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Abstract
Several reviews and case reports have described how information derived from the analysis of genomes are currently
included in electronic health records (EHRs) for the purposes of supporting clinical decisions. Since the introduction of this
new type of information in EHRs is relatively new (for instance, the widespread adoption of EHRs in the United States is just
about a decade old), it is not surprising that a myriad of approaches has been attempted, with various degrees of success. EHR
systems undergo much customization to fit the needs of health systems; these approaches have been varied and not always
generalizable. The intent of this article is to present a high-level view of these approaches, emphasizing the functionality
that they are trying to achieve, and not to advocate for specific solutions, which may become obsolete soon after this review
is published. We start by broadly defining the end goal of including genomics in EHRs for healthcare and then explaining the
various sources of information that need to be linked to arrive at a clinically actionable genomics analysis using a pharmaco-
genomics example. In addition, we include discussions on open issues and a vision for the next generation systems that
integrate whole genome sequencing and EHRs in a seamless fashion.

Introduction
Genome analysis is relatively new to the practicing clinician, and
thus its inclusion in electronic health records (EHRs) is not yet
standardized. Most genome analyses performed in Clinical
Laboratory Improvement Amendments (CLIA) certified laborato-
ries in the United States today consist of targeted panels for phar-
macogenomics or cancer-related genes. However, there are an
increasing number of analyses of exome and/or whole genome
sequencing (WGS). This article discusses genome analyses as rep-
resented in the EHRs today and how we envision it will be in-
cluded when WGS becomes mainstream to clinical medicine.

WGS-derived Information: Where Is It in the
EHR?
The goal of a clinical interpretation of WGS analysis is to iden-
tify individual variations in DNA (e.g. substitutions, insertions,

deletions, duplications etc.) that have clinical significance. By
clinical significance we mean a phenotype that is strongly asso-
ciated with the variation. Clinicians often refer to these as ‘ac-
tionable’ variations, whose usefulness is not limited to assisting
in prescribing (e.g. initiation or adjustment of dosing for a cer-
tain medication), but also help in diagnosing and managing a
disease or other health conditions.

The EHR is a legal document designed to assist in documen-
tation and billing, in addition to facilitating clinical care. It is dif-
ficult to determine what type of genome information to include
in the EHR because of the evolving nature of genetic test inter-
pretations. It is also challenging to determine how to best use
this information at the point of care. Similarly, as in other types
of clinical decision support, the development and maintenance
of a knowledge base reflecting rules that are implemented in
EHRs to support clinician decisions is costly and, if not carefully
managed, prone to obsolescence and errors that may inadver-
tently harm, rather than help, clinical decision making. As an
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illustration of how heterogeneous the solutions have been, con-
sider for example how clinicians enter and receive information
from WGS analyses: as clinicians move around different health
systems, they may find WGS-derived information in different
sections of the EHR. Furthermore, the recommended actions for
an identical genome analysis may vary greatly depending on
how the health system adjudicates clinical evidence [e.g. by in-
ternal committees or by adoption of recommendations from a
particular specialty society, typically in the United States the
American College of Medical Genetics or Association of Clinical
Pathology (ACP), or guidelines from experts such as the Clinical
Pharmacogenetics Implementation Consortium] (1,2).

A review of the recent literature (3) indicates that the final
results or interpretations of WGS analyses, such as the presence
of pathogenic, clinically significant, variants in germline ge-
nomes, are commonly entered in the EHRs as ‘allergies’ (so that
clinicians are alerted accordingly for the purposes of prescribing
certain medications) or ‘problems’ embedded in problem lists
that typically contain several entries. Human leukocyte antigen
class I-B (HLA-B) and abacavir is one such gene–drug pair exam-
ple enlisted in an EHR allergies section. Individuals carrying an
HLA-B*57: 01 allele are reported to be at high risk for developing
hypersensitivity to abacavir, a nuclease reverse transcriptase
inhibitor used to treat HIV disease. In the Mayo EHR system,
this allergy information is shown to a physician at the time of
prescribing, with suggestions to change orders toward improv-
ing patient safety (4). In contrast, Boston Children’s Hospital
stores the relevant variant information, including the HLA-
B*57:01 above, in the EHR problem list (5). Another example is
thiopurine methyltransferase. The SNP rs1800460 (chr6:
18138997 C/T) in thiopurine S-methyltransferase (TPMT) gene is
one of example of a relevant gene–drug pair (6). The risk allele T
is known to be associated with deficiency in thiopurine efficacy
and leukopenia as an adverse drug effect. If a patient has CT or
TT alleles instead of CC, a wild-type, the phrase ‘TPMP enzyme
deficiency’ is inserted to the EHR problem list (6). Clearly, while
the type of information is very different, the reason why these
variants are placed in the ‘problem’ or ‘allergy’ list relates to the
easy implementation of EHR alerts and reminders. By placing
this information in these lists, EHR users are simply trying to
make sure the information is quickly available for the next pro-
vider, instead of buried in narrative clinical notes. Although
practical from a care point of view, when these allergy and prob-
lem lists are used for research and for the learning healthcare
system, they need to be carefully curated.

Other groups have considered WGS a ‘procedure’ (5), due to
the multiple ways in which a WGS analysis workflow can be con-
ducted, and the importance of understanding the trade-offs due
to different types of analyses. The Substitutable Medical
Applications & Reusable Technologies (SMART) on Fast Health
Interoperability Resource (FHIR) Genomics Resource team pro-
posed to add the <SequencingLab> extension to the
<Procedure> resource to store the information about sequencing
protocols and variant calling algorithms, similar to other
<Procedure> examples such as surgical procedure, endoscopic
procedure and biopsy procedure (5). In contrast, the observed se-
quence (A/C/T/G) data generated by above ‘procedure’ goes to the
<Sequence> resource and genotype-phenotype information is
saved in the <Observation> resource, which also includes other
observed elements like body weight and temperature, glomerular
filtration rate, bone density, EKG data and tobacco use.

Even the notion of a clinically significant variant is fluid.
Whether a variant is pathogenic or benign is often determined
by an organized body of experts using their clinical experience

and available literature (7,8). However, an important tenet of
precision medicine (and thus WGS interpretation) is that not all
variants have the same effects in all patients). Therefore, de-
scribing which tools were used to identify variants (i.e. the basis
for considering a DNA base uncommon) and what evidence was
used to arrive at a clinical significance interpretation for that
variant or structural variation (i.e. to name a particular variant
as ‘clinically significant’) is important, hence the advocacy for
classifying WGS as a ‘procedure’. The rationale is that, just as
important to understand whether a mass was found by MRI or
x-ray, it is important to know how a pathogenic variant was de-
termined. Workflows for WGS analyses that are CLIA-compliant
have been recently proposed by the ACP (9,10). However, a side
effect of considering WGS results ‘procedures’ is that designing
alerts and reminders from procedures in major EHR systems is
not as easy as defining them from ‘allergy’ or ‘problem’ lists.

Conceptually, WGS interpretation could be considered a lab-
oratory test in which the interpretation could change given the
findings in the literature and the accumulation of evidence in
the learning healthcare system (11). The similarities with a liver
enzyme test, in which daily reference ranges are produced at
each laboratory, are several: the results cannot be interpreted
without the reference, there are thresholds to flag results as ab-
normal or borderline, and they are used in the context of other
findings for the patient. In essence, the analytical procedures
applied to the WGS to arrive at variant detection are an inextri-
cable part of the WGS test, much like reference ranges are part
of a specific laboratory result. There are important differences
too: unlike liver enzymes, sequencing of germline genomes
does not need to be repeated as the phenotype changes (unless
technical improvements warrant re-sequencing of the genome),
and the ‘reference’ changes not just by range, but by variant or
variation as new evidence accumulates. That is, unlike a liver
enzyme test, which can be documented as ‘elevated 3x from the
reference normal range on 2/27/18,’ a WGS interpretation consti-
tutes millions of ‘tests’ and can only be documented as ‘clinically
significant variant ABC found on 2/27/18, considering evidence from
the Nth version of the XYZ resource’ [e.g. ClinVar (12)]. Additionally,
the next time a WGS interpretation is ‘ordered’, portions of the
analytical pipeline may need to be re-run, but not the ‘test’.

The Mayo Clinic puts its variant findings in the EHR Lab
‘Results’ section (4). Unlike Boston Children’s Hospital, Mayo
puts the same rs1800460 in TPMT and thiopurine pair in phar-
macogenomics lab results. The Mayo system reminds clinicians
of the necessity of reactive genotype testing. For example,
TPMT for azathioprine has linked genotype–phenotype docu-
mentation either in the problem list or allergy section, which
links to suggestions for possible prescription modifications such
as alternative drug or reduced dosage (3).

Nevertheless, regardless of where WGS interpretations are
placed in the EHR, they remain critical data for patient-centered
targeted therapy. The goal is to assist clinicians in using genetic
information to diagnose, counsel, treat and prognosticate. WGS
results should be placed in an EHR such that they can be inte-
grated into complex decision making that maximizes the use of
actionable information while preserving efficiency in busy clini-
cal practices. The components of this ecosystem that could in-
teract with an integrated EHR system are described next.

Components of a WGS-Based Clinical Decision
Support System
We will henceforth consider WGS analysis outputs as test re-
sults and describe the components of a WGS-based clinical
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decision support system using a common pharmacogenomics
example. We divide decision support components into (i) order-
ing of the WGS test, (ii) generating the interpretation at the ‘lab-
oratory’, (iii) importing results into the EHR, (iv) triggering of
alerts and reminders and (v) evaluating outcomes.

Ordering of WGS test

Clinician provider order entry (CPOE) systems have been in
place for decades, and CDS associated with the orders has been
shown to be effective in reducing unnecessary or inappropriate
testing and costs in many studies, particularly when the CPOE
system is integrated with the EHR system. Decision support in
CPOE ranges from drug–drug interaction checks to guidelines
for requesting imaging studies. Although many studies show
benefits of CPOE, some show no difference and others show
that sub-optimal implementation of CPOE can have opposite ef-
fects (13,14). No studies have evaluated large implementations
of WGS CPOE to date, but the expectation is that they will show
a similar trend as studies involving other types of CPOE. For ex-
ample, if a clinician is interested in prescribing abacavir to a pa-
tient, the system should suggest first ordering a ‘test’ for
screening HLA-B*5701, known to be associated with hypersensi-
tivity to this medication. Conversely, if WGS is already available,
the system should be able to query this particular genotype.
Although this is an example in which the association is well
known and the test is recommended by the US Department of
Health and Human Services, examples involving variants of un-
known significance also exist.

Generating the interpretation at the ‘laboratory’

Application programming interfaces (APIs) that allow commu-
nication between EHR systems and knowledge bases such as
ClinVar (12) and PharmGKB (15) are increasingly being made
available by laboratories and major EHR vendors. These APIs
hold promise in making the EHR systems less insular, allowing
integration of external software to enhance EHR functions
(5,16). The goal is to have an automated screening system in a
patient’s EHR that helps clinicians make decisions. The current
bottleneck is not necessarily the API technology, but the accep-
tance of these knowledge bases at the clinical sites. Reports
from CLIA labs only contain information considered important
at the time they were created and may not have explicit infor-
mation about variants that were later considered clinically sig-
nificant. It is therefore inconsistent that the remainder of a
WGS would be considered not ‘CLIA-certified.’ This may be be-
cause the variant calling algorithm would need to be adjusted.

Importing results into the EHR

Unfortunately, just like many pathology and radiology reports,
many CLIA-certified WGS results still consist of raw, unstandar-
dized, narrative interpretations that are inserted in the EHRs as
pdf documents, making it more difficult to compute. Parsing
XML results from major laboratories is relatively simple, but
XML schemas vary widely across multiple vendors and querying
for specific variants is not within scope. Re-analysis of WGS,
which is critically important given the fluid nature of evidence
(17), is not currently available. Furthermore, effectively interfac-
ing genomics and other data in the EHR (e.g. diagnoses, medica-
tions, laboratory test results) to generate accurate algorithms
and clinically relevant recommendations (e.g. drug–gene

interactions and monitoring) will greatly enhance personalized
medicine practice at the point of care.

Triggering of alerts and reminders

The design, implementation and evaluation of rules for an EHR-
based CDS system have been studied in many contexts outside
WGS analysis. A few case studies report on frameworks for im-
plementation at a single healthcare system (18). The complexity
of these tasks for WGS data is higher when these data are added
to other clinical data: not only is the pace of evidence genera-
tion higher, but new discoveries due to ancestry and environ-
ment (in the case of somatic variants) are being reported daily.
Because evidence from the literature is not yet easily comput-
able, the need for curating the literature is high and non-
scalable solutions are still the norm. Whether outsourcing to a
scientifically-abled ‘crowd’ (19) or the emergence of computable
literature (20) will be feasible solutions remains to be seen.

Evaluating outcomes

Many questions remain on how to evaluate the outcomes of
WGS-based CDS systems. For example, if the intended outcome
is not achieved for a treatment, would re-interpretation of WGS
be warranted? Or should a reinterpretation be updated ‘continu-
ously’ and clinicians and/or patients alerted when new findings
become relevant to them? (17) If all existing evidence comes
from populations that are quite distinct than that of the patient,
would WGS results be a mismatch? Should recommendations
based on these results be avoided? What will constitute WGS
interpretation malpractice? How effective (or disruptive) are
genomics-based alerts and reminders? Unfortunately, the field is
too immature for these questions to be answered. Additionally,
the current applications of WGS-based CDS have been mostly
limited to academic medical centers; these issues have yet to be
prioritized by administrators and policy makers.

Standards for Representing Genomic Variants
Once the determination is made to acquire and store WGS in an
EHR record, the next important decision is what to store. There
are a number of formats that have been used to represent geno-
mic information. For variants, the optimal representation would
include the common ‘name’ as it is more readily recognized,
easier to read and elicits knowledge of its clinical impact. For
example, the PML–RARA fusion gene, present in 98% of promye-
locytic leukemia patients, is a target of all-trans retinoic acid
and arsenic trioxide and thus predictive of a favorable outcome
due to sensitivity of these molecular therapies (21,22).
Recording its common name, ‘PML–RARA’, is simpler to inter-
pret but provides limited computability. Instead, it may be pref-
erable to record multiple forms of the information, such as the
chromosomal translocation t(9; 22)(q34; q11.2), the resulting
RNA changes, as well as the resulting oncoprotein. This allows
multiple uses of these patient data. For example, having the
variant represented in a common structured nomenclature en-
ables the querying of external knowledge bases for updated in-
formation on its clinical relevance. Using the short name in
clinical notes allows for better readability and transfer of this
information among clinicians caring for the patient. The
Molecular Pathology Resource Committee of the College of
American Pathologists has highlighted some of the challenges
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in this area and issued recommendations on how to optimally
provide information to maximize utility for the clinician (23).

As mentioned, if a DNA variant is recorded using a standard
nomenclature, it allows one to build links to knowledge bases to
inform clinicians about the impact of a particular variant. This
would require standardization to a common nomenclature and
structured format by the EHR and the knowledge base.
Unfortunately, the most common way variants from WGS are
reported today is via narrative text reports, typically in PDF for-
mat, and without a common standard vocabulary or structured
format. Standards to enable interoperability and standardized
exchange of clinical genomic data are emerging, but are not yet
widely adopted.

Recommendations on nomenclature and a tiered-approach to
clinical significance have been recently issued by professional so-
cieties relevant to clinical genomics and are a step towards pro-
viding EHR and clinical genomic testing centers common
standards for interoperability (7). The proposed consensus is that
variants should be described using standards published by the
Human Genome Variation Society (HGVS) which joined forces
with the Human Genome Organization Gene Nomenclature
Committee and the Human Variome Project (24) to produce stan-
dards for documenting reference sequences for genomic DNA,
coding DNA, non-coding DNA, mitochondrial DNA, RNA and the
resulting protein (25). Logical Observation Identifiers Names and
Codes implements the HGVS syntax to represent variants of in-
terest (26) and provides and expanding array codes for reporting
clinical genomic tests and results (27). Health Level 7 has also is-
sued an implementation guide for structuring genetic test results
into the EHR (28). As these specifications continue to improve
through the standards process, they will hopefully be adopted by
both clinical genomics testing laboratories and EHR vendors. So
far, the science has far outpaced genomics healthcare data stan-
dards. This has resulted in a significant lost opportunity in being
able to bring the full complement of modern computing to sup-
port clinicians in what is an increasingly complex decision-
making environment.

Linking to Knowledge and Tools for
Interpretation of WGS
Knowledge about WGS-derived variants is increasing rapidly
and will quickly overwhelm a clinician’s ability to have relevant
information brought to bear at the point of care. There are a
number of resources and databases available for secondary
analysis and for obtaining contemporary information about a
particular variant. Access from the EHR to these decision sup-
port systems will be critical as this knowledge continues to ex-
pand. Linkages from the EHR to external knowledge bases
through APIs will be a key factor in maximizing the benefit of
WGS for patients. An API is a set of definitions about program
instructions, protocols, and tools for application software. It en-
ables communication between different software applications
(5,16). An application makes a request to a server, which returns
a response back to the requesting system. Typically, a user of the
requesting system triggers the process. Today, the most common
way to implement APIs is to use the hypertext transfer protocol
(HTTP) using a Representational State Transfer (REST) architec-
tural style, frequently referred to as Representational State
Transfer-ful Web Services. The Global Alliance for Genomics and
Health initiated the Beacon Project (29) with the request query
https://beacon-network.org/#/search?pos=32936732&chrom=13&
allele=C&ref=G&rs=GRCh37 for a genetics question, ‘UC Santa

Cruz, do you have a genome that has allele ‘C’ at position
32936732 on chromosome 13 in the human genome build
GRCh37?’ Then UCSC transfers an XML file with ‘true’ as a re-
sponse. The same question was asked to Broad Institute, and
the response was ‘false’. Figure 1 shows more working API ex-
amples from the Epic system, ClinVar archive and the drug–
gene interaction database called DBIdb (30). The questions in
words are translated into machine-readable APIs. Figure 1B
demonstrates that clinical findings, such as a patient’s vital sign
(e.g. systolic blood pressure), can also be retrieved in XML/JSON
format by requesting the data from the EHR system (e.g. Epic)
via a FHIR API. The second example in Figure 1B is making a re-
quest to a resource database, NCBI ClinVar (12,31), for a variant-
condition interpretation. The third request in Figure 1B asks for
a specific gene–drug interaction. A JSON text file, as shown in
Figure 1C, is returned as a result, with pathogenicity and breast/
ovarian cancers as ‘related conditions’. APIs thus enable data
sharing and integration of genomic variants and clinical pheno-
types. Through APIs, different apps can communicate efficiently
in a fully automated way. APIs are flexible because they com-
municate at the application layer. APIs can connect two apps
seamlessly and are easily customizable, as illustrated by the
multiple FHIR Apps (5) released at Healthcare Information and
Management Systems Society (HIMSS) annual conference 2014
and by Duke University (16). Currently, genomics APIs are still
under development and recently Google Genomics, SMART
Genomics and 23andMe released their early versions (32).

In addition to technical considerations, the inclusion of ge-
nomics in the EHRs must also consider ethical, social and legal
implications (33). Complicated issues include interpretability of
results and availability of trained personnel to answer ques-
tions, particularly in an era where patient portals (34) and open
notes (35) are increasingly being implemented to promote
transparency in the EHRs, and patient preferences towards data
sharing and privacy need to be addressed in parallel with tech-
nical advances (36,37). Furthermore, full integration into the
clinical workflow is needed. An illustrative use case relates to
pharmacogenomics and peri-operative workflows.

A major challenge in executing pharmacogenomics tailored
programs includes more clinician buy-in. Obtaining buy-in from
a medical community is a complex process. As an example, the
use of pharmacogenomics in perioperative medicine has much
potential. During a patient’s perioperative experience, healthcare
providers are tasked with the management of multimodal phar-
macotherapy. Anesthetic and pain management during the in-
tra- and post-operative period may be challenging, as several
classes of medications have varying degrees of efficacy and toxic-
ity. The effects are even more unpredictable due to inherent ge-
netic variability. Effective opioid-sparing strategies are important
for successful enhanced recovery after surgery (ERAS) protocols
(38). These protocols are aimed to outline the appropriate steps
of perioperative care for major surgery; however, all of the poten-
tial factors affecting optimal care are not fully known because of
genetic variability across patients. Having access to a patient’s
pharmacogenomics information would allow healthcare pro-
viders to practice personalized medicine, thereby driving more
effective outcomes. Several studies have linked an association of
genotype with opioid metabolism (39–44). Although the field of
pharmacogenomics has been longstanding, its widespread im-
plementation into perioperative care is still at its infancy. The
operating room is a fast-paced clinical environment, therefore,
inclusion of pharmacogenomics into clinical decision workflows
need to be well integrated without disrupting the time required
to maintain operating room efficiency.

R51Human Molecular Genetics, 2018, Vol. 27, No. R1 |

https://beacon-network.org/#/search?pos=32936732&chrom=13&allele=C&ref=G&rs=GRCh37
https://beacon-network.org/#/search?pos=32936732&chrom=13&allele=C&ref=G&rs=GRCh37
https://beacon-network.org/#/search?pos=32936732&chrom=13&allele=C&ref=G&rs=GRCh37
https://beacon-network.org/#/search?pos=32936732&chrom=13&allele=C&ref=G&rs=GRCh37
https://beacon-network.org/#/search?pos=32936732&chrom=13&allele=C&ref=G&rs=GRCh37
https://beacon-network.org/#/search?pos=32936732&chrom=13&allele=C&ref=G&rs=GRCh37


Figure 2 illustrates the basic workflow of the perioperative
experience for a patient: (i) preoperative period, in which pa-
tients are screened by surgeons and anesthesiologists to deter-
mine their surgical candidacy and whether they are medically
optimized; (ii) intraoperative period, in which patients undergo
a surgical procedure requiring a variety of pharmacological
agents to provide anesthesia and analgesia; and (iii) postopera-
tive period, in which patients recover from surgery and need to
meet various discharge milestones. Patient consenting (45) and
education regarding pharmacogenomics should be performed
during the preoperative period (i.e. at the preoperative care
clinic where the anesthesiologist prepares patients for surgery
or at the surgery clinic). There should be enough time from re-
questing genotype data to day of surgery so that the results are
available in a timely manner. Once pharmacogenomics results
are available, perioperative providers (i.e. anesthesiologists, sur-
geons, nurses and pharmacists) should be notified regarding
which surgical patients have available results in the EHR. Based
on the genes tested, providers should be given information re-
garding potential drug responses to different pharmacological
categories including: anticoagulants, beta-blockers, sedatives,
anti-emetics, hypnotics, muscle relaxants, analgesics (opioid
and non-opioids) and volatile anesthetics. On the day of sur-
gery, providers should have the information to integrate the
pharmacogenomics results into their practice in order to opti-
mize personalized care during the pre-, intra- and post-opera-
tive periods (including acute pain management during the first
week following surgery). Pharmacogenomics integrated into in-
tra- and post-operative management has potential to reduce to-
tal opioid consumption. Such tools may be implemented in
ERAS programs and Acute Pain Services. Patients undergoing

surgeries associated with higher opioid use—such as joint
arthroplasty, complex spine surgery and major abdominal
surgery—may benefit. Much more studies are needed to design
protocols that optimize dosing and medication changes based
on genetic risk and associated outcomes. As these studies are
produced, these protocols should be easily integrated into a
perioperative pharmacogenomics service.

The use of pharmacogenomics holds great promise to the
personalization of perioperative care; however, there are several
challenges that need to be addressed: (i) the plethora of results
from pharmacogenomics screening (especially when hundreds
of genes are tested) will make user-friendly presentation of the
results to clinicians challenging; (ii) the barrier to physician
buy-in needs to be overcome with evidence of patient outcomes
improvement; (iii) disruption to usual clinical flow must be min-
imized (i.e. will adding another test and report to a physician’s
daily workflow be deemed cumbersome?); and (iv) clinical deci-
sion support must be provided (e.g. What are the associated
meaningful phenotypes to the reported genotypes? What
should healthcare providers actually do with the data?). For
pharmacogenomics to become widely adopted in the periopera-
tive space, all of these challenges need to be met adequately.

Are We There Yet? Missing Links to Realize the
Vision of Genomic Medicine
Cholesterol measurements took over 20 years to be standard-
ized for clinical use; their widespread ordering was primarily
tied to research findings from Framingham cohort studies (46).
WGS has been around for over 10 years; only recently has the

A

B

C

Figure 1. Schematic illustration of API for genomics and EHR. (A) Generic user-server communication using an API. (B) Translation of words into API request URLs

against real servers in EPIC, NIH and WashU. (C) An example response, or output, from DGIdb in JSON format. Given a gene, HLA-B, drug ABACAVIR is returned based

on PharmGKB and FDA data, as described in this article.
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price per genome dropped sufficiently to make it a potentially
viable ‘test’ for a small percentage of the world’s population. For
example, coverage from health insurance in the United States is
still low and limited to specific gene panels. It is thus not sur-
prising that standardization of WGS results and standardization
of how they are included in the EHR have not been prioritized.
Additionally, cholesterol measurements are limited to a few
tests, as opposed to WGS-based results, which may involve
thousands of ‘tests’. In both cases, a large cohort of individuals
needs to provide data and samples so that associations can be
determined and inferences can be made. It is thus premature to
suggest that WGS-based analyses will transform the way medi-
cine is practiced overnight, especially since large scale studies
that compare the incremental benefit of WGS-based ‘tests’ over
traditional family history data have not been conducted in the
context of clinical care settings. Nevertheless, it would also be
premature to declare that WGS-based testing will not be widely
adopted because of the difficulties in storing the sequences in a
protected environment, analyzing the computationally complex
data and the constantly moving basis for interpretation.

Initiatives such as the All of Us (47) Research program, which
will collect clinical data, participant-provided information, and
samples from over a million individuals from diverse back-
grounds over a decade, will boost discoveries and provide a good
setting for investigating the feasibility of incorporating WGS-
based results into healthcare, and consequently, into EHRs. Over
time EHRs are expected to become more modernized, provide
more open APIs for a variety of uses, and have lower frequencies
of missing data for important variables such as social determi-
nants of health, ancestry and environment. Aside from achiev-
ing personalized medical goals based on genomics data,
futuristic goals of generating new knowledge and clinically rele-
vant discoveries using population-based genomics data can
someday be achieved by using EHRs. The confluence of integrat-
ing genomics data with new analytical methods to answer ques-
tions specific to an individual and policies that promote data
sharing while preserving the privacy of individuals and institu-
tions has already started. Just as monitoring child growth, we
should keep in mind how frequently it makes sense to perform
measurements of genomic medicine success. Progress is hap-
pening daily. If the scientific community addresses issues of
standards and evidence generation now, genomic medicine will
be a reality that will make future generations wonder how medi-
cine was practiced before the human genome was sequenced.
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