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ABSTRACT OF THE DISSERTATION

Adaptive Tools for Performance Analysis of Large-scale Applications

By

Behnam Pourghassemi

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2021

Associate Professor Aparna Chandramowlishwaran, Chair

Performance is the critical feature in the design and productivity of software systems. A

key to improving the performance of a program is a rigorous performance analysis (PA)

followed by code optimization. Although the approach seems straightforward, it can be

difficult in practice, especially when the application is large or has complex architecture and

task dependencies. It becomes even more arduous when applications have parallel and non-

deterministic executing models. There are also cases where the conventional PA will require

exhaustive profiling runs or direct access to hardware. All of these hurdles limit the scope

of PA and mislead optimization opportunities in front of developers.

In this dissertation, we focus on such applications of performance analysis and address chal-

lenges and critical questions revolving around them. The commonality among these appli-

cations is that conventional PA is either not applicable or provides insufficient guidance to

researchers to incorporate optimal optimization. For example, traditional profilers cannot

inform developers about the impact of optimization or expose the potentials of paralleliza-

tion in large programs. Therefore, for every application of our study, we design and develop

a novel performance analyzer that overcomes the shortcomings of existing solutions and ex-

poses new opportunities for performance boosting. We leverage and scale the functionality

of profilers in designing our performance analyzers. Overall, we implement four adaptive

xv



tools for PA: (1) A high-performance causal profiler that characterizes page loading time

and pinpoints critical spots for optimizing the performance of website and web browsers.

(2) A virtual causal profiler that accelerates cross-platform software development by simu-

lating the impact of optimizations on diverse systems. (3) A robust tool for performance

analysis of online advertising which assists publishers to characterize the performance cost of

web ads with high precision. (4) A profile-based performance analyzer that uncovers perfor-

mance opportunities from parallelism in training deep learning models on GPUs and helps

practitioners in determining the optimal configuration for concurrent execution of network

layers.

All of our proposed PA techniques are meticulously designed to match the application con-

straints (e.g., parallel environment and massive codebase) and validated by large-scale exper-

iments and measurements. We also provide our first-of-a-kind findings from our assessments

in this dissertation.
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Chapter 1

Introduction

Driven by the advances in the performance of computer hardware, software stacks are becom-

ing larger, parallel, and more complex. Programs with multiple processes that spawn tens

of threads are now ubiquitous in broad areas of computer science [86]. In high-performance

computing, compute-intensive applications split the domain of simulation/calculation into a

large number of tasks to be executed in parallel [114, 98, 113]. Similarly, with the advances

in machine learning, larger models with multiple streams of execution are becoming state-

of-the-art practice [139, 93]. Thus, ML practitioners exploit techniques such as concurrency

and pipelining in implementing current models for reducing the training time [137]. Along

with this trend in research, enterprise software systems and client-side applications are also

driven by parallel and large codebase paradigms. A good example is modern web browsers

such as Chrome [2] that has both multi-process architectures to isolate the tasks for security

and preventing application breakage and a highly multi-threaded architecture to distribute

rendering tasks among CPU cores.

A common concern around such complex and highly parallel environments is the difficulty in

performance characterization, code optimization, and locating the root cause of performance

1



overhead [86]. Static code analysis, the de facto technique for code debugging, is broadly

used for performance modeling and pinpointing performance bottlenecks. The pitfall of

static analysis is in the applications that host diverse tasks with dense task dependency

or in the applications where tasks are executed in a non-deterministic pattern [86, 91].

Alternatively, dynamic code analysis and runtime profiling have to be done for detailed

performance modeling. As a result, performance engineers heavily rely on profilers. Although

profilers show accurate statistics of timing, memory consumption, network communication,

etc., they are still not powerful enough for performance analysis of parallel applications or

to answer what-if questions. For instance, conventional profilers such as gprof and perf,

may list time-consuming tasks (e.g., functions) of a program but do not interpret how much

optimizing these tasks improve performance metrics [80, 155].

In this dissertation, we deal with large codebases and parallel applications and propose opti-

mal solutions for performance modeling and workload characterization of such applications.

Essentially, we leverage the scope of profilers and practically show how profile-based per-

formance analysis can help developers with code optimization and shed light on a variety

of performance-related questions. Overall, in this dissertation, we explore four application

domains of performance analysis. For each, we propose a novel performance characteriza-

tion technique that suits well with the application criteria. To realize proposed methods,

for each application, we develop a new tool (i.e., performance analyzer) and conduct a series

of performance measurements and validations and report our first-of-a-kind findings from

assessments, guiding researchers on improving the performance of such applications. Here,

we briefly introduce our four cases and discuss them in-depth later in dedicated chapters

(Chapters 2 - 5).
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1.1 Web Browser

Web browsers have become one of the most commonly used applications for desktop and

mobile users. At a higher pace, web applications operating on browser engines are receiving

widespread attention owing to their cross-platform support and simpler development process,

wherein they need to have higher performance to compete with native applications. Despite

recent advances in network speeds and several techniques to speed up web page loading

such as speculative loading, smart caching, and multi-threading, browsers still suffer from

relatively long page load time (PLT). Recent studies have investigated the bottleneck of

the modern web browser’s performance and conclude that network connection is not the

browser’s bottleneck anymore. Even though there is still no consensus on this claim, no

subsequent performance analysis has been conducted to inspect which parts of the browser’s

computation contribute to the performance overhead. To identify the source of overhead

and provide answers to many performance “what-if” questions, a complete and quantitative

analysis of the web browser’s page loading process is required.

COZ+ and What-if Analysis

Given the parallel and large codebase of modern browsers, we apply an adaptive what-if

analysis to precisely determine the impact of each computation stage such as HTML parsing

and Layout on PLT. Unlike conventional profiling methods, causal profiling [80] (detailed in

Chapter 2) can quantify the potential impact of optimizing a code segment on the program

and has shown promising results in PA of parallel applications. To this end, we develop

COZ+, a high-performance causal profiler capable of analyzing large software systems such

as Chrome browser. COZ+ highlights the most influential spots for further optimization,

which can be leveraged by browser developers and/or website designers. Using COZ+, we

conduct what-if analysis over 100 most visited websites under different system configurations
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and report our findings. For instance, COZ+ shows that optimizing JavaScript by 40% is

expected to improve the Chrome desktop browser’s page loading performance by more than

8.5% under average network connection.

1.2 Virtual Causal Analysis

A key application of causal profiling is to analyze what-if scenarios as discussed in the pre-

vious application. However, typical what-if analysis using causal profiling requires a large

number of performance runs. Besides, the calculated performance models highly depend on

the underlying machine resources, e.g., CPU, network, storage, so the impact of code opti-

mization on one device does not translate directly to another. This is a major bottleneck

in our ability to perform scalable performance analysis and greatly limits cross-platform

software development. We address the above challenges by leveraging a unique property of

causal profiling: only relative performance of different resources affects the result of causal

profiling, not their absolute performance. We first analytically model and prove causal profil-

ing, then, we assert the necessary condition to achieve virtual causal analysis on a secondary

device.

VCOZ and Virtual Causal Profiling

Building upon the theory, we design VCoz, a virtual causal profiler that enables profiling

applications on target devices using measurements on the host device. We implement a

prototype of VCoz by tuning multiple hardware components to preserve the relative execu-

tion speeds of code segments. Our experiments on benchmarks that stress different system

resources demonstrate that VCoz can generate causal profiling reports of Nexus 6P (an

ARM-based device) on a host MacBook (x86 architecture) with less than 16% variance.
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1.3 Online Advertising

Monetizing websites and web apps through online advertising is widespread in the web

ecosystem, creating a billion-dollar market. This has led to the emergence of a vast network

of tertiary ad providers and ad syndication to facilitate this growing market. In addition,

the ability of today’s browsers to load dynamic web pages with complex animations and

Javascript has also transformed online advertising. Nowadays, online advertising forces pub-

lishers to integrate complicated ads from third-party domains. Besides privacy and security

issues concerning this model, third-party web ads have a significant impact on webpage

performance. The latter is a critical metric for optimization since it ultimately impacts

user satisfaction. Unfortunately, there are limited literature studies on understanding the

performance impacts of online advertising which we argue is as important as privacy and

security.

To this end, we apply an in-depth and first-of-a-kind performance evaluation of web ads. We

aim to characterize the cost by every component of an ad, so the publisher, ad syndicate,

and advertiser can improve the ad’s performance with detailed guidance. This is a challeng-

ing task given the complexity of contemporary web ads, the non-deterministic ways they

are delivered (e.g., coming from real-time bidding system) and rendered (e.g., scheduled at

runtime by the browser). Furthermore, there are no dedicated profilers that quantifies the

performance cost of web ads and prior efforts rely primarily on adblockers that have several

limitations.

adPerf and Performance Characterization

For the above assessment, we develop a tool, adPerf, for the Chrome browser that classi-

fies page loading workloads into ad-related and main-content at the granularity of browser

activities. adPerf leverages profiling traces for workload characterization and demystifies

5



performance overhead. Our evaluations with adPerf show that online advertising entails

more than 15% of browser page loading workload and approximately 88% of that is spent

on JavaScript. On smartphones, this additional cost of ads is 7% lower since mobile pages

include fewer and well-optimized ads. We also track the sources and delivery chain of web

ads and analyze performance considering the origin of the ad contents. We observe that 2 of

the well-known third-party ad domains contribute to 35% of the ads performance cost and

surprisingly, top news websites implicitly include unknown third-party ads which in some

cases build up to more than 37% of the ads performance cost.

1.4 Deep Learning Models

Training a deep neural network (DNN) is a time-consuming process given the massive number

of parameters that have to be learned, thus accelerating DNN training has been an area of

significant research in the last couple of years. GPUs are currently the platform of choice for

training neural networks and popular deep learning (DL) frameworks such as TensorFlow

and PyTorch have GPU backends to execute DNN operations. While earlier networks such as

AlexNet [152] and VGG [135] had a linear dependency between layers and operations, state-

of-the-art networks such as ResNet [93], PathNet [88], and GoogleNet [139] have a non-linear

structure that exhibits a higher level of inter-operation parallelism. This potential brings

out several performance-related questions: is there any performance gain if operations are

run in parallel on a single GPU? If so, which operations and their corresponding algorithms

to choose and how to schedule them in parallel to maximize the performance gain?
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catDog and Measurements

To answer these critical questions, we introduce a concurrency-aware tailor for DL operations

on a GPU (aka. catDog). catDog leverages the profiling-based kernel characterization and

makes a case for the need and potential benefit of exploiting parallelism in state-of-the-art

non-linear networks. It also partitions GPU resources among DNN operations to accommo-

date concurrent execution on AMD GPUs. Based on our proposed profiling-based method,

we identify tens of cases in popular models such as GoogleNet and ResNet where enabling

concurrent layer execution on a GPU backend (e.g., in cuDNN library) can perform better

than sequential kernel execution.
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Chapter 2

What-if Analysis of Page Load Time

One of the notable applications wherein performance plays a critical role is website loading.

Websites that load slowly have a lower rate of return, likewise, a web browser that doesn’t

deliver sufficient performance is likely to lose its market share. So, researchers and developers

in the web community are constantly looking for an opportunity to optimize the performance.

The way today’s websites are loaded is quite sophisticated and requires a PA method that

works with the parallel and complex architecture of modern web browsers. In this chapter,

we utilize causal profiling and scale this technique to show how it assists us in answering

many of the what-if questions raised in the web community.
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2.1 Introduction

Early web browsers only rendered static web pages with hyperlink documents but today’s

browsers are capable of loading web pages with animations, multimedia content, and JavaScript

for user interactions. Moreover, trends in client-side web-applications since the introduction

of HTML5 and Asynchronous JavaScript and XML (AJAX) have transformed web browsers

into a critical platform for the end-user software stack.

Performance of the web browser is critical to its usability. An important metric for measuring

performance is the Page Load Time. PLT is the time from the start of a user-initiated page

request to the time the entire page content is loaded. PLT directly impacts user experience

and even business revenue. Users may abandon a web page if it takes a long time to load

or may even stop using a particular browser or website if it does not satisfy their desired

performance. According to Google, 53% of mobile site visitors leave a page that takes longer

than three seconds to load1. In 2016, AliExpress claimed that they reduced load time for

their pages by 36% and recorded a 10.5% increase in orders2.

There are two factors that contribute to PLT – (1) The time spent in network activities

such as establishing a TCP connection or performing a DNS lookup. (2) The time spent in

computation activities such as HTML parsing, applying CSS rules, etc.

Although there is a significant body of work on analyzing the source of performance bottle-

necks in browsers, there is no consensus among them. On the one hand, researchers conclude

that network activities are the primary source of performance overhead and several stud-

ies have investigated the effect of resource loading on the browser’s PLT [4, 72, 148, 149].

Accordingly, various network infrastructure reconfiguration and client-side solutions have

been proposed to diminish this source of overhead. Mitigating round-trip delay time, up-
1https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-

industry-benchmarks
2https://edge.akamai.com/ec/us/highlights/keynote-speakers.jsp#edge2016futureofcommercemodal
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grading protocols along with the redesign of the browser’s resource loading via prefetching,

speculative loading, and smart caching are some of these techniques [149, 49, 159, 129].

On the other hand, more recent studies have implied that CPU-intensive tasks such as HTML

parsing and DOM manipulation have a more significant contribution to the PLT [99, 111,

146, 116, 159]. Correspondingly, researchers have attempted to improve the performance

of different stages in the page rendering pipeline [161, 112, 147]. Browser developers also

parallelize compute-intensive stages of the browser and fine-tune concurrency to mitigate

page loading slow-down [67, 74, 99, 111, 158].

In addition, browsers are getting more and more sophisticated in terms of both internal struc-

ture and code organization. Current browsers execute different computation and network

activities on various threads and in some cases on multiple processes concurrently [64, 48, 89].

Inter-dependency between these activities establishes a critical path in the rendering process,

which is highly complex to analyze [146, 3, 66, 160]. This raises two questions – (1) What are

the critical activities in the page loading process? (2) How much performance improvement

would we realistically achieve by reducing these bottlenecks?

In this chapter, we employ what-if analysis on the page loading critical path to answer

the above questions. Unfortunately, there is a paucity of literature on what-if analysis of

computational activities on page loading process [146, 116, 148]. Furthermore, prior work

is rooted in dependency extraction of the activities and static analysis of the dependency

graph, which have restricted functionality since (1) these measurements are incapable of

capturing all the existing inter-dependency between activities and (2) they do not take into

account the dynamic behavior of the browser such as task scheduling and parser threading,

and the dynamic behavior of content such as dynamically-generated object references in

JavaScript [117, 66].

In order to analyze the browser performance, demystify the performance bottlenecks and
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evaluate their influence on PLT, we apply extensive and quantitative what-if analysis on the

page loading process. Contrary to prior efforts, we use causal profiling [80], which indicates

where the programmer should focus their optimization efforts and quantifies the potential

impact of optimizations. The key idea behind causal profiling is to virtually speedup a

selected line from the program at run-time and measure the impact of this acceleration

on the total execution time. Causal profiling allows for the dynamic analysis of the crit-

ical path during application run-time. This method abstracts dependency extraction and

subsequent dependency graph processing providing robust and adaptive what-if analysis of

modern browsers.

To apply causal profiling on web browsers, we build COZ+ on-top of the Coz profiler [61],

the only implementation of the causal profiler (to the best of our knowledge). We integrate

multiple optimizations that target profiling overhead and redesign several modules to make

causal profiling practically feasible and applicable to large applications. We further customize

COZ+ for profiling the Chrome browser 3 since it is currently the most popular browser for

both desktop and mobile users [55]4. Section 2.5 presents details of our implementation.

We perform comprehensive what-if analysis using COZ+ on the major stages of the web

browser’s page loading process for the top 100 most popular web pages from Alexa Top 500

list [12]. Our analysis provides practical findings about browser performance (which in some

cases contradicts prior work). For example, we observe that JavaScript contributes more to

the page loading critical path than HTML parsing [146, 116] and by optimizing this stage by

only 20%, the average PLT can improve by almost 5% on a desktop browser. This shows a

considerable difference in comparison with the mobile browser (less than 0.5% [116, 148]). In

addition, we examine the impact of different factors such as hardware, caching optimization,

and network connection (e.g., network bandwidth and network delay) on the behavior of

computation activities. In Section 2.7 we outline all of our findings. Our findings shed
3to be exact, Chromium browser that is an open-source version of Chrome
4COZ+ is easily adaptable to other Webkit-based browsers.

11



light on which stages the browser developers should focus their optimization efforts on to

maximize overall performance. We observe that Scripting is the most influential stage (most

“bang for the buck”) followed by Styling and Layout irrespective of network bandwidth and

delay.

2.2 Background

2.2.1 Browser Architecture

Over the years, several browsers with different features, user interfaces, and security levels

have come to the market. Regardless of their design and performance, they fundamentally

share the same architecture and workflow for rendering web pages. The core software unit

behind web browsers is a rendering engine (a.k.a. layout engine), which transforms the

web page plain content to the visual representation. Mozilla Firefox and Microsoft Internet

Explorer (IE) have their own respective engines called Gecko [44] and Trident [52]. Mi-

crosoft’s newer browser, Edge, uses EdgeHTML (a fork from Trident) [47]. The rest of the

well-known browsers such as Google Chrome, Opera, and Safari are developed on top of the

Webkit rendering engine [54].

Figure 2.1 shows how browser engines load web pages. The process begins when the user

submits a URL request to the browser interface. Immediately after that, the browser’s

Resource Loader initiates an HTTPS request to fetch the main HTML file from the web

server. Typically, the Resource Loader downloads this file incrementally in order to maximize

the overlap of network delay with processing of received chunks. Figure 2.2 demonstrates

the resource loader’s internal workflow. When the first chunk of HTML is downloaded,

the rendering engine starts parsing HTML tags and building the Document Object Module

(DOM). DOM is an intermediate representation of the page content that is represented
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Figure 2.1: The general workflow for loading web pages.

by a tree data structure. HTML parsing is the first computation stage in the rendering

pipeline. During DOM construction, the HTML parser may request additional resources

such as another HTML file, a CSS file, a JavaScript file, images, etc. For each request, the

Resource Loader (may) apply DNS lookup and stablish a TCP connection to download the

object from the server or retrieve the object directly from the cache (Figure 2.2).

responseStart
responseEnd

Redirect Browser
cache DNS TCP ResponseRequest

redirectStart
redirectEnd

fetchStart
domainLookupStart

connectStart
domainLookupEnd

connectEnd
requestStart

Figure 2.2: Resource loading stack.

Among these resources, Cascading Style Sheet (CSS) files contain a set of rules that specify

the format and attribute (e.g. font and color) of the page elements. The browser parses

these rules and adds styling attributes to the DOM nodes. This stage referred to as Styling

(stage 2) leads to the construction of another tree called the render tree. Nodes in the render
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tree are visual elements with the style characteristics for display. In the third stage, Layout,

the render tree is traversed to calculate the relative size and geometrical position of the

elements on the screen. The fourth stage in the rendering pipeline is Paint, which is the

process of mapping each visual element into pixels. Filling pixels is often done in multiple

layers. At the end of the rendering pipeline, in Compositing, these layers are combined

together to create a final view of the web page. JavaScript or generally Scripting (stage

6) is another computation stage in the browser that responds to the user interactions and

handles the dynamic behavior of the web page. This stage consists of evaluating, compiling

and executing the scripts and usually has a separate engine such as V8 in Google Chrome

[53] or SpiderMonkey in Mozilla Firefox [50]. JavaScript, like most of the other stages, has

access to the DOM and can modify the DOM throughout the page loading process as seen

from Figure 2.1.

2.2.2 Chrome Web Browser

According to StatCounter [56], Chrome is the most popular web browser in use for both

desktop and mobile devices. As of May 2021, it has 64.7% of the browser’s market share

and no other browser comes close. More specifically, Apple Safari has the second place with

18.4% of the market share and Firefox lags far behind with only 3.4% of the market share.

Architecture. The rendering engine of Chrome, Blink [60], is forked from the popular

Webkit engine [54]. Chrome exploits process-per-site-instance architecture to protect the

overall browser from crashes, glitches, or malware in web pages [43]. In this architecture,

the main process, browser process runs the UI and manages tabs. One renderer process is

created per web page instance. Chrome processes have multiple threads that handle page

rendering, process communication, I/O operations, and so on, concurrently.

Most of the rendering stages like styling and layout run on the main renderer thread in
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Figure 2.3: Page load time for apple.com. This timeline is obtained using the Chrome Trace
Event Profiling Tool [51].

the renderer process. However, parsing new HTML content gets its own thread similar

to painting and compositing. JavaScript also runs on the main renderer thread, but with

script streaming (new technique since Chrome version 41), JavaScript parses the scripts on

a separate thread. JavaScript also interacts with the UI thread in the browser process to

respond to user inputs. It may also spawn new threads called web worker threads to handle

computationally intensive tasks in the background. In addition to these, resource loading

and other network activities shown in Figure 2.2 are managed by I/O threads [48]. Figure 2.3

shows a snapshot of the page loading timeline for www.apple.com obtained using the Chrome

Trace Event Profiling Tool [51]. As we can see, multiple threads with different activities are

involved in the page loading process.

2.3 Challenges in Critical Path Analysis

There exist inter-dependencies between browser stages during the page loading process due to

the fact that these stages constantly interact with the DOM. For example, JavaScript might
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use document.write() to insert/modify HTML content. As a result, Styling cannot proceed

until DOM gets updated. To maintain coherency of DOM, access policies have been set by

the browsers. For example, HTML parsing is blocked when it reaches the <script> tag.

This tag (unlike <async> and <defer>) indicates that JavaScript might modify the DOM

nodes. Therefore, the browser executes JavaScript code and then resumes HTML parsing.

This ensures that the HTML parser accesses the updated DOM in the order that is declared

in the context. In another scenario, JavaScript might change the styling format of some

DOM nodes. This necessitates the browser to complete all ongoing CSS processes before

servicing the JavaScript request. Wang et al. [146] analyze these dependency policies and

categorize them into flow dependency, output dependency, lazy/eager binding, and resource

constraints. All these dependencies restrict the browser’s task scheduler to dynamically

rearrange the order of stages, which in turn affects the PLT.

1 <html>
2  <body>
3   <p id="first_par"> old content  </p>
4   <link rel="stylesheet" href="b.css"></link>
5   <script src="c.js"></script>
      ...
7  </body>
8 </html>

a.html
1  #first_par{
2   font-family:courier;
3   text-align:center;
     ...

b.css

1  document.getElementById("first_par").innerHTML = "new content";
2  document.getElementById("first_par").style.color = "blue";
     ...

c.js

downlad a.html parse a.html

download b.css

download c.js evaluate c.js

parse a.htmlblocking <script>HTML

CSS

JavaScript

Time

parse b.css

Figure 2.4: (Top) An example to illustrate the dependencies between the different activities.
(Bottom) Timeline showing page load activities. Black arrows represent the dependencies
between activities and the red dotted line shows the page load critical path.

Figure 2.4 shows a concrete example of how these dependencies influence the PLT. In this
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example, the browser initially downloads the main HTML file, a.html and then starts parsing

and constructing the DOM. The HTML parser encounters an external stylesheet, b.css, in

line 4 (<link> tag) and starts loading it. Then, it parses a synchronize JavaScript tag,

<script> in line 5, that references an external script, c.js. This tag blocks HTML parsing.

Compiling and evaluating the external JavaScript resource, however, cannot proceed since the

CSS file is still under evaluation. Due to this inter-dependency, JavaScript waits until b.css

is loaded and evaluated. Once the CSS evaluation is done, the blocking script (b.js) is fully

served and HTML parsing continues. Black arrows in the timeline in the bottom of Figure 2.4

represent dependencies between these activities. Ideally, if there were no dependencies, the

three activities could be executed in parallel and the PLT would be determined by the slowest

activity. However, in practice, the dependencies lead to a critical path as shown by the red

dotted line. In this example, HTML parsing and parts of CSS and JavaScript are all on

the critical path. It is easy to see that modifying this example (e.g. swapping line 4 and

5 in a.html to parse the script tag before the link tag or by manipulating the duration

of the activities) will affect the critical path composition and consequently the page load

time. These inter-dependencies between stages make analyzing the critical path and page

loading bottlenecks extremely challenging [146, 3, 160]. Essentially, when we consider the

large number of stage activities and multi-threaded executing paradigm of activities during

page loading discussed in the previous section.

For comprehensive what-if analysis on modern web browsers with parallel and convoluted ar-

chitecture, web researchers and browser developers have to use a suitable tool. Conventional

profilers for browsers like the Chrome profiler in Chrome developer tools [42] use traces to

record the duration of individual activity and do not quantify the effect of each activity on

the PLT. Similarly, general-purpose profilers such as gprof [101] only rank the most influen-

tial functions based on how much time the program spends on them and do not report the

potential impact of optimizing those functions. Although these profilers report an accurate

timing of functions, relying exclusively on these statistics is not sufficient. For example,
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optimizing long JavaScript functions when the rendering process is waiting for a file to be

downloaded will not improve the PLT [80]. On top of this, the developer needs to have

a deep understanding of the application source code to utilize these statistics for what-if

analysis. To identify the bottlenecks and their potential impact on PLT, we need to consider

the dependency between activities as well as the multi-threaded structure of the browser. In

the next section, we discuss our methodology to address the above challenges.

2.4 Causal Profiling

Causal profiling [80] is a novel method for finding performance bottlenecks and determining

the impact of optimizations on a program. The Coz profiler [61] is the original implementa-

tion of the causal profiler. It is based on the idea of virtual speedup to find the impact of an

optimization in a line of code (e.g., function call) on the total execution time of the program.

In fact, virtual speed up simulates the behavior of code optimization by artificially slowing

down other parts of the program.

Figure 2.5 illustrates the concept of virtual speedup 5 with a concrete example. The top

timeline shows the execution of the original program with two threads running functions

A, B, and C and the dependency between them. The middle timeline demonstrates the

effect of accelerating function A on the total execution time. The range indicated by speedup

shows the actual speedup of the program after accelerating function A by 20% (left) and 50%

(right). The bottom timeline presents the effect of virtually speeding up A. Whenever A is

executing, all other concurrent threads are paused for a certain amount of time depending

on how much one intends to accelerate A. For the left timeline, it is 20% of the function A,

and for the right, it is 50% of A. The difference between the execution time of the program

after virtual speedup and the original time of the program with all inserted delays (indicated
5this is a different concept than virtual causal profiling that we propose in the next chapter
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Figure 2.5: Illustration of the concept of virtual speedup and causal profiling.

by speedup) results in the same speedup as actually optimizing A (middle timeline). With

Coz profiler, one can vary the amount of virtual speedup in A and plot the corresponding

program speedup. The graph (also called what-if graph) for function A is shown in the top

right corner of the figure. Ideally, this graph is expected to align with the graph generated

from the actual optimization of function A.

2.5 COZ+: a High-performance Causal Profiler

A key contribution of this work is to utilize causal profiling to apply what-if analysis on

computation stages in a web browser. There are multiple advantages in using a causal

profiler over conventional profilers for web browsers. First is the support for multi-threaded

applications with a complex dependency graph that have relatively short execution times.

In this regard, it is a suitable candidate for page load time profiling since PLT takes a
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few seconds on average in current web browsers. Second, we do not need to extract the

dependency graph and apply graph processing to obtain the impact of components since

all potential impacts of optimizations can be derived from multiple page loads for different

speedups. Third, it captures the dynamic behavior of the application because it applies

virtual speedups directly into the execution path at runtime.

2.5.1 COZ+ Implementation

We originally intended to use Coz for what-if analysis of the Chrome web browser. However,

we soon learned that, while Coz works for simple benchmarks, it does not scale to large

software systems due to several design and implementation issues. Therefore, we build

COZ+, a comprehensive overhaul of Coz, which provides flexible profiling functionality for

large applications as well as robust performance analysis capabilities for the Chrome browser.

The original Coz profiler has approximately 4k LOC and we modify/add around 1k lines

to build COZ+6. COZ+ is a standalone profiler and does not modify the browser source

code. As a result, it can be applied to other web browsers as well and in future we will add

support for other browsers.

Figure 2.6 shows the architecture of the COZ+ profiler broken down by the original design

of Coz (shown in black) and our modifications (highlighted in red). The process begins

from the top right of the figure, where COZ+ starts reading debugging symbols of the target

application to construct a hash table that maps instructions to the corresponding source line.

This hash table is essential to keep track of the application’s threads at runtime. COZ+

constantly references this hash table to match the thread’s program counter with a line that

is selected for speedup. After processing the symbols and building a hash table, COZ+

creates a profiler handler and then executes the target application.
6COZ+ is available open source at https://gitlab.com/coz-plus/coz-plus.
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At runtime, whenever the application spawns a new thread (via pthread_create()), the

profiler handler creates a new sampler and attaches it to the thread (also valid for the

main thread). This is indicated by the purple boxes in the figure. Each sampler has a

timer that interrupts the thread with a fixed frequency. Upon receiving a signal, the thread

captures hardware/software counters (e.g. program counter and call stack) and saves them

into an appropriate data structure. This is implemented via the Linux perf events [46] API

which is a lightweight performance profiling tool in the Linux kernel. In order to control

processing overhead, samples are processed in batches. COZ+ processes samples (process

samples module in the figure) to determine if a thread is executing the line that is selected

for speedup. If it is, COZ+ suspends other threads for a certain amount of time or might

skip a thread if it is already in the wait state (e.g. acquiring a lock or I/O operation).

The thread suspension is handled via a relatively complex mechanism that is shown as the

insert delay module in the figure. Simply put, this module (1) calculates the amount of time

each thread needs to suspend and (2) prevents inefficient thread-to-thread communication

by orchestrating all suspensions through a global system. As indicated in the figure, we

keep this module untouched in COZ+. Finally, when the application terminates, the profiler

handler processes the data from the sampler’s counters and reports the result. This is shown

in the bottom left of Figure 2.6.

In the rest of this section, we discuss the different design and implementation deficiencies of

Coz that limits its scalability and describe how COZ+ overcomes these limitations.

Optimizing symbol loading. Before the program begins, Coz records the executable

debugging symbols (DWARF) of the program from linking format files (ELF) into a hash

table. Reading and processing all the debugging information of Chromium with over 11

million lines of C/C++ code and almost 270K source files is impractical as it takes hours

to read and allocate a large amount of memory at runtime. As a result, we only keep the

compilation units that contain source files related to the rendering stages and prune the rest
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(shown by a dotted red box at the top of Figure 2.6).

To scan the Chromium source code for footprints of the rendering stages, we take advantage

of Chrome traces [51]. Chrome traces record important browser activities including rendering

activities for profiling purposes [124]. However, it is not necessary to include the source file

for all of the low-level rendering activities in our case. It is sufficient to record debugging

symbol of activity a and discard activity b if a encompasses b (b is always called inside a).

For each stage, we select the set of non-overlapping top-activities that cover all stages. For

example, Styling contains several non-overlapping top activities such as CSS tokenizing, CSS

token parsing, updating DOM style, etc. Therefore, only the compilation units that contain

top rendering activities are fed to COZ+ and the rest are pruned.

In addition, we observed that Coz symbol processing module for compilation units maps

some of the debugging symbols to multiple lines. For example, Coz might map one inline

symbol to different lines if the file containing the inline symbol is shared between different

compilation units. We fix this issue in COZ+. More specifically, we first walk through

DWARF file headers in compilation units and exclude unnecessary files (those that do not

have top activities in our case) for line processing. With this optimization, the total symbol

processing time reduced from a couple of hours to less than a minute for each browser launch.

By combining the output of the symbol processor and those locations that are highlighted

as rendering top activities, we create a new hash table that maps debugging symbols to the

corresponding stages (shown by the red dotted box at the top left of the figure). This hash

table enables the profiler to quickly determine the executing stage based on the instruction

pointer throughout the execution. Compared to the hash table used in Coz, the COZ+ hash

table is lighter (in terms of both access time and memory) as it only hashes the stage of the

activities for relatively fewer symbols.

Flexible sampling. Sampling rate and batch size are two important factors that impact
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the performance and accuracy of causal profiling. The sampler frequency and batch size

are hardcoded in Coz. In COZ+, we make these parameters configurable. For example, if

the experiments are short (as in our case), then the sampling frequency should be high to

capture all activities. Contrary to this, sampling with high frequency in applications with

lengthy tasks does not have any advantage and increases the profiler overhead. Similarly,

large batches, on the one hand, reduce sample processing overhead, but on the other hand,

postpone the threads’ suspension time which in turn sacrifices the accuracy. Furthermore,

batch size and sampling frequency should be set by considering the number of active threads

in the application. Since samples are processed asynchronously per thread but they influence

all concurrent threads (in the thread suspension process), frequent sampling in applications

with many threads greatly perturbs the application’s normal execution path.

PLT takes only a few seconds and we observe that a large number of rendering activities

take more than 20 milliseconds, therefore we set the sampling period to 2 milliseconds to

have enough samples. Considering this sampling frequency and the number of active threads

(usually around 40 threads), we estimate the optimal batch size range to be from 6-15. Batch

sizes less than this range show pauses in the page rendering profile and those larger than

this range shift the suspension time to more than 30 milliseconds per activity, which drops

the accuracy significantly if the PLT is short. Therefore, for short web pages (PLT less than

4s), we set the batch size to 8 and for pages with longer PLT, we set the batch size to 10.

Sample processing adjustment. We modified the sample processing module (the red box

titled process samples in Figure 2.6) in COZ+ for two reasons – (a) The original algorithm

does not properly consider the sample’s call sites. For example, Coz might wrongly accelerate

a line if one of its call sites already exists in the symbol table even though neither that line

nor any of its call sites match the selected line for speedup. (b) It is not compatible with our

new symbol table. Algorithm 1 presents the pseudocode for COZ+ process sample module.

For every unprocessed sample, COZ+ looks up the instruction pointer in the previously
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created hash table. If the symbol exists in the table, it checks its stage with the selected

stage for speedup. If the stages match, the thread adds its local delay counter (which results

in suspending other threads). When there is no symbol for the sample’s instruction pointer,

it is possible that the sample is captured in low-level activities. In this case, COZ+ walks

through the sample’s call sites and looks up every call site in the symbol table. As soon as

it finds a relevant stage in the call stack, it adds local delay if they are a match. During

processing sample’s call sites, the procedure might find samples that belong to stages other

than the selected stage. In this case, processing proceeds to the next sample without inserting

any delay.

Algorithm 1 Pseudo-code for process samples module in Figure 2.6
1: procedure ProcessSamples
2: samples[]← get unprocessed samples
3: n← number of unprocessed samples
4: selectedStage← selected stage for speedup
5: for i← 1, n do
6: ip← GetInstructionPointer(samples[i])
7: s← FindStage(ip, hash)
8: if s 6= ∅ then . symbol exists in hash table
9: if s = selectedStage then
10: AddDelay()

11: continue . proceed to next sample
12: callchain← get call sites of samples[i]
13: m← length of callchain
14: for j ← 1,m do
15: s← FindStage(callchain[j], hash)
16: if s 6= ∅ then . symbol exists in hash table
17: if s = selectedStage then
18: AddDelay()

19: break . proceed to next sample

Multi-process profiling. Unfortunately, Coz could not profile multi-process applications.

The profiler handler can only attach to the initial process and manages the samplers of the

threads in the initial process. In our case, profiling the initial process (browser process) is
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not sufficient since almost all of the rendering activities reside in other processes (renderer

processes). Therefore, we add multi-process profiling feature in COZ+ to make it compatible

with most large applications. In our implementation, the profiler handler attaches to any

process that is forked at runtime. Since each of the initiated processes has its own address

space, they have to build a symbol table related to their loaded module addresses. Reading

and processing these compilation units for every forked process at runtime is infeasible as

it has significant overhead on the program. Therefore, COZ+ does symbol processing once

at initialization and creates a symbol table with absolute addresses within the compilation

units in the shared memory. Whenever a new process is forked, it copies the symbol table

from shared memory to its local memory and updates symbols with their respective address

offsets.

Metrics and reporting: To achieve fairness between web pages, we use one metric rep-

resenting PLT in all the measurements. This metric requires definite starting and ending

locations. Therefore, in COZ+, we turn on and off samplers by the browser’s events. The

added module starts sampling when the navigationStart event is fired, which is the time

the user enters the URL. However, developers can use other events such as onBeforeRequest

(to start profiling when the first HTTP request is sent) or onHeadersReceived (to start sam-

pling when the first byte is received) in this new implementation. The same procedure pauses

threads’ sampling. Since we are measuring PLT, we use the loadFinish event in our experi-

ments7. Some developers may prefer the above-the-fold metric (the time that first content is

shown on the screen), so they can use the FP (first paint) or FMP (first meaningful paint)

events. Due to variability in page load time (e.g. fluctuation in network or browser garbage

collection), COZ+ runs multiple experiments for each configuration. In order to save some

time and space for our study (our study has around 12000 experiments), unnecessary data

are eliminated from processing and reporting module.
7A few studies use DOMcontentLoad (the time when all the HTML parsing is done and DOM is con-

structed) but our metric waits until all the DOM objects are loaded.
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2.5.2 Validation of COZ+

To verify the correctness of the integrated modules on top of Coz, we log all captured samples

along with the timing report of the infused delays of all threads for 10 web pages. Then,

we match them with the timing reports that come directly from the Google Developer Tool.

For all the web pages, COZ+ was able to determine the executing stages 100% correctly.

The amount of added delay (speedup × sampling period × number of matched samples)

shows less than 15% difference with calculated delay from theory.

In addition, we evaluate COZ+ to see how well it can predict the effect of optimization on

the page loading process in a real scenario. Ideally, one should optimize the stages by a fixed

amount and then compare the PLT of a test web page before and after this optimization.

This approach is somewhat infeasible for the purpose of this work since it requires significant

research and development even for a small optimization in the current browsers. For this

reason, we intuitively show this by bloating the browser code to simulate an unoptimized

browser as our baseline.
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Figure 2.7: Accuracy of what-if analysis with COZ+ on a test web page, www.diply.com.
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As an example, we show our evaluations for the Scripting stage (since it turns out to be

the most influential stage for optimization in section 2.7). We choose www.diply.com as

a test web page because COZ+ estimated relatively large PLT improvement for this stage

(approximately 26% PLT improvement for 80% JavaScript speedup). We modify the Chrome

source code and slow down all Scripting activities such as script compiling, script executing,

and callback functions invoked via events or time-outs in the loading of the test web page

to 5× of its original time. The injected code keeps threads busy in CPU computations

rather than holding the threads in the wait state as it might invalidate the integrity of the

experiment in the presence of a job scheduler. Given the 5× extended version of the code as

a baseline, it is possible to report PLT improvement after 80% and 20% stage optimizations

(for the latter we compare the PLT with the 4x extended version of the code). Figure 2.7

compares the result from this simulation (red line) with the output of COZ+ on the baseline

(blue line). As we can observe, COZ+ is able to accurately predict the impact of optimization

and it shows less than 16% deviation from the simulation at 80% stage speedup and about

12% deviation at 20% stage speedup.

2.6 Experimental Setup

System. We conduct all the experiments on a MacBook Air with 2.2 GHz Intel Core i7

processor (4 threads with hyperthreading) with 4 MB cache and 4 GB RAM. The host OS is

64-bit Ubuntu 16.04 LTS. Our second system has Intel Xeon E5-2630v3 2.4 GHz processor.

This system has a total of 16 cores with 40 MB cache and 64 GB RAM hosting 64-bit CentOS

7.

Build setup. We use Chromium version 62.0.3167 and build it with Clang 3.8. We build

COZ+ with the same compiler version and configuration. To evaluate the impact of key com-

putation activities in page loading, we build content-shell target of Chromium, which contains
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all the web platform features including HTML5 and GPU acceleration but excludes some

of the Chrome-specific browsing features such as autofill, extension, and spellcheck. This

makes our results more general to be used by other browsers, particularly other Webkit-based

browsers. We include all the debugging symbols (is-debug=true and symbol-level=2) dur-

ing the build as it is necessary for COZ+ to build the symbol table.

Configuration. We disable Chrome security Sandbox (–no-sandbox) because it runs

Chrome in a protected environment and restricts COZ+ functionality on the browser. We

also disable Caching in our experiments to observe the effect of the network on PLT. How-

ever, we repeat our experiments with caching enabled and demonstrate the effect of caching

in section 2.7.2.

Experiment repeat. For each configuration, we load the page 10 times and report the

median and average along with the variance.

Network. The system is connected to 100 Mbps Ethernet. To measure browser perfor-

mance, we load web pages directly from the Internet, rather than using a local proxy. For

wireless experiments, we use Wifi with 64 Mbps downlink speed. To emulate various network

conditions, we use Linux traffic control (tc) [30] to limit bandwidth and network delay.

Web pages. Our test suite consists of top 100 web pages from Alexa Top 500 list in April

2018[12].

2.7 What-if Analysis

In this section, we investigate the impact of the computation activities on PLT using COZ+.

Then, we examine the effect of hardware, network connection, and browser caching on the

behavior of computation activities and how they, in turn, impact PLT.
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(a) HTML Parsing
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(b) Styling
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(c) Layout
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(d) Painting
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Figure 2.8: (a-e) – Observed PLT improvement by accelerating browser stages namely,
HTML parsing, Styling, Layout, Painting, and Scripting respectively for 4 popular example
web pages. (f) – Average PLT improvement of Alexa Top 100 web pages. The boxplot dis-
plays the distribution of PLT speedup values. The boxes extend from the first to the third
quartile (the 25th and 75th percentiles) with a line inside showing the median. Whiskers
above and below the boxes extend from the minimum to the maximum value.
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2.7.1 Impact of Computation Stages on PLT

We apply what-if analysis on all major page loading stages namely, HTML parsing, Styling,

Layout, Scripting, and Painting (which includes compositing and layering in our measure-

ments). To show the impact of these stages on browser performance, we run COZ+ to

virtually accelerate activities in these stages and record the improved PLT. We gathered

data for 10 evenly spaced speedups starting from 0% (no speedup) to 90% speedup (which

means computing the stage 10× faster) for all stages. For each of the web pages in our test

suite, we measure PLT 10 times for all pairs (s, x) : ∀s ∈ stages,∀x ∈ speedups and calculate

the average PLT with no speedup, PLT s,0. Then, we calculate PLT improvement for stage

s and speedup x, ∆PLTs,x, as follows.

∆PLTs,x =
PLT s,0 − PLTs,x

PLT s,0

Plots [a-e] in Figure 2.8 illustrate the potential PLT improvement (PLT speedup) by stage as

a function of speedup of that stage (stage speedup) for four popular web pages that exhibit

different workload characteristics. Note that plots have different vertical scales. The plots

also show the median and variability in the measurements. As we can observe, the benefit

of stage improvement contributes to a diverse pattern among the web pages.

Finding 1. For the most part, we see a linear improvement in PLT. This indicates that

there is not enough concurrency between stages during page load, otherwise, we expect to

see a change in the slope of the graphs. However, in some cases, we can observe that different

stage speedups have different impacts on web pages. For instance, in plot (e), if we optimize

Scripting activities in imgur.com and ebay.com by 30%, COZ+ estimates an average page

load performance improvement of about 8% and 9% respectively. However, if we can speed
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up this stage by 80%, imgur.com benefits 26% more than ebay.com.

Finding 2. Web pages also show divergent patterns between stages. For example, wikipedia.org

and github.com show marginal PLT improvement in Scripting in comparison to imgur.com

and ebay.com. On the contrary, COZ+ estimates them to achieve significantly higher PLT

improvements in Layout. This is related to the page content where one page could have

many static elements and complex DOM that spends most of the time in HTML parsing

and Layout while another page could have more dynamic elements to be evaluated by the

JavaScript engine. Moreover, the organization of these elements can affect these patterns

which are context-dependent.

Plots [a-e] show that the impact of stage optimization on PLT is content-dependent. How-

ever, to understand which of these stages is the primary bottleneck of browsers and fur-

thermore, to predict the benefit of optimizing that stage, we calculate the average PLT

improvement of Alexa top 100 web pages for each stage. Plot (f) in Figure 2.8 depicts PLT

speedup as a function of stage speedup for the Chrome browser. The error bar shows the

standard deviation of the mean.

Finding 3. We observe that JavaScript is the most influential stage compared to the

other stages. This plot indicates that if developers can optimize JavaScript by 80%, they

conceivably can improve browser page loading performance by almost 15%. Obviously, 80%

improvement in any stage requires a significant amount of effort but even a 20% speedup of

this stage can potentially reduce the average PLT by about 5% which can have a considerable

impact on user experience, browser popularity, and web business revenue.

Multi-stage analysis. In some cases, an optimization might target multiple stages. Due to

the inter-dependency between the stages, it is often difficult to estimate the final payoff based

on individual stage payoffs. To address this, COZ+ supports multi-stage optimization with

a distinct payoff per stage. For this purpose, COZ+ suspends concurrent threads whenever
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one of the stages from a list of given stages is executing. The amount of delay inserted is now

proportional to the speedup of the executing stage. This feature aids developers in advanced

decision making. One can now compare the benefit of two optimizations even if they do not

target the same set of stages and/or have different speedups in similar stages.

Now, we repeat the what-if analysis by accelerating multiple influential stages simultaneously.

The purple solid line in Figure 2.9 shows the projected PLT improvement when we accelerate

the top two influential stages (JavaScript and Styling) simultaneously during page load.

Here, 20% stage optimization refers to 20% speedup in both JavaScript and Styling stages.

Although COZ+ allows distinct speedup values for different stages, we choose the same

speedup to compare against single-stage analysis results. The dashed purple line is the sum

of single-stage what-if speedups of JavaScript (blue line) and Styling (red line).

Finding 4. The overlap of these lines indicates that optimizing JavaScript and Styling has

an additive payoff for the web pages in Chrome. We further track activities of these two

stages and observe that a majority of these activities (which are co-dependent) execute on

the same thread (i.e. main renderer thread) sequentially. While parts of script parsing run

on other threads (web worker threads), it turns out there is no dependency between the

former and Styling activities running on the main renderer thread.

Finding 5. We further extend our multi-stage analysis to include the third influential stage,

Layout. In this case, we do observe a gap between optimizing all the three stages together

compared to the sum of their individual speedups (black lines in Figure 2.9). This is due

to dependencies between activities of these stages with activities on the I/O thread (i.e.

network activities) that shift part of the critical path onto this thread.
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Figure 2.9: Impact of accelerating multiple stages simultaneously on PLT. The solid lines
correspond to accelerating single- or multi-stages using COZ+. The dotted lines are the sum
of the individual stage speedups.

2.7.2 Impact of PLT-variant Factors

In this section, we examine the impact of key factors that influence PLT such as system ar-

chitecture, network connection, and browser caching optimization on derived what-if graphs.

Evaluation on a different system. Given that system architecture influences computa-

tion activities, it is important to identify how much of the presented what-if results depend

on the underlying hardware [127]. Accordingly, we repeat the what-if analysis on our second

machine (the system with Intel Xeon processor). Figure 2.10 shows the single-stage what-if

analysis of Alexa top100 web pages.

Finding 6. Comparing this with the results from MacBook air (Figure 2.8(f)), we observe

fairly similar trends for all the five stages (albeit higher variability in PLT). This implies that

stage optimization payoff is fairly unrelated to the system architecture. Note that, while the

impact of stages on PLT is consistent between the two systems, the web pages are loaded
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20% faster on average on the second system.
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Figure 2.10: Average PLT improvement of Alexa Top 100 web pages on a system with Intel
Xeon E5-2630v3 processor.

Network connection. An interesting question that arises is: Does the network have an

impact on the outcome of the what-if analysis of computation stages? In order to evaluate

network effects on potential optimization of the above stages, we conduct a similar experi-

ment on the most influential stages from the previous analysis (namely, Scripting, Styling,

and Layout) under different network conditions. We test different network connections, WiFi

connection, and repeat the experiment on a smaller subset of the web pages (40 web pages

randomly picked from our initial test suite). Network bandwidth and network delay are two

factors that primarily influence resource loading and potentially the critical path. So, we

emulate multiple network conditions by controlling these two network-dependent parameters.

The left plot in Figure 5.1 shows how network bandwidth contributes to what-if analysis of

the most influential stages. Different line styles are used to differentiate different network

bandwidths, namely 1 Mbps, 8 Mbps, and 16 Mbps, and different colors are used for the 3

critical stages. Note that even though what-if graphs are shown with respect to the same
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Figure 2.11: Effect of varying network bandwidth (left) and network delay (right) on PLT
speedup for the top 3 influential stages on 40 web pages of the test suite.

baseline (i.e. 0 PLT improvement with no speedup), web pages have different baseline PLT

under different network connections. For 16 Mbps, 8 Mbps, and 1 Mbps, the average PLT

are 7.8, 8.9, and 12.6 seconds respectively.

Finding 7. An observation from this figure is that network bandwidth does not change

the pattern of what-if plots and the order of the stages in terms of effectiveness. Scripting

remains the most influential stage followed by Styling and Layout, respectively. Moreover,

this figure indicates that improving network bandwidth increases the potential impact of

computation stages on PLT which is not surprising since it likely increases the fraction of

the computation stages on the critical path.

Finding 8. Network bandwidth has roughly the same contribution in the top three stages.

For instance, the impact of Scripting on PLT is 1.7× more than Styling with 80% stage

speedup under 1 Mbps bandwidth while this ratio remains almost constant (2×) at 8 Mbps

bandwidth and (1.8×) at 16 Mbps. In general, stages’ what-if graphs scale equivalently by

varying the network bandwidths.

Finding 9. This plot also shows stages’ what-if graphs exhibits a greater boost in PLT

improvement (y-axis) by increasing network bandwidth from 1 to 8 Mbps in comparison to
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increasing bandwidth from 8 to 16 Mbps. For example, Scripting affects PLT roughly 60%

more when bandwidth increases from 1 to 8 Mbps (by 7 Mbps), but only around 7% when it

increases from 8 to 16 Mbps (by 8 Mbps). Contrasting this with the result from the previous

experiment (100 Mbps connection), increasing the network bandwidth has an insignificant

impact on what-if graph of stages on high-speed connections. This reflects that computation

stages in the Chrome browser are mainly constrained by the computing power of the system

and its dependency to other stages rather than downloading resources for networks with a

bandwidth of about 8 Mbps and higher.

Results from different network delays are depicted in the right plot of Figure 5.1. We add

50 ms, 100 ms, and 200 ms delays to packets to increase the page RTT. The average PLT

are 7.9 seconds (50 ms), 8.7 seconds (100 ms), and 10.4 seconds (200 ms).

Finding 10. As we can see, increasing the network delay diminishes the potential impact

of the most influential stages. Even though we add 200 ms delay to web pages which is

almost 5× the average RTT of our test suite, PLT speedup does not decrease significantly.

For example, the PLT speedup drops by only 13% for 80% speedup in Styling.

Finding 11. Similar to the bandwidth experiment, network delay does not change the pat-

tern of graphs meaning latency in fetching resources on the critical path is almost consistent

between stages.

Caching. We enable caching and repeat the same experiment. The generated what-if

graphs are almost identical for all the stages in comparison with caching disabled experiments

since caching has a minor influence on PLT at 100 Mbps network connection (less than 5%

for the majority of web pages in our test suite) indicating that computation activities are the

bottleneck. So, we examine the caching effect under a slower network connection (1 Mbps).

The average PLT without caching is 12.4 seconds and with caching is 8.0 seconds.

Finding 12. Figure 2.12 shows that PLT improvement drops significantly by disabling

37



caching. As we can infer, an optimization targeting computation activities can approxi-

mately double its payoff by enabling caching at 1 Mbps network connection. Notably, the

COZ+ what-if graphs with caching enabled reflect approximately similar stage impacts in

comparison to stage impacts under high-speed connection. This is likely because almost all

of the referenced objects before LoadFinish event are cached and retrieved quickly, so again

computation activities build up the critical path.
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Figure 2.12: Effect of caching on what-if graphs under a slow connection (1 Mbps).

2.8 Related Work

Profiling and performance analysis tools. Majority of the browsers have their own

profiler. Gecko profiler [45] for Mozilla Firefox and Chrome profiler [51] for Google Chrome

are examples of such profilers. These profilers provide statistics about task timing, JavaScript

call graph, memory usage, and network activities. Chrome takes a step further and collects

a set of web-assistant tools under Chrome DevTools that guide web developers to diagnose

their web pages [42]. The Chrome DevTools performance analyzer provides a brief summary
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of the time spent on each of the stages and can also graphically show limited dependencies

between fetched resources. However, they are not adequate for characterizing the behavior

of the critical path and shift the what-if analysis to the user.

In addition to dedicated profilers, there are multiple tools that can assist users in recognizing

the performance bottlenecks of web pages. PageSpeed Insights [41] is a web-tool that mea-

sures the above-the-fold load time and full-page load time for a given web page. Depending

on the performance headroom of a web page load, it offers some suggestions (from a list of

well-known web page optimizations such as “elimination of render-blocking JavaScript”) on

how that page can be improved. PageSpeed does not take into account network-dependent

activities in performance analysis. Also, in the critical path exploration, it excludes lazy/ea-

ger binding dependencies and resource constraints as well as dependencies involving cached

objects [146]. Yslow [59] is a similar tool that statically analyzes the page by crawling the

DOM and capturing the information of DOM objects (size, whether it is gzipped, etc.).

Then, it grades the page based on 23 pre-defined rules related to objects information and

provides performance improvement suggestions. As far as we know, none of the existing

tools are able to provide a quantitative and accurate what-if analysis as we offer for page

loading.

Critical path analysis. WebProphet [110] reveals dependencies between objects via per-

turbation of network loads. It systematically delays individual object download time and

builds parental dependency graph (PDG) for a web service. This framework can predict PLT

based on PDG and client/server network conditions. Their basic object timing extractor

is limited to network activities such as DNS lookup, establishing a TCP connection, and

HTTP request/receive. It does not take into account the impact of computation activities

in dependency extraction or in performance prediction.

The closest research to our measurement setup is Wprof [146], which is able to demystify

page load performance. Wprof assigns a unique ID to the resources and individual loaded
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objects. It then derives a dependency graph from a set of pre-defined resource constraints and

dependency policies between only those activities that are associated with loaded objects.

Besides extracting the dependency graph, it breaks down the critical path of 150 web pages

from computation and network aspects. Further examination of the computation activities

(authors observe that computation activities make up 35% of the critical path), discloses

HTML parsing costs more than Javascript and rendering stages in the critical path. This is

in contrast to our findings that show that Javascript and Styling play a more critical role.

Apart from dissimilarities in experimental setup 8, we believe the time breakdown of the

critical path does not essentially manifest the impact of optimization since a component’s

optimization could affect the execution order of activities in an event-driven application.

Nejati et al. [116] extend Wprof for mobile devices and exploit the same methodology to

compare non-mobile browser with mobile browser page load process. The key takeaway

from the critical path breakdown is that computation activities outweigh network activities

in the mobile browser contrary to the desktop browser, particularly for mobile websites.

Even though they have analyzed page load critical path composition, similar to [146], it

is debatable to derive what-if analysis based on static examination of the critical path.

In addition to this limitation, [116] does not provide evaluations on rendering stages like

painting or layout.

Prior to [116], Wang et al. studied the slowness of page loading on smartphones [148]. The

authors use a fairly similar approach to Wprof to record the dependencies and timestamps

of the main functions for IR operations (computation stages) as well as resource loading for

10 most visited web pages. Despite the fact that they have tested on mobile devices with

3G and emulated Ethernet, their observations show significant divergence with our findings.

As an example, with 32× speedup of Layout, they only observed 1.4% improvement in PLT

which is in contradiction to our findings.
8[146] uses an older version of Chrome, v.22, which does not support some of the major page loading

optimizations like Blink threaded HTML parser.
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The advantage of causal profiling over previous approaches is that it eliminates dependency

graph extraction, which in turn improves the reliability of measurements. This is crucial

since existing tools do not take into account low-level inter-dependencies [146]. In addition,

with causal profiling, it is possible to generate a quantitative what-if analysis of the page

load considering the dynamic behavior of the critical path.

2.9 Conclusions

In this chapter, we investigate and prioritize the bottleneck activities in modern web browsers.

We primarily attempt to demonstrate the impact of these activities on the browser’s page

loading performance. To provide a meaningful estimation of how much benefit can be

achieved by improving the critical activities, we present COZ+, a lightweight and customized

profiling tool for current browsers. Incorporating COZ+ in the Chrome browser reveals that

Scripting is the most influential stage for improving PLT for the Alexa top 100 most visited

web pages. Our results show that improving this stage by 40% can potentially improve the

performance of the Chromium browser by almost 8.5%. We also observe, contrary to some

of the previous studies, that HTML parsing has a small contribution to PLT. Furthermore,

our evaluation indicates that network conditions and caching influence the impact of compu-

tation activities. However, under typical network conditions (e.g. 8 Mbps connection), they

have a negligible impact since the browser is bottlenecked by the computation activities.

This would be of greater importance in mobile browsers since mobile devices have limited

computing power. In our next work, we extend COZ+ to mobile devices and analyze the

mobile browser’s limitations using a similar what-if style analysis. We believe COZ+ will

be a useful tool and analysis technique for web researchers to prioritize their efforts on the

most influential page load activities.
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Chapter 3

Virtual Causal Profiling

Causal profiling has shown promising results in performance analysis. As we observed in the

previous chapter, it is a powerful technique for what-if scenarios and pinpointing optimiza-

tion opportunities in large and parallel applications such as web browsers. However, in some

cases, for instance cross-platform application development, the developer needs to test the

outcome of an optimization on various target platforms before integrating it into the prod-

uct. Therefore, the PA has to cover a wide range of systems and configurations in a short

amount of time. Unfortunately, the current state of causal profiling cannot accommodate

this demand. In this chapter, we leverage our profile-based technique for what-if analysis

and introduce virtual causal profiling. Similar to the concept of virtual machines, the virtual

causal profiler performs performance runs in a virtual environment that mimics the behavior

of the target system. Developers can use virtual causal profiling to run performance tests

for a variety of systems and settings on a single machine (like multiple instances of VMs on

one host). They can also use any system they own as a host, allowing them to divide the

profiling workload over all available machines (multi-host), resulting in a faster PA time.
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3.1 Introduction

Profiling tools are fundamental to the system design and implementation process. They

serve several functions such as pinpointing bottlenecks, guiding optimizations, and pruning

design space in the overall goal to improve system performance. Causal profiling is one

such powerful profiling technique that has been successful in analyzing the performance

bottlenecks of large and complex software systems such as the Chrome browser [123] and

SQLite [80].

However, profiling can also be time-consuming and pose limits on cross-platform application

optimization. Performance analysis on a diverse set of systems and configurations requires

access to a broad range of devices. Such a setup is challenging to achieve in an academic

research lab which restricts researchers to scope their profiling to a small number of systems.

This problem seems to be fundamental. That is, it seems like the only way to increase the

coverage is to purchase and use a larger number of devices. Using Virtual Machines (VMs) in

public cloud infrastructures, such as Amazon Elastic Compute Cloud (EC2) does not seem

to be a feasible solution as the hardware specification of a VM can be different from that of

the actual device, such as smartphones, tablets, desktops, laptops, and Chromebooks. This

dissimilarity can affect the result of profiling to an extent where the conclusions cannot be

relied upon. Cycle-accurate simulators and full-system emulators such as gem5 [70], QEMU

[69], and Android Studio emulator [13] provide more accurate timing and performance char-

acterization of applications. Although promising, instruction set simulators are prohibitively

slow for full software stack performance analysis [138, 90, 143] and infeasible for what-if anal-

yses under different scenarios that require a large number of experiments [80, 123]. Besides,

conventional profiling tools typically do not work on top of such simulators [143].

In this chapter, we argue that while this problem is fundamental in the general case, we show

that causal profiling provides a unique opportunity to address this using virtual performance
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analysis. More specifically, we make a fundamental observation: the result of causal profiling

only depends on the relative execution speed of the application code segments. Indeed, this

relativity is at the core of causal profiling as it measures the potential speedup contributed by

a program segment by slowing down all other code segments. Therefore, we can emulate the

hardware configuration of, say, an ARM smartphone on an x86 laptop for causal profiling by

controlling the relative performance of various resources such as CPU, network, and storage.

In this chapter:

1. We present an analytical model and proof of concept for causal profiling, a notable

missing piece in the original paper. Then, we prove a necessary condition for virtual

causal profiling on a secondary device.

2. Building on the above theory, we design VCoz, an infrastructure for virtual causal

profiling that measures the impact of program speedups on various devices through

hardware tunning of the host system. We implement a prototype of VCoz and port

the causal profiler (originally designed for x86 architectures) to mobile devices (based

on ARM) to validate our theory and prototype.

3. We test VCoz’s cross-platform application optimization capabilities on multiple bench-

marks with different workloads with MacBook Air as the host device and Nexus 6P as

the target device. The experiments demonstrate that VCoz can predict the result of

causal profiling with less than 16% variance while the original Coz profiler [61] misses

the optimization opportunities.

3.2 Virtual COZ

Even though Coz works in practice and the concept of causal profiling is comprehensible

by examples, the authors do not provide a proof of their method in the original paper [80].

44



Therefore, in this section, we first prove the concept of virtual speedup and causal profiling

with a mathematical paradigm. Then, we extract the critical condition for soundness of

causal profiling which is the retention of the relative speed of code segments. Following that,

we describe our methodology to translate this theory to practice.

3.2.1 Theory and Mathematical Formulation

Suppose we have a program that runs on N threads. We can then divide the program into

smaller code segments such that each segment (e.g. a function or basic block) runs entirely

on only one thread. However, there might be dependencies between code segments, creating

a critical path that determines the execution time of the program.
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start finish

Thread 1

Thread 2

Thread 3

time

Figure 3.1: An example timeline for a program running on 3 threads. Edges show dependency
between code segments in the program.

Figure 3.1 illustrates an example program with 3 threads and 9 segments and the dependen-

cies between them. Generally, for any code segment, s, we define S(s) and F (s) as the start

and end times of s, E(s) = F (s) − S(s) is the execution time of s, and D(s) is the set of

segments that s depends on. For any s, F (s) = E(s) + max(F (D(s)). Therefore, the total

execution time, T is given by, T = E(b5) + max(F (b4), F (c2)) for the program in Figure 3.1.

Without loss of generality, we present the proof for the program in the figure for readabil-

ity. However, it applies to any program with multiple threads and arbitrary dependencies
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between code segments.

Recursively expanding the above equation and assuming the initial segment starts at time 0

(S(b1) = 0), we have,

T = E(b5) + max



E(b1) + E(a1) + E(a2) + E(c2)

E(b1) + E(a1) + E(b4)

E(b1) + E(b2) + E(b3) + E(b4)

E(b1) + E(b2) + E(c1) + E(c2)


(3.1)

Now, let us speed up an arbitrary segment s by ε seconds. The new execution time, Tnew,

can be calculated from the above equation by updating E(s) (i.e., subtract ε). We state that

Tnew is equal to Tvirtual − ε where Tvirtual is defined as the total time derived by adding ε to

all the segments in Equation 3.1 that a cutset (red line in Figure 3.1) passes through except

the selected segment for speedup. In our example, if we desire to speedup segment a2, we

add ε to E(b4) and E(c1) but keep E(a2) unchanged to calculate Tvirtual.
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Tvirtual = E(b5) + max



E(b1) + E(a1) + E(a2) + E(c2)

E(b1) + E(a1) + E(b4) + ε

E(b1) + E(b2) + E(b3) + E(b4) + ε

E(b1) + E(b2) + E(c1) + ε+ E(c2)



= E(b5) + max



E(b1) + E(a1) + E(a2)− ε+ E(c2)

E(b1) + E(a1) + E(b4)

E(b1) + E(b2) + E(b3) + E(b4)

E(b1) + E(b2) + E(c1) + E(c2)


+ ε

= Tnew + ε (3.2)

Using 3.2, program speedup, S, relates to Tvirtual by,

S =
T − Tnew

T
=
T − (Tvirtual − ε)

T
=

(T + ε)− Tvirtual
T

(3.3)

Figure 2 illustrates the above mathematical formulation of speedup that underlines causal

profiling [80]. Given this definition of speedup, the theorem that lays the foundation for the

proposed virtual infrastructure is as follows.

Theorem. If the execution time of all the segments is scaled by a constant factor α (i.e.

E(s∗) = αE(s)) and the speedup in a selected segment is also scaled by the same factor (i.e.

ε∗ = αε), then the new program speedup, S∗ is the same as S and given by
(T + ε)− Tvirtual

T
.
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Proof. We can prove the above theorem by extending Equation 3.1. Since the execution time

of all the segments is scaled by α, the new execution time of the program, T ∗, is now given

by,

T ∗ = αE(b5) + α.max



E(b1) + E(a1) + E(a2) + E(c2)

E(b1) + E(a1) + E(b4)

E(b1) + E(b2) + E(b3) + E(b4)

E(b1) + E(b2) + E(c1) + E(c2)


= αT (3.4)

Similarly, we can derive T ∗
new = αTnew and T ∗

virtual = αTvirtual (omitted due to space con-

straints). Note that ε is also scaled by α. Finally, combining Equations 3.3 and 3.4:

S∗ =
(T ∗ + αε)− T ∗

virtual

T ∗ =
(T + ε)− Tvirtual

T
(3.5)

3.2.2 VCoz: Theory to Practice

The proved theorem is important and functional as it asserts that casual profiling of an

application on one system will be similar to the causal profiling of that application on another

system if all the code segments run x% faster or slower. In practice, every code segment is

built from a series of CPU, memory, and I/O operations. So, we can hypothetically split a

code segment into smaller slices of only CPU or memory or I/O operations as demonstrated

in figure 3.2 by different colors. In figure 3.2(a) two example code segments (A and B)

are run on a target device. The relative execution time of these two code segments is
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78/56 = 1.4. Figure 3.2(b) shows the same two segments executed on the host device

with dissimilar hardware components. In this example, the host has a processor that runs

20% slower (αcpu = 1.2), a memory with 50% slower bandwidth (αmem = 1.5), and I/O

systems (including disk, network, etc.) that operate 2× faster (αio = 0.5). Therefore, the

relative execution time of the code segments is different on the host (84/71 = 1.2), leading to

incompatible causal profiling of the target device. To achieve a similar relation, the different

slices in the code segments have to retain an identical scaling factor from target to host.

A

B

78 ms

56 ms

A

B

A

B

A

B

84 ms

71 ms

117 ms

84 ms

37 ms

28 ms

(a) (b)

(c) (d)

CPU Memory I/O

Figure 3.2: Two code segments A and B (split into CPU, memory, and I/O slices) running
on (a) target device; (b) host device with different hardware component speeds; (c) host
device with all hardware components executing 50% slower than the target device; d) host
device with all the hardware components executing 2× faster.

In figure 3.2(c), the CPU and I/O on the host are adjusted to match the speed of memory,

i.e., the processor runs 25% (αmem/αcpu) slower and I/O systems 3×(αmem/αio) slower. This

adjustment preserves the relative execution time of the two segments on the target device

since all the slices scale by α = αmem = 1.5. Figure 3.2(d) demonstrates another adjustment

to the host hardware to conserve the relative execution time of code segments but this time,

both segments scale by α = αio = 0.5. For this case, CPU and memory are adjusted to

operate 3× (αcpu/αio) and 2.4× (αmem/αio) faster, respectively.
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Based on this idea, we design and implement a prototype of VCoz that configures the hard-

ware components of the host system to simulate the causal profiling of target devices. Figure

3.3 presents the design of VCoz. First, VCoz estimates the performance scaling factor of

each component on the host. To do so, it either compares spec of two hardware components

or runs performance tests where micro-benchmarks stress distinct hardware resources on

both systems and compares the results. For any pair of target and host, the stress tests are

performed only once, and the measured scaling factors are stored in a database to eliminate

the need for future access to the same devices.

component tuning

CPU Memory I/O

Match host & target hardwaretarget device
(spec)

what-if graph

applicationrun application 
with 

Coz profiler 

VCoz

Performance tests
scaling factors

systems spec
databasescaling factors

normalization

normalized factors

Figure 3.3: Design overview of VCoz containing inputs, modules, and outputs of each module.

After estimating the scaling factor of each hardware component, VCoz optionally normal-

izes them. Normalization handles two scenarios that arise on real devices. (i) In practice,

sometimes the host system does not provide a knob for tuning a hardware component (e.g.

memory). In this case, all the other resources are normalized by a scaling factor determined

by the untunable component. (ii) The scaling factor of a component can be beyond the range

of configurable values. For example, consider the CPU, and let’s say it has to be scaled by
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5×. However, the attainable CPU frequency on the host may limit the scaling to at most

4×. In this case, VCoz divides all the resources’ (e.g. CPU, memory, and I/O components)

scaling factors by 5.

Component tuning adjusts the hardware component according to the normalized factors. In

our prototype, we normalize by memory since most of the systems do not expose a knob to

change RAM operating frequency. Otherwise, VCoz changes RAM frequency either in BIOS

or OS-level. For CPU, we modify the clock speed of all the cores using the CPUfreq governor

in the Linux kernel [21]. For I/O, we adjust the interface of each I/O peripheral. Currently,

VCoz configures the network interface using Linux traffic control utility (tc) [30] to restrict

the uplink and downlink bandwidth of the system. It can also be easily extended to support

other I/O components such as disk (using hdparm [29] in the Linux kernel). Once all the

hardware components are tuned, VCoz runs the original Coz profiler on the application to

generates a what-if graph. According to the theory, the host generated what-if graph will be

the same as the one generated by Coz on the target device.

3.3 Porting Coz to Mobile Devices

The existing implementation of Coz is designed for and tested on desktop applications (e.g.

applications running on x86 systems) that host the Linux OS. Therefore, the current version

is not compatible with the majority of smartphones and mobile devices in the market. To

improve the usability of this profiler among mobile users and also to use it later in this

chapter for verification and accuracy measurements, we leverage Coz to support profiling

of the applications that run on Android devices with ARM architectures. However, this

extension is non-trivial and requires substantial re-engineering and troubleshooting of Coz

and its dependent libraries. Figure 3.5 shows an overview of the Coz profiler and its inter-

action with the dependent libraries. The Coz bootstrapper in the figure interposes the entry
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point of the target application (__libc_start_main) to initiate a profiler instance under the

same process. This profiler instance uses third-party libraries (e.g. libdwarf.so) to read

and process debugging information of the target application and C++ Pthread library to

interpose Pthread APIs. It also invokes Linux perf_event system calls under the hood to

monitor and profile the target application.

target application COZ 
profiler

perf_event
syscalls

COZ bootstrapper
(python) 

libpthread.solibdwarf.so libelf.so

__libc_start_main wrapper

dynamic libraries

Figure 3.4: Overview of COZ profiler and dependent libraries.

To safely port Coz to Android devices, we rewrite its bootstrapper for two main reasons.

First, the current code is not compatible with native Android apps. For instance, Google

Android Bionic [25], the standard C library for the Android operating system, uses different

entry points (e.g. __libc_init) and startup procedure than Linux standard C library.

Second, most of the bootstrapper is written in Python which is not a standard language for

Android systems. So, we rewrite the code in C++ and generate a native executable that

can be safely launched directly by Android applications or via ADB shell without requiring

a Scripting Layer for Android (SL4A).

Google’s Android development kit (NDK) [14] is the official toolset for porting C/C++

programs to Android devices, however, not all of the C++ APIs and libraries for GNU/Linux

are implemented by Android NDK. Therefore, the majority of our effort is to provide a

52



workaround for missing functionalities in the Coz code and third-party libraries. In some

cases, we implement the missing functions (for example, std::to_string(), an STL function

used in libelf.so and libdwarf.so) or replace them with compatible implementations.

For instance, we use stack tracing APIs implemented in stdio.h instead of execinfo.h.

The most challenging part, however, is to find a workaround for Pthread APIs since Coz

interposes several Pthread APIs to handle thread suspension in the target application. Two

fundamental issues with Pthread APIs prevent the current implementation of Coz to be

ported to Android devices. 1) The entire Pthread API is not supported on Android devices.

That being said, we remove all associated modules that belong to unsupported Pthread

APIs (such as sigwaitinfo, sigtimedwait, pthread_tryjoin_np, pthread_sigqueue,

pthread_timedjoin_np, pthread_barrier_wait) from the code. This pruning does not

invalidate the functionality of the profiler since valid Android applications do not have calls to

the unsupported Pthread APIs. 2) Pthread APIs are directly implemented through C/C++

library on Android rather than a separate Pthread library as in GNU/Linux systems. Thus,

the existing implementation for loading and interposing symbols of the Pthread dynamic

library, i.e. using dlopen() and dlsym() to load libpthread.so, is not compatible with

Android. We fix this issue by providing Android-compatible wrapper functions for loading

Pthread symbols.

Android NDK contains the implementation of the majority of the Linux perf APIs for An-

droid devices. Since Perf APIs use kernel syscalls and read hardware counters, we have to

validate and inspect their functionality on Android devices. Accordingly, we sample hard-

ware counters used by Perf APIs in Coz on the Nexus 6P mobile with ARM v8 processor for

multiple benchmarks in the Phoenix benchmark suite [131]. We then compare our log file

with the log file from the same benchmarks on the x86 system hosting Linux OS and confirm

the compatibility of the Perf APIs used in Coz as well as the functionality of the entire Coz

sampling modules. Finally, we modify the Coz build and configuration files and pass specific

switches and configurations for building ARM targets to the Android NDK compilers.
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3.4 Experimental Setup

To validate our discussed hypothesis (Section 3.2) we run Coz [61] directly on the target

device and compare it against VCoz for different applications. Figure 3.5 shows our testbed

for this validation. The code snippet spawns two threads where each thread invokes a

different benchmark. The top diagram in Figure 3.5 shows the program execution timeline

for this testbed. We select the line corresponding to the slowest benchmark (i.e. line 10 which

belongs to thread 2) for speedup. Consequently, Coz generates a what-if graph similar to

the one shown at the bottom of the figure.

benchmark 1thread 1

thread 2 benchmark 2

Test case run timestart end

1 void f1(){
2 // benchmark 1
3 }
4 void f2(){
5 // benchmark 2
6 }
7 Int main(){
8 Pthread t1, t2;
9 Pthread_create(t1,f1);
10 Pthread_create(t2,f2);
11 Pthread_join()
12 return 0;
}

line speeduppr
og

ra
m

 sp
ee

du
p

Figure 3.5: Description of test-case: the baseline code, program execution timeline (top
diagram), and expected what-if graph generated by Coz profiler (bottom diagram).

We integrate benchmarks with different types of workloads in our testbed: CPU-intensive

(LU and Cholesky decomposition from Splash [133]), memory-intensive (stream benchmark

[36]), and I/O-intensive (network client-server benchmark). Note that benchmarks can have

a mix of all three types of instructions (CPU, memory, and I/O). For example, Cholesky

decomposition contains memory load/store operations to read/write matrices. However, to

examine the impact of hardware component tuning in VCoz, we consider benchmarks to
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primarily stress one component.

Benchmark Nexus 6P MacBook Air ratio (αcpu)
Matrix Multiply 3.1 s 1.5 s 2.1

FFT 56 ms 23 ms 2.4
LU 2.3 s 1.0 s 2.3

Word Count 38 s 16 s 2.3
Cholesky 1.1 s 450 ms 2.4
PCA 690 ms 300 ms 2.3

Table 3.1: Execution time of 6 CPU-intensive benchmarks on Nexus 6P and MacBook Air.

The target device is Nexus 6P with quad-core ARM Cortex-A53 + quad-core ARM Cortex-

A57 processor, and the host device is MacBook Air 2.2 GHz Intel Core i7 processor. Both

systems have Low Power Double Data Rate (LPDDR) dual channel memory operating on

1600MHz, so they are expected to have similar memory performance, i.e., αmem = 1. The

processors, however, have different architecture, so VCoz needs to find the CPU scaling

factor. For this reason, VCoz runs multiple CPU-intensive benchmarks (from Phenoix [131]

and Splash [133] test suites) and compares the execution time on the host and target devices

as shown in Table 3.1. We observe that the host x86 processor computes approximately 2.3×

faster than the mobile ARM processor (i.e., αcpu = 2.3). We consider the network interface

as an example of I/O in this work. For each experiment, we try 20 different speedups from

0 to 100% and 4 to 8 profiling runs for each speedup.

3.5 Results

We compare the results of virtual causal profiling (VCoz) with the causal profiler (Coz) that

runs directly on the device to assess the functionality of VCoz and evaluate the accuracy of

our prototype. Figure 3.6 shows the corresponding what-if graphs in purple and blue lines,

respectively, for various combinations of benchmarks that stress different hardware resources.

Additionally, we also compare them against the results generated by Coz on the host x86
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system (yellow line) to evaluate the impact of hardware tuning.
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Figure 3.6: Comparison of VCoz and Coz on host and target devices for different test cases.
Plots from left to right: 1) CPU frequency tuning on a program with two streams of compute-
heavy code. 2) Memory and CPU heavy code segments. 3) I/O and CPU heavy code
segments. Both devices are connected to 100 Mbps network connection. 4) I/O and CPU
heavy code segments. Host is connected to 100 Mbps network connection and Nexus 6P is
connected to 17.7 Mbps.

3.5.1 CPU and Memory Test-cases

CPU-CPU. We first consider benchmarks with a similar workload in the testbed (section

4.5). We run two different CPU-intensive benchmarks namely, Cholesky and LU decompo-

sition, concurrently and the results are shown in the leftmost plot in Figure 3.6. As we can
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observe, VCoz predicts the result of causal profiling with at most 13.6% variance. Moreover,

the graphs generated by Coz on the host (no CPU frequency tuning) and VCoz with the

host CPU frequency tuned to 1.5 GHz are comparable to VCoz with accurate CPU tun-

ing (900 MHz), which indicates that CPU tuning is not effective for this test case. This

supports our theorem since scaling CPU by any factor would homogeneously scale both exe-

cution paths, maintaining the relative speed of code segments and hence producing identical

what-if graphs.

CPU-Memory. In this test case, we run the stream benchmark on one thread and LU

decomposition on the other to evaluate a combination of two different workloads: memory-

intensive and CPU-intensive. According to Figure 3.6, VCoz predicts the program speedup

on the target device with less than 15.8% error on the host system while Coz incurs more than

50% error. Note that CPU and memory have different scaling factors in our experiments.

Therefore, this test case highlights the limitation of Coz in profiling devices where CPU code

segments execute at different relative speeds compared to memory code segments, thereby

violating the necessary condition for causal profiling.

3.5.2 I/O Test-cases

Now we evaluate the behavior of VCoz when the program has I/O operations. Here we

run a network-heavy benchmark (server-client data streaming) as an example of an I/O-

intensive workload. On the concurrent thread, we run a CPU-intensive benchmark (LU

decomposition).

Matched network. First, both systems are connected to the same network (100 Mbps),

which allows VCoz to match the I/O speed without adjusting the network module of the

host system (i.e., αio = 1). So, it only adjusts the CPU frequency. As we can infer from the

third plot in Figure 3.6, VCoz predicts the result of Coz on the device with high precision
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(less than 9.1% variance). Meanwhile, Coz is unable to uncover the potential impact of

optimizations on the target device since it incorrectly predicts marginal program speedup.

Different network. Now, we connect the Nexus 6P to a slower network connection, 17.7

Mbps. This is the global average network connection for mobile devices in 2020 [5, 16].

Since the I/O speed of the target device is modified, VCoz reapplies component matching.

The I/O speed is now 5.6× slower, and the CPU computing speed is 2.3× slower. If VCoz

normalizes by the I/O scaling factor, the CPU has to run 2.4× faster. Given the operating

frequency of the host system is (2.2 GHz) and the maximum available CPU frequency is

3.1 GHz (in turbo boost mode), VCoz cannot fulfill this scaling factor. However, if we

normalize by the CPU scaling factor, the network speed has to reduce by 2.4×, and VCoz

can satisfy this by adjusting the network interface of the host system to limit the bandwidth

to 41 Mbps. Figure 3.6 shows how remarkably VCoz predicts the actual causal profile with

less than 11.4% error. Meanwhile, Coz cannot detect the behavior of the critical path (no

changes in the critical path) in the range of speedup because of missing characterization of

the underlying hardware of the target device.

3.6 Related Work

Profilers are an important tool for performance analysis of applications. Tools such as

gprof [101] and Oprofile [33] along with the Linux built-in hardware counter profiling tool,

perf [46], and the equivalent for Android, simplePerf [35] are among the popular profiling

tools for desktop and mobile developers. These tools rank code by its contribution to total

execution time, however, code that runs for a long time is not necessarily a good candidate

for optimization.

Besides profilers, developers exploit simulators for performance analysis for cross-platform
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application development and optimization. Cycle-accurate instruction set simulators (ISS)

such as gem5 [70] and QEMU [69] and full-system emulators such as Android studio emulator

[13] and Appetize [15] for iOS generate relatively accurate timing and power consumption for

system-level performance analysis. However, simulation on these platforms is considerably

slower which makes it infeasible for comprehensive what-if analysis [143, 138, 90] which

typically requires a large number of experiments to explore the hardware and software design

space. Multiple prior efforts have attempted to enhance the functionality and speed of ISS

for performance and power analysis of mobile platforms [77, 100]. Nonetheless, they are still

slow making them infeasible for causal profiling [143].

3.7 Conclusions

We present a theoretical formulation for causal profiling and extract a necessary condition for

virtual causal profiling. According to the theory, the result of causal profiling only depends

on the relative execution speed of the different code segments. Therefore, we design VCoz

that enables virtual causal profiling by emulating the hardware configuration of say, mobile

devices on a laptop/desktop for causal profiling by controlling the relative performance of

various resources, such as CPU, memory, and network. We implement a prototype of VCoz

and evaluate it on multiple benchmarks with a combination of different workloads (CPU-

intensive, memory-intensive, and I/O-intensive). Our results show that VCoz can predict the

results of causal profiling with significant accuracy by tuning different hardware components.

For example, VCoz predicts the outcome of the Coz profiler on an Arm-based Nexus 6P

mobile device with less than 16% variance on an x86 laptop while the original Coz profiler

misses predicting optimization opportunities or generates inaccurate what-if graphs. As

a result, VCoz advances the state-of-the-art in designing practical profilers that are much

needed for scalable cross-platform application development.
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Chapter 4

Performance Characterization of

Third-party Ads

Online advertising is another interesting subject that has raised many performance questions

in recent years. As an example, it is not clear how much ads contribute to the performance of

websites. The key to answering these questions is to apply performance characterization (or

workload demystification) which is a domain of PA. The diversity of today’s display ads and

their indirect methods of delivery and integration on the website makes this characterization

challenging. The existing workaround for workload characterization of web ads is primarily

based on block-and-measure, i.e., using ad-blockers. However, the overhead of ad-blockers

and issues such as site-breakage and ad-blocking circumventions guarded by websites limit

the scope of using ad-blockers for workload characterization. In this chapter, we again use

profiling fundamentals to build a tool that accurately demystifies the performance of web

ads. Our proposed block-free solution leverages profilers to record the state of the program

(e.g., website loading) at runtime and replay it for offline measurements and characterization.
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4.1 Introduction

Online advertising (essentially display ads on websites) has proliferated in the last decade to

the extent where it is now an integral part of the web ecosystem with a multi-billion dollar

market [82, 85, 24]. Today, publishers display multiple advertisements (or ads) through pop-

ups, banners, click-throughs, iframes, widgets, etc., to monetize their websites and web apps.

The majority of these ads neither come from the publisher (website) nor a specific domain.

They are delivered through a chain of third-party content providers (such as ad providers,

syndication agencies, ad exchange traders, trackers, and analytics service providers) who are

part of a complex ad network on the server-side [95]. The current ad delivery method forces

publishers to embed unknown third-party content (such as JavaScript or HTML) on their

website which could jeopardize user privacy and security. There have been several studies in

recent years to locate the untrusted sources and malicious ad contents [109, 68, 95, 106, 84,

65]. Accordingly, different blocking and evasion policies have been devised to guard against

such malware and aggressive tracking [68, 97, 162, 157]. While user privacy and security are

of paramount importance, it is not the solitary concern of the worldwide web community.

Online advertising also has a direct impact on website performance (eg., page load time) and

in turn user satisfaction.

Web ads have become more diverse and complex keeping up with the pace of advances in

web design. Figure 4.1 compares advertising on ebay.com in 2002 and 2020. As we can

observe, in the past, ads only included hypertext and images. However, today’s online ads

comprise of JavaScript, iframe, animation, multimedia, etc. Evaluating and displaying these

dynamic ad contents demand increased computation from the browser and competition for

the user’s device resources. Coupling this observation with recent studies [123, 146, 111] that

show that most of the page load time is spent on computation activities in modern browsers

raise three key questions:
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(a) ebay.com in 2002 (b) ebay.com in 2020

Figure 4.1: Evolution of ads on the web. (a) Early web ads contain text, image, and
hyperlink. (b) Today’s complex and dynamic web ads (rotating on top of the website)
contain JavaScript, animation, multimedia, and iframe.

• How much do ads increase the browser’s page loading workload?

• What type of web documents and browser activities contribute most to this workload?

• What kind of sources deliver web-ads and how much do they contribute to its perfor-

mance cost?

Gaining insight into the above questions and understanding how much ads contribute to

the breakdown of different activities in modern browsers can inform the design of efficient

ads and optimizations targeting those specific activities. Unfortunately, only a handful of

studies [128, 94, 92, 73] have been devoted to the performance analysis of ads, yet many such

important open questions remain to be answered.

Previous studies revolving around the performance analysis of ads lack a comprehensive

examination for at least the following reasons. First, the majority of them concentrate on

the network data traffic overhead, neglecting the performance cost of browser computation

activities such as rendering activities [92, 128]. Second, prior efforts fundamentally share

the same approach for quantifying the performance of ads. They use ad-blockers to block

websites’ ad contents and assess the performance overhead via comparison with vanilla run
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(no ad-blocking). This approach, however, is prone to inaccuracy as it does not take into

account the intrinsic overhead of the ad-blocker. Our measurement of over 350 websites

shows that Adblock Plus [9]–the most popular ad-blocker–adds 32% overhead (median)

to the page loading even though it reduces the overall page load time by aggressive content

blocking. Furthermore, ad-blockers lead to site breakage and undesired app functionality,

particularly, with the prevalence of anti-ad-blockers [94, 96]. Finally, the ad-blocker approach

suffers from an inability to perform comprehensive and fined-grained performance analysis.

This stems from the way ad-blockers operate where ad-related content is blocked as early

as the initiation of network requests. Thus, subsequent ad-related activities such as content

parsing, descendent resource loading, and rendering remain invisible for inspection.

In this chapter, we investigate the performance overhead of all types of ad-related content by

crawling over 500 websites on different systems (laptop and smartphone). Unlike previous

efforts, we take a novel approach based on in-browser profiling that does not rely on ad-

blockers. Our methodology allows the browser to automatically fetch and evaluate ads’

performance at scale. It correlates the browser’s computation and network activities to the

associated ad contents and quantifies the added cost of ads. We develop a tool, adPerf based

on our technique for the Chrome browser. The key challenge we encountered is how to align

the performance cost with individual components within an ad (e.g., image and JavaScript

code), and we address this through a carefully designed resource mapper (section 4.3).

We break down the performance overhead to individual requests and content types through

a resource mapping technique. This procedure contrives a more robust and detailed perfor-

mance analysis. To assess the impact of the platform on the performance overhead of ads,

we compare our performance evaluations on a laptop connected to high-speed WiFi with a

smartphone connected to a cellular network (Section 4.6). In Section 4.6.3, we demystify

and track down ad components on the publisher and characterize the performance overhead

considering the origin of ads and how they are delivered to the publisher. To the best of our
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knowledge, this is the first time such an experiment has been conducted.

adPerf and the detailed measurement results are available at https://gitlab.com/adPerf/

adPerf. adPerf can be leveraged by web researchers and developers for deeper performance

evaluation of ads and reducing the overhead of ads. Specifically, we present two compelling

use-cases of adPerf for the efficient design of ad intervention and to improve the performance

of ads in Section 4.6.5. Additionally, we compare our takeaways with previous studies in the

literature (Section 4.7), and discuss similarities and inconsistencies.

4.2 Ad Blocking and Performance Analysis

Ad blocking is a defense mechanism against advertising and tracking that is wildly deployed

by end-users. According to Statistica [32], the global number of clients with connected

devices to ad blockers is steadily increasing, and more than a quarter of Internet users in the

US were blocking ads in 2019 [7]. Popular ad blockers such as AdBlock [8], Adblock Plus

[9], uBlock [37], and Ghostery [23] install as browser add-ons and use filter lists to block

web ads and trackers. While user privacy and security are crucial, even ads that are safe

and not tracking users can have a significant performance impact that has cascading effects

on user satisfaction and Internet costs. Some notable studies [73, 128, 92, 151, 134] lean

on ad blockers to measure the performance cost of web ads. The key distinction between

our approach and prior efforts is that we do not rely on ad blockers and content-blocking for

performance analysis of ads for three main reasons:

Overhead. Multiple studies [136, 92, 94] report ad blockers themselves have significant per-

formance overhead due to exhaustive filter-list matching, tracking services of their own, and

running background scripts. Our results also affirm this observation. We analyze AdBlock

Plus by creating a modified version that still performs all of the content filtering operations
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without actually blocking any of the content. We calculate the overhead imposed by these

filtering operations by measuring the difference in page load times from the modified version

of Adblock Plus to the vanilla instance of Chrome. Figure 4.2 shows the overhead of Adblock

Plus on 350 webpages in our corpus (see section 4.5). According to the figure, for half of the

websites, Adblock Plus adds more than 32% overhead to the page loading due to excessive

and CPU-intensive filter rule matching and add-on background activities. Although it may

ultimately reduce page loading workload and network cost by aggressive content blocking,

it’s an inaccurate tool for studying the performance impact of ads.
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Figure 4.2: CDF distribution of AdblockPlus overhead on the page loading of 350 webpages.

Functionality. As ad blockers become a threat to the "free" web business model, many

websites prevent displaying their content to the visitors that use ad blockers. In this case,

the publisher includes a script such as IAB ad block detection script [6] that monitors the

visibility of ads to DEAL (Detect, Explain, Ask, Limit) with ad blockers [115]. Typically,

when the publisher detects a hidden or removed ad, it immediately stops loading the website

by displaying a popup that asks the visitor to turn off the ad-blocker. Figure 4.3 shows a
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Figure 4.3: Snapshot of www.forbes.com. This website prevents loading contents if visitors
attempt to block ads.

snapshot of the content-blocking of www.forbes.com when ad blocker is on. As reported, a

large portion of the web, 6.7% of Alexa top 5000 [118] and 16.3% of the top 1000 popular

live streaming sites [130] use this anti-adblocking system.

Besides, content-blocking can also lead to site breakage and other undesired app functionality

[96]. This breakage can range from a dysfunctionality in part of the website (e.g., not

displaying login popup) to the breakdown of the entire website layout. For instance, figure

4.4 shows a snapshot of www.store.vmware.com when Mozilla’s ad and tracking protection

is turned on. Furthermore, a large number of websites employ ad blocking circumvention

to evade from ad blocking. For instance, www.thoughtcatalog.com and www.cnet.com

obfuscate advertising URLs when they detect that the ad blocker is on. As a result, the

resources are translated to the local servers and eventually displayed on the page. In all of

the above cases, performance analysis of ads through ad blocking is infeasible which limits

its scope.
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(a) Before content blocking (b) After content blocking

Figure 4.4: Snapshots of www.store.vmware.com. The layout of the page is broken due to
content blocking.

Fine-grained analysis. Ad blockers block content as early as the initiation of network

requests, which results in two drawbacks. First, it prevents fine-grained performance analysis

at the browser level because activities such as content parsing and rendering related to

the blocked ad become invisible for analysis. Hence, the current body of work focuses on

the network data traffic overhead, neglecting the in-browser computation overhead of ads.

Second, because the content is blocked at the network request, resources that are further

requested by the blocked document during page loading become invisible for inspection. For

example, when an ad exchange1 (e.g., Google AdSense) script is blocked, the source(s) of

the blocked ads is hidden.

Our approach addresses the above limitations and enables an in-depth performance analysis

of ads without adding significant overhead. As a result, our measured cost is more reliable

and reveals some anomalies with previous studies that we discuss in section 4.7. Plus, our

framework measures performance cost of ads on every website. This is highly substantial

in term of functionality because we examine only 15% of our test corpus (≈ 50 websites)

and discover 10 websites to have one of the discussed issues with ad-blocker. Ultimately,
1A platform for buying and selling of advertising inventory from multiple ad networks through real-time

bidding.
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we do not block any content, this gives us the ability to correlate the performance cost of

ads to the sources (domain analysis) as well as break down the computation cost at a finer

level of granularity (browser activities) which have not been studied before. We present our

first-of-a-kind findings from this fine-grained characterization in Section 4.6.

4.3 Methodology and adPerf

To distinguish the performance cost of web ads from the primary content (non-ads), we

apply a systematic approach. First, we extract all browser activities that are associated

with the page loading process. Second, we identify which resource (i.e., a web document)

explicitly or implicitly initiates each browser activity. Third, we classify activities into ads

and primary content based on the resource type initiating the activity. Finally, we measure

the total execution time spent on each class of activity as a performance index distinguishing

the workload in each class.

To realize the above methodology, we design and implement a tool, adPerf, for the Chrome

browser. Note that adPerf can be extended to support other browsers since the same tech-

nique applies to all browser architectures. Figure 4.5 shows the design of adPerf. Below, we

describe the main modules of adPerf – crawler, parser, resource mapper, and graph builder.

4.3.1 Crawler

The first module in adPerf (top of the figure) is a crawler (Node.js script) that sets up the

headless Chrome and crawls websites. The crawler uses the Chrome remote protocol APIs

[17] under the hood to interact with the browser and streams Chrome traces [51] to a file.

Chrome traces are primarily used for profiling and debugging the Chrome browser and are

low-overhead. Tracing macros cost a few thousand clocks at most [51], and the logging to
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file happens after the page is loaded. Chrome traces are capable of recording intermediate

browser activities, including page loading activities in the Blink rendering engine and V8

JavaScript engine with microsecond precision. Each trace contains information about the

associated activity, such as thread id, activity name, function arguments, etc. Below is an

example trace for a Scripting activity:

{"pid " : 54 ,

" t i d " : 35 ,

" t s " : 81407054 ,

"ph" : "X" ,

" t t s " : 119412 ,

"dur" : 839 ,

" cat " : " dev too l s . t ime l i n e " ,

"name" : " Eva luateScr ip t " ,

" args " : {"data" : {

" u r l " : " https : //www. google−ana l y t i c s . com/ l i n k i d . j s " ,

" lineNumber" : 1 ,

"columnNumber" : 1 ,

" frame" : "EFF8B95C2"}}}

Additionally, the crawler intercepts network requests, i.e., onBeforeRequest event, and ex-

tracts the header and body of every HTTP request. This data is necessary for resource

matching.

4.3.2 Parser

When the website is loaded, the raw Chrome traces are fed to the parser as shown in the

figure. The adPerf parser does two tasks – pruning and data extraction.

Pruning. The parser goes through the traces and extracts all page loading activities and

prunes the browser-dependent ones (such as browser garbage collection and inter-process

communication activities). We use the same subset of traces that robust tools such as
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"url":"https://www.abc/lid.js", 
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"frame":"EFF8B95C2"}}} 
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Figure 4.5: Design of adPerf. The four core modules are crawler, parser, resource mapper,
and graph builder that are shown with dark boxes.

Chrome devtools timeline [18], Google Lighthouse [28], and COZ+ [20] collect for perfor-

mance analysis and page loading workload characterization. The resulting activities are

associated with one of the six browser stages shown in Figure 2.1. For instance, the parser

considers every trace connected to script evaluation, V8 script compiling, V8 execution,

callback functions triggered by browser events (or timeouts) among others as part of the

Scripting stage.

Data extraction. For each activity, the parser extracts the following data: start time, end
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time, relative stage, thread and process ids, and function arguments if they contain resource

information. This data is necessary to construct the call stack and attribute activities to

resources.
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Figure 4.6: Call stack timeline for a Chrome thread constructed by adPerf resource mapper.
The resource mapper assigns a resource to each activity using the information in the traces
(orange activities with solid texture) and call stack (orange activities with dotted texture)
for parsing and evaluation activities and tracks initiator for tree manipulation and rendering
activities (purple activities).

4.3.3 Resource Mapper

Once the traces are parsed and categorized, this data and network information extracted

by the crawler are input to the resource mapper. The task of the resource mapper is to

assign each activity to an associated resource. Unfortunately, we observed that a significant

number of traces (about 30%) do not contain any resource information. In such cases, the

resource mapper has to derive this relation.

To address the above challenge, the resource mapper first builds a call stack of activities

for every thread by tracking the start time and end times of activities executed by each

thread. Figure 4.6 shows the call stack timeline for a sample activity for a browser thread
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where activities are shown with boxes. After constructing call stacks, the resource mapper

classifies activities into two groups – parsing and evaluation and tree manipulation and

rendering. The former contains activities that explicitly relate to a resource such as HTML

parsing, image decoding, stylesheet parsing, and JavaScript evaluation that directly operate

on a document. Activities belonging to this group are colored orange in the figure. The

latter contains activities that implicitly relate to a resource. These include activities in

styling (except stylesheet parsing which belong to the former group), layout, composite, and

paint stages that deal with the browser’s intermediate data structures (trees) and display.

Purple activities in the example belong to this group. Finally, the resource mapper finds the

corresponding resource for each activity group as follows.

Parsing and evaluation. For the majority of the activities in this group, the resource

mapper extracts the resource file information from function parameters extracted by the

parser. Orange activities with solid texture such as HTML Parsing and Callback Function

in Figure 4.6 are examples of activities where we can determine the document on which they

parse or evaluate from frame id and resource information in their traces. However, a small

number of activities in this group do not contain any resource information. For activities

with unresolved resource files (activities shown with an orange color and dotted texture in

the figure), the resource mapper uses the constructed call stack and follows their ancestors

and associates them with the caller’s resource file. For example, appendChild JavaScript

function is called by updateList and this function along with Compile Script activity are

invoked by Evaluate Script activity that is previously assigned to a JavaScript document.

Tree manipulation and rendering. For this group, we have to distinguish between the

different resources that implicitly trigger the activities that belong to this group. For styling

activities, we observe that Chrome recalculates styles after the Schedule Style Recalculation

event is fired. As seen from Figure 4.6, this event is fired in the middle of parsing and evalua-

tion of a resource (typically a JavaScript document) that attempts to modify the DOM node
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style. We track the call stack for this event to the initiated parsing and evaluation activity

and associate this styling activity to the triggered document. Similarly, for layout, Chrome

updates the layout tree when the Layout Invalidate event is fired. In our example, this is

fired when the command this._util.elem.innerHTML=e is executed in the InsertBefore()

function. We use a similar procedure as styling to associate layout activities to the initiating

resource from the call stack of the Layout Invalidate event.

Note that the browser does not always update the style and layout of nodes immediately after

the events are triggered. Depending on the priority of other activities in the task scheduler

queue, the browser might dispatch these activities later. As a result, when a resource triggers

one of these two events (Schedule Style Recalculation or Layout Invalidate), a second resource

may fire these events again before the browser updates the tree. In this case, we consider the

first resource as the initiator since the tree will be traversed and updated even in the absence

of the second resource. Chrome tends to composite and/or paint immediately after styling

or layout which leads to repaint. Therefore, the associated resource for the composite and

paint activities simply derives by following the chain to the last executed styling or layout

activity as shown by the red arrows in the figure.

Once page loading activities are mapped to the corresponding resources, adPerf uses network

data from the crawler to link the resources to the associated network requests (i.e., URLs).

Then it uses a filter list to distinguish between ad resources and non-ad resources. We

use EasyList [22], the primary and most popular filter rules list for advertisements for our

experiments. However, users can also provide their own custom filter rules. adPerf employs

adblockparser (an optimized python package [10]) to match the URLs against filter rules.

One might think that since our methodology uses an identical rule matching procedure to ad

blockers, it might incur a similar overhead. However, this is not the case since rule matching

in adPerf is passive and does not steal computation cycles from the page loading process.

Finally, adPerf reports the execution time of the page loading activities categorized by ads
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and non-ads.

4.3.4 Graph Builder

There exist dependencies between resources on the website. For instance, let’s say a website

downloads a JavaScript file from a third-party domain. In this file, it can further request

an image or an HTML document from another domain, and this chain can go deeper. To

evaluate the performance cost of different sources such as ad domains and to further evaluate

their trustworthiness requires first tracing this resource dependency chain and building a

resource dependency graph.

We extract the dependency between resources of the websites using Zbrowse [40]. Zbrowse

uses Chrome devTools protocol and allows us to instrument, inspect, and debug the Chrome

browser. It also generates the child-parent relation for every network request. We embed

Zbrowse in the adPerf crawler module as shown in Figure 4.5. This way, we can extract the

resources child-parent data at the same time when we crawl the websites. The graph builder

uses Zbrowse’s output and constructs the dependency graph for resources. In cases where

third-party JavaScript gets loaded into a first-party context and makes an AJAX request,

the HTTP referrer appears to be the first-party. We follow [95] and allow the graph builder

to conserve this relation and include the URL of the third-party from which the JavaScript

was loaded. Since one resource can, in turn, request multiple resources, the constructed

graph has the shape of a tree rather than simple chains of dependencies.

Figure 4.9 shows this graph for an example website, www.cnn.com. Here, we combine the

resources from the same domain (at each level) into one node for easier visualization. The

root node is the publisher and the remaining nodes are referred to as third-party domains.

For differentiation, we color ad nodes (domains that deliver at least one ad resource) red and

non-ad nodes (domains without any ad resources) blue in this graph. As we can see from
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the figure, a considerable number of third-party domains are ad nodes. This is a concerning

finding since typically publishers are not aware of the contents delivered by third-party

websites. Generally, publishers trust the first-party domains (in the first-level of the tree)

but those websites might deliver their contents from another website or chain of websites

that are not verified by the publishers. We investigate the prevalence of such third-party ad

domains, their performance cost, and trustworthiness in section 4.6.

4.4 Validation of adPerf

adPerf is a first-of-a-kind performance analyzing tool that measures the fine-grained perfor-

mance overhead of web ads at the granularity of the browser’s major stages. In the absence

of tools with similar functionality to serve as a baseline, it is challenging to test and vali-

date adPerf. Chrome DevTools [18], a set of web developer tools built directly into Google

Chrome, provides sufficient and useful profiling data, including a breakdown of the browser

workload into stages. However, the caveat is that the reported breakdown is for the entire

page content, and it does not differentiate between ads and main content. Therefore, we

devise the following experiment to exploit Chrome DevTools to calculate the performance of

ads on a webpage and validate adPerf.

In our validation experiment, we first measure the total workload of a test page with Chrome

DevTools. Then we instrument the test page by cloning every ad element on the page and

re-measure the total workload. If the cloning is perfect, the added workload will present the

performance overhead of web ads. This experiment validates two main objectives:

1. How precisely does adPerf measure the computation workload (irrespective of ads and

main content) and classify them by the browser stages? This is achieved by comparing

adPerf’s reported total workload and its breakdown with Chrome DevTools data.
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2. More important, how well does adPerf distinguish the main content workload from the

advertising workload? This is validated by comparing the performance of the added

workload (which represents only ads) measured by Chrome Devtools with adPerf’s

reported ads performance cost.

Figure 4.7: Snapshot of www.dw.com before
cloning ads.

Figure 4.8: Snapshot of www.dw.com after
cloning ads.

Instrumenting real-world websites is comparatively more arduous than synthetic pages due

to the complexity and obfuscation of page sources. However, we adhere to the former for the

sake of proximity to in-the-wild ads and fairness in our validations. Moreover, we duplicate

every ad element (including leaderboards, infeed ads, sticky and animated banners, etc.) and

do not limit ourselves to a specific type of ad for completeness. Without bias, we randomly

pick five websites from our test corpus (see Section 4.5) and instrument them. Figures 4.7

and 4.8 show an example of this instrumentation on the appearance of a website where

we observe that ads are duplicated. Note that ads are typically delivered from a bidding

system (i.e., ad exchange) thus, a duplicated ad is not necessarily identical to the original

ad. However, to minimize the impact of this stochastic behavior, we load websites multiple

times and include cases where two ads (original and cloned) have at least the same structure

76



and size.

Table 4.1: Comparison of adPerf with Chrome DevTools in measuring the total computation
time and breakdown by browser stages on a MacBook Air laptop.

Total Parsing Scripting Rendering Painting
Website Time Err. Time Err. Time Err. Time Err. Time Err.

(sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec) (%)
newindian adPerf 18.2 1.06 14.9 1.91 0.28
express.com Chrome 18.6 1.6 1.17 8.9 15.3 2.2 1.79 6.9 0.26 6.5
buffalonews adPerf 12.2 0.65 9.33 1.91 0.36

.com Chrome 12.6 2.9 0.58 10.9 9.88 5.5 1.83 4.5 0.33 12
huffpost.com adPerf 2.13 0.13 1.61 0.30 0.09

Chrome 2.28 6.8 0.13 <1 1.76 8.7 0.31 2.3 0.08 6.0
observer.com adPerf 3.12 0.16 2.40 0.47 0.09

Chrome 3.43 0.41 0.16 0.43 2.72 0.49 0.46 0.57 0.08 0.57
dw.com adPerf 3.20 0.25 2.34 0.51 0.10

Chrome 3.38 5.1 0.24 6.3 2.54 8.0 0.50 1.2 0.09 10.6

Table 4.1 summarizes the results from the validation tests on the accuracy of adPerf in

measuring the page loading workload and fine-grained breakdown by browser stages on the

original webpage. We observe that adPerf measures total page-dependent browser computa-

tion within 0.4% to 6.8% of Chrome DevTools for the five randomly sampled test webpages.

Besides, adPerf’s breakdown is well in line with Chrome DevTools, and all the stage mea-

surements are below a 12% margin of error, with a median error of 5%. This verifies adPerf’s

parser, pruning, call-stack construction, and activity classification are functioning accurately.

In Table 4.2, we present our results from the performance dissection of ads by both adPerf and

Chrome DevTools for the same websites. For each website, adPerf indicates ads performance

cost reported by adPerf on the original page, and Chrome signifies the ads cost estimated

by Chrome DevTools (which is measured by calculating the difference in timings between

the original page and the page with duplicated ads). The results show that adPerf’s total

ad costs are within 11% of Chrome DevTools estimation which confirms that adPerf’s graph

builder, call-stack analyzer, activity tracker, and resource matcher modules are designed

correctly, and adPerf successfully isolates ads from the main content. Additionally, using

adPerf, we measure the increase in the total page workload after cloning ads which are
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Table 4.2: Comparison of the ads performance cost reported by adPerf with Chrome De-
vTools estimation on a MacBook Air laptop. adPerf indicates the ads performance cost
reported by adPerf on the original page. Chrome indicates the ads cost estimated using
Chrome DevTools by computing the difference in timing between the original page and the
page with cloned ads. adPerf 2x indicates the increase in ad workload reported by adPerf
after cloning ads.

Total Parsing Scripting Rendering Painting
Website Time Err. Time Err. Time Err. Time Err. Time Err.

(ms) (%) (ms) (%) (ms) (%) (ms) (%) (ms) (%)

newindian
express.com

adPerf 2750 134 2470 131 22
Chrome 2560 7.1 120 10.4 2270 7.9 142 12 25 3.1
adPerf 2x 2840 3.1 146 8.2 2540 2.9 134 4.5 21 7.1

buffalonews
.com

adPerf 635 91 411 121 12
Chrome 683 7.0 84 7.7 478 14 111 8.3 10 23
adPerf 2x 520 15 81 11 349 15 94 22 16 19
adPerf 694 56 432 163 43

huffpost.com Chrome 671 3.3 54 3.6 413 4.4 157 3.7 47 8.5
adPerf 2x 730 4.9 59 5.0 458 5.7 168 3.0 45 4.4
adPerf 400 17 258 117 8

observer.com Chrome 451 11 19 10.5 316 18.4 107 8.5 9 0.41
adPerf 2x 352 12 16 5.9 225 12.8 104 11.1 7 12.5
adPerf 1040 85 721 196 38

dw.com Chrome 971 6.6 93 8.6 641 11.1 190 3.1 44 13.6
adPerf 2x 870 16 85 <1 684 5.1 172 12.2 44 13.6

denoted by adPerf 2x in Table 4.2. We then compare the former against the cost of the

original ads for each website. This comparison shows that duplicating ads does not precisely

double the performance cost of ads but is within an acceptable range of 3.1% to 16% of the

original ads cost. The inaccuracy primarily stems from the fact that the cloned ads do not

exactly resemble the original ads as seen from Figures 4.7 and 4.8 due to the bidding system.

We attribute the marginal errors in the validation against Chrome DevTools to the same

artifact and anticipate adPerf’s reported ad cost to be even closer to reality.
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4.5 Experimental Setup

System. Our system is a MacBook Pro with 2 cores and 8 GB RAM connected to a

high-speed WiFi (400 Mbps). The mobile experiments are conducted on a Nexus 6P (quad-

core ARM Cortex-A53 + quad-core ARM Cortex-A57 processor) connected to the cellular

network. To obtain accurate results on communication overhead, we do not set up any proxy

or local server.

Test corpus. Our test corpus consists of two sets of web pages – (a) top 350 websites from

Alexa top 500 news list [11] and (b) top 200 websites from Alexa top 500 list [12]. We will

refer to these two web page datasets as news and general respectively. The two lists have

only 17 websites in common. For each dataset, we crawl the corresponding corpus twice.

The first time, we crawl the home page or landing page of the website. The second time,

we randomly click a link on the home page and crawl the page that it leads to. We exploit

Chrome Popeteer [34] to automate link clicking. We refer to the former as the landing page

crawl and the latter as the post-click page crawl.

Experimental repeat. In each crawl over the corpus (total 4 crawls), we load websites

multiple times and take the average to account for fluctuations in page loading.

Evaluation domain. Since the main goal is to characterize the performance cost of ads,

we primarily provide evaluation results for the websites that contain ads. This is nearly 80%

of news websites and 40% of top general websites.

4.6 Results and Discussion

In this section, we analyze the performance cost of ads from two viewpoints – at the ad

domains (close to the origin) and deeper in the browser (close to the metal). First, using
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adPerf, we analyze the performance cost of ads on the websites broken down by costs incurred

by the computation (i.e., rendering engine) and network (i.e., resource loader). Then, we

investigate a level deeper to understand which computation stages and network resources

mainly contribute to the computation and network ad costs respectively. Finally, we zoom

out and analyze the ad domains themselves to quantify their contribution to the performance

cost of web ads.

4.6.1 Computation Cost of Ads

For every website, we calculate the fraction of time spent in ad-related activities to the total

activities (ad + non-ad). Figure 4.10 shows the CDF distribution of this fraction for the 4

different crawls.

amazon-
adsystem.com

imrworldwide
.com

usabilla.com onetrust.comfacebook.com

facebook.com doubleclick.com tidaltv.com googlesyndica
tion.com

domex.com

Figure 4.9: Resource-dependency graph for www.cnn.com. Ad nodes are colored red and
non-ad nodes are colored blue.

Finding 1. According to the figure, web ads can have a significant impact on the perfor-

mance of the website. For example, half of the news websites spend more than 15% of their

computing time on ads. Moreover, 20% of the news websites spend more than 30% of the
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Figure 4.10: Computation cost of ads in two datasets namely top general and top news
websites. Each domain in the dataset is crawled twice (landing page and post-click page).

time on advertising which can be concerning from the user’s perspective. It also motivates

website builders and ad providers to optimize their advert contents. Compared to the news

websites, ads have a lower cost on the general corpus. The median in this corpus is 5%.

Finding 2. The figure presents another interesting detail when we compare the landing and

post-click page graphs. Ads have a higher performance cost when loading the landing page

versus the post-click page of news websites by about 25% on average. However, this is not the

case for general websites. Post-click pages of popular general websites have almost similar

cost-performant ads as the landing page. Further, we aggregate the total time spent on ad-

activities across all browser stages and compare that to the time spent on the main content.

The average percentage of time spent on ads versus main content for the news landing page,

news post-click, general landing page, and general post-click datasets is 17, 15, 11, and 10%

respectively. The averages are higher than the median percentages reported earlier because

a small number of websites spend 40-50% of the computation time on ad-activities.
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Breakdown of ad computation cost. Since we observe that ads can have a significant

impact on website loading, it is worthwhile to explore the cause of this overhead. This can

guide website builders and ad providers to focus their optimization efforts on those activities

that are the primary sources of performance loss. Accordingly, we classify the computation

cost of ads by the granularity of the browser stages (outlined in Section 4.2). Figure 4.11

shows the contribution of the six major stages for the news corpus. For each stage, s,

we measure the following three metrics. Note that cts is the computation time of stage s

while ct∗ is the total time spent in computation across all the stages. Similarly, ctad is the

computation time spent on ad-activities while ct∗ is the total time spent on all activities.

Therefore, ct∗∗ is the total time of all computation activities in the browser.

1. The fraction of time spent on ad-activities in stage s to the total time spent on all

activities in stage s [ctsad/cts∗]. This is shown by the green bars. This intra-stage metric

indicates how the workload of the stage, s, is split between ads and the main content.

2. The fraction of time spent on ad-activities in stage s to the total time spent on ad-

activities across all stages [ctsad/ct∗ad]. This is shown by the blue bars. This inter-stage

highlights how a particular stage, s, is impacted by ads compared to the other browser

stages.

3. The fraction of time spent on all activities in stage s to the total page load computation

time [cts∗/ct∗∗]. This is another inter-stage metric shown by the red bars. However,

unlike the above metric, it shows the influence of a particular stage, s, on the entire

page load.

It is important to correlate both the inter-stage metrics to have a complete analysis. For

example, if a stage has a significant contribution to ads (i.e., second metric) but has very

little impact on page loading (i.e., third metric), then it is unlikely to be a performance

optimization target.
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Finding 3. Figure 4.11 shows that scripting has the highest impact, more than 88%, on the

computation cost of ads. It also has a significant impact (73%) on the computation workload

of the entire page. The difference between these two metrics indicates that ads are more

scripting heavy than the main content. This is because ad-content has 21% more dynamic

characteristics than the original page content in our news corpus which increases the time

spent in scripting. However, scripting only spends 25% of its time on ad-related content

(i.e., first metric). Therefore, ads are not the primary bottleneck of the scripting stage but

optimizing this stage will considerably improve the performance of ads as scripting is the

major workload of today’s web ads on news sites.

Finding 4. Another observation from Figure 4.11 is that HTML parsing has a minor

influence on page loading, i.e., less than 5% in comparison with scripting but ads have more

impact on this stage (comparing green bars). In other words, optimizing ads HTML code is

expected to improve HTML parsing workload more than optimizing ads JavaScripts for the

scripting stage, even though HTML optimizations can only marginally improve page load

time. This underscores the importance of correlating the intra- and inter-stage metrics to

guide optimization efforts. We observe similar behavior for the general corpus as well.

4.6.2 Network Cost of Ads

Besides computation activities, loading ads imposes overhead on the network activities. To

measure the performance cost of ads over the network, for each website, we calculate the

ratio of time spent on fetching ad-related resources to the total time spent on fetching all the

requested resources. Figure 4.12 shows the CDF of this network cost ratio for the 4 crawls.

Finding 5. The four distributions follow the same order as in Figure 4.10 (computation cost
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Figure 4.11: Contribution of the different browser stages to the performance cost of ads for
the news landing corpus. The three bars for each stage correspond to the three ratio metrics
(ctsad/cts∗, ctsad/ct∗ad, and cts∗/ct∗∗).

of ads), i.e., news websites incur higher network performance cost than general websites. This

is not surprising since more and/or larger ad resources also require more work in parsing,

evaluating, and rendering. According to the figure, the median of the network-cost ratio is

15% for news websites’ landing page and 3% less on the post-click page. For the general

websites, the median is 6% for the landing page and post-click page respectively.

Breakdown of ad network cost. To dissect the network costs of ads, we breakdown the

network time consumption by content type (such as HTML, image, and media). For each

content type, Table 4.3 summarizes statistics about the frequency of resources and network

time spent on fetching those resources for the news corpus for both landing and post-click

pages. Given the number of resources, nr, and network time spent on the resources, nt, we

define three metrics for each (similar to computation stages) as follows.

84



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Network Cost Ratio of Ads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Fr

ac
tio

n 
of

 W
eb

sit
es

Ads Network Cost (CDF)

News (landing)
News (post-click)
General (landing)
General (post-click)

Figure 4.12: Network performance cost of ads in two corpuses: general and news websites.
Each corpus contains landing and post-click pages.

Table 4.3: Summary of the three metrics each for the number of resources and network time
spent on resources across two types of pages (landing page denoted by L and post-click page
denoted by PC) for the news corpus.

content type
number of resources statistics (%) request time of resources statistics (%)

nrcad/nr
c
∗ nrcad/nr

∗
ad nrc∗/nr

∗
∗ ntcad/nt

c
∗ ntcad/nt

∗
ad ntc∗/nt

∗
∗

L PC L PC L PC L PC L PC L PC
Script 23 22 41 45 40 43 25 24 49 57 33 37
HTML 36 34 9 9 5 6 17 14 4 5 4 5
Image 23 22 37 35 37 33 13 12 39 32 50 42
Font 13 6 1 1 2 2 6 3 1 <1 2 2
CSS 6 3 1 1 5 6 5 2 1 1 3 4
XML 54 46 1 <1 <1 <1 68 43 1 <1 <1 <1
XHR 18 12 4 3 6 5 12 7 5 4 7 8
Media 4 4 <1 <1 <1 <1 3 3 <1 <1 <1 <1

Unknown 24 30 5 5 5 4 6 13 <1 1 1 1
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• Metrics for the number of resources (nr).

1. The fraction of the number of resources of content type, c to the total number of

resources of c [nrcad/nrc∗] (intra resource-type metric).

2. The fraction of the number of ad-resources of content type, c to the total number

of ad-resources (of all content types)[nrcad/nr∗ad].

3. The fraction of the number of resources of content type, c to the total number of

resources [nrc∗/nr∗∗] to highlight the popularity of the content type.

• Metrics for the network time spent on resources (nt).

1. The fraction of the network time spent on ad-resources of content type, c to the

total network time spent on resources of c [ntcad/ntc∗].

2. The fraction of the network time spent on ad-resources of content type, c to the

total network time spent on ad-resources (of all content types) [ntcad/nt∗ad].

3. The fraction of the network time spent on resources of content type, c to the total

network time spent on all resources [ntc∗/nt∗∗] to accent the performance impact

of content type, c.

For instance, the first metric for network time of CSS refers to the fraction of time spent on

fetching ad-related CSS resources to the time spent on fetching all CSS resources [ntcssad /nt
css
∗ ].

Finding 6. Among all content types, Table 4.3 shows that XML has the largest percentage

of ad resources for both landing (54% which account for 68% of the network time in fetching

XML resources from metric 1) and post-click pages (46% which take up 43% of the network

time). However, it contributes to an insignificant fraction of the network performance cost for

both pages (metric 2). On the contrary, scripts and images commonly used by ad providers,

make up nearly 80% of all ad resources (metric 2) and all resources (metric 3) for both

landing and post-click pages. Among the two content types, scripts on average are 20%
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more popular than images for post-click pages compared to the landing page (comparing

metrics 2 and 3). Script files used in advertising alone are responsible for almost half of

the network performance cost of ads, followed by images at 40% for landing pages (metric

2). More scripts in post-click pages correspond to a higher contribution to the network time

spent in ads (57%) for these pages compared to images (33%).

Finding 7. Ad-related HTML files constitute 34-36% of total HTML files but they only take

14-17% of download time. A deeper investigation shows that ad HTML documents are lighter

than main-content HTML. The former has a significantly small number of tags (on average 7)

including only one or two <script> tags that encapsulate small and minified code compared

to the main-content HTML files with 410 tags. Surprisingly, XHR (XMLHttpRequest)

resources make up a significant 7% of the network performance cost for the landing page and

9% for post-click pages (metric 3). The corresponding time spent on ad resources is 5% and

4% respectively (metric 2).

4.6.3 Breakdown of Ad Performance by Source

The results so far breakdown the performance cost of web ads at the lower level of granularity.

Now, we zoom out and quantify the cost of ads based on their origin, i.e., ad domains. The

goal of this lens is to gain an understanding of the third-party ad domains and their impact

on the performance cost. Accordingly, we build the resource-dependency graph (as described

in section 4.3) for all news websites in our test corpus. Overall we identify more than 300

distinct ad domains.

Breakdown of computation performance cost by ad domains. For every ad domain,

we first aggregate the time the rendering engine spends on evaluating the resources served

by that domain. We also measure the total time spent on ads through the crawl (ads

computation cost). The ratio between the above two is an indicator of how each third-party
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ad domain contributes to the computation cost of ads. Figure 4.13 shows the contribution of

the top 10 ad domains (out of 300) in decreasing order (from left to right) of their performance

impact. The number on top of each bar is the number of websites in our corpus that are

served by that ad domain.
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Figure 4.13: Contribution of ad domains to the computation cost of online advertising. The
number on top of each bar is the number of websites serviced by that particular ad domain.

Finding 9. googletagservices.com and doubleclick.net have the highest contribution

to the computation of ads on the web. The former is a Google tag management system for

managing JavaScript and HTML tags used for tracking and analytics on websites, and the

latter is a popular ad provider. Together, they deliver about 35% of the total ad resources.

Moreover, all the ads are not delivered by well-known ad domains. In our corpus, 50% of ad

domains appear only in the dependency graph of one website.

Besides, the number of websites serviced by an ad domain is not an indicator of its perfor-

mance cost. For instance, googlesyndication.com has approximately the same contribution

to the performance cost of ads as createjs.com but it services over 8× more websites than
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Figure 4.14: Contribution of ad domains to the network cost of online advertising.

the latter. This is because createjs.com provides content for interactive ads (flash-like ads

using HTML5 canvas) that trigger JavaScript callback functions constantly to sporadically

change the content and re-flow. createJS ads (where usually incorporated by intermediate

ad domain) on 32 websites of our corpus heavily use Scripting activities, 7.5% more than

Scripting activities belong to googlesyndication.com on 262 websites.

Breakdown of network cost by ad domains. We follow a similar procedure as above for

estimating the contribution of individual ad domains to the network cost of a page load. For

every ad domain, we first aggregate the time the browser spends on fetching resources by

that domain, Then, we calculate the ratio of the total time spent on fetching ad resources in

our crawl to the above time. Figure 4.14 shows the top 10 ad domains that have the highest

contribution to the network cost of ads in the news corpus.

Finding 10. About 35% of the network cost of ads on news websites is traced to doubleclick.net

followed by the popular ad syndication googleadsyndication.com with 10% contribution.
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Google is the major actor in the ad ecosystem. Domains maintained by Google alone

constitute approximately 51% of the total ad network cost.

Finding 11. Comparing the computation cost of domains with their network cost shows

that these two performance costs are correlated. As one might expect, fetching more and

larger documents also takes longer to evaluate and display. Interestingly, we also observe

domains that have a high computation cost but insignificant network cost and vice versa. For

instance, googletagservices.com has the highest contribution (19.7%) to the computation

cost of ads among all 300 ad domains. However, it contributes to less than 1% of the

network cost (ranked 16 and not shown in the top 10 domains in Figure 4.14). Further

breakdown of its performance cost with adPerf reveals two JavaScript documents (osd.js

and osd_listener.js) of size less than 76 KB belonging to this domain referenced by over

200 websites in the news corpus. These two files are part of Google Ads that track the

viewability of the ads to assess the value of an impression to the publisher and advertiser.

To calculate what percentage of an ad appears in a viewable space on the screen and for how

long that portion of the ad remains visible, these JavaScript snippets are frequently invoked

by the webpage and take up valuable CPU cycles.

Breakdown of performance cost by trustworthiness. When a publisher displays an ad

on their webpage, there is an explicit trust between the publisher and the provider. However,

when the ad provider is part of a syndication, the ad is served through a chain of redirections

going through different ad domains. Our measurement results on the Alexa news and general

websites shows that the mean depth of this chain is 4, revealing ad syndication is prevalent.

Most of the ad domains on the chain are not directly visible to the publisher (except the ones

directly embedded by the publisher). As a result, the publisher cannot verify their intention

(e.g., whether used for drive-by download or phishing). This results in the publisher placing

an implicit trust in the ads since the trustworthiness of these ad domains is unknown. In

this work, we are interested in the correlation between the performance cost of an ad domain
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and its trustworthiness.
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Figure 4.15: Performance cost of ads delivered by ad domains as a function of WOT trust-
worthiness score (CDF). Scores are normalized to [0,1] and different colors highlight different
trustworthiness rating.

To this end, we leveraged two online services, WOT (Web of Trust) [39] and VirusTotal [38],

to model the trustworthiness of an ad domain. WOT is a community-based reputation

system that assigns a score to a domain name based on user complaints and other blacklists.

The score ranges from 0 to 100, and WOT classifies domains based on their scores into 5 trust

rating – excellent, good, unsatisfactory, poor, and very poor [76]. VirusTotal is a portal that

proxies the request of a security check of a domain/URL to its affiliated blacklist services

(71 blacklists).

When a domain is submitted to VirusTotal, it reports the blacklists that flag it as red. We

count the ratio of blacklists that do not raise an alarm on the domain (i.e., safe flag) as the

VirusTotal score (i.e., 0 means highly malicious and 1 is completely benign). Both WOT

and VirusTotal have been used to determine the trustworthiness of a domain by previous
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studies [71, 95, 76, 94].
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Figure 4.16: VirusTotal

Figure 4.17: Performance cost of ads delivered by ad domains as a function of VirusTotal
trustworthiness score (CDF). Scores are normalized to [0,1] and different colors highlight
different trustworthiness rating.

One challenge we faced is determining thresholds for trust ratings since it varies widely across

different services that report a trustworthiness score. Therefore, to provide a fair analysis, we

report the contribution of domains to the ad cost for different thresholds. Figures 4.15 and

4.17 illustrate the cumulative performance cost of ad domains as a function of trustworthiness

assessed by WOT and VirusTotal, respectively. For WOT, we use its default classification

(5 classes) [76]. For VirusTotal, we observe that almost all of the domains receive at least

50 safe flags, so we only breakdown the region from 50 to 71 servers at the granularity of 3

servers.

Finding 12. Following the default classification of WOT, about 63% of ads cost is from ads

delivered by trusted ad domains (excellent and good rating). Nevertheless, domains that are

not trusted (unsatisfactory, poor, and very poor rating) contribute to a considerable portion
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of ads (37%) which is a flag for publishers. Accordingly, for VirusTotal, we see that only 5%

of the performance cost of ads is from domains that don’t receive any red flags.

Finding 13. Domains that are moderately trusted (i.e., neither highly trusted nor un-

trusted) have the highest contribution to the performance cost of ads as seen from Fig-

ures 4.15 and 4.17 . The amount of drop in the fraction of performance cost (y-axis) within

each shaded region indicates the performance cost for that level of trust. For example,

domains with more than 80% WOT score (excellent trust rating) contribute to 5% of ads

performance cost while 58% of ads cost belongs to domains with 60% to 80% score (good

trust rating). Likewise, domains with less than 3 VirusTotal red flags (first shaded region

from the right) account for 18% of ads cost but 55% for domains with 3 to 6 red flags (sec-

ond shaded region from the right). Our results do not assert a strong correlation between

trustworthiness and the performance impact of third-party ad domains.
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Figure 4.18: Performance cost of ads from popular domains as a function of popularity score
(CDF) based on number of referrers.
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Figure 4.19: Performance cost of ads from popular domains as a function of popularity score
(CDF) based on Alexa ranking.

Breakdown of performance cost by popularity. Similar to trustworthiness (gauged by

the delivered content), we can study the relationship between the popularity of an ad domain

and its performance impact. Accordingly, we model the domain reputation by its popularity,

which is determined by the Alexa ranking [11], and the number of websites in our corpus

to which it delivers ads. However, there is no agreed-upon cutoff to split ad domains into

popular versus unpopular. For this reason, we follow a similar method to the trustworthiness

study and present the performance cost of ad domains at varying cutoff levels. Figures 4.18

and 4.19 illustrate the cumulative contribution of popular domains to the performance cost

of ads for two metrics.

Finding 14. Earlier in this section, we observe no correlation between the popularity of

the ad domains (i.e., number of referred websites) and the performance cost for multiple

domains. However, at the macro-level, more popular ad domains contribute more to the
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performance cost as seen from Figure 4.18 and this is due to higher reach of those domains.

As highlighted in this figure, the fraction of performance cost drops about 40% within a 5%

range of the most popular ad domains. However, for the Alexa ranking (Figure 4.19), we

observe multiple sharp drops throughout the score range, meaning there exist multiple ad-

domains that have a significant contribution to the performance that is neither very popular

nor very unpopular.
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Figure 4.20: Comparison of performance cost of ads (computation and network) for mobile
and laptop on news corpus.

4.6.4 Desktop vs. Mobile Ads

Mobile represents a significant medium for web consumption. We repeat the experiments

and load webpages on the Nexus 6P smartphone to evaluate the performance cost of web

ads on mobile devices using adPerf. adPerf uses port forwarding to connect to the device

and Chrome remote interface to capture traces remotely on the device which they are then

parsed and analyzed on the host system. Figure 4.20 shows a comparison of the performance
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content type nrcad/nr
c
∗

Script 17.5%
HTML 25.7%
Image 12.8%
Font 2.2%
CSS 2.3%
XML 36%
XHR 6.4%
Media 6.3%

Table 4.4: Fraction of ad documents to total
documents for each content type (nrcad/nrc∗).

Domain Cost
doubleclick.net 28%

googletagservices.com 20%
googlesyndication.com 18%

ampproject.com 7%
cloudfront.net 4%
2mdn.net 4%

Table 4.5: Top ad domains contribution to
performance cost of mobile ads.

cost of web ads on mobile and desktop for the landing page of the News corpus.

Finding 15. Mobile ads add on average 8% overhead to the page loading computation and

the same amount on the network consumption. This is a notable 7% less than desktop pages.

Further breakdown of computation cost by browser activities show a similar contribution of

stages to the ads workload, with Scripting being the highest amounting to 87%. However,

the amount of scripting work spent on ads to the total scripting workload reduced from 25%

on the laptop to 13% on mobile.

Our assessment shows that this performance gap is because websites display fewer ads and

they are better optimized on mobile to deliver content on a smaller screen. Overall, the

fraction of ad documents to the total documents in the news websites dropped from 22.5%

to 15.5% on the mobile device. Table 4.4 breaks down the above fraction by each content

type (nrcad/nrc∗) except Media for the mobile version. Across the board, a fewer number of

ad documents are fetched in each category compared to results on desktop (Table 4.3). For

instance, ad images and scripts dropped by 44% and 24% in the mobile crawl. A recurring

pattern in the websites is the absence (or limited inclusion) of skyscraper ads on mobile with

a marked difference in the performance cost. This trend is illustrated in Figure 4.21 for

Deutsche Welle, the popular German-based international news broadcaster. In m.dw.com

(the mobile version on the right), two side skyscraper display ads are replaced with one
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in-feed ad, reducing 10% of ads performance overhead.

We investigate the sources of mobile ads and breakdown the performance cost by third-party

domains. Table 4.5 shows the contribution of the top mobile ad domains.

Finding 16. The sources that deliver ad content on mobile are fairly different from the

desktop version and they have a dissimilar contribution to the performance cost of web-ads.

For example, about 7% of the performance of ads on mobile comes from ampproject.com

that specifically provides optimized ads for AMP (Accelerated Mobile Pages). Similar to

desktop, doubleclick.net and googletagservices.com have the highest contribution in

mobile advertising with a combined 48% share of performance cost, 13% more compared to

desktop.

Figure 4.21: Snapshot of Deutsche Welle website on laptop (left) and mobile (right). Two
side skyscrapper ads are substituted with one in-feed ad on the mobile.

4.6.5 Applications

AdPerf and the measurement study from different viewpoints present multiple applications

for web researchers, browser developers, ad designers, content publishers, and perhaps even

users. Notwithstanding, we discuss two use-cases below.

Heavy-ad intervention. Ads that consume a disproportionate amount of resources such
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as draining the battery or eating up bandwidth on a device negatively impact the user

experience. Intrusive ads range from the actively malicious, such as crypto-miners, to benign

content with inadvertent bugs or performance issues. Chrome is launching an extension

to limit the resources an ad may use and unloading that ad if the limits are exceeded.

Tentatively, they define the following criteria and coarse-grained thresholds to limit the ads

[26].

• Uses the main thread (i.e., the renderer thread which executes the majority of the

computation activities) for more than 60 seconds in total or more than 15 seconds in

any 30-second window.

• Uses more than 4 megabytes of network bandwidth.

The above metrics have been reported to have blocked many non-intrusive ads by Google Ad

Manager Native Video and YouTube Skippable Preroll ads [27, 19]. AdPerf can aid Google

engineers and potentially other browser developers to extensively study and characterize the

performance of intrusive heavy-ads in different computation stages and network resources to

establish a fine-grained threshold and criteria.

High-performance ads. AdPerf provides insight and guidance to both publishers and

third-party ad providers to improve the performance of ads by identifying the stage and/or

resource which are the main bottlenecks. For example, if adPerf identifies Scripting to be the

computation and network bottleneck of ads on a website, one can follow targeted optimiza-

tions to loading third-party JavaScript such as lazy-loading scripts and libraries (e.g., serving

an ad in the footer only when a user scrolls down the page), splitting JavaScript bundles

(e.g., dynamic import() statement), self-hosting scripts with Service workers particularly for

ad domains with consistent APIs, using resource hints like preconnect and DNS-prefetch,

sandboxing script with iframes, using asynchronous ad tag manager in the code, and other
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cognate recommendations provided by Google Page Insights [31] and Lighthouse [28]. Like-

wise, if Painting turns out to have excessive computation overhead for ads, this is likely

due to animated GIF in the background of ad iframe or animation triggered by CSS (e.g.,

@keyframe rules). Ad designers can follow the recommendations on painting optimization,

such as limiting manipulation to transform and opacity CSS properties that avoid repaint-

ing. Our analysis on ad domains can also advise publishers to select their ad providers from

reliable syndications (i.e., with satisfactory trustworthiness score) that at the same time have

a minimal performance impact, considering their reach.

4.7 Related Work

Over the past years, there have been a handful of studies on the performance characterization

of web browsers and online advertising. Prior research mainly uses adblocker and adheres

to page load time as the performance metric for characterizing the computation cost of ads;

i.e., compare PLT before and after content blocking to measure ads cost. On the other

hand, adPerf uses the ratio of the ad workload to the main content workload. Although

adPerf’s metric provides additional insight into the computation cost of ads, it cannot be

directly compared to PLT for two reasons: (i) PLT combines both network and computation

cost into a single metric and (ii) parallelization among activities in the browser. Moreover,

with adblocking, we cannot decompose the performance cost into lower-level browser stages

(e.g., HTML parsing and JavaScript) since they block resources at network initiation, and

subsequent resource parsing, evaluation, and rendering are not captured. Therefore, in this

section, we quantitatively and/or illustratively compare related work against adPerf.
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4.7.1 Performance Analysis of Ads

Garimella et al. [92] analyze the performance efficiency and network overhead of popular ad

blockers such as Adblock Plus [9], Ghostery [23], uBlock [37], etc. According to their data,

blocking ads with Adblock Plus (Easylist rules) saves roughly 34% on cumulative network

request time. This is higher than our measured network cost (15%) without the deployment

of an adblocker. Although their setup is different and their corpus of news websites is small

(Alexa top 150), they observe an increase in the number of network requests. This is due to

various tracking services of their own and request for JavaScript modules designed for counter

ad-blocking. Besides, they report a 15% to 43% increase in the CPU wall-clock when they

use ad-blockers (Adblock, Adblock Plus, ublock, and Privacy Badger) and conclude that the

time to load pages is not necessarily faster due to the overhead of ad blockers.

Butkiewicz et al. [73] break down the content of non-origin requests by MIME type and

reports images and HTML/XML contribute to 42% and 9% respectively, which is slightly

higher than our measurements, whereas, JavaScript contribution (25%) is far less than our

measurements. Given the fact that 70% of these non-origin requests belong to advertising

and analytics, this comparison signifies the rise of responsive and interactive ads within the

past few years. Additionally, they attempt to quantify the cost of third-party content on

page load time. By blocking non-origin content (using custom adblock filter), they measure

25% contribution. However, they report a 15% contribution when they consider the impact

of non-origin requests on wall-clock rather than content blocking. Although their latter

method does not preclude the content blocking overhead, it dismisses the parallelization

among network requests and browser rendering activities associated with resources, hence is

not reliable.

In other related studies [128, 151], authors deploy ad blockers in the wild and then use

passive measurements on the traces to characterize the network traffic. Both studies report
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17-18% of the network requests to belong to adverts, which is close to our numbers. Similar

to our measurements, in [128], network requests are broken down by content type. However,

the authors do not completely isolate the content types (e.g., CSS and JavaScript are not

categorized), and therefore, a direct comparison is not feasible. Nevertheless, none of the

studies investigate the effect of ads on the computation cost of page loading.

4.8 Conclusions and Takeaways

Our evaluations on the performance cost of ads lead to multiple new and interesting obser-

vations. The key finding of this research is that ads have a significant cost, more than 15%

of the computation workload. This cost is relatively less in mobile browsing due to fewer and

optimized ads for a smaller screen. Moreover, we discover Scripting contributes to ≈ 88%

of this cost in both environments suggesting ad designers to focus more on optimizing their

JavaScript codes and publishers to follow practices for lazy loading of these scripts. We also

find that ads have a different fingerprint on browser activities and web documents compared

to the main content. For example, HTML parsing takes up only 5% of browser page loading

workload (the lowest among other stages) but 29% of that is spent on ad-related content,

more than any other stage, and XML files are requested more by the ad contents compared

to the primary contents. Practitioners can use this anomaly to build a system for detection

and intervention of ads or a subset of them (e.g., intrusive ads). Our evaluation also shows

that a considerable fraction of the performance cost of ads is from untrusted domains which

is a signal for the web community and to publishers to reconsider their ad-delivery network.

In this study, we did not account for ad resources that might be directly embedded in

native HTML and ad resources that cannot be detected by filter lists (i.e., websites that use

circumvention to evade filter lists). In future work, we plan to also include such sources of ad

content. This addition would only increase the performance costs of different ad breakdowns
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reported throughout this chapter, which we believe is already significant enough to warrant

deeper attention. This work primarily aimed at designing a methodology and open-source

infrastructure for fine-grained analysis of ads which we anticipate to be a useful tool for web

researchers to prioritize their optimization efforts on web ads and publishers to analyze the

impact of ads on their websites.
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Chapter 5

Profile-based Tailor for Deep Learning

Models

Running multiple tasks concurrently is a popular optimization technique for masking the

program’s latency and enhancing the end-to-end throughput. Finding the salient spot for

exploiting concurrency is non-trivial because certain conditions such as tasks independence

and resource availability must be met. A PA application that we examine in this chapter is

deep learning model training on a GPU. Despite the fact that model-parallel and data-parallel

schemes exist for distributed GPU training, single node GPU typically hosts a single-stream

(i.e., serial execution) of neural network layers. Here we present a systematic profile-based

PA and show the benefit of intra-layer parallelism to shorten training time. In cases where

the default configuration of layers does not meet the conditions for parallel execution (e.g.,

resource constraints), our performance analyzer tailors the operations and determines the

optimal configuration to accommodate concurrent network layer execution.
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5.1 Introduction

Deep learning (DL) models have been rapidly growing and evolving within the past few

years, with a wide range of applications. Take Convolutional Neural Network (CNN), a

popular class of Deep Neural Network (DNN), as an example. Many CNN models have been

developed in the last decade for learning problems in applications such as computer vision

[105, 135], voice recognition [62], recommender systems [154], natural language processing

[102, 79, 121], physics simulations and biosensors [119, 144, 142, 141, 87, 120]. Earlier

CNNs were composed of a linear sequence of dependent layers like VGG and AlexNet.

However, modern networks such as ResNet, GoogleNet, DenseNet, and PathNet have a more

complex architecture. These non-linear networks [145] contain multiple fork/joins resulting

in independent paths of chained operations. Figure 5.1 illustrates the difference in structure

between linear (AlexNet) and non-linear (GoogleNet) networks.
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Figure 5.1: Linear (AlexNet on left) vs non-linear (GoogleNet on right) network.

GPUs are the platform of choice for training DL models. Training large-scale DNNs is

extremely time-consuming due to the ever-growing number of parameters that have to be

learned and the numerous iterations for the model to converge. Two approaches to reducing

training time are to increase throughput and reduce the per-iteration execution time. For
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the former, it is common to parallelize iterations across multiple GPUs. For the latter,

however, there are several solutions in literature [140]. They can be broadly classified into

either optimizing the operations in each layer or exploiting the concurrency between CPUs

and GPUs by pipelining initial pre-processing operations (such as resizing, normalization)

on the CPU with the rest of the operations on the GPU [145, 137]. As one can infer from

Figure 5.1, unlike linear networks, non-linear networks have multiple independent operations

across layers. However, none of the above existing approaches exploit this parallelism across

multiple paths by running independent operations across layers concurrently on a single

GPU. In this chapter, we investigate why and how to utilize this rich inter-op parallelism in

non-linear DNNs (particularly CNNs) to reduce training time.

5.2 GPU Architecture and Programming Model

GPUs were originally designed for rendering images and graphics pipelines but they soon

became a compelling platform for high-performance computing and machine learning due

to their high peak performance and memory bandwidth. Subsequently, applications started

reusing graphics API such as OpenGL and DirectX for parallel processing [113, 156, 132].

NVIDIA later released CUDA [57] as a standard programming model for scientific comput-

ing for their GPUs. AMD, another giant GPU manufacturer, uses HIP [58] programming

language for their GPUs that is very similar to the CUDA. Figure 5.2 shows the GPU

architecture and programming model.

In CUDA (or HIP), programs are typically divided into two parts – (1) host functions in

the mainstream that is handled by the CPU threads and run on CPU cores and (2) device

functions (aka. kernels) that are managed by GPU streams and executed on the GPU cores

(device)[125]. CUDA organizes device code using abstractions of threads, blocks, and grids.

Kernels, functions inside device code, are executed by CUDA threads in parallel, each on
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Figure 5.2: GPU architecture and programming model

a single GPU core. Grid is the entire kernel domain that is partitioned into blocks that

include groups of cooperating threads. While threads inside a block can be synchronized,

they execute their own instructions on a separate GPU core. CUDA assigns each block to one

GPU processing unit which consists of hundreds of GPU cores. This unit is called Streaming

Multiprocessor (SM) in CUDA and Compute Unit (CU) in HIP. There is also a hierarchy

of memories in GPU with different access policies as shown in the figure. Global memory

is accessible by the entire grid (all blocks and threads within a block), shared memory is

local to each SM (i.e., only visible to threads inside the resident block), and registers are

thread-local where each thread has a limited number of them. Local memory is an extension

of registers that resides in global memory. GPUs also have other types of memories known

as texture and constant that have the same access policy as the global memory but they are

read-only.
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5.3 Parallel DL Operations on GPUs

A majority of DL frameworks have a GPU backend that compiles the model and gener-

ates a computation graph at the granularity of basic operations such as convolution, batch

normalization, and pooling. The operations are executed on the device by calling the cor-

responding APIs in highly optimized third-party libraries such as Nvidia cuDNN [75] and

cuBLAS [1]. The kernels implemented in these libraries hold device resources to perform the

DNN operations.

Layer Algorithm Kernel name Register Shared Mem Thread Block ALU Mem stall
L4-1 PRECOMP_GEMM implicit_convolve_sgemm 92% 39% 38% 19% 70% 0.47%
(3 ∗ 3) FFT_TILING fft2d_c2r_32x32 38% 75% 25% 6% 30% 15.2%
L4-2 PRECOMP_GEMM implicit_convolve_sgemm 100% 70% 50% 100% 60% 0.03%
(5 ∗ 5) FFT_TILING fft2d_c2r_32x32 38% 75% 25% 6% 20% 16.5%

Table 5.1: Resource utilization of two different algorithms for two independent convolutions
in 4th layer of GoogleNet.

To launch multiple operations concurrently on a GPU, each operation has to be assigned to

a separate executor (stream in the CUDA programming model). Besides, to accommodate

two or more operations on a GPU, DL frameworks need to ensure there is enough device

memory available at launch time 1. To locate an opportunity for parallelization among DL

operations, we propose a concurrency-aware tailor for DL operations on GPU (or simply

catDog). Basically, catDog is a systematic PA technique that uses profilers under the hood.

It profiles all network operations in the first iteration and based on the profiling results

suggests the possibility of concurrency and performance gain, even though such parallelism

is hard to implement. In the next section, we take CNN as an example and demonstrate our

methodology and challenges along with supporting preliminary results.
1Even though CUDA unified memory can use CPU memory, the communication cost can outweigh the

parallelization payoff.
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5.3.1 catDog and Analysis

The core operation in CNNs is convolution which constitutes the majority of the training

time (approximately 60% of the compute time for ILSVRC winners [145]. It also typically

consumes more memory than other network layers [137, 145]. cuDNN supports multiple

algorithms for each type of convolution. For example, for forward convolution, it supports

GEMM, IMPLICIT_GEMM, IMPLICIT_PRECOMP_GEMM, WINOGRAD, WINOGRAD_NONFUSED, DIRECT,

FFT, and FFT_TILING. Depending on the convolution parameters (input, filter, data layout,

etc.), each of the above algorithms has a different execution time, resource utilization and

workspace memory. Convolutions in cuDNN use device global memory for storing input,

output, filter, and intermediate results (or workspace). The input, output, and filter sizes for

convolutions are fixed during model construction, so DL frameworks can only tune workspace

memory.

Our experiments on numerous convolutions (from popular networks) reveal that it is not

feasible to run two or more cuDNN convolutions concurrently. Using the Nvidia profiler,

we observe that cuDNN kernels exhaust one or more SM resources (including registers and

shared memory) and do not allow the GPU scheduler to execute blocks from another kernel

on the same SM. Since a convolution typically has enough blocks to occupy all available SMs,

execution of a second convolution is postponed to after the first convolution is completed

resulting in a sequential execution of the two operations. Even though the profiler reports

high occupancy for convolutions, for combinations of inputs and convolution algorithms, the

computational efficiency and DRAM utilization are not high enough (e.g. 50%) [103, 107,

108, 104].

In addition, current DL frameworks either stick to certain algorithms for convolutions (e.g.

MXNET) or pick the fastest algorithm (e.g. TensorFlow). For example, in the first iteration,

TensorFlow tests all algorithms for each convolution and chooses the fastest one for subse-
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quent iterations. Even though this method is optimal to reduce the execution time of linear

networks, it is not essentially the best option for the parallel execution of operations since

the fastest algorithm could inadequately use SM resources and/or consume a large amount

of workspace memory preventing concurrent kernel executions. We observe this exact behav-

ior by profiling the resource utilization and workspace memory of convolutions in popular

networks.

SM resources. Table 5.1 shows profiling data for two independent convolutions in the

inception module of GoogleNet. According to the table, PRECOMP_GEMM algorithms

exhaust SM registers (more than 90%) but poorly use shared memory while FFT_TILING

algorithms have complementary static resource utilization, i.e. bottlenecked by SM shared

memory but consume only 38% of registers. Further, these two algorithms exhibit different

warp execution characteristics. FFT_TILING has less than 30% ALU utilization but signif-

icantly greater memory stalls compared to the GEMM algorithm with high ALU utilization

(70%) and lower memory stalls. This indicates, the former algorithm is relatively bound by

memory rather than compute resources as in the latter algorithm.

In the past few years, researchers have proposed inter-SM [63] and intra-SM [81, 153, 150]

partitioning to improve resource utilization for concurrent kernel executions. Spatial mul-

titasking [63], which group SMs among kernels has performance benefits when kernels with

complementary characteristics are co-located. In intra-SM partitioning, resource utilization

is further improved by letting blocks from different kernels share the same SM. For instance,

functional units in an SM (ALUs, SFUs, etc.) that are idle when running a memory-intensive

kernel can be utilized by the blocks of a compute-intensive kernel. Intra-SM partitioning can

practically be achieved when one or more SM static resources such as registers and shared

memory remain under-utilized by kernels [81, 153]

Thereby, for two convolutions in Table 5.1, if we choose PRECOMP_GEMM for the first

convolution and FFT_TILING for the second (TensorFlow would pick PRECOMP_GEMM
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for both) and employ SM partitioning [81, 153], the memory stalls of the second convolution

can potentially be hidden by switching to compute-warps from the first convolution. This

parallelization can improve resource utilization and reduce latency compared to serial exe-

cution. We discover 27 similar cases in this network and more instances in other popular

nonlinear CNNs such as ResNet.

Device Memory. Table 5.2 shows the execution time and workspace memory for a convo-

lution operation in GoogleNet. Comparing the FFT algorithm (TensorFlow selection) with

Winograd Nonfused, the former is only 21% faster but requires almost 1.5 GB (or 70%) of

extra memory. Changing the convolution algorithm is the only way to configure workspace

memory. Therefore, careful and profiling-based algorithm selection has the potential to

mitigate concurrent kernel execution’s limitations and improve the parallelism on a single

GPU.

Algorithm GEMM Implicit Precomp Winograd FFT FFT
(conv.) GEMM GEMM nonfused tiling
Memory 0 48 KB 4.8 GB 691 MB 2.2 GB 1.1 GB
Time 53 ms 59 ms 126 ms 46 ms 36 ms 48 ms

Table 5.2: Comparison of workspace memory and execution time for the convolution in the
sixth layer of GoogleNet on K40 GPU using all algorithms in cuDNN. Direct and Winograd
algorithms are not supported for this input.

We also go one step further to validate the benefit of using catDog. Unfortunately, we are

unable to implement a tailor for DL operations on Nvidia GPUs because Nvidia does not

provide a knob for partitioning compute resources. Also, neither cuDNN kernels nor Nvidia

schedulers are open-source for instrumenting. AMD on the other hand recently enhanced

their HIP stream APIs to preallocate CUs on GPU. With this new feature, we would be

able to apply inter-SM (or inter-CU) partitioning and test catDog. AMD has also recently

released ROCm which is an open-source platform for accelerated computing and includes

equivalents for the majority of Nvidia ML libraries. For example, it includes hipDNN a
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counterpart for cuDNN, though it is still premature.

By leveraging CU partitioning APIs and multi-stream support of ROCm in catDog, we are

able to run multiple heavy kernels such as convolutions concurrently on an AMD GPU. We

test catDog on the candidate convolutions from GoogleNet and verify the full concurrency

with rocProf (ROCm profiler) on AMD MI50 GPU. Despite our success in parallel kernel

execution (which so far has not been observed), the performance gain is insignificant. In all

the cases, running two convolutions in parallel results in the same performance or marginally

better runtime as compared to a sequential run. For example, running the two convolutions

in Table 5.1 in parallel (batchsize = 256) takes 2.5 ms while sequential execution takes 2.6

ms. This tiny benefit is not surprising considering catDog still does not support intra-SM

partitioning and more importantly, AMD does not support all the convolution algorithms

for selecting the optimal algorithm (at the time of our measurements we were limited to

GEMM and WINOGRAD).

M,K,N α , β Sequential exec. time Parallel exec. time
4 GEMM 10 GEMM 4 GEMM 10 GEMM

64, 1, 512 −1, 1 1.0 ms 2.5 ms 1.0 ms 2.7 ms
64, 512, 1 −1, 1 1.5 ms 3.6 ms 1.0 ms 2.8 ms

64, 512, 2048 −1, 1 6.0 ms 15 ms 2.8 ms 6.9 ms
1024, 64, 512 −1, 1 3.5 ms 8.8 ms 1.7 ms 4.5 ms

Table 5.3: Parallel vs Sequential execution of GEMM operations in Attention module

Alternatively, we consider non-convolution operation, i.e., GEMM operations in attention

units of BERT [83], a widely used model in NLP [78, 122]. Attention modules in NLP look

at different positions in an input sentence and compute a representation of the sentence

(i.e., dot product for encoding). Attention consists of a large number of light matrix-matrix

multiplications. These multiplications are independent and potentially can run in parallel.

So, we test catDog on multiple GEMMs in BERT’s attention and observe significant per-

formance gain from parallel execution of these kernels. Table 5.3 demonstrates the results
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for 4 of these GEMMs. We observe parallel execution of these operations can result in more

than 2× speedup. We also use catDog to find the optimal configuration in partitioning CUs

among GEMM kernels. Figure 5.3 shows the performance of running 4 GEMMs (the last

row from Table 5.3) in parallel as a function of the number of allocated CUs per kernel. This

figure suggests assigning more than 28 CUs to each kernel which leads to high-performance

training when parallelism is exploited. Less than 28 underutilizes the GPU’s computing

power. More precisely, the optimal configuration is 30 CUs/kernel, so our tailor references

such profiling results and partitions CUs accordingly to maximize the performance gain.
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Figure 5.3: Performance of executing GEMM kernels (1024,64,512) concurrently based on
share of CU.
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5.4 Conclusions and Future Work

We conclude that partitioning GPU computing resources among concurrent convolutions

depends on the workload (algorithm) which impacts both the execution time and workspace

memory of kernels. There is also an inherent tradeoff between the execution time and

workspace memory that leads to proper algorithm selection. Therefore, algorithm selection

and resource allocation are mutually dependent. Even though we observe the potential for

concurrent convolution execution, the proposed profiling-based algorithm selection should

carefully evaluate multiple aspects for optimal parallelism. On the GEMM operations in at-

tention units, however, we observe a necessity for parallelism. Our proposed method, catDog,

can be extended to find concurrency opportunities more accurately and tailor operations to

maximize performance. This enhancement highly depends on the existing software solutions.

We hope in the future GPU manufacturers provide more powerful API and flexibility in their

product, so we can implement catDog more efficiently.
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Chapter 6

Concluding Remarks

6.1 Summary

We demonstrate four important applications of performance analysis in this dissertation.

The primary contributions of these four applications are summarized below.

1. We conduct a what-if analysis of page load time in today’s browser. The purpose of

this study is to pinpoint the salient spots for performance optimization so that devel-

opers can focus their efforts there. We show the conventional PA of web browsers is not

practical due to the scale and complexity of codebase, parallel and non-deterministic

executing model of tasks, and the proliferation of task dependencies. For the first time,

we adapt causal profiling to what-if analysis of such an application. To realize causal

profiling for web browsers, we develop COZ+, a powerful profiler and performance an-

alyzer that locates the impact of optimizing browser tasks on the page load time. We

employ COZ+ on the 100 most visited websites and discover that optimizing only 40%

of Scripting activities makes websites load 8.5% faster. Contrary to the community

sentiment, optimizing HTML parsing and layout activities has a minor impact on PLT.
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COZ+ also reveals that, while multi-tasking is prevalent in the rendering processes,

there is not sufficient parallelism among tasks. Furthermore, we consider the impact

of system architecture, caching, and network connection on the what-if analysis of

PLT and discover consistency in critical stages in each configuration, and more impor-

tantly, the impact of optimization hardly alters under medium and high-speed internet

connections, implying that browsers are currently bottlenecked by computation stages.

2. After observing promising results from applying causal profiling to complex applica-

tions, we extend this method for cross-platform PA and faster what-if analysis. There-

fore, we propose virtual causal profiling, a scheme for translating the impact of code

optimization across various devices. A key contribution of our research is to model

causal profiling and prove the theory behind virtual causal profiling. We design and

implement VCoz, a prototype for virtual causal profiling that throttles hardware com-

ponents of a host system to simulate what-if analysis of programs on a target system.

As a groundwork for our validation, we leverage the Coz profiler for android smart-

phones. We use VCoz and analyze parallel benchmarks consisting of CPU-intensive,

memory-intensive, and I/O-intensive codes and compare the what-if graphs with the

Coz profiler on a mobile device. The results validate the functionality of virtual causal

profiling and show less than 16% variation with the ground truth.

3. Online advertising, which is prevalent in the web ecosystem and has caused performance

concerns, is the third application of our performance analysis. We apply extensive per-

formance characterization on third-party web ads to demystify their performance cost

on the page loading process. We demonstrate that adblockers are ineffective at quanti-

fying such performance costs, and subsequently develop adPerf, a rigorous performance

analyzer for display ads. We employ adPerf in a large-scale study (on over 500 web-

sites) and characterize the performance cost of web ads from three perspectives: 1)

computation, 2) network and 3) delivery sources. We conclude that online advertising
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has a 15% overhead on CPU usage and bandwidth usage. This is also applicable to

mobile users but at a lower cost. Our conclusion is crucial for end-users who do not

necessarily consent to receive such content. In our correlation assessments of perfor-

mance and delivery sources, we measure that Google ads account for more than half of

all client bandwidth from online advertising. Along with well-known and trusted on-

line advertising players, there are a large number of untrusted or inadequately trusted

domains that contribute to 37% of ads costs.

4. In our last application, we focus on enhancing the performance of deep learning model

training. Modeling the performance of deep learning layers and demonstrating the need

for inter-layer parallelization to reduce training time are two major contributions of

our PA in this study. We introduce catDog that uses GPU profilers and characterizes

the performance and resource utilization of each operation for every possible imple-

mentation/configuration. We test our performance analyzer (i.e., catDog) on popular

non-linear CNNs such as GoogleNet and ResNet. Considering the resource constraints

of the device, our results show that there is an optimal configuration for convolution

layers of these networks that allows for parallel execution on a GPU. For instance, we

show 27 cases in GoogleNet where selecting the optimal convolution algorithm can ac-

commodate concurrent kernel execution. We also integrate inter-SM partitioning and

multi-stream execution features in catDog for AMD GPUs and verify parallel execution

of candidate convolutions in GoogleNet. Besides, we show that catDog can determine

the optimal configuration and tailor GEMM operations in BERT attention modules so

that parallel execution of these operations improves performance by up to 2×.
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6.2 Future Directions

While hardware and software systems evolve, more advanced PA methods must be conceived

and implemented to adapt to the complexity of future applications. Our work showcases mul-

tiple of these methodologies, but we believe that our performance analysis can be extended to

a broader class of applications and future systems. Here we present two important directions

for expanding our methods and frameworks.

6.2.1 Intelligent Causal Analysis

COZ+ directs developers where to spend their optimization efforts to maximize the perfor-

mance gains. This tool is designed for large-scale and highly parallel applications. Along

with that, VCoz informs developers how the desired optimization maps to other systems and

configurations. In the future, the first step will be to expand the capabilities of the VCoz

prototype to include more hardware components and combine it with the COZ+ profiler.

The outcome will be a high-performance tool for causal analysis of a wide range of complex

and multi-platform applications.

Although the final framework is expected to be a versatile tool for developers in identi-

fying bottlenecks and optimization opportunities, it still cannot instruct them on how to

optimize their code. For instance, if the most critical spot for optimization has a data-

parallel structure, parallelizing the workload over multiple threads may be suggested, or if

the computation is delayed due to data availability, splitting the workload and pipelining

computation with data movement to hide latency may be suggested. Although designing

such an intelligent causal analyzer is expected to be difficult, backend AI module can start

with a set of predefined and widely used optimization techniques. It can communicate with

the frontend profiler and exploit its performance data and assign a score to each technique.

117



The AI system may offer top N optimization techniques with the highest score. Alterna-

tively, machine learning algorithms can be used in this direction to provide a higher level of

confidence in the recommendation.

6.2.2 Causal Resource Profiler

In Chapter 5, we show how characterizing the performance of functions under different algo-

rithms and system configurations reveals opportunities for parallelization. A brute-force scan

of the configuration space is the method we currently use in catDog for such characterization.

For example, to configure the optimal SM partitioning, catDog runs concurrent operations

with every possible share of SMs and reports the execution time. Although this strategy

generalizes to every application, as the applications become more complex, the search space

expands dramatically, becoming a bottleneck for this approach.

One way to handle this problem is to design a performance analyzer that predicts the perfor-

mance of a function for each configuration based on the resources the function uses in that

configuration [126]. In other words, similar to the concept of causal profiling that predicts

the application’s performance from the changes in the runtime of a function (e.g., what if

a function runs X% faster?), the new analyzer would predict the application’s performance

based on the changes in the resources used by a function (e.g., what if a function consumes

X% less memory?). The causal resource profiler may throttle the resources used by the con-

current function to simulate the impact of allocating more/fewer resources to the candidate

function. Implementing this causal resource profiler will undoubtedly necessitate extensive

engineering, as we believe throttling resources at runtime without significantly impacting

the application to be quite difficult.
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