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On the global stability of departure time user
equilibrium: A Lyapunov approach

Wen-Long Jin ∗

January 31, 2018

Abstract
In (Jin, 2018), a new day-to-day dynamical system was proposed for drivers’ departure time

choice at a single bottleneck. Based on three behavioral principles, including backward choice,
cost balancing, and scheduling cost reducing or scheduling payoff gaining principles, the non-
local departure and arrival times choice problems were converted to the local scheduling payoff
choice problem, whose day-to-day dynamics are described by the Lighthill-Whitham-Richards
(LWR) model on an imaginary road of increasing scheduling payoff. Thus the departure time
user equilibrium (DTUE), the arrival time user equilibrium (ATUE), and the scheduling payoff
user equilibrium (SPUE) are uniquely determined by the stationary state of the LWR model,
which was shown to be locally, asymptotically stable with analysis of the discrete approxima-
tion of the LWR model and through a numerical example.

In this study attempt to analytically prove the global stability of the SPUE, ATUE, and
DTUE. We first generalize the conceptual models for arrival time and scheduling payoff choices
developed in (Jin, 2018) for a single bottleneck with a generalized scheduling cost function,
which includes the cost of the free-flow travel time. Then we present the LWR model for
the day-to-day dynamics for the scheduling payoff choice as well as the SPUE. We further
formulate a new optimization problem for the SPUE and demonstrate its equivalent to the op-
timization problem for the ATUE in (Iryo and Yoshii, 2007). Finally we show that the objective
functions in the two optimization formulations are equal and can be used as the potential func-
tion for the LWR model and prove that the stationary state of the LWR model, and therefore,
the SPUE, DTUE, and ATUE, are globally, asymptotically stable, by using Lyapunov’s second
method. Such a globally stable behavioral model can provide more efficient departure time
and route choice guidance for human drivers and connected and autonomous vehicles in more
complicated networks.

Key words: Single bottleneck; User equilibrium; Scheduling payoff choice; Lighthill-Whitham-
Richards model; Optimization formulation; Global stability.
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1 Introduction
If an origin-destination pair is connected by a single bottleneck, morning commuters would diver-
sify their departure times so as to minimize their total costs, including both travel costs, scheduling
costs, and/or tolls (Vickrey, 1969; Hendrickson and Kocur, 1981; Small, 2015). Theoretically, the
traffic system reaches the so-called departure time user equilibrium (DTUE), when “the journey
costs at all departure times actually used are equal, and (equal to or) less than those which would be
experienced by a single vehicle at any unused time” (Wardrop, 1952; Arnott et al., 1990b). From
the point view of arrival times, the DTUE is equivalent to the arrival time user equilibrium (ATUE),
where “the journey costs at all arrival times actually used are equal, and (equal to or) less than those
which would be experienced by a single vehicle at any unused time”. In the ATUE, all commuters
have the same total cost, and “no individual user can improve his total cost by unilaterally changing
arrival times” (Hendrickson and Kocur, 1981; Mahmassani and Herman, 1984).1

Traditionally, the DTUE and ATUE have been analyzed and solved through variational inequal-
ities (e.g., Friesz et al., 1993; Szeto and Lo, 2004), optimization (linear programming) (Iryo and
Yoshii, 2007), and linear complementarity formulations (Akamatsu et al., 2015). In contrast to
such purely phenomenological approaches, day-to-day dynamical system models attempt to ex-
plain why and how a DTUE/ATUE can be reached through choice and learning behaviors. Many
such models have been successfully applied to study route choice behaviors and shown to be sta-
ble and converge to the corresponding static user equilibrium (Smith, 1984; Friesz et al., 1994;
Nagurney and Zhang, 1996, 1997; Jin, 2007; Yang and Zhang, 2009; Xiao et al., 2016; Guo and
Huang, 2016). All these models are based on the fundamental behavioral principle that drivers
tend to switch to less costly routes, but different in their implementation details. However, simple
extensions of this behavioral principle for departure time choice have been shown to be unsuccess-
ful (Iryo, 2008; Bressan et al., 2012; Guo et al., 2016, 2017); that is, all the proposed dynamical
systems in these references are unstable. The lack of a stable day-to-day dynamical system model
has led to questions over the existence of a stable DTUE/ATUE in the real world.

In (Jin, 2018), it was argued that the existence of a stable day-to-day dynamical system for
departure time choice cannot be ruled out logically, and observations of relatively stationary day-
to-day traffic patterns as well as relatively fixed departure time choices of commuters suggest stable
day-to-day dynamics for departure time choice. However, the behavioral principles regarding de-
parture time choice should be more sophisticated than directly switching to a less costly departure
or arrival time. Further three behavioral principles were identified: (i) the backward choice prin-
ciple: drivers choose their arrival times before departure times; (ii) the cost balancing principle
for departure time choice: drivers choose their departure times to balance the total costs; and (iii)
the scheduling cost reducing or scheduling payoff gaining principle for arrival time choice: drivers
switch their arrival times to those when the bottleneck is under-utilized with larger scheduling
payoffs. Therefore, even though the DTUE and ATUE are equivalent and seemingly symmetric,
drivers’ departure time and arrival time choices are not, and the former is dictated by the latter.

1In this study the departure and arrival times of a vehicle represent the time for it to depart from the origin and
arrive at the destination.
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Further with a conceptual V-shaped tube model, it was shown that the arrival time choice is non-
local, with the set of target arrival times disconnected. However, by converting the V-shaped tube
into a single tube, one can show that the nonlocal arrival times choice problem is equivalent to the
local scheduling payoff choice problem. Thus the day-to-day departure time choice leads to traffic
flow evolution on an imaginary road, which can be naturally described by the Lighthill-Whitham-
Richards (LWR). It was further proved that the DTUE and ATUE are equivalent to the scheduling
payoff user equilibrium (SPUE) defined by the LWR model and the corresponding splitting and
cost balancing procedures to determine the equilibrated arrival and departure flow-rates. Such a
new day-to-day dynamical system was shown to be asymptotically stable for the discrete approx-
imation of the LWR model analytically and then through a numerical example. However, the
analytical proof is for local stability subject to small perturbations, and the numerical proof is just
for one example.

In this study we attempt to analytically prove the global stability of the SPUE, ATUE, and
DTUE. We first generalize the conceptual models for arrival time and scheduling payoff choices
developed in (Jin, 2018) for a single bottleneck with a generalized scheduling cost function, which
includes the cost of the free-flow travel time. Then we present the LWR model for the day-to-
day dynamics for the scheduling payoff choice as well as the SPUE. We further formulate a new
optimization problem for the SPUE and demonstrate its equivalent to the optimization problem
for the ATUE in (Iryo and Yoshii, 2007). Finally we show that the objective functions in the two
optimization formulations can be used as the potential function for the LWR model and prove that
the SPUE and, therefore, the DTUE and ATUE, are asymptotically stable, by using Lyapunov’s
second method.

The rest of the paper is organized as follows. In Section 2, we present the definitions of the
single bottleneck problem and conceptual models for day-to-day arrival time choice. In Section
3, we present the dynamical system model of scheduling payoff choice and discuss the SPUE. In
Section 4, we formulate an optimization problem for the SPUE and demonstrate its equivalent to
the optimization problem for the ATUE in (Iryo and Yoshii, 2007). In Section 5, we show that the
objective functions in the two optimization formulations can be used as the potential function for
the LWR model and prove that the SPUE and, therefore, the DTUE and ATUE, are asymptotically
stable, by using Lyapunov’s second method. In Section 6, we conclude the study with discussions
and future directions.

2 Definitions and conceptual models

2.1 Definitions
We consider a road with a single bottleneck between an origin and destination pair, where the
free-flow travel time, ϒ0, is constant from day to day. We assume that the bottleneck capacity
(maximum service rate), C, and the travel demand, i.e., the total number of vehicles, N, are also
constant. As illustrated in Figure 1(a), on day r, the departure and arrival cumulative flows at time t
are respectively denoted by F ′(r, t) (thick, red curve) and G(r, t) (thin, blue curve). We shift F ′(r, t)
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to the right by ϒ0 and obtain F(r, t) = F ′(r, t−ϒ0). The derivatives of F ′(r, t), F(r, t), and G(r, t)
are respectively denoted by f ′(r, t), f (r, t), and g(r, t); thus f ′(r, t) = f (r, t +ϒ0) and g(r, t) are
respectively the departure and arrival flow-rates. Since the departure time choice is dictated by the
arrival time choice, we are primarily concerned with the travel characteristics for vehicles arriving
at t: δ (r, t) is the queue size, and ϒ(r, t) the queueing time. Thus the travel time for vehicles
arriving at the destination at t is ϒ0 +ϒ(r, t). For a vehicle with a departure time of t, its arrival
time is t +ϒ0 +

δ (r,t+ϒ0)
C . If g(r, t)<C, the bottleneck is under-utilized at t; otherwise g(r, t) =C,

and the bottleneck is fully utilized. The queue length is zero when the bottleneck is under-utilized.
The total cost for vehicles arriving at the destination at t is denoted by φ(r, t), which comprises

of the travel cost, caused by the travel time, and the scheduling cost, caused by the schedule delay:

φ(r, t) = α(ϒ0 +ϒ(r, t))+β max{t∗− t,0}+ γ max{t− t∗,0}, (1)

where t∗ is the ideal arrival time. In (Arnott et al., 1990a), α =$6.4/hr, β =$3.90/hr, and γ =15.21/hr.
A necessary condition for the existence of DTUE and ATUE is that β < α (Small, 2015). Further
we denote the queueing cost by

φ1(r, t) = αϒ(r, t), (2)

and the non-queueing cost, including both the free-flow travel cost and the scheduling cost, by

φ2(t) = αϒ0 +β max{t∗− t,0}+ γ max{t− t∗,0}. (3)

We refer to φ2(t) as generalized scheduling cost. Here we assume that the coefficients, α , β , and
γ , are constant from day to day. Thus the queueing cost may vary from day to day but the other
cost does not. Figure 1(b) illustrates the cost functions for given departure and arrival cumulative
flows. Further we have the following theorem from (Jin, 2018).

Theorem 2.1 If the bottleneck is under-utilized at t1 and the generalized scheduling cost at t2 is not
smaller than that at t1, then the total cost at t2 is not smaller than that at t1. That is, if g(r, t1)<C,
and φ2(t2)≥ φ2(t1), then φ(r, t2)≥ φ(r, t1).

Definition 2.2 The system reaches the arrival time user equilibrium (ATUE) if all used arrival
times have the same total cost, which is not greater than those of unused arrival times. That is,
φ(r, t) = φ∗ if g(r, t)> 0; and φ(r, t)≥ φ∗ if g(r, t) = 0. Here φ∗ is the minimum total cost.

The system reaches the departure time user equilibrium (DTUE) if all used departure times
have the same total cost, which is not greater than those of unused departure times. That is,
φ

(
r, t +ϒ0 +

δ (r,t+ϒ0)
C

)
= φ∗ if f ′(r, t)> 0; and φ

(
r, t +ϒ0 +

δ (r,t+ϒ0)
C

)
≥ φ∗ if f ′(r, t) = 0.

The equivalence between ATUE and DTUE is apparent, since each commuter has a unique set
of arrival and departure times. A mathematical proof of the equivalence was presented in (Jin,
2018). Since a vehicle’s departure time choice is dictated by its arrival time choice, we focus on
finding the ATUE.
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(a) (b)

Figure 1: (a) Traffic variables for a single bottleneck on day r; (b) Cost functions

2.2 Conceptual models for day-to-day arrival time choice
In Figure 2(a), at t the height of the dashed curve represents the generalized scheduling cost, φ2(t),
the vertical gap between the dashed and dotted curves represents the bottleneck capacity, C, and the
height of the shaded region represents the arrival flow-rate, g(r, t). In this case, the region bounded
by the dashed and dotted curves forms a V-shaped tube, which is under-utilized at t if there is
vacancy in the tube. According to Theorem 2.1, vehicles can reduce their total costs by switching
to under-utilized arrival times with smaller generalized scheduling costs; this is the scheduling
cost reducing principle for arrival time choice. In the figure, the three arrows represent three of
such switches of arrival times. Conceptually such choices are consistent with the movements of
fluids (e.g. water) caused by gravity in a V-shaped tube: they will attempt to fill a vacancy at a
lower point. In this sense, the third principle of arrival time choice is equivalent to finding a lower
vacancy in the V-shaped tube.

However, since drivers can switch to arrival times earlier or later than the ideal arrival time,
the fluid movements can be nonlocal (Bressan et al., 2012), which is enabled if the two sides of
the V-shaped tube are connected by capillaries with negligible widths. Thus, the V-shaped tube
is equivalent to a single tube as shown in Figure 2(b), where the fluid movements are local. The
single tube can also be imagined as a road, and vehicles drive southbound on the imaginary road.

We introduce a new variable x for the scheduling payoff, equal to the negative generalized
scheduling cost, as shown in Figure 2(b):

x = −φ2(t)≤−αϒ0. (4)

Therefore, a value of x corresponds to two arrival times, t1(x) and t2(x), as shown in Figure 2(a),
where

t1(x) = t∗+
x+αϒ0

β
, (5a)

t2(x) = t∗−
x+αϒ0

γ
, (5b)
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(a) (b)

Figure 2: Conceptual models of arrival time and scheduling payoff choices

where x+αϒ0≤ 0 and t1(x)≤ t∗≤ t2(x). Thus vehicles drives on the imaginary road in the positive
direction of x; i.e., the increasing direction of the scheduling payoff.

3 A dynamical system model and the scheduling payoff user
equilibrium

3.1 The LWR model for day-to-day scheduling payoff choice
On the imaginary road, the density at the scheduling payoff of x is denoted by k(r,x), whose unit
is veh/$ and defined by the integral form:∫ −αϒ0

y=x
k(r,y)dy =

∫ t2(x)

t1(x)
g(r, t)dt, (6)

or the differential form:

k(r,x) =
1
β

g(r, t1(x))+
1
γ

g(r, t2(x)). (7)

Therefore the imaginary density at x equals the sum of the arrival flow-rates at the two time, t1(x)
and t2(x), adjusted by β and γ respectively. It is represented by the horizontal width at x of the
shaded region in Figure 2(b). Correspondingly, the width of the single tube at x shown in Figure
2(b) equals the sum of the capacities at the two times, adjusted by β and γ respectively. We refer
to the width as the “jam density”, which is denoted by κ; thus

κ = (
1
β
+

1
γ
)C. (8)
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Furthermore, from ∫ −αϒ0

x=−∞

k(r,x)dx =
∫

∞

t=−∞

g(r, t)dt = N, (9)

we can see that the imaginary density is conserved, and

∂

∂ r
k(r,x)+

∂

∂x
q(r,x) = 0. (10)

The number of vehicles switching from payoff x− to x+ on day r is denoted by q(r,x), which is the
day-to-day flow-rate on the imaginary road with a unit of veh/day. We assume that there exists a
fundamental diagram:

q = Q(k). (11)

2

Therefore, the traffic flow dynamics on the imaginary road can be naturally described by the
Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956):

∂

∂ r
k(r,x)+

∂

∂x
Q(k(r,x)) = 0, (13)

which is derived from (10) and (11).
In addition, the LWR model satisfies the following conditions:

1. k(r,x) ∈ [0,κ];

2. The initial condition:

k(0,x) = k0(x), x ∈ (−∞,−αϒ0], (14)

which can be calculated from the initial departure cumulative flows F ′(0, t) and the point
queue model;

3. The boundary conditions:

q(r,−αϒ0) = q(r,−∞) = 0; (15)

i.e., no vehicles can enter or leave the imaginary road.

2 An example is the triangular fundamental diagram:

Q(k) = min{uk,w(κ− k)}, (12)

where u is the free-flow speed and w the shock wave speed in congested traffic. Here both u and w are positive and can
choose arbitrary values with a unit of $/day. But the dynamical system model works for any reasonable fundamental
diagrams if Q(k)≥ 0, and Q(k) = 0 if and only if k = 0 or k = κ .
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The LWR model, (13), subject to the initial and boundary conditions, (14) and (15), is an
infinite-dimensional dynamical system model, in which the imaginary densities at different payoffs
evolve with respect to the day variable, r. Thus we convert the departure time choice problem into
a day-to-day traffic flow problem on an imaginary road. Note that the arrival and departure flow-
rates can be calculated from the imaginary density by following the splitting and cost balancing
procedures, which were presented in (Jin, 2018) but omitted in this study.

3.2 Scheduling payoff user equilibrium
Definition 3.1 The system reaches the scheduling payoff user equilibrium (SPUE) if for the
LWR model, (13), reaches a stationary state (Jin, 2012, 2015):

∂k(r,x)
∂ r

= 0, (16)

and the total costs are balanced by the cost balancing principle for departure time choice. Thus in
the SPUE,

k(r,x) = k∗(x). (17)

Theorem 3.2 The SPUE is equivalent to the ATUE and DTUE.

This theorem was proved in (Jin, 2018). Thus the LWR model, (13), is also the dynamical
system model of day-to-day departure time choice, and ATUE/DTUE/SPUE is the stationary state
of the LWR model.

Lemma 3.3 In the SPUE, q(r,x) = 0; i.e., there is no scheduling payoff choice dynamics.

Proof. From (10), we have

∂q(r,x)
∂x

= 0.

From (11) and (16), we have

∂q(r,x)
∂ r

= 0.

Thus q(r,x) is independent of both r and x and, therefore, constant.
Further from the boundary condition, (15), we conclude that q(r,x) = 0 in the SPUE. �

Theorem 3.4 In the SPUE, the density is uniquely given by

k∗(x) =

{
κ, −αϒ0−L∗ ≤ x≤−αϒ0;
0, otherwise, (18)
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where

L∗ =
N
κ
. (19)

That is, all vehicles have their generalized scheduling costs not greater than αϒ0 + L∗, which
is the total cost for all vehicles, and the corresponding smallest and largest arrival times are
t1(−αϒ0−L∗) and t2(−αϒ0−L∗). This can be illustrated in Figure 2(b), where the fluid settles
down to the bottom part of the single tube when there is no scheduling payoff choice dynamics.

Proof. From Lemma 3.3, q(r,x) = 0, and k∗(x) = 0 or κ at any x. Further from the kinematic wave
theory (Jin et al., 2009) we have

q(r,x) = min{d(r,x−),s(r,x+)}= min{Q(min{k(r,x−),κc}),Q(max{k(r,x+),κc})}, (20)

where κc is the critical density, and d(r,x−) and s(r,x+) are respectively the upstream demand and
downstream supply. Thus we can have the following three possibilities at any x: (i) k(r,x−) =
k(r,x+) = 0; (ii) k(r,x−) = k(r,x+) = κ; and (iii) k(r,x−) = 0, and k(r,x+) = κ . In particular,
k(r,x−) = κ , and k(r,x+) = 0 are not allowed. Therefore, inside the single tube or imaginary
road, the stationary density has to be given by (18), which constitutes a zero-speed shock wave at
−αϒ0−L∗.

Furthermore from (9), we can find L∗ in (19), which is the length of the queue. �

4 Two optimization formulations

4.1 A new optimization formulation of the SPUE
We define the following functional of k(r,x):

Φ(k(r,x)) = −
∫ −αϒ0

−∞

xk(r,x)dx. (21)

Lemma 4.1 Φ(k(r,x)) reaches its minimum if and only if k(r,x) = k∗(x) given by (18), where

Φ(k∗(x)) = −κ

∫ −αϒ0

−αϒ0−L∗
xdx. (22)

Proof. If k(r,x) 6= k∗(x), then there exists x<−αϒ0−L∗ such that k(r,x)> 0, and
∫−αϒ0−L∗
−∞

k(r,x)dx=
B > 0.3 Therefore,

1
B
[Φ(k(r,x))−Φ(k∗(x))] = −

∫ −αϒ0−L∗

−∞

x
k(r,x)

B
dx+

∫ −αϒ0

−αϒ0−L∗
x

κ− k(r,x)
B

dx.

3Note that when k(r,x) > 0 for some x < −αϒ0−L∗, and
∫ −αϒ0−L∗
−∞

k(r,x)dx = 0, then k(r,x) and k∗(x) are only
different on a set of measure 0. Such a difference is not physically meaningful, and we exclude this case in our study.
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From (9) we have ∫ −αϒ0

−∞

k(r,x)dx = N =
∫ −αϒ0

−αϒ0−L∗
κdx,

which leads to ∫ −αϒ0−L∗

−∞

k(r,x)
B

dx =
∫ −αϒ0

−αϒ0−L∗

κ− k(r,x)
B

dx = 1.

Since 0 ≤ k(r,x) ≤ κ , both k(r,x)
B and κ−k(r,x)

B are non-negative. Therefore,
∫−αϒ0−L∗
−∞

x k(r,x)
B dx is

an average of x between −∞ and −αϒ0− L∗. Note that there exists x < −αϒ0− L∗ such that
k(r,x)> 0. Thus we have ∫ −αϒ0−L∗

−∞

x
k(r,x)

B
dx <−αϒ0−L∗.

Similarly,
∫−αϒ0
−αϒ0−L∗ xκ−k(r,x)

B dx is an average of x between −αϒ0−L∗ and −αϒ0, and

∫ −αϒ0

−αϒ0−L∗
x

κ− k(r,x)
B

dx≥−αϒ0−L∗.

Therefore 1
B [Φ(k(r,x))−Φ(k∗(x))] > 0, which leads to Φ(k(r,x)) > Φ(k∗(x)) when k(r,x) 6=

k∗(x), and Φ(k(r,x)) reaches its minimum if and only if k(r,x) = k∗(x). �
From Lemma 4.1, we have the following theorem.

Theorem 4.2 k∗(x) in (18) is the unique solution of the following optimization problem:

min
k(r,x)

Φ(k(r,x)) = −
∫ −αϒ0

−∞

xk(r,x)dx (23)

s.t. ∫ −αϒ0

−∞

k(r,x)dx = N, (24a)

k(r,x) ≥ 0, (24b)
k(r,x) ≤ κ. (24c)

This is a new optimization formulation of the SPUE/ATUE/DTUE and the corresponding choice
behaviors.
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4.2 An existing optimization formulation of the ATUE
In the ATUE, the equilibrium arrival flow-rates corresponding to k∗(x) in (18) are given by

g∗(t) =

{
C, t ∈ B′;
0, t ∈ B, (25)

where the interval B=(−∞, t1(−αϒ0−L∗))∪(t2(−αϒ0−L∗),∞) and its complement B′= [t1(−αϒ0−
L∗), t2(−αϒ0−L∗)].

In (Iryo and Yoshii, 2007), a discrete optimization formulation of the ATUE was defined for a
single bottleneck with multiple classes. The continuous version for a single class can be written as
follows.

Theorem 4.3 The equilibrium arrival flow-rates, g∗(t), is the unique solution of the following
optimization problem:

min
g(r,t)

Φ
′(g(r, t)) =

∫
∞

−∞

g(r, t)φ2(t)dt, (26)

s.t. ∫
∞

−∞

g(r, t)dt = N, (27)

g(r, t) ≥ 0, (28)
g(r, t) ≤ C. (29)

In particular

Φ
′(g∗(t)) =

∫
t∈B′

Cφ2(t)dt. (30)

Proof. First, g∗(t)≥ 0, g∗(t)≤C, and from (5), (8), and (19), we have∫
∞

−∞

g∗(t)dt = C · (t2(−αϒ0−L∗)− t1(−αϒ0−L∗)) =CL∗(
1
β
+

1
γ
) = N.

Thus g∗(t) satisfies the constraints.
If a feasible g(r, t) 6= g∗(t), then there exists t ∈B such that g(r, t)> 0, and

∫
t∈B g(r, t)dt =B> 0.

4 Therefore,

1
B
[Φ′(g(r, t))−Φ

′(g∗(t))] =
∫

t∈B
φ2(t)

g(r, t)
B

dt−
∫

t∈B′
φ2(t)

C−g(r, t)
B

dt.

4We exclude the case when g(r, t) > 0 for some t ∈ B , but
∫

t∈B g(r, t)dt = 0, since such a g(r, t) is only different
from g∗(t) on a set of measure 0 and not physically meaningful.
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From (27) we have∫
t∈B

g(r, t)dt +
∫

t∈B′
g(r, t)dt = N =

∫
t∈B′

g∗(t)dt.

Thus ∫
t∈B

g(r, t)
B

dt =
∫

t∈B′
C−g(r, t)

B
dt = 1.

Since 0 ≤ g(r, t) ≤ C, both g(r,t)
B and C−g(r,t)

B are non-negative. Therefore,
∫

t∈Bφ2(t)
g(r,t)

B dt is an
average of φ2(t) inside B, and∫

t∈B
φ2(t)

g(r, t)
B

dt > φ2(t1(−αϒ0−L∗)) = φ2(t2(−αϒ0−L∗)).

Similarly,
∫

t∈B′ φ2(t)
C−g(r,t)

B dt is an average of φ2(t) inside B′, and∫
t∈B′

φ2(t)
C−g(r, t)

B
dt ≤ φ2(t1(−αϒ0−L∗)) = φ2(t2(−αϒ0−L∗)).

Therefore, 1
B [Φ

′(g(r, t))−Φ′(g∗(t))]> 0, which leads to Φ′(g(r, t))> Φ(g∗(t)) when g(r, t) 6=
g∗(t). Hence g∗(t) solves the minimization problem. �

4.3 Equivalence of the two optimization formulations
Theorem 4.4 Given (4) and (7), the objective functions of the SPUE and ATUE optimization for-
mulations are equal; i.e.,

Φ(k(r,x)) = Φ
′(g(r, t)). (31)

The constraints are also equivalent. Therefore, the two optimization formulations are equivalent.

Proof. From (4) and the relationship between t and x in (5), we have that∫ t∗

−∞

g(r, t)φ2(t)dt =
∫ t∗

−∞

g(r, t)(αϒ0 +β (t∗− t))dt =−
∫ −αϒ0

−∞

xg(r, t1(x))
1
β

dx,

and ∫
∞

t∗
g(r, t)φ2(t)dt =

∫
∞

t∗
g(r, t)(αϒ0 + γ(t− t∗))dt =

∫ −∞

−αϒ0

xg(r, t2(x))
1
γ

dx.

Thus we have

Φ
′(g(r, t)) =

∫ t∗

−∞

g(r, t)φ2(t)dt +
∫

∞

t∗
g(r, t)φ2(t)d

= −
∫ −αϒ0

−∞

x(
1
β

g(r, t1(x))+
1
γ

g(r, t2(x)))dx.
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Further from (7) we have

Φ
′(g(r, t)) = −

∫ −αϒ0

−∞

xk(r,x)dx = Φ(k(r,x)).

Thus the two objective functions are equal. It is easy to check that the constraints are also equiva-
lent. Therefore the two optimization formulations are equivalent. �

5 Global stability via Lyapunov’s second method
Lemma 5.1 The day-derivative of Φ(k(r,x)) is non-positive for any k(r,x), and zero only at the
SPUE, k∗(x); i.e., for any feasible k(r,x) given in (24),

∂Φ(k(r,x))
∂ r

= 0, k(r,x) = k∗(x); (32)

∂Φ(k(r,x))
∂ r

< 0, k(r,x) 6= k∗(x). (33)

Proof. From (21) we have

∂Φ(k(r,x))
∂ r

= −
∫ −αϒ0

−∞

x
∂k(r,x)

∂ r
dx.

From the conservation equation, (10), we have ∂k(r,x)
∂ r =−∂q(r,x)

∂x , and

∂Φ(k(r,x))
∂ r

=
∫ −αϒ0

−∞

x
∂q(r,x)

∂x
dx = xq(r,x)|−αϒ0

−∞ −
∫ −αϒ0

−∞

q(r,x)dx.

From the boundary conditions in (15), we have

xq(r,x)|−αϒ0
−∞ = 0.

Thus
∂Φ(k(r,x))

∂ r
= −

∫ −αϒ0

−∞

q(r,x)dx≤ 0,

since q(r,x)≥ 0 in the LWR model. When k(r,x) = k∗(x), q(r,x) = 0, and ∂Φ(k(r,x))
∂ r = 0. In addi-

tion, if k(r,x) 6= k∗(x) on a set of a positive measure, from (20) q(r,x) = min{d(r,x−),s(r,x+)}> 0
for some x, and ∂Φ(k(r,x))

∂ r < 0. �

Theorem 5.2 If we use Φ(k(r,x)) as the potential function, the LWR model, (13), is globally day-
to-day asymptotically stable at the SPUE, according to Lyapunov’s second method.

Proof. From Theorem 4.2, we can see that the potential function reaches its minimum at k∗(x).
Further from Lemma 5.1, the potential function’s derivative is strictly negative at densities other
than k∗(x). Therefore, according to Lyapunov’s second method (LaSalle, 1960), the LWR model
is asymptotically stable at the SPUE. �

Our study provides another interesting example to the literature of the global stability of hy-
perbolic conservation laws, which is rather scarce (Xu and Sallet, 2002; Coron et al., 2007).
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6 Conclusion
In this study we first generalized the conceptual models for arrival time and scheduling payoff
choices developed in (Jin, 2018) for a single bottleneck with a generalized scheduling cost func-
tion. Then we presented the LWR model for the day-to-day traffic flow dynamics on an imaginary
road for the scheduling payoff choice as well as the scheduling payoff user equilibrium (SPUE),
which is equivalent to the departure time user equilibrium (DTUE) and the arrival time user equilib-
rium (ATUE). We further formulated a new optimization problem for the SPUE and demonstrated
its equivalent to the optimization problem for the ATUE in (Iryo and Yoshii, 2007). Finally we
showed that the objective functions in the two optimization formulations can be used as the poten-
tial function for the LWR model and proved that the SPUE and, therefore, the DTUE and ATUE,
are globally, asymptotically stable, by using Lyapunov’s second method. From both the dynamical
system and optimization formulations, we can see that the SPUE can be analytically solved, exist,
and are unique.

In addition to offering a proof of the global stability of day-to-day departure time choice at a
single bottleneck, this study also reveals the relationship between the dynamical system formula-
tion and the optimization formulation. On the one hand, the objective function of the optimization
formulation is the potential function of the dynamical system; on the other hand, the dynamical
system model serves as a method to solve the optimization problem. Such a relationship has been
observed in the corresponding dynamical system and optimization formulations of the static traffic
assignment problem (e.g. Jin, 2007), but is new for the departure time choice problem. The ob-
servation that the objective function of the optimization problems is the potential function for the
dynamical system of day-to-day scheduling payoff choice suggests that the LWR model could be
a behaviorally sound model to describe the day-to-day traffic flow of departure time choice on an
imaginary road with increasing scheduling payoffs.

In the future we are interested in extending both dynamical system and optimization formu-
lations for the SPUE in more complicated road networks, in which different vehicles can have
different free-flow travel times, scheduling cost functions, values of time, and so on. By study-
ing the relationship between the two formulations, we could obtain new insights regarding the
choice behaviors and effective methods for solving the dynamic user equilibrium with simulta-
neous departure time and route choices. We will also be interested in calibrating and validating
the behavioral principles incorporated into the model with real-world data. Such a globally stable
behavioral model can provide more efficient departure time and route choice guidance for human
drivers and connected and autonomous vehicles in more complicated networks.
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