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ABSTRACT: The synthesis quality of artificial inorganic nano-
crystals is most often assessed by transmission electron microscopy
(TEM) for which high-throughput advances have dramatically
increased both the quantity and information richness of metal
nanoparticle (mNP) characterization. Existing automated data
analysis algorithms of TEM mNP images generally adopt a
supervised approach, requiring a significant effort in human
preparation of labeled data that reduces objectivity, efficiency,
and generalizability. We have developed an unsupervised algorithm
AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information on convex mNPs from
TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP
is tested on two data sets of bright field TEM images of Au nanoparticles with different shapes and further extended to palladium
nanocubes and cadmium selenide quantum dots, demonstrating that the algorithm is quantitatively reliable and can thus serve as a
generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future
developments of high-throughput characterization of mNPs and the future advent of time-resolved TEM studies that can investigate
reaction mechanisms of mNP synthesis and reactivity.

KEYWORDS: transmission electron microscopy, nanoparticles, machine learning, unsupervised learning, image analysis

■ INTRODUCTION

The shape attributes of a metal nanoparticle (mNP) determine
many of its physical, chemical, and functional properties,
including plasmonic behavior,1−4 catalytic efficiency,5−8 and
biological activity.9,10 Significant research effort has focused on
developing methods for the shape-controlled synthesis of
mNPs, and an accurate and efficient method for their
characterization has been indispensable for the success
achieved by these studies.11−18 To date, transmission electron
microscopy (TEM) remains the most reliable and widely used
method for characterizing the morphology of NPs, for which
rapid advancement in automated high-throughput electron
microscopy has drastically increased both the acquisition rate
and the quality of TEM data.19−22 Increased efficiency in TEM
data acquisition now enables the scale of NP shape
characterization to increase from tens or hundreds of particles
to orders of magnitude more, extracting information at the
level of more informative statistical distributions. The
information from TEM data at such a scale far exceeds the
capability of a human analyst, and hence, the development of
automated methods for TEM image analysis is imperative.
An ideal algorithm for the automated analysis of TEM

images should be able to perform two tasks: particle detection,

which includes identification and segmentation of particles of
interest, and information extraction, which generally involves
the characterization of the shapes of the particles based on
their attributes such as aspect ratios and other attributes. A
variety of robust algorithms have been developed to perform
automated particle detection.21,23−31 However, many existing
algorithms analyzed all the detected particles without differ-
entiation or classification of their shape and shape
attributes.21,23,24 Such an approach may be acceptable when
analyzing homogeneous samples with the aim of quantifying
simple metrics such as average particle sizes. However, the
assumption of homogeneity is subjective and far from
universally applicable. By taking the assumption of homoge-
neity, other potentially important information may be missed,
including the presence of unexpected side products, or the
relative populations of different competing products, which
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may be lost without detailed automated classification of
particle shapes. Existing algorithms capable of classifying the
particles based on their shapes have thus far adopted
supervised approaches, requiring the user to predefine
expected categories or shapes of particles.25,26,29,30 While
showing outstanding performances for the NP systems they
were trained on, these supervised algorithms could be found to
be at significant disadvantages when applied to previously
unexplored NP systems where little a priori knowledge of the
shape distributions are available. With the recent development
of automated high-throughput screening and discovery of NPs
along with the emergence of the idea of autonomous research
in material sciences,32−34 the need for an algorithm capable of
analyzing previously unexplored NP systems becomes more
and more pressing. To address such a need, an unsupervised
TEM data analysis algorithm requiring minimum human input
and a priori knowledge of the systems analyzed is required. To
our best knowledge, there has not been an unsupervised
algorithm capable of analyzing TEM images without significant
human input or presumptions.
Here, we develop an unsupervised algorithm for the analysis

of TEM images and the classification of particle shapes for
mNPs, requiring minimum human input in the process (Figure
1). We demonstrate the quantitative reliability of the
AutoDetect-mNP algorithm and its potential to serve as an
unbiased, general method for the characterization of the shape
distributions of nanoparticles using two data sets of gold
nanoparticles (AuNPs) with different shapes comprised of
short and long rods and triangular prisms. AuNPs have been
studied extensively by TEM, and protocols for their synthesis
with controlled sizes and shapes are well estab-
lished,12,15−17,35−39 making them ideal candidates for demon-
stration of the strengths of the unsupervised algorithm.
Furthermore, while shape-controlled synthesis of AuNPs
have been extensively reported in the literature, a generalizable
quantitative method for the characterization of the shape
distribution of these particles on a statistical scale beyond
manual analysis of TEM images has yet to be estab-
lished.12,15−17,35−38 AutoDetect-mNP is capable of processing
thousands of particles from over a hundred TEM images in a
matter of minutes, extracting morphological descriptors for
convex Au nanoparticles and classifying the particles without
the need of human intervention, thus greatly increasing the
generalizability and efficiency of the process. Application of
AutoDetect-mNP to more challenging NP systems beyond

AuNPs have also been demonstrated. In the future,
AutoDetect-mNP can serve as a general and unbiased metric
for reporting shape and shape attribute distributions of mNPs
using TEM or other image acquisition strategies and will play
an important role in the future development of automated
platforms for high-throughput mNP synthesis and time-
resolved TEM characterization of mNP reactivity.

■ RESULTS AND DISCUSSION

AutoDetect-mNP Algorithm

Our goal is to develop an unsupervised algorithm capable of
achieving four tasks in an automated manner for mNP particle
classification. The components of our algorithm are individual
mNP detection, feature extraction of particle shape attributes,
the resolution and filtering out of overlapping particles, and
finally shape classification and the analysis of their distributions
that are interpretable from their features.
Particle detection of mNP requires the segmentation of the

foreground from the background of the TEM images and, thus,
the isolation of individual particle from the segmented image.
A vast library of image segmentation and object detection
methods have been established in the existing literature in the
computer vision community.40 We chose to use simple
traditional computer vision methods rather than the more
advanced deep learning based methods that have attracted
much research interest recently, primarily for the reason that
the more advanced algorithms are based on a predefined
collection of objects to be recognized, which do not fit to our
unsupervised setting which wishes to avoid labeling and
predetermined biases in the data. Since TEM images of Au
NPs typically show a sharp contrast between the foreground
and background, well-developed algorithms reported in the
previous literature generally show satisfactory performance.25

In this study, K-means image segmentation has proven to be
sufficient for this step. It is of note that the performance of K-
means image segmentation can be dependent on the resolution
and contrasts of the TEM images. Users of AutoDetect-mNP
may choose to replace K-means image segmentation with
image segmentation methods that perform the best on their
data set. Six shape descriptors are used to distinguish the
mNPs that are segmented from the images: solidity, convexity,
area, eccentricity, aspect ratio, and circularity.25,41−44

The first two descriptors are important for cleaning the data
set for mNP detection by measuring the degree of convexity of

Figure 1. Scheme of the AutoDetect-mNP algorithm. The algorithm can be divided into four parts: particle detection, feature extraction, filtering
and resolution of irregularly shaped particles, and classification of particle shapes.
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the particles. Since a TEM image can only capture the 2D
projections of 3D particles, overlapping particles will appear as
the union of their projections. Additionally, particle detection
can sometimes fail to render the complete edges of certain
particles or identify contamination on TEM sample grids as
particles. Fortunately, overlapping and incorrectly detected
particles often have nonconvex shapes, allowing them to be
easily differentiated from correctly detected mNPs, which
typically have convex shapes. In this work, we apply a filter
based on solidity and convexity to separate nonconvex particles
from correctly detected convex particles. A particle with
solidity <0.9 or convexity <0.95 is considered nonconvex.
Nonconvex particles are analyzed and resolved by the ultimate
erosion of convex shapes (UECS) algorithm reported by Park
et al.30 Although we only quantify convex mNPs in this work,
which represent a significant proportion of widely studied
mNPs, future research efforts can use a similar algorithm and
different descriptors to extend the application of the algorithm
to nonconvex NPs.
Particles that pass the solidity and convexity filter are then

classified based on the four geometrical shape descriptors. The
classification process consists of two unsupervised steps: K-
means clustering followed by naive Bayes classification. This
general approach of unsupervised classification based on
geometric descriptors ensures that it can be naturally extended

to any convex NP systems. Data points were divided into K
classes, assuming features in each class follow a normal
distribution. Each data point was then assigned to the class that
maximizes the joint probability of all the features belonging to
that class. In a standard implementation of K-means clustering
and naive Bayes classifier, the number of classes, K, needs to be
predefined by the user. To increase the generalizability of our
algorithm, we use the Pmax metric to automatically determine
the optimal K for each individual data set. For each data set,
matrix P(K) is defined as a function of the number of classes,
K, such that

=
[ ]

[ ]
≤P

E p x

E p x
i j K

( )

( )
, ,ij

j i

i i

, where Pij is the element on the ith row and jth column of
P(K), pi(x) is the likelihood of data point x belonging to class i,
and xi denotes data points assigned to class i. Maximum
entropy Pmax(K) is then defined as the maximum of the off-
diagonal elements of P(K). The optimal K is then selected as
the value of K that minimizes Pmax(K).
The largest difference between our work and existing works

on identifying and classifying NPs from TEM images25,26,29,30

is that we proposed a completely unsupervised approach to
cluster and classify extracted particle shapes from their features,

Figure 2. Detection and classification of Au NPs of different morphologies in short rods. (a) Maximum entropy as a function of the number of
classes in which K = 2 was found to be the optimal number of classes. (b, c) Montages of sample particle shapes in each class. (d−f) Classification
results denoted by colors overlaid onto original TEM images of Au nanorods (green spheroids, blue short rods). (g−j) Four features used for
classification and Gaussian distributions for each class, with classification results denoted by colors. Counts normalized by total number of particles.
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without any need of predefining the number of shape classes
beforehand, neither do we require any human labeling on the
data set at all. We believe the ability to perform completely
unsupervised classification is an important strength of our
algorithm, since it enables us to detect unexpected synthetic
byproducts in a reaction, or analyze the shapes of nanoparticles
in a hierarchical structure, as we have discussed and illustrated
in this study.

Au Nanorods

To confirm the reliability of the AutoDect-mNP algorithm, we
first analyzed TEM images of two pure Au nanorod samples,
each with a different aspect ratio of ∼5 (long rods) and ∼2
(short rods), the synthesis of which was previously reported by
Ye et al.37 The algorithm yields statistical results on the pure
nanorod samples that consistently show nanorods with their
known aspect ratios with narrow size and shape distributions as
shown in Figures 2 (short rods) and S1 (long rods). However,
we also found a non-negligible amount of spheroidal impurities
present in both samples. Due to the relatively low
concentrations of these nanorod samples, it is unlikely that
these spheroidal particles are Au nanorods standing on their
tips. We note that the presence of spheroidal impurities during
the synthesis of Au nanorods has been previously
observed,11,17,37 and the amount of impurities are typically
estimated by optical spectroscopy or visual inspection of a few
electron microscopic images,12,16,17,35−37 which is both time-

consuming and prone to human biases. AutoDetect-mNP
determines the impurities of the Au nanorods to be 15% in
long rods and 5% in short rods. This shows that the algorithm
can potentially serve as a quantitative method for the objective
determination of impurity content of a mNP synthesis.
Next we examined the accuracy of the algorithm on a sample

with a known 1:1 mixture composition of two Au nanorods
with different aspect ratios, determined from spectroscopic
measurement of their colloidal concentrations using computed
extinction coefficients.37 The performance of AutoDetect-mNP
on the nanorod mixture is shown in Figure 3 in which it
automatically identifies three classes among all the recognized
particles as long rods, short rods, and spheroids. Visual
inspection of the distributions of the shape descriptors (Figure
3h−k) shows that, similar to the cases of the pure rods
(Figures 2g−j and S1g−j), the most prominent distinctions
differentiating the three classes are seen in aspect ratio and
circularity. To test the quantitative performance of the
algorithm, the numbers of detected particles in each class
were counted for the mixture sample and compared to the two
pure nanorod samples (Table S1). We find that the
composition of the nanorod mixture sample is calculated to
be 45% long rods and 55% short rods, which matches the
spectroscopically determined 1:1 ratio between the two
samples reasonably well.

Figure 3. Classification results of a 1:1 mixture of Au nanorods with different aspect ratios. (a) Maximum entropy as a function of the number of
classes in which K = 3 was found to be the optimal number of classes. (b−d) Montages of sample particle shapes in each class. (e−g) Sample TEM
images of the mixture with classification results denoted by color (purple long rods, green spheroids, blue short rods). (h−k) Four features used for
classification and Gaussian distributions for each class, with classification results denoted by colors. Counts normalized by total number of particles.
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The performance of AutoDetect-mNP was also compared to
two previous methods25,30 on classifying particles from a set of
20 images randomly selected from the nanorod mixture data
set, and the results are provided in Table 1. The ground truth

was determined independently by three human experts who
were asked to classify the particles into three predefined
classes: long rods, short rods, and spheroids. Our algorithm
was the only one that could differentiate between long rods
and short rods, in comparison to all existing algorithms that
have only defined a general rod class. This results amplifies the
advantage of our algorithm as an unsupervised approach, since
we do not predefine any classes, and the algorithm is capable of
differentiating different groups of NPs given that they are
statistically different. Even though refs 26 and 31 have defined
the classes of NPs, the error between particle counts reported
by these two algorithms and the ground truth are still
significantly higher than AutoDetect-mNP. We found our
algorithm to only have 5%−15% of error compared to the
ground truth values for each category of NPs and the total
count, which is accurate enough for extracting meaningful
feature distributions from the recognized NP collections.
Furthermore, we also found our algorithm to run significantly
faster than the two other algorithms, which enables our
method to run on larger data sets and, when analyzing images
with high resolution, avoid the loss of information due to
image compression.

Table 1. Comparison of the Counts for Recognized NPs
from TEM Images and Execution Time between Methods

method ref 26a ref 31b this work ground truth (mean ± std)

triangles 0 157 0 0
rectangles 0 2 0 0
short rods 443 463 ± 16
long rods 329 369 ± 12
rods 85 489 772 832 ± 23
spheroids 543 846 88 77 ± 11
total 628 1494 860 915 ± 25
time (min)c 51.4 172.9 8.1

aResults were filtered based on particle area >12.5 nm2 to exclude
noise points from the background that were erroneously recognized as
particles. bThe algorithm was operated on the data set with half
resolution (2048 × 2048) to accelerate execution. cAll tests performed
on a machine with an Intel Core i7-8700K CPU @ 3.70 GHz and 16
GB of memory.

Figure 4. Detection and classification of Au NPs of different morphologies in a sample of triangular prisms. (a) Maximum entropy as a function of
the number of classes in which K = 2 was found to be the optimal number of classes. (b, c) Montages of sample particle shapes in each class. (d−f)
Classification results denoted by colors overlaid onto original TEM images of Au nanorods (green triangular particles, blue rod-shaped impurities).
(g−j) Four features used for classification and Gaussian distributions for each class, with classification results denoted by colors. Counts normalized
by total number of particles.
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Au Triangular Prisms

After validating the performance of the algorithm on an
artificially constructed data set, we demonstrate the potential
of AutoDetect-mNP for characterizing and quantifying mNPs
for a synthesis of Au triangular prisms as reported by Jones et
al.38 We chose Au triangular prisms since they show a relatively
high variation in shapes from the synthesis.11,15,38,45 From the
114 TEM images collected for the product, the AutoDetect-
mNP algorithm identified two classes from the detected
particles: a class of triangular particles (Figure 4b) and a class
of rod-shaped impurities (Figure 4c). By visually inspecting the
rod-shape impurities, it can be seen that a majority of the rod-
shaped mNPs are in fact real impurities, with a much smaller
population of artifacts originating from incorrectly detected
particles (Figure 4c). We would like to point out that the
relative population of the incorrectly detected particles is low
enough that their presence would not influence the
classification results on a statistical scale.
While the two classes identified by the algorithm show clear

distinctions, further inspection of the class of triangular
particles (Figure 4b) reveals that there is significant intraclass
variations within the triangular particles, as evident from the
non-Gaussian distributions of the features (Figure 4g−j).To
quantify the distinctiveness of the two classes, we evaluate the
average cross entropy from information theory, where the
average cross entropy between two distributions p and q is

defined as = ∑H p q p q( , ) log( )
N i

N
i i

1 , where N is the number

of elements in distribution p, and pi and qi represent the
likelihood of the ith element of distribution p predicted by
distribution p and q, respectively. H(p, q) quantifies the
distinctiveness between distribution p and distribution q: the
larger H(p, q), the more distinct p is from q. Using this
measure, the two classes identified from the triangular prism
sample are found to be much less distinct than the nanorod
case. This can be seen quantitatively by comparing the average
cross entropy with respect to the bulk distribution (Table S3).
We hypothesize that the distinctions between the triangular
particles and rod-shaped impurities were so large that the
possible presence of intraclass variations among the triangular

particles were weighted to a lesser degree and thus not
identified by the algorithm.
To validate this idea, we applied the automatic classification

of AutoDetect-mNP on the triangular particles alone in an
attempt to further characterize the variations among these
particles (Figure 5). The classification results showed that the
triangular particles can indeed be further classified into three
subclasses: triangles, symmetrically truncated triangles, and
asymmetrically truncated triangles (Figure 5). Compared to
the 2-class scenario (triangles and rod-shaped impurities) in
the first iteration of classification, classifying the particles into
four classes (triangles, symmetrically truncated triangles,
asymmetrically truncated triangles, and rod-shaped impurities)
in the second iteration significantly improved log-likelihood
from 6.58 to 14.89, indicating that the second iteration of
classification offered a more detailed and more reasonable
classification of the particles in the data set. Upon applying
more iterations of classification, the log-likelihood did not
improve further, suggesting that there is no more significant
intraclass variation to capture and that the algorithm has
converged. Applying further iterations of classification on the
class of rod-shaped impurities also did not improve the log-
likelihood, suggesting that the class has little intraclass
variation. In this case, the averaged cross entropy between
subclasses are now sufficiently large such that these subclasses
are quantifiably distinct from each other. Interestingly,
inspection of the distributions of the shape descriptors for
the three subclasses originated from the triangular shaped class
(Figure 5) shows that none of the four shape descriptors can
serve as a good differentiator for the three subclasses alone.
However, by taking into account all four descriptors the
algorithm was able to make a clear distinction between the
three subclasses. This demonstrates the importance of using
high-dimensional features for the classification of shapes.
The AutoDetect-mNP refined classification of truncated

triangular particles in TEM images of Au triangular prisms is
supported by previous studies characterizing these particles at
both bulk15,38,45−47 and single particle14,25,48 levels. However,
Figure 5 also emphasizes that the AutoDetect-mNP algorithm
can provide the statistical distributions of each species and

Figure 5. Further classification of the Au triangular prisms class. Distributions and relative population of particles in each class (red pure triangles,
cyan symmetrically truncated triangles, yellow asymmetrically truncated triangles).
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their descriptors. These information can potentially be used to
interpret kinetically controlled formation mechanisms and
relative speed of growth of different facets during the
formation of Au nanoparticles by, for example, helping to
illuminate the shape transition from 3-fold symmetrical
triangular particles to 6-fold symmetrical hexagonal particles
(Figure S4). The existence of these potential interpretations of
the classification results demonstrated that AutoDetect-mNP is
capable of more than just arbitrary assigning NPs to classes but
also potentially helping to unveil the underlying physical
processes governing the distribution of NP shapes. In future
studies, a kinetic growth model, potentially similar to the one
previously reported by Handwerk et al.,49 could be established
based on the statistical distributions of particle shapes shown
herein, which can potentially help to validate or improve
existing models of nanoprism growth such as the twinned
facets model proposed by Jagannathan et al.15,50

Extending beyond Au NPs

To test the performance of AutoDetect-mNP on NP systems
beyond Au NPs, we explored the algorithm’s perfomance on
two additional data sets: Palladium (Pd) nanocubes and
cadmium selenide/cadmium sulfide core−shell quantum dots
(CdSe/CdS QDs). These NP systems have been widely
studied in literature for a variety of applications. Being able to
analyze these NPs will greatly expand the scope of potential
applications of AutoDetect-mNP.
The most significant challenge of extending to NP systems

beyond Au NPs is the decrease in image contrasts. As a heavy
metal with large nuclear mass and high lattice packing
efficiency, Au interacts strongly with incoming electron
beams, and thus showing very high contrasts when imaged in
TEM. CdSe and Pd, however, interact with electrons much
more weakly and, therefore, show much lower contrasts under
TEM. Because of the reduced image contrasts, K-means image
segmentation no longer showed satisfactory performances on
these NPs. Therefore, we instead employed the image
segmentation method reported by Powers et al, which is
designed to analyze images with low contrasts.51

AutoDetect-mNP’s performance on Pd nanocubes is shown
in Figure S5. The algorithm analyzed 18 TEM images of Pd
nanocubes containing 1371 NPs. The algorithm identifies two
shape classes in the data set: nanocubes and irregularly shaped
impurities. Irregularly shaped impurities only took a small part
of the entire population, showing that the reaction has good
shape control. Upon applying more iterations of classification
on the data set, it can be seen that the algorithm further broke
down the class of cubes into smaller subclasses based on the
nuanced differences among the cubes (Figure S6). In this way,
the algorithm is again shown to be capable of providing
information on the shape distributions of NPs at different
levels of details, from quantifying the yield of the nanocubes to
characterizing the nuanced variations in the shapes of the
nanocubes.
CdSe/CdS QDs posed more significant challenges for

AutoDetect-mNP than the metal NPs because of their
significantly smaller sizes and lower contrasts under TEM.
However, the algorithm was still found to be capable of
analyzing the shapes of these NPs with relatively high accuracy
(Figure S7). A total of 25 images of the QDs were analyzed.
However, the image segmentation algorithm failed to achieve
satisfactory performance on seven of the images, and therefore
all analysis was done based on the 18 images successfully

segmented, which contain 8045 NPs. Compared to the Au and
Pd NPs, the shape distribution of the CdSe/CdS QDs is much
closer to a continuum (Figure S7e−h). Therefore, we relied on
the log-likelihood metric to determine the optimum number of
classes through iterative classifications. Log-likelihood con-
verged to 28.50 after three iterations of classification, and the
optimum number of classes was determined to be five. From
visual inspection of the shapes of NPs in each class (Figure
S7), it can be seen that the classification intuitively makes
sense, with NPs in different classes showing different
symmetries. It is worth noting that because of the nuanced
differences between the shapes of CdSe/CdS QDs, performing
such classification manually would be tedious, if not
impossible. Therefore, by being able to analyze and classify
the shapes of CdSe/CdS QDs, AutoDetect-mNP provides a
potentially valuable tool for researchers interested in shape
controlled synthesis of CdSe/CdS QDs.

■ CONCLUSIONS
In this work, we developed an unsupervised machine learning
algorithm, AutoDetect-mNP, that classifies Au NPs in TEM
images based on extracted morphological information without
human intervention. AutoDetect-mNP automatically decides
the optimal number of classes for clustering based on intra-
and interclass feature similarities and provides more relevant
statistical distributions of the features for each class generated
by the algorithm. The use of classes as a way of characterizing
the shape distributions of nanoparticles can also be quantified
with a cross-entropy measure post defacto to distinguish it
from a more featureless continuum.
By comparing the analysis results on the composition of Au

nanorod mixtures with different aspect ratios with human
labeling and other existing algorithms, we demonstrated that
our method is quantitatively reliable while being much more
efficient. Applying the algorithm to the characterization of
shape distributions of synthesized Au triangular prisms, the
algorithm identified rod-shaped impurities from the triangular
main products. Furthermore, running the algorithm iteratively
on identified classes can organize the shapes of the particles
hierarchically. It is hoped that the quantitative shape
distributions provided by the algorithm can potentially help
to provide insights into the mechanism of the formation of the
nanoparticles.
We have also demonstrated the broader applicability of

AutoDetect-mNP using data sets of Pd nanocubes and CdSe
Qds. It was shown that, by using different particle detection
methods, the algorithm can be applied to much broader
categories of NPs. We can imagine future studies using
AutoDetect-mNP to answer scientific questions such as
optimizing reaction conditions for a high-throughput exper-
imental setup, modeling the reaction mechanism with real-time
analysis of particle shapes captured by TEM videos, or
studying the self-assembly of NPs with different shapes.

■ METHODS

Chemicals and Materials
Hexadecyltrimethylammonium bromide (CTAB, >98.0%) and
sodium oleate (NaOL, >97.0%) were purchased from TCI America.
Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O, ≥99.9%), L-
ascorbic acid (BioXtra, ≥99.0%), silver nitrate (AgNO3, ≥99.0%),
sodium borohydride (NaBH4, 99.99%), sodium iodide (NaI,
≥99.5%), sodium hydroxide (NaOH, ≥ 97.0%), sodium citrate
tribasic dihydrate (≥99.0%), and hydrochloric acid (36.5−38.0 wt %

JACS Au pubs.acs.org/jacsau Article

https://dx.doi.org/10.1021/jacsau.0c00030
JACS Au 2021, 1, 316−327

322

http://pubs.acs.org/doi/suppl/10.1021/jacsau.0c00030/suppl_file/au0c00030_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacsau.0c00030/suppl_file/au0c00030_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacsau.0c00030/suppl_file/au0c00030_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacsau.0c00030/suppl_file/au0c00030_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacsau.0c00030/suppl_file/au0c00030_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacsau.0c00030/suppl_file/au0c00030_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacsau.0c00030/suppl_file/au0c00030_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://dx.doi.org/10.1021/jacsau.0c00030?ref=pdf


%) were obtained from Sigma-Aldrich (USA). NaBH4 powder was
stored in an argon glovebox. HAuCl4·3H2O, L-ascorbic acid, and
AgNO3 were stored in a vacuum desiccator at room temperature.
Hexadecyltrimethylammonium chloride (CTAC, >95.0%) was
purchased from TCI America. Palladium(II) chloride (PdCl2, 99%)
and potassium iodide (KI, >99.0%) were obtained from Sigma-
Aldrich (USA). Cadmium oxide (CdO) 99.99% Aldrich; oleic acid
90% (OA) technical grade Aldrich; oleylamine (OAm) technical
grade 70% Aldrich; octadecene 90% (ODE) technical grade Aldrich;
trioctylphosphine oxide (TOPO) 99% Aldrich; sulfur Aldrich;
octadecylphosphonic acid (ODPA) 99%, PCI Synthesis; n-trioctyl-
phosphine 97% (TOP) Strem; 0.2 M Cd(oleate)2 in ODE was
prepared by degassing appropriate amounts of CdO, OA, and ODE
under vacuum at 110 °C at until all gases and water had evolved. The
flask was switched to argon and heated to 240 °C until a clear (slightly
yellow) solution solution was obtained. The flask was then cooled to
110 °C and degassed a second time to remove additional water.
Deionized water (DI-water, Milipore, Milford, MA, USA) was used
for all aqueous solution. All the glassware used for the synthesis of Au
NPs was thoroughly cleaned using freshly prepared aqua regia (3:1
volume ratio of HCl and HNO3, respectively) followed by fully
rinsing with copious amounts of DI-water. All chemicals were of
reagent grade and used without further purification unless specified
otherwise.

Synthesis of Gold Nanorods
Two types of AuNRs were synthesized by a facile seed-mediated
growth involving a binary surfactant mixture. The seed solution was
prepared as follows: 10 mL of 0.1 M CTAB solution was mixed with
100 μL of 25 mM HAuCl4 in a 20 mL scintillation vial under vigorous
stirring. A 600 μL portion of ice cooled 10 mM NaBH4 was rapidly
injected into the Au-CTAB solution and stirred for 2 min. Upon the
addition of NaBH4, the color of the seed solution turned yellow-
brownish. Afterward, the seed solution was left undisturbed at 28 °C
for 30 min prior to use in the following step.
The growth solution was obtained by first mixing 3.6 g of CTAB

and 0.4936 g of NaOL in 196 mL of DI-water in a 500 mL
Erlenmeyer flask. The solution was heated with occasional agitation
until all the CTAB was dissolved. The mixture was allowed to cool
down to 30 °C and 4 mM AgNO3 referred to Table 2 was then added

under stir at 700 rpm for 15 min. Afterward, 4 mL of 25 mM HAuCl4
was added to the mixture and kept undisturbed at 28 °C for 90 min.
The yellowish color of the growth solution turned to colorless. A
certain amount of HCl (Table 2) was added to the solution, and the
mixture was stirred at 400 rpm for 15 min. Finally, 500 μL of 0.064 M
ascorbic acid was injected into the growth solution, and the mixture
was vigorously stirred at 1200 rpm for 30 s. An 80 μL portion of the
seed solution was then injected, and the solution was stirred for 30 s
before it was left undisturbed at 28 °C for 12 h to complete the
growth process. A 40 mL portion of the final products were isolated
by centrifugation at 8000 rpm for 15 min followed by careful removal
of the supernatant. A 10 mL portion of DI-water was added to the
pellet, and the mixture was sonicated briefly to disperse the pellet.

Synthesis of Gold Triangular Prisms
Homogeneous gold triangular prisms were also synthesized by seed-
mediated method. The citrate ligand based seed solution was
prepared as follows: 500 μL of 10 mM sodium citrate solution was
mixed with 250 μL of 10 mM HAuCl4 and 18.95 mL of DI-water in a
20 mL scintillation vial under vigorous stirring. A 300 μL portion of
ice cooled 10 mM NaBH4 was rapidly injected into the Au-citrate
solution and stirred for 1 min. Upon the addition of NaBH4, the color

of the seed solution turned yellow-brownish. Afterward, the seed
solution was stirred at 40−45 °C for 15 min and left undisturbed at
room temperature prior to use in the following step.

For the growing process, the UV−vis spectra of the seed solution
were taken using 1 cm quartz cuvette to determine the concentration
of the seed. The extinction coefficient of the seed solution is 9.696 ×
106 M−1 cm−1 at its wavelength of maximum optical density, 504 nm.
In order to synthesize the triangular prism with edge length in 80 nm,
the final concentration of the seed in the growth solution should be
97.7 pM. Prior to preparing the growth solution, the stock mixture of
0.05 M CTAB and 50 μM NaI was prepared at room temperature.
The solution was heated with occasional agitation until all the CTAB
was dissolved. The mixture was allowed to cool down to 30 °C. The
growth solution was prepared by mixing 9 mL of previously made
CTAB/NaI stock mixture, 250 μL of 10 mM HAuCl4 solution, 50 μL
of 100 mM NaOH solution, and 50 μL of 100 mM ascorbic acid
solution. Finally, a certain amount of seed solution was added under
vigorous stirring. The nanoparticle solution was then heated around
40 °C for 30 min and was cooled down to room temperature.

For the purification process of Au nanoprisms, 0.6 mL of the
growing solution was mixed with 0.4 mL of 1 M NaCl solution into
1.5 mL Eppendorf tubes. The mixture was left undisturbed for 4 h and
centrifuged twice at 1000 rpm for 15 s. The supernatant was carefully
removed, and 0.6 mL of DI-water was added to the pellet and was
sonicated briefly to disperse the pellet.

Synthesis of Pd Nanocubes

Palladium nanocubes were synthesized with a method similar to a
previous report.52 A stock solution of 10 mM H2PdCl4 was prepared
by dissolving 0.1773 g of PdCl2 in 10 mL of 200 mM HCl. A 50 mL
aqueous growth solution was prepared in a 100 mL round-bottom
flask containing 12.5 mM CTAC and 2 mM KBr, and 2.5 mL of 10
mM H2PdCl4 was added to this solution. The solution was heated to
95 °C and held at this temperature for 5 min. The solution was stirred
with a magnetic stir-bar, and subsequently 400 μL of 100 mM L-
ascorbic acid was injected into the solution with a micropipette to
initiate growth. The reaction was allowed to proceed for 30 min at 95
°C to complete the growth process. The solution turned into a dark
brown color during the growth process. The final products were
cooled to room temperature and isolated by centrifugation at 8000
rpm for 15 min followed by removal of the supernatant. The resulting
pellet was dispersed in 5 mL of water by sonication.

Synthesis of CdSe/CdS QDs

CdSe cores were synthesized using a modified version of a previously
published procedure.53 Typically, 120 mg of CdO, 560 mg of ODPA,
and 6 g of TOPO were combined and degassed at 150 °C under
vacuum for 1 h. The reaction was then heated to 320 °C under argon
and held at that temperature until the solution turned clear, indicative
of Cd-ODPA complexation. At 320 °C, 3 g of TOP was injected, and
then the solution was heated to 360 °C, at which point a solution of
Se (120 mg) dissolved in TOP (0.72 g) was quickly injected. The
reaction was stopped after approximately 4 min and quickly cooled.
The QDs were purified from free ligand and excess precursors via
precipitation with acetone and redispersion in hexanes several times.
Sizing and concentrations were determined using previously
established calibration curves.54

Samples were prepared according to the work of Ondry et al.55

Samples with a nominal shell thickness of 6 monolayers were
synthesized as follows. A 100 nmol portion of wurtzite CdSe seeds
(570 nm first exciton), 3 mL ODE, and 3 mL OAm were loaded into
a 50 mL three-neck, round-bottom flask and degassed at 110 °C for
∼30 min. Under Ar, the reaction was heated to 310 °C. At 240 °C,
slow injection of a 3.14 mL of 0.2 M Cd(oleate)2 in ODE solution
and 3.14 mL of 0.2 M TOP-S solution in TOP in separate syringes
commenced at a rate of 1 mL/h. TOP-S in TOP was prepared by
stirring 20 mg of S in 2.6 g TOP in a glovebox for ∼30 min. After the
injection completed, the reaction was kept at 310 °C for 10 min and
then rapidly cooled to room temperature. Nanocrystals were isolated
from the reaction by precipitating the nanocrystals with acetone and

Table 2. Amount of Reagents Used for the Synthesis of Au
Nanorods

sample 4 mM AgNO3 (mL) HCl (mL)

long rods 1.45 0.84
short rods 9.6 1.2
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redissolving in hexanes 2×. Finally the nanocrystals were centrifuged
at 8000 rpm in hexanes to remove any remaining insoluble impurities.

Preparation of TEM Samples

To prepare the stock sample of Au NPs for TEM analysis, a 50 μL
aliquot of the nanoparticle solution was added to 1 mL of DI-water.
The sample was centrifuged at 5500 rpm for 8 min, the supernatant
was carefully removed, and the isolated product was resuspended in
50 μL of DI-water. We added 200 μL of DI-water to the sample to
dilute by a factor of 5 to prevent overlapping particles on the grid. A 5
μL portion of this solution was pipetted onto a standard carbon TEM
grid (Electron Microscopy Sciences, CF-400-Cu). The TEM grid with
the sample was fully dried in a vacuum desiccator at room
temperature before TEM imaging.
In order to calculate the concentration of Au nanorods, we referred

to the theoretical extinction coefficient of the AuNR reported by Park
et al.56 Each extinction coefficient of long and short AuNR was
extracted to 1.4 × 1010 L mol−1 cm−1 at 1059 nm for long rods, and
1.1 × 1010 L mol−1 cm−1 at 698 nm for short rods. The optical density
of the solution was collected using a Shimadzu UV-3600 UV−vis
spectrophotometer with 1 nm resolution. The path length of the
cuvette was 1 cm. To make a 50:50 ratio of short and long AuNRs,
the concentration of each sample was fixed to 90 pM.
Pd nanocubes samples for TEM analysis were prepared by

pipetting 1 μL of the nanocube solution onto a standard carbon
TEM grid (Electron Microscopy Sciences, CF-400-CU). The sample
was fully dried in a vacuum desiccator before being imaged.
CdSe/CdS QD samples were prepared at the liquid−air interface.57

Briefly, 1 mL of anhydrous DMF was placed in a 1 cm2 square Teflon
well. Next CdSe/CdS QDs were diluted in octane to an appropriate
concentration to achieve monolayer coverage and 100 μL of the
diluted nanocrystal solution in octane was floated on top of the DMF
layer. The well was covered with a glass slide to slow solvent
evaporation and was allowed to sit for at least 8 h. The samples were
transferred via scooping from below to an amorphous carbon coated
TEM grid for microscopy. Samples were placed in a vacuum oven
under house vacuum at ∼50 °C to remove any remaining subphase
solvent.

TEM Imaging

Images of Au NPs were acquired using a FEI Tecnai T20 transmission
electron microscope equipped with a Gatan RIO16IS camera and a
LaB6 filament. All images were recorded under 200 kV accelerating
voltage. Drift correction feature of the imaging software was enabled
during the acquisition of all images. For each sample, images were
taken from a series of evenly spaced locations on the sample grid,
typically resulting in 50−100 images of the sample containing >1000
recognizable NPs. Experimental parameters during the imaging
process can impact the performance of the algorithm. The efficiency
of particle detection can depend on the resolutions and contrasts of
the TEM images. Therefore, optimizing experimental parameters
during imaging to improve image resolution and contrast is
recommended. We observed that magnification and camera exposure
time are two of the most important imaging parameters to fine-tune.
Matlab codes for real-time image analysis during imaging are included
in the Github repository for AutoDetect-mNP to help the users
optimize experimental parameters during imaging. For the data
showed in this work, long rods were imaged at 43k× magnification
with 1 s exposure time; short rods were imaged at 19k× magnification
with 1 s exposure time; mixtures were imaged at 43k× magnification
with 1 s exposure time; triangular prisms were imaged at 26k×
magnification with 1.5 s exposure time.

AutoDetect-mNP Algorithm

Unprocessed TEM images in dm4 format were loaded into Matlab by
the ReadDMFile function available from MathWorks file exchange.
Particle detection was performed by Matlab’s built-in function
imsegkmeans. Imsegkmeans segments the image by performing a K-
means clustering on the pixel intensities of each image. Shape
descriptors for each particles were calculated by the regionprops
function in Matlab. The definition for each shape descriptors is as

follows: Area is defined as the total area, in squared nanometers, of
the region encompassed by the edge of the particle; eccentricity is
defined as the eccentricity of the smallest ellipse that encapsulates the
particle; aspect ratio is defined as the ratio between the major and
minor axis lengths of the particle; circularity is defined as the
reciprocal of the first Hu’s moment invariant of the particle;43,44

solidity and convexity are defined as the ratio of the areas and
perimeters, respectively, between the particle and the smallest convex
polygon that encapsulates the particle. Hu’s moment invariants of the
particles were calculated by codes available from the MathWorks file
exchange.

UECS was implemented using Matlab codes adapted from those
published by Park et al. (available from https://aml.engr.tamu.edu/
2001/09/01/publications/).30 The UECS algorithm attempts to
resolve convex components from nonconvex shapes by iteratively
eroding the shapes until convex shapes are obtained. If convex shapes
are not obtained after 90% of the area of the original particle has been
eroded, the particle will be discarded. Each convex-shaped marker
obtained at the end of UECS iterations was then dilated for the same
number of times as it has been eroded to recover its original shape.

K-means clustering and naive Bayes classifier used for unsupervised
classification are well established clustering algorithms and are
implemented in Matlab. An example demonstrating using Pmax(K)
to decide the optimal number of classes is shown in Figure 6. In

Figure 6, circularity of the Au nanorods was used as an example to
demonstrate the selection of optimal K. In this case, K = 3 is selected
as the optimal K for this data set, which agrees with the observation
that the data set roughly consists of three normal distributions. Of
note, particles resolved by UECS were excluded during the automated
classification process to avoid skewing of classification results by
potential artifacts generated by UECS. Instead, these particles were
assigned classes after the normal particles are clustered into different
classes.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.0c00030.

Additional data and visualization of results, including
Figures S1−7 and Tables S1−3 (PDF)

Figure 6. Unsupervised clustering of extracted features and selection
of optimal number of clusters (K), using circularity of Au nanorods as
an example.
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