UCLA

Presentations

Title

Big Data, Little Data, or No Data? A Social Science Perspective on Data Science [Presentation slides]

Permalink

https://escholarship.org/uc/item/2911049g

Author Borgman, Christine L.

Publication Date 2021-03-19

Supplemental Material https://escholarship.org/uc/item/2911049g#supplemental

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Big Data, Little Data, or No Data? A Social Science Perspective on Data Science

Christine L. Borgman

Distinguished Research Professor & Presidential Chair in Information Studies, Emerita Director, UCLA Center for Knowledge Infrastructures, @scitechprof

> Women in Data Science (WiDS), University of Virginia Keynote Presentation, 19 March 2021

BIG DATA, LITTLE DATA, NO DATA LITTLE DATA, NO DATA

심원식·현은희 옮?

Scholarship in the Networked World

Data Challenges in (Data) Science

- How to make data useful and reusable?
- How to decide what data are worth keeping?
- How to balance incentives and benefits?
- How to steward data resources?
- Who pays for infrastructure?

Data sharing policies

- U.S. Federal research policy
- European Research Council
- Research Councils of the UK
- Australian Research Council
- Individual countries, funding agencies, journals, universities

National Institutes of Health

Australian Government National Health and Medical Research Council

Policy RECommendations for Open Access to Research Data in Europe

中央研究院

Open Data Practices

- Link datasets to journal article or publication
- Deposit datasets in a data archive
- Publish data documentation
 - Research protocols
 - Codebooks
 - Software
 - Algorithms
- Cite data and software

UNIVERSITY

CALIFORNIA

*dash

PDS: The Planetary Data System

HOME	DATA SEARC	H	TOOLS	DATA STANDARD	S	
Home	About PDS	Da	ita Users	Data Proposers	Da	ata Providers

An easy-to-use data publication service

Publications <-> Data: Mapping

- Article 1
- Article 2
- Article 3
- Article 4

• Article n

- Dataset time 1
- Dataset time 2
- Observation time 1
- Visualization time 3
- Community collection 1
- Repository 1

Data Stewardship: The Ideal

Wilkinson, et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. *Scientific Data*, *3*, http://dx.doi.org/10.1038/sdata.2016.18

6

Q

National Aeronautics and Space Administration NASA Official: Brian Dunbar

Data

Cassini-Huygens: Mission to Saturn BY THE NUMBERS

PR

USCENSUSBUREAU

Data are representations of observations, objects, or other entities used as evidence of phenomena for the purposes of research or scholarship.

BIG DATA

LITTLE DATA

SCHOLARSHIP IN THE NETWORKED WOR

Kivelson, M. G., & Southwood, D. J. (2003). First evidence of IMF control of Jovian magnetospheric boundary locations: Cassini and Galileo magnetic field measurements compared. *Planetary and Space Science*, 51(13), 891–898. https://doi.org/10.1016/S0032-0633(03)00075-8

Science <-> Data

Engineering researcher:

"Temperature is temperature."

CENS Robotics team

Science <-> Data

Engineering researcher: *"Temperature is temperature."*

CENS Robotics team

Biologist: "There are hundreds of ways to measure temperature.

'The temperature is 98' is low-value compared to, 'the temperature of the surface, measured by the infrared thermopile, model number XYZ, is 98.' That means it is measuring a proxy for a temperature, rather than being in contact with a probe, and it is measuring from a distance. The accuracy is plus or minus .05 of a degree. I [also] want to know that it was taken outside versus inside a controlled environment, how long it had been in place, and the last time it was calibrated, which might tell me whether it has drifted.."

Center for Dark Energy Biosphere Investigations

International Ocean Discovery Program Iodp.tamu.org

- NSF Science & Tech Ctr, 2010-2020
- 20 universities, plus partners (35 institutions)
- 90 scientists
- Physical sciences
- Biological sciences

Slide by Peter T. Darch, UIUC

Repository for seafloor cores. Photo: Peter Darch

Data Diverge During Scientific Work

Darch, P. T., & Borgman, C. L. (2016). Ship space to database: Emerging infrastructures for studies of the deep subseafloor biosphere. *PeerJ Computer Science*, *2*, e97. https://doi.org/10.7717/peerj-cs.97

Data Practices

Data creation and reuse: The Ideal

Planning

Identify grants & funding

Collect & manage preliminary assets

Describe & organize assets

Implementation

Collect Assets
 Organize Assets
 Analyze Assets

Research Life Cycle

Preservation

Re-use

Migrate to sustainable formats
 Store reliably

Discovery & Impact

Understand metrics
 Use social media

Publishing

- Identify open access publications
- · Deposit work
- Share & cite work

Borgman, C. L. (2019). The lives and after lives of data. *Harvard Data Science Review*, 1(1). https://doi.org/10.1162/99608f92.9a36bdb6

Image credit: UC Irvine Libraries

Lack of incentives to share data

- Labor to document data
- Benefits to unknown others
- Competition
- Control
- Confidentiality
- Lack of expertise and staff
- Lack of sustainability...

Data Stewardship: The Reality

http://www.information-age.com/cloudcomputing-pharmaceutical-industry-123462676/

http://www.datamartist.com/data-migration-part-1-introduction-to-the-data-migration-delema

Post-doctoral fellows ¹⁸

Infrastructure

Star, S. L. & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and access for large information spaces. Information Systems Research, 7(1): 111-134. Figure by Florence Millerand, from: Edwards, P. N., Jackson, S. J., Bowker, G. C. & Knobel, C. P. (2007). Understanding Infrastructure: Dynamics, Tensions, and Design. National Science Foundation: University of Michigan. NSF Grant 0630263. http://hdl.handle.net/2027.42/493520

Global and Technical

Project Timelines

Figure 1. Relationships between Publications, Objects, Observations and the corresponding major actors in the curating process and their activities (in red).

Accomazzi, A., & Dave, R. (2011). Semantic Interlinking of Resources in the Virtual Observatory Era. *arXiv:1103.5958*

SAO/NASA Astrophysics Data System, 1993-

ADS Collaborators

Local and Social

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 21th century, requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ✿ Experiment design
- ✿ Bayesian inference
 ✿ Supervised learning: decision trees
- random forests, logistic regression
- ormensionality reduction ☆ Optimization: gradient descent and variants

- PROGRAMMING & DATABASE
- Computer science fundamentals
- ☆ Statistical computing packages, e.g.
- 🕸 🛛 Databases: SQL and NoSQL
- ✿ Relational algebra
- Parallel databases and parallel query processing
- ☆ MapReduce concepts
- 🕁 Hadoop and Hive/Pig
- ✿ Custom reducers
- ✿ Experience with xaaS like AWS

DOMAIN KNOWLEDGE & SOFT SKILLS

- ✿ Passionate about the business
- 🕁 Curious about data
- ☆ Influence without authority
- 🗇 Hacker mindset
- ✿ Problem solver
- Strategic, proactive, creative, innovative and collaborative

COMMUNICATION & VISUALIZATION

- ✿ Able to engage with senior management
- ☆ Story telling skills
 ☆ Translate data-driven insights into
- decisions and actions ☆ Visual art design
- ☆ R packages like ggplot or lattice
 ☆ Knowledge of any of visualization
- r Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

Photo by <u>@kissane</u>; presentation by Jason Scott (@textfiles)

https://en.wikipedia.org/wiki/Data_sharing

CC Sean MacEntee, Flickr

The Data Creators' Advantage

	Comparative Data Reuse <-> Integrative Data Reuse				
Goal	'Ground truthing:' calibrate, compare, confirm	Analysis: identify patterns, correlations, causal relationships			
Example	Instrument calibration, sequence annotation, review summary-level data	Meta-analyses, novel statistical analyses			
Frequency	Frequent, routine practice	Rare, emergent practice			
Interpretation	Interactional expertise, 'knowledge that'	Contributory expertise, 'knowledge how,' tacit knowledge			

Pasquetto, I. V., Borgman, C. L., & Wofford, M. F. (2019). Uses and reuses of scientific data: The data creators' advantage. *Harvard Data Science Review*, 1:2, https://hdsr.mitpress.mit.edu/ or https://hdsr.mitpress.mit.edu/ or https://doi.org/10.1162/99608f92.fc14bf2d

Infrastructure: Durability

- Collaboration and openness
- International coordination
- Long-term value of data
- Agreed standards
 - Units of measurement
 - Coordinate systems
 - Data structures
- Shared resources
 - Missions, instruments
 - Data archives
 - Tools and technologies

Infrastructure: Fragility

- Investments in data stewardship
 - Mission, instrument
 - Type of research
 - Space-based vs. ground based
 - Large missions vs. observing proposals
 - Shared vs. custom instruments
- Access to data
 - Public archives
 - Local websites
 - Derived data
- Curation investments
 - Open source software
 - Proprietary tools
 - Local pipelines, tools, scripts

Summary

Scientific Data and Infrastructure

- Infrastructures are fragile
- Visible infrastructure
 - Instruments
 - Institutions
- Invisible infrastructure
 - Data, metadata, provenance...
 - Information work
- Interdisciplinary science
 - Global science
 - Local practices

Data, Infrastructure, and Stewardship

- Whose data?
 - Global, comparative, fungible
 Local, integrative, specific
- Whose infrastructure?
 - Funders, universities, companies
 - Individual investigators
- Whose stewardship?

- Maintain collections, models, instruments, technology, code...
- Invest in people, skills, collaborations

UCLA Center for Knowledge Infrastructures

Alberto Pepe, David Fearon, Katie Shilton, Jillian Wallis, Christine Borgman, Matthew Mayernik (2009)

Christine Borgman

Bernie Boscoe

Peter Darch

Cheryl Thompson

Ashley Sands

Morgan Wofford

Irene Pasquetto

Michael Scroggins

Sharon Traweek

For a full list of CKI participants, collaborators, and coauthors since ca 2002, see https://knowledgeinfrastructures.gseis.ucla.edu/