.7). Also, compared
to bloom initiation, 3-5% fewer pixels were significantly correlated with the PDO and
MEI indices (Table 3.2), resulting in decreased spatial coherency in maps of PDO and
MEI effects on bloom midpoint and termination.

In contrast to the previously discussed phenological metrics, out-of-phase
variations in phenology across the western and eastern Pacific were not evident when
assessing the influence of the MEI and PDO on bloom duration (Fig. 3.12). For both of
these climate oscillations, positive anomalies led to predominantly to shorter
phytoplankton blooms at latitudes below 40° N and longer blooms in the Alaska gyre and

other subpolar regions. As was the case with bloom midpoint and termination, MEI
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effects on bloom duration were most prevalent in equatorial areas, whereas bloom
duration was more closely correlated with the PDO in the subpolar gyre.

When changes in bloom magnitude were assessed, the PDO and MEI effects
extended over a larger expanse of the North Pacific than when examining other
phenological metrics. Significant correlations between the PDO and bloom magnitude
were observed in 52.5% of CESM1 grid cells (Table 3.2). Variations in the MEI affected
bloom magnitude over a smaller area (i.e., 40.6% of ocean grid cells, Table 3.2, Fig.
3.13). In > 80% of grid cells with significant effects of these climate oscillations, positive
MEI and PDO anomalies resulted in decreases in bloom magnitude. These reductions in
chlorophyll concentration occurred throughout the equatorial Pacific, across subtropical
latitudes < 30° N, and in the Alaska gyre. The only region where positive MEI and PDO
conditions were associated with larger phytoplankton blooms was in the western subpolar
region, as well as in the western section of the transition between the subpolar and
subtropical gyres (Fig. 3.13). Again, the subpolar expression of this pattern was more
pronounced for the PDO index than the MEI. Overall, the effects of the MEI and PDO on
bloom magnitude exhibited a similar spatial signature as for long-term, linear trends in
bloom magnitude (Fig. 3.10e).

Compared to the PDO and MEI, the NPGO displayed a less extensive effect on
phytoplankton phenology. Significant correlations between the NPGO and dates of
bloom initiation, midpoint, and termination occurred in 21.0% to 23.7% of CESM1 grid
cells (Table 3.2). The NPGO also differed from the PDO and MEI in terms of the spatial
signature of its effect on phenology. Bloom initiation was positively correlated with the

NPGO in the ETP and Alaska gyre to the south of the Aleutian Islands (Fig. 3.11). These
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are both locations where positive NPGO anomalies typically coincide with cooler surface
temperatures and lower SSH (Di Lorenzo et al., 2008), implying that these conditions
may be associated with the later onset of phytoplankton blooms. Negative correlations
between the NPGO and bloom initiation were found to the west of the ETP, the northwest
of the Aleutian Islands, and extended farther eastward at mid-latitudes (Fig. 3.13).
Similarly, regions with positive correlations between SST, SSH, and the NPGO were
mainly found in the western Pacific but expanded eastward at mid-latitudes (Di Lorenzo
et al., 2008). This indicated that warmer temperatures, high SSH, and an earlier onset of
phytoplankton blooms accompanied positive NPGO conditions across this area. The
regional response of phytoplankton phenology to variations in the NPGO index was
similar regardless of whether bloom initiation, midpoint, or termination was considered
(Figs. S3.6-S3.7). Due to the fact that NPGO-related variations in bloom initiation and
termination largely tracked each other, relatively few areas of the North Pacific exhibited
significant correlations between bloom duration and the NPGO. With a few exceptions,
the areas that did have significant correlations with bloom duration were mostly
characterized by shorter blooms during the positive phase of the NPGO (Fig. 3.12).
Positive NPGO conditions were also associated with larger phytoplankton blooms across
sections of the North Pacific subpolar gyre, in the western equatorial zone, and at
latitudes between ~20-40° N in the eastern Pacific (Fig. 3.13). The only area were there
were negative correlations between bloom magnitude and the NPGO was located in

subtropical gyre at 30° N.

3.2.3. Rates of Phenological Change
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Figure 3.14 compares the rates of phenological change observed over the 1961-
2008 period across climate indices and phenological metrics. Rates of changes in bloom
initiation, midpoint, termination, and duration are presented in days per decade when
examining long-term, linear trends and in days per unit climate anomaly when
investigating the influence of climate oscillations. At sites where significant climate
effects were observed, El Nifio and La Nifia events typically induced larger changes in
phytoplankton phenology than did variations in the PDO and NPGO indices. For
example, in regions where climate oscillations induced shifts in bloom initiation date, a
1-unit anomaly change in the MEI prompted a mean phenological change of 21.9 = 0.3
SE days, while a 1-unit anomaly change in the PDO and NPGO resulted in changes of
17.4 £ 0.2 SE days and 17.9 £ 0.3 SE days, respectively. These numbers are based on the
absolute value of phenological change, but faster MEI-associated changes were also
apparent when advances and delays in phytoplankton phenology were examined
separately (Fig. 3.14).

Due to the use of different units, rates of long-term, phenological change cannot
be directly compared to the phenological effects of climate oscillations. However, the
maximum extent of changes in phenology associated with long-term trends and climate
indices can be inferred by multiplying rates of change by the full range of years and
climate anomalies examined in our analysis. Annually averaged MEI anomalies ranged
between -1.4 and 1.7 during the 47-years of the ocean-ice hindcast, while PDO and
NPGO anomalies ranged between -1.3-1.8 and -1.9-2.1, respectively. In the example

presented above for changes in bloom initiation date, this translated into a maximum
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phenological response to variations in the MEI of 67.9 days (i.e., 21.9 days anomaly™ x
A3.1 anomalies). Similar calculations yielded maximum responses of 53.9 days for the
PDO, 71.6 days for the NPGO, and 69.4 days for regions with long-term trends in the
date of bloom initiation. Since similar results were obtained for other phenological
metrics, this analysis revealed that long-term trends in phenology currently have effects
of a similar size to the dominant sources of natural climate variability in the North
Pacific.

When rates of change were compared across phenological metrics, shifts in bloom
termination date typically occurred more rapidly than changes in the onset of
phytoplankton blooms (Fig. 3.14). For example, in areas where blooms exhibited linear
trends towards earlier phenology, bloom termination advanced at a rate of -29.1 + 0.6 SE
days decade™, which was nearly twice the speed of changes in bloom initiation (i.e., -15.7
+ 0.3 SE days decade™). Faster changes in bloom termination were more prominent in
regions with advancing phenology, although this pattern was also observed in areas with
delayed phenology. In most cases, changes in bloom midpoint took place at a rate
intermediate between shifts in bloom onset and termination. Since most regions
experienced phenological shifts in both bloom initiation and termination in the same
direction (Figs. 3.10, 3.11, S3.7), the rate of changes in bloom duration was small
compared to other phenological metrics (Fig. 3.14). One final pattern evident in Figure
3.14 is that, even though both advances and delays in phytoplankton phenology were
prevalent across the North Pacific, phenological advances occurred more rapidly. This

pattern was particularly pronounced for bloom midpoint and termination.
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3.2.4. Relationship between Phytoplankton Phenology and Oceanic and

Atmospheric Variables

The effect of environmental variables on bloom initiation varied depending on
whether latitudes north or south of ~35° N were considered (Fig. 3.15). North of this
latitude, years with earlier bloom initiation were associated with weaker wind speed,
warmer temperatures, and a shallow MLD. Earlier onset of peaks in chlorophyll
concentration to the south of 35° N was correlated with cool temperatures, faster winds,
and deeper MLD. The one exception to this latitudinal pattern was that earlier blooms in
the ETP coincided with shallow MLD (Fig. 3.15c). This may reflect the fact that
upwelling occurs throughout a larger area of the ETP during the fall (Pennington et al.,
2006), such that blooms occurring later in the year would be associated with a deeper
mixed layer. Significant correlations between bloom initiation and MLD were observed
over a larger area of the North Pacific than were correlations between bloom initiation,
wind speed, and SST (Table 3.2).

Since earlier phytoplankton blooms often have earlier midpoint and termination
dates, a similar latitudinal pattern was observed when examining correlations between
these phenological metrics, wind speed, and MLD (Figs. S3.8-S3.9). However,
significant correlations between these variables and bloom midpoint and termination
occurred across a smaller portion of the North Pacific than was the case for bloom
initiation (Table 3.2). Unlike wind speed and MLD, there was not a clear difference
between subtropical and subpolar areas in terms of relationships between SST, bloom

midpoint, and bloom termination.
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Similar to our results for bloom midpoint and termination, significant correlations
between bloom duration and environmental variables were detected across a relatively
sparse area of the North Pacific (Fig. 3.16 and Table 3.2). In regions where significant
correlations occurred, there was again a change in the direction of the correlations
between areas located approximately south or north of 35° N (Fig. 3.16d). Longer-lasting
peaks in chlorophyll concentration were noted north of this latitude when MLD was
shallow, wind speed was weak, and SST was warm. This pattern was more evident in
Gulf of Alaska than in other regions of the subpolar gyre. To the south, longer peaks in
chlorophyll concentration were associated with deep MLD, strong winds, and cool
temperatures.

Across most latitudes, larger peaks in bloom magnitude were observed during
years with faster wind speeds, cooler than average SST, and a deep mixed layer (Fig.
3.17). Compared to other phenological metrics, statistically significant effects of
environmental variables on bloom magnitude were fairly widespread, occurring across
33-46% of CESMI grid cells (Table 3.2). Another difference between bloom magnitude
and other phenological metrics is that SST was the environmental variable with the most
prevalent influence on the size of phytoplankton blooms. In contrast, MLD had a slightly
more widespread effect on bloom initiation, midpoint, termination, and duration than the

other oceanic and atmospheric variables (Table 3.2).

3.2.5. Principal Component Analysis (PCA) Examining Phytoplankton Phenology
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Due to the fact that a total of 15,885 CESM1 grid cells were included in the PCA,
the first principal component of bloom initiation phenology only accounted for 6.2% of
the variance in this dataset (Table 3.3). Nevertheless, this principal component captured
variability in phenology across a moderately widespread area, since its time series was
significantly correlated with temporal trends in bloom initiation in 25.7% of the pixels
tracked by CESM1(BGC). The amount of variance explained by each principal
component and the percentage of correlated pixels decreased steadily as successive
principal components of bloom initiation were considered, such that the fifth principal
component accounted for 3.9% of the variance in this dataset and was correlated with
13.3% of CESM1 grid cells. A similar percentage of phenological variance was explained
by the first five principal components from PCAs performed on bloom midpoint,
termination, and duration. In contrast, the first principal component of bloom magnitude
encompassed 21.8% of the variance in chlorophyll concentration, a much larger
percentage than was observed for other phenological metrics. This reflected the fact that
there was greater spatial coherency in maps of changes in bloom magnitude than maps of
other variables (Figs. 3.10-3.13, S3.6-S3.7).

Since climate oscillations and long-term trends generally affected phytoplankton
phenology across one-third or less of the ocean grid cells tracked by CESM1(BGC), we
wanted to verify whether these factors were the predominant influences affecting
temporal variations in phenology across the North Pacific. To realize this objective, we
examined whether the first five principal components of our phenological metrics were
correlated with any of the previously discussed climatic factors. Of the 25 principal

components considered here (e.g., five principal components per each of five
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phenological metrics), 19 were correlated with the MEI, PDO, or NPGO or exhibited a
significant long-term, linear trend (Fig. 3.18). Often a particular principal component was
correlated with multiple climate indices. In 16 of the 19 cases where significant
correlations were detected, the strongest correlation reflected either a long-term, linear
trend or the influence of the MEIL.

The temporal trends and spatial patterns associated with the first principal
component of each phenological metric are shown in Figure 3.19. Figures S3.10-S3.14
contain supplemental information on the time series and regional expression of principal
components 2-5, although these are not discussed here. The first principal component of
both bloom initiation and midpoint displayed long-term trends, albeit in different
directions (Fig. 3.19a-b). For bloom initiation, its first principal component exhibited a
continuous decline (Y = 3,487.72 — 1.76 X, = 0.57,n =46, p <0.0001), such that sites
positively correlated with this principal component were characterized by earlier
initiation of phytoplankton blooms in recent years. The spatial signature of the first
principal component of bloom initiation was similar to the pattern seen when examining
sites with long-term changes in the date of bloom onset (Figs. 3.10a and 3.19f), although
correlations with pixels were in opposite directions. Both maps in Figs. 3.10a and 3.19f
show advancing phytoplankton phenology in the ETP and southwestern extent of our
study area, while delays in bloom initiation were found in the western subpolar gyre and
immediately west of the ETP. The slight asynchrony in phenological patterns between the
western and eastern Pacific observed in this principal component’s regional expression
may be due to the fact that this principal component was also correlated with the MEI and

PDO (Fig. 3.18).
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This zonal asynchrony in phenology was also evident in the first principal
component of bloom midpoint (Fig. 3.19g). Since this principal component’s time series
showed a continual increase (Y =-2,706.73 + 1.36.X, P = 0.35, n =46, p <0.0001, Fig.
3.19b), sites in the eastern Pacific that were positively correlated with the first principal
component of bloom midpoint can be interpreted as locations where phytoplankton are
now blooming later in the year than they were in the early 1960s. Conversely, most areas
west of 160° W and south of 40° N were negatively correlated with the first principal
component of bloom midpoint and exhibited long-term advances in phenology.

The first principal component of bloom termination was most closely correlated
with the MEI (Fig. 3.19c¢). This correlation had an » of 0.51 and a p-value of 0.0003 (n =
46) when a one-year time lag was used. Since La Nifia events typically lag El Nifio by
about one year, correlations with this principal component can be interpreted in terms of
the relationship between La Nifa and bloom termination phenology. The spatial signature
of this principal component indicated that, during La Nifia years, phytoplankton blooms
ended earlier than usual in the eastern Pacific, but ended later in the western-to-central
Pacific (Fig. 3.19h). This pattern was consistent across all latitudes.

The first principal component of bloom duration could also be interpreted in terms
of the effect of La Nifia on phenology, since this principal component was inversely
correlated with the MEI (r = -0.45, n =46, p = 0.0018, Fig. 3.19d). Based on the map
identifying pixels correlated with this principal component, La Nifia most strongly
affected bloom duration in the equatorial region, where cool, La Nifia conditions

coincided with longer lasting phytoplankton blooms (Fig. 3.191). A similar spatial pattern
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was noted in Fig. 3.12 when examining the relationship between bloom duration and the
MEL

Like bloom initiation, the first principal component of bloom magnitude revealed
a long-term decline, which indicated a decrease in mean chlorophyll concentration during
phytoplankton blooms (Y = 5,922.55 — 2.99X, * = 0.48, n = 47, p < 0.0001, Fig. 3.19¢).
However, this time series also showed a minor reversal leading to an increase in bloom
magnitude beginning in the late 1990s. The timing of this reversal appears to have
coincided with the 1998 change in the sign of the PDO. The PDO and the first principal
component of bloom magnitude were indeed significantly correlated, but this correlation
explained a smaller percentage of the variance in this principal component time series
(’=0.41, n =47, p <0.0001) than the long-term trend (Fig. 3.19). Throughout the North
Pacific, interannual variations in bloom magnitude at latitudes < 30° N were positively
correlated with this principal component, suggesting bloom magnitude has declined over

time in this region (Fig. 3.19j).

4. Discussion

4.1. Detection of Mean Phenological Patterns across the North Pacific

Several recent papers have used the SeaWiFS chlorophyll time series to examine

mean phenological patterns across the North Pacific using different methods to detect the

onset and termination of phytoplankton blooms (Sasaoka et al., 2011; Racault et al.,

2012; Sapiano et al., 2012). A study comparing ten methods of identifying terrestrial
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phenological events with remote sensing indicated that differences between methods
could bias estimates of phenology by as much as two months (White et al., 2009). It is
likely that comparably large differences between methods exist when using remote
sensing to characterize phytoplankton phenology. As a result, it is useful to compare our
findings to other phenological studies to evaluate whether the discrepancies between
CESMI1(BGC) and SeaWiFS are large relative to differences in mean phytoplankton
phenology that emerge due to the application of different phenological methods.

In the North Pacific subpolar gyre, Racault et al. (2012) and Sasaoka ef al. (2011)
both identified late April through June as the period of bloom initiation based on
SeaWiFS. Our analysis of SeaWiFS produced estimates of bloom initiation consistent
with these studies. In contrast, Sapiano ef al. (2012) detected greater spatial variability of
bloom onset across the subpolar gyre, indicating that phytoplankton blooms could begin
anywhere between March and July. This wider range of dates begins to encompass the
February-March bloom onset detected in this region by CESM1(BGC). Another
difference between CESM1(BGC) and SeaWiFS phenology was that all four SeaWiFS-
based analyses in the subpolar gyre showed that the gyre center had the latest occurring
phytoplankton blooms. CESM1(BGC) identified the Aleutian Islands and the area
surrounding the Kamchatka Peninsula as displaying the latest blooms.

Since the subtropical gyre is an oligotrophic region with a low-amplitude seasonal
cycle, it is characterized by a reduced signal-to-noise ratio for detecting phenological
patterns, which has caused studies utilizing different methods to identify varying dates of
bloom onset. Due to the low seasonal signal-to-noise ratio, Sapiano et al. (2012) was

unable to detect any phenological pattern in the southern sector of the North Pacific
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subtropical gyre and declared this to be an aseasonal region. Farther north, Sapiano et al.
(2012) found that most phytoplankton blooms began in October and December, although
February/March bloom onset was common along the northern boundary of this biome.
Racault et al. (2012) also identified differences between the southern and northern
subtropical gyre in terms of phenology. In the northern gyre, Racault ez al. (2012)
obtained similar results to Sapiano et al. (2012), detecting a winter onset of
phytoplankton blooms that occurred between November and March. However, summer
initiation (e.g., July-October) of blooms was reported from the southern subtropical gyre
by Racault ez al. (2012). The difference between these studies may stem from the fact
that Racault et al. (2012) noted that some phytoplankton blooms in the subtropical gyre
were the result of episodic, aseasonal mixing events. Since Sapiano et al. (2012)
identified blooms by fitting seasonal, harmonic functions to the SeaWiFS time series,
their method would not have been able to detect episodic blooms that may have been
especially common in the southern subtropical gyre. Our results from both CESM1(BGC)
and SeaWiFS are broadly consistent with these two studies, since we identified October-
January as the median months of bloom onset throughout most of the subtropical gyre,
with February/March bloom initiation occurring near the gyre’s northern boundary. Like
Racault ef al. (2012), we also detected a few regions of the gyre where the median date of
bloom onset occurred during summer. Differences in the seasonal dynamics of the
northern and southern halves of the subtropical gyre have also been described in the
North Atlantic, where phenology varies out-of-phase across these regions (Ueyama and

Monger, 2005).
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Of the biogeographical regions examined here, the equatorial zone exhibited the
greatest spatial variation in mean phenological patterns. This variability was also evident
in a review of primary production in the ETP, where early spring maximum of
chlorophyll concentration were identified near Panama, the Peruvian upwelling area, and
in the North Equatorial Counter Current; winter peaks in chlorophyll occurred off
Tehuantepec and in the North Equatorial Current, and; summer maxima were observed in
the equatorial upwelling region, South Equatorial Current, and around the Galapagos
(Pennington et al., 2006). Much of this phenological diversity can be attributed to the
influence of upwelling in the eastern equatorial region. Since the geographic extent of
equatorial upwelling is maximal during summer and fall (Pennington ef al., 2006),
chlorophyll concentration in regions affected by upwelling also peaked during these
months. This explains why both our study and Racault ez al. (2012) detected
phytoplankton blooms occurring between June-September in the eastern equatorial
region. Sapiano et al. (2012) identified slightly later onset of phytoplankton blooms (e.g.,
September-December) in this area. Both our study and Sapiano et al. (2012) observed a
high degree of spatial patchiness in equatorial phytoplankton phenology, as well as an
east-west gradient in bloom initiation dates. All three studies showed phytoplankton
blooms beginning during December-March in the central-to-western equatorial Pacific.
These patterns were evident in analyses performed with both CESM1(BGC) and
SeaWiFS. Overall, differences between CESM1(BGC) and SeaWiFS in terms of mean
bloom initiation dates were of a similar magnitude to discrepancies between SeaWiFS-

based analyses that used different methods to identify phenological transition points.
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While relatively consistent geographic patterns were observed across all studies of
bloom initiation and termination phenology, this was not the case for bloom duration.
Racault et al. (2012) and Sasaoka et al. (2011) identified short phytoplankton blooms
lasting < 100 days in the subpolar and southern subtropical gyres, with longer blooms
(e.g., 105-150 days) detected in the northern subtropical gyre and around the equator.
North of 30° N, Racault ez al. (2012) also observed a decrease in bloom duration with
increasing latitude, although this pattern was more pronounced in the North Atlantic than
the North Pacific. In contrast, Sapiano ef al. (2012) detected longer-lasting phytoplankton
blooms (e.g., 120-180 days) with uniform bloom duration found across different
latitudinal bands. Sapiano et al. (2012) did not detect a decrease in bloom duration with
increasing latitude. Our results were more consistent with Racault et al. (2012) and
Sasaoka et al. (2011) in terms of the length of phytoplankton blooms, but were similar to
Sapiano et al. (2012) in that we did not detect a strong latitudinal gradient. Another
commonality between our work and Sapiano et al. (2012) was that bloom duration was
longest in the center of the subpolar gyre compared to surrounding regions. Interestingly,
this pattern was more clearly displayed in CESM1(BGC) than SeaWiFS.

Since we initially applied both threshold and statistical approaches for
characterizing phytoplankton phenology, our research offered insight into the source of
discrepancy in bloom duration identified by Racault ez al. (2012) and Sapiano et al.
(2011). When we examined estimates of bloom duration generated from our harmonic
algorithm, we found longer-lasting phytoplankton blooms (often 100-200 days) and
increased prevalence of zonal banding, similar to Sapiano et al. (2012). Since our

harmonic algorithm and the algorithm developed by Sapiano et al. (2012) differed in
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terms of the definition of bloom initiation and termination, parameter optimization
technique, and treatment of multiple years of data, these similarities may reflect general
properties of the statistical methods used to characterize phytoplankton phenology.

One additional area where it is worthwhile to compare our results with previous
studies of North Pacific phytoplankton phenology is the geographic pattern of the mean
number of blooms per year. Racault ef al. (2012) and Sasaoka et al. (2011) limited their
analysis to the first phytoplankton bloom detected each year, whereas Sapiano et al.
(2012) mapped areas of the North Pacific exhibiting single and multiple blooms per year.
Their map resembled the pattern in Figure 3.1 since both their and our studies detected
dual spring and fall phytoplankton blooms in coastal areas north of 40° N and the
transition zone between the subpolar and subtropical gyres. Dual blooms were also
identified in the eastern equatorial region. Our CESM1(BGC) analysis exhibited greater
consistency with Sapiano et al. (2012) than our SeaWiFS-based results, which indicated a
more widespread extent of dual phytoplankton blooms in the equatorial region. In
addition, our analysis of SeaWiFS phenology identified two blooms per year across much
of the subtropical gyre, a pattern that was not evident in either CESM1(BGC) or Sapiano
et al. (2012). The comparable number of blooms per year identified by CESM1(BGC)
and Sapiano et al. (2012) lends further credence to using this model to investigate
historical trends in phenology.

Thus far, the evaluation of CESM1(BGC) model skill discussed in this section has
focused solely on mean phenological patterns. A pertinent feature of the CESM1(BGC)
ocean-ice hindcast is that, since atmospheric data force the ocean sub-model in this

simulation, phenological events from a given year should reflect observed meteorological
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conditions. As a result, we examined interannual correlations between SeaWiFS and
CESMI1(BGC) phenology to further assess model fidelity to biological observations.
Compared to mean phenological patterns, model skill was slightly weaker when
investigating interannual correlations with SeaWiFS, although correlation strength varied
greatly between regions. Bloom duration and bloom magnitude exhibited particularly
weak interannual correlations between SeaWiFS and CESM1(BGC). Generally,
interannual correlations were strongest for phenological events and seasonal chlorophyll
anomalies that coincided with the start of a bloom. Future research should take into
account variations in model skill across different phenological metrics and geographic
regions, perhaps focusing principally on areas with the greatest fidelity to observations.
Nevertheless, here we opted to comprehensively examine all regions of the North Pacific
and all phenological metrics to provide a baseline of the utility of CESM1(BGC) for
studying phytoplankton phenology. Future versions of CESM1(BGC) will hopefully

improve upon this baseline.

4.2. Forcing Mechanisms and the Response of Phytoplankton Phenology to Climate

Oscillations

In temperate-to-boreal, oceanic habitats, Sverdrup’s critical depth hypothesis has
long been invoked to explain the dominant factors determining the timing of the spring
bloom. This hypothesis states that net phytoplankton population growth cannot occur if
the MLD exceeds a critical depth where depth-integrated primary production is equal to

the depth-integrated respiration (Sverdrup, 1953). As winter conditions end, solar
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irradiance increases, deepening the critical depth, while the MLD shoals due to the
combined effects of warming and freshening of surface waters and decreased mixing
from winter storms. Once the critical depth shoals below the MLD, a bloom occurs if
phytoplankton growth is not effectively controlled by grazing. While recent studies have
proposed alternative explanations for the occurrence of the spring bloom related to the
seasonality of turbulent convection and zooplankton grazing (Behrenfeld, 2010; Taylor
and Ferrari, 2011), numerous investigations conducted since the advent of remote sensing
have continued to provide support for Sverdrup’s critical depth hypothesis (Siegel et al.,
2002; Yamada and Ishizaka, 2006; Henson et al., 2009; Platt et al., 2010; Song et al.,
2010).

In subtropical and tropical regions, critical depth rarely exceeds the MLD, so light
limitation does not influence bloom timing (Mann and Lazier, 1996). However, the
limited vertical mixing of the water column in subtropical areas means that nutrients in
surface waters are not routinely replenished by the greater nutrient reserves found at
depth. As a result, phytoplankton blooms in subtropical regions mainly occur during
winter when water column mixing is maximal, lifting the constraints of nutrient
limitation on phytoplankton growth (Yoder et al., 1993; Dutkiewicz et al., 2001). In
addition to these large-scale effects on phytoplankton phenology, bloom timing can also
be influenced by local processes, such as storms, mixing by mesoscale eddies, and
horizontal advection of distinct water masses (McGillicuddy et al., 2007; Greene et al.,
2012; Mahadevan et al., 2012).

CESM1(BGC) was able to reproduce these different mechanisms that control

bloom timing in the subtropical and subpolar gyres of the North Pacific. In accordance
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with Sverdrup’s critical depth hypothesis, CESM1(BGC) indicated that earlier and longer
lasting blooms occurred during years with weak winds, warm SST, and a shallow mixed
layer in the subpolar gyre, but the inverse was observed in the subtropical gyre (Figs.
3.15-3.16). These results from CESM1(BGC) were analogous to the relationships
between SeaWiFS phenology, wind speed, SST, and water column stratification observed
in the North Atlantic and North Pacific subpolar gyres (Ueyama and Monger, 2005;
Yamada and Ishizaka, 2006; Sasaoka et al., 2011). Although comparably less research
has examined interannual variations in bloom timing in subtropical gyres, negative SST
anomalies in subtropical and equatorial biomes are correlated with longer peaks in
SeaWiFS chlorophyll (Racault et al., 2012). Both this study and Racault et al. (2012) also
detected a change in the direction of correlations between phytoplankton phenology and
environmental variables at 35° N. Other studies have placed the boundary as to where
Sverdrup’s critical depth hypothesis is applicable farther poleward or equatorward at
latitudes between 30-45° N (Obata et al., 1996; Siegel et al., 2002; Henson and Thomas,
2007).

The optimal stability window hypothesis developed by Gargett (1997) provides a
potential mechanism that links basin-scale climate oscillations, such as ENSO, PDO, and
NPGO, with out-of-phase variations in phenology in subpolar and subtropical regions. In
addition to their effect on physical oceanic conditions, the MEI, PDO, and NPGO also
exert an influence on atmospheric processes since these indices are associated,
respectively, with variations in trade wind strength, the Aleutian Low pressure system,
and the gradient in sea level pressure (SLP) between Hawaii and Alaska (Mantua ef al.,

1997; McPhaden, et al., 2006; Chhak et al., 2009). Due to their connection to
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atmospheric pressure fields, these climate oscillations are correlated with changes in wind
strength and precipitation, which in turn affect water column stratification. Gargett
(1997) proposed that an optimal window of water column stability exists that promotes
elevated primary and secondary production in both the subpolar and subtropical gyres.
Under mean conditions, the subpolar gyre is characterized by less than optimal stability
resulting in light limitation related to vigorous water column mixing. In contrast, under
mean conditions, the subtropical gyre experiences higher than optimal stability, which
exacerbates nutrient limitation. Thus, a basin-scale increase (decrease) in water column
stability, modulated through interannual-to-decadal climate oscillations, will result in
elevated (reduced) biological production in the subpolar gyre, but reduced (elevated)
production in the subtropical gyre.

While this hypothesis was originally developed to explain out-of-phase variations
in mean annual primary and secondary production, it can also be applied to explain why
phytoplankton phenology exhibits a differential response to climate indices in the
subpolar and subtropical gyres. During warm climate regimes, mixing will be diminished
causing earlier phytoplankton blooms in the subpolar gyre due to an earlier easing of light
limitation. On the other hand, reduced mixing will delay phytoplankton blooms in the
subtropical gyre due to a prolongation of the period when stratification and nutrient
limitation persist. This pattern was evident when we examined correlations between
bloom initiation phenology, the MEI, and the PDO in the northeast Pacific. When
positive anomalies of the MEI and PDO resulted in warmer temperatures and heightened
stratification in the northeast Pacific, phytoplankton blooms were largely delayed in low

latitude areas likely due to an extended period of seasonal nutrient limitation. In contrast,



186

the same climate regime led to earlier phytoplankton blooms in the Alaska gyre where
light limitation exerts a larger influence on phytoplankton phenology. We observed the
opposite pattern in the northwest Pacific reflecting the fact that positive MEI and PDO
conditions are associated with cooler temperatures and reduced stratification in this
region (Mantua et al., 1997; Wolter and Timlin, 2011). The similar spatial signature of
MEI and PDO effects on phenology is not surprising given that coupled atmosphere-
ocean runs of CESM1 generate similar regional SST anomalies related to these climate
oscillations, albeit at different time scales (Deser ef al., 2012). Sasaoka et al. (2011) also
noted that positive (warm) anomalies of the Southern Oscillation Index (SOI) are
associated with earlier phenological events in eutrophic areas of the subarctic Pacific and
later phenology in oligotrophic and HNLC regions. The west-east asynchrony of ENSO
effects on phytoplankton phenology has been previously observed by Yoo et al. (2008)
who reported that El Nifio coincided with delays in the seasonal chlorophyll maximum in
the CCE and North Equatorial Counter Current, while phytoplankton bloomed earlier
during EI Nifio in the Sea of Japan.

Less support was provided for the optimal stability window hypothesis when
examining the effect of the NPGO on bloom initiation phenology. Areas characterized by
cool SST during the positive phase of the NPGO typically exhibited delayed phenology,
while regions with warm conditions displayed phenological advances. This pattern was
consistent regardless of whether a subtropical or subpolar region was considered. An
alternative explanation for this phenological pattern is that warming associated with the
NPGO had a metabolic effect increasing the growth rate of individual phytoplankters,

resulting in more rapidly developing blooms during warm conditions.
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Compared to the regional effects of climate oscillations on bloom initiation
phenology, less asynchronous variation in bloom duration between the western and
eastern Pacific basin was observed. Instead, positive anomalies of the MEI and PDO
principally resulted in shorter blooms at latitudes <40° N and longer blooms in subpolar
regions. Relatively few areas exhibited significant correlations between bloom duration
and the NPGO. However, in areas where significant NPGO effects were detected, shorter
blooms predominated during the positive phase of the NPGO at high latitudes, whereas
longer blooms were more common at latitudes < 20° N. These results are consistent with
the findings of Racault et a/. (2012) who determined that, during the SeaWiFS period, the
warm phases of the MEI, NAO, and Southern Annular Mode (SAM) were linked to
increased phytoplankton bloom duration in subpolar regions and shorter blooms in
subtropical and tropical areas. Racault et al. (2012) attributed the shorter, subtropical
blooms to increased nutrient limitation during warm years and the longer, subpolar
blooms to an extended period of summer conditions. Across the North Pacific subarctic,
Sasaoka ef al. (2011) identified a pattern where longer phytoplankton blooms occurred
during EI Nifio in areas characterized by low chlorophyll concentration. While this
finding may initially seem to contradict the results of our study and those of Racault et al.
(2012), these subarctic, low chlorophyll areas may represent part of the transition zone
between the subpolar and subtropical gyres. During the warm phase of climate
oscillations, the boundaries of the subtropical gyre can expand, such that phytoplankton
blooms in the transition zone take on phenological characteristics usually associated with
the subtropical gyre (Henson et al., 2009). One such characteristic may include the longer

duration of phytoplankton blooms that occur in subtropical regions.
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Regions with significant correlations between bloom magnitude and the three
climate oscillations again resembled maps of correlations between these oscillations and
SST anomalies. Warm SST anomalies coincided with a reduced size of blooms, whereas
higher chlorophyll concentration during blooms was observed during the cool phase of
MEI, PDO, and NPGO regimes. As discussed above, this reflects the connection between
cool, oceanic conditions and increased ventilation of surface waters, resulting in elevated
concentrations of nutrients used by phytoplankton. Cool conditions were linked to
increases in bloom magnitude in both the subtropical and subpolar Pacific. This is likely
related to the fact that, even though macronutrients are not depleted in the subpolar gyre,
this area forms part of an HNLC region where iron concentration limits phytoplankton
growth (Tsuda et al., 2003). As has been observed in the North Atlantic (Song et al.,
2010), it can be inferred here that light limitation has a primary influence on
phytoplankton phenology and bloom duration in the subarctic Pacific, but nutrient
concentration has a greater effect on bloom magnitude. Observational studies of North
Pacific oceanography have documented connections between chlorophyll concentration
and the MEI, PDO, and NPGO similar to the ones that we observed with CESM1(BGC)

(Di Lorenzo et al., 2008; Yoo et al., 2008; Martinez et al., 2009).

4.3. Long-term, Linear Trends in Phytoplankton Phenology

While changes in terrestrial, plant phenology related to global warming have been

documented across a range of ecosystems (Parmesan and Yohe, 2003; Root et al., 2003;

Parmesan, 2007; Miller-Rushing and Primack, 2008), this represents one of the first
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studies to identify long-term trends in phytoplankton phenology during the 20™ century
across a substantial proportion of an ocean basin. Previous work has detected advances in
the timing of the fall bloom in the North Sea (Edwards and Richardson, 2004), earlier
phytoplankton blooms in the Arctic Ocean and CCE (Kim et al., 2009; Kahru et al.,
2011), and delayed phytoplankton phenology in the Sea of Japan and off the Nova
Scotian Shelf (Yamada and Ishizaka, 2006; Song et al., 2011). However, with the
exception of Edwards and Richardson (2005), these studies have lasted less than 20
years, making it difficult to confidently attribute trends in phytoplankton phenology to
global warming or natural variability. Furthermore, studies comparing global trends in
chlorophyll concentration between the CZCS and SeaWiFS eras have obtained
contradictory results as to whether changes in phytoplankton seasonality have occurred.
Gregg and Conkright (2002) noted that seasonal patterns remained unchanged between
the CZCS and SeaWiFS eras, while Antoine et al. (2005) identified changes in the timing
of the spring bloom across latitudes of 40-50° N, as well as reduced seasonality in the
inter-tropical zone. However, the shift from a negative to a positive PDO between the
CZCS and SeaWiFS periods, as well as variations in the Atlantic Multidecadal
Oscillation (AMO), complicate the interpretation of these seasonal changes (Martinez et
al., 2009).

It is possible that natural variability has amplified or dampened the long-term,
linear trends in phenology that we detected. However, the time series that we analyzed
included multiple reversals of both the PDO and NPGO. As a result, neither of these two
decadal climate indices displayed a linear trend between 1961-2007 (Fig. S3.10). Linear

trends in phytoplankton phenology could also emerge due to the assimilation of satellite
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data into the ocean-ice hindcast midway through the time series. However, this seems
unlikely to have produced spurious trends given that there was not a step change in the
phenological PCA time series that coincided with the addition of satellite data to the
hindcast. As a result, the long-term shifts in phenology that we identified are likely,
although not conclusively, a signal of anthropogenic climate change. Mechanisms
through which climate change could alter phytoplankton phenology include changes in
seasonal concentrations of nutrients due to reduced water column mixing at low latitudes,
a shorter period of light limitation at subpolar latitudes due to earlier stratification,
metabolic effects of warmer temperatures on phytoplankton growth rates, and shifts in
the phenology of grazers.

Higher latitudes have been characterized as areas that often display faster and
wider spread changes in phenology (Root ef al., 2003; Parmesan, 2007; Kahru ef al.,
2011; Xu et al., 2013). However, among phytoplankton, we did not detect a more
extensive area with long-term, phenological trends in subpolar regions than in lower
latitudes. This is similar to the findings of Antoine et al. (2005) who also did not observe
any changes in phytoplankton seasonality at high latitudes between the CZCS and
SeaWiFS eras. Henson ef al. (2010) noted that, due to less natural variability in equatorial
regions, shorter time series of chlorophyll are required to identify trends related to
climate change. Conversely, this may partially explain the relative dearth of long-term
trends in phenology that we observed at higher latitudes. A second potential explanation
is that dinoflagellates have been shown to exhibit larger changes in phenology than
diatoms (Edwards and Richardson, 2004). Since diatoms make up a larger portion of the

phytoplankton community at high latitudes, this could result in greater phenological
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stability. One additional hypothesis explaining the scarcity of high latitude changes in
phenology stems from the idea that phenological change may effectively track seasonal
isotherms (Burrows et al., 2011). Due to the reduced amplitude of the seasonal cycle in
tropical areas, organisms residing there may have to undergo larger changes in phenology
to ensure that seasonal activities continue to take place at approximately the same
temperature.

Areas with long-term trends in bloom duration and magnitude exhibited
latitudinal patterns similar to those observed when investigating MEI and PDO effects on
bloom duration and bloom size. Increases in bloom duration and magnitude occurred
principally in the subpolar gyre, while trends toward shorter and smaller blooms were
mainly found at latitudes < 40° N. Antoine et al. (2005) also reported increases in
chlorophyll concentration at high latitudes and decreases in the oligotrophic, subtropical
gyres during recent decades. As discussed in the section on climate oscillations, changes
in bloom duration and magnitude likely reflect the fact that warming leads to greater
stratification in subtropical region, which subsequently shortens the period when the
water column is sufficiently mixed to replenish surface nutrients. This mechanism has a
consistent effect on subtropical, bloom duration and magnitude regardless whether
interannual (e.g., MEI) or decadal (e.g., PDO, NPGO, long-term trends) time scales are
considered. In the subpolar gyre, the increase in bloom magnitude and duration between
1961-2007 may be due to either: (1) increased stratification prolonging the season when
phytoplankton are not mixed below the critical depth, or; (2) warming induced Qo
changes in phytoplankton growth rates. When using a DGOM to examine how a doubling

of atmospheric CO;, would affect the spring bloom in the northwest Pacific, Hashioka et
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al. (2009) concluded that increases in maximum phytoplankton biomass in the Kuroshio
extension were tied to a quickening of phytoplankton metabolism under warmer
temperatures, lending support to the latter hypothesis. Similarly, model and theoretical
predictions developed by Marinov et al. (2010) also indicated that future changes in
diatom and small phytoplankton growth rates in the subpolar Pacific would be affected

more strongly by temperature changes than changes in light and nutrient limitation.

4.4. Sensitivity of Different Phenological Metrics to Climate Variability and Change

Compared to bloom termination, bloom initiation dates displayed greater
comparability between SeaWiFS and CESM1(BGC), were correlated with climate
oscillations and environmental variables across a larger area of the North Pacific,
exhibited greater spatial coherency, and were subject to slower phenological changes.
This pattern was consistent across all climate indices, environmental variables, and when
examining long-term, linear trends. Typically, the rate of changes in bloom midpoint and
the spatial extent of its correlations with climatic and oceanic indices were intermediate
between bloom initiation and termination phenology. The less widespread effects of the
MEI, PDO, and NPGO on bloom termination may reflect the fact that the end of
phytoplankton blooms is often controlled more by biological processes, such as grazing
pressure and nutrient depletion (Rolinski et al., 2007; Racault et al., 2012), than by
physical processes. Climate oscillations only indirectly impact these biological processes,
but exert a more direct effect on water column stratification, SST, and wind speed, which

are factors that had a greater influence on bloom initiation dates than bloom termination
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phenology. Another potential explanation for the more widespread influence of climate
oscillations on bloom initiation is that the start of a bloom is often more pronounced,
occurring more rapidly and synchronously than the end of a bloom (Rolinski et al, 2007).
This results in a more precise identification of the date of bloom start compared to bloom
termination (Leopold and Jones, 1947; Zhang et al., 2006; Rolinski et al., 2007). Greater
phenological precision may increase the statistical likelihood of detecting climatic and
oceanic effects on phenology given the existence of such effects. The faster rate of
change in bloom termination phenology compared to bloom initiation was more
pronounced in areas with advancing phenology. The accelerated rate of change in such
locations may reflect a rapid depletion of the nutrient supply at the end of a bloom.
Nutrient depletion could occur more quickly under warm oceanic conditions due to both
upregulated phytoplankton metabolism and heightened stratification limiting the flux of
nutrients from depth.

Despite the differences between bloom initiation and termination phenology, the
spatial signatures of these phenological metrics were generally similar, such that regions
that experienced earlier bloom onset over a particular period tended to exhibit an earlier
end to phytoplankton blooms. Racault ez al. (2012) also noted a positive correlation
between dates of bloom onset and bloom termination when examining global
phytoplankton phenology. Synchronous changes in bloom initiation and termination dates
led to decreased variability in bloom duration. As a result, changes in bloom duration
were slow compared to other phenological metrics and were not affected by climate
oscillations across as wide an area. Since climate-related changes in annual primary

production are modulated in part by bloom duration, this finding suggests that trends in
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phytoplankton phenology are unlikely to contribute much to future changes in primary
production per se. However, given the low comparability between SeaWiFS and
CESMI1(BGC) estimates of bloom duration and the large differences in bloom duration
estimated with different phenological methods (Racault ef al., 2012; Sapiano et al., 2012;
the current study), additional research is needed to confirm this result.

Bloom magnitude was correlated with climate oscillations and exhibited long-
term, linear trends across a larger area of the North Pacific than any other phenological
indicator. The spatial “patchiness” of other metrics suggests that mesoscale processes
(e.g., eddies, meanders of currents) and intraseasonal variations in local weather may
have a prominent influence on phytoplankton phenology. Kahru ef al. (2011) also
detected abundant small-scale, spatial variability between areas displaying trends in
phytoplankton phenology during the SeaWiFS era. Similarly, in terrestrial ecosystems,
there is often as much variability in phenological trends among species living in the same
area as there is between different regions (Parmesan, 2007). The spatial patchiness of
climate effects on phenology may complicate the interpretation of results from in situ
monitoring programs, since it is uncertain whether trends detected at a particular location

are representative of a larger region.

4.5. Cross-Ecosystem Comparison of Rates of Phenological Change

In locations in the North Pacific where significant, long-trends in phytoplankton

phenology were observed, 46.3% of changes indicated delayed onset of blooms.

Similarly, the midpoint and termination of blooms were delayed, respectively, in 54.5%
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and 58.7% of the CESM1 grid cells where long-term changes were detected. Previous
studies have also identified delays in phytoplankton phenology in the North Atlantic, Sea
of Japan, and Nova Scotian Shelf over recent years (Yamada and Ishizaka, 2006; Kahru
etal., 2011; Song et al., 2011). Compared to terrestrial studies of 20" century changes in
phenology, the high percentage of phenological delays that we observed in pelagic
ecosystems appears to be unique. Field-based, multi-species studies of trends in terrestrial
phenology have typically identified delayed phenology among ~20% or fewer of the
species examined (Parmesan and Yohe, 2003; Root et al., 2003; Menzel et al., 2006;
Cook et al., 2012). The one exception is a study by White et al. (2009) that used remote
sensing to investigate areas of North America that exhibited trends in spring vegetation
phenology between 1982-2006. White et al. (2009) detected shifts towards earlier
phenology across 7% of their study area and delayed phenology across 5%. This
difference between our study and research conducted in terrestrial ecosystems may
partially reflect the fact that we examined phenological changes that occur during all
months of the year, whereas many terrestrial studies focused solely on spring events
(Parmesan and Yohe, 2003; Root et al., 2003; Parmesan, 2007). Terrestrial research
investigating fall phenology has produced mixed results, with some studies reporting
earlier occurrence of phenological events and others reporting delays (Cleland, 2007).
Nevertheless, the prevalence of delayed phenological events likely represents a real
difference in how marine and terrestrial ecosystems are affected by climate, since this
phenomenon can be explained by increased stratification leading to a later onset of fall

and winter mixing of the water column in subtropical areas.
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A second difference between marine and terrestrial ecosystems is related to the
very fast rates of long-term, phenological changes that we detected among North Pacific
phytoplankton. Between 1961 and 2007, bloom initiation dates advanced at a mean rate
of -15.7 + 0.3 SE days decade™ in areas with significantly earlier blooms, while mean
delays of 14.4 + 0.3 SE days decade™ were observed in other regions (Fig. 3.14). In
contrast, a meta-analysis that examined phenological changes among predominantly
terrestrial organisms obtained a mean rate of phenological advance of 2.8 + 0.4 SE days
decade™ (Parmesan, 2007). Similarly, changes in phytoplankton phenology from the
CESM1(BGC) hindcast occurred at a faster rate than long-term changes in holo- and
merozooplankton phenology in the North Sea (-2.3 to -10.7 days decade'; Edwards and
Richardson, 2004) and larval fish phenology in the CCE (mean advance: -6.4 days
decade'; mean delay: 5.1 days decade™; see first data chapter).

Several factors may explain these differing rates of phenological change. First, we
presented mean rates of change separately for regions with earlier and later phenological
trends, so that the large changes in opposite directions would not cancel each other out.
We also calculated mean rates of change that only included regions where a significant,
long-term trend in phenology was observed. If mean rates of change had been calculated
jointly for both phenological advances and delays and had included all CESM1 grid cells,
we would have inevitably computed a much slower rate of change, but this would have
also misleadingly obscured the rapid changes detected in some regions. Similarly,
Parmesan (2007) found that discrepancies between two earlier meta-analyses examining

phenological changes (e.g., Parmesan and Yohe, 2003; Root et al., 2003) could be
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explained mainly by the decision whether to include data on species that were
unresponsive to climate change.

Second, Burrows et al. (2011) developed a hypothesis that might serve to explain
why we detected more rapidly changing phenology among marine phytoplankton than
has been observed among terrestrial primary producers. They hypothesized that
phenological changes should track seasonal isotherms so that critical events in an
organism’s life history will continue to occur at an optimal temperature even as the
climate changes. Since seasonal temperature gradients in the ocean are less pronounced
than on land, organisms will need to undergo more rapid shifts to maintain phenological
events at the same isotherm. While this hypothesis is likely relevant to many marine
organisms, its applicability to phytoplankton is questionable given the fact that nutrient
and light limitation, in addition to temperature, play large roles in determining
phenological rates of change.

A more compelling hypothesis to explain the rapid phenological changes among
phytoplankton is that their extremely brief life cycle allows them to track seasonal
changes in the environment more closely than longer-lived organisms (Richardson and
Poloczanska, 2008). This hypothesis serves to explain why phytoplankton exhibited
faster shifts in phenology than both longer-lived terrestrial plants and marine organisms
in higher trophic levels. One example of this is that pelagic fishes and invertebrates,
which usually have short life cycles, have been shown to respond to climate change by
undergoing range shifts at a faster rate than higher trophic level predators and benthic

species, which are typically longer lived (Murawski, 1993; Cheung et al., 2009).
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The differing rates of phenological change among phytoplankton and higher
trophic level organisms could potentially alter marine food web structure, since many
fishes and benthic invertebrates that produce planktotrophic larvae time their
reproduction to coincide with plankton blooms. Mismatches between blooms and larval
production can result in starvation or reduced growth rates, which can in turn increase the
vulnerability of larvae to predation. Reduced survival of larvae can potentially result in
poor recruitment to fisheries in subsequent years and declines in population size
(Murphy, 1968; Cushing, 1990; Durant et al., 2007). Examples where phenological
mismatches have led to substantial deccreases in recruitment include North Sea cod
(Beaugrand et al., 2003), Nova Scotia haddock (Platt e al., 2003), and mussels and
barnacles in the northern California Current (Barth ez al., 2007). In some extreme cases,
phenological matches can even lead to local extinctions (Burkle ef al., 2013). However, it
is also important to note that some species have developed evolutionary adaptions to
manage the risk of phenological mismatches. These include developing a generalist diet
and spreading out reproductive activity over a series of weeks to months as a “bet
hedging” strategy (Cushing, 1990; Durant et a/., 2007). Similarly, density dependence at
the juvenile stage can compensate for low survival of earlier life history stages due to
phenological mismatches (Reed ef al., 2013). An interesting question is how the high
geographic variability in rates of phenological change among plankton will impact
migratory species. Such species may be resilient to phenological mismatches, since they
are able to travel to more productive feeding grounds. However, cues used to time

seasonal migrations between feeding and breeding grounds are often related to local
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climate conditions that may no longer be representative of phenological changes taking

place at the other end of the species’ migratory range (Durant et al., 2007).

4.6. Conclusions

Use of a hindcast simulation with forced atmospheric conditions allowed us to
apply CESM1(BGC) to examine historical variations in phytoplankton phenology during
the late 20™ century. In accordance with Sverdrup’s critical depth hypothesis, earlier
phytoplankton blooms in subpolar ecosystems were correlated with weak winds, warm
SST, and a shallow mixed layer, while the inverse pattern was observed in subtropical
and equatorial biomes. The onset of phytoplankton blooms exhibited long-term,
phenological trends across 20% of the North Pacific, while interannual-to-decadal
climate oscillations were correlated with bloom initiation phenology across 23-34% of
this region. Long-term trends in phenology resulted in changes in bloom onset dates that
were of a similar magnitude to the effect of climate oscillations. Between 1961 and 2007,
delays and advances in phytoplankton phenology were equally prevalent across the North
Pacific. The MEI and PDO affected phytoplankton phenology across a similar subset of
CESMI grid cells. The influence of the MEI and PDO could be largely interpreted in
terms of the effects of surface warming on water column stratification that results in
increased nutrient limitation in the subtropical gyre and decreased light limitation in the
subpolar gyre. Compared to interannual variations in bloom magnitude, climate
oscillations were correlated with phytoplankton phenology across a smaller portion of the

North Pacific and showed finer scale spatial variability that may be indicative of local,
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oceanic influences on phenology. Variations in bloom initiation, midpoint, and
termination dates exhibited a similar spatial signature, resulting in relatively few changes
in bloom duration. Long-term changes in phytoplankton phenology are occurring at a
rapid rate compared to similar changes observed among terrestrial primary producers and
higher trophic level marine organisms. This asynchronous rate of phenological change
could result in seasonal mismatches between phytoplankton blooms and planktivorous

organisms.
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Figure 3.1. Mean number of peaks in chlorophyll concentration identified each year from
CESMI1(BGC) (A) and SeaWiFS (B) during the years 1998-2007.
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Figure 3.3. Time series of the first five principal component (PC) scores of monthly sea
surface temperature (SST) from ICOADS (blue) and CESM1 (red). Raw SST data, which
included seasonal signals, were used as the input for this principal component analysis
(PCA).
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Figure 3.4. Spatial signature of the first five principal components (PCs) of sea surface
temperature (SST) from ICOADS (upper row) and CESM1 (lower row). These maps
show the correlation between each PC time series and the SST time series from each
ocean grid cell. White areas represent either land or regions where observations were
available for < 75% of the monthly time steps between 1960-2007.
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Figure 3.5. Time series of the first five principal component (PC) scores of monthly sea
surface temperature (SST) anomalies from ICOADS (blue) and CESM1 (red). This
principal component analysis (PCA) was performed on monthly anomalies in order to
remove seasonal patterns and highlight interannual and decadal variability. Note that the
inverse of the fifth principal component of CESMI is shown in the bottom panel.



207

Figure 3.6. Spatial signature of the first five principal components (PCs) of monthly sea
surface temperature (SST) anomalies from ICOADS (upper row) and CESM1 (lower
row). Figure details are the same as in Figure 3.4, but monthly anomalies are shown to
highlight spatial patterns associated with interannual and decadal SST variability. The
inverse of the fifth principal component of CESM1 is mapped.
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Figure 3.7. Mean day of year (DOY) of bloom initiation, midpoint, and termination
during the years 1998-2007. The mean duration and magnitude of these phenological
events are also shown. Maps in the left column are derived from CESM1(BGC), while
maps on the right are based on remotely sensed chlorophyll from SeaWiFS. Correlation
coefficients  indicate the strength of spatial correlations between CESM1(BGC) and
SeaWiFS for each phenological metric.
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Figure 3.8. Temporal correlations between SeaWiFS and CESM1(BGC) calculated based
on interannual variations in the date of bloom initiation, midpoint, termination, duration,

and magnitude during the 1998-2007 period. The left column displays maps of these
correlations calculated on a pixel-by-pixel basis. Color bars indicate values of the

correlation coefficients . The right column shows latitudinal patterns where correlation
coefficients have been averaged across 2° bins.
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Figure 3.11. Maps of correlations between the date of bloom initiation and three climate
indices: the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), and
the North Pacific Gyre Oscillation (NPGO). Only grid cells with correlations significant
at p <0.05 are shown. In cases where there are two or more time lags of a climate index
that were significantly correlated with bloom initiation, the correlation with the lowest p
value is displayed.
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Figure 3.12. Maps of correlations between bloom duration and three climate indices: the
Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), and the North
Pacific Gyre Oscillation (NPGO). Features of this figure are the same as in Figure 3.11.
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Figure 3.13. Maps of correlations between bloom magnitude and three climate indices:
the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), and the
North Pacific Gyre Oscillation (NPGO). Features of this figure are the same as in Figure
3.11.
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Figure 3.14. Phenological sensitivity of phytoplankton to long-term, linear trends
(LTLT), the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), and
the North Pacific Gyre Oscillation (NPGO). Means rates of phenological change and
their 95% confidence intervals are shown separately for regions that had significant
positive or negative correlations with each climate index or that exhibited a long-term
trend. Positive (negative) correlations indicate delayed (earlier) phenology, longer
(shorter) bloom duration, or larger (smaller) bloom magnitude either when a climate
index was in its positive (negative) phase or as part of a long-term trend. Phenological
changes (changes in bloom magnitude) are standardized by days decade™ (mg m™
decade™) when examining long-term trends and by days per unit climate anomaly (mg
m” anomaly™) for the MEL, PDO, and NPGO. Numbers underneath each mean indicate
the sample size.
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Figure 3.15. Temporal correlations between bloom initiation date and three
environmental variables: wind speed at 10 m height, sea surface temperature (SST), and
mixed layer depth (MLD). (A-C): Maps of correlation strength for each environmental
variable. Black contour lines indicate regions where correlations were significant at p <
0.05. (D): Zonally averaged correlation strength across 2° latitudinal bins for wind speed
(line with grey squares), SST (dashed line), and MLD (line with white circles).
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Figure 3.16. Temporal correlations between bloom duration and three environmental
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Figure 3.17. Temporal correlations between bloom magnitude and three environmental
variables: wind speed at 10 m height, sea surface temperature (SST), and mixed layer
depth (MLD). Features of this figure are the same as in Figure 3.15.
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Figure 3.18. Correlations between the first five principal component (PC) time series of
phenological metrics, year, and three climate indices: the Multivariate ENSO Index
(MEI), the Pacific Decadal Oscillation (PDO), and the North Pacific Gyre Oscillation
(NPGO). Significant correlations between year and each principal component are labeled
as long-term, linear trends (LTLT). Bars indicate the magnitude and direction of
significant correlations, whereas non-significant correlations are marked with N/S and no
bars are shown. For the three climate indices, correlations are based on annually averaged
data with either no time lag or a 1-year time lag. The number 1 indicates cases where a 1-
year time lag resulted in a larger absolute value of 7 than the use of no time lag.
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Figure 3.19. Time series and spatial patterns associated with the first principal component
(PC1) of bloom initiation (A, F), midpoint (B, G), termination (C, H), duration (D, I), and
magnitude (E, J). Upper row: The time series of PC scores are shown as black lines. For
bloom initiation, midpoint, and termination, negative anomalies indicate earlier
phenology, while positive anomalies denote later phenology. For bloom duration and
magnitude, negative anomalies reveal shorter blooms with a lower mean concentration of
chlorophyll, whereas positive anomalies indicate longer and larger blooms. Also shown is
the time series of the climate index that was most closely correlated with each PC time
series. The Multivariate ENSO Index (MEI) is indicated by a green line. The MEI time
series lagged by one year is plotted in (C), while the inverse of the MEI is shown in (D).
The MEI time series was also multiplied by 50, so that it could be displayed on the same
y-axis as the PC time series. If the PC time series was more closely correlated with year
than any climate index, then a blue line indicates the long-term trend based on linear
regression. Lower row: Maps showing the correlation between each PC time series and
the time series from each ocean grid cell. Colors indicate the strength and direction of
correlation coefficients based on the same scale used in Figure 3.10. Black contour lines
denote grid cells that were significantly correlated with a given PC.
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Table 3.1. Correlations between the first five principal components (PCs) of sea surface
temperature (SST) from ICOADS and CESM1. Principal component analysis (PCA) was
performed separately on datasets consisting raw SST data (A) and monthly SST
anomalies (B). All correlation coefficients » > |0.082| were statistically significant at p <
0.05 based on two-tailed probability tests. Gray areas indicate the correlation for each
CESMI1 principal component that exhibited the largest absolute value.

(A) Raw SST data

CESM1 monthly SST
PC1 PC2 PC3 PC4 PC5
PC1 | 0.998 0.021 0.036 0.015 0.000
PC2 | -0.030 = 0.909 0.267 -0.055 0.143
PC3 | -0.014 -0.218 | 0.777 -0.473 -0.174
PC4 | -0.029 -0.091 0.456 | 0.796 0.047
PC5 | -0.001 -0.109 0.116 -0.128 | 0.797

ICOADS
monthly SST

(B) Monthly SST anomalies

CESM1 monthly SST
PC1 PC2 PC3 PC4 PC5

PC1 | 0.919 -0.185 -0.139 0.049 -0.043
PC2 | 0.159 | 0.729 0.102 | -0.468 -0.156
PC3 | 0.104 0.102 | 0.847 0.310 0.108
PC4 | -0.003 0.430 -0.245 0.246 0.242
PC5 | 0.002 0.121 -0.118 0.413 | -0.618

ICOADS
monthly SST
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Table 3.2. Percentage of ocean grid cells where phytoplankton phenology was
significantly correlated with climate indices, environmental variables, or exhibited a
significant long-term trend. Environmental variables include wind speed, sea surface
temperature (SST), and mixed layer depth (MLD). Climate indices include the
Multivariate ENSO Index (MEI), Pacific Decadal Oscillation (PDO), or North Pacific
Gyre Oscillation (NPGO). For the three climate indices, percentages of ocean grid cells
were summed across time lags of 0-6 months. The numbers in parentheses indicate the
range of percentages obtained from individual time lags.

Phenological Long-term

metric linear trend MEI PDO NPGO
Initiation 19.5 26.7 (14.6-16.7)  33.9 (9.2-15.1) 22.8 (8.6-10.4)
Midpoint 19.0 23.6 (11.9-13.1)  30.6 (9.0-12.3) 23.7 (9.1-10.8)
Termination 13.6 21.8(10.6-12.2) 29.8 (8.3-11.5) 21.0 (6.4-9.9)
Duration 10.2 22.9 (8.2-15.5) 25.1 (6.4-9.9) 13.8 (3.9-5.0)
Magnitude 48.2 40.6 (18.7-31.5) 52.5(18.8-34.0) 33.2 (14.5-19.4)
Phenological Wind

metric speed SST MLD

Initiation 17.2 19.1 22.7

Midpoint 12.3 141 16.0

Termination 8.6 11.2 11.6

Duration 11.9 11.9 12.4

Magnitude

38.6 45.5 32.5
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Table 3.3. Percentage of variation in phytoplankton phenology (% var) explained by each
principal component (PC) and the percentage of ocean grid cells (% grid) whose time
series was correlated with each PC.

PC 1 PC 2 PC3 PC4
Phenological
metric Y%var %grid %var %grid %var %grid %var % grid
Initiation 6.2 25.7 5.0 20.4 4.8 19.9 4.3 16.0
Midpoint 6.0 24.8 5.4 20.8 4.8 18.4 4.2 14.6
Termination 5.8 22.8 4.7 18.5 4.4 16.9 4.0 14.3
Duration 54 18.3 4.4 16.6 4.0 13.8 3.6 13.2

Magnitude 21.8 58.0 9.2 36.6 7.1 29.3 4.6 15.2

PC5
Phenological
metric % var % grid
Initiation 3.9 13.3
Midpoint 3.8 13.1
Termination 4.0 14.0
Duration 3.5 11.9

Magnitude 3.9 14.2
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CHAPTER 3 APPENDIX:
SUPPLEMENTAL INFORMATION FOR THE MANUSCRIPT CHANGES IN
PHYTOPLANKTON PHENOLOGY DETECTED WITH THE COMMUNITY EARTH
SYSTEM MODEL 1.0 (CESM1): LONG-TERM TRENDS AND THE INFLUENCE OF

CLIMATE OSCILLATIONS
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Figure S3.2. Time series of monthly sea surface temperature anomalies (SSTa) from
ICOADS (blue) and CESM1 (red) that have been averaged across six 10° latitudinal
bands.
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Figure S3.3. Median day of year (DOY) of the initiation, midpoint, and termination of
peaks in chlorophyll concentration during the years 1998-2007. The median duration and

magnitude of these phenological events are also shown. Maps in the left column are
derived from CESM1(BGC), while maps on the right are based on remotely sensed

chlorophyll from SeaWiFS.



232

Annual anomalies

<
Q
Q2
=
(0]
Q
Q
c
2
=
2
~ S
- O
180W 140W 100W
Winter anomalies
<
Q
Q2
©
Q
Q
c
Bl
=
2
S
O
-
f oy
Q0
S
@
Q
Q
c
he]
]
Q
S
O
<
Q2
Q2
=
[0}
Q
Q
c
il
=
2
S
O
-
c
Q0
S
=
[0]
Q
Q
c
he]
s
Q
3 S
(&)

180W  140W  100W
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period. Black contour lines indicate locations where correlations exceed » > 0.5.
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Figure S3.5. Difference between correlations between SeaWiFS and CESM1(BGC) when

the correlations were calculated based on either annual or seasonal anomalies of log-
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indicate that similarities between SeaWiFS and CESM1(BGC) were greater when
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Figure S3.6. Maps of correlations between the date of the bloom midpoint and three
climate indices: the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation
(PDO), and the North Pacific Gyre Oscillation (NPGO). Features of this figure are the
same as in Figure 3.11.
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Figure S3.7. Maps of correlations between the date of bloom termination and three
climate indices: the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation
(PDO), and the North Pacific Gyre Oscillation (NPGO). Features of this figure are the
same as in Figure 3.11.
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Figure S3.8. Temporal correlations between the date of bloom midpoint and three
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mixed layer depth (MLD). Features of this figure are the same as in Figure 3.15.
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Figure S3.9. Temporal correlations between the date of bloom termination and three
environmental variables: wind speed at 10 m height, sea surface temperature (SST), and
mixed layer depth (MLD). Features of this figure are the same as in Figure 3.15.
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Figure S3.10. Time series and spatial patterns associated with the first five principal
components (PC1-5) of bloom initiation. Upper row: The time series of PC scores are
shown as black lines. Negative anomalies of the PC time series indicate earlier
phenology, while positive anomalies denote later phenology. Also shown is the time
series of the climate index that was most closely correlated with each PC time series,
where the Multivariate ENSO Index (MEI) is indicated by a green line, the Pacific
Decadal Oscillation (PDO) by a pink line, and the North Pacific Gyre Oscillation
(NPGO) by a red line. Climate indices were multiplied by 50, so that they could be
displayed on the same y-axis as the PC time series. The inverse of the MEI time series
lagged by one year is plotted in (C). If the PC time series was more closely correlated
with year than any climate index, then a blue line indicates the long-term trend based on a
linear regression. No climate indices or linear trends were associated with PCS5 (E).
Lower row: Maps showing the correlation between each PC time series and the time
series from each ocean grid cell. Colors indicate the strength and direction of correlation
coefficients based on the same scale used in Figure 3.10. Black contour lines denote grid
cells that were significantly correlated with a given PC.
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Figure S3.11. Time series and spatial patterns associated with the first five principal
components (PC1-5) of bloom midpoint. Negative anomalies of the PC time series
indicate earlier phenology, while positive anomalies denote later phenology. Features of
this figure are the same as those in Figure S3.10, with the following exception: the
Multivariate ENSO Index (MEI) is lagged by one year in (B).
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Figure S3.12. Time series and spatial patterns associated with the first five principal
components (PC1-5) of bloom termination. Negative anomalies of the PC time series
indicate earlier phenology, while positive anomalies denote later phenology. Features of
this figure are the same as those in Figure S3.10, with the following exceptions: (1) the
Multivariate ENSO Index (MEI) is lagged by one-year in (A); (2) PC2 and PC4 were not
correlated with any climate index and did not display long-term, linear trends.
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Figure S3.13. Time series and spatial patterns associated with the first five principal
components (PC1-5) of bloom duration. Negative anomalies of the PC time series
indicate shorter phytoplankton blooms, while positive anomalies denote longer blooms.
Features of this figure are the same as those in Figure S3.10, with the following
exceptions: (1) the inverse of the Multivariate ENSO Index (MEI) is plotted in (A); (2)
PC3 and PCS5 were not correlated with any climate index and did not display long-term,
linear trends.
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Figure S3.14. Time series and spatial patterns associated with the first five principal
components (PC1-5) of bloom magnitude. Negative anomalies of the PC time series
indicate blooms with a lower mean chlorophyll concentration, while positive anomalies
denote larger blooms. Features of this figure are the same as those in Figure S3.10, with
the following exceptions: (1) the Multivariate ENSO Index (MEI) is lagged by one year
in (C); (2) the inverse of the MEI lagged by one year is plotted in (E); (3) PC4 was not
correlated with any climate index and did not display a long-term, linear trend.
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CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Among the 51 phenophases of fishes examined in the southern California Current
Ecosystem (CCE) in Chapter 1, 39% have shifted their spawning time since the 1950s so
that their larvae are appearing in the water column earlier in the year, while 18% of
phenophases have exhibited a trend towards delayed occurrence of larvae. At the
interannual time scale, El Nifio events have prompted an earlier larval occurrence among
the fish assemblage with a decadal trend towards earlier spawning. This demonstrates
that fishes in this phenology group reacted similarly to warming temperatures regardless
of whether the warming was associated with interannual climate variability or decadal
temperature trends. In contrast, species in the other two phenology groups exhibited
delays in larval occurrence during El Nifio, possibly reflecting the delayed onset of
coastal upwelling during El Nifio years. The Pacific Decadal Oscillation (PDO) and
North Pacific Gyre Oscillation (NPGO) did not have a major effect on fish phenology
when examined at the assemblage level. However, it remains possible that these modes of
climate variation may have a larger influence of the phenology of individual species. Sea
surface temperature (SST) was the only oceanic variable significantly correlated with
phenological variability among the fishes with advancing phenology, whereas species in
the delayed phenology group were influenced by fluctuations in both SST and coastal
upwelling. This may reflect the fact that fishes in the delayed phenology group
commonly resided in coastal areas where seasonal upwelling and associated offshore
transport influence whether larvae are maintained in the coastal zone. In contrast,

epipelagic fishes that reside in coastal-oceanic habitats were most frequently members of

258
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the advancing phenology group. Relative to the 1950s, species with no long-term, linear
trend in phenology exhibited a contraction in the duration of their period of maximal
larval abundance, potentially reflecting reduced temporal overlap between their spawning
time and optimal environmental conditions.

The long-term delay in phenology among coastal fishes in the CCE is intriguing
because, in most ecosystems, climate change has been associated with the earlier arrival
of phenological events. Future research following up on this result from Chapter 1 could
investigate whether a consistent pattern of phenological delays is observed when
examining alternate datasets that monitor the abundance of coastal fishes. At a minimum,
three such datasets monitoring the concentration of coastal fish larvae exist in the

Southern California Bight. These datasets include:

* A monitoring program conducted at the San Onofre Nuclear Generating Station
between 1978-1986 that surveyed larval abundance on a weekly to quarterly basis.

* Bight-wide surveys of larval fishes conducted on a monthly-to-bimonthly basis
between 1978-1985. The Los Angeles County Museum serves as the repository for
data from these cruises.

* A series of surveys monitoring the larval fish community around several southern
California power plants. These surveys were conducted on an approximately

monthly basis between 1997-2006.

The advantage of examining phenological patterns with these datasets is that they

have a higher frequency temporal resolution than California Cooperative Oceanic
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Fisheries Investigations (CalCOFI). However, variations between monitoring programs in
terms of the depths and sites sampled, as well as questions about the comparability of
survey methods, may complicate the interpretation of any changes in phenology observed
between the 1978-1986 and 1997-2006 periods of these surveys.

A second question arising from the results of Chapter 1 relates to the fact that no
changes in upwelling seasonality were observed in the CalCOFI region. In contrast,
regional climate models have predicted delays in seasonal upwelling in the northern CCE
under a scenario where the atmospheric CO; concentration doubled (Snyder et al., 2003;
Diffenbaugh ef al., 2004). This raises the question of whether seasonal oceanic conditions
will change synchronously across both the southern and northern CCE under climate
change. If seasonal upwelling becomes later in the northern CCE while remaining
unchanged in the southern CCE, this could potentially alter the migratory behavior of
fishes that breed in the southern CCE, but feed seasonally in the northern CCE. Examples
of such species include Pacific sardine (Sardinops sagax) and Pacific hake (Merluccius
productus). Delayed upwelling would likely lead to seasonal delays in primary and
secondary production in the northern CCE. As a result, fishes feeding in this area may
stay longer and migrate to their spawning grounds in the southern CCE later. One way to
potentially evaluate whether seasonal conditions and fish phenology are changing in
different ways across the CCE would be to compare the results presented in Chapter 1
with variations in phenology observed along the Newport Line. The Newport Line is the
site of an ongoing monitoring program in central Oregon where ichthyoplankton have
been sampled with methods comparable to CalCOFI on a biweekly-to-monthly basis

during the years 1971-1972, 1977-1978, 1983, and 1996-Present (Auth et al., 2011). This



261

would present an ideal location to evaluate the hypothesis that seasonal oceanographic
conditions in the northern CCE may influence the timing when sardine and Pacific hake
arrive at their spawning grounds in the southern CCE.

In Chapter 2, an examination of the influence of dynamic height on fish spawning
habitat identified waters with dynamic heights between 79-83 cm as the preferred
spawning grounds of anchovy, whereas jack mackerel typically spawned at dynamic
heights between 89-99 cm. Pacific sardine eggs were observed most frequently at
intermediate dynamic heights (i.e., 84-89 cm). During years when El Nifio or La Nifa led
to an expansion or contraction, respectively, of offshore waters with high dynamic
heights (i.e., > 95 cm), fish egg distribution changed in synchrony with these changes in
physical oceanography. Generalized linear models (GLMs) that individually examined
the effects of eight environmental variables found that dynamic height was the single
variable that best explained fluctuations in the spawning habitat of sardine and anchovy.
For jack mackerel, salinity explained slightly more variance in egg distribution than
dynamic height. Results from this chapter suggest that the influence of dynamic height on
fish egg distribution is mediated primarily through the relationship between dynamic
height, temperature, salinity, and chlorophyll concentration. Dynamic height is calculated
from depth-integrated specific volume anomalies, which are, in turn, derived from
variations in temperature and salinity throughout the upper water column. As a result,
dynamic height may serve as a proxy for fluctuations in temperature and salinity, factors
known to influence the spawning habitat of small pelagic fishes (Lluch-Belda et al.,
1991; Checkley et al., 2000). A second mechanism through which dynamic height

appears to affect fish habitat is related to the fact that low dynamic heights are indicative
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of coastal upwelling in the CCE. Consequently, increases in fish eggs at particular
dynamic heights may reflect an elevated concentration of planktonic prey for adult or
larval fishes in areas characterized by upwelling. While the relationship between
spawning habitat and dynamic height was only evaluated over a 7-year period, similar
habitat preferences were observed in 2005-2008 when the realized and available
spawning habitat of sardine, anchovy, and jack mackerel were compared with of out-of-
sample prediction.

Spawning habitat models developed for sardine have been used to track the
monthly timing of the seasonal migration of this species between the southern and
northern CCE (Reiss et al., 2008; Zwolinski et al., 2011). This suggests that spawning
habitat models, such as those developed in Chapter 2, could be potentially used to assess
interannual variations in fish phenology. Most of the variables included in the spawning
habitat models of sardine, anchovy, and jack mackerel are monitored by remote sensing
on a daily-to-weekly basis. As a result, the phenology of spawning habitat availability
could be examined at a weekly resolution by using remotely sensed data as independent
variables to be inputted into a spawning habitat model. Since several spawning habitat
models for Pacific sardine have been produced in the southern CCE (e.g., Weber and
McClathcie, 2010; Zwolinski et al., 2011; GLMs developed in Chapter 2), a multi-model
ensemble could be developed, which would help better assess the reliability of
predictions of available spawning habitat derived from these models.

In Chapter 3, the biogeochemistry (BGC) sub-module of the Community Earth
System Model 1.0 was run in hindcast mode where the ocean component of this model

was forced with atmospheric observations from 1961-2007. Five metrics describing the
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phenology of North Pacific phytoplankton were calculated based on this CESM1(BGC)
simulation. When phenological metrics from CESM1(BGC) were compared to equivalent
metrics from SeaWiFS chlorophyll data, the mean dates of bloom initiation, bloom
midpoint, and bloom magnitude showed high comparability between these two datasets (»
> (0.65). Mean dates of bloom termination and bloom duration from CESM1(BGC) were
less comparable to those from SeaWiFS.

In the North Pacific subpolar gyre, CESM1(BGC) indicated that earlier blooms
occurred during years with weak winds, warm temperatures, and a shallow mixed layer,
whereas in subtropical and equatorial regions earlier blooms were associated with the
opposite conditions. Long-term trends in bloom initiation were detected in 20% of
CESM1 grid cells, whereas the Multivariate ENSO Index (MEI), PDO, and NPGO were
correlated with bloom initiation phenology in 27%, 34%, and 23% of CESM1 grid cells,
respectively. Both positive and negative correlations with the climate indices were
prevalent. Similarly, long-term advances and delays in phenology were detected with a
similar frequency throughout the North Pacific. Since variations in bloom midpoint and
termination phenology had a similar regional expression to fluctuations in bloom
initiation dates, there were comparatively few pixels with changes in bloom duration.
This was especially true when examining NPGO effects and detecting long-term trends in
bloom duration. A principal component analysis (PCA) indicated that the first principal
component of each phenological metric was either correlated with the MEI or displayed a
long-term, linear trend. Compared to both terrestrial primary producers and marine
organisms in higher trophic levels, the long-term trends identified in Chapter 3 suggested

that phytoplankton phenology is changing at a quicker pace. In areas with long-term
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advances in bloom initiation date, the mean rate of change was -15.7 £ 0.3 SE days
decade™, while areas with delayed bloom initiation experienced changes at a mean rate of
14.4 + 0.3 SE days decade™. This rapid rate of phenological change among marine
primary producers could potentially increase the frequency of mismatches between the
timing of phytoplankton blooms and the seasonal abundance of planktivores.

Several future steps can be taken to further explore variations in plankton
phenology with CESM1(BGC). I have undertaken preliminary research to use this model
to examine changes in phytoplankton phenology between 1985-2005 and 2080-2100 with
the RCP 8.5 emissions scenario. This scenario assumes that anthropogenic climate
change will lead to a radiative forcing of 8.5 W m™ at the top of the atmosphere by the
year 2100. In addition, mechanisms underlying changes in phytoplankton phenology can
be explored with earth system models in greater depth than can often be done with field
campaigns. Four main mechanisms are included in CESM1(BGC) that could lead to
changes in phytoplankton phenology: (1) seasonal variations in nutrient concentration;
(2) light limitation; (3) direct effects of temperature on phytoplankton growth and
metabolism, and; (3) changes in the abundance or phenology of zooplankton grazing.
Marinov et al. (2010) used Taylor series expansion to determine the relative importance
of the first three processes on changes in phytoplankton species composition under global
warming. A similar analysis could be performed to compare the relative influence of light
limitation, nutrients, grazing, and direct temperature effects on phytoplankton phenology.
A third potential line of future research using CESM1(BGC) would be to apply this
model to develop predictions about whether mismatches between larval fishes and

phytoplankton blooms will become more frequent under climate change. The spawning
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phenology of several fish species (e.g., Pacific herring, Atlantic cod, dab) has been
modeled as a function of cumulative degree days, since temperature has a physiological
effect on the rate of gonadal maturation in many fishes (Ware and Tanasichuk, 1989;
Hutchings and Myers, 1994; Lange and Greve, 1997). Changes in cumulative degree
days can be calculated with CESM1(BGC) over relevant regions of the ocean in order to
develop predictions of future fish spawning phenology under climate change scenarios.
This could then be compared with predicted changes in phytoplankton phenology to
assess the likelihood of mismatches.

Lastly, despite the examination of different trophic levels, datasets, and spatial
scales, several similarities emerge when comparing the results of Chapters 1 and 3. First,
compared to the mean rate of phenological change among terrestrial organisms (2.8 days
decade™; Parmesan, 2007), both phytoplankton and larval fish phenology show rapid
changes over the latter half of the 20™ century. Burrows ez al. (2011) has suggested that
these rapid changes may reflect a less pronounced seasonal gradient of ocean
temperatures compared to land. As a result, organisms may need to undergo larger shifts
in phenology to ensure that seasonal life history activities continue to occur at a constant
temperature. A second similarity between phytoplankton phenology studied in Chapter 3
and fish phenology examined in Chapter 1 is that long-term delays in phenology were
commonly observed. This differs notably from the relatively rare occurrence of
phenological delays detected in terrestrial ecosystems (Root ef al., 2003; Cook et al.,
2012). Third, both phytoplankton phenology across the North Pacific and larval fish
phenology in the CCE were strongly influenced by El Nifo, in addition to exhibiting

long-term, linear trends. Fourth, both analyses indicated that phenological changes can be
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quite variable across sub-regional spatial scales. This pattern was evident in many of the
maps of phenological metrics shown in Chapter 3. Similarly, different phenological
patterns were observed in the southern CCE among coastal fishes and fishes with an
offshore distribution. This spatial variability suggests that mesoscale phenomena (e.g.,
eddies, fronts, meanders in current flow) and intra-seasonal variations in weather may
have a large effect on phytoplankton and fish phenology. Fine-scale variability also poses
a challenge for programs monitoring phenological changes because it suggests that trends

found at one site may not be representative of changes occurring across a larger region.



267

References

Auth, T.D., R.D. Brodeur, H.L. Soulen, L. Ciannelli and W.T. Peterson. 2011. The
response of fish larvae to decadal changes in environmental forcing factors off the
Oregon coast. Fisheries Oceanography 20(4): 314-328.

Burrows, M.T., D.S. Schoeman, L.B. Buckley, P. Moore, E.S. Poloczanska, K.M.
Brander, C. Brown, J.F. Bruno, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel,
W. Kiessling, M.I. O’Connor, J.M. Pandolfi, C. Parmesan, F.B. Schwing, W.J.
Sydeman and A.J. Richardson. 2011. The pace of shifting climate in marine and
terrestrial ecosystems. Science 234: 652-655.

Checkley, D.M., Jr., R.C. Dotson, and D.A. Griffith. 2000. Continuous, underway
sampling of eggs of Pacific sardine (Sardinops sagax) and northern anchovy

(Engraulis mordax) in spring 1996 and 1997 off southern and central California.
Deep-Sea Research I147: 1139-1155.

Cook, B.I., E.IM. Wolkovich and C. Parmesan. 2012. Divergent responses to spring and
winter warming drive community level flowering trends. Proceedings of the National
Academy of Sciences 109(23): 9000-9005.

Diffenbaugh, N.S., M.A. Snyder and L.C. Sloan. 2004. Could CO,-induced land-cover
feedbacks alter near-shore upwelling regimes? Proceedings of the National Academy
of Sciences 101(1): 27-32.

Hutchings, J.A. and R.A. Myers. 1994. Timing of cod reproduction: interannual
variability and the influence of temperature. Marine Ecology Progress Series 108: 21-
31.

Lange, U. and W. Greve. 1997. Does temperature influence the spawning time,
recruitment and distribution of flatfish via its influence on the rate of gonadal
maturation? Deutsche Hydrographische Zeitschrift 49(2): 251-263.

Lluch-Belda, D., D.B. Lluch-Cota, S. Hernandez-Vazquez, C.A. Salinas-Zavala and R.A.
Schwartlose. 1991. Sardine and anchovy spawning as related to temperature and
upwelling in the California current System. California Cooperative Oceanic Fisheries
Investigations Reports 32: 105-111.

Marinov, I., S.C. Doney and I.D. Lima. 2010. Response of ocean phytoplankton
community structure to climate change over the 21 century: partitioning the effects
of nutrients, temperature and light. Biogeosciences 7: 3941-3959.

Parmesan, C. 2007. Influences of species, latitudes and methodologies on estimates of
phenological response to global warming. Global Change Biology 13: 1860-1872.



268

Reiss, C.S., D.M. Checkley, Jr and S.J. Bograd. 2008. Remotely sensed spawning habitat
of Pacific sardine (Sardinops sagax) and Northern anchovy (Engraulis mordax)
within the California Current. Fisheries Oceanography 17(2): 126-136.

Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenweig and J.A. Pounds. 2003.
Fingerprints of global warming on wild animals and plants. Nature 421(2): 57-60.

Snyder, M.A., L.C. Sloan, N.S. Diffenbaugh and J.L. Bell. 2003. Future climate change
and upwelling in the California Current. Geophysical Research Letters 30(15), 1823,
doi:10.1029/2003GL017647.

Ware, D.M. and R.W. Tanasichuk. 1989. Biological basis of maturation and spawning
waves in Pacific herring (Clupea harengus pallasi). Canadian Journal of Fisheries
and Aquatic Sciences 46: 1776-1784.

Weber, E.D. and S. McClatchie. 2010. Predictive models of northern anchovy Engraulis
mordax and Pacific sardine Sardinops sagax spawning habitat in the California
Current. Marine Ecology Progress Series 406: 251-263.

Zwolinski, J.P., R.L. Emmett and D.A. Demer. 2011. Predicting habitat to optimize

sampling of Pacific sardine (Sardinops sagax). ICES Journal of Marine Science
68(5): 867-879.





