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ABSTRACT OF THE DISSERTATION 

 

 

Micromechanical Framework for Mechanical Behavior of 

Asphalt Concrete Materials Featuring 

High Toughness, Low Viscosity Nano-molecular Resins 

 

by 

 

Hao Zhang 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2019 

Professor Jiann-Wen Ju, Chair 

 

Innovative micromechanical-based isotropic formulations have been proposed to 

predict the mechanical behavior of the asphalt concrete materials featuring high toughness, 

low viscosity nano-molecular resins and employed for comparisons between model 

predications and experimental measurements. A class of isotropic elastic-damage model 

based on a continuum thermodynamic framework is developed within an initial elastic 

strain energy based formulation. A 3-D analytical modeling methodology is established by 

treating the revolutionary asphalt concrete material as an asphalt mastic composite matrix 
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containing fine aggregates, asphalt binder, polymerized DCPD and air voids with coarse 

aggregates inhomogeneities distributed in it . The effective elastic moduli of the asphalt 

mastic composites are homogenized by a newly proposed multilevel homogenization 

approach based on an ensemble-volume averaged pairwise interacting theory. The coarse 

aggregates are represented by spherical multilayer-coated particles in certain sizes. A 

governing damage evolution criterion is characterized through the net stress concept in 

conjunction with the hypothesis of strain equivalence.  

An analytical formulation to predict the isotropic viscoelastic properties of the 

multiphase asphalt mastic composites is proposed within the micromechanical framework 

based on the concept of the correspondence principle along with the Laplace transform. 

The viscous behavior induced by the asphalt binder phase is characterized by a 4-parameter 

Burgers model, from where a multilevel homogenization approach similar to the elastic 

framework is employed to evaluate the effective viscoelastic mechanical properties of the 

heterogeneous asphalt mastic composites.  

A class of isotropic elastoplastic-damage framework and isotropic thermo-elasto-

viscoplastic-damage framework are developed following a similar methodology of the 

isotropic elastic-damage framework. The plastic and viscoplastic flows are introduced by 

means of an additive split of the stress tensor and the energy norm of strain tensor is 

redefined and employed as the equivalent strain. In particular, the Drucker-Prager yield 

condition is employed to characterize the plasticity behavior and a linear Perzyna type 
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associative flow rule and viscoplastic hardening law are characterized in terms of the 

effective quantities in the effective stress space.  A rate-dependent damage evolution 

criterion is introduced within the initial elastic strain energy based micromechanical 

framework to implement the damage behavior. An Arrhenius-type temperature term, 

uncoupled with Helmholtz free energy potential, is introduced to account for the effect of 

temperature. The computation of coupled elastoplastic/ elasto-viscoplastic damage 

behaviors are realized by a two-step operator splitting methodology.  

Numerical simulations are conducted based on the proposed formulations. 

Particularly, the 3-D modeling is achieved by Python scripting in ABAQUS to make sure 

there is no overlapping among spherical particle inclusions; while the two-step operator 

splitting computational algorithms are accomplished through Fortran UMAT. Prediction 

results are compared with suitably designed experimental data, showing reasonably good 

agreement.  
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CHAPTER 1 :  INTRODUCTION 

 

 

1.1  Motivation 

Roads are an integral part of our daily lives, while potholes on the roads are the lowly 

annoyance that cause millions of dollars in vehicle damages, national infrastructure 

repairing costs, business and economic loss, and a large portion of highway deaths every 

year. Potholes are formed by water, freezing and freeze-thaw cycles, excessive heat, wear 

and tear, and time. The areas that are most prone to pothole development are the poor 

drainage areas, particularly where roads dip, such as the trough under viaducts, where 

vehicular traffic is greatest and where poor maintenance allows small fissures to deteriorate. 

Pothole are not limited to cities in the Snowbelt, according to TRIP○R (TRIP, 2016) and the 

Federal Highway Administration’s annual survey (FHWA, 2014, 2017), the city of Los 

Angeles has 64% of roads ranked as poor, followed by San Francisco-Oakland with 60%, 

San Jose 56% and San Diego 55%. In 2014, the percentage of poor roads in Los Angeles 

and San Francisco even increased to 73% and 74%. The cost of repairing each pothole can 

be as high as $60, and the average annual cost for vehicle repairs due to potholes for 

individual motorists is $671. 

Today, the nation annually invests about $68 billion to fix crumbling highway, roads 

and bridges. However according to the National Surface Transportation Policy and 
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Revenue Study Commission of the U.S. Congress, the annual investment required by all 

levels of government to simply MAINTAIN the nation’s highways, roads, and bridges is 

estimated to be $185 billion per year for the next 50 years. The cost of bad roads to 

American business between now and 2022 is estimated to be $240 billion, according to the 

ASCE. Apart from that, personal injury lawsuits due to potholes are very expensive to 

public and private property owners. For instance, New York City paid out nearly $138 

million over the past six years to settle more than 4000 lawsuits connected to personal 

injury and property damage from potholes. 

The issue of fixing potholes is of great urgency. Various repairing materials and 

technologies were developed in the past several decades in order to solve the issue of 

potholes and there is a range of methods employed in different places at different times of 

year. For example, hot mix, hot box mix or recycled hot mix are used when the weather is 

warm and dry. Temporary cold patch is applied when the weather is cool but dry, whereas 

advanced polymer-modified cold patch is applied when the weather is cold and wet. 

Polyurethane-base systems, mobile infrared repair-recycle vehicles and “pothole killer” 

truck-mounted units are valid on dry road surfaces, no matter what the temperature is. 

Recently researchers at UCLA (Kao et al., 2011; W. Yuan et al., 2012; W. Yuan et al., 

2013; W. Yuan et al., 2011) proposed a radically different solution by using a low viscosity, 

high toughness dicyclopentadiene (DCPD) resin as a binder or reinforcement in asphalt-

aggregate pothole repair materials. After the DCPD resin is infiltrated, cured and hardened 
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under controlled conditions, it will form a continuous network of mechanical “cages” that 

lock in asphalt-aggregates, serve as load bearing component under repeated traffic stresses, 

provide compressive shear load strength, anchor patches with original pavement walls and 

sub-bases, prevent water infusion and serve as barrier for alligator cracks initiations and 

propagations. 

A schematic of the infiltration of p-DCPD resin into the asphalt concrete mixture is 

illustrated in Figure 1.1, which shows the cured continuously caged network of DCPD 

polymer holding the aggregates together through the connected voids in a packed aggregate 

mixture. This caging effect provides strong confinement and dramatically improves the 

mechanical properties, rutting resistance, fatigue life and temperature stability of the 

patches. 

 

Figure 1.1 The schematic illustration of the caged asphalt concrete mixture with infiltrated 

p-DCPD (illustrated in yellow networks) 
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This revolutionary pothole patching technology will apparently provide extended 

endurance and serviceability of the repaired road surfaces thus reduce the maintenance 

costs, vehicle damages and personal injuries. X-ray computer tomography and a large 

amount of indirect tension and pine rutting tests were conducted to demonstrate that DCPD 

infiltration approach could greatly reduce the air voids and improve the mechanical 

properties of the asphalt concrete materials (W. Yuan et al., 2012; W. Yuan et al., 2011). 

Experiments also investigated the DCPD reinforcement for hot mix and cold mix during 

pothole repairs, as well as the bonding strength improvement enabled by DCPD between 

repair materials and original pavement (Colorado et al., 2014; W. Yuan et al., 2012; W. 

Yuan et al., 2013). Compared to the various experimental studies carried out on the DCPD 

infiltrated asphalt concrete materials, there is a lack of studies that physically described 

and explained the complex and instantaneous damage and repairing (healing) phenomena 

of the innovative asphalt concrete materials. Therefore, a rigorous computational 

framework needs to be established and a reliable mechanical modeling is required to 

predict the mechanical behavior of innovative asphalt concrete materials.   

 

1.2  Objectives and Outline 

The initial objective of this thesis research is to develop micromechanical-based 

multi-dimensional isotropic damage framework for innovative asphalt concrete materials 
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infiltrating high toughness, low viscosity nano-molecular resins. The major tasks of this 

research are concluded as follows: 

1. Development of a micromechanical-based isotropic elastic-damage framework 

of innovative asphalt concrete materials featuring high toughness, low viscosity nano-

molecular resins: A 3-D analytical modeling methodology is proposed based on the 

micromechanics framework, assuming that the innovative asphalt concrete materials are 

isotropic and behavior of the materials is within elastic range. The materials are separated 

into two parts, matrix and inhomogeneities, respectively: 1). asphalt mastic containing fine 

aggregates, asphalt binder, polymerized DCPD and air voids, 2). coarse aggregates. The 

effective elastic moduli of the asphalt mastic composites are homogenized by a newly 

proposed multilevel homogenization approach and validated employing bounds and 

inclusion theories. The coarse aggregates are represented by spherical multilayer-coated 

particles in certain sizes. A damage variable is introduced to predict the damage behavior 

of the materials with the initial elastic strain energy norm criterion. The elastic behavior 

and the damage behavior are uncoupled through the net stress concept in conjunction with 

the hypothesis of strain equivalence. Numerical simulations are then conducted based on 

the 3-D analytical modeling methodology.  

2. Development of a micromechanical-based isotropic elastoplastic-damage 

framework of innovative asphalt concrete materials featuring high toughness, low 

viscosity nano-molecular resins: By employing the 3-D analytical modeling methodology 
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proposed in the previous task, where the asphalt concrete materials are separated into 4-

phase asphalt mastic matrix and spherical inhomogeneities. The effective elastic moduli of 

the asphalt mastic composites are homogenized by the multilevel homogenization approach 

with the aid of a pairwise interacting inclusion theory. The coarse aggregates are 

represented by spherical multilayer-coated particles in certain sizes. The plastic flow is 

introduced by means of an additive split of the stress tensor. In particular, plastic flow and 

hardening law are characterized in terms of the effective quantities in the effective stress 

space. A damage variable is introduced to predict the damage behavior of the materials 

with the initial elastic strain energy norm criterion. A computational algorithm is 

systematically developed based on the operator splitting methodology. Numerical 

simulations are then conducted based on the 3-D analytical modeling methodology.  

3. Development of a micromechanical-based isotropic thermo-elasto-

viscoplastic-damage framework of innovative asphalt concrete materials featuring 

high toughness, low viscosity nano-molecular resins: The previous 3-D analytical 

modeling methodology is extended from elastoplastic range to elasto-viscoplastic range. 

The viscoplastic flow is introduced by means of an additive split of the stress tensor and 

the energy norm of strain tensor is redefined and employed as equivalent strain. In 

particular, a linear Perzyna type associative flow rule and viscoplastic hardening law are 

characterized in terms of the effective quantities in the effective stress space.  A rate-

dependent damage corrector is introduced within the initial elastic strain energy based 
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micromechanical framework to implement the damage behavior. The computational 

algorithm developed for elastoplastic damage framework is also extended to elasto-

viscoplastic range based on the operator splitting methodology. An Arrhenius-type 

temperature term, uncoupled with Helmholtz free energy potential, is introduced to account 

for the effect of temperature. Numerical simulations are conducted based on the analytical 

modeling methodology. 

4. Development of a mechanical field application of Burgers model on predicting 

the viscoelastic properties of innovative asphalt mastic composites featuring high 

toughness, low viscosity nano-molecular resins: An analytical modeling methodology is 

proposed to predict the isotropic viscoelastic properties of the 4-phase asphalt mastic 

composites. Viscous boundary value problems are structurally analogized with the classical 

elastic boundary value problems owning to the concept of the correspondence principle 

along with the Laplace transform. A multilevel homogenization approach is employed to 

evaluate the effective bulk and shear relaxation functions, creep compliance, and complex 

modulus of the composites based on a 4-parameter Burgers viscous model. 2-D creep 

simulations under the plane stress condition are conducted and numerical results are 

compared with theoretical derivations. 

The content of the subsequent chapters is described as follows: Chapter 2 summarizes 

the review of related theories and literature. Chapter 3, 4, 5 and 6 develop the 
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aforementioned four major tasks, respectively. Chapter 7 summarizes the conclusions of 

this research and describes the future research plans. 
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CHAPTER 2 :  LITERATURE REVIEW 

 

 

2.1  Overview of Continuum Damage Mechanics 

Engineering materials such as metals, alloys, polymers, composites, asphalt, concrete, 

rocks, ceramics and wood share similar qualitative mechanical behavior despite their 

completely different physical microstructures. All of these materials show elastic behavior, 

yielding, some form of plastic or irreversible deformation. Other behaviors noted are 

anisotropy induced by strain, cyclic hysteresis loops, damage by monotonic loading or by 

fatigue, and crack growth under static or dynamic loads. These phenomena suggest that 

common mesoscopic properties can be interpreted by a few energy mechanisms that are 

similar for all these materials. Therefore, it is possible to successfully explain material 

behavior with the mechanics of continuous media and the thermodynamics of irreversible 

processes, which model the materials without detailed reference to the complexity of their 

physical microstructures. 

Continuum damage mechanics, developed based on the assumption that the damaged 

material is a macroscopically homogeneous one, leads to the possibility of globally 

modeling the nucleation and the propagation of micro-defects including their effect on the 

mechanical behavior. It has been extensively introduced and employed for decades to 

describe the progressive degradation experienced by the mechanical properties of materials 
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prior to the initiation of macro-cracks. Palmgreen, Miner, and Robinson pioneered the 

concept of a variable related to the progressive deterioration prior to failure (Lemaitre, 

1992). However, the starting point of continuum damage mechanics was in 1958, when 

L.M. Kachanov published the first paper on the creep of metals by introducing a field 

variable  called ‘continuity’ (Kachanov, 1958, 1999). Fifteen years later, a simple 

equation, , received the status of an internal state variable in the 

thermodynamics sense where  depicts damage (  denotes the 

undamaged state while  signifies failure). However, during these fifteen years, this 

concept was practically ignored and only one important result appeared in 1968, which was 

the concept of effective stress introduced by Y.N. Rabotnov (Rabotnov, 1963). The basic 

developments of damage mechanics occurred during the 1970s, at least ten years after the 

tremendous development of fracture mechanics. In the 1980s, the theory was set up on a 

more rigorous basis using thermodynamics (Coleman & Gurtin, 1967; Germain et al., 1983; 

Hill & Rice, 1973; Rice, 1971) and micromechanics (Ju, 1989; Krajcinovic & Fanella, 

1986; C. H. Wu, 1985), and applications of continuum damage mechanics to engineering 

began as many more people were involved in this discipline such as the applications to the 

modeling of creep damage (Krajcinovic, 1983; Levine, 1982), fatigue damage (Miner, 

1945; Mould et al., 1994), elasticity coupled with damage (Krajcinovic & Fonseka, 1981; 

Lemaitre, 1971) and ductile plastic damage (Beremin, 1981; Krajcinovic & Fonseka, 1981; 

Rice & Tracey, 1969; Tai & Yang, 1986). Kachanov (Kachanov, 1958, 1999) was the first 

ψ

  D = (1−ψ )

  D (0 ≤ D ≤1)   D = 0

  D = 1
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to introduce the effective stress concept to model creep rupture. Later, the damage 

mechanics was widely used to model damage of fatigue and creep, ductile plastic damage 

(Chow & Wang, 1987) and damage of engineering materials such as concrete (Ortiz, 1985, 

1987a, 1987b) soils (Ju & Yuan, 2012; Ju, Yuan, & Kuo, 2012; Ju, Yuan, Kuo, et al., 2012) 

composite materials (Ju et al., 2009; Ju & Yanase, 2009, 2010) and asphalt concrete (Hong 

et al., 2017; H. J. Lee et al., 2000; Park et al., 1996). 

 

2.2  Continuum Damage Mechanics 

2.2.1 Clarification of Damage 

Material damage has been defined as a progressive, physical process by which 

materials break, and the study of the mechanics of such damage is based on internal 

variables and the mechanisms involved in the deterioration under the loading condition. 

Damage of materials can generally be classified in terms of scale. At the microscale level 

of the representative volume element, damage is induced by the accumulation of micro-

stresses in the neighborhood of interfaces and/or defects, resulting in the breaking of bonds. 

At the mesoscale level, damage results from the growth and the coalescence of microcracks 

and/or microvoids that initiate one crack. At the macroscale level, the cracks that have been 

formed expand and grow. The first stage at microscale level requires micromechanical 

damage models in order to model microstructural change and individual microcracks or 

phenomenological continuum damage models to model distributed microcracks. The 
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second stage at mesoscale level may be studied by means of damage variables of the 

mechanics of continuous media defined at the mesoscale level. The third stage at 

macroscale level is usually studied using fracture mechanics with variables defined at the 

macroscale level. The consideration of a crack at the macroscopic level in the framework 

of fracture mechanics deduces a defect that substantially larger than the microscopic 

heterogeneities (grains, subgrains, other defects and microcracks, etc.). It is assumed that 

the main macroscopic crack is propagated through several grains to show a sufficient 

macroscopic homogeneity in size, geometry and direction, leading to possible treatment 

using the concepts of fracture mechanics. Chaboche’s schematic illustration of these 

concepts is shown in Figure 2.1 and Figure 2.2. 

 

 

Figure 2.1 The schematic illustration of fatigue crack growth 

 

In continuum mechanics, quantities defined at a mathematical point have been dealt 

with, and they represent averages on a certain volume from the physical perspective. The 
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representative volume element (RVE) is small enough to avoid smoothing of high gradients, 

but it is large enough to represent an average of the micro-processes. For the purposes of 

experiments and numerical analysis, various orders of magnitude of the RVE for different 

materials have been used, e.g., metals and ceramics , polymers and most 

composites , wood , concrete . 

 

 
Figure 2.2 The Chaboche’s crack initiation concept and classification of damage and 

fracture mechanics 

  

2.2.2  The Effective Stress Concept and Hypothesis of Strain Equivalence 

In order to avoid a micromechanical analysis for each type of defect and mechanism 

of damage, a principle should be postulated at the level of macroscale. In thermodynamics, 

the method of local state assumes that the thermo-mechanical state at a point can be 

  0.1mm( )3

  1mm( )3

  10mm( )3

  100mm( )3
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completely defined by the time values of a set of continuous state variables, which depend 

upon the point considered. This postulate introduced by Lemaitre (Lemaitre, 1971) imposes 

that the constitutive equations for the strain of a micro-volume element are not modified 

by a neighboring micro-volume element containing a microcrack. Extrapolating to the 

macroscale, it means that the strain constitutive equations written for the damaged surface 

are not modified by the damage or that the true stress loading on the material is the effective 

stress  instead of . 

Lemaitre pointed out the following principle results: “Any strain constitutive equation 

for a damaged material may be derived in the same way as for a virgin material except 

that the usual stress is replaced by the effective stress”. A schematic representation of this 

principle is illustrated in Figure 2.3.  

 

 
Figure 2.3 The schematic illustration of Lemaitre’s derivation for undamaged and 

damaged materials 

 

σ σ
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From the physical point of view, degradation of the material properties is the result of 

the initiation, growth and coalescence of microcracks or microvoids. Within the context of 

continuum mechanics, this process can be modeled by introducing an internal damage 

variable, which can be a scalar or a tensor quantity. A fourth-order tensor  is introduced 

to characterize the state of damage and transform the homogenized stress tensor  into the 

effective stress tensor  (Simo & Ju, 1987). Explicitly, it can be written as 

   (2.2.1) 

For the isotropic damage case, the mechanical behavior of microcracks or microvoids 

is independent of their orientation and depends only on a scalar damage variable, , where 

. Accordingly,  will simply reduce to , where  is the rank four 

identity tensor, and Eqn. (2.2.1) collapses to  

   (2.2.2) 

where  is the Cauchy stress tensor, and  is the effective stress tensor, both at time 

. The coefficient  dividing the stress tensor in Eqn. (2.2.2) results in a reduction 

factor associated with the amount of damage in the material first introduced by Kachanov 

(Kachanov, 1958, 1999). The damage parameter  may be interpreted physically as the 

ratio of damaged surface area over total surface area at a local material point. The value 

=0 corresponds to the undamaged state, whereas other value of  corresponds to a 

damaged state. 

 M

σ

σ

  σ ≡ M−1 :σ

 d

  0 ≤ d ≤1  M    (1− d)I  I

  
σ = σ (t)

1− d(t)

  σ (t)   σ (t)

 t   1− d(t)
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In other words, the hypothesis of equivalent strain can be interpreted as “The strain 

associated with a damaged state under the applied stress is equivalent to the strain 

associated with its undamaged state under the effective stress” according to Simo and Ju 

(Simo & Ju, 1987). We can refer to Figure 2.4 for a schematic illustration of the hypothesis. 

 

 
Figure 2.4 The schematic illustration of Simo and Ju’s hypothesis of strain equivalence 

 

2.2.3  The Effective Strain Concept and Hypothesis of Stress Equivalence 

The concept of effective strain can be treated as an alternative to the concept of 

effective stress. We may use following notions of effective strain for anisotropic cases 

   (2.2.3) 

whereas for isotropic cases  

   (2.2.4) 

Here  is the strain tensor and  is the effective strain tensor.  

  ε = M :ε

  ε = (1− d) :ε

  ε(t)   ε (t)
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Analogous to the hypothesis of strain equivalence and invoking similar 

homogenization techniques, the following dual hypothesis of stress equivalence was 

proposed by Simo and Ju (Simo & Ju, 1987): 

“The stress associated with a damaged state under the applied strain is equivalent to 

the stress associated with its undamaged state under the effective strain”. A schematic 

illustration is exhibited in Figure 2.5. 

 

 

Figure 2.5 The schematic illustration of Simo and Ju’s hypothesis of stress equivalence 

 

2.2.4  Anisotropy of Damage and Projection Tensors 

In many cases, it is practical to assume that damage is isotropic, especially under the 

conditions of proportional loading when the corresponding principal directions of the 

stresses remain constant. However, for some materials under special loading conditions or 

for most brittle materials, the damage is no longer independent of direction. In other words, 
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the damage is anisotropic and the damage variable is no longer to be a scalar. 

The concept of the decomposition of stress and strain tensors into positive and 

negative projections has been introduced by Ladeveze and Lemaitre (Ladeveze & Lemaitre, 

1984), Marzas and Lemaitre (Mazars & Lemaitre, 1985), Ortiz (Ortiz, 1985, 1987a), and 

Marzas (Mazars, 1986), and further developed by Simo and Ju (Simo & Ju, 1987), Yazdani 

and Schreyer (Yazdani & Schreyer, 1988), Ju (Ju, 1989), Stevens and Liu (Stevens & Liu, 

1992) and others (Lubarda, 1994; Lubarda & Krajcinovic, 1994, 1995; Schreyer, 1995; 

Yazdani, 1993). The principal stresses of a stress tensor are defined by the characteristic 

equation 

   (2.2.5) 

where  represent the eigenvalues of the stress tensor ,  is the second rank identity 

tensor and  represent three unit (principle or eigen-) vectors defining the direction of the 

eigenvalues . 

The stress tensor, written in terms of its eigenvalues in Eqn. (2.2.5), is 

   (2.2.6) 

where  and  stands for the dyadic (outer) tensor product. The magnitudes of the 

principle stresses are . Eqn. (2.2.6) represents the spectral representation 

(decomposition) of a symmetric second order tensor. In 1994, Lubarda and Krajcinovic 

(Lubarda & Krajcinovic, 1994) introduced an orthogonal second order matrix , which 

satisfies the condition  or  and has the following form 

  (σ − λI)p = 0
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   (2.2.7) 

The vector  has Kronecker delta functions for its components, 

defines the fixed coordinate system. The diagonal matrix can now be extracted from the 

matrix of stresses by the similarity transformation 

   (2.2.8) 

The elements of the diagonal matrix (2.2.8)  are the eigenvalues of the stress tensor 

(2.2.7). 

Motivated by the physics of the considered phenomenon, the stress tensor is 

decomposed into its positive and negative parts using the transformation 

   (2.2.9) 

The matrix 

   (2.2.10) 

is used to eliminate the negative eigenvalues and the Heaviside function is denoted by 

. The positive part of the diagonal matrix (2.2.8) can be written as  

 (2.2.11) 

where the positive eigenvalues 

   (2.2.12) 
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Define a second order symmetric tensor  

   (2.2.13) 

and a fourth rank positive tensor , written in its symmetrized form, as a function of the 

second order symmetric tensor  

   (2.2.14) 

Therefore Eqn. (2.2.11) can be rewritten in terms of tensor in a compact form 

   (2.2.15) 

, now named as the positive projection operators, written in terms of the three 

principal directions  and  of the stress and strain tensors, are 

   (2.2.16) 

   (2.2.17) 

where  and  are the principal stresses and strains, and  denotes the McAuley 

brackets. 

The positive parts of the stress and strain tensors can be written in a compact form 

using the positive projection operators 

   (2.2.18) 

   (2.2.19) 

The remaining, negative part of the stress and strain tensors, are defined as 

   (2.2.20) 
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   (2.2.21) 

Negative projection operators are defined in terms of the positive projection operators 

(2.2.16) and (2.2.17) by substituting (2.2.18) and (2.2.19) into (2.2.20) and (2.2.21) in a 

form analogous to (2.2.20) and (2.2.21) as 

   (2.2.22) 

   (2.2.23) 

Thus, the negative projection operators can be derived as follows 

   (2.2.24) 

   (2.2.25) 

In the case of anisotropic materials or damage-induced anisotropy, the positive and 

negative projection operators of the stress and strain tensors are not identical, however the 

symmetry holds for both positive and negative stress and strain projection tensors. 

   (2.2.26) 

 

2.3  Thermodynamic Approach to Constitutive Modeling 

The classical thermodynamics has been extended to the thermo-mechanics of a 

continuum since the 1960s. Figure 2.6 shows the overview of general principles in order 

to describe continuum mechanics based on thermodynamics laws.  

It can be stated that the two basic laws of thermodynamics provide simple but very 

clear theoretical foundations to describe dissipation and deformation in a continuum using 
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a suitable set of state variables. The first law of thermodynamics can be combined with 

balance of momentum and mechanical energy balance to present energy equation. The 

second law of thermodynamics is concerned with how the energy is transferred between 

systems. In continuum mechanics, another way of expressing the second law of 

thermodynamics is the Clausius-Duhem and Clausius-Planck inequality. This inequality is 

a statement concerning the irreversibility of natural processes, when energy dissipates, and 

particularly useful in the treatment of ‘switch’ conditions, such as loading-unloading 

conditions in plasticity. 
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Figure 2.6 An overview of general principles of thermodynamic-based continuum 

mechanics 

 

2.3.1  The First and Second Law of Thermodynamics 

The first law of thermodynamics is a version of conservation of energy and its rate 

form is expressed as 

   (2.3.1) 

where  is the external power,  is the rate at which heat is supplied,  is the rate of 

change of the internal energy and  is the rate form of kinetic energy. 

If a solid body occupies a domain  and bounded by a surface , then the energy 

equations can be expressed as follows 

   (2.3.2) 

   (2.3.3) 

   (2.3.4) 

   (2.3.5) 

where  is the tractions acting on the boundary surface,  is the velocity vector which is 

also the time derivative of displacement vector,  is the body force,  is the heat flux,  

is the heat source of intensity,  is the density and  is the rate of the specific internal 

energy per unit mass. 
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The rate form of balance of mechanical energy can be expressed as 

   (2.3.6) 

where  is the internal power, which can be expressed as 

   (2.3.7) 

Therefore Eqn. (2.3.1) equals to 

   (2.3.8) 

Eqn. (2.3.8) holds for any partial volume within the material body, therefore one has 

the local form of the first law 

   (2.3.9) 

The second law of thermodynamics states that the entropy of isolated system never 

decreases because isolated systems always evolve toward thermodynamic equilibrium, i.e. 

the maximum entropy state. 

The entropy and the entropy supply are defined as the scalar form 

   (2.3.10) 

   (2.3.11) 

where  is the specific entropy or entropy density,  is the entropy flux through the 

element surface and  is the entropy supply due to sources within the element. The rate 

form of entropy supply Eqn. (2.3.11) can be expressed as 
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   (2.3.12) 

where  is the non-negative scalar absolute temperature. 

The entropy production is defined as the difference between entropy and entropy 

supply and is always a non-negative quantity. 

   (2.3.13) 

   (2.3.14) 

 

2.3.2  The Clausius-Duhem and Clausius-Planck Inequalities 

From Eqn. (2.3.14) the Clausius-Duhem inequality is derived 

   (2.3.15) 

From Gauss-Green theorem, one can obtain 

   (2.3.16) 

Substituting Eqn. (2.3.16) into Eqn. (2.3.15) and the local form of the Clausius-

Duhem inequality is obtained 

   (2.3.17) 

Another way to express the Clausius-Duhem inequality is the dissipation inequality. 

The density of energy dissipation rate, , is introduced to define the rate of internal 

entropy production per unit volume times the absolute temperature (Milan & Zdenek, 2001; 
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Thomson, 1852). By using Eqn. (2.3.9) and (2.3.17), the dissipation inequality can be 

expressed as 

   (2.3.18) 

If temperature is uniform in space,  yields zero. Therefore Eqn. (2.3.18) becomes 

   (2.3.19) 

which is called the Clausius-Planck inequality (Astarita, 1989). In many applications, the 

thermal dissipation is very much smaller than the mechanical dissipation so that it is 

reasonable to assume that the thermal dissipation rate can be ignored. The Clausius-Duhem 

inequality becomes the Clausius-Planck inequality. 

 

2.4  Effective Elastic Moduli on Composites 

The modeling and estimation of effective elastic moduli of composites are of great 

interest to researchers and engineers in many science and engineering disciplines. The so-

called "effective" elastic moduli of composites are obtained by some volume-averaging 

and ensemble-averaging processes over a "representative volume element" (RVE) 

featuring a "mesoscopic" length scale which is much larger than the characteristic length 

scale of particles (inhomogeneities) but smaller than the characteristic length scale of a 

macroscopic specimen.  

There are many theoretical methods in the literature to tackle this class of problems. 

Whereas pioneering work in this field were stemming as early as in 1887 for the first ‘law 
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of mixtures’, i.e. the well-known Voigt estimate and in 1929 for another one, the Reuss 

estimate, the actual foundations of homogenization techniques are only about half a century 

old. In the early 1960s, Hashin and Shtrikman (Hashin & Shtrikman, 1961, 1963) employed 

variational principle to obtain mathematical lower and upper bounds for effective elastic 

moduli of multiphase particulate composites. The Hashin-Shtrikman bounds have been 

derived for more general cases (Kröner, 1977; Walpole, 1966a, 1966b; Willis, 1977) based 

on the solution of the general equation for inhomogeneous elasticity by use of Green 

techniques and the description of random media by correlation functions of their elastic 

moduli. Nonlinear variational bounds for isotropic elastic and viscoelastic particulate 

composites were proposed by Castaneda and Willis (Castaneda, 1991; Castaneda & Willis, 

1988; Willis, 1991, 1994). The second school for micromechanical estimation of effective 

elastic moduli of composites is known as the effective medium approach, including the 

self-consistent method proposed independently by  Kröner, and Budianski and Wu 

(Budiansky & Wu, 1962), then generalized by Hill (Hill, 1965a, 1965b) and largely 

extended by other scholars (Berveiller & Zaoui, 1979; Hutchinson, 1970; Iwakuma & 

Nemat-Nasser, 1984; Lipinski et al., 1992; Molinari et al., 1987; Molinari et al., 2004), the 

differential scheme (Hashin, 1988; Laws & Dvorak, 1987; McLaughlin, 1977; Norris, 1985; 

Roscoe, 1952), the Mori-Tanaka method (Mori & Tanaka, 1973; Qiu  & Weng, 1990; Taya 

& Chou, 1981; Taya & Mura, 1981), etc. The third school aims at direct determination of 

effective moduli of composites with randomly located particles by introducing some 
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approximations or by assuming certain special configurations for particles 

(inhomogeneities) dispersing in matrix materials. At dilute particle concentrations, some 

results were obtained by Dewey (Dewey, 1947), Kerner (Kerner, 1956), Eshelby (Eshelby, 

1957) and Hashin (Hashin, 1959) by considering only effects due to single particles (i.e., 

no inter-particle interactions). These methods are suitable for low particle densities. In 1994, 

Ju and Chen (Ju & Chen, 1994a, 1994b) presented a series governing ensemble-volume 

averaged micromechanical field equations to relate ensemble-volume averaged stresses, 

strains, volume fractions, eigenstrains, particle shapes and orientations, and elastic 

properties of constituent phases of a linear elastic particulate composite. The concept and 

equations of ensemble-volume averaged micromechanical field relations have been 

borrowed and further developed by many researchers such as Sun (Ju & Sun, 2001; Sun & 

Ju, 2004; Sun et al., 2003), Lee and Pyo (H. Lee & Pyo, 2007), Ju and Yanase (Ju & Yanase, 

2009, 2010), Ko and Ju (Ko & Ju, 2008, 2012). Numerical schemes are also largely studied 

for single and multiple inclusion problems (J. K. Lee et al., 2001; J. K. Lee et al., 2011; J. 

K. Lee & Mal, 1995, 1997). Under the assumptions that all particles are non-intersecting, 

embedded firmly into a homogeneous matrix material, i.e. perfect interfacial bonding, and 

that statistical homogeneity holds, effective (averaged) material properties remain the same 

for arbitrary averaging domains inside a composite medium. In this way, heterogeneous 

composites can be represented by equivalent homogeneous continuum media with 

appropriately defined effective properties.  
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2.4.1  The Voigt-Reuss Bounds 

A general rule of mixtures is a weighted mean used to predict various properties of 

composite materials. On a strictly empirical basis, one can imagine defining a power law 

average of the constituents 

   (2.4.1) 

where  is the effective modulus of the composite,  is the modulus of the i-th 

constituent,  is the volume fraction of the i-th constituent and  is a constant between -

1 and +1. The special cases of Eqn.(2.4.1) yield Voigt upper bound and Reuss lower bound, 

i.e. 

   (2.4.2) 

   (2.4.3) 

where  denotes the bulk modulus and  denotes the shear modulus. 
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Figure 2.7 The schematic illustration of Voigt’s iso-strain model 

 

  
Figure 2.8 The schematic illustration of Reuss’s iso-stress model 

 

The Voigt and Reuss bounds are interpreted as the ratio of average stress and average 

stain within the composite. The stress and strain are generally unknown in the composite 
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and are expected to be nonuniform. The Voigt upper bound is found assuming that the strain 

is uniform, and the Reuss lower bound is found assuming that the stress is uniform. Figure 

2.7 and Figure 2.8 are schematic illustrations of Voigt’s and Reuss’s models, models 

composed of series elements and parallel elements. 

 

2.4.2  The Eshelby’s Equivalent Inclusion Theory 

When the elastic moduli of an ellipsoidal domain  of a material differ from those 

of the remainder (matrix),  is called an inhomogeneity. Eshelby (Eshelby, 1957) first 

pointed out that the stress disturbance in an applied stress due to the presence of an 

inhomogeneity can be simulated by an eigenstress caused by an inclusion when the 

eigenstrain is chosen properly. This equivalency is called the equivalent inclusion method. 

The principle premise of the equivalent inclusion method is to consider an infinitely 

extended material with the elastic moduli , containing an ellipsoidal domain  with 

the elastic moduli . The far-field stress  is applied at infinity and the corresponding 

strain is , where . The stress disturbance and the strain disturbance are 

denoted by  and , respectively. A schematic illustration of Eshelby’s premise is 

shown in Figure 2.9. 
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Figure 2.9 The schematic illustration of an infinitely extended material (matrix) containing 

an ellipsoidal domain (inhomogeneity) under far-field stress in Eshelby’s equivalent 

inclusion theory 

 

Based on the Hooke’s law, the stress-strain relationships in the ellipsoidal domain and 

in matrix are 

   (2.4.4) 

   (2.4.5) 

Eqn. (2.4.4) and (2.4.5) can be related by the equivalent eigenstrain , as shown in 

Figure 2.9. The new relationship becomes 

   (2.4.6) 

The disturbing strain  can be obtained as a known function of the eigenstrain  

when the eigenstrain problem in the homogeneous material is solved. Namely 

   (2.4.7) 
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where  ( ) is the interior-point Eshelby’s tensor. The Eshelby’s tensor is symmetric 

in the first and second pair of indices, but in general it is not symmetric with regard to an 

exchange of these pairs (exhibits the minor but not the major symmetry) 

   (2.4.8) 

In case of an isotropic material, the components of  depend only on Poisson’s ratio, 

the ratios of the principal axes, and their orientation with respect to some Cartesian 

coordinate system. The respective expressions are very long and can be found in Mura’s 

book (Mura, 1987). Only in case of an isotropic material there exists a closed-form 

representation of the tensor , and the fields outside the inclusion. The Eshelby’s solution 

for ellipsoidal inclusions is of fundamental importance for analytical homogenization 

techniques (e.g. Mori-Tanaka method, self-consistent method, the differential scheme, etc.).  

From Eqn. (2.4.6) and (2.4.7), we have 

   (2.4.9) 

from which the equivalent eigenstrain  is determined as 

   (2.4.10) 

where the elastic mismatch tensor . 
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2.4.3  The Hashin-Shtrikman Bounds 

The narrowest possible bounds on moduli that we can estimate for isotropic materials, 

knowing only the volume fractions of the constituents, are the Hashin-Shtrikman 

bounds(Hashin, 1962; Hashin & Shtrikman, 1961, 1963). 

Under the same premise that Eshelby made, as mentioned in Section 2.4.2, consider 

composite materials which consist of matrix and inhomogeneities whose elastic moduli are 

 and  respectively, under an applied strain or stress  or  ( ). The 

average strain of the composite materials can be shown as . 

The Eshelby’s equivalent equation then reads 

   (2.4.11) 

which is identical to Eqn. (2.4.6).  

By introducing  and , we have 

   (2.4.12) 

Based on the above equations, Hashin and Shtrikman have constructed an energy 

potential as  

   (2.4.13) 

where the comparison function is , and the operation . Thus, 

the corresponding stationary equation becomes Eqn. (2.4.12) and its stationary value is 
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   (2.4.14) 

From the definition of elastic strain energy , the stationary value of the potential 

also satisfies 

   (2.4.15) 

Therefore, for a positive definite  

  

 (2.4.16) 

and for a negative definite  

  

 (2.4.17) 

For a mixture of two materials, the Hashin-Shtrikman bounds for the bulk modulus 

 and shear modulus  are given by  

   (2.4.18) 

   (2.4.19) 

where subscript 1 denotes the shell (matrix) and 2 denotes the sphere (inclusion/particle). 

A schematic illustration of the Hashin-Shtrikman spheres is shown in Figure 2.10. 
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Figure 2.10 The schematic illustration of the Hashin-Shtrikman spheres 

 

The upper bound is computed when , i.e. the shell is stiffer than the sphere; 

while the lower bound is computed when , i.e. the shell is softer than the sphere. 

 

2.4.4 The Mori-Tanaka Method 

The most common extensions of Eshelby’s equivalent inclusion theory are the Mori-

Tanaka method developed by Mori and Tanaka (Mori & Tanaka, 1973) and by Benvensite 

(Benveniste, 1987), and the self-consistent  method pioneered by Kröner, by Budianski and 

Wu (Budiansky & Wu, 1962), and by Hill (Hill, 1965a, 1965b). The original Mori and 

Tanaka method and its subsequent modifications (Norris, 1989; Taya & Mura, 1981; Weng, 

1984, 1990) is an effective field approximation based on Eshelby's elasticity solution for 

inhomogeneity in infinite medium. The effects of particle interactions are taken into 

account by a ‘mean field approximation’. As is typical for mean field micromechanics 

  K1 > K2

  K2 > K1



 39 

models, forth-order concentration tensors relate the average stress or average strain tensors 

in inhomogeneities and matrix to the average macroscopic stress or strain tensor, 

respectively; inhomogeneity "feels" effective matrix fields, accounting for phase 

interaction effects in a collective, approximate way. 

Consider homogeneous ellipsoidal inclusions (with uniform eigenstrain ) randomly 

distributed in the matrix. Let us formally define the average stress field in the matrix as 

, the field in the inclusions as  and the volume fraction of inclusions as  . 

First of all, we have  

   (2.4.20) 

Let us introduce a new single inclusion and assume this addition does not affect the 

volume fraction of inclusions  . Then the stress within the inclusion becomes  

   (2.4.21) 

where  is the Eshelby’s interior-point stress in a single inclusion present in an infinite 

medium as 

   (2.4.22) 

 Taking the average of  , we then have 

   (2.4.23) 

Combining with the equilibrium equation we finally have  
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   (2.4.24) 

   (2.4.25) 

It is shown that the average stresses are simply in terms of .  

If the eigenstrain is not uniform, Mori-Tanaka’s formula arrives as  

   (2.4.26) 

   (2.4.27) 

If the inclusions are inhomogeneous with uniform eigenstrain  ,the treatment is 

slightly different. The average stress in the matrix can be written as  
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where  is to be determined.  

By introducing a new inhomogeneous inclusion, we have 
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From the equilibrium equation, we also have 
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   (2.4.31) 

in which  , and  and  are the respective equivalent eigenstrains 

for  and .  

By further assuming  , Eqn. (2.4.30) can be written as  

   (2.4.32) 

Starting from the general ellipsoid shaped inclusions, various special cases can be 

derived. For a spherical inclusion in an isotropic material, the dependence on the principal 

axes and their orientation vanishes (geometric isotropy) and the Eshelby’s tensor reduces 

to 

   (2.4.33) 

where 
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In such case, the Mori-Tanaka scheme also yields an isotropic overall behavior, 

irrespective of the spatial locations and distributions of the inclusions (actually the elastic 

properties of composites predicted by all effective medium methods depends only on 

geometries). The effective bulk and shear moduli of the composites can be expressed as 
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    (2.4.36) 

   (2.4.37) 

where  is the volume fraction of the matrix and 

   (2.4.38) 

   (2.4.39) 

 

2.4.5 Ju and Chen’s Solutions 

Inspired by Eshelby’s equivalent inclusion theory, Ju and Chen (Ju & Chen, 1994a, 

1994b) developed a series of ensemble-volume averaged micromechanical field equations. 

The concept of this ensemble-volume averaged micromechanical field is illustrated in 

Figure 2.11.  

 

K =
f0K0 + fiKiγ K

i

i=1

n

∑

f0 + fiγ K
i

i=1

n

∑

µ =
f0µ0 + fiµiγ µ

i

i=1

n

∑

f0 + fiγ µ
i

i=1

n

∑

f0 = 1− fi
i=1

n

∑

γ K
i =

K0
K0 +α0 Ki − K0( )

γ µ
i =

µ0
µ0 + β0 µi − µ0( )



 43 

 

Figure 2.11 Schematic illustration of an ellipsoidal RVE containing inhomogeneities, and 

linear superposition treatment involving far-field strain and distributed eigenstrains in the 

Direct Eshelby’s Method 

 

To avoid the truncation errors of Greens’ functions outside the domain of an RVE, an 

ellipsoidal RVE itself is embedded in an infinite and identical matrix material within the 

framework. The entire assembly is subjected to specified far-field stresses or strains. 

Furthermore, all particles are assumed to be nonintersecting (impenetrable). 

Given a composite RVE subjected to specified far-field stresses or strains , , the 

volume-averaged total stress tensor reads  
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   (2.4.40) 

where , ,  are the volumes of the RVE, the matrix, and the r-th phase particles, 

respectively. Similarly, the volume-averaged strain tensor reads 

   (2.4.41) 

According to Eshelby’s equivalence principle (Eshelby, 1957), the perturbed strain 

field  induced by inhomogeneities can be related to specified eigenstrains  by 

replacing the inhomogeneities with the matrix material (or vice versa). That is, for the 

domain of the r-th phase particles with elastic stiffness tensor , we have 

  (2.4.42) 

where the disturbing strain  can be expressed as 

   (2.4.43) 
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Based on the above equations, we can derive the three governing field equations as 

follows 
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  (2.4.47) 

where  is the interior-point Eshelby’s tensor and  is the elastic mismatch tensor, which 

can be calculated as 

   (2.4.48) 

The exact solution of the many-particle-interacting integral equations is an intricate 

task for arbitrary and random configurations of particles, and with the assumption that 

inter-particle interaction effects are neglected, a non-interacting approximate analytical 

solution of effective moduli for multiphase composites becomes 
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matrix and  is the volume fraction of the particles. 

It is noted that Eqn. (2.4.51) and (2.4.52) are identical to the Hashin-Shtrikman lower 

(or upper) bounds and the Mori-Tanaka method for isotropic composites, if the matrix is 

the softer (or harder) phase. 

There exists a slight shortage in accuracy of this non-interacting solution despite its 

simplicity when involving eigenstrains in inhomogeneities and many-particle interaction 

problems. Therefore, Ju and Chen made another attempt to construct an approximate yet 

more accurate method to account for inter-particle interaction effects in two-phase 

composites. Compared to the non-interacting solution, a higher-order (in particle volume 

fraction) probabilistic approach is introduced to estimate effective elastic moduli of two-

phase composites containing randomly located spherical inhomogeneities.  

In comparison with Eqn. (2.4.51) and (2.4.52), the effective bulk modulus  and 

effective shear modulus  of the pairwise-interacting solution can be explicitly evaluated 

as 
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 (2.4.57) 

  (2.4.58) 

 

2.5  Behavior Modeling of Asphalt Materials 

In order to establish the constitutive modeling of innovative asphalt composite 

material to describe its linear and nonlinear behaviors, theory of plasticity and 

viscoplasticity with yield criterions must be employed and incorporated with continuum 

damage mechanics. Several basic yield criteria or models are briefly reviewed in this 

section. 

2.5.1 The von Mises Yield Criterion 

The von Mises yield criterion, also known as the maximum distortion energy criterion, 

is based on the determination of the distortion energy in a given material, i.e., of the energy 

associated with changes in the shape in that material, as opposed to the energy associated 

with the changes in volume in the same material.  

This statement suggests that yielding of a material begins when the second deviatoric 

stress invariant  reaches a critical value, mathematically 
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Also, at the onset of yielding, the magnitude of the shear yield stress in pure shear is 

 times lower than the tensile yield stress in the case of simple tension. Thus, we have 

   (2.5.2) 

where   is the tensile yield strength of the material. If we set the von Mises stress equal 

to the yield strength and combine the above equations, the von Mises yield criterion can be 

expressed as 
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Substituting  in terms of the principal stresses into the von Mises criterion equation 

we have 
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or as a function of the stress tensor components 

   (2.5.6) 

This equation defines the yield surface as a circular cylinder whose yield curve, or 

intersection with the deviatoric plane, is a circle with radius , or  , as shown in 

Figure 2.12. This implies that the yield condition is independent of hydrostatic stresses. 

 

3

k =
σ y

3

σ y

f J2( ) ≡ 3J2 −σ v = 3J2 −σ y = 0

J2

σ 1 −σ 2( )2 + σ 2 −σ 3( )2 + σ 1 −σ 3( )2 = 6k 2 = 2σ y
2

σ 1 +σ 2 +σ 3( )2 −σ 1σ 2 −σ 2σ 3 −σ 1σ 3
2 = 3k 2 =σ y

2

σ 11 −σ 22( )2 + σ 22 −σ 33( )2 + σ 11 −σ 33( )2 + 6 σ 23
2 +σ 31

2 +σ 13
2( ) = 6k 2 = 2σ y

2

2k
2
3
σ y



 49 

 

Figure 2.12 von Mises yield surface in principal stress space  

 

2.5.2 The Drucker-Prager Plasticity Model 

The Von Mises yield criterion is independent of hydrostatic pressure thus suitable for 

the modelling of plasticity in ductile materials such as metals. However, experimental 

results for materials such as rock, soils and concrete show that there is a strong dependence 

on the hydrostatic pressure.  The extended criterion, whereby the hydrostatic-dependent 

first invariant is introduced to the Von Mises Eqn. (2.5.3), has been developed by Drucker 

and Prager (Drucker & Prager, 1952) as a simple modification of the von Mises model and 

is most frequently used in practical applications.  

In terms of the stress invariants  and , the Drucker-Prager criterion can be written 

as 

   (2.5.7) 

I1 J2

f I1, J2( ) ≡ J2 −αI1 − k = 0
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where  is a material constant related to the theoretical cohesive strength of the material 

and  is the modified yield strength in absence of mean stress. When  is zero, Eqn. (2.5.7) 

reduces to the von Mises failure criterion. The Drucker-Prager yield surfaces in the 

principle stress space and the meridian planes are illustrated in Figure 2.13. 

 

 
Figure 2.13 Yield surfaces of the Drucker-Prager plasticity model 

 

The main characteristics the Drucker-Prager plasticity model includes: the yield 

criterion is simple and the yield surface is smooth and mathematically convenient to use in 

3-D applications. Compared to the von Mises yield criterion, the Drucker-Prager model 

accounts for the effect of the hydrostatic pressure, at the same time, while the traces of the 

yield surface on the meridian planes are straight lines, reasonable results are expected only 

for a limited range of hydrostatic pressure, when the curvature in the failure envelope may 

be neglected. The influence of the intermediate principal stress is considered in the 

α

k α
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Drucker-Prager model, however, there is no guarantee that this influence will be correctly 

represented unless the material parameters  and  are selected carefully.  

 

2.5.3 The Perzyna Type Viscoplasticity Model 

Viscoplastic models have been widely used to describe the rate-dependent inelastic 

mechanical behavior of materials. Among these models, Perzyna’s theory (Olszak & 

Perzyna, 1969; Perzyna, 1966) is the basis of many viscoplasticity formulations. In this 

theory, the viscous behavior of a material is considered as a time-rate flow rule or loading 

function (comparing to the yield function in plasticity). The flow rule is assumed to be 

associative such that the viscoplastic potential is identical or at least proportional to the 

normal of the yield surface. The main feature of this model is that the rate-independent 

yield function used for describing the viscoplastic strain can become larger than zero, 

which effect is known as ‘overstress’. In the small-strain theory, the strain rate vector in 

Perzyna viscoplasticity can be decomposed into the elastic and viscoplastic parts 

   (2.5.8) 

where  is the elastic strain rate and  is the viscoplastic strain rate, the 

superimposed dot denotes the time derivative. The stress rate  is related to the strain rate 

via the constitutive relation 

   (2.5.9) 

α k

!ε = !ε e + !ε vp

!ε e !ε vp

!σ

!σ = C0 : !ε e = C0 : !ε − !ε vp( )
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where  is the fourth-order elastic stiffness tensor. 

The associative viscoplastic flow rule is given by the gradient to the yield surface (in 

the stress space) 

   (2.5.10) 

where  is a scalar fluidity parameter or viscoplasticity consistency parameter with units 

of inverse seconds, the  are McAuley brackets, and  is a dimensionless viscous 

flow function, commonly  where  is a material constant. For a linear Perzyna 

type viscoplasticity (associative flow rule), , whereas in other cases, non-associative 

flow rule. 

The hardening law reads 

   (2.5.11) 

The formulation can also be constructed in the strain space analogously. 

If the viscoplasticity consistency parameter is very small, i.e. , we recover the 

rate-dependent plasticity; whereas if the parameter goes to infinity,  , we recover 

instantaneous elasticity. 

 

2.6  The Mending Mechanism of DCPD 

The densely cross-linked structures are the basis of superior mechanical properties 

such as high modulus, high fracture strength, and solvent resistance. Due to such properties, 

C0

!ε vp = 1
η
g f σ,q( )( ) ∂ f σ,q( )

∂σ

η

g f( )

g f( ) = f m m

m = 1
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η→ 0

η→∞
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highly cross-linked polymers have been widely applied and studied as matrices for 

composites, foamed structures, structural adhesives, insulators for electronic packaging, 

and other applications during past decades (X. Chen et al., 2003; Duenas et al., 2010; 

Kessler & White, 2001, 2002; White et al., 2001). 

As one of the big family, dicyclopentadiene, abbreviated DCPD, is a liquid polymer 

with chemical formula C10H12. Its high toughness, low viscosity mechanical characteristic 

allows it to conduct as healing agent to restore and recover degradations asphalt concrete 

materials. Completion of this process requires a suitable chemistry to polymerize the 

DCPD liquid in the fracture plane. Researchers (Risse & Grubbs, 1991; Schrock, 1994) 

identified the living ring-opening metathesis polymerization (ROMP) as meeting the 

diverse set of requirements of the healing system, which includes long shelf life, low 

monomer viscosity and volatility, rapid polymerization at ambient conditions, and low 

shrinkage upon polymerization. Careful balance of catalyst, monomer, and other factors 

can offer excellent control of the polymer structure. In terms of homogeneous catalysts, 

most tungsten and molybdenum catalysts (Schrock’s catalyst) have rapid initiation rates 

and can produce “living” polymerizations with excellent control of polydispersity and 

chain tactility, but the low functional group tolerance limits the monomers available. 

Ruthenium metathesis catalysts (Grubbs’ catalyst) tend to have slower initiation rates, 

often leading to higher polydispersity, but their air stability and greater tolerance for 
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functional groups makes them “user friendly” and enables use of a wide range of functional 

monomers and additives. 

The ROMP reaction, illustrated in Figure 2.14, invokes the use of a transition metal 

catalyst (for example, Grubbs' catalyst) that shows high metathesis activity while being 

tolerant of a wide range of functional groups as well as oxygen and water. The reaction 

polymerizes DCPD at room temperature in several minutes to yield a tough and highly 

cross-linked polymer network. The first generation DCPD-Grubbs’ catalyst healing agent 

system is proposed by White et al. (White et al., 2001).  

 

 
Figure 2.14 ROMP reaction of DCPD under Grubbs’ catalyst 
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In White et al.’s healing agent system, DCPD is be filled in microcapsules and 

embedded into composites in the mixing process, and when stress concentration is induced 

by micro cracks, the microcapsules break and the liquid form DCPD is released into the 

cracks, which will begin its ROMP reactions under catalyst and repair the damage. Under 

such condition, repairing is not accomplished by external operations, so we can regard the 

system as ‘self-healing’. This concept of self-healing materials are the next-generation 

materials for high-performance structures. To reduce the fatigue and subsequent 

probability of failure along with extended service life of polymer and polymer composites, 

the self-healing concept has great potential. However, none would have been accomplished 

without the ROMP reaction which allows the DCPD to form a network to bond with the 

materials, fill the cracks and air voids and restore mechanical properties and performance 

of the materials. 
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CHAPTER 3 : MICROMECHANICS-BASED ISOTROPIC ELASTIC-

DAMAGE FRAMEWORK OF ASPHALT CONCRETE MATERIALS 

FEATURING HIGH TOUGHNESS, LOW VISCOSITY NANO-

MOLECULAR RESINS 

 

 

3.1  Introduction 

Researchers at UCLA School of Engineering (Kao et al., 2011; W. Yuan et al., 2012; 

W. Yuan et al., 2013; W. Yuan et al., 2011) brought up a revolutionary pothole patching 

technology for asphalt concrete pavements by employing an ultra-high toughness, low 

viscosity nano-molecular resin, dicyclopentadiene (DCPD), as a binder or additive in the 

traditional asphalt concrete materials. Certain classes of DCPD resin can be cured to 

(polymerized) p-DCPD by a commercially available catalyst (e.g., the ruthenium-based 

Grubbs’ catalysts) to form an ultra-tough material with many of the desirable properties for 

pothole repair technology. Furthermore, the viscosity of DCPD resin is controllable by the 

catalyst for different curing times. This important feature allows DCPD to infiltrate the 

asphalt/concrete–aggregate mixtures in the beginning like water and enables p-DCPD to 

occupy most air voids. 

In order to take full advantage of this revolutionary technology, the mechanical 

behavior of the innovative asphalt concrete pothole patching materials needs be studied 
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based on the well-developed continuum damage mechanics. The fundamental assumption 

for continuum damage mechanics is the assumption that the damaged material is a 

macroscopically homogeneous one, makes it possible for global modeling of the nucleation 

and the propagation of micro-defects including their effects on the mechanical behavior. 

The theory of continuum damage mechanics has been employed for decades to 

describe the progressive degradation of material properties from a micromechanical aspect. 

Initiated by Kachanov (Kachanov, 1958, 1999) and Rabotnov (Rabotnov, 1963), the theory 

was developed based on the assumption that the damaged material is a macroscopically 

homogeneous one (Chaboche, 1981). Later the theory was set up on a more rigorous basis 

using thermodynamics and micromechanics, and its applications to engineering began as 

many more people were involved in this discipline such as the applications to the modeling 

of elasticity coupled with damage (Krajcinovic & Fonseka, 1981; Ladeveze & Lemaitre, 

1984; Lubarda & Krajcinovic, 1994; Ortiz, 1987b), elastoplastic damage (Kiefer et al., 

2018; Y. Wu & Ju, 2017; Yan et al., 2019), creep damage (Krajcinovic, 1983; Mould et al., 

1994; Murakami & Ohno, 1981; Pandey et al., 2019), fatigue damage (Abu Al-Rub et al., 

2010; Chaboche & Lesne, 1988; Chow & Wang, 1987; Sermage et al., 2000), etc. 

In this chapter, a 3-D homogenous-matrix with spherical multilayer-coated inclusions 

(particles) model was employed to simulate the materials. The concept under this 3-D 

model is that the materials can be decomposed into two parts: irregular coarse aggregates; 

and asphalt mastic composed of fine aggregates, asphalt binder, p-DCPD and air voids. 
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The irregular coarse aggregates are replaced and simulated by spherical multilayer-coated 

particles of different sizes (three in this model), and then the effective elastic moduli of the 

asphalt mastic, which is treated as the matrix of the model, are homogenized using various 

homogenization methods.  

 

Figure 3.1 The schematic illustration of a cross section of the 3-D innovative asphalt 

concrete cylinder model (plan view) 

 

Figure 3.1 shows a schematic illustration of a cross section view (plan view) of the 3-

D model, with irregular coarse aggregates replaced by spherical particles in three sizes and 

asphalt mastic treated as homogeneous. Figure 3.2, taken before an indirect tension test, is 

a plan view of a real asphalt concrete cylinder cast with the innovative materials (D2 64-

10 mix was used). By comparing Figure 3.1 and Figure 3.2, the 3-D model looks reasonable. 
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Furthermore, we may replace the spherical particles by the ellipsoidal particles or even 

irregular shaped particles, which may better simulate the real case to some extent. A new 

variable involved when replacing the spherical particles by the ellipsoidal particles is the 

orientation of the principle axes. The introducing of irregular shaped particles, which can 

be generated by image processing technology, requires more work.  

 
Figure 3.2 Plan view of asphalt concrete cylinder cast with innovative asphalt materials 

 

3.2  Overview of the Micromechanical Framework 

The starting point to tackle a new problem is always to start from the fundamental 

step. In the micromechanical framework of these innovative asphalt concrete materials 

infiltrated with DCPD, the very first and fundamental step is to assume the behavior of the 

materials is within elastic range. Once we have a meaningful and effective elastic model, 
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we can further develop the elastic model into plastic, viscoplastic, thermo-elasto-

viscoplastic models and so on. In this section, the 3-D model, which can be decomposed 

into two parts, as illustrated in Section 3.1, is assumed to be under elastic behavior, and an 

analytical method to describe this elastic behavior is derived in detail. 

 

3.3  Equivalent Multilayer-coated Particles 

The irregular coarse aggregates in the innovative asphalt concrete materials are 

simulated by spherical multilayer-coated particles of different sizes. Concepts similar to 

the multilayer coats have been used in many researches (Martínez et al., 2003; Puissant et 

al., 1994; Yang & Mal, 1995; K. Y. Yuan et al., 2014). A schematic illustration of the 

multilayer-coated particle is shown in Figure 3.3. Inspired by the concept of 

micromechanics, we assume such an outmost layer is applied to the original coated particle 

that its elastic properties are equivalent to the overall properties of the coated particle. We 

call this outmost layer the equivalent coated layer. Under such assumption, the coated 

particle can be treated as a macroscopically homogeneous material.  

To calculate the elastic moduli of this multilayer-coated particle, we can assume that 

the particle is made up of several spherical shells with different radii and derive constitutive 

equations for each shell separately. The boundary conditions for these constitutive 

equations would be that pressure and displacement at each surface are the same. Figure 3.4 



 74 

shows a schematic illustration of a general spherical shell under both internal and external 

pressures (Bower, 2009). 

 

Figure 3.3 The schematic illustration of a spherical multilayer-coated particle 

 

 
Figure 3.4 A 3-D hollow spherical shell under both internal and external pressures 

 

Assuming that the inner surface ( ) is subjected to pressure , the outer surface  R = a  pa
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( ) is subjected to pressure , while no body forces act on the shell and the 

temperature is uniform. The displacement field (Bower, 2009) within the body of shell 

( ) is 

   (3.1) 

where  denotes the Young’s modulus of the shell, and  denotes the Poisson’s ratio. 

 

Figure 3.5 Boundary conditions for the multilayer-coated particle (cross section cutting 

through center of particle) 

 

 R = b  pb

 a ≤ R ≤ b

  
u( R) =

1
2E(b3 − a3)R2 2( paa3 − pbb

3)(1− 2υ)R3 + ( pa − pb )(1+υ)a3b3⎡⎣ ⎤⎦

 E υ
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Based on the boundary conditions given in Figure 3.5, the displacement on each layer 

will be 

   (3.2) 

   (3.3) 

   (3.4) 

   (3.5) 

   (3.6) 

   (3.7) 

   (3.8) 

Here, 0, 1, 2, 3 denotes the index of the layer, where both the displacement field , 

and the Young’s modulus and the Poisson’s ratio would follow. , , ,  denotes the 

radius of each interface of the layers. 

As mentioned previously, the entire particle is macroscopically homogeneous, so the 

displacement at the outer surface should be 

   (3.9) 

  
u(od ) =

1
2E0(d 3 − c3)d 2 2( p1c

3 − p0d
3)(1− 2υ0 )d 3 + ( p1 − p0 )(1+υ0 )c3d 3⎡⎣ ⎤⎦
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1
2E0(d 3 − c3)c2 2( p1c
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3)(1− 2υ0 )c3 + ( p1 − p0 )(1+υ0 )c3d 3⎡⎣ ⎤⎦

  
u(1c) =

1
2E1(c

3 − b3)c2 2( p2b
3 − p1c

3)(1− 2υ1)c3 + ( p2 − p1)(1+υ1)b3c3⎡⎣ ⎤⎦

  
u(1b) =

1
2E1(c

3 − b3)b2 2( p2b
3 − p1c

3)(1− 2υ1)b3 + ( p2 − p1)(1+υ1)b3c3⎡⎣ ⎤⎦
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1
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1
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E3

p3
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 a  b  c  d
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E0
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By applying the continuity conditions of displacement on each interface, i.e. 

, , , , and eliminating all the unknown 

pressures, Eqn. (3.2)-(3.8) will merge into one equation, which can be expressed in a way 

that the Young’s modulus of the equivalent entire particle, , is a function of the Young’s 

moduli and the Poisson’s ratios of the equivalent coated layer, p-DCPD, asphalt binder and 

coarse aggregate, and radii of layers’ interfaces. The workload is massive by hand 

calculation, so computational software (Mathematica) is used here. The expression of the 

equivalent Young’s modulus of the entire particle given by Mathematica is 

   (3.10) 

where 

   (3.11) 

The Young’s moduli and the Poisson’s ratios of p-DCPD, asphalt binder and coarse 

aggregate and the radius (size) of the coarse aggregate, , , , , , , (notice 

that we’ve categorized the coarse aggregates into several different sizes, so  is not a fixed 

value but depends on the size of aggregates), are known values, while the Poisson’s ratio 

of the equivalent coated layer, which is also the equivalent Poisson’s ratio of the entire 

  
u(0d ) = u(d )   

u(0c) = u(1c)   
u(1b) = u(2b)   

u(2a) = u(3a)

  E0

E0 = E1
1− 2υ0
1− 2υ1

Ca3 2Ab3 + 2Bc3( )+ Nb3 Dc3 + 2Mb3( )
Ca3 ΛAb3 + 2Bc3( )+ Nb3 Dc3 + ΛMb3( )

A = E1 1+υ2( )+ 2E2 1− 2υ1( )
B = E2 1+υ1( )− E1 1+υ2( )
C = E3 1− 2υ2( )− E2 1− 2υ3( )
D = E2 1+υ1( )+ 2E1 1− 2υ2( )
M = E2 1− 2υ1( )− E1 1− 2υ2( )
N = E3 1+υ2( )+ 2E2 1− 2υ3( )
Λ = −

1+υ1
1− 2υ1

  E1   E2   E3  υ1  υ2  υ3  a

 a
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particle, and the radii of equivalent coated layer-p-DCPD interface and p-DCPD-asphalt 

binder, , ,  are yet unknown. Notice that  vanishes in Eqn. (3.11), which indicates 

that the dimension of the equivalent coated layer has nothing to do with the Young’s 

modulus of the entire particle, which meets the concept of micromechanics and validate 

the assumption of equivalent coated layer.  

The unknown Poisson’s ratio of the entire particle, , can be solved by the empirical 

formula given by Ahmed and Jones (Ahmed & Jones, 1990)  

   (3.12) 

where ,  and  denote the volume fraction of p-DCPD, asphalt binder and coarse 

aggregate respectively. Notice that for different sizes of coarse aggregates, the volume 

fractions are different. The value of  and can be derived from the thicknesses of p-

DCPD layer and asphalt binder layer. As mentioned before, coarse aggregates are 

categorized into several different sizes. Yet we assume the multilayer-coated particles, 

whatever sizes of coarse aggregates they contain, share the same thicknesses of p-DCPD 

layer and asphalt binder layer. The thicknesses of p-DCPD layer and asphalt binder layer 

are defines as 

   (3.13) 

which can be solved by the following formulas 

   (3.14) 

 υ0  b  c  d

 υ0
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   (3.15) 

Attentions need to be paid to Eqn. (3.14) and (3.15), since they consider all coarse 

aggregates of different sizes, while previously we consider only one particle/one coarse 

aggregate at a time.  denotes the volume fraction of coarse aggregate with size . On 

the left side of the equation, all coarse aggregates are taken into consideration, while on 

the right side only a certain size of coarse aggregate is considered.  

Based on Eqn. (3.11)- (3.15)  and the Young’s moduli and the Poisson’s ratios of p-

DCPD, asphalt binder and coarse aggregate and sizes of coarse aggregates, the Young’s 

modulus and the Poisson’s ratio of the entire multilayer-coated particle can be calculated. 

 

3.4  Homogenization of Effective Elastic Properties 

Traditional asphalt concrete pavement materials are complex and heterogeneous, they 

consist of coarse aggregates, fine aggregates, asphalt binder (tar and additives) and air 

voids. To investigate the mechanical behavior of asphalt concrete, the heterogeneous 

asphalt mastic can be represented by equivalent homogeneous continuum media with 

appropriately defined effective properties. The theory of micromechanics (Mura, 1987; Qu 

& Cherkaoui, 2006) has been widely employed to predict the overall properties. For 

instance, a circular two-layer built-in micromechanical model was proposed by Li et al. (G. 

Q. Li et al., 1999) or a more general framework of micromechanical modeling of an 

arbitrary ellipsoidal multicoated inclusion by Lipinski et al. (Lipinski et al., 2006). 

  
f3i

(ai + t2 )3 − ai
3

(ai + t2 )3
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f2

f2 + f3i
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As mentioned in Chapter 2, there are various methods to estimate the elastic properties 

of composite materials. In the three methods particularly emphasized in Section 2.4, the 

Hashin-Shtrikman variational bounds are efficient when no specific geometries of the 

constituents are given; Mori-Tanaka method takes an effective medium approach by 

considering an average internal stress in the matrix; and Ju and Chen provide analytical 

solutions of effective elastic properties of the composite materials by taking variations of 

Eshelby’s inclusion theory. In this section, all three methods are developed to be applicable 

to homogenize composites that have more than two phases. Results and comparison will 

be made in Section 3.6. 

For an isotropic material, the relationships between Young’s modulus , Poisson’s 

ratio , bulk modulus  and shear modulus  are 

   (3.16) 

 

3.4.1  The Hashin-Shtrikman Bounds 

The Hashin-Shtrikman bounds may be one of the remarkable achievements in 

mechanics of composites. They are the tightest bounds (Hashin, 1962; Hashin & Shtrikman, 

1961, 1963) possible from range of composite moduli for a mix of two-phase materials that 

are independent of the geometries of the constituents.  

The detailed derivation of the Hashin-Shtrikman bounds has been shown in Section 

 E

υ  K µ

   
K = E

1− 2υ
                  µ = E

2(1+υ)
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2.4.3, whose tensor form is as Eqn. (2.4.16) and (2.4.17) and a case of mix of two isotropic 

materials in Eqn. (2.4.18) and (2.4.19). However, in our model, the materials are more than 

two phases. So we need to apply a more general form of the Hashin-Shtrikman bounds, 

which is derived by Berryman (Berryman, 1995), can be written as 

   (3.17) 

   (3.18) 

where  

   (3.19) 

   (3.20) 

   (3.21) 

The brackets  in Berryman’s equations indicate volume average over the 

constituents, weighted by their volume fractions. In order to make the equations more 

accessible, I modified them into Eqn. (3.22)-(3.24), which are identical to the original 

equations, Eqn. (3.17)-(3.21).  

   (3.22) 
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   (3.23) 

where    

   (3.24) 

The Hashin-Shtrikman bounds are very reliable in homogenizing the elastic properties 

of the interim asphalt mastic, as mentioned before. 

 

3.4.2  The Mori-Tanaka Method 

The original Mori and Tanaka method (Benveniste, 1987; Mori & Tanaka, 1973) and 

its subsequent modifications (Norris, 1989; Taya & Mura, 1981; Weng, 1984, 1990) is an 

effective field approximation based on Eshelby's elasticity solution for inhomogeneity in 

infinite medium. The effects of particle interactions are taken into account by a ‘mean field 

approximation’. As is typical for mean field micromechanics models, forth-order 

concentration tensors relate the average stress or average strain tensors in inhomogeneities 

and matrix to the average macroscopic stress or strain tensor, respectively; inhomogeneity 

"feels" effective matrix fields, accounting for phase interaction effects in a collective, 

approximate way. 

The detailed derivation of Mori-Tanaka method is shown in Section 2.4.4. For a 

special case where isotropic spherical inclusions are randomly dispersed in an isotropic 
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matrix, the Mori-Tanaka scheme also yields an isotropic overall behavior, and the effective 

bulk and shear moduli of the composites can be expressed as 

    (3.25) 

   (3.26) 

where  is the volume fraction of the i-th inclusion,  is the volume fraction 

of the matrix,   are the bulk and shear moduli of the matrix and inclusions 

respectively and 

   (3.27) 

   (3.28) 
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3.4.3  The Multilevel Homogenization Approach Employing Ju and Chen’s Pairwise 

Interacting Solutions 

Taking the inspiration from Eshelby’s equivalent inclusion theory, Ju and Chen 

proposed a micromechanical framework to investigate effective mechanical properties of 

two-phase composite materials containing randomly dispersed spherical inhomogeneities, 

which is proved to be one of the current best ways to theoretically predict (instead of 

mathematical bounds) the effective moduli. In their works, Ju and Chen considered both 

non-interacting and pairwise-interacting conditions and gave corresponding solutions (Ju 

& Chen, 1994a, 1994b), which can be applied to a wider range of conditions and offer 

significant improvement in precision of predictions.  

The exact solution of the many-particle-interacting integral equations is intricate, so 

approximations are made in Ju and Chen’s non-interacting solution (Ju & Chen, 1994b) 

that the inter-particle interaction effects can be neglected, all particles are spherical, and 

both the particles and matrix are isotropic. Under such approximations, one can arrive at 

the effective moduli for two-phase composites as derived in Eqn. (2.4.51) and (2.4.52).  

Ju and Chen have also provided a variation of non-interacting solution, which takes 

the inter-particle interaction effects into consideration and allows one to homogenize the 

elastic moduli of multiphase composites containing randomly distributed particles using 

the pairwise-interacting solutions (Ju & Chen, 1994a). Not adding much complicity to the 
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work of non-interacting solution, the pairwise-interacting solution increased the accuracy 

of estimation when involving eigenstrains in inhomogeneities and many-particle 

interaction problems.  

The proposed approximate and probabilistic pairwise particle interaction formulation 

coupled with the general ensemble-volume average field equations leads to a novel, higher-

order (in volume fraction), and accurate method for the prediction of effective elastic 

moduli of two-phase composites containing randomly located spherical particles. 

Based on Ju and Chen’s work, for a two-phase (inclusions and matrix) composite, if 

the inclusions (particles) are assumed to be identical and spherical in an elastic matrix, the 

effective bulk modulus  and effective shear modulus  of this composite can be 

explicitly evaluated as 

   (3.29) 

   (3.30) 

where  
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Notice that these equations are only applied to two-phase composite, while our 

proposed asphalt mastic is a four-phase composite. In order to use the pairwise interacting 

solution, a multilevel homogenization procedure is established, as illustrated in Figure 3.6. 

Asphalt binder and p-DCPD are first mixed together, while the former is treated as the 

matrix and the latter as the inclusions, and we get an interim material M1. Then M1 is 

treated as the new matrix and fine aggregates are added in as inclusions, where we arrive 

at a stage of interim asphalt mastic. Finally, air voids are introduced into the mixture.   It 

will be shown that different sequences of mixing the phases will affect the final stage 

effective moduli of the mixture, (refer to Figure 3.16), while the aforementioned sequence 

is the most suitable one in the case of this proposed asphalt mastic.  

 

 

Figure 3.6 The illustration of applying the multilevel homogenization procedure with Ju 

and Chen’s pairwise interacting solution to the proposed asphalt mastic 
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3.5  The Initial Elastic Strain Energy Based Isotropic Damage Framework  

The continuum damage mechanics has been extensively introduced and employed for 

decades to describe the progressive degradation experienced by the mechanical properties 

of materials prior to the initiation of macro-cracks. Kachanov (Kachanov, 1958, 1999) was 

the first to introduce the effective stress concept to model creep rupture. Later, damage 

mechanics were widely used to model damage of fatigue and creep, ductile plastic damage 

and damage of brittle materials such as concrete and rocks.  

Moreover, the continuum damage mechanics, developed based on the assumption that 

the damaged material is a macroscopically homogeneous one, leads to the possibility of 

globally modeling the nucleation and the propagation of micro-defects including their 

effect on the mechanical behavior. Physically, degradation of the material properties is the 

result of the initiation, growth and coalescence of micro-cracks or micro-voids. Within the 

context of continuum mechanics, one may model this process by introducing an internal 

damage variable which can be a scalar or a tensor quantity. We denote by M a fourth-order 

tensor which characterizes the state of damaged and transforms the homogenized stress 

tensor into the effective stress tensor, explicitly 

                                         (3.35) 

For isotropic damage case, the mechanical behavior of micro-cracks or micro-voids 

is independent of their orientation and depends only on a scalar variable d. Accordingly, 

σ :=M−1 :σ
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M will simply reduce to (1-d) I, where I is the rank four identity tensor and Eqn.(3.35) 

collapses to  

                                               (3.36) 

where  is the damage parameter,  the Cauchy stress tensor, and is the 

effective stress tensor. The value  corresponds to the undamaged state whereas a 

value  corresponds to a damaged state. This damage parameter  may be 

interpreted physically as the ratio of damage surface area over total (nominal) surface area 

at a local material point, the ratio of air voids over total volume of material and damaged 

stiffness over original stiffness. 

In addition, Lemaitre (Lemaitre, 1971) introduced a principle that “Any strain 

constitutive equation for a damaged material may be derived in the same way as for a 

virgin material except that the usual stress is replaced by the effective stress”. 

Lemaitre’s principle was further translated by Simo and Ju, developed into the 

hypothesis of strain equivalence: “The strain associate with a damaged state under the 

applied stress is equivalent to the strain associated with its undamaged state under the 

effective stress”; and the hypothesis of stress equivalence:  “The stress associated with a 

damaged state under the applied strain is equivalent to the stress associated with its 

undamaged state under the effective strain”. 

In the current chapter, the hypothesis of strain equivalence is employed to predict the 

damage evolution of the material under splitting tension test. A schematic illustration of 

σ t( ) ≡ σ t( )
1− d t( )

( )d t ( )ts ( )ts

0d =

(0,1)dÎ d
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the hypothesis is exhibited in Figure 3.7. 

 

 
Figure 3.7 The schematic illustration of hypothesis of strain equivalence 

 

3.5.1 The Damage Criterion 

Experimental observations show that the non-linear behavior of concrete is due, 

basically, to the presence, growth, and coalescence of microcracks and/or microvoids 

depending on the loading path imposed. The development and propagation of macrocracks, 

leading to the rupture, are the final consequence of the microcrack mechanism (Polanco-

Loria & S¢rensen, 1995). To simulate some of these micro-mechanisms, the continuum 

damage mechanics has been applied by many researchers (Ju, 1990; Ju & Yuan, 2012; 

Lubliner et al., 1989; Malcher & Mamiya, 2014; Mazars, 1986; Mazars & Lemaitre, 1985; 

Oliver, 1990) by introducing an internal variable  which monitors the degradation of the 

elastic properties of the material. Among the different damage evolution criteria for 

d
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isotropic materials, the current research employs an initial elastic strain energy based 

damage criterion.  

A characteristic energy norm of the tensile strain tensor based on the initial elastic 

strain energy (represented by the red triangle area in Figure 3.8) is proposed.  

 

 
Figure 3.8 Initial elastic strain energy from a stress-strain curve 

 

The energy norm  can be calculated as follows: 

 (a)  Rotate the original total strain tensor to its principal directions. 

(b) Take the positive eigen-values only. Use the same eigenvectors to obtain the 

positive strain. 

(c)  Use this positive strain tensor to calculate the tensile strain energy  . 

The detailed equations can be summarized as follows: 

x +

x +

x +
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                                                         (3.37) 

where 

     and    

 (3.38)

 

Here,   are the eigenvalues,  denotes the corresponding eigenvectors, and 

. Further, the angular (McAuley) brackets are defined by .  

Accordingly, we can obtain the tensile elastic strain energy norm as follows:   

                                        (3.39) 

The projection tensors  can be derived by 

                                   (3.40) 

See  

Figure 3.9 for a schematic explanation. 
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Figure 3.9 The procedure to obtain the tensile elastic strain energy norm  

 

3.5.2 The Damage Evolution Function 

In order to build into the formulation of the notion of “irreversibility”, the following 

Kuhn-Tucker conditions of damage evolution is required 

              (3.41) 

where  is an internal variable that function the “radius” of the damage surface at 

current time t. Figure 3.10 illustrates that damage surface is expended from step time at 

 to . Let  denote the initial damage threshold before any loading is applied, we 

then have . Here  is considered as a characteristic material property. Eqn. (3.41) 

also states that damage is initiated when the energy norm of the tensile strain tensor  

exceeds the initial damage threshold .  For the isotropic damage case, we define the 

evolution of the damage variable  by a rate equation 

   (3.42) 

where  is the damage hardening function which yields a unit scalar in the elastic-

damage case. Hence the Kuhn-Tucker optimality conditions of a principle of maximum 

damage evolution become 

   (3.43) 

x +

!µ ≥ 0,       φ d (ξt
+ , gt ) ≡ ξt

+ − gt ≤ 0,      !µφ d (ξt
+ , gt ) = 0

tg
df

t −1 t g0

gt > g0 g0

ξt
+

g0

d

!dt = !µH ξt
+ ,dt( )

H ξt
+ ,dt( )

!dt ≥ 0,        φ d (ξt
+ , gt ) ≤ 0,       !dtφ

d (ξt
+ , gt ) = 0
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If  , the damage criterion (3.43) is not satisfied and , i.e. no further 

damage takes place. If on the other hand, , that implies further damage is happening, 

and according to the damage criterion,  .  

 

 
Figure 3.10 Damage surface expanding from step time t-1 to t 

 

A damage evolution function is needed to describe the relationship between isotropic 

damage variable  and strain/strain energy norm. In the paper of Yuan et al. (K. Y. Yuan 

et al., 2014), Eqn. (26), a power law is used to describe the damage evolution. Despite a 

good performance, the power law is parameter sensitive and only valid under certain 

combinations of material parameters. Enlightened by previous works by Mazars, Simo and 

Ju, etc. (Lubliner et al., 1989; Mazars, 1986; Mazars & Pijaudier-Cabot, 1989; Polanco-

φ d ξt
+ ,gt( ) < 0 !d = 0

!d > 0

φ d ξt
+ ,gt( ) = 0

 dt
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Loria & S¢rensen, 1995; Simo & Ju, 1987), a new damage evolution function that employs 

exponential law is proposed 

   (3.44) 

where  is the initial tensile damage threshold and A, B are characteristic parameters of 

the material. Eqn. (3.44) is a general solution that can be applied to all possible material 

parameters combinations and provides improved performance over Eqn. (26) in Yuan et 

al.’s paper (K. Y. Yuan et al., 2014). 

 

Table 3.1 Material parameters for damage evolution 

Parameter A B   E(psi) 

Value 0.0020 0.0133 0.0196 4.7000 1.15e5 

 

Figure 3.11 illustrates the evolution of damage variable  with a set of material 

parameters listed in Table 4.2, and Figure 3.12 is the corresponding stress-strain curve. 

Damage is not initiated until the equivalent tensile strain energy norm exceeds the initial 

tensile damage threshold, as emphasized by the red circles in Figure 3.11 and Figure 3.12. 

When , it means there is no damage, while with  the material is fully damaged. 

For numerical simulation, the damage variable range is set to be [0, 0.99] instead of [0, 1] 

to avoid numerical singularity. 

dt = A exp B ξ + ξ + − g0( )⎡
⎣

⎤
⎦

g0

ε0 g0

dt

d = 0 d = 1
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The sensitivity of parameters A and B are paid additional attention by setting various 

values for one of them individually,  the results are displayed in Figure 3.13 and Figure 

3.14. We can tell that A and B both have strong influence on the damage evolution function, 

the smaller the values are, the slower the damage will evolve. When A is larger than a 

certain value, you may notice a jump when damage occurs, so we should keep A relatively 

small to avoid that.   

 

 
Figure 3.11 Evolution of damage variable with respect to equivalent tensile strain energy 

norm 
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Figure 3.12 The stress-strain curve under isotropic elastic-damage 

 

 

Figure 3.13 Parameter sensitivity of B with A remains constant 

 

 Strain
0 0.02 0.04 0.06 0.08 0.1 0.12

 S
tre

ss

0

2000

4000

6000

8000

10000

Linear elastic
Elastic damage
Initial damage threshold

 Strain
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

 S
tre

ss

0

1000

2000

3000

4000

5000

6000
A=0.004, g0=4.0, E=1.15e5

B=1.000000e-02
B=3.000000e-02
B=5.000000e-02
B=7.000000e-02
B=9.000000e-02
B=1.100000e-01

 Equivalent tensile strain energy norm
0 2 4 6 8 10 12

 D
am

ag
e 

va
ria

bl
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A=0.004, g0=4.0, E=1.15e5

B=1.000000e-02
B=3.000000e-02
B=5.000000e-02
B=7.000000e-02
B=9.000000e-02
B=1.100000e-01



 97 

 

Figure 3.14 Parameter sensitivity of A with B remains constant 

 

3.6  Experimental Data and Theoretical Results 

Indirect tension tests of asphalt concrete cylinder specimens infiltrated DCPD were 

conducted by Yuan et al. (W. Yuan et al., 2011). D2 64-10 pothole mix was chosen as the 

base materials to cast the testing concrete cylinders. The D2 64-10 mix gradation is listed 

in Table 3.2. Based on this table, aggregates with size larger than No. 30 are considered 

coarse aggregates, while smaller than No.30 are considered as fine aggregates.  

 

Table 3.2 Aggregates Designation and Percentage Passing (D2 Mix) 

Designation 3/4” 1/2” 3/8” No.4 No.8 No.30 No. 50 No. 200 

Sieve size 
(mm) 19.0 12.5 9.5 4.75 2.36 0.60 0.30 0.075 

Percentage 
passing (%) 100 100 99 71 55 24 14 5.2 
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The asphalt materials, whose aggregates are D2 mix and binder is PG 64-10 are heated 

at 160 oC for three hours into hot mixtures, which is then compacted into the SUPERPAVE 

standard cylindrical specimen by the PINE gyratory compactor with a size of 6 inch 

(diameter) by 4.75 inch (height). In order to facilitate DCPD resin infiltration into the 

compacted cylinder specimens, 12%-20% air void inside of specimens was specified and 

realized by only three times of gyrations. In order to obtain full DCPD infiltration, vacuum 

infiltration process is utilized. After the specimens cooled down to room temperature, they 

are placed into vacuum mold with a size of 152 mm (diameter) by 120 mm (height) and 

pumped for vacuum. By sealing one end of the mold, the low viscous DCPD resin 

containing inhibitor and catalyst was sucked into the mold from the other end and 

infiltrated into those porous specimens. Subsequently, the infiltrated DCPD resin is cured 

inside the cylindrical specimens. 

Once the DCPD resin is fully cured, the indirect tension test is conducted. A 150 mm 

Lottman breaking head is used to split the specimens by an MTS machine at room 

temperature with a loading rate of 2 inches per minute, which ensures the viscous effects 

to be ignored in the post-analysis.  

The elastic properties of each constituent in the asphalt concrete cylindrical specimens 

are listed in Table 3.3, values offered by the technician conducting the indirect tension test.  

 

Table 3.3 Elastic Properties of Each Constituent 
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Constituent Aggregates Asphalt binder p-DCPD 

Young’s modulus 
(psi) 7.250e6 1.770e4 2.784e5 

Poisson’s ratio 0.20 0.30 0.39 

 

Based on the designation and percentage passing results in Table 3.2, a gradation 

curve is drawn, as shown in Figure 3.15. The diameters of the coarse aggregates are 

estimated based on the gradation curve, taking the gravity center of each segment. 

Diameters of three sizes of coarse aggregates are listed in Table 3.4. 

 

 

Figure 3.15 The gradation curve of aggregates 

 

Table 3.4 Diameters of Coarse Aggregates 
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 Coarse Aggregate I Coarse Aggregate II Coarse Aggregate III 

Diameter (mm) 11.000 5.300 3.556 

Diameter (inch) 0.4331 0.2805 0.1400 

 

Among various specimens conducting the indirect tension test, two specimens (named 

specimen #1 and specimen #2 in below) are chosen for comparison. The volume fractions 

of each ingredient in the two specimens corresponding to these two sets of data are listed 

in Table 3.5. Notice that volume fractions for coarse aggregates, fine aggregates and 

asphalt binder don’t change in the two specimens, which is correct because both specimen 

are cast with the same superpave mixture. The only difference between the two specimens 

is the volume fraction of air voids, which can’t be controlled precisely by the gyration 

procedures. Low viscosity DCPD resin is fully sucked into the specimens by vacuum 

infiltration and fills where there is an air void. Hence volume fractions of p-DCPD is related 

to air voids. 

 

Table 3.5 Volume Fractions of the Innovative Asphalt Concrete Specimens, % 

Specimen #1 

Coarse 
Aggregates 

Fine 
Aggregates Asphalt Binder p-DCPD Air Voids 

33.565 41.023 13.312 8.800 3.3 

Specimen #2 
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Coarse 
Aggregates 

Fine 
Aggregates Asphalt Binder p-DCPD Air Voids 

33.565 41.023 13.312 7.100 5.0 

 

Based on the mixture gradations given in Table 3.2 and the global volume fractions 

of each specimen listed in Table 3.5, one can calculate the individual global volume 

fractions of all three sizes of coarse aggregates, which is listed in Table 3.6. Notice that the 

specimen number is not specified here. For two specimens with different air voids, the 

volume fractions of coarse aggregates stay the same. Again, this is because the two 

specimens are cast with the same superpave mixture. 

Now that we have the elastic properties, particle sizes and volume fractions of the 

coarse aggregates, the elastic properties of the multilayer-coated particles can be calculated 

based on the equations in Section 3.2.1. 

 

Table 3.6 Global Volume Fractions of Coarse Aggregates, % 

Coarse Aggregate I Coarse Aggregate II Coarse Aggregate III 

0.746 20.885 11.934 

 

This work is almost unprocurable with hand calculation, so MATLAB is used to 

achieve the values. After gaining the results from MATLAB, Mathematica is used for 

verification. The elastic properties and particle sizes of the multilayer-coated particles are 
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presented in Table 3.7. An assumption is made that the contributions of asphalt binder and 

p-DCPD to the multilayer-coated particle won’t affect their global volume fractions in the 

specimens and asphalt mastic. 

 

Table 3.7 Material Properties of Multilayer-coated Coarse Aggregates  

 Coarse Aggregate I Coarse Aggregate II Coarse Aggregate III 

Global volume 
fraction (%) 0.746 20.885 11.934 

Diameter (in) 0.4340 0.2814 0.1409 

Specimen #1 

Young’s modulus 
(psi) 3.3784e6 3.4149e6 2.2266e6 

Poisson’s ratio 0.2604 0.2032 0.2055 

Specimen #2 

Young’s modulus 
(psi) 3.4919e6 3.4215e6 2.2341e6 

Poisson’s ratio 0.2524 0.2026 0.2045 

 

According to the concept of the interim asphalt mastic brought up in Section 3.2.2, 

the elastic properties of the interim asphalt mastic (fine aggregates, asphalt binder and p-

DCPD) is first homogenized, air voids will then be considered as a degradation (or damage) 

factor. To homogenize the elastic properties of the interim asphalt mastic, volume fractions 

of each constituent need to be calculated. Based on the fact that proportion within each 
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constituent stays the same in both interim asphalt mastic and the specimen, the modified 

volume fraction of constituents in the interim asphalt mastic is calculated and listed in 

Table 3.8. Notice that now the volume fractions of the interim asphalt mastic of two 

specimens become different. This is because the air voids in the two specimens are different, 

so when the volume fractions for air voids are removed, even though the proportions of 

other constituents stay the same respectively, the volume fractions, seeing from the aspect 

of interim asphalt mastic, will change. 

 

Table 3.8 Volume Fractions of the Interim Asphalt Mastic, % 

Specimen #1, (Air Void=3.3%) 

Fine Aggregates Asphalt Binder p-DCPD 

64.977 21.085 13.938 

Specimen #2, (Air Void=5.0%) 

Fine Aggregates Asphalt Binder p-DCPD 

66.775 21.668 11.557 

 

To estimate the effective elastic properties of the four phase asphalt mastic, the three 

methods mentioned in Section 3.4 are employed. Among them, attention is required to 

apply Ju and Chen’s pairwise interacting solutions. The proposed multilevel 

homogenization approach gives a sequence of how to treat each constituent (phase) as 

interim particles and matrices, while in general, there should be 12 possible combinations 
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to put the three phases, if air voids is considered last, in an order. which is shown in Table 

3.9. 

 

Table 3.9 Possible Combinations of 3-phase asphalt mastic without air voids 

Sequence # 1 2 3 4 5 6 

Particle DCPD Asph. DCPD Aggr. Asph. Aggr. 

Matrix 
Int. Par. Aggr. Aggr. Asph. Asph. DCPD DCPD 

Int. Mat. Asph. DCPD Aggr. DCPD Aggr. Asph. 

Sequence # 7 8 9 10 11 12 

Particle 
Int. Par. Aggr. Aggr. Asph. Asph. DCPD DCPD 

Int. Mat. Asph. DCPD Aggr. DCPD Aggr. Asph. 

Matrix DCPD Asph. DCPD Aggr. Asph. Aggr. 

 

Following the sequence in Table 3.9, Ju and Chen’s pairwise interacting solutions are 

applied, and the effective properties of the 12 combinations are shown in Figure 3.16 in 

black dots, while the red and blue dots represent the lower and upper bounds of the effective 

properties homogenized by Hashin-Shtrikman bounds. We can tell from the plots that 

results from sequence #4, 6, 8 and 11 lies within the bounds; however, sequence #4 

overestimates the effective Young’s modulus of the mixture while sequence #6 and 11 

overestimates the Poisson’s ratio. That being said, sequence #8 gives the best estimation 

of the effective moduli of the three phase asphalt mastic, i.e. fine aggregates are added as 
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interim particles to DCPD, and together contributes as particles in the asphalt binder matrix. 

This proves the multilevel homogenization approach we proposed in Section 3.4.3. 

The effective properties of the interim asphalt mastic (without air voids) and the 

asphalt mastic (with air voids) by using the Hashin-Shtrikman bounds, Mori-Tanaka 

method and the multilevel homogenization approach with Ju and Chen’s pairwise 

interacting solutions are listed in Table 3.10 and Table 3.11. Figure 3.17 and Figure 3.18 

show the homogenization results of  the three methods under different volume fractions of 

air voids. It can be noticed that the Mori-Tanaka method recovers Hashin-Shtrikman 

bounds results (upper or lower depending on the stiffness of matrix and particles) and the 

multilevel homogenization approach gives a close but more precise estimation on the 

effective properties of the homogenized composites. With the increasing of air voids 

volume fraction, both effective Young’s modulus and Poisson’s ratio are decreasing. 
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Figure 3.16 Homogenized elastic properties of the 3-phase asphalt mastic under 12 

combinations using Ju-Chen’s pairwise interacting solutions 

 

Table 3.10 Effective Elastic Properties of the Interim Asphalt Mastic 

 Homogenization 
Method Specimen #1 Specimen #2 

Young’s modulus 
(psi) 

H-S lower bound 1.3692e5 1.3490e5 

H-S upper bound 3.5968e6 3.7274e6 

M-T method 1.3692e5 1.3490e5 

Multilevel Homo 1.4175e5 1.3886e5 

Poisson’s ratio 

H-S lower bound 0.2673 0.2655 

H-S upper bound 0.2096 0.2080 

M-T method 0.2673 0.2655 

Multilevel Homo 0.2605 0.2605 

 

Table 3.11 Effective Elastic Properties of 4-Phase Asphalt Mastic 

 Homogenization 
Method Specimen #1 Specimen #2 

Young’s modulus 
(psi) 

H-S upper bound 1.2393e5 1.1597e5 

M-T method 1.2392e5 1.1597e5 

Multilevel Homo 1.2827e5 1.1937e5 

Poisson’s ratio 

H-S upper bound 0.2634 0.2599 

M-T method 0.2634 0.2599 

Multilevel Homo 0.2570 0.2547 
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Figure 3.17 Effective Young’s modulus of 4-phase asphalt mastic with different air voids 

volume fraction 
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Figure 3.18 Effective Poisson’s ratio of 4-phase asphalt mastic with different air voids 

volume fraction 

 

3.7  Numerical Simulations 

To validate the theoretical framework, a numerical simulation of splitting tension test 

is processed using finite element analysis software (such as ABAQUS). In the two-

dimensional numerical simulations, various sizes of regular shapes, mostly circles and 

ellipsoids, are selected to represent the different size aggregates utilized in the asphalt 

concrete mixture. The majority of the existing literature follows the aforementioned two-

dimensional framework, which either involves simple numerical procedure to select the 

center coordinate of each circle/ellipsoid with a specific aggregate size (Yin et al., 2015; 
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K. Y. Yuan et al., 2014) or obtains the cross-sectional microstructure by CT scanning and 

image processing (Bandyopadhyaya et al., 2008; Dai et al., 2006; H. Wang & Hao, 2011). 

By contrast, in a three-dimensional numerical simulation with random microstructures, an 

object-oriented programming language (such as Python) has to be employed to 

appropriately define the three-dimensional coordinate of the center of each spherical 

particle with specific aggregate size. Further, it needs to ensure that these randomly 

generated spheres do not overlap. The numerical complexity of constructing random three-

dimensional spheres is substantially higher than that of the two-dimensional numerical 

simulation with random circles. 

The limited previous studies which involved three-dimensional numerical simulation 

mostly remained obtaining the microstructure with two-dimensional CT scanning and 

three-dimensional converting technique (Dai, 2011; Vadood et al., 2015; Zhang et al., 

2011). There exists one research group who employed a similar random aggregates 

generation approach in their three-dimensional simulation (Absi et al., 2016; Tehrani et al., 

2013) but their emphasis was on the influence of different modeling techniques on dynamic 

moduli of bituminous materials. Therefore, an aforementioned three-dimensional model 

needs to be constructed to simulate the elastic-damage behavior of the innovative material. 

Shown as in Figure 3.19, the numerical model is a 3×4.5 in. cylinder cast with 

homogenized asphalt mastic matrix, with equivalent multilayer-coated spherical particles 

of three representative sizes randomly dispersed in the matrix. Figure 3.20 is a cross section 
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cut along the plane direction, where the randomly dispersed coarse aggregates can be seen 

directly. The coarse aggregates are simulated as spherical particles for simplicity and three 

representative sizes (shown in white, maroon and deep blue) are chosen based on the 

degradation results of the D2 mix, as discussed previously.  

To simulate the real splitting tension test, where a 150mm Lottman breaking head was 

used in the direct tensile test to split the specimens by an MTS machine at room temperature 

(25◦C ± 0.5 ◦C) , a displacement control compression along its vertical diameter direction 

is applied to the steel bar, which is then transmitted to the plywood, hence distributed onto 

the cylindrical specimen evenly. The loading rate was 2 in. per minute so that the viscous 

effect can be ignored. 
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Figure 3.19 The numerical model of the cylindrical asphalt concrete specimen 

 

 

Figure 3.20 A cross section view of the numerical cylindrical model with spherical coarse 

aggregates of three representative sizes 

 

 The elastic properties and volume fraction of each constituent in the innovative 

asphalt concrete specimens are tabulated in Table 3.3 and Table 3.5. The material 

properties of the equivalent multilayer-coated coarse aggregates are listed in Table 3.7 

while Table 3.11 provides the effective elastic moduli of asphalt mastic using multilevel 

homogenization approach with Ju & Chen’s pairwise interacting solution. The selection of 

representative volume element (RVE, i.e. the cylinder) size is in the order of 1000 times of 
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the largest aggregate size, therefore, this RVE is statically representative and satisfies the 

size effect consideration. Based on the volume fractions of the three representative coarse 

aggregate particles, the numbers of each spherical particles are calculated and rounded up. 

19 particles with a diameter of  0.4340, 1898 particles with a diameter of 0.2814, and 8639 

particles with a diameter of 0.1409 are generated. At the same time, we have to make sure 

the particles are randomly dispersed in the specimen, while do not collide with each other 

nor the surface of the cylinder. ABAQUS CAE alone cannot satisfy this demand. Hence 

Python scripting is employed to realize this goal. First the script randomly allocates a center 

origin to each particle with its (x,y,z) coordinates lie within the space of the cylinder. Then 

the center coordinate with a radius of the particle is calculated and compared with the center 

coordinates with the radii of all previous particles (and the surface of the cylinder), if the 

newly generated particle is judged as not colliding with all previous ones (nor the surface 

of the cylinder), the information of the new particle will be written down and passed on to 

ABAQUS to generate a new particle. Otherwise iteration will be done until a suitable 

location comes up. It is noted that the same algorithm can be applied to generate inclusions 

of more representative sizes with random, uniform or other forms of distributions with sizes 

and locations in principle.  

Figure 3.21 are principle stress contours in xx-direction of the 3-D model under 

splitting tensile loading at the same cross section, we can see that when the number of mesh 

elements increases (i.e. mesh size decreases), the results gradually converge. In other words, 
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when the size of the element decreases to a certain value, the finite element model is mesh 

size dependent. 

Figure 3.22 compares the load-displacement curves from the numerical modeling, 

whose elastic moduli and damage criterion are provided and supported by the theoretical 

framework, and the experimental data. Four asphalt concrete specimens were tested in the 

experiment, two with DCPD infiltrated and two without. It is clearly shown that the 

specimens with DCPD infiltrated in them can take almost two times larger the load 

comparing to the ones without DCPD. Also, the curves yielded from the numerical 

simulation meet reasonably well with the experimental observations. Thus, it is positive to 

say that our proposed framework has grasped the elastic-damage behavior of specimens 

and can fairly describe the mechanical behavior of the innovative asphalt concrete material 

within the elastic range. The deviation at the beginning is due to the gauge-specimen 

engagement, gradual closure of air voids, and interlocking among aggregates.  The 

deviation in the second half of the curves mainly come from the neglection of taking into 

consideration of elastoplastic behavior of the material. 
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(a) 

 

(b) 

Figure 3.21  Stress contours and load-displacement curves of model under splitting 

tension test with different mesh sizes 

σ xx
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Figure 3.22 Load-displacement curves by experiments and numerical prediction (elastic-

damage framework) 
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CHAPTER 4 : MICROMECHANICS-BASED ISOTROPIC ELASTO-

PLASTIC-DAMAGE FRAMEWORK OF ASPHALT CONCRETE 

MATERIALS FEATURING HIGH TOUGHNESS, LOW VISCOSITY 

NANO-MOLECULAR RESINS 

 

 

4.1  Introduction 

In the previous chapter, a three-dimensional isotropic elastic micromechanical 

framework is developed to predict the elastic-damage behavior of the innovative pothole 

patching material. The proposed isotropic elastic framework has shown reasonably good 

performance in predicting the mechanical behavior, however neglecting the plastic 

deformation of the innovative asphalt composites beyond the elastic limit. 

The discipline of setting up the continuum damage mechanics on a more rigorous 

basis using thermodynamics and micromechanics and bringing it to engineering 

applications to modeling of elasticity coupled damage, elastoplastic damage, creep damage, 

fatigue damage, etc. In particular, a lot of researches have been done in elastoplastic 

damage in concrete (Ju, 1989; Ju et al., 2009; Ju & Yanase, 2009; Ju & Yuan, 2012; Kiefer 

et al., 2018; Ko & Ju, 2008; Lubarda, 1994; Lubliner et al., 1989; Voyiadjis et al., 2008; 

Y. Wu & Ju, 2017), asphalt concrete (K. Chen et al., 2010; Jefferson, 1998; S. M. Kim & 

Abu Al-Rub, 2011; H. Zhu & Sun, 2013) and other composite materials (Edlund & 
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Klarbring, 1993; Oller et al., 1996; Shen et al., 2015; Tham et al., 2005) in the past couple 

decades.  

A class of elastoplastic-damage model based on a continuum thermodynamic 

framework is proposed in the current chapter within an initial elastic strain energy-based 

formulation to predict the behavior of the innovative material with an improved precision. 

Specifically, the governing damage evolution is characterized through the effective stress 

concept in conjunction with the hypothesis of strain equivalence; the plastic flow is 

introduced by means of an additive split of the stress tensor. A two-step operator splitting 

computational algorithms of the elastic-damage part and the plastic part are implemented 

into the existing numerical model to present a more precise prediction of the suitably 

designed splitting tension test results.  

 

4.2  Equivalent Multilayer-coated Particles 

In Chapter 3, the irregular coarse aggregates in the innovative asphalt concrete 

materials are characterized by spherical multilayer-coated particles whose core is spherical 

aggregate of certain representative sizes wrapped by thin layers of asphalt binder and p-

DCPD. This simplified characterization has been proven to be not only efficient in 

describing the mechanical properties of irregular coarse aggregates but also taking the 

caging effect of p-DCPD networks into consideration. Given the fact that p-DCPD is a 

comparatively brittle and rigid material (Kovačič et al., 2013; Vallons et al., 2015; Y. Wang 
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et al., 2017), and it’s wrapped at the outer layer of the particle, it is reasonable for us to 

assume that the multilayer-coated particles behave mainly their elasticity not plasticity. 

However, if we want to be more accurate, we can definitely take the plastic deformation 

into consideration, which is discussed in below. 

 

4.2.1 Deformation of Elastic-Perfectly Plastic Spherical Shell 

 In order to understand to what extent has the plastic deformation taken place, we need 

to know the analytical solution of the multilayer-coated particle under monotonically 

increasing external pressure. Similar to my previous chapter, we take one representative 

layer into consideration at first. Assume that an elastic-perfectly plastic spherical shell is 

under internal and external pressure. This pressurized shell first reaches yield at the outer 

surface, i.e., . If effective pressure goes beyond the yield criterion, we anticipate that 

a region  will deform plastically, while the region  remains elastic, as 

illustrated in Figure 4.1. 

r = b

x < r ≤ b a ≤ r ≤ x
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Figure 4.1 A 3-D hollow spherical shell under both internal and external pressures, with 

elastic-plastic interface at   

 

For a spherically symmetric problem with no external body force, the equilibrium 

equation is 

   (4.1) 

where the principal stresses are given by 

   (4.2) 

and the volumetric strain is 

   (4.3) 

Substituting Eqn. (4.3) into Eqn. (4.2), which in turn, is substituted into Eqn. (4.1), 

we obtain 
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  (4.4) 

Solving this governing equation, we get 

  (4.5) 

By substituting Eqn. (4.5) back into Eqn. (4.2), we get the principle stresses 

   (4.6) 

where  and  are identical to the ones in Eqn. (4.5). 

Within the elastic region, all plastic strain terms in Eqn. (4.5) and (4.6) vanish, i.e., 

.  

In order to obtain the limiting pressure that triggers the plastic deformation of the shell, 

we need to know the solutions of principle stresses while the entire shell remains in elastic 

range, which can be easily derived based on the boundary conditions 
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   (4.7) 

The principle stresses in elastic range are  

   (4.8) 

According to the result of Eqn. (4.8), we anticipate that  in both elastic and 

plastic ranges. Therefore, the yield criterion is defined as 

   (4.9) 

Based on Eqn. (4.7), (4.8) and the assumption that the plastic behavior, if ever occurs, 

initiates from the outer surface, the limiting pressure for plastic deformation then gives 

   (4.10) 

When the difference in outer and inner pressures increases beyond the limiting 

pressure , plastic deformation spreads from the outer surface to inner surface. 

Assume at a certain , plastic deformation reaches a radius of  where 

. In this case,  is the plastic region while  remains in elastic. 

Knowing that boundary conditions for elastic region ( ) are 

   (4.11) 

 and  can be solved by combining Eqn. (4.6) and (4.11) 
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   (4.12) 

Therefore, displacement of shell within the elastic region ( ) is 

   (4.13) 

And the stresses are 

   (4.14) 

When , i.e., in the plastic region, based on Eqn. (4.1) and (4.9), we have 

   (4.15) 

Based on the boundary condition 

   (4.16) 

We obtain 

   (4.17) 

Then the stresses in the plastic region become 
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   (4.18) 

According to Eqn. (4.2) and (4.3), we may have  

   (4.19) 

from which the displacement of shell within the plastic region ( ) can be 

derived as 

   (4.20) 

The continuity condition must hold at the interface of elastic and plastic regions, i.e. 

. 

   (4.21) 

   (4.22) 

From Eqn. (4.21), we obtain 

   (4.23) 

Eqn. (4.20) now becomes 

   (4.24) 
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   (4.25) 

It is noticed that when , i.e. the outer surface of the shell is reaching the critical 

point of elastic to plastic deformation, both Eqn. (4.13) and (4.24) become identical to Eqn. 

(3,1), which is the displacement solution of this shell under pure elastic deformation. This 

validates our derivation of displacement field under elastic-plastic deformation. 

 

4.2.2 Effective Young’s Modulus of Multilayer-coated Particles 

It is impossible to derive a general analytical solution for the effective (overall) 

Young’s modulus of a layered spherical shell composites that have plastic behavior 

considering a different yield stress of each constituent. In order to take advantage of the 

aforementioned deformation solutions for spherical shell, it is not harmful to make an 

assumption that asphalt binder and p-DCPD behave like elastic-perfect plastic materials, 

and when both reach their yield points, the core (coarse) aggregates hasn’t reached its 

ultimate stress yet (i.e., remains elastic), considering the differences in magnitudes of the 

ultimate stress of these materials (scale of ten each).  

According to these assumptions, the stress-strain curve of a multilayer-coated particle 

should look like Figure 4.2 where  is the effective (secant) modulus. 
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Figure 4.2 The illustration of secant method in estimating the effective Young’s modulus of 

the multilayer-coated particle 

 

The effective (secant) Young’s modulus of the multilayer-coated particle can be 

derived as follows (notations may vary from the ones in Figure 4.2): According to Figure 

4.3, the continuity of interfaces of each layer should be 

   (4.26) 

where the elastic-plastic interface between aggregate and asphalt binder should be at 

and  between apshalt binder and p-DCPD. 

  

u3a = u2a
u2b = u1b
u1c = u0c

x = a x = b
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Figure 4.3 Boundary conditions for the multilayer-coated particle (cross section cutting 

through center of particle) 

 

The displacement expressions are 

   (4.27) 

   (4.28) 

    (4.29) 
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   (4.30) 

   (4.31) 

   (4.32) 

By applying these displacements to the continuity boundary conditions, we obtain 

  (4.33) 

where 

   (4.34) 

   (4.35) 

   (4.36) 

   (4.37) 

   (4.38) 

From Eqn. (4.33), we can tell that the effective Young’s modulus of the multilayer-

coated particle is a function of Young’s moduli and the Poisson’s ratios of p-DCPD, asphalt 
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binder and coarse aggregate and the radius (size) of the coarse aggregate, , , , , 

, , , thickness of the asphalt binder and p-DCPD layers,  and its own effective 

Poisson’s ratio .  

The effective Poisson’s ratio, , can be solved by the empirical formula given by 

Ahmed and Jones (Ahmed & Jones, 1990)  

   (4.39) 

where ,  and  denote the volume fraction of p-DCPD, asphalt binder and coarse 

aggregate respectively. Notice that for different sizes of coarse aggregates, the volume 

fractions are different. The value of  and can be derived from the thicknesses of p-

DCPD layer and asphalt binder layer. As mentioned before, coarse aggregates are 

categorized into several different sizes. Yet we assume the multilayer-coated particles, 

whatever sizes of coarse aggregates they contain, share the same thicknesses of p-DCPD 

layer and asphalt binder layer. The thicknesses of p-DCPD layer and asphalt binder layer 

are defines as 

   (4.40) 

which can be solved by the following formulas 

   (4.41) 

   (4.42) 
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Based on Eqn. (4.33)-(4.42), the effective Young’s modulus and Poisson’s ratio of the 

multilayer-coated particle can be estimated. 

Given the fact that p-DCPD is a comparatively brittle and rigid material (Kovačič et 

al., 2013; Vallons et al., 2015; Y. Wang et al., 2017), and it’s wrapped at the outer layer of 

the particle, it is reasonable for us to assume that the multilayer-coated particles behave 

mainly their elasticity not plasticity. 

 

4.3  Effective Elastic Moduli of Asphalt Mastic 

Asphalt mastic, which can be treated as the matrix for the spherical multilayer-coated 

particles to randomly dispersed in it, is a multi-phase composite composed of fine 

aggregates, asphalt binder, p-DCPD and air voids. To simplify the analysis, the 

heterogeneous asphalt mastic matrix can be represented by equivalent homogeneous 

continuum media with appropriately defined effective properties. 

In the previous chapters, various approaches such as Hashin-Shtrikman bounds 

(Hashin, 1962; Hashin & Shtrikman, 1961, 1963), Mori-Tanaka method (Benveniste, 1987; 

Mori & Tanaka, 1973), and Ju and Chen’s solutions (Ju & Chen, 1994a, 1994b) have been 

employed to estimate the effective elastic properties of the multi-phase composites. Based 

on the comparisons made in Chapter 3 among these different approaches, it is trustworthy 

to pick Ju and Chen’s pairwise interacting solution to predict the effective elastic moduli 

of the asphalt mastic matrix. In particular, the pairwise interacting solution may lead to an 
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accurate higher-order formulation for the prediction of elastic particulate composites at 

moderately high particle concentrations. 

The results from the pairwise interacting solution are summarized as follows 

   (4.43) 

   (4.44) 

where ,  ,  are the bulk modulus, shear modulus and Poisson’s ratio of the 

matrix respectively,  is the volume fraction of inclusions, and 

 (4.45) 

 (4.46) 

 (4.47) 

  (4.48) 

 and  are the bulk and shear moduli of the inclusions. 

Eqn. (4.43) and (4.44) are valid for any arbitrary radial distribution function, whereas 

 and  are explicitly given for the case where uniform distribution is considered for 

simplicity. A general expression for  and  can be found in Eqn. (44)-(49) in Ju and 

Chen(Ju & Chen, 1994a) and for a real particulate composite, if the radial distribution 

function may be measured via nondestructive characterization (e.g., three-dimensional X-
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ray computerized tomography) of a series of specimens produced from the same material 

processing procedure,  a certain expression for  and  can be derived.  

Eqn. (4.43)-(4.48) are valid for two-phase composites yet the proposed asphalt mastic 

is a four-phase composite. In order to use the pairwise interacting solution, a multilevel 

homogenization procedure is established, illustrated as in Figure 4.4. A comparison of 

effective elastic moduli of an interim asphalt mastic (neglecting air voids) and final state 

asphalt mastic (with air voids) calculated based on this proposed multilevel 

homogenization procedure has been proven to be slightly more accurate than that of 

Hashin-Shtrikman bounds and Mori-Tanaka method in the previous Chapter. 

 

 

Figure 4.4 The multilevel homogenization procedure to apply Ju and Chen’s pairwise 

interacting solution 

 

γ 1 γ 2
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4.4  The Initial Elastic Strain Energy Based Isotropic Damage Evolution  

As stated in Chapter 2 and 3, the definition of damage in our approach can be 

described as the separation of portions of materials due to the breaking of bonding or 

cohesion between portions by local tension which leads to the partial or complete loss of 

elastic stiffness. A class of damage evolution criterion, based on a continuum damage 

mechanics framework, is proposed within an initial elastic strain energy based formulation.  

General form to satisfy Kuhn-Tucker condition 

   (4.49) 

where  is the damage consistency parameter that defines the damage loading/unloading 

conditions according to the Kuhn-Tucker relations; describes the current damage 

criterion, or in other words, the damage surface;  is the damage threshold at the current 

time t;  is the damage hardening function which yields a unit scalar in the elastic-

damage case; and  is the equivalent tensile strain energy norm which is defined as 

(Lemaitre, 1985; Mazars & Lemaitre, 1985) 

   (4.50) 

The tensile strain tensor  and  is the Mode I tensile projection tensor 

which can be calculated by following equations 
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   (4.51) 

   (4.52)   

   (4.53) 

where  and  . 

An isotropic elastic-damage evolution function is proposed in Chapter 3. 

   (4.54) 

where  is the initial tensile damage threshold (  at t=0) and A, B are characteristic 

parameters of the material.  

 

4.5  The Effective Elastoplastic Behavior of the Innovative Material 

4.5.1 The Coupled Isotropic Formulation 

The governing incremental damage evolutions are characterized through the effective 

stress concept in conjunction with the hypothesis of strain equivalence; plastic flow is 

introduced by means of an additive split of the stress tensor. In this innovative formulation, 

a characteristic energy norm of the tensile strain tensor is introduced for the for the damage 

mechanics. 
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A new computational algorithm is systematically developed based on the two-step 

operator splitting methodology. The elastic-damage predictor and the plastic corrector are 

implemented within ABAQUS user routine (Fortran).  

A crucial idea underling the initial elastic strain energy based isotropic damage model 

presented in this chapter is the hypothesis that incremental damage history is directly linked 

to the history of total strains. The notion of effective stress along with the hypothesis of 

strain equivalence then follows from the assumed form of free energy. Attention is focused 

on the proposed isotropic damage variable. 

 

4.5.2 The Additive Stress Split 

Within the present strain space framework, the plastic flow is introduced by means of 

an additive split of the stress tensor into initial and inelastic parts (Simo & Ju, 1987), i.e. 

   (4.55) 

where  is the effective stress,  is the total strain,  is the initial elastic stored 

energy function of the undamaged material, and  denotes the effective plastic 

relaxation stress. For linear elasticity, we write 

   (4.56) 

 where  denotes the linear elasticity tensor. Eqn. (4.55) then can be written as the 

following 
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   (4.57) 

 

4.5.3 The Thermodynamic Basis 

In order to introduce the damage effect and plastic flow processes, a free energy 

potential of the following form is proposed 

   (4.58) 

where  denotes the total strain tensor,  is the plastic relaxation stress tensor,  is a 

suitable set of internal (plastic) variables. Further,  defines the isotropic scalar damage 

variable between 0 and 1 (or a maximum damage threshold less than 1) whose function has 

been discussed in Section 4.4.  is the initial elastic stored energy function of the 

undamaged material, and  is the plastic potential function.  

Confining our attention to the purely mechanical theory, the Clausius-Duhem reduced 

dissipation inequality for purely mechanical isothermal theory takes the form for any 

admissible process (Milan & Zdenek, 2001)  

   (4.59) 

By taking the time derivative of Eqn. (4.58), substituting it into Eqn. (4.59), and 

making use of the classical Coleman-Noll argument (Coleman & Noll, 1963) and its 

variation, the Coleman-Gurtin theory (Coleman & Gurtin, 1967) along with the additional 
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assumption that the damage effect and plastic unloading are elastic processes, we can 

obtain the stress-strain constitutive law 

   (4.60) 

and the dissipative inequalities 

   (4.61) 

   (4.62) 

It follows from Eqn. (4.60) that within the present strain space formulation, the stress 

tensor is split into the elastic-damage part and the plastic relaxation part. From Eqn. (4.61) 

and (4.62), we observe that the dissipative energy by plasticity itself is positive; if damage 

effect is involved, the sum of damage and plasticity effect is also positive. It is also noted 

from Eqn. (4.60)-(4.62) that the present framework is capable of accommodating general 

(nonlinear) elastic response and general plastic response. 

The potential  is linked to plastic dissipation. Its role is such that inequality 

(4.62) is satisfied for arbitrary processes. Note that we have assumed that the potential 

 is independent of damage variable . From Eqn. (4.58), it then follows that 

   (4.63) 

 Hence, the initial (undamaged) elastic strain energy  is the thermodynamic 

force  conjugate to the damage variable . 
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4.5.4 Characterization of Effective Plastic Response and Tangent Moduli 

In accordance with the notion of effective stress, the characterization of the plastic 

response should be formulated in effective stress space in terms of effective stress  and 

. Therefore, for the classical situation in which the yield function is postulated in the 

stress space, we replace the homogenized Cauchy stress tensor  by the effective stress 

tensor , so that the elastic-damage domain is characterized by . Here,  

represents the internal plastic variables and the evolution of which is defined below. With 

the assumption of an associative flow rule, rate-independent plastic response is 

characterized in the strain space by the flowing constitutive equations (Simo & Ju, 1987) 

   (4.64) 

   (4.65) 

   (4.66) 

where  denotes the plastic relaxation effective stress rate tensor,  denotes the plastic 

consistency parameter, and  signifies the hardening law. Eqn. (4.64)-(4.66) provide a 

characterization of plasticity in the strain space. Loading/unloading conditions may be 

expressed in a compact form by requiring that 
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Note that if , then  and the process is elastic-damage. On the other hand, 

for plastic loading,  and . In the latter case,  is determined by requiring that 

 , which is considered as the so-called plastic consistency condition. Making use of 

Eqn. (4.55) during loading, one has 

   (4.68) 

where  denotes the partial derivative of  with respect to the first 

argument. From Eqn. (4.60) we obtain 

   (4.69) 

where the flow rule (4.64) has been applied. Therefore,  can be determined from Eqn. 

(4.68), (4.69) and the hardening law (4.65) as 

   (4.70) 

Substitution of Eqn. (4.70) into Eqn. (4.69) then yields , where  is the 

effective elastoplastic tangent moduli given by 
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   (4.71) 

 

4.6  Computational Algorithms 

In Section 4.4 and 4.5., an initial elastic strain energy based isotropic elastoplastic 

damage model with the concept of additive stress split in the effective stress space. To use 

the proposed model within the context of numerical method, a two-step operator splitting 

methodology (Simo & Hughes, 1998) is introduced. In particular, the resulting procedure 

takes the form of an elastic-damage part and an effective plastic return mapping part, as 

follows: 
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Plastic Part 

   

A following step-by-step procedure is developed to solve the two parts of the 

elastoplastic damage problem: 

Step 1: Update the total strain. Given the incremental displacement field  , the 

total strain tensor is updated as 

   (4.72) 

Step 2: Compute the tensile strain tensor 

   (4.73) 

where   and ;  and  (i=1~3) denote the 

corresponding eigenvectors and eigenvalues of the total strain tensor  respectively; 

the angular McAuley brackets are defined by .  

Step 3: Compute the initial (undamaged) elastic tensile strain energy 

   (4.74) 
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   (4.75) 

Step 5: Obtain trial (predictor) stress tensor and internal plastic variable 

   (4.76) 

Step 6: Check for yielding 

   (4.77) 

Step 7: Cutting plane return mapping  

In the case of plastic loading, the trial (predictor) stresses and internal variables need 

to be returned back to the yield surface along the algorithmic counterpart of the flow 

generated to satisfy the Kuhn-Tucker conditions. There exist many return mapping 

algorithms, whereas the cutting plane algorithm developed by Simo and Ortiz (Ortiz & 

Simo, 1986; Simo & Ortiz, 1985) is employed here. The cutting plane algorithmic 

construction was inspired by a form of the convex cutting plane method (Kelley, 1960) 
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≤ g0    dn+1 = 0   (no damage)

> g0    dn+1 = Aexp Bξn+1
+ ξn+1

+ − g0( )⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

σn+1
0 = ∂Ψ0

∂ε
ε n+1( ) = C0 : ε n+1

σn+1
trial = σn+1

0 − σn
p

qn+1
trial = qn

if   f σn+1
trial ,qn+1

trial( ) ≤ 0    σn+1 = σn+1
trial  ;  qn+1 = qn+1

trial  ; skip step 7

> 0    plastic; go to step 7

⎧
⎨
⎪

⎩⎪

K = 0,    σn+1
K = σn+1

trial ,    qn+1
K =qn+1

trial
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(ii) Compute the hardening moduli and yield function: 

   

(iii) Linearize the plastic consistency condition: 

   

(iv) Update the state variables and consistency parameter: 

   

Step 8: Update the homogenized stress 

   (4.78) 

 

4.7 Numerical Simulations 

4.7.1 A 1-D Driven Problem  

To test the proposed elastoplastic-damage framework, a 1-D strain driven problem is 

tested by MATLAB. One cycle strain loading (compressive loading of strain in 11-

direction, unloading, tensile loading of strain in 11-direction and unloading) is applied, as 

shown in Figure 4.5. In particular, the Drucker-Prager yield function (Drucker & Prager, 

hn+1
K = h σn+1

K ,qn+1
K( )

fn+1
K = f σn+1

K ,qn+1
K( )

IF   fn+1
K ≤ 0 (TOL)    EXIT

ELSE    GOTO (iii)

Δλn+1
K =

fn+1
K

∂ fn+1
K

∂σn+1
K :Cn+1

K :
∂ fn+1

K

∂σn+1
K −

∂ fn+1
K

∂qn+1
K ihn+1

K

σn+1
K+1 = σn+1

K+1 − Δλn+1
K Cn+1

K :
∂ fn+1

K

∂σn+1
K

qn+1
K+1 = qn+1

K + Δλn+1
K hn+1

K

SET   K← K +1;    GOTO (ii)

σn+1 = 1− dn+1( )σn+1
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1952) is used for loading function. The Drucker-Prager yield function is a simple 

modification of the Von Mises criterion whereby the hydrostatic-dependent first invariant 

 is introduced to the original Von Mises yield function and becomes suitable for the 

modeling of plasticity of materials where there is a strong dependence on the hydrostatic 

pressure such as rocks, soil and concrete. 

It is defined as 

   (4.79) 

where  is a material constant related to the theoretical cohesive strength of the material 

and  is the modified yield strength in absence of mean stress. 

Figure 4.6-Figure 4.10 demonstrate the stress-strain relationships between effective 

stress  and strain , and homogenized stress   and strain  ; the history of 

plastic strain , plastic stress  and the evolution of the scalar damage variable, 

respectively. The stress-strain relationship in the effective space appears to be linear in 

each segment, while in the homogenized (true) space, it becomes nonlinear under tension 

loading segment. This consequence meets the expectation of the hypothesis of strain 

equivalence. The effective stress  didn’t not go back to origin after a full cylce, due to 

the fact of irriversibility of the plastic deformation, the residual stress is about 1000 psi, 

which is the amount of plastic stress  at the end of the cycle. Also, we notice in Figure 

4.10 that damage didn’t occur until around 200 time steps, i.e. only within the segment of 

tensile loading, which agrees with our definition of the damage evolution function (tensile 

I1

f I1, J2( ) ≡ J2 −αI1 − k = 0

α

k

σ 11 ε11 σ 11 ε11

ε11
p σ 11

p

σ 11

σ 11
p
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strain and tensile strain energy norm).  Damage history remains flat during the tensile 

unloading segment due to the fact that no further energy is introduced to precipitate further 

damage while no healing effect exists in the material at the same time. The outputs from 

the 1-D strain driven problem are reasonable, and the proposed elastoplastic-damage 

framework will be implemented by Fortran code in ABAQUS UMAT to simulate the 

elastoplastic behavior of the specimen infiltrated with DCPD under splitting tension test. 

 

 
Figure 4.5 The history of (total) strain input  
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Figure 4.6 The stress-strain relationship of  vs.  

 
Figure 4.7 The stress-strain relationship of   vs.  
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Figure 4.8 The history of plastic strain  

 
Figure 4.9 The history of plastic stress  
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Figure 4.10 The history of damage evolution 

 

4.7.2  The Splitting Tension Test 

To validate the theoretical framework, a numerical simulation of splitting tension test 

is processed using finite element analysis software (ABAQUS). In the two-dimensional 

numerical simulations, various sizes of regular shapes, mostly circles and ellipsoids, are 

selected to represent the different size aggregates utilized in the asphalt concrete mixture. 

The majority of the existing literature follows the aforementioned two-dimensional 

framework, which either involves simple numerical procedure to select the center 

coordinate of each circle/ellipsoid with a specific aggregate size (Yin et al., 2015; K. Y. 

Yuan et al., 2014) or obtains the cross-sectional microstructure by CT scanning and image 
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processing (Bandyopadhyaya et al., 2008; Dai et al., 2006; H. Wang & Hao, 2011). By 

contrast, in a three-dimensional numerical simulation with random microstructures, an 

object-oriented programming language (such as Python and Fortran) has to be employed 

to appropriately define the three-dimensional coordinate of the center of each spherical 

particle with specific aggregate size. Further, it needs to ensure that these randomly 

generated spheres do not overlap. The numerical complexity of constructing random three-

dimensional spheres is substantially higher than that of the two-dimensional numerical 

simulation with random circles. 

The limited previous studies which involved three-dimensional numerical simulation 

mostly remained obtaining the microstructure with two-dimensional CT scanning and 

three-dimensional converting technique (Dai, 2011; Vadood et al., 2015; Zhang et al., 

2011). There exists one research group who employed a similar random aggregates 

generation approach in their three-dimensional simulation (Absi et al., 2016; Tehrani et al., 

2013) but their emphasis was on the influence of different modeling techniques on dynamic 

moduli of bituminous materials. Therefore, an aforementioned three-dimensional model 

needs to be constructed to simulate the elastic-damage behavior of the innovative material. 

To simulate the real splitting tension test, where a 150mm Lottman breaking head was 

used in the direct tensile test to split the specimens by an MTS machine at room temperature 

(25◦C ± 0.5 ◦C) , a displacement control compression along its vertical diameter direction 

is applied to the steel bar, which is then transmitted to the plywood, hence distributed onto 
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the cylindrical specimen evenly. The loading rate was 2 in. per minute so that the viscous 

effect can be ignored. 

Shown as in Figure 4.11, the numerical model is a 3×4.5 in. cylinder cast with 

homogenized asphalt mastic matrix, with equivalent multilayer-coated spherical particles 

of three representative sizes randomly dispersed in the matrix. Figure 4.12 is a cross section 

cut along the plane direction, where the randomly dispersed coarse aggregates can be seen 

directly. The coarse aggregates are simulated as spherical particles for simplicity and three 

representative sizes (shown in white, maroon and deep blue) are chosen based on the 

degradation results of the D2 mix.  

 

 



 161 

Figure 4.11 The numerical model of the cylindrical asphalt concrete specimen 

 

 

Figure 4.12 A cross section view of the numerical cylindrical model with spherical coarse 

aggregates of three representative sizes 

 

The elastic properties and volume fraction of coarse aggregates and asphalt mastic in 

the innovative asphalt concrete specimens are tabulated in Table 4.1. The selection of 

representative volume element (RVE, i.e. the cylinder) size is in the order of 1000 times of 

the largest aggregate size, therefore, this RVE is statically representative and satisfies the 

size effect consideration.  
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Based on the volume fractions of the three representative aggregate particles, the 

numbers of each spherical particles are calculated and rounded up. 19 particles with a 

diameter of  0.4340, 1898 particles with a diameter of 0.2814, and 8639 particles with a 

diameter of 0.1409 are generated.  

At the same time, we have to make sure the particles are randomly dispersed in the 

specimen, while do not collide with each other nor the surface of the cylinder. ABAQUS 

CAE alone cannot satisfy this demand. Hence Python scripting is employed to realize this 

goal. First the script randomly allocates a center origin to each particle with its (x,y,z) 

coordinates lie within the space of the cylinder. Then the center coordinate with a radius of 

the particle is calculated and compared with the center coordinates with the radii of all 

previous particles (and the surface of the cylinder), if the newly generated particle is judged 

as not colliding with all previous ones (nor the surface of the cylinder), the information of 

the new particle will be written down and passed on to ABAQUS to generate a new particle. 

Otherwise iteration will be done until a suitable location comes up.  

The initial elastic strain energy based damage criterion is introduced to predict the 

progressive degradation experienced by the mechanical properties of materials prior to the 

increasing strain thus accumulated stress. Another phenomenon with increasing strain 

would be that material reaches yield point and performs its plastic behavior. Specifically, 

the Drucker-Prager yield criterion is picked for plasticity estimation. Table 2 listed the 
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material parameters that are used in the numerical simulation. The computational algorithm 

in Section 4.5.5 is realized with the assistant of Fortran UMAT interacting with ABAQUS. 

 

Table 4.1 Material properties of constituents in the model  

 Coarse 
Aggregate I 

Coarse 
Aggregate II 

Coarse 
Aggregate III 

Asphalt 
Mastic 

Global volume 
fraction (%) 0.746 20.885 11.934  

Diameter (in) 0.4340 0.2814 0.1409  

Specimen #1 

Young’s modulus 
(psi) 3.3784e6 3.4149e6 2.2266e6 1.2827e5 

Poisson’s ratio 0.2604 0.2032 0.2055 0.2570 

Specimen #2 

Young’s modulus 
(psi) 3.4919e6 3.4215e6 2.2341e6 1.1937e5 

Poisson’s ratio 0.2524 0.2026 0.2045 0.2547 

 

Table 4.2 Material parameters for damage evolution and yield function 

Parameter A B   k 

Value 0.0020 0.0133 4.7000 0.05 2000 

 

Figure 4.13 compares the load-displacement curves from the numerical modeling and 

the experimental data. Four asphalt concrete specimens were tested in the experiment, two 

g0 α
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with DCPD infiltrated and two without. It is clearly shown that the specimens with DCPD 

infiltrated in them can take almost two times larger the load comparing to the ones without 

DCPD. The predicted load-displacement responses show visible improvements over the 

elastic-damage framework in Chapter 3, where plasticity was not taken into consideration. 

The numerical simulations can fairly describe the experimental output from splitting 

tension tests. 

While the elastoplastic mechanical behavior of the innovative material are discussed 

in this paper, the proposed framework cannot be directly applied to study the fatigue 

endurance of the innovative material, where loading is assumed to be dynamic and viscous 

behavior of asphalt should be considered. To fulfill this need, an isotropic elasto-

viscoplastic-damage micromechanical framework will be discussed in the following 

chapter. 
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Figure 4.13 Load-displacement curves by experiments and numerical predictions (elastic-

damage vs elastoplastic-damage framework) 
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CHAPTER 5 : MICROMECHANICS-BASED ISOTROPIC THERMO-

ELASTO-VISCOPLASTIC-DAMAGE FRAMEWORK OF ASPHALT 

CONCRETE MATERIALS FEATURING HIGH TOUGHNESS, LOW 

VISCOSITY NANO-MOLECULAR RESINS 

 

 

5.1  Introduction 

Asphalt concrete materials have been widely used in pavement construction since the 

beginning of the twentieth century. In the meanwhile, a lot of investigations have been 

done to characterize the structural and mechanical behavior of the asphalt concrete. Various 

models were proposed to estimate the modulus of asphalt concrete (Christensen Jr et al., 

2003; Khazanovich, 2008; Y. R. Kim & Little, 1990, 2004; H. J. Lee & Kim, 1998; Roque 

& Buttlar, 1992; Tashman et al., 2005). Continuum damage mechanics were introduced to 

viscoelastic and viscoplastic models to predict the fatigue characterizations (Chehab et al., 

2003; Y. R. Kim et al., 1997; H. J. Lee et al., 2000; Park et al., 1996).  Numerical models 

were established to characterize the behavior of the asphalt concrete mixtures under 

different loading conditions (Buttlar & You, 2001; Dai et al., 2006; H. W. Kim & Buttlar, 

2009; Scarpas et al., 1997; You & Buttlar, 2004). Other aspects such as temperature effect, 

induction healing and influence of aggregates are also broadly studied (Abu Al-Rub et al., 
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2010; Button et al., 1990; Chehab et al., 2002; García et al., 2013; Hong et al., 2017; Q. 

Liu et al., 2011; Si et al., 2002). 

The current chapter proposed an isotropic thermo- elasto-viscoplastic model to 

evaluate the time-dependent mechanical behavior of an innovative asphalt concrete 

material featuring high toughness, low viscosity nano-molecular resins. By taking 

advantage of the proposed isotropic elastic/elastoplastic damage frameworks in Chapter 3 

and 4, and considering the viscosity behavior of asphalt mastic, a class of temperature 

sensitive viscoplastic damage model is proposed within an initial elastic strain energy-

based continuum thermodynamic framework. 

Same concept of breaking down the asphalt concrete composites into an effective 

asphalt mastic matrix and spherical inhomogeneities are applied in the beginning of setting 

up the model. The Laplace domain is introduced to apply the multilevel homogenization 

approach to evaluate the viscoelastic mechanical properties of the 4-phase asphalt mastic. 

The governing damage evolution is characterized through the effective stress concept in 

conjunction with the hypothesis of strain equivalence; the viscoplastic flow is introduced 

by means of an additive split of the stress tensor. An Arrhenius-type temperature term, 

which is uncoupled with the Helmholtz free energy potential, is proposed to account for 

the effect of temperature. Corresponding computational algorithms are implemented to 

numerical simulations. 
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5.2  Micromechanical Frameworks for Coarse Aggregates and Asphalt Mastic 

The innovative asphalt concrete materials can be decomposed into two parts: matrix 

and inhomogeneities, respectively: 1). asphalt mastic containing fine aggregates, asphalt 

binder (PG 64-10), polymerized DCPD and air voids, 2). coarse aggregates, as illustrated 

in Figure 5.1. The overall viscoelastic properties of four-phase asphalt mastic composites 

are appropriately transformed into the Laplace domain based on the correspondence 

principle, making it possible to homogenize the transformed elastic moduli by the 

multilevel homogenization approach proposed and validated in Chapter 3 and 4. The 

homogenized asphalt mastic is then treated as an isotropic matrix, while the equivalent 

multilayer-coated spherical inclusions are randomly dispersed in the matrix. The coarse 

aggregates are represented by spherical multilayer-coated particles in three sizes and 

randomly disposed in the matrix. 
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Figure 5.1 The illustration of the proposed micromechanical framework concept (cross 

sectional view) 

 

5.2.1 Equivalent Multilayer-coated Spherical Particles 

To simplify the simulation and also take into consideration of the caging effect of the 

p-DCPD network, the irregular coarse aggregates are replaced and simulated by multilayer-

coated spherical particles of three representative sizes, as demonstrated in Figure 5.2. 

Given the fact that p-DCPD is a comparatively brittle and rigid material (Kovačič et al., 

2013; Vallons et al., 2015; Y. Wang et al., 2017), and it’s wrapped at the outer layer of the 

particle, it is reasonable for us to assume that the multilayer-coated particles behave mainly 

their elasticity not plasticity nor viscosity.  
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Figure 5.2 The schematic illustration of an equivalent multilayer-coated spherical particle 

 

The analytical solution of elastic properties for the multilayer-coated spherical particle 

can be derived starting from the elastic problem of a 3-D spherical shell under both internal 

and external pressures and the concept of continuity conditions at interfaces between layers. 

The effective Young’s modulus  and Poisson’s ratio  of an equivalent multilayer-

coated particle of a certain size are given as Eqn. (5.1) and (5.2) whereas the detailed 

derivation can be found in Chapter 3. 

   (5.1) 

   (5.2) 

where 

E0 υ0

E0 = E1
1− 2υ0
1− 2υ1

Ca3 2Ab3 + 2Bc3( )+ Nb3 Dc3 + 2Mb3( )
Ca3 ΛAb3 + 2Bc3( )+ Nb3 Dc3 + ΛMb3( )

υ0 =
υ1 f1E1 +υ2 f2E2 +υ3 f3E3
f1E1 + f2E2 + f3E3
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, , , , , , ,  and   denote the Young’s moduli, Poisson’s ratios and 

local volume fractions of p-DCPD, asphalt binder and coarse aggregate, respectively;  is 

the radius (size) of the coarse aggregate. b and c  are radii related to the thicknesses of p-

DCPD layer and asphalt binder layer whose values can be calculated by the following 

formulas 

   (5.3) 

   (5.4) 

Notice that for different sizes of coarse aggregates, the thicknesses of asphalt binder 

and p-DCPD layers are assumed to remain the same, while radii b and c vary based on 

sizes of coarse aggregate. Three representative sizes of coarse aggregates are picked in this 

simulation based on the aggregates gradation result of the proposed D2 mix. 

A = E1 1+υ2( )+ 2E2 1− 2υ1( )
B = E2 1+υ1( )− E1 1+υ2( )
C = E3 1− 2υ2( )− E2 1− 2υ3( )
D = E2 1+υ1( )+ 2E1 1− 2υ2( )
M = E2 1− 2υ1( )− E1 1− 2υ2( )
N = E3 1+υ2( )+ 2E2 1− 2υ3( )
Λ = −

1+υ1
1− 2υ1

  E1   E2   E3  υ1  υ2  υ3   f1   f2   f3

 a

f3i
i=1

n

∑ ai + t2( )3 − ai3⎡
⎣⎢

⎤
⎦⎥

f3i
i=1

n

∑ ai + t2( )3
=

f2
f2 + f3

f3i
i=1

n

∑ ai + t1 + t2( )3 − ai + t2( )3⎡
⎣⎢

⎤
⎦⎥

f3i
i=1

n

∑ ai + t1 + t2( )3
=

f1
f1 + f2 + f3

bi = t2 + ai
ci = t1 + bi
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5.2.2 The Multilevel Homogenization Approach in Laplace Domain 

Asphalt mastic, composed by fine aggregates, asphalt binder, p-DCPD and air voids, 

is a composite material. To simplify the analysis, the heterogeneous asphalt mastic whose 

viscoelastic properties are functions with respect to time can be reduced (transformed) into 

elastic moduli in Laplace domain, and represented by an equivalent homogeneous 

continuum media with appropriately defined effective properties.  

Based on the comparisons made in Chapter 3 among these different approaches, it is 

trustworthy to pick Ju and Chen’s pairwise interacting solution (Ju & Chen, 1994a, 1994b) 

to predict the effective transformed elastic moduli of the asphalt mastic matrix. In particular, 

the pairwise interacting solution may lead to an accurate higher-order formulation for the 

prediction of elastic particulate composites at moderately high particle concentrations. Ju 

and Chen’s elastic formulation for a two-phase (inclusions and matrix) composite states 

that, if the inclusions (particles) are assumed to be identical and spherical in an elastic 

matrix, the effective bulk modulus  and effective shear modulus  of this composite 

can be explicitly evaluated as 

   (5.5) 

   (5.6) 

where 

K ∗ µ∗

K ∗ = K0 1+
30 1−υ0( ) f1 3γ 1 + 2γ 2( )

3α + 2β −10 1+υ0( ) f1 3γ 1 + 2γ 2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

µ∗ = µ0 1+
30 1−υ0( ) f1γ 2

β − 4 4−5υ0( ) f1γ 2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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and 

    

Subscript 0 denotes the matrix and 1 denotes the particles,  is Poisson’s ratio of the 

matrix and  is the volume fraction of the particles.  

Something about Laplace transform, domain. 

Corresponding to these elastic expressions, and with the assumptions that particles 

remain elastic while the matrix is viscoelastic in shear but elastic in volume, we would 

have the effective bulk and shear moduli in the transformed domain are: 

   (5.7) 

   (5.8) 

where 

    

and 

γ 1 =
5 f1
96β 2

12υ0 13−14υ0( )− 96α
3α + 2β

1− 2υ0( ) 1+υ0( )⎧
⎨
⎩

⎫
⎬
⎭

γ 2 =
1
2
+
5 f1
96β 2

6 25− 34υ0 + 22υ0
2( )− 36α

3α + 2β
1− 2υ0( ) 1+υ0( )⎧

⎨
⎩

⎫
⎬
⎭

α = 2 5υ0 −1( )+10 1−υ0( ) K0
K1 − K0

−
µ0

µ1 − µ0

⎛

⎝⎜
⎞

⎠⎟

β = 2 4−5υ0( )+15 1−υ0( ) µ0
µ1 − µ0

 υ0

  f1

K ∗ s( ) = K0 1+
30 1−υ0( ) f1 3γ 1s + 2γ 2s( )

3α s( )+ 2β s( )−10 1+υ0( ) f1 3γ 1s + 2γ 2s( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

µ∗ s( ) = µ0 s( ) 1+ 30 1−υ0( ) f1γ 2s
β s( )− 4 4−5υ0( ) f1γ 2s

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

γ 1
s =

5 f1
96β s( )2

12υ0 13−14υ0( )− 96α s( )
3α s( )+ 2β s( ) 1− 2υ0( ) 1+υ0( )⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

γ 2
s = 1
2
+

5 f1
96β s( )2

6 25− 34υ0 + 22υ0
2( )− 36α s( )

3α s( )+ 2β s( ) 1− 2υ0( ) 1+υ0( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Notice that  is the shear modulus of the matrix in Laplace domain with 

reference to  in elasticity and the expression of  depends on the viscoelastic 

model one used.  

Eqn. (5.7) and (5.8) are valid for two-phase composites yet the proposed asphalt 

mastic is a four-phase composite. In order to use the pairwise interacting solution, a 

multilevel homogenization procedure is established, illustrated in Figure 5.3. A 

comparison of effective elastic moduli of an interim asphalt mastic (neglecting air voids) 

and final state asphalt mastic (with air voids) calculated by Eqn. (5.5) and (5.6) based on 

the aforementioned multilevel homogenization procedure and those by Hashin-Shtrikman 

bounds have proved the multilevel homogenization to be reasonable (Figure 3.16, Table 

3.10, 3.11).  

α s( ) = 2 5υ0 −1( )+10 1−υ0( ) K0
K1 − K0

−
µ0 s( )

µ1 − µ0 s( )
⎛

⎝
⎜

⎞

⎠
⎟

β s( ) = 2 4−5υ0( )+15 1−υ0( ) µ0 s( )
µ1 − µ0 s( )

µ0 s( )

µ0 µ0 s( )
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Figure 5.3 The multilevel homogenization procedure to apply Ju and Chen’s pairwise 

interacting solution 

 

5.3  The Initial Elastic Strain Energy Based Isotropic Damage Evolution  

As stated in previous chapters, the definition of damage in our approach can be 

described as the separation of portions of materials due to the breaking of bonding or 

cohesion between portions by local tension which leads to the partial or complete loss of 

elastic stiffness. A class of damage evolution criterion, based on a continuum damage 

mechanics framework, is proposed within an initial elastic strain energy based formulation.  

General form to satisfy Kuhn-Tucker condition: 

   (5.9) 

!dt = !µH ξt
+ ,dt( )

!gt = !µ
!µ ≥ 0,   φ d (ξt

+ , gt ) ≡ ξt
+ − gt ≤ 0,   !µφ d (ξt

+ , gt ) = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪
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where  is the damage consistency parameter that defines the damage loading/unloading 

conditions according to the Kuhn-Tucker relations; describes the current damage 

criterion, or in other words, the damage surface;  is the damage threshold at the current 

time t;  is the damage hardening function which yields a unit scalar in the elastic-

damage case; and  is the equivalent tensile strain energy norm which is defined as 

(Lemaitre, 1985; Mazars & Lemaitre, 1985): 

   (5.10) 

The tensile strain tensor  and  is the Mode I tensile projection tensor 

which can be calculated by following equations: 

   (5.11) 

   (5.12)   

   (5.13) 

where  and  . 

An isotropic elastic-damage evolution function is proposed in Chapter 3. 

   (5.14) 

where  is the initial tensile damage threshold (  at t=0) and A, B are characteristic 

parameters of the material.  

 

!µ

φ d

gt

H ξt
+ ,dt( )

ξt
+

ξ + ≡ 1
2
ε + :C0 : ε +

ε + = P+ : ε  P+

Pijkl
+ (ε ) ≡ 1

2
Qik

+Q jl
+ +Qil

+Q jk
+( )

Q+ ≡ λ i pi ⊗pi( )
i=1

3

∑

ε =
i=1

3

∑λ i pi ⊗pi( )

pi = 1 2〈λ i 〉 = λ i + λ i( )

dt = A exp B ξt
+ ξt

+ − g0( )⎡
⎣

⎤
⎦

g0 gt
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5.4  The Effective Elasto-viscoplastic Behavior of the Innovative Material 

5.4.1 The Additive Stress Split 

Within the present strain space framework, the viscoplastic flow is introduced by 

means of an additive split of the stress tensor into initial and inelastic parts by following 

the same concept within the effective space of plasticity (Simo & Ju, 1987), i.e. 

   (5.15) 

where  is the effective stress,  is the total strain,  is the initial elastic stored 

energy function of the undamaged material, and  denotes the effective viscoplastic 

relaxation stress. For linear elasticity, we write 

   (5.16) 

where  denotes the linear elasticity tensor. Eqn. (4.55) then can be written as the 

following equation 

   (5.17) 

 

5.4.2 The Thermodynamic Basis 

In order to introduce the damage effect and viscoplastic flow processes, a free energy 

potential of the following form is proposed 

   (5.18) 

σ =
∂Ψ0 ε( )

∂ε
− σvp

σ ε Ψ0 ε( )

σvp

Ψ0 ε( ) = 12 ε :C
0 : ε

C0

σ = C0 : ε − σvp

Ψ ε,σ p ,q,d ,T( ) ≡κ T( ) 1− d( )Ψ0 ε( )− ε :σvp +Ξ q,σvp( ){ }
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where  denotes the total strain tensor,  is the viscoplastic relaxation stress tensor,  

is a suitable set of internal (viscoplastic) variables. Further,  defines the isotropic scalar 

damage variable between 0 and 1 (or a maximum damage threshold less than 1) whose 

function has been discussed in (Section 5.3).  is the initial elastic stored energy 

function of the undamaged material, and  is the viscoplastic potential function. 

Furthermore,  is a modified Arrhenius-type temperature dependent factor that 

accounts for the temperature effect to the viscosity of materials. The factor is properly 

defined as follows so that it is uncoupled with the Helmholtz free energy potential 

   (5.19) 

where  is a positive pre-exponential factor, which can be treated as a material constant; 

 is a dimensionless correction factor in the order of 1;  is the current temperature while 

 is the reference temperature. 

Confining our attention to the purely mechanical theory, the Clausius-Plank reduced 

dissipation inequality for purely mechanical isothermal theory takes the form for any 

admissible process 

   (5.20) 

By taking the time derivative of Eqn. (4.58), substituting it into Eqn. (4.59), and 

making use of the classical Coleman-Noll argument (Coleman & Noll, 1963) and its 

variation, the Coleman-Gurtin theory (Coleman & Gurtin, 1967) along with the additional 

ε σvp q

d

Ψ0 ε( )

Ξ q,σ vp( )

κ T( )

κ T( ) =α exp −
T0
T

⎛
⎝⎜

⎞
⎠⎟

β⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

α

β T

T0

−s !T − !Ψ + σ : !ε ≥ 0



 186 

assumption that the damage effect and viscoplastic unloading are elastic processes, we can 

obtain the stress-strain constitutive law 

   (5.21) 

and the dissipative inequalities 

   (5.22) 

   (5.23) 

and the entropy 

   (5.24) 

It follows from Eqn. (4.60) that within the present strain space formulation, the stress 

tensor is split into the elastic-damage part and the viscoplastic relaxation part. From Eqn. 

(4.61) and (4.62), we observe that the dissipative energy by viscoplasticity itself is positive 

(since the temperature dependent factor is always positive); if damage effect is involved, 

the sum of damage and viscoplasticity effect is also positive. It is also noted from Eqn. 

(4.60)-(4.62) that the present framework is capable of accommodating general (nonlinear) 

elastic response and general viscoplastic response. 

The potential  is linked to viscoplastic dissipation. Its role is such that 

inequality (4.62) is satisfied for arbitrary processes. Note that we have assumed that the 

σ =
∂Ψ ε( )
∂ε

=κ T( ) 1− d( ) ∂Ψ
0 ε( )
∂ε

− σvp
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=κ T( ) 1− d( )σ

κ T( ) − ∂Ξ
∂q
i !q− ∂Ξ

∂σ p − ε
⎛
⎝⎜

⎞
⎠⎟
: !σvp

⎧
⎨
⎩

⎫
⎬
⎭
≥ 0

κ T( ) Ψ0 ε( ) !d − ∂Ξ
∂q
i !q− ∂Ξ

∂σvp
− ε

⎛
⎝⎜

⎞
⎠⎟
: !σvp

⎧
⎨
⎩

⎫
⎬
⎭
≥ 0

s = −
∂Ψ ε,σvp ,q,d ,T( )

∂T
= −

∂κ T( )
∂T

Ψ ε,σvp ,q,d( )

Ξ q,σvp( )
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potential  is independent of damage variable . From Eqn. (4.58), it then follows 

that 

   (5.25) 

 Hence, the initial (undamaged) elastic strain energy  is the thermodynamic 

force  conjugate to the damage variable . 

 

5.4.3 Characterization of Effective Plastic Response and Tangent Moduli 

In accordance with the notion of effective stress, the characterization of the 

viscoplastic response should be formulated in effective stress space in terms of effective 

stresses  and . Therefore, for the classical situation in which the yield function is 

postulated in the stress space, we replace the homogenized Cauchy stress tensor  by the 

effective stress tensor , so that the elastic-damage domain is characterized by 

, where  represents the internal viscoplastic variables whose evolution will 

be defined below. A general Perzyna type viscoplasticity assumed that the flow function is 

a function of loading function in the form of  (Perzyna, 1966). With the 

assumption of a general non-associative flow rule, rate-dependent viscoplastic response is 

characterized in the strain space by the flowing constitutive equations (Simo & Ju, 1987) 

Ξ q,σvp( ) d

−Y ≡ −
∂Ψ ε,σvp ,q,d ,T( )

∂d
=κ T( )Ψ0 ε( )

Ψ0 ε( )

Y d

σ σvp

σ

σ

f σ,q( ) ≤ 0 q

g f( ) = f m
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   (5.26) 

   (5.27) 

   (5.28) 

where  denotes the viscoplastic relaxation effective stress rate tensor,  signifies the 

viscoplastic potential function,  signifies the hardening law, and  denotes the 

viscoplastic consistency parameter which is defined as 

   (5.29) 

where  is the viscosity parameter or fluidity parameter,  is the flow 

function mentioned previously,  is the McAuley bracket. If  (no viscosity), we 

recover the rate-independent plasticity, i.e., as ,  such that  is 

finite. If  (huge viscosity), then , i.e.,  and , which 

yields instantaneous elasticity.   

Eqn. (4.64)-(5.29) provide a characterization of viscoplasticity in the strain space. 

Loading/unloading conditions may be expressed in a compact form by requiring that 

   (5.30) 

!σvp = !λ
∂gP
∂ε

∂Ψ0 ε( )
∂ε

− σvp ,q
⎛

⎝
⎜

⎞

⎠
⎟    (non-associative flow rule)

!q = !λh
∂Ψ0 ε( )

∂ε
− σvp ,q

⎛

⎝
⎜

⎞

⎠
⎟    (viscoplastic hardening law)

f
∂Ψ0 ε( )

∂ε
− σvp ,q

⎛

⎝
⎜

⎞

⎠
⎟ ≤ 0   (loading function)

!σvp gP

h !λ

!λ = 1
η
g f

∂Ψ 0 ε( )
∂ε

− σvp ,q
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

η ∈ 0,∞( ) g f( )

η→ 0

η→ 0 f → 0
1
η
g f( ) → !λ

η→∞ !λ = 1
η
g f( ) → 0 σvp = 0 q = 0

f
∂Ψ0 ε( )

∂ε
− σvp ,q

⎛

⎝
⎜

⎞

⎠
⎟ ≤ 0,    !λ ≥ 0,   !λ f

∂Ψ0 ε( )
∂ε

− σvp ,q
⎛

⎝
⎜

⎞

⎠
⎟ = 0
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Note that if , then  and the process is elastic-damage. On the other hand, 

for viscoplastic loading,  and . In the latter case,  is determined by requiring 

that . Making use of Eqn. (4.55) during loading, one has 

   (5.31) 

where  denotes the partial derivative of  with respect to the first 

argument. From Eqn. (4.60) we obtain 

   (5.32) 

where the non-associative flow rule (4.64) has been applied. Therefore,  can be 

determined from Eqn. (4.68), (4.69) and the viscoplastic hardening law (4.65) as 

   (5.33) 

Substitution of Eqn. (4.70) into Eqn. (4.69) then yields , where  is the 

effective elasto-viscoplastic tangent moduli given by 

   (5.34) 

It is easily to recognize that the effective elasto-viscoplastic tangent moduli derived 

under the general non-associative flow rule is nonsymmetric, and to simplify the estimation 

procedure, we consider a special case of Perzyna type viscoplasticity, where the flow 

f < 0 !λ = 0

!λ > 0 f = 0 !λ

!f = 0

∂ f
∂σ
: !σ + ∂ f

∂q
i !q = 0

∂ f
∂σ f

∂Ψ0 ε( )
∂ε

− σvp ,q
⎛

⎝
⎜

⎞

⎠
⎟

!σ =
∂2Ψ0 ε( )

∂ε 2
: !ε − σvp =

∂2Ψ0 ε( )
∂ε 2

: !ε − !λ
∂gP
∂σ

⎛
⎝⎜

⎞
⎠⎟

!λ

!λ =

∂ f
∂σ
:
∂2Ψ0 ε( )

∂ε 2
: !ε

∂ f
∂σ
:
∂2Ψ0 ε( )

∂ε 2
:
∂gP
∂σ

− ∂ f
∂q
ih

!σ = Cevp : !ε Cevp

Cevp =
∂2Ψ0 ε( )

∂ε 2
−

∂2Ψ0 ε( )
∂ε 2

: ∂ f
∂σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗

∂2Ψ0 ε( )
∂ε 2

:
∂gP
∂σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∂ f
∂σ
:
∂2Ψ0 ε( )

∂ε 2
:
∂gP
∂σ

− ∂ f
∂q
ih
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function equals to the loading function, i.e. . Under such assumption, the non-

associative flow rule becomes associative flow rule and Eqn. (5.34) takes the form of 

   (5.35) 

 

5.5  Computational Algorithms 

In Section 5.3 and 5.4., an initial elastic strain energy based isotropic thermo-elasto-

viscoplastic-damage model with the concept of additive stress split in the effective stress 

space. To use the proposed model within the context of numerical method, a two-step 

operator splitting methodology (Simo & Hughes, 1998) is introduced. Similar to the 

procedures we talked about in Chapter 4, the additive decomposition of the isotropic elasto-

viscoplastic-damage problem takes the form of an elastic-damage part and an effective 

plastic return mapping part, as follows: 

Elastic-Damage Part 

g f( ) = f

Cevp =
∂2Ψ0 ε( )

∂ε 2
−

∂2Ψ0 ε( )
∂ε 2

: ∂ f
∂σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗

∂2Ψ0 ε( )
∂ε 2

: ∂ f
∂σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∂ f
∂σ
:
∂2Ψ0 ε( )

∂ε 2
: ∂ f
∂σ

− ∂ f
∂q
ih
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Viscoplastic Part 

   

A following step-by-step procedure is developed to solve the two parts of the thermo-

elasto-viscoplastic-damage problem: 

Step 1: Update the total strain. Given the incremental displacement field  , the 

total strain tensor is updated as 

   (5.36) 

Step 2: Compute the tensile strain tensor 

   (5.37) 

!ε = ∇s !u t( )
!d =

H ξ +( ) !ξ +      iff     φ d = !φ d = 0

0                 otherwise

⎧
⎨
⎪

⎩⎪

!g =
!ξ +                iff     φ d = !φ d = 0
0                 otherwise

⎧
⎨
⎩⎪

!σ = d
dt

∂Ψ0 ε( )
∂ε

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

!σvp = 0
!q = 0

!ε = 0
!d = 0
!σ = − !σvp

!σvp = !λ ∂ f
∂ε

∂Ψ0 ε( )
∂ε

− σvp ,q
⎛

⎝
⎜

⎞

⎠
⎟

!q = !λh
∂Ψ0 ε( )

∂ε
− σvp ,q

⎛

⎝
⎜

⎞

⎠
⎟

un+1

ε n+1 = ε n +∇
sun+1

ε n+1
+ =QΛ+QT
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where   and ;  and  (i=1~3) denote the 

corresponding eigenvectors and eigenvalues of the total strain tensor  respectively; the 

angular McAuley brackets are defined by .  

Step 3: Compute the initial (undamaged) elastic tensile strain energy 

   (5.38) 

Step 4: Compute the scalar damage parameter  

   (5.39) 

Step 5: Obtain trial (predictor) stress tensor and internal viscoplastic variable 

   (5.40) 

Step 6: Check for yielding 

   (5.41) 

Step 7: Cutting plane return mapping  

In the case of viscoplastic loading, the trial (predictor) stresses and internal variables 

need to be returned back to the yield surface along the algorithmic counterpart of the flow 

generated to satisfy the Kuhn-Tucker conditions. There exist many return mapping 

algorithms, whereas the cutting plane algorithm developed by Simo and Ortiz (Ortiz & 

Q = q1  q2  q3⎡⎣ ⎤⎦3×3
Λ+ =

λ1 0 0

0 λ2 0

0 0 λ3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

qi λi

ε n+1

2 λi = λi + λi

ξn+1
+ = Ψ0 ε n+1

+( ) = 1
2
ε n+1
+ :C0 : ε n+1

+

if   ξn+1
+

≤ g0    dn+1 = 0   (no damage)

> g0    dn+1 = Aexp Bξn+1
+ ξn+1

+ − g0( )⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

σn+1
0 = ∂Ψ0

∂ε
ε n+1( ) = C0 : ε n+1

σn+1
trial = σn+1

0 − σn
vp

qn+1
trial = qn

if   f σn+1
trial ,qn+1

trial( ) ≤ 0    σn+1 = σn+1
trial  ;  qn+1 = qn+1

trial  ; skip step 7

> 0    viscoplastic; go to step 7

⎧
⎨
⎪

⎩⎪
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Simo, 1986; Simo & Ortiz, 1985) is employed here. The cutting plane algorithmic 

construction was inspired by a form of the convex cutting plane method (Kelley, 1960) 

with its basic structure inherited from Newton’s iteration method. Two advantages of this 

cutting plane return mapping algorithm are the quadratic rate of convergence towards the 

yield surface and the need for computing the gradient of the flow rule and hardening law 

are entirely bypassed. The procedures (iterations) are as follows: 

(v) Initialize:   

(vi) Compute the hardening moduli and yield function: 

   

(vii) Linearize the viscoplastic consistency condition: 

   

(viii) Update the state variables and consistency parameter: 

   

Step 8: Update the homogenized stress 

   (5.42) 

K = 0,    σn+1
K = σn+1

trial ,    qn+1
K =qn+1

trial

hn+1
K = h σn+1

K ,qn+1
K( )

fn+1
K = f σn+1

K ,qn+1
K( )

IF   fn+1
K ≤ 0 (TOL)    EXIT

ELSE    GOTO (iii)

Δλn+1
K =

fn+1
K

∂ fn+1
K

∂σn+1
K :Cn+1

K :
∂ fn+1

K

∂σn+1
K −

∂ fn+1
K

∂qn+1
K ihn+1

K

σn+1
K+1 = σn+1

K+1 − Δλn+1
K Cn+1

K :
∂ fn+1

K

∂σn+1
K

qn+1
K+1 = qn+1

K + Δλn+1
K hn+1

K

SET   K← K +1;    GOTO (ii)

σn+1 =κ T( ) 1− dn+1( )σn+1
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5.6  A 1-D Driven Problem  

To test the proposed elasto-viscoplastic-damage framework, a 1-D strain driven 

problem is tested by MATLAB. One cycle strain loading (compressive loading of strain in 

11-direction, unloading, tensile loading of strain in 11-direction and unloading) is applied, 

as shown in Figure 5.4. In particular, the Drucker-Prager yield function (Drucker & Prager, 

1952) is used for loading function. The Drucker-Prager yield function is a simple 

modification of the Von Mises criterion whereby the hydrostatic-dependent first invariant 

 is introduced to the original Von Mises yield function and becomes suitable for the 

modeling of plasticity of materials where there is a strong dependence on the hydrostatic 

pressure such as rocks, soil and concrete. 

Figure 5.5-Figure 5.9 demonstrate the stress-strain relationships between effective 

stress  and strain , and homogenized stress   and strain  ; the history of 

viscoplastic strain , viscoplastic stress  and the evolution of the scalar damage 

variable, respectively. 

 

I1

σ 11 ε11 σ 11 ε11

ε11
vp σ 11

vp
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Figure 5.4 The history of (total) strain input  

 
Figure 5.5 The stress-strain relationship of  vs.  
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Figure 5.6 The stress-strain relationship of   vs.  

 
Figure 5.7 The history of viscoplastic strain  
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Figure 5.8 The history of viscoplastic stress  

 
Figure 5.9 The history of damage evolution 
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When viscosity approaches zero, the viscoplastic model should recover to rate-

independent plasticity (Drucker-Prager model). Figure 5.10 shows (a) stress-strain curve 

in the effective space, (b) stress-strain curve in the homogenized space, (c) history of 

viscoplastic strain in the 11-direction and (d) history of viscoplastic stress in the 11-

direction. The plots agree with Figure 4.6-4.9 in Chapter 4. 

 

   (a)      (b) 

 

   (c)      (d) 

Figure 5.10 Responses of the proposed model when viscosity approaches zero 
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When viscosity goes to infinity, the viscoplastic model should behavior 

instantaneously elastic. Figure shows (a) stress-strain curve in the effective space, (b) 

stress-strain curve in the homogenized space, (c) history of viscoplastic strain in the 11-

direction and (d) history of viscoplastic stress in the 11-direction. 

  

   (a)      (b) 

  

   (c)      (d) 

Figure 5.11 Responses of the proposed model when viscosity goes to infinity 
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CHAPTER 6 : MICROMECHANICAL FIELD APPLICATION OF 

BURGERS MODEL ON PREDICTING THE VISCOELASTIC 

PROPERTIES OF INNOVATIVE ASPHALT MASTIC COMPOSITES 

FEATURING HIGH TOUGHNESS, LOW VISCOSITY NANO-

MOLECULAR RESINS 

 

 

6.1  Introduction 

The mechanical behavior of the innovative asphalt concrete materials has been studied 

from the continuum damage mechanics aspect in the previous chapters, whereas in this 

chapter, focus is situated on the rheology behavior of asphalt mastic materials. 

As one of the most commonly used materials for road construction, the systematical 

assessment of rheology behavior of asphalt materials can be dated back to the nineteenth 

century. Since then, various researches have been done to characterize the phenomena from 

analytical aspect (Christensen, 1982; Hopkins & Hamming, 1957; Y. R. Kim, 2008; Málek 

et al., 2018; Masad et al., 2009; Tschoegl, 1989, 1997), experimental aspect (Daniel et al., 

2007; Goh & You, 2009; Goodrich, 1991; Khodaii & Mehrara, 2009; Y. R. Kim et al., 

2004; Monismith et al., 1966; Monismith et al., 1965; Xiao et al., 2007; X. Y. Zhu et al., 

2014) and numerical aspect (Dai & You, 2007; Y. Liu & You, 2011; Park & Schapery, 

1999; Tarefder & Faisal, 2013; You et al., 2011).  
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Experimental observations have shown clearly that asphalt exhibits more than one 

relaxation mechanism that can be identified by the different relaxation times which cannot 

be described by some classical models such as Maxwell model (Maxwell, 1867). Under 

such circumstance, Burgers (Burgers, 1939) proposed a higher order model that is capable 

of describing two different relaxation times, and the so-called Burgers model has been 

widely applied in the case of geomaterials (Monismith & Secor, 1962; Narayan et al., 2012) 

and biomaterials (Málek et al., 2015; Sharif-Kashani et al., 2011). 

This chapter propose an analytical approach to predict the viscoelastic properties of 

the innovative asphalt mastic composites composed of asphalt binder, fine aggregates, 

polymerized DCPD and air voids. Some common mechanical models of viscoelasticity and 

their constitutive laws are discussed in Section 6.2. Section 6.3 introduced the 

correspondence principle along with the Laplace transform to solve linear viscoelastic 

problems. In Section 6.5 an ensemble-volume averaged micromechanical field based 

multilevel homogenization approach is proposed to evaluate the effective modulus of the 

heterogenous asphalt mastic composites. Finally, the theoretical solutions are compared 

with numerical simulation results. A methodology flowchart is shown in Figure 6.1.  

 



 208 

 
Figure 6.1 The methodology flowchart for the procedures of theoretical evaluation and 

numerical simulation comparison 

 

6.2  The Correspondence Principle 

The classical method of solving boundary value problems in the linear quasi-static 

theory of viscoelasticity is to apply an integral transform (with respect to time) to the time-

dependent field equations and boundary conditions. The transformed field equations then 

have the same form as the field equations of elasticity theory and if a solution to these, 

which is compatible with the transformed boundary conditions, can be found then the 

solution to the original problem is reduced to transform inversion. This method of solving 
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viscoelastic stress analysis problems is referred to as the "correspondence principle" 

(Graham, 1968; Read, 1950) and has been extensively applied to linear and nonlinear 

viscoelastic problems (Khazanovich, 2008; E. H. Lee, 1965; Mukherjee & Paulino, 2003; 

Rajagopal & Srinivasa, 2005; Rizzo & Shippy, 1971). The correspondence principle is 

valid in general whenever the viscoelastic relaxation functions in deviatoric (shear) and in 

volumetric (bulk) have the forms , , respectively, 

where  and  are sufficiently well behaved but otherwise arbitrary functions of 

time. In other words, the stresses, strains and relaxation functions have to be separable. 

A general class of viscoelastic boundary value problems for which the principle is 

applied via the Laplace transform is developed in the current section. The purpose is to 

describe and demonstrate an approximate solution procedure capable of efficiently and 

accurately treating viscoelastic problems.  

Traditionally, the general form of an elastic boundary value problem can be described 

as follows 

   (6.1) 

µ x,t( ) = µ x( )g(t) K x,t( ) = K x( ) f (t)

g(t) f (t)

ε ij =
1
2
ui, j + uj ,i( )

sij = 2µeij
σ kk = 3kε kk
σ ij , j + Fi = 0

ε ij ,kl + ε kl ,ij = ε ik , jl + ε jl ,ik
B.C.s 
         σ ijn j = Si   on  Bσ
         ui = Δ i   on  Bu
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On the other hand, for a viscoelastic boundary value problem, the governing equations 

in time domain are 

   (6.2) 

If all the equations in Eqn. (6.2) can be transformed to Laplace domain, the governing 

equations in Laplace domain can then be expressed by 

   (6.3) 

By comparing Eqn. (6.3) and Eqn. (6.1), it can be observed that both governing 

equations are almost identical except the representations of shear and bulk moduli. Upon 

the concept of correspondence principle,  and  in Eqn. (6.3) can be considered as 

the elastic moduli in Laplace domain and the solution to this viscoelastic problem can be 

ε ij t( ) = 12 ui, j + uj ,i( )
sij t( ) = 2 µ t −τ( ) ∂eij τ( )

∂τ−∞

t

∫ dτ

σ kk t( ) = 3 k t −τ( ) ∂ε ij τ( )
∂τ−∞

t

∫ dτ

σ ij , j t( )+ Fi t( ) = 0
ε ij ,kl t( )+ ε kl ,ij t( ) = ε ik , jl t( )+ ε jl ,ik t( )
B.C.s 
         σ ij t( )nj = Si t( )   on  Bσ
         ui t( ) = Δ i t( )   on  Bu

ε ij s( ) = 12 ui, j + uj ,i( )
sij s( ) = 2sµeij
σ kk s( ) = 3skε kk
σ ij , j s( )+ Fi s( ) = 0
ε ij ,kl s( )+ ε kl ,ij s( ) = ε ik , jl s( )+ ε jl ,ik s( )
B.C.s 
         σ ij s( )nj = Si s( )   on  Bσ
         ui s( ) = Δ i s( )   on  Bu

sµ sk
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obtained through an identical elastic problem by replacing the elastic moduli in the elastic 

solution with transformed moduli. In other words, correspondence principle states that 

theory of viscoelasticity allows one to take an appropriate transformation of the governing 

field and boundary equations of viscoelastic problems with respect to time and reduce them 

so that they are mathematically equivalent to those for elasticity problem with transformed 

elastic moduli. 

 

6.3  The Response of Viscoelastic Materials 

Viscoelasticity is the study of materials which have a time-dependence. Vicat, a 

French engineer from the Department of Road Construction, noticed in the 1830s that 

bridge cables continued to elongate over time even though under constant load, a 

viscoelastic phenomenon known as creep. Many other investigators, such as Weber and 

Boltzmann, studied viscoelasticity throughout the nineteenth century, but the real driving 

force for its study came later – the increased demand for power and the associated demand 

for materials which would stand up to temperatures and pressures that went beyond 

previous experience. By then it had been recognized that significant creep occurred in 

metals at high temperatures. The theory developed further with the emergence of synthetic 

polymer plastics, which exhibit strong viscoelastic properties. The study of viscoelasticity 

is also important in biomechanics, since many biomaterials respond viscoelastically, for 

example, heart tissue, muscle tissue and cartilage.  
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6.3.1Comparison Between the Elastic and Viscous Materials 

Elastic materials are those for which stress is proportional to strain. A typical example 

of elastic behavior is provided by an ideal spring for which force (stress) is proportional to 

displacement (strain). The ideal spring as shown in Figure 6.2 can be used to model the 

general behavior of elastic materials. Specifically, for an isotropic elastic material, the 

stress-strain relation can be described as in Figure 6.2 (a) 

   (6.4) 

Another way to describe the stress-strain relation is to split them in deviatoric and 

volumetric parts, respectively, by the following equations: 

   (6.5) 

where  is the deviatoric stress,  is the shear modulus,  is the deviatoric strain,  

is the volumetric stress,  is the bulk modulus, and  is the volumetric strain. 

                   

(a)       (b) 

Figure 6.2 A linear Hookean elastic spring model  

σ = Eε

σ D = 2µεD    ,     σV = KεV

σ D µ εD σV

K εV

2 De

Ds

Ds

µ
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Viscous fluids, on the other hand, have a part of the stress that is proportional to the 

rate of strain. A typical example of the mechanism that exhibits such behavior is the shock 

absorber or dashpot as shown in Figure 6.3. The stress-strain relation can be expressed, for 

instance, as follows  

   (6.6) 

Or for deviatoric part: 

   (6.7) 

in which  is the viscosity and  is the deviatoric strain rate. 

           

(a)           (b) 

Figure 6.3 A linear Newtonian dashpot model  

 

σ =η !ε

σ D = 2η !εD

η !εD

2 De

Ds

Ds

h
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From the viewpoint of energy, elastic materials have a capacity to store mechanical 

energy with no dissipation of the energy. On the other hand, a Newton viscous fluid in a 

non-hydrostatic stress state implies a capacity for dissipating energy, but none of them for 

storing it.  

Further, when elastic materials are subjected to a suddenly applied load, response (or 

deformation) will be generated instantaneously with a state of deformation which remains 

constant. However, a Newton viscous fluid responds to a suddenly applied load (shear 

stress) by a steady flow process which means instantaneous deformation is not allowed. 

Instead, the fluid will undergo time-dependent straining. 

For some materials such as asphalt and polymers that possess a capacity to both store 

and dissipate mechanical energy are called viscoelastic materials. Theory of viscoelasticity 

is used to describe the mechanical behavior of viscoelastic materials. 

 

6.3.2 Constitutive Models for Linear Viscoelasticity 

Viscoelastic materials, such as amorphous polymers, semi-crystalline polymers, 

biopolymers and even the living tissue and cells can be modeled in order to determine their 

stress and strain or force and displacement interactions as well as their temporal 

dependencies. These models, which can be divided into two groups: simple models and 

generalized models, are used to predict a material's response under different loading 

conditions. Simple models are models that have up to four elements, which include 
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the Maxwell model, the Kelvin–Voigt model, the standard linear solid (SLS) model, and 

the Burgers model. Generalized models can be established in two ways, the first one is a 

Hooke model (spring) connected with a chain of several Maxwell models in parallel 

(referred as the Maxwell chain or the Wiechert model); the second generalized model is a 

Maxwell model connected with a chain of several Kelvin models in series (referred as 

Kelvin chain). Viscoelastic behavior has elastic and viscous components modeled as linear 

combinations of springs that store the energy and dashpots that dissipate the energy, 

respectively. Each model differs in the arrangement of these elements (notice all of these 

viscoelastic models can be equivalently modeled as electrical circuits). Among them, 

Burgers model is the most general yet simple form for linear viscoelasticity. It takes into 

account that the relaxation does not occur at a single time, but at a distribution of times.  

 

(a) Maxwell model     (b) Kelvin model 
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(c) SLS model (Thomson type)    (d) Burgers model 

 

 

(e) Maxwell chain (Wiechert model) 

 

 

(f) Kelvin chain 

Figure 6.4 Some constitutive models for linear viscoelasticity 
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6.3.3 The Analogy Young’s Modulus of Simple Viscoelastic Models 

The analogy Young’s modulus of a viscoelastic material is defined as 

   (6.8) 

where  is the transformed stress in the Laplace domain and  is the 

transformed strain in the Laplace domain. The superscript index TD denotes the 

transformed domain. 

According to this definition, the analogy Young’s modulus of a certain viscoelastic 

model can be derived from the corresponding stress-strain relations. For example, the 

analogy Young’s modulus of the linear Newton dashpot in Figure 6.3, whose stress-strain 

relation can be described by Eqn. (6.6), can be expressed as 

   (6.9) 

Analytical expressions (closed forms) for stress-strain relation and analogy Young’s 

modulus of some aforementioned simple viscoelastic models are listed in Table 6.1. 

 

Table 6.1 Closed form stress-strain relations and analogy Young’s moduli of some simple 

viscoelastic models 

Model Stress-Strain Relation Analogy Young’s modulus 

Maxwell     

EA s( ) ≡ σ TD s( )
ε TD s( )

σ TD s( ) ε TD s( )

E A =ηs,        σ TD = E Aε TD

dσ
dt

+ σ
τ M

= EM
dε
dt

EM
s

s+1/ τ M
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Kelvin     

Thomson      

Burgers     

 

 are the relaxation times for Maxwell and Kelvin model defined as the ratio 

of viscosity to stiffness 

   (6.10) 

and  are the pertinent elastic moduli of Thomson and Burgers models 

respectively, which are defined as 

   (6.11) 

   (6.12) 

Contrasting to simple models, the stress-strain relation of generalized models can be 

expressed in a differential form as follows in deviatoric and volumetric parts, respectively: 

   (6.13) 

where R, S, P and Q are differential operators and D represents the time derivative.  

σ = EK τ K
dε
dt

+ ε
⎛
⎝⎜

⎞
⎠⎟

EKτ K s+1/ τ K( )

τ K
dσ
dt

+mTσ = EM τ K
dε
dt

+ ε
⎛
⎝⎜

⎞
⎠⎟

EM
s+1/ τ K
s+mT / τ K

τ K
2 d 2σ
dt2

+ mB1 +mB2( )τ K dσdt +

mB1mB2σ = EM τ K
2 d 2ε
dt2

+τ K
dε
dt

⎛
⎝⎜

⎞
⎠⎟

EM
s s+1/ τ K( )

s+mB1 / τ K( ) s+mB2 / τ K( )

τ M ,  τ K

τ M =
ηM

EM

,       τ K =
ηK
EK

mT ,  mB1,  mB2

mT = 1+
EM
EK

mB1
mB2

= 1
2
mT +

τ K
τ M

± mT +
τ K
τ M

⎛

⎝⎜
⎞

⎠⎟

2

− 4
τ K
τ M

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

R D( )σ D t( ) = S D( )εD t( )
P D( )σV t( ) = Q D( )εV t( )
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More specifically, Eqn. (6.13) can be extended and expressed by the following 

equations: 

   (6.14) 

where  are constants from N connected elements. 

Therefore, the analogy Young’s modulus of generalized models can be written as 

follows: 

For Maxwell chain in Figure 6.4 

   (6.15) 

For Kevin chain in Figure 6.4 

  (6.16) 

where  is the retardation spectrum and  is the relaxation spectrum (Dziugys & 

Peters, 2001). 

 

6.3.4 The Creep Compliance and Relaxation Modulus 

Creep is defined as a time-dependent deformation that occurs when a material is 

subjected to loading over time. In a creep test a static load is applied to a specimen and the 

deformation over time is measured. The creep compliance is then computed using 

α n

d nσ D

dtn
+α0σ D =

n=1

N

∑ 2βn
d nεD
dtn

+ 2β0εD
n=1

N

∑

α n

d nσV

dtn
+α0σV =

n=1

N

∑ 2βn
d nεV
dtn

+ 2β0εV
n=1

N

∑

( ), , 1~n n n n and n Na b a b =

EA = E0 +
sH τ( )
1+τ s0

∞

∫ dτ

EA = 1
E0

+ 1
η0s

+
L τ( )

τ 1+τ s( ) dτ0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

L τ( ) H τ( )
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   (6.17) 

where  is the constant stress.  

The creep strain usually increases with an ever decreasing strain rate so that eventually 

a more-or-less constant-strain steady state is reached, but many materials often do not reach 

such a noticeable steady-state, even after a very long time.  

On the other hand, if the instant strain is fixed and remains constant, the stress required 

to hold the viscoelastic material at the constant strain will be found to decrease over time. 

This phenomenon is called stress relaxation; it is due to a re-arrangement of the material 

on the molecular or micro-scale. The relaxation modulus  is computed using  

   (6.18) 

where  is the constant strain.  

For general viscoelastic models, the solutions to Eqn. (6.13) and (6.14) can be 

represented in an integral form. For any smooth strain history  with , the 

general solution of the stress-strain relation is given by the well-known Boltzmann 

superposition integral representation (Christensen, 1982) 

   (6.19) 

For any smooth stress history  with , the general solution of the stress-

strain relation can be obtained by 

   (6.20) 

C t( ) = ε t( )
σ 0

σ 0

E t( )

E t( ) = σ t( )
ε0

ε0

( )te ( )0 0e =

σ t( ) = E t −τ( ) !ε t( )dτ
0

t

∫

( )ts ( )0 0s =

ε t( ) = C t −τ( )
0

t

∫  !σ τ( )dτ
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The creep function and relaxation function are related by an integral equation so that 

if one function is determined, the other function can be obtained by solving the following 

equation 

   (6.21) 

where is the transformed relaxation function in Laplace domain and  is the 

transformed creep function in Laplace domain (Ferry, 1980; Leaderman, 1958). 

Specifically, for a four-parameter Burgers model, the creep and the relaxation 

functions can be expressed by the following forms (Burgers, 1939) 

   (6.22) 

When considering the viscoelastic behavior of asphalt materials, it is often more 

advantageous to use the creep compliance than to use the modulus because the compliance 

can allow separation of its response over time into time-dependent and time independent 

components (Witczak et al., 2002). 

 

6.3.5 The Complex Modulus 

The complex modulus is another important viscoelastic property used for 

characterizing the relations between the oscillating stress and strain. It can be determined 

ETD s( )CTD s( ) = 1
s2

ETD s( ) CTD s( )

C t( ) = 1
EM

1+ t
τ M

+α 1− exp − t
τ K

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E t( ) = EM
mB1 −mB2

mB1 −1( )exp −mB1
t
τ K

⎛

⎝⎜
⎞

⎠⎟
− mB2 −1( )exp −mB2

t
τ K

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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in the lab by applying steady-state sinusoidal loading to asphalt specimens at different 

frequencies. The applied stress and corresponding strain response are measured, and the 

axial complex modulus is defined/calculated by  

   (6.23) 

where  is the stress amplitude,  is the strain amplitude,  is the frequency and  is 

the phase lag or phase angle. In the complex plane, the real part of the complex modulus is 

called the storage or elastic modulus  while the imaginary part is the loss or viscous 

modulus  shown in Figure 6.5.The phase angle gives an indication of how viscous the 

material is; the material becomes more viscous as the phase angle increases. For example, 

if the phase angle is zero, the material behaves as purely elastic. A phase angle of 90 degree 

means that the material behaves as purely viscous.  

 

Figure 6.5 The storage and loss moduli in complex plane (Y. R. Kim, 2008) 

E∗ = E∗ eiϕ = σ ∗

ε ∗ =
σ 0e

iwt

ε0e
i wt−ϕ( ) = Ereal

∗ + iEimag
∗

σ 0 ε0 w ϕ

Ereal
∗

Eimag
∗
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For simple models such as Burgers model, the complex modulus can be derived by 

employing the correspondence principle to the analogy Young’s modulus. The theoretical 

expression of complex modulus for Burgers model is proposed below as 

   (6.24) 

   (6.25) 

 

6.4  Evaluating Viscoelastic Properties of Asphalt Mastic Composite 

Asphalt mastic, composed by fine aggregates, asphalt binder, p-DCPD and air voids, 

is a composite material. To simplify the analysis, the heterogeneous asphalt mastic whose 

viscoelastic properties are functions with respect to time can be reduced (transformed) into 

elastic moduli in Laplace domain, and represented by an equivalent homogeneous 

continuum media with appropriately defined effective properties.  

From Table 6.1, the analogy Young’s modulus of Burgers model can be simplified as 

   (6.26) 

where . 

Therefore, for a constituent simulated by Burgers model, the bulk and shear moduli 

in transformed domain are 

E* iw( ) = EMηM EK +ηKiw( )iw
EMEK + EMηM + EMηK + EKηM( )iw+ EMEK iw( )2

ϕ w( ) = tan−1 Eimag
∗ w( )
Ereal

∗ w( )
⎛

⎝
⎜

⎞

⎠
⎟

EA = EM
s s+ n1( )

s+ n2( ) s+ n3( )
n1 = 1/ τ K ,  n2 = mB1 / τ K ,  n3 = mB2 / τ K



 224 

   (6.27) 

Hashin-Shtrikman bounds of bulk and shear moduli in transformed domain of two-

phase composite materials with spherical inclusion by Li and Weng (J. Li & Weng, 1994) 

are used 

   (6.28) 

where  

   (6.29) 

and 0 and 1 denote the matrix and particles, respectively. 

The stress-strain relation of the isotropic composite in transformed domain can be 

expressed as follow 

   (6.30) 

 

KTD = KM

s s+ n1( )
s+ n2( ) s+ n3( )

µTD = µM
s s+ n1( )

s+ n2( ) s+ n3( )

KTD s( ) = K0TD +
f1 K1

TD − K0
TD( )

f0α0
TD K1

TD − K0
TD( )+ K0TD

K0
TD

µTD s( ) = µ0
TD +

f1 µ1
TD − µ0

TD( )
f0β0

TD µ1
TD − µ0

TD( )+ µ0
TD

µ0
TD

α0
TD = 1

3
1+ v0

TD

1− v0
TD =

3K0
TD

3K0
TD + 4µ0

TD

β0
TD = 2

15
4−5v0

TD

1− v0
TD = 6

5
K0
TD + 2µ0

TD

3K0
TD + 4µ0

TD

σ TD
kk = 3KTD s( )ε TDkk ,         σ TD

ij = 2µTD s( )ε TDij
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6.4.1 The Effective Bulk and Shear Moduli 

Under a constant strain rate, if the initial conditions are assumed to be zero, one has 

. With the given and in Eqn. (6.28) , the growth of  and 

in time domain can be determined by Laplace inverse on Eqn. (6.30) . Here, 

inclusions  are assumed to be elastic. Furthermore, Poisson’s ratio is assumed to be a 

constant when the asphalt is under viscoelastic deformation which implies . With 

the above two assumptions, the effective bulk and shear moduli in transformed domain for 

two-phase asphalt matrix can be expressed by 

   (6.31) 

Take volumetric part for demonstration. Plug bulk modulus equation in Eqn. (6.31) 

into Eqn. (6.30), one can have 

   (6.32) 

where  

 

  

 

ε ij
TD s( ) = !ε ij / s2 KTD µTD σ kk t( )
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TD( )
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⎡

⎣
⎢
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⎤

⎦
⎥
⎥
K0
TD
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⎤

⎦
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TD s( ) !ε kk s2 = (1)+ (2)+ (3)+ (4)⎡⎣ ⎤⎦3 !ε kk

 (1) = KM
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s s+ n2( ) s+ n3( )
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in which , . 

To obtain the effective bulk modulus in time domain, Laplace inverse is performed 

on Eqn. (6.32) and renders 

   (6.33) 

where 

 

 

 

 

in which , , 

, , 

, , 

, , 

, , 
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, , 

, . 

Effective shear modulus in time domain can be obtained by following the same 

procedures demonstrated above. 

 

6.4.2 The Effective Relaxation Function 

The effective relaxation behavior can be examined as well by means of Eqn. (6.30) 

with a constant strain. It follows that 

   (6.34) 

where 

 

 

 

 

To obtain the effective volumetric relaxation function, Laplace inverse is performed 

on Eqn. (6.34) 

   (6.35) 
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in which , 

, , 

, , , , , , 

, , . 

Effective deviatoric relaxation function in time domain can be obtained by following 

the same procedures demonstrated above. The effective creep function can be calculated 

by following Eqn. (6.21). 

 

6.4.3 The Effective Complex Modulus 

The effective complex bulk modulus can be expressed as 

   (6.36) 

where 

   (6.37) 
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in which  

                                     

                                      

Then, the real part and the imaginary part of the effective complex bulk modulus can 

be written as 

   (6.38) 

where  . 

By following the same procedure, the real part and the imaginary part of the effective 

complex shear modulus can be obtained 

   (6.39) 

where  . 

 

The above derivations (starting Eqn. (6.28)) are valid for two-phase composites yet 

the proposed asphalt mastic is a four-phase composite. In order to evaluate the viscoelastic 
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properties of the 4-phase asphalt mastic, a multilevel homogenization procedure is 

established, illustrated in Figure 6.6.  

 

 

Figure 6.6 The multilevel homogenization procedure to apply Ju and Chen’s pairwise 

interacting solution 

 

A relatively more precise evaluation of effective bulk and shear moduli is to employ 

Ju and Chen’s pairwise interacting solution (Ju & Chen, 1994a, 1994b) comparing to 

Hashin-Shtrikman bounds. In particular, the pairwise interacting solution may lead to an 

accurate higher-order formulation for the prediction of elastic particulate composites at 

moderately high particle concentrations. Ju and Chen’s elastic formulation for a two-phase 

(inclusions and matrix) composite states that, if the inclusions (particles) are assumed to 
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be identical and spherical in an elastic matrix, the effective bulk modulus  and effective 

shear modulus  of this composite can be explicitly evaluated as 

   (6.40) 

where 

    

and 

    

Corresponding to these elastic expressions, and with the same assumptions that 

particles remain elastic while the matrix is viscoelastic, and that Poisson’s ratio of asphalt 

is a constant during viscoelastic deformation, we would have the effective bulk and shear 

moduli in the transformed domain are: 

   (6.41) 
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and 

    

The effective bulk and shear moduli, relaxation and creep functions, and complex 

modulus can be derived with the same procedures as illustrated above using Hashin-

Shtrikman bounds. The expressions would be quite lengthy due to the fact that formulations 

of Ju and Chen’s pairwise interacting solution is one order higher than those of Hashin-

Shtrikman bounds. 

Complex modulus can also be numerically evaluated based on the relaxation or creep 

functions, or the vice versa, based on the transformation methodology developed by 

Schapery and Park (Schapery & Park, 1999).  

 

6.4.4 Results and Comparison 

The effective bulk modulus, relaxation functions and complex modulus of various 

phases of asphalt mastic composites are calculated following the aforementioned 

procedures in Mathematica, while some results shown in Figure 6.7-Figure 6.10. To be 

γ 1
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5 f1
96β s( )2

12υ0 13−14υ0( )− 96α s( )
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⎫
⎬
⎪
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γ 2
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2
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3α s( )+ 2β s( ) 1− 2υ0( ) 1+υ0( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪
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α s( ) = 2 5υ0 −1( )+10 1−υ0( ) K0
TD s( )

K1 − K0
TD s( ) −

µ0
TD s( )

µ1 − µ0
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⎛

⎝
⎜

⎞

⎠
⎟

β s( ) = 2 4−5υ0( )+15 1−υ0( ) µ0
TD s( )

µ1 − µ0
TD s( )
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specific, the 2-phase composite includes asphalt binder and fine aggregates; the 3-phase 

composite includes asphalt binder, fine aggregates and DCPD; and the 4-phase composite 

includes asphalt binder, fine aggregates, DCPD and air voids. Among all these composites, 

asphalt  binder is always considered as the matrix. The strain rate is constant. The elastic 

properties of the fine aggregates and DCPD, and viscoelastic properties of asphalt binder 

are listed in Table 6.2.  

 

Table 6.2 Elastic and viscoelastic properties for the asphalt mastic composite 

 Fine aggregates DCPD 

Young’s modulus 7.25e6 (psi) 2.784e5 (psi) 

Poisson’s ratio 0.2 0.39 

Asphalt binder  (Burgers model) 

    Poisson’s ratio 

1.45e4 (psi) 1.0e5 (psi.s) 1.0e4 (psi) 2.3e5 (psi.s) 0.3 
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   (c)      (d) 

Figure 6.7 Results for 2-Phase Composite: (a) Effective bulk modulus under constant strain 

rate; (b) Effective bulk relaxation function under constant strain; (c) Real part of effective 

complex bulk modulus; (d) Imaginary part of effective complex bulk modulus 
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   (c)      (d) 

Figure 6.8 Results for 3-Phase Composite: (a) Effective bulk modulus under constant strain 

rate; (b) Effective bulk relaxation function under constant strain; (c) Real part of effective 

complex bulk modulus; (d) Imaginary part of effective complex bulk modulus 
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   (c)      (d) 

Figure 6.9 Results for 4-Phase Composite: (a) Effective bulk modulus under constant strain 

rate; (b) Effective bulk relaxation function under constant strain; (c) Real part of effective 

complex bulk modulus; (d) Imaginary part of effective complex bulk modulus 
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   (c)      (d) 

Figure 6.10 Comparison of Results from 2-Phase, 3-Phase and 4-Phase Composite (volume 

fraction for asphalt binder =35%): (a) Effective bulk modulus under constant strain rate; 

(b) Effective bulk relaxation function under constant strain; (c) Real part of effective 

complex bulk modulus; (d) Imaginary part of effective complex bulk modulus 
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practical recommendation for the Brazilian test. The equations of stress distribution on 
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derived. As shown in Hondros’ work, if the boundary and loading conditions of a 2-D 

circular specimen are applied as illustrated in Figure 6.11, the stresses along the 
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   (6.42) 

where 

   (6.43) 

 

 
Figure 6.11 Boundary and loading conditions of  2-D circular specimen 

 

Under the assumption of the plane stress condition, the elastic constitutive law can be 

described as 
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   (6.44) 

To obtain the viscoelastic solutions, the correspondence principle is applied as follows 

   (6.45) 

 Take the stress distribution on horizontal diameter for example, the stress distribution 

along the horizontal diameter takes the form of 

   (6.46) 

where .  

We can solve for  from Eqn. (6.46) 

   (6.47) 

If the external strip load is set as is the Heaviside step 

function, the creep compliance along the horizontal diameter can be obtained and expressed 

by 

   (6.48) 

where  . 

Similarly, the creep compliance can also be obtained from the measurement of strains 

along the vertical diameter following the same procedures 

ε x =
1
E

σ x − vσ y( )
ε y =

1
E

σ y − vσ x( )

ε x s( ) = 1
ETD s( ) σ x s( )− vσ y s( )⎡⎣ ⎤⎦ = C

TD s( ) σ x s( )− vσ y s( )⎡⎣ ⎤⎦

ε y s( ) = 1
ETD s( ) σ y s( )− vσ x s( )⎡⎣ ⎤⎦ = C

TD s( ) σ y s( )− vσ x s( )⎡⎣ ⎤⎦

ε x s( ) = CTD s( ) σ x s( )− ε x s( )− ε y s( ) / β
ε x s( )− βε y s( ) βσ y s( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

β =
σ y

σ x

= −
f x( )+ g x( )
f x( )− g x( )

ε x x,0,s( )

ε x x,0,s( ) = βε y x,0,s( )+CTD s( )σ x x,0,s( )− βCTD s( )σ y x,0,s( )

P = P t( ) = P0H t( ),  H t( )

C x,0,t( ) = πad
2P0A x,0( ) ε x x,0,t( )− βε y x,0,t( )⎡⎣ ⎤⎦

A x,0( ) = 1+ β( ) f x,0( )− 1− β( )g x,0( )
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   (6.49) 

where . 

 

6.6  Numerical Simulations 

6.6.1 Simulation Background 

In order to validate the homogenization approach proposed in the previous section 

with asphalt binder evaluated as a 4-parameter Burgers model, 2-D plane stress numerical 

simulation for creep test is conducted. Three cases are modeled in this section, with two 

sub-conditions for Case 2 and Case 3. More specific information is listed in Table 6.3. The 

material properties of each constituent are listed in Table 6.4. Figure 6.12 illustrates a few 

significant models. 

 

Table 6.3 Case Description 

Case 1 100% asphalt binder 

Case 2 
Case 2-1 94% asphalt binder, 5% fine aggregates, 1%DCPD 

Case 2-2 64% asphalt binder, 30% fine aggregates, 6%DCPD 

Case 3 

Case 3-1 
90% asphalt binder, 5% fine aggregates, 1%DCPD, 4% air 

voids 

Case 3-2 
60% asphalt binder, 30% fine aggregates, 6%DCPD, 4% air 

voids 

 

Table 6.4 Material properties for constituents in asphalt mastic composites 

C 0, y,t( ) = πad
2P0B 0, y( ) ε x 0, y,t( )− βε y 0, y,t( )⎡⎣ ⎤⎦

B 0, y( ) = 1+ β( )m 0, y( )− 1− β( )n 0, y( )
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Young’s modulus 

(psi) 
Poisson’s ratio 

Drucker Prager 

Creep model 

Fine aggregates 7.25e6 0.2  

DCPD 2.784e5 0.39  

Asphalt binder 1.77e4 0.3 
A=2.95e-5 

n=0.8, m=-0.5 

 

 
Figure 6.12 The numerical models of Case 1, Case 2-1, Case 3-1 (from left to right, top to 

bottom, respectively) 

 

Local deformation and stress distribution of Case 1, Case 2-1, Case 3-1 at the final 

step of the simulations of indirect tensile creep test are demonstrated in Figure 6.13. 
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Figure 6.13 Deformations and stress distributions of Case 1, Case 2-1 and Case 3-1 (from 

top to bottom, respectively) 

 

6.6.2 Results and Comparison 

Figure 6.14 compares the creep compliance directly given by theoretical derivation 

and that calculated from the numerical strain output for Case 1. Specifically, the strain 

output from ABAQUS (radius = 1.0 inch, 1.5 inch and 2.0 inch) on the horizontal diameter 

(the x-axis) and the vertical diameter (the y-axis). Good agreement is expected, and the 

calculated creep compliance is closest to the theoretical values when the strain is output at 

1.0 inch both on the horizontal and vertical axes.  
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Figure 6.14 The creep compliances of Case 1 vs. the theoretical curve 
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Figure 6.15 shows the theoretical and numerical curves of creep compliance for Case 

2-1 and Case 2-2, while Case 3-1 and Case 3-2 (with theoretical curve of Case 1 as 

reference) are demonstrated in Figure 6.16. It is seen that the theoretical curves capture the 

tendency of numerical results reasonably well. It is shown that when the fine aggregates 

and DCPD are added to the asphalt matrix, the asphalt mastic has more creep resistance. 

The theoretical formulation tends to overestimate the effective creep compliance when the 

volume fraction of fine aggregates is low (5%) and underestimate when the volume fraction 

is high (30%). 

 
Figure 6.15 The creep compliances of Case 2-1, Case 2-2 vs. the theoretical estimations 
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Figure 6.16 The creep compliances of Case 3-1, Case 3-2 vs. the theoretical estimations 

 

Additionally, comparison of theoretical estimations among all five cases under 50 

seconds and 1,000,000 seconds are demonstrated in Figure 6.17. It is noticed that the 

differences are more obvious at the beginning of creep. Also, it is clear that air voids will 

slightly increase the creep compliance. It is also observed that when the volume fraction of 

fine aggregates is low (5%), the air voids increase the creep compliance of asphalt mastic 

more significantly. while air voids have less influence on the creep compliance of asphalt 

mastic when the volume fraction of fine aggregates is high (30%). 
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Figure 6.17 The theoretical estimations of creep compliances of Case 2-1 vs. Case 3-1 and 

Case 2-2 vs. Case 3-2 
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CHAPTER 7 : CONCLUSIONS AND FUTURE WORK 

 

 

7.1  Conclusions 

In this research, novel micromechanical-based isotropic frameworks have been 

proposed to predict the mechanical behavior of the asphalt concrete materials featuring 

high toughness, low viscosity nano-molecular resins and employed for comparisons 

between model predications and experimental measurements. An analytical approximation 

modeling methodology is established by treating the revolutionary asphalt concrete 

materials as an asphalt mastic composite matrix containing fine aggregates, asphalt binder, 

polymerized DCPD and air voids with coarse aggregates inhomogeneities distributed in it. 

Chapter 3 presents an initial strain energy based isotropic elastic-damage model through 

the net stress concept in conjunction with the hypothesis of strain equivalence, while 

similar damage evolution criterion is employed in Chapter 4 and 5 for elastoplastic-damage 

and elasto-viscoplastic-damage frameworks. In Chapter 6, an analytical formulation is 

proposed within the micromechanical framework based on the concept of the 

correspondence principle to predict the isotropic viscoelastic properties of the multiphase 

asphalt mastic composites. The conclusions of this dissertation are summarized below: 

1. A multilevel homogenization approach is proposed to evaluate the effective elastic 

properties of the multi-phase composites employing an ensemble-volume averaged 
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micromechanical formulation. Evaluation results are compared with well-known analytical 

bounds and great agreement can be observed. 

2. The governing isotropic initial elastic strain energy based damage evolution 

criterion is characterized through the net stress concept in conjunction with the hypothesis 

of strain equivalence. 

3. Computational algorithms of coupled elastoplastic-damage/ elasto-viscoplastic-

damage are developed based on a two-step operator splitting methodology by means of 

refined additive split of the stress tensor and the energy norm of the strain tensor. 

4. The effective viscoelastic mechanical properties of multi-phase asphalt mastic 

composites are analytically formulated with the concept of the correspondence principle. 

Specifically, a simple yet accurate 4-parameter Burgers model is employed to evaluate the 

viscoelastic behavior of the asphalt binder phase. 

5. A 3-D numerical model is constructed to simulate the actual asphalt concrete 

specimens. Algorithms are implemented to make sure spherical inclusions are randomly 

dispersed in the matrix and there is no overlapping among each other. The proposed 

damage evolution law and plastic/ viscoplastic return mapping correctors are carried out. 

6. From the comparisons of experimental data and numerical simulations results, it is 

observed that the proposed elastic-damage model and elastoplastic-damage model can 

capture the mechanical behavior of the innovative asphalt concrete material under the 
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splitting tension test reasonably well. In particular, the prediction is more precise with 

plastic deformation taken into consideration. 

 

7.2  Future Work 

In this section, we present a plan and lay out a foundation for future research as 

extension of this doctoral dissertation: 

1. More Validation of the Proposed Isotropic Formulations: Due to the limitation 

of associated experimental data, the proposed elastic-damage and elastoplastic-damage 

formulations have compared with the splitting tension test data, where reasonably good 

agreements are observed. In order to enhance the prediction and reliability of the proposed 

formulations, more validations need to be performed to the parameters, such as initial 

damage threshold,  material-dependent damage variables, plasticity material constant. In 

addition, possible experiments, such as monotonic uniaxial tension tests with different 

strain rates at different temperatures with different volume fractions of components, can be 

done and compare with the proposed thermo-elastic-viscoplastic-damage framework.  

2. Characterization of Fatigue and Rutting Resistance Behavior:  To serve as 

pavement, the innovative asphalt concrete material will undergo perennial traffic loading, 

hence it is essential to characterize the fatigue and rutting resistance capacity of the material. 

The current time dependent framework may be adopted to estimate the mechanical 

responses of the material under repeated loading. Furthermore, the current correspondence 



 278 

principle with the Laplace transform may be adopted with the Fourier transform to identify 

the complex viscoelasticity response. 

3. Evaluation of the Caging Effect by the p-DCPD Network:  A multilayer-coated 

particle concept was proposed in the current frameworks to consider the caging effect of 

the p-DCPD network locking asphalt binder to the aggregates, while an alternative, more 

accurate approach to evaluate the caging effect could be p-DCPD network cages distributed 

as the Voronoi cells. The strength enhancement due to the cages can be represented as 

chain stiffness, or an energy potential that requires to break one or more chains in the cells. 

4. Assessment on Effects of Irregular Coarse Aggregates: Spheroidal, ellipsoidal 

and other representative shaped particles need to be evaluated besides the spherical particle. 

Effects of texture, angularity and orientation of coarse aggregates on the mechanical 

behavior also needs to be studied. By summarizing the effects of irregular coarse 

aggregates, a general shape factor function can be developed for assessment purposes. 

5. Application to Self-Healing Composites: Self-healing materials are mentioned in 

the literature review with the concept of ability of composite materials to reduce the 

degradation with the aid of a healing agent by means of chemical interactions. The 

proposed micromechanical frameworks can be modified to predict the mechanical 

performance of the self-healing composites. 

 




