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SUMMARY

Within geoelectrical imaging, the choice of measurement configurations and 
electrode locations is known to control the image resolution. Previous work 
has shown that optimized survey designs can provide a model resolution that
is superior to standard survey designs. This paper demonstrates a 
methodology to optimize resolution within a target area, while limiting the 
number of required electrodes, thereby selecting optimal electrode locations.
This is achieved by extending previous work on the ‘Compare-R’ algorithm, 
which by calculating updates to the resolution matrix optimizes the model 
resolution in a target area. Here, an additional weighting factor is introduced 
that allows to preferentially adding measurement configurations that can be 
acquired on a given set of electrodes. The performance of the optimization is
tested on two synthetic examples and verified with a laboratory study. The 
effect of the weighting factor is investigated using an acquisition layout 
comprising a single line of electrodes. The results show that an increasing 
weight decreases the area of improved resolution, but leads to a smaller 
number of electrode positions. Imaging results superior to a standard survey 
design were achieved using 56 per cent fewer electrodes. The performance 
was also tested on a 3-D acquisition grid, where superior resolution within a 
target at the base of an embankment was achieved using 22 per cent fewer 
electrodes than a comparable standard survey. The effect of the underlying 
resistivity distribution on the performance of the optimization was 
investigated and it was shown that even strong resistivity contrasts only 
have minor impact. The synthetic results were verified in a laboratory tank 
experiment, where notable image improvements were achieved. This work 
shows that optimized surveys can be designed that have a resolution 
superior to standard survey designs, while requiring significantly fewer 
electrodes. This methodology thereby provides a means for improving the 
efficiency of geoelectrical imaging.

Key words: Electrical properties; Hydrogeophysics; Electrical resistivity 
tomography (ERT); Inverse theory.



1 INTRODUCTION

Within the last two decades, geoelectrical data acquisition and processing 
have seen crucial developments. Automatic, multichannel measurement 
systems combined with autonomous processing schemes nowadays allow for
real-time electrical resistivity tomography (ERT) monitoring (Singha et 
al.2014; Parsekian et al.2015; Johnson 2016). This has opened the 
opportunity to study a wide variety of subsurface processes, such as nuclear 
waste decommissioning (Daily et al.2004; Johnson et al.2012; Kuras et 
al.2016), CO2 sequestration (Benisch et al.2015; Schmidt-Hattenberger et 
al.2016), landslide hydrology (Supper et al.2014; Gance et al.2016; 
Uhlemann et al.2017), permafrost degradation (Hilbich et al.2008; 
Krautblatter et al.2010) and landfill processes (Grellier et al.2008; Godio et 
al.2015; Dumont 2017). Monitoring studies where data are acquired on 
hundreds of electrodes within short timescales are becoming more frequent 
(Kuras et al.2016; Uhlemann et al.2017). Nevertheless, the time required for 
data acquisition, and how to handle and interpret the vast amount of data 
that such installations provide are posing new challenges (Rucker 2014; 
Parsekian et al.2015). To overcome these, efforts are undertaken to limit the 
amount of data without reducing their information content.

This can be achieved by optimizing the survey design, which can be broadly 
divided into two approaches. The most common approach is to take a set of 
electrodes and choose measurement combinations from it that maximizes 
the image resolution (Loke et al.2013). Those algorithms can achieve an 
image resolution superior or equal to standard survey designs, for example, 
Wenner–Schlumberger or dipole–dipole, with the same or fewer number of 
measurements (Stummer et al.2004; Wilkinson et al.2012; Loke et al.2014). 
The other approach is to optimize the sensor positions. Wagner et al. (2015) 
showed that by using an optimized set of electrode locations, the resolution 
within a target horizon can be significantly improved compared to 
conventional equally spaced electrode arrays. Both approaches reduce the 
amount of data while preserving image resolution.

Here, we present a novel algorithm that combines these two approaches. We
extend the methodology introduced by Wilkinson et al. (2015), which 
optimized measurement configurations to improve image resolution within a 
target area, by preferentially adding measurement configurations that can 
be acquired on a given set of electrodes. The new approach is tested on a 
synthetic example, where measurement configurations and electrode 
positions are chosen from a linear electrode array, and by a laboratory 
experiment simulating a 3-D measurement setup (i.e. an electrode grid) on 
an embankment. We show that this methodology can generate an optimal 
set of electrode locations and measurement configurations that is a fraction 
of all possible locations and configurations, while still offering equal or 
superior resolution to standard survey designs. This is in contrast to previous
optimization strategies that solely aimed to improve the model resolution 
(Stummer et al.2004; Loke et al.2013; Wilkinson et al.2015). The presented 



approach will not only aid in creating survey designs for optimal resolution of
a target area, but also reduce costs for ERT installations, as fewer electrodes 
and cables will be required for the optimized survey. Hence, it addresses 
exactly what Curtis & Maurer (2000) define as an optimal survey, that is, a 
survey that leads to high accuracy and reliability of the model estimates, 
while being easily realizable under minimal financial effort. Thus, this 
methodology will aid in improving the efficiency of ERT data acquisition, in 
particular if a priori information about the subsurface is available. While it is 
applied to an ERT example here, the approach should be easily transferrable 
to optimizing image resolution for other geophysical tomographic methods.

2 METHODOLOGY

Most recent studies on ERT measurement optimization make use of the 
model resolution matrix (Stummer et al.2004; Wilkinson et al.2006, 2012, 
2015; Alfouzan et al.2010; Loke et al.2010, 2014, 2015b; Wagner et al.2015).
In comparison to sensitivity-based optimization strategies (Athanasiou et 
al.2009; Tsakirrbaloglou et al.2016; Tsourlos et al.2016), the model 
resolution accounts for linear (in)dependency between measurement 
configurations, and is therefore used here as well. The model resolution 
matrix R quantifies how well each model cell of a resistivity image is resolved
by the measured data. For the linearized iterative Gauss–Newton solution of 
the ERT problem, R is defined as (Wilkinson et al.2006):  

with the Jacobian matrix G and the constraint matrix C. The main diagonal 
elements Rj of R are referred to here as the model resolution and range 
between 0 and 1, where Rj = 0 represents an entirely unresolved, and Rj = 1 
a perfectly resolved cell j. Although C could represent any kind of model 
constraints (Wilkinson et al.2012; Loke et al.2014), here it is defined as C = 
λI, with I being the identity matrix, to represent a simple damped least-
squares problem (Wilkinson et al.2006). The choice of the damping factor λ 
is problem specific, with larger values leading to lower resolution (Loke et 
al.2010). For this type of optimization problem, λ is often chosen so that the 
model resolution is small (R ≈ 0.05) at a certain distance from the 
electrodes, typically at the base of the model (Stummer et al.2004; Wilkinson
et al.2006). Note that λ is not only affecting the absolute values of the 
diagonal elements of R, but also the distribution of the relative magnitudes. 
Nevertheless, Loke et al. (2010) have shown that the relative performance of
the optimization is not particularly sensitive to the value of λ.

The optimization is an iterative process and starts from a small set of 
measurements from a small number of electrodes. Additional measurements 
are selected from a comprehensive set, comprising alpha- and beta-type 
configurations Loke et al. (2015a). For each possible new measurement, the 
change in the resolution matrix ΔR is calculated using a Sherman–Morrison 



Rank-1 update of the resolution matrix, which is defined as (Wilkinson et 
al.2006; Loke et al.2014):  

with the Jacobian matrix Gb consisting of the sensitivities of the 
measurements of the current base set, and g comprising the sensitivities of 
the new test configuration. Following Wilkinson et al. (2015), all additional 
measurements are ranked according to the calculated improvement of the 
resolution in the target region  

with the number of model cells m, the resolution of cell j given by the 
comprehensive set Rc,j, and a weighting factor wt,j that is 1 if cell j is within 
the target region and 10−12 if not. Survey designs are often ‘focused’ on 
specific target areas, which requires a priori information about the 
subsurface properties (Curtis 1999; Furman et al.2007; Roux & Garcia 2014; 
Loke et al.2015b). In order to penalize measurements that would require 
electrodes other than those already present in the current base set, the 
weighting factor we was added to eq. (4):  

For a given measurement, we = (1 + ne) where ne is the number of additional 
electrodes required (from 0 to 4). This weighting factor is controlled by the 
exponent β; increasing values of β cause a stronger penalty for 
measurements requiring additional electrodes. The highest ranked 
measurement is added to the current base set. The second highest is only 
added if its linear dependency to the first is below a certain limit. Wilkinson 
et al. (2012) showed that superior results can be obtained by setting this 
limit to the value of the current average relative resolution S, defined as  

which was evaluated for all cells k within the target volume. Linearity tests 
are performed and measurements added until a certain fraction of the size of
the current base set has been added, defined by the step size of the iterative
optimization process. After each iteration, Rb is recalculated. Loke et al. 
(2014) showed that the performance of the optimization degrades with 
increasing step size, however, computationally larger step sizes are 



preferable as Rb needs to be recalculated fewer times; this is further 
discussed in the following section.

Calculations of G, Rc, Rb and FCR were facilitated by adapting the fully 
parallelized source code of E4D (Johnson et al.2010), and exploiting 
OpenBLAS routines (Wang et al.2013) to improve computational 
performance of the R and FCR calculations. All optimizations presented in this 
study were calculated on a machine with four Intel®Xeon® E5–2697V3 CPUs, 
comprising in total 56 cores running at 2.6 GHz. Loke et al.(2015) found that 
using single precision, compared to double precision, caused only a marginal
change in the calculated model resolution, while significantly reducing 
calculation times. Hence, single precision was used in the calculation of R 
and FCR.

For N electrodes, N(N – 1)(N – 2)(N – 3)/8 unique four-point measurements 
can theoretically be acquired (accounting for polarity and reciprocity); for 32 
and 117 electrodes, this would equal 107 880 and 22 241 115 
measurements, respectively. Evaluating all of these measurements would be
computationally very demanding and some measurements would be 
impractical to acquire due to small signal-to-noise ratios and high 
sensitivities to electrode misplacements. Thus, the comprehensive set from 
which measurements are added at each iteration comprises only alpha- and 
beta-type configurations that have geometric factors and sensitivities below 
specified problem-specific limits.

3 LINEAR ELECTRODE ARRAY

The methodology was tested first on a simple synthetic model, comprising 
32 possible electrode locations spaced by 1 m along a single line. A 
trapezoidal prism in the centre of the model formed the target volume, 
within which the resolution was to be optimized (Fig. 1). As the methodology 
was developed for 3-D problems, this example was calculated on a 3-D 
representation of a linear electrode array. The model domain was discretized
using an unstructured tetrahedral mesh, comprising 3312 elements (equal to
the number of model parameters m), which was refined around the electrode
locations and extended beyond to account for ‘outer-space’ sensitivities 
(Maurer & Friedel 2006). The comprehensive set was comprised of alpha- 
and beta-type configurations with a maximum geometric factor Kmax = 
4146.9 m (equal to a dipole–dipole geometric factor for a = 1 and n = 10) 
and a maximum geometric sensitivity of s/K = 5 m−1 (Wilkinson et al.2008), 
totalling 70 555 four-point measurement configurations. A description of the 
alpha- and beta-type arrays can be found in Loke et al. (2015a). Szalai & 
Szarka (2011) present other possible measurement configurations that could
be added to the comprehensive set (e.g. ‘Null’ or ‘Quasi-null’ arrays). 
However, some of those may cause instabilities in the inversion if the data 
and model parameters are logarithmically transformed (Johnson et al.2010), 
which is desirable due to the large range of resistivities often encountered in 
geoelectrical imaging. Measurements involving remote electrodes (pole–pole



or pole–dipole) could also be included, but often present difficulties in 
practical site investigations and cannot be used in tank experiments. 
Restricting the comprehensive set to alpha- and beta-type configurations 
below a certain limit for their geometric factor removes measurement 
configurations that are likely to be unstable (Loke et al.2014). The damping 
factor λ = 0.004 was chosen so that the model resolution was small at the 
base of the model (R < 0.05; Wilkinson et al.2006). The initial measurement 
set was comprised of 30 measurements employing six electrodes located 
above the target area.

Figure 1. Comprehensive set model resolution (comprising 70 555 
measurements); grey lines represent the model discretization. The target 
volume is shown opaque. Grey dots indicate possible electrode locations; 
white dots indicate the initial set of electrodes. Note that the slight 
asymmetry is caused by the discretization of the model.

To investigate the effect of the exponent β, which controls the penalty for 
including additional electrodes at every iteration, the optimization was run 
for values of β = 0.0, 2.0 and 5.0 (Fig. 2). Each optimization employed a step
size of 5 per cent, meaning that at each iteration the number of 
measurements in the optimized set increased by 5 per cent. Setting β = 0.0 
is equivalent to the methodology introduced by Wilkinson et al. (2015) to 
optimize resolution within a target region. For β = 0.0, all possible electrode 
locations are used once the set includes more than 327 measurements, 
which is reached within the first 49 iterations. This ‘unconstrained’ 
optimization yields mostly superior resolution compared to employing larger 
values of β. For β = 2.0, all possible electrodes are included in the survey 
once it comprises 6201 measurements. From this point, the resolution 
achieved in the optimization is independent of β. Despite using up to 59 per 
cent fewer electrodes, the relative resolution achieved with β = 2.0 is similar 
to β = 0.0, with differences in average relative resolution being less than 
0.06 for all iterations. During a few iterations, that is, between 386 and 1303 



measurements (Fig. 2b), the relative resolution obtained with β = 2.0 is 
superior to β = 0.0, with a maximum difference of 0.016. This is likely to be 
an effect of a localized optimum that was found by constraining the 
optimization to use a certain set of electrodes. However, once the 
measurement set comprises more than 1303 measurements, the constraints 
on adding additional electrodes limit the increase in relative resolution 
compared to β = 0.0.

Figure 2. (a) Optimization performance in terms of the relative resolution S 
and number of used electrodes for weighting exponents β = 0.0, 2.0 and 
5.0, employing a step size of 5 per cent. The grey area shows the range 
shown in (b). (b) Subset of (a) showing the results for the first 2000 
measurements with dashed lines indicating the number of measurements 
and relative resolution of a standard survey.

Using β = 5.0 for small measurement sets, the optimized survey employs 
considerably fewer electrodes than β = 0.0 or 2.0. When the survey 
comprises about 2750 measurements, β = 0.0 uses all 32 electrodes and β =
2.0 uses 23 electrodes, while β = 5.0 uses only 17 electrodes (only 53 per 
cent of the available electrodes). This, however, also results in a relative 
resolution 0.22 smaller than for β = 0.0. For less than 1500 measurements 
(Fig. 2b), this difference is smaller than 0.09, despite using about 50 per cent
fewer electrodes than β = 0.0. The β = 5.0 optimized survey includes all 
possible electrodes once the set comprises more than 15 000 
measurements. In general, the higher the β, the longer a certain set of 
electrodes is used to optimize the resolution, leading to a decreasing 
performance of the optimization.

Fig. 2 also shows the relative resolution of a standard survey, comprising 934
dipole–dipole and Wenner–Schlumberger measurements and using all 32 
electrodes. This shows the benefit of the presented approach clearly. The 
optimization, for all tested values of β, achieves a relative resolution in the 
target area higher than the standard survey (S = 0.185). For β = 0.0, the 
improvement in the relative resolution is 0.042, for β = 2.0 it is 0.054 and for
β = 5.0 it is 0.018. In the case of β = 2.0 and β = 5.0, this improvement is 



achieved using 43.8 and 56.3 per cent fewer electrodes than used in the 
standard survey, respectively.

Fig. 3 shows the resolution within the imaging plane for the standard and 
optimized surveys, employing 934 measurements each, and the difference in
resolution between the optimized and standard surveys. The resolution of 
the standard survey shows the usual distribution with high resolution close to
the electrodes, and a fast decline with increasing distance from the 
electrodes. Within the target area, a similar behaviour can be found; the 
upper part is perfectly resolved, while the lower part exhibits a resolution 
<0.3. The optimization is set to improve the resolution within this target 
area. All tested values of β gain a higher resolution than the standard survey 
in this part of the imaging plane, and image more than half of the target area
with a resolution >0.9. While for β = 0.0, the entire imaging plane shows 
high resolution, especially close to the surface, and increases with depth, for 
higher βvalues high resolution is only achieved close to the target area. The 
higher the β, the fewer the electrodes used and the smaller the well-resolved
area becomes. The difference between optimized and standard resolutions 
highlights this behaviour (Figs 3e–g). While for β = 0.0 the resolution in the 
target area improves by more than 0.5, which is an increase of more than 
100 per cent, considerable improvements are also achieved in nearly the 
entire imaging plane, except in areas close to the surface towards the 
boundaries, where the resolution is slightly smaller than for the standard 
survey. In the target area, β = 2.0 provides comparable increases in 
resolution to β = 0.0, and improvements of up to 0.35 are gained using β = 
5.0. Outside the target, the area with improved resolution decreases with 
increasing β, and areas with worse resolution increase. The parts of the 
imaging plane with decreased resolution are linked to the smaller set of 
electrodes used. In general, increasing βresults in improved resolution that is
increasingly focused on the target area. This has to be considered for 
practical applications. If the location of the area of interest is known with 
high confidence, large values of β can be used, while if the target location is 
more uncertain, then smaller values of β should be used.



Figure 3. Model resolution for (a) standard survey and (b–d) optimized 
surveys using β = 0.0, 2.0 and 5.0. (e–g) Difference in model resolution 
between optimized and standard survey designs. In all cases, the resolution 
within the target volume increased compared to the standard survey. Dots 
indicate used electrode locations; white dots show the initial set.

The impact of the step size on the performance of the optimization was also 
investigated; Fig. 4 shows the performance for step sizes of 2, 5 and 10 per 
cent. The main difference is when additional electrodes are added to the 
survey during the optimization. Generally, step sizes of 5 and 10 per cent 
tend to add more electrodes at a single iteration than are added when using 
a step size of 2 per cent. This is particularly evident when the optimized set 
comprises about 5100 measurements. At step sizes of 10 and 5 per cent, ten
and seven electrodes are added, respectively, while for 2 per cent, only one 
additional electrode is used. Those differences in the use of electrodes also 
cause the differences in relative resolution obtained by the different step 
sizes. The effect is comparably small for optimized sets comprising less than 
5500 measurements, but becomes more significant for larger measurement 
sets, where differences in the relative resolution reach 0.11. This larger 
difference is caused by a 2 per cent step size using 13.8 per cent fewer 
electrodes than employed for a step size of 10 per cent. Fig.4(b) shows that 
where the same number of electrodes are used, regardless of step size, the 
optimized relative resolution is virtually identical. With the increasing 
number of iterations, the calculation times increase considerably; while a 10 



per cent step size was calculated in 7.4 hr, 5 per cent took 15.4 hr and 2 per 
cent took 26.3 hr.

Figure 4. (a) Optimization performance in terms of the relative resolution S 
and number of used electrodes for β = 5.0 and different step sizes of 2, 5 
and 10 per cent. (b) Subset of (a) showing the results for the first 2000 
measurements with dashed lines indicating the number of measurements 
and relative resolution of a standard survey.

The actual imaging performance of the survey designs is shown in Fig. 5, 
where inverted resistivity models are presented. In the forward model (Fig. 
5a), the area for which the resolution was optimized was given a resistivity of
10 Ωm, while the background had a resistivity of 100 Ωm. The forward 
problem was implemented and solved in Res3DMod (Geotomo Software, 
Malaysia). The synthetic data were contaminated with voltage-dependent 
noise defined as  

with a = 0.05 Ω and b = 0.02.

Figure 5. Resistivity models. (a) resistivity model employed in the 
calculation of the synthetic data; (b) inverted resistivity model using a 



comprehensive set of measurements, employing 70 555 measurements and
32 electrodes; (c) inverted resistivity model using a standard survey design 
comprising 934 measurements and 32 electrodes; and (d) inverted 
resistivity model using an optimized survey comprising 934 measurements, 
but only 14 electrodes. Note that some asymmetry may be introduced by 
the model discretization.

All models were inverted using an L1 norm on the model roughness, and the 
data were fitted to their respective errors (χ2 = 1.0). The comprehensive set, 
forming the benchmark for this comparison, is able to delineate the target in 
its correct position and approximate extent; the shape can be recognized in 
the inverted resistivity model, but is considerably smoothed and imaged with
a higher vertical extent. The target area is imaged with a minimum resistivity
of 34.4 Ωm and a mean of 52.3 Ωm, while the background has a mean 
resistivity of 95.1 Ωm. The standard survey, employing only 934 
measurements (1.3 per cent of the comprehensive set) and all 32 possible 
electrode locations, fails in imaging the true shape and depth of the target. It
is imaged as a subvertical feature with a mean resistivity of 53.4 Ωm in the 
true target location, thus 1.1 Ωm higher than imaged by the comprehensive 
survey. The background resistivity has a mean of 96.8 Ωm. The optimized set
images the target in a shape similar to the comprehensive set and with a 
mean resistivity of 45.2 Ωm and a minimum of 24.1 Ωm, thus closer to the 
true resistivity model than imaged by the standard survey. The background 
is imaged at a mean resistivity of 80.7 Ωm, and thus lower than for the 
comprehensive and standard surveys. This is an effect of the lower resolution
outside the target area. The uncentred Pearson r correlation coefficient of 
the target area showed a stronger correlation between the true resistivity 
model and optimized inversion result (ropt = 0.89) than between the true 
resistivity model and standard survey results (rstandard = 0.78). Similarly, the 
root-mean-squared (RMS) difference between the true resistivity model and 
the results of the optimized survey was 32.7 Ωm, while it was 43.7 Ωm for 
the standard survey. Outside the target area is where the optimized set 
performs worse than the standard survey. Thus, within the target horizon, 
the optimized set images the true resistivity more accurately than the 
standard survey, despite employing 56 per cent less electrodes, but the 
smaller number of employed electrodes causes a loss of imaging 
performance outside the target.

Both the spatial distribution of possible electrode locations and the 
electrodes comprising the initial set are variables affecting the results of the 
optimization. To show this, we recalculated the optimization using β = 5.0 
but employing a different initial set of electrodes, with four electrodes being 
placed close to the model boundaries, and three close to the target (white 
dots in Fig. 6, initial set B). The results are similar to what was achieved with 
the first initial set comprising electrode locations directly over the target 
(initial set A). The resolution within the target is virtually identical (compare 
Figs 3d and 6a), but more resolution is retained in shallow areas close to the 



model boundaries. The similarity between the two results is highlighted when
comparing the difference of the optimized resolution to the resolution of the 
standard survey (Figs 3g and 6b). In both cases, the optimized survey shows 
increased resolution in lower parts of the target area, which extend outside 
the target boundaries. Using initial set B, this area outside the target is 
smaller than for initial set A. The inverted resistivity model shows the target 
with a similar shape to that imaged using the optimized survey of initial set 
A, but with a shape more comparable to the results obtained by the 
comprehensive survey. This is an effect of a higher fraction of measurements
with low geometric factor in the optimized survey of initial set B. These 
measurements have a smaller error and thus lead to a better imaging 
performance. The additional use of measurements close to the model 
boundaries caused a lower reduction of resolution in this area and improved 
the recovery of the true resistivity in these parts of the model. Despite the 
different initial sets of electrodes, the performance of the optimizations is 
comparable in both the achieved resolution of the target and used electrode 
locations.

Figure 6. Results for an optimization using an initial set comprising four 
electrodes close to the section boundaries and three electrodes close to the 
target. Electrode locations are shown as dots, with white dots indicating the 
initial locations. (a) Resolution of the optimized survey, (b) difference in 
resolution between optimized and standard surveys and (c) inverted 
resistivity model as shown in Fig. 5.

4 3-D MEASUREMENT GRID



Extending surveys into three dimensions usually leads to significant 
increases in the number of electrode locations and measurements. Hence, 
this is where the proposed optimization methodology is expected to show 
the greatest benefits. In order to test the optimization, a 3-D synthetic 
example was designed, comprising 117 electrodes arranged in a grid of 13 
electrodes along the x-axis and 9 electrodes along the y-axis. The setup 
replicates a typical embankment situation, for example, a flood embankment
or mining tailings dam, where electrodes are deployed only on one side (Fig. 
7). To resemble typical conditions, the ‘embankment’ has a 1 in 2 slope 
(Glendinning et al.2014), miniaturized into an assumed laboratory tank setup
being 1 m long and wide, with an embankment height of 0.25 m. The results 
of this synthetic study are used in the following laboratory study, testing the 
methodology on real data. The electrode spacing in x-direction was chosen 
to be 0.075 m, and 0.1 m in the y-direction. The impact of different model 
mesh sizes on the performance of the optimization was tested, and it showed
only negligible effects. Thus, a relatively coarse discretization using 9711 
tetrahedral elements was used. The target was defined as a rectangular 
prism, with dimensions of 0.68, 0.3 and 0.06 m along the x, y and z 
directions. It was placed centrally at the base of the slope, resembling an 
area that could potentially be affected by soil piping or a different failure 
type at the base of an embankment. Neumann-boundary conditions were 
used at the outer and lower model boundaries to account for the insulating 
tank walls. The comprehensive set was comprised of a subset of alpha and 
beta configuration, including inline, crossline and diagonal alpha- and beta-
type configurations, as well as equatorial beta-type configurations 
(sensitivity patterns of these measurement types are discussed in detail in 
Loke et al.2014), with a maximum geometric factor of Kmax = 345 m (equal to
a dipole–dipole geometric factor for a = 1 and n = 10) and a geometric 
sensitivity of s/K = 100 m−1. The grid of electrodes extended close to the 
model boundaries, which were found to have a significant impact on the 
calculation of the geometric factor. Thus, the comprehensive set was filtered 
on the geometric factors calculated using a homogeneous forward model 
incorporating the correct boundary conditions (Loke et al.2014); after 
filtering, it included 12 755 measurements. The damping factor λ = 0.05 was
chosen so that the resolution at the base of the model was R < 0.05. The 
computation time of this optimization was 10.2 hr.



Figure 7. Resolution of the comprehensive set for the synthetic 3-D example
assuming a homogeneous resistivity distribution of 10 Ωm (a), and the 
target as having a resistivity of 5000 Ωm within a 10 Ωm background 
medium (b). The target volume is shown opaque. The dots show the 
electrode locations, with white dots indicating the initial set of six 
electrodes.

The initial set for the optimization was comprised of six electrodes, located 
centrally above the target volume, and 20 measurements. Considering the 
optimization performance obtained on the linear electrode array example, 
the 3-D optimization was run using a step size of 10 per cent and for a 
weighting exponent of β = 5.0 (Fig. 8). Optimization studies often assume a 
homogeneous model resistivity for generality, and previous studies have 
shown that moderate deviations from this assumptions have negligible 
effects on the results (e.g. Stummer et al.2004; Wilkinson et al.2006). In this 
3-D example, we envisage to image a very strong resistivity contrast, which 
could have a potential impact on the optimization as potential fields are 
considerably disturbed. Thus, rather than testing the optimization 
performance regarding β and the step size, the effects of the underlying 
resistivity model are investigated. Hence, optimized survey designs were 
calculated assuming a homogeneous resistivity model of 10 Ωm, and a 
resistivity model with a resistive target (5000 Ωm) in a 10 Ωm background 
medium. As a real data application is considered, measurement errors are 
incorporated into the optimization (Wilkinson et al.2012) and assumed to be 
a function of the transfer resistance Rt(eq. 7).



Figure 8. Optimization performance of the 3-D example in terms of the 
relative resolution S and number of used electrodes for a weighting 
exponents β = 5.0, employing a step size of 10 per cent, and two different 
resistivity models. The blue lines show the performance for a homogeneous 
resistivity model of 10 Ωm, the red lines for a resistive target (5000 Ωm) 
within a 10 Ωm background medium. (b) Subset of (a) showing the results 
for the first 2000 measurements, with the grey dashed line showing the 
number of measurements comprising the standard survey design, and the 
red and blue dashed lines showing the relative resolution of a standard 
survey on a homogenous model and resistive target, respectively.

Fig. 7 shows the resolution of the comprehensive set for both situations. 
While for the homogeneous model (Fig. 7a) the target is well resolved (R > 
0.5) between x = 0.4 and x = 0.6 m, defining it as a resistive feature lowers 
the resolution within the target significantly (R < 0.05). This is because 
current will flow predominantly through the background medium and not 
through the highly resistive target volume.

This considerable change in the comprehensive set resolution affects the 
performance of the optimization (Fig. 8), as different measurements will 
need to be chosen to resolve a resistive target, compared to a target with a 
similar resistivity to the background medium. Generally, the lower the 
resolution in the resistive target, the lower the relative resolution that is 
achieved at a given number of measurements, compared to the optimization
using a homogeneous resistivity model; the largest difference ΔS = 0.31 
occurs with the optimized set comprising 3345 measurements. Although the 
absolute improvement is smaller for the resistive target, the general shape 
of the optimization curves is comparable. Also the number of employed 
electrode locations is similar, with the optimization on the homogeneous 
resistivity model usually employing 2–6 electrodes fewer than on the 
resistive target. A significant difference can only be observed during the first 
25 iterations (<180 measurements), where the optimization on the 
homogeneous model uses up to 25 electrodes fewer than for the resistive 
target, where more electrodes are required to gain improvements.



Fig. 8 also shows the relative resolution of the standard survey design, 
comprising 1591 dipole–dipole and Wenner–Schlumberger configurations, 
both inline and crossline. As for the comprehensive and optimized surveys, 
the relative resolution of the standard design on the resistive target is 
significantly smaller (S = 0.06) than on the homogeneous model (S= 0.21). 
For the same number of measurements, the relative resolutions achieved 
using optimized survey designs are 0.54 and 0.26 for the homogeneous 
model and resistive target, respectively; increases in resolution of 157 and 
333 per cent. Thus, the optimized survey design calculated on the resistive 
target should provide better results, given that the underlying assumption of 
a strong resistivity contrast holds true. Those considerable improvements 
are achieved using 28 and 26 electrodes fewer than used in the standard 
survey (homogeneous model and resistive target, respectively), reductions 
of 24 and 22 per cent.

Fig. 9 shows the distribution of the resolution along a slice through the model
domain at y = 0.5 m, both for the standard and optimized surveys. For the 
homogeneous model (compare Fig. 9c against Fig. 9a), resolution is 
improved particularly in deeper parts of the model, while, for example, at the
top of the slope resolution decreases. Within the target volume, the largest 
absolute increase in resolution can be found at the shallow parts between x 
= 0.5 and 0.65 m. While deeper parts show smaller absolute increases in 
resolution, the increase relative to the standard survey exceeds 100 per cent
and are thus higher than for the shallow parts. Similarly to the results 
obtained on the linear electrode array example, the large weighting 
exponent of β = 5.0 forces improvements more strongly towards the target 
volume, while resolution decreases away from it. The reduction is strongest 
close to the boundaries of the model domain (Fig. 9e), where also fewer 
electrodes are employed. This observation is independent of type of 
resistivity model used for the optimization, as similar patterns of resolution 
improvements and reductions can be found for the optimization of the 
resistive target (Fig. 9f). However, improvements relative to the standard 
survey are considerably higher within the target volume (exceeding 200 per 
cent, comparing Figs 9b and d), despite the absolute values remaining low. 
This comparison to the resolution of the standard survey shows that a 
precise knowledge of the target's locations is not a prerequisite for improved
imaging results, as the resolution increases in a wider area around the target
employing an optimized survey design.



Figure 9. Model resolution at y = 0.5 m for the standard (a,b) and optimized 
survey designs (c,d), both applied to (a,c) a homogeneous (10 Ωm) medium,
and (b,d) with the target being highly resistive (5000 Ωm). The resolution of 
this central model domain is clearly improved by the optimized survey 
designs. The bottom panel (e,f) shows the difference between the optimized 
and standard survey designs, with an iso-volume indicating a 100 per cent 
improvement. White dots on the 3-D plot indicate used electrode locations, 
while grey dots show electrode locations that are not used in the optimized 
design.

Figs 9(e) and (f) also show the employed electrode locations. The pattern is 
comparable for the two optimizations. Electrodes along the x = 0.0 and y = 
1.0 boundaries tend to be rejected by the optimization routine, as well as 
electrodes on top of the slope. This is somewhat surprising, as for imaging a 
deeper target, conventional survey designs would usually employ larger 
electrode spacing. However, measurements with large electrode spacing 
usually have larger measurement errors and are therefore ‘penalized’ in the 
optimization. This exercise shows that those outer electrodes are not 
required to gain high resolution in the target volume, and highlights the 
potential of this optimization approach to increase the efficiency of ERT 
imaging, by reducing costs for cables and instrumentation.



The imaging capability of the different survey designs was tested by defining
the target volume as a resistive feature (5000 Ωm) within a 10 Ωm 
background material. This may represent, for example, a clay embankment 
with a structural defect at its base, which could cause soil piping or slope 
instabilities, and is of the same order of magnitude as expected for the 
laboratory experiments. All synthetic data were contaminated with 2 per 
cent voltage-dependent noise, and the inversion converged to fit these data 
within its error levels, using the same inversion parameters as for the linear 
electrode array example.

The results of the comprehensive set (Fig. 10a) resemble the distribution of 
the resolution (Fig. 7); the target is imaged with a strong resistivity contrast 
between x = 0.4 and 0.8 m, showing resistivities above 30 Ωm, with a 
maximum of 163.5 Ωm. The mean resistivity in the target volume is 33.0 
Ωm. This shows the effect of the lower resolution within a resistive target; 
the difference between the imaged and the true resistivity (5000 Ωm) is 
more than one order of magnitude. Its centre is imaged with the highest 
contrasts, which decrease towards the edges, imaging it with an oval shape. 
With increasing distance along the x-direction, and thus increasing depth 
from the surface, the target becomes less well resolved, with smaller 
resistivity contrasts and a shift of the highest values to shallower layers. 
Thus, the resistive target seems to have an apparent dip. Between x = 0.8 
and 1.0 m, the resistivity contrast becomes smaller, and therefore could be 
overprinted by natural resistivity variations in real applications.



Figure 10. Inverted resistivity model for the 3-D synthetic example; opaque 
iso-volumes indicate resistivities ρ > 30 Ωm. (a) Results for the 
comprehensive survey, (b) for the standard dipole–dipole and Wenner–
Schlumberger survey and (c,d) for the optimized surveys calculated on a 
homogeneous model and a resistive target, respectively. The slice of the 
right column is located centrally through the target volume at y = 0.5 m. 
White dots on the 3-D plots indicate used electrode locations, while grey 
dots show electrode locations that are not used in the optimized design.

The standard survey, using about 12.5 per cent of the measurements of the 
comprehensive set, images the target with a smaller resistivity contrast than
the comprehensive set, having a maximum of 67.6 Ωm and a mean 
resistivity in the target volume of 22.4 Ωm. Considering an iso-volume at 30 
Ωm, the target is imaged extending from x = 0.41 to 0.71 m, while for the 
comprehensive set, it extends from 0.41 to 0.80 m. Deeper parts of the 



model, x > 0.70 m, show lower resistivities than imaged with the 
comprehensive set and the contrast is less sharply defined. The optimized 
survey designs image the target with a higher resistivity contrast and larger 
extent than the standard survey, independently of their underlying resistivity
model. However, the target is imaged with a higher maximum resistivity 
(ρmax = 113.8 Ωm) and mean resistivity in the target volume (ρmean = 28.1 
Ωm) when using the resistive target in the optimization, than if using a 
homogeneous model (ρmax = 100.5 Ωm, ρmean = 26.2 Ωm). Considering again 
a 30 Ωm iso-volume, the target is imaged to extend from 0.40 to 0.73 m for 
both optimized surveys.

The improved performance of the optimized surveys is highlighted when 
looking at the uncentred Pearson correlation coefficient. While for the 
standard survey a Pearson correlation coefficient of rstandard = 0.29 is 
obtained, for the optimized set the correlation is better with rhom = 0.31 and 
rresistive = 0.33. Thus, in comparison to standard survey designs, improved 
imaging results can be obtained using the optimization methodology, despite
requiring up to 24 per cent fewer electrodes. Even higher reductions in 
number of electrodes used can be expected for smaller targets.

5 LABORATORY EXPERIMENT

To test the applicability of the optimization methodology to measured data, a
laboratory tank was prepared as described in the previous synthetic 
example. To ensure a mostly homogeneous background medium, a 1 m × 1 
m laboratory tank was filled with pre-prepared, moist (volumetric moisture 
content (VMC) of 0.31 m3 m−3) pottery clay of low shrinkage (<5 per cent), 
and a mean resistivity of 17 Ωm. The target was constructed using kiln-dried 
silica sand with a grain size below 0.5 mm and a VMC < 0.04 m3 m−3; its 
resistivity was estimated to be >5000 Ωm. Electrode layout and surface 
topography was as described for the synthetic example. Data were acquired 
using a Geolog2000 GeoTom system (employing one channel at 8 1/3 Hz) 
and were measured in normal and reciprocal configurations, where the 
reciprocal measurement is equivalent to the normal, but with interchanged 
current and injection dipoles (LaBrecque et al.1996). The data were defined 
as the mean of the two measurements, and the error as the standard error in
the mean, which is referred to as reciprocal error hereafter. The 
measurement sequence was reordered to minimize potential polarization 
effects of the electrodes (Wilkinson et al.2012). Despite using small 
electrodes (1.55 mm diameter, 5 mm length) contact resistances between 
electrodes and clay were below 1.1 kΩ. The data quality was very good, with 
about 99 per cent of the data having reciprocal errors below 5 per cent. 
Analysis of the reciprocal error distribution (Koestel et al.2008) confirmed the
applicability of the previously introduced linear error model (eq. 7), but 
measurement errors were actually lower, so coefficients of a = 0.0025 Ω and
b = 0.003 were used to weight the data in the inversion. The data were 
inverted using E4D (Johnson et al.2010), employing the same inversion 
parameters as for synthetic examples. The inversions converged fitting the 



data to their corresponding error levels, at RMS misfits between modelled 
and measured data of 2.1–3.2 per cent.

The results are similar to those obtained in the synthetic model, but with the 
target showing a considerably higher resistivity (Fig. 11). Thus, the true 
target resistivity was likely to be higher than was assumed in the synthetic 
model and used for the calculation of the optimized survey design. This 
would reflect field usage of this technique where the actual resistivity of the 
target area is unlikely to be known exactly. The comprehensive survey 
images the target with a maximum resistivity of 969.7 Ωm and a mean 
resistivity in the target volume of 108.5 Ωm. The resistive anomaly follows 
mostly the actual target location, with a slight overestimation in depth for 
shallow parts (0.4 m < x < 0.7 m) and an underestimation in deeper parts (x 
> 0.8 m). Thus, the target shows an apparent dip as in the previous section. 
The 60 Ωm iso-volume highlights this dip, but images the target with a 
reasonable accuracy (Fig. 11a). The standard survey shows the shallow parts
of the target at the correct location, but with a smaller resistivity contrast; 
the maximum resistivity is 264.6 and the mean target resistivity 49.9 Ωm. 
The apparent dip is more pronounced, as the resistive anomaly bends 
towards shallower depths and resistivities decrease considerably. The 60 Ωm
iso-volume extends only until x = 0.84 m, and becomes narrow for x > 0.7 m
(Fig. 11b). The results for the optimized survey assuming a homogeneous 
resistivity model show some improvement compared to the standard survey;
the target is imaged with a maximum resistivity of 404.0 Ωm and a mean 
resistivity of 62.6 Ωm. The narrowing of the 60 Ωm iso-volume for x > 0.7 m 
is less pronounced, but extends only to x = 0.81 m. Better imaging results 
are achieved using the optimization assuming a resistive target, where the 
target volume is imaged with a maximum of 490.7 Ωm and a mean of 68.2 
Ωm. The 60 Ωm iso-volume is comparable to the one obtained from the 
comprehensive set. Thus, the resistivity values obtained from the optimized 
surveys are closer to the comprehensive set than imaged using the standard
survey design.



Figure 11. Inverted resistivity models of the laboratory data; opaque iso-
volume indicates resistivities of ρ > 60 Ωm; and black box outlines the 
target volume. (a) Results for the comprehensive survey, (b) for the 
standard dipole–dipole and Wenner–Schlumberger survey and (c,d) for the 
optimized surveys calculated on a homogeneous model and a resistive 
target, respectively. The slice of the right column is located centrally 
through the target volume at y = 0.5 m. White dots on the 3-D plots indicate
used electrode locations, while grey dots show electrode locations that are 
not used in the optimized design.

Even though the resistivity distribution in the tank can be estimated, 
variations in degree of compaction of the material and moisture content may
cause variations. Therefore, the resistivity model of the comprehensive 
survey is taken as the imaging benchmark. Considering the uncentred 
Pearson correlation and the RMS difference highlights the improved 



performance of the optimized survey designs compared to the standard 
design. The Pearson correlation coefficient between the imaged resistivities 
using the comprehensive and standard survey design is rstandard = 0.88, while 
for optimization assuming a homogeneous model and a resistive target it is 
rhom = 0.94 and rresistive = 0.96, respectively. This highlights that if very large 
resistivity contrasts exist in the subsurface, these should be accounted for in 
the optimization, as it has a significant effect on the model resolution, as 
shown in Figs 7 and 9. The RMS differences between the imaged resistivities 
obtained from the optimized sets and the comprehensive set are RMShom = 
32.7 per cent and RMSresistive = 29.8 per cent, while it is RMSstandard = 40.4 per 
cent for the standard survey design. This highlights the considerable 
improvements that can be achieved when using the proposed optimization 
methodology, while reducing the amount of required electrode locations.

6 DISCUSSION AND CONCLUSION

Optimization of survey design can usually be categorized as (1) trying to find
optimum measurement configurations on a given set of electrode locations 
or (2) selecting electrode locations based on their comprehensive resolution. 
This paper presents a modification to the ‘Compare-R’ algorithm, which 
combines the two approaches by introducing an additional weight penalizing 
the addition of electrode locations to the optimized set.

Tests on synthetic examples showed that optimization step size and model 
discretization have negligible effects on the results. Experimenting with 
different weighting exponents β, which controls how much the addition of 
electrodes to the optimized set is penalized, showed that higher values of β 
cause more focused improvements in resolution and the use of smaller 
numbers of electrodes, with the drawback of decreasing resolution away 
from the target volume. Therefore, high values of β should be used if the 
target location and size is well known, and smaller values if it is more 
uncertain. For an example, using a linear electrode array, it was shown that 
superior resolution compared to a standard survey design can be achieved, 
despite using 56 per cent fewer electrodes. To test the impact of the number
of electrodes in the comprehensive set, the optimization was run for 16 and 
64 electrodes, half and twice the number of electrodes in the shown 
example. While for 16 electrodes, all electrodes are required to achieve high 
resolution in the target area, using double the amount of electrodes had no 
considerable impact on the outcome of the optimization, as electrodes were 
chosen in the same area as shown for a comprehensive set of 32 electrodes.

An investigation of the effect of the mesh discretization on the calculated 
sensitivities showed that unstructured tetrahedral meshes can introduce a 
slight degree of asymmetry into the results. This is caused by the tetrahedral
elements not having the same symmetry as the distribution of electrodes 
and can be overcome by using a mesh discretization with different 
polyhedra, such as cuboids.



The methodology was also tested on a 3-D synthetic example and verified 
with a laboratory experiment. The 3-D example imaged a structural, highly 
resistive defect within a miniaturized embankment model. Here, the effect of
the underlying resistivity model on the performance of the optimization was 
tested. By accounting for the resistive target better results were obtained, 
increasing the uncentred Pearson correlation coefficient between the imaged
resistivities and the forward model from rstandard = 0.29 for the standard 
survey to rresistive = 0.33 for the optimized survey assuming a resistive target. 
The uncentred Pearson correlation between model and imaged resistivities 
was rhom = 0.31 for the optimized survey assuming a homogeneous medium. 
This is in agreement with previous studies, which showed that small 
variations in the resistivity distribution have negligible effects on the 
optimization (e.g. Athanasiou et al.2006). Here, accounting for a strong 
resistivity contrast improved the performance of the optimization, but not 
significantly. Although no marked improvement was obtained, both 
optimized surveys were able to image the resistive target better than the 
standard survey design while using fewer electrodes. This was true for the 
synthetic models and the laboratory experiment. In the latter, accounting for
the resistive target helped to increase the Pearson correlation coefficient 
between optimized and the comprehensive sets from rhom = 0.94 to rresistive = 
0.96, which were both superior to the Pearson correlation of the standard 
survey design (rstandard = 0.88). Here, a high weighting factor of β = 5.0 was 
used, thereby achieving this improved resolution despite using up to 24 per 
cent fewer electrodes than a comparable standard survey. Note that using 
smaller values of β would yield higher resolution within the target area, with 
the cost of using more electrodes. Higher values were tested but reduced the
number of electrodes only marginally while causing a further decrease in 
resolution of the target.

This study shows that by using optimization algorithms that can penalize the 
number of electrodes used, the efficiency of resistivity imaging and 
monitoring can be increased by reducing its costs. It may offer not only the 
opportunity for high-resolution resistivity imaging using smaller numbers of 
electrodes and therefore cables, but also using measurement systems 
capable of addressing only a limited number of electrodes. This may be 
particularly important for complex monitoring studies with limited 
accessibility, or where the installation of electrodes may be difficult or 
detrimental to the structural integrity. For this purpose, values of β > 5 may 
be chosen to reduce the number of electrodes to a minimum. On the other 
hand, if measurement time is a priority, smaller values of β may be used, 
allowing to gain high resolution at comparably small measurement sets. We 
envisage that the greatest benefit of the presented approach would be for 
monitoring or characterization studies where information about the location 
of areas of interest are available prior to the survey, for example, for leaking 
flood embankments, landslides with well-defined slip surfaces or 
contamination studies with reasonably well-known hydrology. Additional 



research is required not only to implement further constraints on the survey 
design, such as a priori limitations regarding the maximum number of 
electrode locations, or pre-defined maximum lengths of survey lines, but also
to investigate the practical performance of recently developed measurement
configurations (Szalai et al.2002, 2014, 2015; Falco et al.2013). Recent 
research of Loke et al. (2015a) shows that calculation times for the 
optimization can be reduced by assuming symmetry of the measurement 
configurations and exploiting developments in the Graphics Processing Unit 
(GPU) technology. Comparing their calculation times to the calculation times 
presented here, GPU and other computational developments may reduce the
calculation time of the presented approach by up to 100 times. Smaller 
calculation times will certainly increase the applicability of the survey 
optimization and may help to investigate larger-scale problems.
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