
Performance Evaluation and Modeling of HPC I/O on Non-Volatile Memory

by

Wei Liu

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master Science

in

IGP, Electrical Engineering and Computer Science Emphasis, M.S.

in the

Graduate Division

of the

University of California, Merced

Committee in charge:

Professor Dong Li, Chair
Professor Mukesh Singhal

Professor Sungjin Im

Spring 2017

Copyright

Wei Liu

2017 All rights reserved

The thesis of Wei Liu, titled Performance Evaluation and Modeling of HPC I/O on Non-

Volatile Memory, is approved:

Chair Date

Date

Date

University of California, Merced

Dong Li

Mukesh Singhal

	Sungjin Im

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 3

2 Background 8
2.1 NVM Usage Model . 8
2.2 MPI Collective I/O . 10
2.3 Benchmarks . 12
2.4 PMBD Emulator . 14
2.5 I/O Hierarchy . 16

3 Performance Study 17
3.1 Impacts of Page Cache . 18
3.2 POSIX I/O and MPI Individual I/O . 22
3.3 MPI Collective I/O and MPI Individual I/O 26
3.4 Conclusions. 28

4 Detailed Performance Study for MPI Collective I/O 30
4.1 Workflow of MPI Collective I/O . 30
4.2 Profiling MPI Collective I/O . 34
4.3 Performance Modeling for MPI Collective I/O 36

5 Related Work 50

6 Conclusions 53

Bibliography 54

ii

List of Figures

2.1 MPI collective I/O scheme. The numbers in circles are MPI process IDs. There
are two aggregators (MPI processes 1 and 2) in this example. 11

2.2 The data transf from IOR benchmark . 13
2.3 System Hierarchy . 15

3.1 The performance study for the impacts of page cache on HACC-IO. 20
3.2 The performance study for the impacts of page cache on MADBench2. 21
3.3 The performance study for the impacts of page cache on S3aSim. 22
3.4 Comparing the performance of MPI individual I/O and POSIX I/O performance

on a single node with IOR. 24
3.5 Comparing the performance of MPI individual I/O and POSIX I/O performance

on multiple nodes with IOR. 25
3.6 Comparing the performance of MPI collective I/O and MPI individual I/O (4

processes per node) with IOR. 27
3.7 Comparing the performance of MPI collective I/O and MPI individual I/O (16

processes per node) with IOR. 28
3.8 IOR Individual I/O and Collective I/O Performance Di↵erence (64 Processors) . 29

4.1 Performance prediction of di↵erent ⌧ in HDD 46
4.2 Performance prediction of di↵erent ⌧ in SSD . 46
4.3 Performance prediction of di↵erent ⌧ in NVM 47
4.4 Explore the performance tradeo↵ between data shu✏ing cost and collective I/O

benefit. 49

iii

List of Tables

1.1 Memory Technology Summary[24] . 4

3.1 Hardware configurations . 18

4.1 Profiling results for MPI collective I/O with IOR 35
4.2 Notation for our performance modeling for MPI collective I/O 36
4.3 bdwseq and bdwran in our test platform. 40
4.4 Shu✏e time phase test . 43
4.5 Notation values for data shu✏e time . 43
4.6 Computed IO time for di↵erent devices . 44
4.7 Comparison of estimated and measured collective I/O time for the first workload

with random data accesses. 44
4.8 Comparison of estimated and measured individual I/O time for the second work-

load with sequential data accesses . 45
4.9 Comparison of estimated and measured I/O times with 4 compute nodes (4 pro-

cesses per node). The percentage numbers in brackets are prediction errors. . . . 48
4.10 Comparison of estimated and measured I/O times with 2 compute nodes (8 pro-

cesses per node). The percentage numbers in brackets are prediction errors. . . . 48

iv

Acknowledgments

Thanks for Dr. Dong Li’s help throughout my master student life. Thanks for my lab mates

for being as a family. Thanks my parents for your love, I love you too.

1

Abstract

Performance Evaluation and Modeling of HPC I/O on Non-Volatile Memory

by

Wei Liu

Master Science in IGP, Electrical Engineering and Computer Science Emphasis, M.S.

University of California, Merced

Professor Dong Li, Chair

Modern HPC applications pose high demands on I/O performance and storage capabil-

ity. The emerging non-volatile memory (NVM) techniques, such as Phase Change Memory

and STT-RAM, o↵er low-latency, high bandwidth, and persistence for HPC applications.

However, the existing I/O stack, including OS, high level library, I/O middleware, and ap-

plications, are designed and optimized based on an assumption of disk-based storage. To

e↵ectively use NVM, we must re-examine the existing I/O sub-system to properly integrate

NVM into it. Using NVM as a fast storage, the previous assumption on the inferior perfor-

mance of storage (e.g., hard drive) is not valid any more. The performance problem caused

by slow storage may be mitigated; the existing mechanisms to narrow the performance gap

between storage and CPU may be unnecessary and result in large overhead. Thus fully

List of Tables 2

understanding of the impact of introducing NVM into the HPC software stack demands a

thorough performance study.

In this paper, we analyze and model the performance of I/O intensive HPC applications

with NVM as a block device. We study the performance from three perspectives: (1) the

impact of NVM on the performance of traditional page caches; (2) a performance comparison

between MPI individual I/O and POSIX I/O; and (3) the impact of NVM on the performance

of collective I/O. We reveal the diminishing e↵ects of page caches, ignorable performance

di↵erence between MPI individual I/O and POSIX I/O, and performance disadvantage of

collective I/O on NVM due to unnecessary data shu✏ing. We model the performance of

MPI collective I/O and study the complex interaction between data shu✏ing, storage per-

formance, and I/O access patterns. Extensive experiments have been conducted to verify

our analysis.

Keywords: NVM, page cache, MPI I/O, Collective I/O

3

Chapter 1

Introduction

Modern HPC applications are often characterized with huge data sizes and intensive data

processing. For example, the Blue Brain project aims to simulate the human brain with a

daunting 100PB memory that needs to be revisited by the solver at every time step; the

cosmology simulation to study Q continuum works on 2PM per simulation. Both of these

simulations require transformation of the data representation, which pose high demands on

I/O performance and storage capability.

The emerging non-volatile memory (NVM [18]) techniques, such as Phase Change Mem-

ory (PCM) [16] and STT-RAM [11], o↵er low-latency access, high bandwidth, and persis-

tence. Their performance is much better than the traditional hard drive, and close to or

even match that of DRAM. The non-volatility and high performance of NVM blurs the line

between storage and main memory, hinting at opportunities to overhaul classical IO sys-

tem and memory hierarchies. Table 1.1 summarizes the characteristics of di↵erent NVM

CHAPTER 1. INTRODUCTION 4

technologies and compares them to traditional DRAM and storage technologies.

Table 1.1: Memory Technology Summary[24]

Read
time
(ns)

Write
time
(ns)

Read
BW
(MB/s)

Write
BW
(MB/s)

DRAM 10 10 1,000 900
PCRAM 20-200 80-104 200-800 100-800
SLC Flash 104-105 104-107 0.1 10�3-10�1

ReRAM 5-105 5-108 1-1000 0.1-1000
Hard drive 106 106 50-120 50-120

The emergence of NVM has compound impacts on the existing HPC systems. Given the

high performance and non-volatility of NVM, we must re-examine the existing I/O system

to properly integrate NVM into it. Using NVM as a fast storage, the previous assumption on

the inferior performance of storage (e.g., hard drive) is not valid any more. The performance

problem caused by slow storage may be mitigated; The performance bottleneck along the

I/O path may be shifted from storage to other middle-level system components; The existing

mechanisms to narrow the performance gap between storage and CPU may be unnecessary

and result in undesirable overhead.

In this paper, we analyze the performance of I/O intensive HPC applications with NVM

as the high-speed block device. Given its high compatibility, we anticipate such a block-based

NVM model is likely to become the mainstream industry (e.g., the recently announced Intel

Optane[14]) and be adopted in the near future soon . We pose the following questions to

gain insights into the application performance with NVM.

CHAPTER 1. INTRODUCTION 5

• What is the impact of NVM on the performance of the traditional page caches? Is it

still reasonable to use page caches for NVM-based storage?

• Comparing MPI individual I/O and POSIX I/O based on NVM, what are their perfor-

mance in the HPC domain? With a high-speed NVM device, would such an additional

layer bring too much overhead?

• MPI I/O introduces collective I/O based techniques to optimize application perfor-

mance, based on the assumption of bad I/O performance. Is it still valid to use those

techniques under the deployment of NVM?

To answer the above questions, we use a set of representative HPC applications to evaluate

their performance based on PMBD[6]. We make several findings through our study.

• The benefits of page cache is diminished with the deployment of NVM, but still plays

an important role to improve I/O performance. Comparing with SSD and regular hard

drive, NVM is less sensitive to the page cache size when the working set size of the

application is very large. This is due to the superior performance of NVM. However,

when the working set can be accommodated in the page cache, NVM does not exhibit

significant performance advantages over SSD and hard drive. For example, when 2GB

HACC benchmark working on 11GB page cache, performance di↵erence has only 4%

di↵erence among three kinds devices.

CHAPTER 1. INTRODUCTION 6

• MPI individual I/O and POSIX I/O have ignorable performance di↵erence with the

existence of NVM. The overhead of MPI individual I/O is not pronounced, even if

we use NVM as a fast storage. In a single-node deployment, MPI individual I/O

performs only 4.87% worse than POSIX I/O. In a multiple-node deployment, there is

almost no performance di↵erence between the two I/O cases. This indicates that given

the current highly optimized implementation of MPI individual I/O, the performance

overhead of MPI individual I/O is still not a problem for the future HPC, even if we

have a fast storage device, such as NVM.

• MPI collective I/O can perform worse than MPI individual I/O with the deployment

of NVM. MPI collective I/O aims to aggregate I/O operations to improve performance

of MPI individual I/O. However, the data shu✏ing cost in MPI collective I/O is often

larger than the performance benefit of collective I/O, given the good performance of

NVM. For example, our results show that using collective I/O for a workload with

random I/O data accesses from multiple MPI processes performs 38.39% worse than

using MPI individual I/O for the same workload in NVM.

Based on our observations, in this paper we further introduce a performance model to

analyze the trade o↵ between I/O aggregation overhead and benefit. Based on the model,

we explore how the collective I/O should be employed with the upcoming NVM technology.

sectionOur Contribution Several contributions are made in this paper: (1). We investi-

gate the application level performance impact of page cache by controlling page cache size.

CHAPTER 1. INTRODUCTION 7

Page cache plays an important role in HPC. With page cache, highly used data could be

bu↵ered so less cache miss penalty could be achieved. Bigger page cache will lead to more

data be bu↵ered and better performance could be reach. As for high speed NVM storage

device, we use experiments to find out page cache still play an important role in speed up

performance. (2). MPIIO is a highly used parallel computing architecture standard. This

parallel computing standard is aim to improve IO speed by synchronously doing multiple IO

threads. We use several comparison experiments to check whether this standard still take a

great infect in high speed NVM storages. (3). Collective IO is another technology used in

HPC to speed up parallel IO performance. Several profiling works are done in this article to

check whether collective IO is useful in high speed performance NVM. Furthermore, we made

a model to check if this speed up is suitable for any circumstance and in which environment

collective IO will take its e↵ect.

The rest of the paper proceeds as follows. Chapter II covers the background, includ-

ing NVM emulator, applications, and preliminary MPI I/O information. In Chapter III,

we present performance characteristics of applications under various test environment. In

Chapter IV, we introduce our performance model for the MPI collective I/O. In Chapter V,

we discuss related work and conclude in Section VII.

8

Chapter 2

Background

2.1 NVM Usage Model

Non-volatile memory (NVM), represented by Phase Change Memory (PCM) and Spin-

transfer-torque RAM (STT-RAM), is a pivotal technology, providing a variety of attractive

technical features, such as low power consumption, high endurance, and byte addressability,

DRAM-like access speed, disk-like persistence, etc. Drawing a blurry line between tradi-

tional volatile memory and persistent storage, NVM has at least two basic usage models as

follows.

(1) Memory-based Model. NVM is treated as the regular, byte-addressable, DRAM-

based main memory: NVM is attached to the memory bus in form of DIMMs and directly

managed by the memory controller. The NVM space is exposed to the host as part of

physical memory address space, which could be directly accessed through “load” and “store”

CHAPTER 2. BACKGROUND 9

instructions. To bridge the potential performance gap between NVM-only main memory

and the traditional DRAM-only main memory, NVM could be paired with a small portion of

DRAM to mitigate intensive writes and enhance lifetime. On one hand, such a memory-based

model provides high performance and directly opens many attractive properties, such as byte

addressability and persistence, to applications. For example, applications can declare certain

in-memory object non-volatile. On the other hand, this model introduces high complexity to

programmers, especially for handling data integrity and consistency issues upon power and

system failure. Prior studies, such as Mnemosyne [29], CDDCS [28], and NV-heap [8], aim to

provide an easy and flexible programming interface to alleviate such a programming burden.

Also, in order to fully exploit the potential of memory-based model, applications have to be

redesigned to fit this new memory model, which introduces backward compatibility issues.

(2) Storage-based model. Another model is to use NVM as a block device, similar to

traditional HDD or SSD: NVM can be used to directly displace NAND flash in an SSD and

managed by an I/O controller, and the host can access the device through a regular block

I/O interface (e.g., PCI-E or SATA) via “read” and “write” commands. Limited by the

I/O bus bandwidth, the storage-based model cannot fully exploit its potential, such as the

byte-addressability. However, this scheme provides a maximum compatibility to the existing

applications and operating systems, which allows it to be a simple drop-in solution. A user

can simply use an NVM device as a regular flash SSD, create partition and file systems atop,

and immediately enjoy the high I/O speed. Recently Intel announced their 3D XPoint based

product, called Optane, which is a PCI-E device employing this block device model [14]. In

CHAPTER 2. BACKGROUND 10

this work, We assume a storage-based model in this work, which is the most promising NVM

solution in the near future.

2.2 MPI Collective I/O

In conventional disk based storage, I/O performance is highly sensitive to not only the

amount of data being accessed but also the access patterns (e.g., sequential vs. random).

In an MPI-based application, multiple I/O streams could be issued individually and inde-

pendently from multiple MPI processes, which is considered as the worst situation for disk

drives, because this situation creates a disk head’s “seek storm” and lose performance. Thus,

creating a disk-friendly access pattern is an important consideration by MPI I/O.

Collective I/O is a mechanism to improve MPI-based parallel I/O performance. The

basic idea of MPI collective I/O is to scatter and gather data between MPI processes that

need to perform I/O operations. Such scatting and gathering operations are performed by

only a limited number of MPI processes (named as “aggregator”). Each aggregator coalesces

I/O requests and iteratively performs I/O operations for all MPI processes or a subset of all

MPI processes. Figure 2.1 depicts the MPI collective I/O scheme. In the figure, there are two

aggregators (MPI processes 1 and 2). Each aggregator gathers data from all MPI processes

in two iterations, Then each aggregator coalesces the data and writes into persistent storage.

The collective I/O approach reduces the number of I/O transactions, enables contiguous

I/O operations, and avoids fetching useless data, e↵ectively improving I/O performance for

CHAPTER 2. BACKGROUND 11

A

FourMPI
Processes

Two
Aggregators

File

Data shuffle

I/O

C

D

B

BA C D BA C D BA C D BA C D

A A A A C C C C B B B B D D D D

A A A A C C C CB B B B D D D D

Iteration I Iteration II

1 2 3 4

1 2

Figure 2.1: MPI collective I/O scheme. The numbers in circles are MPI process IDs. There
are two aggregators (MPI processes 1 and 2) in this example.

certain workloads. However, MPI collective I/O also brings the so-called “data shu✏ing”

overhead, which is associated with the process of data gathering (for write operations) and

scattering (for read operations).

Given the poor performance of conventional storage devices, the data shu✏ing overhead

is often overweighted by the performance benefits of optimized I/O operations from MPI

collective I/O (see Figure 2.1). However, with high-speed storage device, such as NVM and

SSD, which are relatively insensitive to I/O patterns (e.g., random accesses) and carry much

higher I/O performance, MPI collective I/O may not remain advantageous, especially con-

sidering the involved data shu✏ing overhead. The current MPI library also allows individual

I/O, where MPI processes conduct I/O operations individually without the coordination of

MPI collective I/O and do not involve data shu✏ing. In this paper, we will particularly

study this issue.

CHAPTER 2. BACKGROUND 12

2.3 Benchmarks

For our experimental study, we carefully selected four representative I/O intensive HPC

benchmarks.

MADBench2.

This benchmark is a “stripped-down” version of MADCAP (a Microwave Anisotropy Dataset

Computational Analysis Package) [20]. MADBench2 has an I/O mode that performs MPI

I/O in three phases, S, W, and C. The three phases have complicated write-only, read-only,

and read/write operations respectively. It involves some parameters setting the workload

pattern, including “NO PIX” to specify the number of pixels, “NO BIN” to specify number

of multiple bins, “NO GANG” to specify the number of independent work gangs to divide

the processors into, and “BLOCKSIZE” to specify the size per block used in ScaLAPACK

operations.

IOR

IOR is a benchmark widely used to study parallel I/O performance at both the POSIX and

MPI-IO level [21]. It is highly configurable and supports various I/O patterns, including

“sequential” and “random o↵set” file access, and individual I/O and collective I/O.

Several configuration parameters are related to our work, including “segment count”,

“block size”, and “transfer size”, shown in Figure 2.2. Given some data for doing collective

CHAPTER 2. BACKGROUND 13

Block
Size

Block
Size …… Block

Size
Block
Size ……

Segment Segment

……

Transfer
Size

Transfer
Size ……

Figure 2.2: The data transf from IOR benchmark

I/O, the data is partitioned into segments, and then each segment is further partitioned

into blocks. During the data shu✏ing phase, an MPI process in each iteration of the data

shu✏ing sends or receive at most “transfer” size of data from another MPI process. IOR

also has a parameter “reorder tasks to random”, which enable random I/O accesses. We use

this option for IOR throughput the paper.

HACC-IO

This benchmark is the I/O kernel of HACC (an HPC application based on N-body sim-

ulation) [10]. It has random I/O write operations with all-to-all communication patterns.

This benchmark allows us to configure the number of particles (“numparticles”) simulated

in HACC-IO to change the workload size. The total number of data to write is the “numpar-

ticles” multiplied by the number of MPI processes.

CHAPTER 2. BACKGROUND 14

S3aSim.

This benchmark is an MPI-IO based sequence similarity search algorithm framework [2].

S3aSim emulates IO access patterns in mpiBLAST [19], which is “streaming-like”, read-

only data accesses. S3aSim has five working phases, and we focus on the I/O phase of this

benchmark.

2.4 PMBD Emulator

As NVM devices are not available yet, we use Persistent Memory Block Driver (PMBD) [7],

which is an DRAM based NVM emulator driver, for our experiments. PMBD is a light-

weight PM (Persistent Memory) block driver based on an OS kernel module in Linux 2.6.34.

It reserves a portion of DRAM-based physical memory space by changing the e820 table

in the high memory address space. PMBD provides a standard block I/O interface after

being loaded into OS as a regular block device, on top of which partitions and file systems

can be created. Internally, the PMBD driver is responsible for mapping the logical block

addresses to physical memory pages, receiving the incoming “read” and “write” commands,

and translating them to “load” and “store” instructions. From the perspective of application

level software and other system components, PMBD emulator unit has no di↵erence from

other physical block devices, while it provides configurable features of NVM devices, such as

emulating various bandwidths, latencies, protections, etc.

Because we assume NVM will be exposed to OS as a contiguous ranged physical device.

CHAPTER 2. BACKGROUND 15

* HDD, SSD, NVM (PMBD)
I/O Hardware

File System Client

Page Cache

File System Server

Storage Node

Compute Node

……

More Compute Nodes

*	Benchmarks (IOR, etc.)

HDF5, NetCDF, etc.

POSIX I/O

MPI I/O

High-Level I/O Library

Application

……

……

Figure 2.3: System Hierarchy

The mechanism of PMBD driver is mapping NVM physical pages into the kernel virtual

address space to make it accessible. For each I/O request, driver will translate read/write

request into responding load/store instruction to the physical address mapped.

CHAPTER 2. BACKGROUND 16

2.5 I/O Hierarchy

The I/O stack in a typical HPC system has multiple layers, shown in Figure 2.3. The block

devices at the bottom level provide data persistence. Given the variety of di↵erent storage

devices (e.g., HDD, SSD, PMBD), raw data access latencies range from microseconds to

milliseconds, and are sensitive to distinct access patterns (e.g., sequential vs. random). To

alleviate the impact of slow I/O operations, the page cache layer in the operating system

attempts to hold the workload’s working set in memory, satisfying most data accesses in

DRAM memory. Due to its “filtering” e↵ect, the page cache can have a strong impact on IO

performance. The file system layer is responsible for managing storage devices and provides

a file system abstraction to allow applications to access storage devices, either connected

locally or remotely. In our experiments, we have tested on both Network File System (NFS)

and local file systems. MPI I/O built on top of POSIX I/O enables coordinated and remote

I/O accesses for MPI processes.

17

Chapter 3

Performance Study

We present our performance analysis results in this section. We deploy our tests in a lo-

cal cluster 3.1. Each node of the cluster has two Intel Xeon E5-2630 processors (2.4GHz)

with 32GB DDR memory. All nodes in the cluster are connected through 1Gb Ethernet

interconnect. We use three types of block devices: one is a regular hard drive (Seagate

Constellation.2 500GB hard drive attached by SATA, notated as “HDD” in this section),

one is an SSD (Intel SSD730 240GB attached by SATA, notated as “SSD” in this section),

and the third is an NVM device emulated with PMBD. NVM is configured with the same

bandwidth and latency as DRAM. We use MPICH-3.2 for MPI throughout the paper.

NVM device is emulated by PMBD simulator. Besides PMBD, we used another two

kinds storage device, HDD and SSD, as comparison. So that we have three di↵erent steps

of I/O speed. In this article, we attached a separated HDD and SSD device into our main

storage node and mounted as an extra block space. PMBD were also mounted as an spare

CHAPTER 3. PERFORMANCE STUDY 18

Table 3.1: Hardware configurations

Hardware LBNL Edison Local clusters
Nodes 4 4
DRAM DDR3 64GB DDR4 32GB
CPU Intel(R) Ivy bridge Intel(R) Xeon(R) CPU

E5-2630 v3 @2.40GHz
Cache: L1-L2-
L3

32K-256K-30M 32K-256K-20M

Privilege access NO YES

space into main node. In this way, we could run our experiments in these devices without

any other system infects.

3.1 Impacts of Page Cache

The page cache is a transparent cache for pages originating from a secondary storage device.

The operating system (OS) keeps a page cache, which enables quicker accesses to those

frequently accessed pages and improve performance. We measure performance of the three

I/O devices with di↵erent page cache configurations and study the impact of page cache on

application performance.

We use three benchmarks in our tests, HACC-IO, MADBench2, and S3aSim. Those

benchmarks are compiled with gcc 4.4.7 and Open MPI-1.10.0. We use one node with

four MPI processes for our tests. Figures 3.1, 3.2, and 3.3 show the result for HACC-IO,

MADBench2, and S3aSim respectively.

HACC-IO in Figure 3.1 simulates 13,107,200 particles in total (i.e., numparticles=13,107,200).

CHAPTER 3. PERFORMANCE STUDY 19

It computes and then generates about 2GB data, and writes them into the three block de-

vices. The figure reveals that the page cache plays an important role to improve performance

for HDD and SSD, while it has limited impact on the performance of NVM. When the page

cache size is large (e.g., 9GB and 11GB), there is almost no performance di↵erence between

the three devices, because most the I/O data is cached in the page cache. However, as

we reduce the page cache size, there is significant performance di↵erence between the three

devices. In general, decreasing the cache size from 11GB to 1GB, the performance of this

workload on HDD and SSD is reduced by 92.7% and 84.8% respectively, while the perfor-

mance loss with PMBD is only 11.5%. This example well illustrates that with high-speed

NVM, the e↵ect of page cache is weakened.

MADBench2 in Figure 3.2 uses a working set size of about 4GB (particularly the pa-

rameters NO PIX, NO BIN, NO GANG, and BLOCKSIZE of MADBench2 are set as 5000,

8, 1, and 1024 respectively), larger than that of HACC-IO. The figure presents the perfor-

mance for the phase W , which includes both read and write operations. MADBench2 tells

us a story slightly di↵erent from HACC-IO. Because MADBench2 has a larger working set

size, MADBench2 on all of the three block devices has performance loss. The page cache

is unable to e↵ectively cache all data, including those for HACC-IO and system. However,

NVM performs the best in cases, because of its higher I/O bandwidth.

S3aSim in Figure 3.3 uses a working set size of 2GB (with 100 total query number, max

size of each query as 5000, max count of each query as 10000). Comparing the performance

of MADBench2 and S3aSim, we find that they have the same performance trend: the NVM

CHAPTER 3. PERFORMANCE STUDY 20

1

Page Cach Size
(GB) HDD SSD NVM

1 135 351 1566
3 203 461 1574
5 213 533 1568
7 490 1000 1539
9 1680 1890 1735

11 1852 1837 1770

Table 1

0

500

1000

1500

2000

1 3 5 7 9 11

B
an

dw
id

th
 (M

B
/s

)

Page cache size (GB)

HDD SSD NVM

Figure 3.1: The performance study for the impacts of page cache on HACC-IO.

has the best performance in all cases, but their performance is di↵erent when the page cache

size is small (1GB). For MADBench, NVM has significant performance reduction, 40.16%

from 3GB to 1GB of the page cache size; for S3aSim, this performance degradation is only

5.91%. We attribute such performance di↵erence in the performance loss to the data access

patterns of the two applications. S3aSim has streaming-like access pattern, hence the page

cache cannot work well, no matter how large the page cache size is. For MADBench, the

page cache takes e↵ect, although the caching e↵ects of page cache becomes smaller, when

the page cache size is small (1GB).

CHAPTER 3. PERFORMANCE STUDY 21

2

Page Cach Size
(GB) HDD SSD NVM

1 143 487 1269
3 242 795 2155
5 167 777 2133
7 271 803 2178
9 277 777 2226

11 697 888 2017

Table 1

0

625

1250

1875

2500

1 3 5 7 9 11

B
an

dw
id

th
 (M

B
/s

)

Page cache size (GB)

HDD SSD NVM

Figure 3.2: The performance study for the impacts of page cache on MADBench2.

Conclusions. With the emergence of NVM, the impact of the page cache on the appli-

cation performance is diminishing. Comparing with the traditional HDD and SSD, NVM is

relatively insensitive to the page cache size.

Our study has important implication on how much page cache space should be allocated

for future NVM-based HPC systems. In general, NVM makes it possible to use a smaller

page cache, which would save cost and incur ignorable performance impact. We could even

explore the possibility of completely bypassing the page cache for certain workloads on NVM-

based block device, which will save the limited page cache space for other system data, which

CHAPTER 3. PERFORMANCE STUDY 22

3

Page Cach Size
(GB) HDD SSD NVM

1 409 1034 2560
3 420 1089 2721
5 440 1128 2739
7 439 1132 2737
9 443 1130 3089

11 445 1137 3131

Table 1

0

875

1750

2625

3500

1 3 5 7 9 11

B
an

dw
id

th
 (M

B
/s

)

Page cache size (GB)

HDD SSD NVM

Figure 3.3: The performance study for the impacts of page cache on S3aSim.

in turn improves the performance of the whole system.

3.2 POSIX I/O and MPI Individual I/O

MPI I/O is built on top of POSIX I/O, shown in Figure 2.3, and designed to improve the

performance of POSIX I/O in the setting of parallel I/O and provide user-friendly I/O ab-

stract. In the the system stack, MPI I/O layer ensures data validness for MPI I/O operations

and re-organizes data distribution for better performance. However, as an additional layer in

the system stack, MPI I/O inevitably introduces certain overhead. With conventional disk

CHAPTER 3. PERFORMANCE STUDY 23

storage devices, such overhead is negligible compared to its advantages, however, it could be

more pronounced with NVM, because NVM alleviates performance bottleneck at I/O devices

and makes the overhead in the other system components more obvious. In this section, we

study the performance of MPI individual I/O, and further study the performance of MPI

collective I/O in the next section.

We first study the performance of POSIX I/O and MPI individual I/O without the

involvement of network communication. In particular, we run the IOR benchmark on a

single node. We use 4 MPI processes, each of which performs I/O operations. For the IOR

benchmark, we set block size as 256MB, segment count as 2, and transfer size as 16MB, and

enable “reorder tasks to random”. The final aggregated result file from IOR is a 16GB file

(each MPI process writes 4GB data). Figure 3.4 shows the results.

The figure reveals that there is almost no performance di↵erence between MPI individual

I/O and POSXI I/O on a single node for HDD and SSD. However, when we use NVM, we

notice that POSIX I/O performs slightly better than MPI individual I/O by 4.87%. We

attribute the appearance of such performance di↵erence to the better performance of NVM

which makes the overhead of MPI I/O more pronounced.

To further study the performance of MPI individual I/O and POSIX I/O, we use five

nodes and re-do the tests. Among the five nodes, four nodes run the IOR benchmark with

4 processes per node (16 process in total), and the fifth node works as a storage node where

the other four nodes remotely perform I/O operations. Hence, di↵erent from the tests on a

single node, such deployment has the involvement of communication between the four nodes

CHAPTER 3. PERFORMANCE STUDY 24

4

MPI Individual I/O POSIX I/O
HDD 119 116
SSD 310 313
NVM 1248.77 1308.11 4.75

Table 1

0

350

700

1050

1400

HDD SSD NVM

B
an

dw
id

th
 (M

B
/s

)

MPI Individual I/O POSIX I/O

Figure 3.4: Comparing the performance of MPI individual I/O and POSIX I/O performance
on a single node with IOR.

and the storage node. With such deployment, POSIX I/Os are performed with NFS in our

test environment. Figure 3.5 shows the results.

The figure reveals that MPI individual I/O has almost no performance di↵erence than

POSIX I/O in all cases, no matter whether we use HDD, SSD, and NVM. The communication

cost in our tests is one of major performance bottlenecks, much larger than those caused by

MPI individual I/O overhead. Hence, the overhead for MPI individual I/O is not clearly

spotted in the figure, even if we use a fast storage device, such as SSD and NVM.

Conclusions. The emergence of NVM brings better performance, and also may make

CHAPTER 3. PERFORMANCE STUDY 25

5

MPI Individual I/O POSIX I/O
HDD 26 30
SSD 109 109
NVM 110.91 109

Table 1

0

30

60

90

120

HDD SSD NVM

B
an

dw
id

th
 (M

B
/s

)

MPI Individual I/O POSIX I/O

Figure 3.5: Comparing the performance of MPI individual I/O and POSIX I/O performance
on multiple nodes with IOR.

some overhead more pronounced than before. In this section, we study the overhead of MPI

individual I/O. We find such overhead only sightly impacts performance in a deployment of

a single node. In a multi-node environment, MPI individual I/O has ignorable performance

overhead, even if we use NVM. This seem to indicate that the current implementation of

MPI individual I/O is good for the future HPC equipped with the emerging NVM.

CHAPTER 3. PERFORMANCE STUDY 26

3.3 MPI Collective I/O and MPI Individual I/O

MPI collective I/O can bring performance benefit over MPI individual I/O, when I/O op-

erations from MPI processes are interleaved and scattered. By coalescing I/O operations

and reorganizing written data between MPI processes, MPI collective I/O can reduce the

number of I/O transactions and avoid fetching useless data. However, this happens at the

cost of data shu✏ing operations between MPI processes, as discussed in Section 2.2. The

design of MPI collective I/O is based on a fundamental assumption that the I/O block de-

vice is slow and pattern sensitive, such that the data shu✏ing cost can be overweighted by

the performance benefit of MPI collective I/O. In this section, we study the performance

of collective I/O with NVM, and compare the performance of MPI collective I/O and MPI

individual I/O.

We use the IOR benchmark and use the same IOR configuration (including workload

size, block size, and data transfer size) as that for MPI individual I/O and POSIX I/O

(Section 3.2). We use five nodes for the tests, four of which runs the IOR benchmark. The

fifth node works as a remote storage node for parallel I/O operations. For MPI collective

I/O, we use one aggregator per node. Figures 3.6 and 3.7 show results for the case of 4

processes per node (16 processes in total) and 16 processes per node (64 process in total).

The figures reveal that SSD and NVM achieve better performance with MPI individual

I/O than with MPI individual I/O. On the contrary, HDD benefits from the optimization

with MPI collective I/O. We observed similar e↵ects with 64 processes on 4 nodes, which

CHAPTER 3. PERFORMANCE STUDY 27

Individual I/O Collective I/O
HDD 54 55
SSD 92 89
NVM 108 105

Table 1

0

30

60

90

120

HDD SSD NVM

B
an

dw
id

th
 (M

B
/s

)

Individual I/O

Collective I/O

Figure 3.6: Comparing the performance of MPI collective I/O and MPI individual I/O (4
processes per node) with IOR.

introduces more intensive I/O operations.

With conventional HDD, MPI collective I/O demonstrates its performance benefits, even

if there is data shu✏ing cost. However, with the introduction of faster storage device (e.g.,

SSD and NVM), the I/O cost on the storage device is alleviated, and relatively, the data

shu✏ing cost becomes more pronounced in the overall I/O cost. The results suggest that

using MPI individual I/O instead of collective I/O makes more sense for fast storage device

due to its low overhead.

Furthermore, we also notice that the performance di↵erence between MPI collective I/O

and individual I/O becomes bigger in the case of 16 processes per node than in the case of

CHAPTER 3. PERFORMANCE STUDY 28

Individual I/O Collective I/O
HDD 26 41
SSD 107 57
NVM 112 69

Table 1

0

30

60

90

120

HDD SSD NVM

B
an

dw
id

th
 (M

B
/s

)

Individual I/O

Collective I/O

Figure 3.7: Comparing the performance of MPI collective I/O and MPI individual I/O (16
processes per node) with IOR.

4 processes per node. Such larger performance di↵erence is due to the higher data shu✏ing

cost when dealing with a large number of concurrently running processes.

3.4 Conclusions.

MPI I/O used to assume slow and pattern-sensitive HDDs as the secondary storage, which

makes collective I/O a desirable optimization choice, disregarding the associated small over-

head. As storage device performance improves to a point that the performance benefit cannot

o↵set such overhead, MPI collective I/O becomes a detrimental “optimization”, especially

CHAPTER 3. PERFORMANCE STUDY 29

8

Individual I/O Collective I/O
HDD 29 39
SSD 107 59
NVM 109 62

Table 1

0

30

60

90

120

HDD SSD NVM

B
an

dw
id

th
 (M

B
/s

)

Individual I/O

Collective I/O

Figure 3.8: IOR Individual I/O and Collective I/O Performance Di↵erence (64 Processors)

for NVM. This urges us to also revisit the existing mechanisms, besides MPI collective I/Os,

that aim to optimize performance based on the assumption of slow storage devices. With

the emergence of NVM, the existing mechanisms may not be necessary and could be even

harmful. In this case, we demonstrate that MPI collective I/O is one of such mechanisms.

In the next section, we further study the performance of MPI collective I/O and inves-

tigate why MPI collective I/O has worse performance. We also introduce a performance

model that facilitates to make a decision on when to use MPI collective I/O.

30

Chapter 4

Detailed Performance Study for MPI

Collective I/O

MPI collective I/O is more than just I/O operations. It includes a set of communication

between participating MPI processes before or after I/O operations. We conduct a detailed

analysis on the performance of MPI collective I/O in this section.

4.1 Workflow of MPI Collective I/O

MPI collective I/O performs di↵erently for read and write I/O operations. For read opera-

tions, the aggregator processes fetch data from the remote storage node and then redistribute

the data among other MPI processes. For write operations, the aggregator processes collect

data from other MPI processes and then write data into the storage node. As discussed

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 31

in Section 2, the whole dataset is partitioned into many data blocks, and the aggregators

scatter/gather data between MPI processes iteratively.

Listing 4.2 shows the workflow for write operations in MPI collective I/O, based on the

implementation of MPI collective I/O in MPICH (in particular, ROMIO [27]). In the figure,

in each iteration, before each collective data write (Line 10), data shu✏ing will be called to

gather data from MPI processes (Line 7).

Listing 4.3 shows the logic of data shu✏ing in each iteration. Data shu✏ing is imple-

mented based on an MPI collective communication (particularly MPI Alltoall) and MPI

asynchronized point-to-point communication (MPI Irecv/MPI Isend and MPI Waitall).

Based on the above discussion, we conclude that data shu✏ing in MPI collective I/O

is interleaved with IO operation across iterations. In each iteration, data shu✏ing must be

finished before the aggregator starts to write (or read) data. Assuming the performance is

dominated by the slowest aggregator, then the shu✏ing and IO can be treated as a blocking

operation, which simplifies our IO modeling.

In Listings 4.1 and 4.2, we have ntimes of iterations and each iteration sends one data

piece with the size of “collective bu↵er”.

Listing 4.1: Pseudocode for MPI collective read operations

ADIOI read and Exch (. . .)

{

. . .

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 32

for (m=0; m<ntimes ; m++) {

. . .

// Contiguous read from s to rage

ADIO ReadContig (. . .) ;

. . .

// S h u f f l i n g data between MPI proce s s e s

ADIOI R Exchange data (. . .) ;

. . .

}

for (m=ntimes ; m<max ntimes ; m++) {

// Nothing to send , but check f o r wr i t e .

ADIOI R Exchange data (. . .) ; b a s i c s t y l e=\smal l

}

. . .

}

Listing 4.2: Pseudocode for MPI collective write operations

ADIOI Exch and write (. . .)

{

. . .

for (m=0; m<ntimes ; m++) {

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 33

. . .

// S h u f f l i n g data between MPI proce s s e s

ADIOI R Exchange data (. . .) ;

. . .

// Contiguous wr i t e to s t o rage

ADIO WriteContig (. . .) ;

. . .

}

for (m=ntimes ; m<max ntimes ; m++) {

// Nothing to rece i ve , but check f o r send .

ADIOI R Exchange data (. . .) ;

}

. . .

}

Between each collective I/O iteration, there’s no overlap between because each iteration

has a barrier in the end. Like Table II shows, every iteration will be blocked until last

iteration has been completed.

Listing 4.3: Pseudocode for data shu✏e in MPI collective I/O read

ADIOI R Exchange data (. . .)

{

MPI Al l toa l l (. . .) ;

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 34

. . .

for (i =0; i < nprocs ; i++) {

MPI Irecv (. . .)

}

. . .

for (i =0; i < nprocs ; i++) {

MPI Isend (. . .)

}

. . .

MPI Waitall (. . .)

ADIOI F i l l u s e r bu f f e r (. . .)

MPI Waitall (. . .)

}

4.2 Profiling MPI Collective I/O

Based on the above analysis on the implementation of MPI collective I/O, we add timers to

measure the performance of data shu✏ing (Ts) and read/write (TIO) operations. Through

the timers, we log the performance for each data piece (i.e., data exchanged during one

iteration of the data shu✏ing loop in Listings 4.1 and 4.2).

Take this attribute, we used a timer to record each phase in every iteration. Average

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 35

I/O time Tio will indicate device I/O speed, while average shu✏e time Ts will indicate time

spent in data shu✏e. Tio will varies according to device speed, ratio of Ts/Tio will indicate

how shu✏e time impact in overall collective I/O.

During profiling, we use the same five nodes as Section 3.3. Among the five nodes, four

of them run the IOR benchmark and one works as a storage node. For the IOR benchmark,

we use 16 processes (4 processes per node), 2 data segment counts, 512 MB block size. Total

workload size sum up is 16GB. Transfer size for each collective iteration is 16MB. We use

one aggregator per node. Table 4.1 shows our profiling results.

Table 4.1: Profiling results for MPI collective I/O with IOR

Item HDD SSD NVM
I/O time 5938.91s 1002.93 986.15s
Shu✏e time 466.21s 499.30s 494.61s
Ratio (shu✏e time to collective
I/O time)

7.85% 49.93% 50.16%

Average IO time per iteration 170.38ms 28.77ms 28.29ms
Average shu✏e time per iteration 13.77ms 14.32ms 14.19ms
IO time variance 0.15 0.05 0.03
Shu✏e time variance 0.03 0.02 0.02

The table reveals that from HDD, SSD, to NVM, the ratio of shu✏e time to total collective

I/O time increases from 7.85% to 50.16%. The shu✏e time accounts for a larger percentage

of performance loss, as we use NVM as the storage device. Note that the shu✏e time

remains stable across the cases of HDD, SSD, and NVM, because we use the same MPI

implementation for MPI collective I/O, same I/O workload, and client configuration, which

results in the same communication pattern for the three cases.

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 36

4.3 Performance Modeling for MPI Collective I/O

We model MPI collective I/O performance based on the above discussion. The notation for

our models is summarized in Table 4.2.

Table 4.2: Notation for our performance modeling for MPI collective I/O

Tcollective The collective IO time.
Tindividual The individual I/O time.
Tcomm Data shu✏ing time.
TIO IO operation time.
Tother Other performance cost besides

data shu✏ing.
msg sizei The collective bu↵er size in the col-

lective I/O implementation.
⌧ The ratio of data participated in

data shu✏ing to total data.
iter The number of iterations within the

iterative collective I/O.
Tw Communication time independent

of the message size.
Ts Communication time in proportion

to the message size
bdwseq Sequential end-to-end I/O band-

width.
bdwran Random end-to-end I/O band-

width.

MPI collective I/O (Tcollective) is generally modeled in Equation 4.1. The equation

includes the data shu✏ing time (Tcomm), I/O operation time (TIO), and other performance

cost because of the implementation of MPI collective I/O (Tother). Tcomm and TIO depend

on data size and data access patterns of MPI processes. We model them as follows.

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 37

Tcollective = Tcomm + TIO + Tother (4.1)

Data shu✏ing time (Tcomm) is modeled in Equation 4.2. Tcomm is for one MPI aggregator.

There might be multiple aggregators involved in the collective I/O, but their data shu✏ing

times are overlapped. The data shu✏ing phase iteratively sends or receives data between

the aggregator and a subset of MPI processes.

In Equation 4.2, at a specific iteration i, “msg sizei” of data is communicated between

the aggregator and each MPI process for data shu✏ing. In total,
Piter

i=1 msg sizei of data,

which is total data from one MPI process for doing I/O operation, is communicated. Note

that Equation 4.2 is only for modeling collective I/O. However, a part of the total data from

one MPI process for doing I/O operation may not be involved in the collective I/O. Instead,

they are involved in individual I/O. If a part of the total data is already contiguous and

friendly for doing I/O operations individually, the collective I/O may not be applied for that

part of the data. To capture the above fact, we introduce a parameter ⌧ . msg sizei ⇥ ⌧ is

the data really involved in the collective I/O and communicated between an MPI process

and the aggregator. ⌧ is application-dependent and related with the application’s inherent

I/O access pattern.

Based on the above discussion, the communication time for an iteration i is modeled by

T s+T w⇥msg sizei⇥⌧ . T s represents the communication time unrelated with the message

size, such as the communication initialization time; T w represents the communication time

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 38

related with the message size (or more precisely speaking, in proportion to the message size).

Tcomm =
iterX

i=1

(Ts + Tw ⇥msg sizei ⇥ ⌧) (4.2)

I/O operation time (TIO) is modeled in Equation 4.3. The numerator of the equation is

the data that has been shu✏ed and ready for I/O operation, as discussed above in Tcomm.

bdwseq in the denominator is the end-to-end bandwidth (between the end of a compute node

and the end of a storage node). bdwseq is the bandwidth for doing sequential I/O, because

after data shu✏ing, there is supposed to be sequential data access between the aggregator

and storage node.

TIO =

Piter
i=1 msg sizei ⇥ ⌧

bdwseq

(4.3)

Tother in Equation 4.1 is the other performance cost besides data shu✏ing, including

memory mapping, variable initialization, system logs, and data checking for data alignment

(See Lines 13-15 in Listing 4.1 and Listing 4.2).

MPI individual I/O. To make a comparison between MPI collective I/O and individual

I/O, we also model the performance of individual I/O, shown in Equation 4.4. Tindividual is

much simpler than the collective I/O, because it does not have data shu✏ing, and I/O

operations (TIO) from each MPI process happen independently. To calculate TIO, we use the

end-to-end bandwidth for random data access (bdwran), shown in Equation 4.5. This is based

on an assumption that data accesses from MPI processes are random without coordination

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 39

as the collective I/O. But whether this assumption is true depends on the data access pattern

of the application.

Tindividual = TIO + Tother (4.4)

TIO =

Piter
i=1 msg sizei
bdwran

(4.5)

Model usage. To use the model, we need to know a set of parameters, including

application-independent ones and application-dependent ones. The application-independent

parameters include Ts, Tw, bdwseq, bdwran, and Tother, which are measured only once on

any platform. The application-dependent parameters include msg size, ⌧ , and number of

iterations iter.

Ts and Tw are measured by running an MPI-based micro-benchmark doing ping-pong

communication between compute node and storage node with di↵erent message sizes. We

measure the communication time for each message size and use a linear regression to get Ts

and Tw. In our test environment, Ts = 5.39e� 3 (s) and Tw = 3.35e� 2 (s/MB).

bdwseq and bdwran can be measured by using the IOR benchmark. In particular, we

deploy IOR on our test environment with the four compute nodes and one storage node.

Using IOR, we perform read or write I/O operations for 2GB data. We set “reorder tasks

to random” to enable either random or sequential I/O accesses with 16 MPI processes (4

processes per node), and then calculate bdwseq and bdwran. Table 4.3 summarize the results

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 40

in our test platform. One interesting thing is that between SSD and NVM, there is no big

di↵erence in terms of bdwseq and bdwran, shown in the table. This is because of the fact that

SSD and NVM have larger device bandwidth than HDD, such that the end-to-end bandwidth

is limited by networking.

Table 4.3: bdwseq and bdwran in our test platform.

HDD SSD NVM
bdwseq (MB/s) 58.11 110.98 112.31
bdwran (MB/s) 26.72 101.86 110.51

Tother is assumed to be constant in our model, and can be measured through the IOR

benchmark. In particular, we deploy the same tests as the ones for measuring bdwseq and

bdwran, and measure Tindividual, Tcollective, I/O operation times and shu✏ing time. Then,

we calculate Tother based on Equations 4.1 and 4.4 for collective I/O and individual I/O

respectively. In our tests, we find Tother is much smaller than I/O operation time and data

shu✏ing time, hence we set it as zero during model verification (Section 4.3).

The total data size for an MPI process for an MPI I/O operation (
Piter

i=1 msg sizei) is

application-dependent. The total data size can be obtained by examining the application,

particularly MPI I/O calls (e.g., MPI File write all() and MPI File read all()). msg size in

each iteration is constant in our model, which is equal to the collective bu↵er size (16MB in

our tests). The number of iteration is equal to the total data size divided by the constant

msg size.

The parameter ⌧ heavily depends on the application data access pattern and MPI imple-

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 41

mentation. It is challenging to choose a universal value for all cases. Also, it is challenging

to ask the user to quantify their workload characteristics and choose ⌧ . We use an empirical-

based approach to decide ⌧ . In particular, we ask the user to qualitatively decide if individual

I/O operations are able to be coalesced. If yes, then we set ⌧ as 1, otherwise we set ⌧ as 0.2.

Discussion. Our model has two limitations. First, we do not distinguish intra- and

inter-node communication in Equation 4.2 when modeling data shu✏ing time. In particular,

we measure Ts and Tw based on inter-node communication and use them in Equation 4.2, no

matter whether data shu✏ing happens within a node or between nodes. Second, we assume

that all aggregators have roughly the same data shu✏ing time, such that the data shu✏ing

times of all aggregators are overlapped. However, depending on data access patterns of each

MPI process, di↵erent aggregators working with di↵erent MPI processes can have di↵erent

data shu✏ing time.

To fix the above model limitation, we must have good knowledge on the execution envi-

ronment, such that we know how MPI processes are mapped into nodes to determine intra-

and inter-node communication; we must also have deep knowledge on data access patterns

of each MPI process. However, having the above knowledge greatly limits the model usabil-

ity and generality, while providing limited helps for modeling accuracy. Hence, we do not

assume such knowledge is available in our model.

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 42

Model Verification

We verify our model accuracy with IOR on five nodes, four of which are compute nodes

and one of which is a storage node, the same as our previous multi-node evaluation. We

use four MPI processes per node (16 MPI processes in total). With IOR, we evaluate two

types of workloads. One type of workload has random but overlapped data accesses from

MPI processes. This is achieved by enable “reorder tasks to random”. For this type of

workload, ⌧ is set as 1 to predict collective I/O performance. The other type of workload

has sequential, non-overlapped data access pattern for each MPI process. For this type of

workload, ⌧ is set as 0.2 to predict collective I/O performance. This also indicates that 20%

of data for I/O operations are based on the model for collective I/O, while 80% of data for

I/O operations are based on the model for individual I/O. For all tests, the IOR parameters,

“segment count” is set as 2, “block size” is set as 64MB, and the collective bu↵er size is

16MB.

Collective I/O time

Before using the model, we need to get the measured values of T w and T s. We used a

smaller IOR benchmark collectively read and write through multiple nodes (4 computing

nodes and 1 storage node as same as experiments above), 2 segment count, 64MB block

size, 4 processors. We set collective bu↵er size (msg size) to 4MB, 8MB, 16MB, 64MB

representatively and gathering all shu✏e times (shuffleT imes) reported by MPICH. T w

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 43

and T s could be get as simply through a linear regression.

Table 4.4: Shu✏e time phase test

Transfer bu↵er
size in IOR (MB)

2 4 8 16

Average shu✏e
time (s)

0.072 0.136 0.283 0.547

Iteration time (iter) is determined by workload size divide the message size “msgsize”

for each collective I/O iteration. To simplify our test, we set IOR to random read back order

and pass an “always do collective I/O” hint to MPICH. So, every iteration in our experiment

will do collective I/O. Which means collective I/O ratio (⌧) in this case is 1.0. Table 4.5

shows all computed value of notations.

Table 4.5 shows the result we collected in our environment.

Table 4.5: Notation values for data shu✏e time

T w T s iter ⌧
3.35e� 2 5.39e� 3 1024 1.0

Through the results above, we could get our computed data shu✏e phase time is 138.58s 4.6:

Tcomm =
iterX

i=1

(Ts + Tw ⇥msg sizei ⇥ ⌧)

=
1024X

i=1

(5.39e� 3 + 3.35e� 2⇥ 16⇥ 1.0)/4

= 138.58s

(4.6)

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 44

Now, the estimated IO time could be computed using Equation 4.3. Table 4.6 shows

computed results for three devices.

Table 4.6: Computed IO time for di↵erent devices

HDD SSD NVM
Time (s) 273.20 135.91 133.69

For other time (Tother), we continue to use the simple read and write benchmark above.

We used individual I/O to manipulate di↵erent workload sizes, recording the total times

and IO times representatively. Subtracting Total time by IO time could get the other time

(Tother). The result shows, compared to data shu✏e and I/O, Tother is small enough to ignore.

So, in our verification, we set value of Tother as 0.

We have computed the three parts of collective I/O. Sum them up could get the total

estimated time. Table 4.7 compares the estimated times with the real run times reported by

IOR benchmark.

Table 4.7: Comparison of estimated and measured collective I/O time for the first workload
with random data accesses.

Device HDD SSD NVM
Estimated
time (s)

411.78 286.21 284.46

Measured
time (s)

385.86 277.46 242.54

Comparing the estimate time from our model and the real running time printed from

benchmark, we can find that the accuracy of our model is between 88.67%� 98.92%.

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 45

Table 4.8: Comparison of estimated and measured individual I/O time for the second work-
load with sequential data accesses

Device HDD SSD NVM
Estimated
time (s)

613.17 160.84 145.88

Measured
time (s)

593.04 146.50 146.35

Individual I/O time

Compared to collective I/O, individual I/O crosses out the data shu✏e part, and we set

Tother to 0. The estimated Tindividual is more likely equal to TIO. Table 4.8 compares the

estimate time with real time reported by IOR.

As we discussed in 4.2, the ratio of how much data will be shu✏ed is determined by

certain work I/O pattern. In our experiments, we use a IOR pattern whose data will always

trigger data shu✏e. However, in real life, not every workload well has this situation.

We calculated the estimated performance of three di↵erent devices by given di↵erent

value of ⌧ to simulate di↵erent work situations. Figure 4.1, Figure 4.2 and Figure 4.3 show

our prediction results.

From the figures we could predict, HDD will always speed up the performance using

collective I/O because the speed-up always beats the overhead of data shu✏ing. However,

most situation in SSD and NVM have reverse results. Which means, once the workload has

some interleaves that will trigger collective I/O (⌧ greater than 10% in our environment),

the overhead of data shu✏e will always burden the overall performance.

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 46

t Individual Collective

0 630 282

0.1 630 296

0.2 630 310

0.3 630 323

0.4 630 337

0.5 630 351

0.6 630 364

0.7 630 378

0.8 630 392

0.9 630 406

1.0 630 419

La
te

nc
y

(S
)

175

350

525

700

Data shuffle ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Individual Collective

Figure 4.1: Performance prediction of di↵erent ⌧ in HDD

t Individual Collective

0 161 147

0.1 161 161

0.2 161 175

0.3 161 188

0.4 161 202

0.5 161 216

0.6 161 230

0.7 161 243

0.8 161 257

0.9 161 271

1.0 161 284

La
te

nc
y

(S
)

75

150

225

300

Data shuffle ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Individual Collective

Figure 4.2: Performance prediction of di↵erent ⌧ in SSD

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 47

t Individual Collective

0 148 145

0.1 148 158

0.2 148 172

0.3 148 186

0.4 148 200

0.5 148 213

0.6 148 227

0.7 148 241

0.8 148 254

0.9 148 268

1.0 148 282

La
te

nc
y

(s
)

75

150

225

300

Data shuffle ratio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Individual Collective

Figure 4.3: Performance prediction of di↵erent ⌧ in NVM

Model Validation

We verify our model accuracy with IOR. We test two cases, one with 4 compute nodes (4

processes per node) and the other with 2 compute nodes (8 processes per node). Both cases

have one storage node. For IOR, “segment count”, “block size”, and the collective bu↵er size

are set as 2, 64MB, and 16MB respectively. We use one aggregator per node in validation

tests.

Tables 4.9 and 4.9 show the validation results. In general, our model achieves high

accuracy in 12 validation tests (average error 4.93% and at most 14.4%). More importantly,

our model correctly captures performance trend across the three devices in di↵erent cases.

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 48

Table 4.9: Comparison of estimated and measured I/O times with 4 compute nodes (4
processes per node). The percentage numbers in brackets are prediction errors.

Device HDD SSD NVM
Collective I/O esti-
mated time (s)

411.78(6.7%) 286.21(3.2%) 284.46(14.4%)

Collective I/O Mea-
sured time (s)

385.86 277.46 242.54

Individual I/O esti-
mated time (s)

613.17(3.4%) 160.84(9.8%) 145.88(3.2%)

Individual I/O Mea-
sured time (s)

593.04 146.50 146.35

Table 4.10: Comparison of estimated and measured I/O times with 2 compute nodes (8
processes per node). The percentage numbers in brackets are prediction errors.

Device HDD SSD NVM
Collective I/O esti-
mated time (s)

350.90(1.04%) 216.58(0.53%) 214.83(0.85%)

Collective I/O Mea-
sured time (s)

354.59 217.74 213.01

Individual I/O esti-
mated time (s)

613.17(5.66%) 160.84(9.86%) 145.88(0.46%)

Individual I/O Mea-
sured time (s)

580.32 146.40 146.55

Model Implication

Our model enables us to explore the tradeo↵ between data shu✏ing cost and collective I/O

benefit in a variety of environments with di↵erent storage devices. Hence it can be used to

enable adaptive performance optimization and improve I/O performance for the future HPC

using NVM-based storage.

As a case study, we use our model to study the tradeo↵ between data shu✏ing cost

(Equation 4.2) and collective I/O benefit. The collective I/O benefit is quantified by

(Tindividual � Tcollective). We focus on one iteration (i.e., iter = 1) and change the mes-

CHAPTER 4. DETAILED PERFORMANCE STUDY FOR MPI COLLECTIVE I/O 49

12

Data shuffle cost Collective I/O benefit
(HDD)

Collective I/O benefit
(SSD)

Collective I/O benefit
(NVM)

16KB 0.0014815 0.000332813 1.94063E-05 1.26094E-05

32KB 0.0016155 0.000665625 3.88125E-05 2.52188E-05

64KB 0.0018835 0.00133125 0.000077625 5.04375E-05

125KB 0.002394375 0.0026625 0.00015525 0.000100875

256KB 0.00344125 0.005325 0.0003105 0.00020175

512KB 0.005535 0.01065 0.000621 0.0004035

1MB 0.0097225 0.0213 0.001242 0.000807

2MB 0.0180975 0.0426 0.002484 0.001614

4MB 0.0348475 0.0852 0.004968 0.003228

8MB 0.0683475 0.1704 0.009936 0.006456

16MB 0.1353475 0.3408 0.019872 0.012912

32KB 256KB 2MB 16MB

Va
lu

e
Ax

is

Data shuffle cost Collective I/O benefit (HDD)
Collective I/O benefit (SSD)

0.00001

0.0001

0.001

0.01

0.1

1
32KB 256KB 2MB 16MB

Data shuffle cost Collective I/O benefit (HDD)
Collective I/O benefit (SSD) Collective I/O benefit (NVM)

Figure 4.4: Explore the performance tradeo↵ between data shu✏ing cost and collective I/O
benefit.

sage size. We use bandwidth and communication parameters (i.e., Tw and Ts) measured in

our platform for our study. Figure 4.4 shows the result, assuming that there are 4 compute

nodes, 1 storage node, and 4 MPI processes per node.

The figure reveals that both data shu✏ing cost and collective I/O benefit increase as the

message size increases, but at di↵erent rates. For HDD, although the data shu✏ing cost

is larger than the benefit when the message size is small (32KB), the data shu✏ing cost

is smaller than the benefit when the message size is large (2MB and 16MB). However, for

SSD and NVM, the data shu✏ing cost is always larger than the benefit, which explains why

collective I/O performs consistently worse than individual I/O in Tables 4.9.

50

Chapter 5

Related Work

Non-volatile memory. Non-volatile memory (NVM) technology is under quick develop-

ment and has attracted a large body of research. A comprehensive survey about NVM can

be found in a prior study [24]. Here we summarize the most related prior work on NVM.

Prior NVM studies can be roughly classified into several categories. Some earlier studies

focus on the architecture-level design issues of NVM [15, 23, 22, 31], such as wear-leveling,

read-write disparity issues, etc. Most of these studies are considering NVM as a displacement

of DRAM at the architecture level. Another alternative is to consider NVM as a storage

device, such as Onyx [1], Moneta [3], and PMBD [7]. The recently announced Intel Optane

product [14] also falls into this category. Researchers have also studied on the system and

application level support for NVM. Some prior studies have explored file systems for NVM.

For example, BPFS [9] uses shadow paging techniques for fast and reliable updates to critical

file system metadata structures. SCMFS [30] adopts a scheme similar to page table in mem-

CHAPTER 5. RELATED WORK 51

ory management for file management in NVM. PMFS [12] allows to use memory mapping

(mmap) for directly accessing NVM space and avoids redundant data copies. In order to

take advantage of byte-addressability and persistency of NVM, a large body of research on

NVM is on developing new programming models for NVM. For example, Mnemosyne [29]

gives a simple programming interface for NVM, such as declaring non-volatile data objects.

CDDS [28] attempts to provide consistent and durable data structures. NV-Heaps [8] further

gives a simple model with support of transactional semantics; SoftPM [13] o↵ers a memory

abstraction similar to malloc for allocating objects in NVM. In this study we treat NVM

as a storage device and deploy conventional file systems atop. Our observations have con-

firmed that the high-speed NVM could significantly improve HPC application performance,

however, the end-to-end e↵ect is also workload dependent and related to a variety of factors

in the entire I/O stack, from application, MPI library, OS page cache, file system, to NVM

device.

MPI I/O. Aside for hardware, there are also tons of studies related to MPI talks about

MPI-IO, collective I/O and software pattern with a focus on improving computing perfor-

mance, guarantee data safety, and simplify coding strategy.

ROMIO [26] is a widely used implementation of MPI-IO, which is included in MPICH

library we were using upon. ROMIO uses two-phase I/O strategy [25]. This technology

could reduce latency of access and improve its scalability.

It is still a open topic about determining an optimal number of aggregators for MPI

I/O [4]. In this paper, we mainly used one aggregator and used multiple aggregators as

CHAPTER 5. RELATED WORK 52

comparison. Because no clear di↵erence shown in experiments about aggregator number, we

leave further experimental studies on this issue as our future work.

Several studies have evaluated application e�ciency on MPI and tried to improve it.

A prior study proposed an optimized bu↵ering system in order to reduce the aggregation

cost, as so improving reading and writing data e�ciency [25]. Another study found that

the nature of collective I/O can have a negative impact on underlying caching algorithm,

leading to unnecessary cache misses. An evolution of access pattern proposed address this

issue and results in a new collective I/O aware cache management methodology [17]. Another

study tried to further reduce the communication costs in collective I/O of multi-core cluster

systems with non-exclusive scheduling by regulate the node sequence [5].

53

Chapter 6

Conclusions

This paper has evaluated the HPC I/O performance based on di↵erent storage backend, i.e.,

HDD, SSD and PMBD. We set experiments by using scientific application benchmarks to

test the impact of page cache, performance of POSIX and MPIIO library with NVM. Then

we further profiled the collective I/O in ROMIO, which is a major optimization in MPI

and HPC I/O. Based on the experimental result, we have developed a model and verified

its accuracy. This is a comprehensive study of NVM and its impact to HPC I/O software

stack. In conclusion, we found that the I/O performance with NVM is not sensitive to page

cache as HDD and SSD are in many cases, so we could shortcut the memory consumption

in page cache, improving cost e�ciency. We have also confirmed that collective I/O benefit

diminishes as the storage becomes faster. So a simplified I/O strategies should be designed

and revisited in the era of exascale computing with non-volatile memory.

54

Bibliography

[1] Ameen Akel et al. “Onyx: A Prototype Phase Change Memory Storage Array”. In:

Proceedings of the 3rd USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage 2011). Portland, OR, June 2011.

[2] Avery Ching. http://users.eecs.northwestern.edu/.

[3] Adrian M. Caulfield et al. “Moneta: A High-Performance Storage Array Architec-

ture for Next-generation, Non-volatile Memories”. In: Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO 2010). Atlanta,

Georgia, Dec. 2010.

[4] Mohamad Chaarawi and Edgar Gabriel. “Automatically Selecting the Number of Ag-

gregators for Collective I/O Operations”. In: International Conference on Cluster Com-

puting (Cluster). 2011.

[5] Kwangho ChaEmail and Seungryoul Maeng. “Reducing communication costs in collec-

tive I/O in multi-core cluster systems with non-exclusive scheduling”. In: The Journal

of Supercomputing 61 (3 2012), pp. 966–996.

BIBLIOGRAPHY 55

[6] Feng Chen, Michael P. Mesni, and Scott Hahn. “A Protected Block Device for Per-

sistent Memory”. In: IEEE Symposium on Mass Storage Systems and Technologies

(MSST). 2014.

[7] Feng Chen, Michael P. Mesnier, and Scott Hahn. “A Protected Block Device for Persis-

tent Memory”. In: Proceedings of the 30th International Conference on Massive Storage

Systems and Technology (MSST’14). Santa Clara, CA, June 2014.

[8] Joel Coburn et al. “NV-Heaps: Making Persistent Objects Fast and Safe with Next-

Generation, Non-Volatile Memory”. In: Proceedings of the 2011 Architectural Support

for Programming Languages and Operating Systems (ASLPOS 2011). Newport Beach,

CA, Mar. 2011.

[9] Jeremy Condit et al. “Better I/O Through Byte-Addressable, Persistent Memory”. In:

Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP 09).

Big Sky, MT, Oct. 2009.

[10] CORAL Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/.

[11] B. Dieny, R. Sousa G. Prenat, and U. Ebels. “Spin-dependent Phenomena and Their

Implementation in Spintronic Devices”. In: Proceedings of 2008 International Sym-

posium onVLSI Technology, Systems and Applications (VLSI-TSA 2008). Apr. 2008,

pp. 70–71.

BIBLIOGRAPHY 56

[12] Subramanya R Dulloor et al. “System Software for Persistent Memory”. In: Proceedings

of the 2014 European Conference on Computer Systems (EuroSys 2014). Amsterdam,

ST, Netherlands: The ACM, Apr. 2014.

[13] Jorge Guerra et al. “Software Persistent Memory”. In: Proceedings of the 2012 USENIX

Annual Technical Conference. Boston, MA, June 2012.

[14] Intel. https://www.intel.com/OptaneMemory.

[15] B. C. Lee et al. “Architecting Phase Change Memory as a Scalable DRAM Alterna-

tive”. In: Proceedings of the 36th International Symposium on Computer Architecture

(ISCA 2009). 2009.

[16] Benjamin C. Lee et al. “Phase-Change Technology and the Future of Main Memory”.

In: IEEE Micro 30.1 (2010), pp. 143–143.

[17] Yin Lu et al. “Revealing Applications’ Access Pattern in Collective I/O for Cache

Management”. In: International Conference on Supercomputing (ICS). 2014.

[18] James Moorer. “Signal Processing Aspects of Computer Music–A Survey”. In: Com-

puter Music Journal 1.1 (1977).

[19] mpiBLAST: Open-Source Parallel BLAST. http://www.mpiblast.org/.

[20] National Energy Research Scientific Computing Center. http://www.nersc.gov/about/groups/advanced-

technologies-group/benchmark-software/benchmark-applications/the-nersc-madbench-

benchmark/.

BIBLIOGRAPHY 57

[21] National Energy Research Scientific Computing Center. http://www.nersc.gov/users/computational-

systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/.

[22] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. “Scalable High Performance Main

Memory System using Phase-Change Memory Technology”. In: Proceedings of the 36th

International Symposium on Computer Architecture (ISCA 2009). June 2009.

[23] M. K. Qureshi et al. “Enhancing Lifetime and Security of PCM-based Main Memory

with Start-gap Wear Leveling”. In: Proceedings of the 42th International Symposium

on Microarchitecture (MICRO 2009). Dec. 2009.

[24] Kosuke Suzuki and Steven Swanson. The Non-Volatile Memory Technology Database

(NVMDB). Tech. rep. CS2015-1011. http://nvmdb.ucsd.edu. Department of Computer

Science & Engineering, University of California, San Diego, 2015.

[25] François Tessier et al. “Topology-Aware Data Aggregation for Intensive I/O on Large-

Scale Supercomputers”. In: The Workshop on Optimization of Communication in HPC

(2016), pp. 73–81.

[26] R. Thakur, W. Gropp, and E. Lusk. “A Case for Using MPI’s Derived Datatypes to

Improve I/O Performance”. In: ACM/IEEE Conference on Supercomputing. 1998.

[27] R. Thakur, W. Gropp, and E. Lusk. “Data sieving and collective I/O in ROMIO”. In:

The Seventh Symposium on the Frontiers of Massively Parallel Computation. 1999.

BIBLIOGRAPHY 58

[28] Shivaram Venkataraman et al. “Consistent and Durable Data Structures for Non-

volatile Byte-Addressable Memory”. In: Proceedings of the 9th USENIX Conference

on File and Storage Technologies (FAST 2011). San Jose, CA, Feb. 2011.

[29] Haris Volos, Andres Jaan Tack, and Michael M. Swift. “Mnemosyne: Light Weight Per-

sistent Memory”. In: Proceedings of the 2011 Architectural Support for Programming

Languages and Operating Systems (ASLPOS 2011). Newport Beach, CA, Mar. 2011.

[30] Xiaojian Wu and A. L. Narasimha Reddy. “SCMFS: A File System for Storage Class

Memory”. In: Proceedings of Supercomputing (SC’11). Seattle, WA, Nov. 2011.

[31] P. Zhou et al. “A Durable and Energy E�cient Main Memory Using Phase Change

Memory Technology”. In: Proceedings of the 36th International Symposium on Com-

puter Architecture (ISCA 2009). June 2009.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	NVM Usage Model
	MPI Collective I/O
	Benchmarks
	PMBD Emulator
	I/O Hierarchy

	Performance Study
	Impacts of Page Cache
	POSIX I/O and MPI Individual I/O
	MPI Collective I/O and MPI Individual I/O
	Conclusions.

	Detailed Performance Study for MPI Collective I/O
	Workflow of MPI Collective I/O
	Profiling MPI Collective I/O
	Performance Modeling for MPI Collective I/O

	Related Work
	Conclusions
	Bibliography

