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Rust fungi are a group of fungal pathogens that cause some of the world’s most
destructive diseases of trees and crops. A shared characteristic among rust fungi is
obligate biotrophy, the inability to complete a lifecycle without a host. This dependence
on a host species likely affects patterns of gene expansion, contraction, and innovation
within rust pathogen genomes. The establishment of disease by biotrophic pathogens
is reliant upon effector proteins that are encoded in the fungal genome and secreted
from the pathogen into the host’s cell apoplast or within the cells. This study uses
a comparative genomic approach to elucidate putative effectors and determine their
evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in
proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one
ascomycete. We inferred patterns of duplication and loss for each gene family and
identified families with distinctive patterns of expansion/contraction associated with the
evolution of rust fungal genomes. To recognize potential contributors for the unique
features of rust pathogens, we identified families harboring secreted proteins that: (i) arose
or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust
fungal genomes. While the origin of rust fungi appears to be associated with considerable
gene loss, there are many gene duplications associated with each sampled rust fungal
genome. We also highlight two putative effector gene families that have expanded in Cqf
that we hypothesize have roles in pathogenicity.

Keywords: effectors, rust pathogens, secretome, genome evolution, comparative genomics

INTRODUCTION
Rust fungi are plant infecting filamentous fungi in the order
Pucciniales (Basidiomycota) that are unified by obligate biotro-
phy (Voegele and Mendgen, 2011). This form of pathogenicity
requires a live host to establish a parasitic relationship. This is
accomplished through the establishment of a molecularly inti-
mate interaction at the host-pathogen interface characterized by
the secretion of an arsenal of proteins from the pathogen that
suppress host defense mechanisms and promote the acquisi-
tion of essential nutrients by the pathogen (Dodds et al., 2009;
Stergiopoulos and de Wit, 2009). Such proteins, termed effectors,
are thought to establish and maintain a compatible interaction
between the pathogen and host. The processes that drive evolu-
tion of effector diversity are of great interest because pathogen’s
effector genes and host resistance genes are the interacting “gene-
for-gene” pairs that drive coevolution in these pathosystems
(Jones and Dangl, 2006; Stergiopoulos and de Wit, 2009).

Secreted proteins can be identified from whole genome
sequences through the utilization of bioinformatic tools to iso-
late proteins with N-terminal secretion signals. Bioinformatic
pipelines can then be used to narrow predicted secreted pro-
tein sets to putative effectors. These proteins contain features of
known effectors such as elevated cysteine content (greater than
2%), that would enable the formation of stabilizing disulfide
bridges (Stergiopoulos and de Wit, 2009), and protein domains
associated with pathogenicity. Length is a criteria used to iden-
tify small secreted proteins (SSPs) from within putative effector
protein sets, as SSPs are effector-like proteins with lengths less
than 300 amino acids. Sequence comparisons alone do not pro-
vide a reliable means to identify putative effectors since some
known effectors are lineage-specific while others are conserved
across taxa (Rep, 2005; Saunders et al., 2012; Giraldo and Valent,
2013). Candidate effectors, a further distinction, are putative
effectors that have additional support for roles in pathogenicity
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(i.e., induced transcription or elevated expression in planta).
Genetic evidence for functional redundancy of effectors, pre-
sumably due to multigene families of effector proteins, whose
members share similar functions, has been reported in several
pathogens (Kamper et al., 2006; Rafiqi et al., 2012; Saitoh et al.,
2012; Giraldo and Valent, 2013). This suggests it would be useful
to characterize families of proteins with effector-like characteris-
tics so as to identify families that have expanded during evolution
in association with the acquisition of pathogenic life history char-
acteristics. Examining the evolutionary history of protein families
across a set of diverse fungal taxa should help identify lineage-
specific, putative effector protein families, families that may have
evolved similar functions in more distantly related taxa, and
families that may exhibit functional redundancy.

Cronartium quercuum f. sp. fusiforme (Cqf ) is a rust pathogen
that has a complex life cycle with five spore types and exhibits
alternation between two hosts, oak (Quercus spp.) and southern
pines (Pinus spp.). The fungus incites fusiform rust disease on
southern pines, leading to significant economic losses to the forest
products industry. The impact of the disease on pine produc-
tion has motivated extensive research on the genetic interaction
between Cqf and pine. The objective of this study is to identify
putative effector gene families in the Cqf genome through com-
parative genomic analyses between Cqf and 15 other fungal taxa,
including two other rust pathogens. We have identified families
that have expanded in Cqf that we hypothesize are involved in
conditioning stem gall phenotypes observed on the pine host. Our
analyses provide a more thorough perspective on Cqf and rust
pathogen evolution and also highlight the evolutionary patterns
of putative effector families that Cqf employs to establish disease
on two taxonomically diverse host species.

MATERIALS AND METHODS
GENE FAMILY CONSTRUCTION
Complete proteomes were downloaded from the public databases
of the National Center for Biotechnology Information (www.

ncbi.nlm.nih.gov/genome), U.S. Department of Energy’s
Joint Genome Institute (jgi.doe.gov/fungi), and the Broad
Institute (www.broadinstitute.org). Sixteen proteomes were
obtained: (Basidiomycota) Cronartium quercuum f.sp. fusiforme
G11 version 1.0 (Cqf ; unpublished, jgi.doe.gov/Cronartium),
Melamspora larici-populina version 1.0 (Mlp; Duplessis et al.,
2011a,b), Puccinia graminis f.sp. tritici CRL 75-36-700-3 race
SCCL (Pgt; Duplessis et al., 2011a,b), Mixia osmundae IAM
14324 version 1.0 (Mos; Toome et al., 2014), Sporobolomyces
roseus version 1.0 (Sro; with permission; jgi.doe.gov/fungi),
Rhodotorula graminis strain WP1 version 1.1 (Rgr; with per-
mission; jgi.doe.gov/fungi), Ustilago maydis strain 521 (Uma;
Kamper et al., 2006), Malasezzia globosa CBS 7966 (Mgl; Xu
et al., 2007), Pisolithus tinctorius Marx 270 version 1.0 (Pti; with
permission; jgi.doe.gov/fungi), Phanerochaete chrysosporium
version 2.0 (Pch; Martinez et al., 2004), Heterobasidion irregulare
version 2.0 (Hir; Olson et al., 2012), Serpula lacrymans S7.3
version 2.0 (Sla; Eastwood et al., 2011), Agaricus bisporus var.
bisporus H97 version 2.0 (Abi; Morin et al., 2012), Laccaria
bicolor version 2.0 (Lbi; Martin et al., 2008), Amanita muscaria
Koide version 1.0 (Amu; with permission; jgi.doe.gov/fungi),
and (Ascomycota) Saccharomyces cerevisiae S288C (Sce; Goffeau

et al., 1996), for a total of 200,313 proteins. Gene families were
delineated by OrthoMCL v.5.0 software (Li et al., 2003) using
default parameters (minimum e-value of 1e-05, minimum
similarity of 50%).

SECRETOME PREDICTION
The collective set of secreted proteins, or the secretome, of Cqf
was identified bioinformatically. Annotation of a secreted protein
is determined by signal peptide (SignalP 3.0 and 4.0; Bendtsen
et al., 2004; Petersen et al., 2011), protein localization (TargetP
1.1; Emanuelsson et al., 2000), and transmembrane domain
(TMHMM 2.0; Krogh et al., 2001) bioinformatics prediction soft-
ware (Feau et al. in prep.). Proteins predicted by TargetP 1.1 to
be targeted for the mitochondrion (with RC values between 1
and 3) were discarded and residual proteins are submitted to
TMHMM 2.0. If no TM-domain is identified in the protein, or a
TM-domain is predicted in the N-terminal region of the protein
(i.e., in the first 70 amino acids), the protein is re-oriented toward
SignalP 4.0; in any other case, the protein is discarded. SignalP
4.0 either implements the SignalP-TM network to discriminate
between a true signal peptide and an N-terminal trans-membrane
region or the SignalP-noTM network if the program does not
identify a TM-like domain in the N-terminal region of the pro-
tein. In this last case (i.e., if the the SignalP-noTM network is
implemented by SignalP 4.0), the protein is re-oriented toward
SignalP 3.0 and a signal peptide prediction is positive if either
both NN and HMM converged in a positive result or if NN
D-score returns a positive result with a D-score ≥ 0.5.

ESTIMATION OF GENE TREES
The protein sequences from each gene family were aligned using
MUSCLE (Edgar, 2004). We assembled a collection of amino
acid alignments from gene families with at least four sequences.
For each of the gene family alignments, we performed a maxi-
mum likelihood (ML) search to find the optimal topology using
RAxML v.7.2.8 with the PROTCATJTT model (Stamatakis et al.,
2005). Gene tree estimates often contain much error and can be
improved with knowledge of the underlying species tree (e.g.,
Rasmussen and Kellis, 2011). We constructed a species tree from
a phylogenetic matrix of 2404 single copy genes with sequences
from at least eight fungal taxa. We performed a ML search using
RAxML v.7.2.8 with the PROTCATJTT model on the concate-
nated single gene matrix to estimate the species tree. For each
of the gene trees, we used TreeFix version 1.1.8 (Wu et al., 2013)
to improve on the ML topology given the species tree. TreeFix
searches for a statistically equivalent rooted gene tree topology
that minimizes the number of duplications and losses implied by
the species tree. For 10 of the gene families, the TreeFix runs did
not complete in 1 week. For these gene trees, we rooted the ML
tree with a root that minimizes the number of implied duplica-
tions and losses using the program OptRoot (www.wehe.us). For
all of the gene trees output from TreeFix or OptRoot, the loca-
tions of the implied duplications and losses were mapped on the
species tree using URec version 1.02 (Gorecki and Tiuryn, 2007).

FUNCTIONAL ANNOTATION OF PROTEINS
Functional annotations were obtained from the Joint Genome
Institute’s (JGI) Mycocosm (jgi.doe.gov/fungi; Grigoriev et al.,
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2014) for the 16 organisms included in the phylogenetic
and gene family analyses. Protein domains were identified
using the online InterPro interface (http://www.ebi.ac.uk/
interpro/; Hunter et al., 2012). Transmembrane domain regions
were identified in amino acid sequences of proteins using
TMpred (www.ch.embnet.org/software/TMPRED_form.html;
Hofmann, 1993). Glycosylphosphatidylinositol (GPI) anchor
sites were predicted using big-PI Predictor (http://mendel.imp.
ac.at/gpi/gpi_server.html; Eisenhaber et al., 1999).

RESULTS
GENE FAMILY ANALYSIS
The OrthoMCL analysis of the proteomes identified 19,489 gene
families that contained 152,964 proteins. This protein count
was ∼76% (152,964/200,313) of the total proteins input into
OrthoMCL analysis. Protein counts per gene family ranged
from 2 (minimum size for a gene family) to 343 proteins, and
the average family size was 7.8 proteins. Approximately 42%
of the gene families had proteins encoded from only a sin-
gle taxon, and families with proteins encoded in two or three
taxa were the next most abundant families (Figure 1). Relatively
few families contained proteins detected in 4–14 taxa, but more
families contained proteins detected in 15 or 16 taxa (∼12%
of all families; 2,277/19,489). The families broadly conserved
across all 16 sampled taxa are likely to contain core essential
fungal proteins. The remaining ∼24% of input proteins that
did not group into families are considered true singletons, as

they lack homologs within their own proteome or in the other
taxa.

To highlight gene families specific to the rust pathogen lineage,
we compared gene family conservation between four pathogen
genomes belonging to the subphylum Pucciniomycotina, which
include three rust pathogens (Cqf, Mlp, and Pgt; Pucciniales)
and a non-rust fern pathogen, Mixia osmundae (Mos; Mixiales).
We selected the 4673 gene families containing proteins from at
least one of these four pathogens (and no proteins from other
sampled taxa) from the complete OrthoMCL family dataset.
These families contained 22,784 proteins and exhibited vary-
ing patterns of conservation across the four taxa (Figure 2A).
Most prominently, 14,978 of the 22,784 proteins (65.7%) were
encoded in only one of the four pathogen genomes, illustrating
high levels of species specificity (Figure 2A). Fewer proteins were
shared between two or more rust fungi in this subset of families
(7512/22,784 or 33.0%) (Figure 2A). Of the 19,485 families deter-
mined by OrthoMCL, 656 families (or 3.4%; Figure 2B) consisted
of gene models found only in the three rust pathogen genomes,
where each of the three rust pathogens had a representative gene
model in the family. A total of 3466 proteins (Figure 2A) were
ascribed to these rust pathogen-specific families. The largest fam-
ily contained 249 proteins, and the smallest had 3 proteins. These
656 families represent the “core” rust pathogen protein set. Of
the sampled genomes, the two pathogens with the most uniquely
shared families are Cqf and Mlp, which have 878 conserved
families.

FIGURE 1 | Gene families are predominantly species-specific in the sampled taxa. The proportions of gene families with proteins encoded in one through
16 fungal taxa genomes (taxa count) are displayed for the 19,489 OrthoMCL gene families.
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FIGURE 2 | Conserved proteins and families within only four

Pucciniomycete pathogen genomes are mostly species-specific. Gene
family (OrthoMCL) conservation within Pucciniomycete pathogens; Mixia
osmundae (Mos), Cronartium quercuum f.sp. fusiforme (Cqf), Melampsora

larici-populina (Mlp), and Puccinia graminis f.sp. tritici (Pgt). The values
indicate the total number of (A) gene models or (B) gene families conserved
in only these four species and absent in the remaining 12 fungal taxa
included in the OrthoMCL analysis.

IDENTIFYING PUTATIVE EFFECTORS
We identified gene families encoding putative effectors in the Cqf
genome. To highlight putative effectors, the predicted secretome
(predicted secreted proteins; see Methods) was analyzed for cys-
teine content and family-level conservation. The Cqf secretome
harbors 666 SSPs, which are secreted proteins with fewer than
300 amino acids (aa). The range in protein lengths within the
secretome was 51–1716 aa with a median length of 249 aa.

Analysis of Cqf gene families elucidated the evolutionary his-
tories of secreted putative effectors. To identify putative effector
families within the Cqf genome, we selected gene families with
at least two secreted proteins, as these families would then con-
tain at least two paralogous putative effectors and the family
would have therefore expanded in the Cqf genome. In total, 132
putative effector families were identified. Sixty-five of these fam-
ilies were conserved effector families, with proteins from two or
more fungal taxa. These families had sequences from 6.94 taxa
on average (Table 1) and represent potential effectors with func-
tions that can occur in a wide range of hosts. Alternatively, 67
novel effector families were considered to be evolutionary inno-
vations since the family members consisted of only Cqf proteins
(Table 2). The average family size for conserved effector families
(18.23 proteins) was significantly larger than Cqf -specific fami-
lies (3.54 proteins; t-test, p-value < 0.001). However, there was
no difference in the number of Cqf proteins per family in con-
served (mean = 5.02 proteins) and Cqf -specific families (mean
= 2.4 proteins). Families where all Cqf protein members are pre-
dicted to be secreted were found in both candidate effector family
types and at proportions that were not significantly different from
one another (conserved families = 40/65, Cqf -specific = 44/67;
Tables 1, 2). Evidence for potential sub- and/or neofunctionaliza-
tion was observed in 23 of the 67 (34.3%) Cqf -specific putative
effector families, as only a subset of proteins within these families
received secretion predictions, suggesting distinct biological roles
among family members.

GENE GAINS AND LOSSES
Gene gain and loss was quantified across all 16 sampled fungal
taxa. We mapped the gene trees from gene families with at least

four proteins onto a species tree to determine the patterns of
duplication and loss across the 16 fungal taxa. In total, we exam-
ined 10,371 gene trees containing 131,863 protein sequences.
These gene trees implied a minimum of 49,539 duplications (i.e.,
gene family gains) and 21,789 losses (i.e., gene family contrac-
tions and/or entire family loss). Over 93.9% of the duplications
and 67.9% of the losses are species-specific, occurring in a sin-
gle lineage at the tips of the species tree (Figure 3). The number
of species-specific duplications was positively correlated with the
size of a taxon’s proteome (R2 = 0.93), suggesting that gene
duplication is a mechanism for proteomic expansion and diver-
sification for the selected fungal taxa (Figure 4). There was no
obvious relationship between proteome size and species-specific
duplication with life history forms (i.e., symbiotic, pathogenic, or
free-living) (Figure 4). Species-specific losses were not correlated
with the proteome size, but the rust pathogen lineage exhibited
fewer losses than other sampled taxa (Figure 5).

We identified genes that were gained and lost specifically in the
rust pathogen clade. There were many gene losses (1217 events
within 1148 families) associated origin of the rust pathogen clade
within Pucciniomycotina (Cqf, Mlp, and Pgt) compared to the
number of gains (248 events, 142 families) (site R in Figure 3).
The number of taxa represented in these 1148 families range from
2 to 16 species, with the largest proportion of families (10.6%)
having representatives from all 16 taxa in the analysis (Figure 6).
Families lost genes at the origin of the rust fungi appear to occur
in few of the sampled fungal lineages than those that had duplica-
tions in the rust fungi. Fifty percent of duplicated families contain
proteins from 14 or more sampled taxa (Figure 6). Though the
disproportionate level of gene losses prior to the common ances-
tor of rust pathogens is striking, each of the three rust fungal
species shows evidence of high species-specific rates of duplica-
tion (Figure 3). In fact, 32.1% of all the duplications across the
tree are specific to only one of the rust species (Figure 3).

The proteome of the Cqf rust pathogen is enriched for novel
proteins whose expansion has presumably contributed to spe-
cialization in its pathosystem. Numerous species-specific dupli-
cations have occurred following within the Cqf lineage (2730
duplication events in 549 families; Figure 3). Of the 549 families
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Table 1 | Conserved putative effector families have broad and narrow

taxonomic distributions.

OrthoMCL

group ID

Total

proteins

in family

Cqf

proteins

in family

Proteins in

Cqf

secretome

Number of taxa

represented

in family

5485 12 7* 7 3

2168 17 6 5 3

2725 16 13 5 3

1053 94 6 4 13

2731 16 5 4 5

5853 11 5 4 5

6604 9 5 4 2

1101 65 62 3 2

1281 33 3* 3 3

1293 32 5 3 10

1397 27 3* 3 12

1831 19 3* 3 6

2730 16 3* 3 10

5067 13 4 3 7

6199 10 3* 3 3

6608 9 3* 3 3

6599 9 3* 3 5

7036 8 4 3 2

9412 5 3* 3 2

10,437 4 3* 3 2

1014 170 69 2 10

1219 39 3 2 14

1382 28 2* 2 13

1410 27 3 2 15

1444 26 2* 2 14

1428 26 2* 2 10

1507 24 3 2 15

1546 23 2* 2 13

1541 23 2* 2 16

1593 22 2* 2 13

1703 21 2* 2 8

1898 19 2* 2 14

1829 19 2* 2 15

1957 18 2* 2 14

2180 17 3 2 9

2191 17 2* 2 10

2172 17 2* 2 16

4359 15 2* 2 13

3833 15 2* 2 12

3825 15 2* 2 11

4560 14 2* 2 10

5075 13 2* 2 7

5492 12 3 2 6

5799 12 2* 2 10

6367 10 3 2 6

6213 10 3 2 3

6206 10 2* 2 3

6601 9 7 2 2

6606 9 3 2 7

6629 9 2* 2 6

(Continued)

Table 1 | Continued

OrthoMCL

group ID

Total

proteins

in family

Cqf

proteins

in family

Proteins in

Cqf

secretome

Number of taxa

represented

in family

7040 8 2* 2 2

7590 7 2* 2 3

9416 5 4 2 2

9414 5 4 2 2

9843 5 2* 2 3

9462 5 2* 2 2

9446 5 2* 2 2

9431 5 2* 2 4

9424 5 2* 2 3

10,479 4 3 2 2

10,474 4 3 2 2

10,432 4 3 2 2

11,968 3 2* 2 2

11,958 3 2* 2 2

11,908 3 2* 2 2

Total 1185
proteins

326 proteins 162 proteins -

Average 18.23
proteins per

family

5.02 Cqf
proteins per

family

2.5 secreted
proteins per

family

6.94 taxa per
family

Gene families with greater than two Cqf predicted secreted proteins are listed.

Data is ranked by the number of Cqf secreted proteins. The total number of pro-

teins in each family is provided as well as the number of proteins belonging to

the Cqf secretome (i.e., predicted secreted proteins). Asterisks adjacent to total

protein counts indicate families where all members are Cqf secretome mem-

bers. If no asterisk is present, only a portion of the family received secretion

predictions. Family 5485 (bold) will be detailed later in article.

that have undergone Cqf -specific duplications, 248 (or 45.17%)
contain proteins not observed in any other analyzed fungal taxa.
These 248 novel families comprise 14.5% of the annotated Cqf
proteome (2017/13,903 proteins), highlighting the rapid expan-
sion of novel, likely pathogenicity-related gene families. The vast
majority (98.8%) of these novel families do not have BLASTp hits
in the NCBI non-redundant database or have hits to unknown
proteins (minimum e-value of 1e-10; Table 3) and 94.5% do not
contain InterPro domains (unpublished, jgi.doe.gov/Cronartium;
Hunter et al., 2012). Since the families that are unique to the Cqf
lineage are largely uncharacterized, they likely follow the assump-
tions for putative pathogenicity factors or effectors. Nearly 12%
(234/2,017) of proteins encoded in the 248 novel Cqf families
are members of the predicted Cqf secretome. This is significantly
greater than the ∼8% of entire Cqf proteome that also belongs
to the secretome (Chi-square = 25.418, p-value = 0.0001). The
protein characteristics of these secreted proteins are effector-like,
as the average cysteine content is 2.2% and the median protein
length is 272 amino acids.

The families that were duplicated in the Cqf lineage and
contain sequences from other taxa exhibit patterns of conserva-
tion that differ from the families duplicated or depleted in rust
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Table 2 | Potential sub- and neo-functionalization within Cqf-specific

putative effector families.

Gene family ID Cqf proteins

in family

Proteins in Cqf

secretome within family

8514 6* 6

9417 5* 5

9892 5* 5

2663 17 4

6030 11 4

9436 5 4

9897 5 4

7037 8 3

9890 5 3

9891 5 3

10,467 4 3

11,111 4 3

11,876 3* 3

11,879 3* 3

11,934 3* 3

12,788 3* 3

12,794 3* 3

12,804 3* 3

12,812 3* 3

5202 13 2

7921 7 2

7928 7 2

8502 6 2

9880 5 2

10,433 4 2

10,463 4 2

11,112 4 2

11,928 3 2

11,944 3 2

12,777 3 2

12,803 3 2

12,807 3 2

12,814 3 2

14,526 2* 2

14,527 2* 2

14,537 2* 2

14,552 2* 2

14,554 2* 2

14,563 2* 2

14,570 2* 2

14,577 2* 2

14,589 2* 2

14,623 2* 2

15,977 2* 2

15,979 2* 2

15,980 2* 2

15,992 2* 2

16,012 2* 2

16,034 2* 2

16,036 2* 2

16,051 2* 2

(Continued)

Table 2 | Continued

Gene family ID Cqf proteins

in family

Proteins in Cqf

secretome within family

16,052 2* 2

16,078 2* 2

16,079 2* 2

16,080 2* 2

16,081 2* 2

16,091 2* 2

16,101 2* 2

16,102 2* 2

16,106 2* 2

16,119 2* 2

16,123 2* 2

16,129 2* 2

16,146 2* 2

16,160 2* 2

16,163 2* 2

16,191 2* 2

Total 237 proteins 164 proteins

Average 3.54 Cqf proteins
per family

2.4 secreted proteins per family

Cqf-specific gene families with greater than two predicted secreted proteins are

listed. The total number of proteins in each Cqf-specific family is provided as

well as the number of proteins belonging to the Cqf secretome (i.e., predicted

secreted proteins) are indicated. Asterisks adjacent to total protein counts indi-

cate families where all members are Cqf secretome members. If no asterisk is

present, only a portion of the family received secretion predictions. Family 9417

(bold) will be detailed later in article.

pathogens (site R, Figure 3). Instead, these Cqf -specific dupli-
cated families (n = 549 families) are predominantly conserved in
not only Cqf, but also 2-3 taxa (Figure 6).

Cqf PUTATIVE EFFECTOR GENE FAMILIES—DISTRIBUTION AND
EXPANSION
Family 5485 is the largest family represented in the predicted
Cqf secretome. The family contains 12 orthologous proteins
(7 Cqf, 4 Mlp, and 1 Pgt proteins). Eleven of the 12 proteins
have predicted N-terminal signal peptides (SignalP 4.0; Petersen
et al., 2011), and all seven members from Cqf are annotated as
belonging to the Cqf secretome. Domain architecture and con-
servation data for Family 5485 proteins helps to predict their
biological functions and putative roles in establishing infection.
Additionally, 11 of the 12 proteins in this family contained three
multicopper oxidase (MCO) domains and the remaining protein
(Pgt_20719) contained two of the three domains (Figure 7A).
The Interpro domains identified include: Cupredoxin domain
(IPR008972), Multicopper Oxidase, Type 1 (IPR001117), and
Multicopper Oxidase, Type 2 (IPR011706), and Multicopper
Oxidase, Type 3 domain (IPR011707) (Figure 7A). A Copper-
Binding Site domain (IPR002355) was identified in only three Cqf
family members. These three proteins have a distinct phylogenetic
history from other family members (Figure 7B). Generally, the
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FIGURE 3 | Gene loss and gain in the Basidiomycota fungal

lineage highlights shared loss in the rust pathogen lineage and

high levels of species-specific gain. Mapping putative gene
duplications and losses across 16 fungal taxa. Values in blue are
associated with gains/duplications, whereas orange indicates loss.

Outside of parentheses are the number of gain or loss events that
have occurred on the branch preceding a node, and within
parentheses are the number of gene families associated with
duplications or losses. The node denoted with R indicates the last
common ancestor of the rust pathogens.

phylogenetic relationships, as well as the genomic colocalization
of the proteins in this family mirrors the domain architecture,
providing insight into how these proteins evolved (Figure 7A).
Several additional families of MCOs are present in the Cqf

genome (i.e., Families 5853, 1542, and 1053), however, by def-
inition, Family 5485 has a distinct evolutionary history from
other families as evidenced by distinct family placement by
OrthoMCL.

www.frontiersin.org June 2014 | Volume 5 | Article 299 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Pendleton et al. Genomic patterns in rust fungi

FIGURE 4 | The proteome size is positively correlated with the number

of gene family duplications across taxa. The linear relationship
(R2 = 0.93) between the proteome size (i.e., protein count) and the number
of species-specific duplications detected in the analyses from Figure 1 is
depicted in this figure. Rust pathogens (Cqf, Mlp, and Pgt) are indicated
with circles and non-rust pathogens with squares. The line of best fit (black)
is indicated. Please reference Methods for species abbreviations.

Family 9417 is the third largest family in the Cqf secretome,
with all five of its proteins predicted as secreted. This family con-
tains putative effectors likely involved in the establishment of
disease, as all members have signal peptides, short lengths (aver-
age 207 aa), and high cysteine content (average 6.5%). All five
family members contain at least one fungal extracellular mem-
brane (CFEM) domain (Interpro IPR008427). Five additional
proteins encoded in the Cqf proteome contain CFEM domains.
Two of the five do not belong to a gene family, and the remaining
three proteins each were ascribed to different families containing
orthologs from multiple fungal taxa, unlike Cqf -specific family
9417. Similar to Family 5485, proteins of Family 9417 also colocal-
ize in the genome, as three members are located on scaffold 43 of
the Cqf assembly and the remaining two proteins are adjacent to
one another on scaffold 5 (Figure 8). Protein members of Family
9417 adhere to consensus domain structure and subcellular tar-
geting of previously identified CFEM proteins. Online prediction
algorithms detected transmembrane domain regions (Tmpred;
Hofmann, 1993) and glycosylphosphatidylinositol (GPI) anchor
sites (big-Pi Predictor; Nielsen et al., 1997) in a subset of the fam-
ily proteins (Figure 8). All proteins, excluding Cqf91696, were
predicted to have N-terminal transmembrane helices spanning
amino acids 3-23 for both proteins. Two members, Cqf712797
and Cqf651034 had C-terminal GPI anchor sites at amino acids
223 and 302, respectively (p-values 1.25E-04 and 2.10E-04). Only
Cqf91696 had no bioinformatic evidence of association with the
fungal membrane.

DISCUSSION
This study provides the first detailed analysis of the secretome
of the fusiform rust pathogen, Cqf, since the recent assembly

FIGURE 5 | Lack of relationship between proteome size and gene

family losses across taxa. The relationship (R2 = 0.06) between the
proteome size (i.e., protein count) and the number of species-specific
losses detected in the analyses from Figure 1 is depicted in this figure. The
line of best fit (black) and fit mean (red) are also shown. Rust pathogens
(Cqf, Mlp, and Pgt) are indicated with circles and non-rust pathogens with
squares. Please reference Methods for species abbreviations.

and annotation of a draft reference genome (unpublished,
jgi.doe.gov/Cronartium). Additional criteria used in isolating
putative effectors from within the Cqf genome and its corre-
sponding secretome, included proteins exhibiting rust pathogen-
specific and Cqf -specific gene family membership. Following
gene family constructions, we highlighted putative effectors with
paralogs (within Cqf ) or orthologs/paralogs (between Cqf and
other taxa) within the Cqf secretome. Over half (51%) of pro-
teins considered to be effector-like (small, cysteine-rich, secreted
proteins) belong to gene families. This is comparable to results
found in the hemibiotrophic pathogens Phytophthora ramorum
and P. sojae where 77% of their secretomes are found in multigene
families (Tyler et al., 2006). These findings demonstrate the value
of an evolutionary perspective for highlighting families harbor-
ing putative Cqf effectors. Altogether, the large-scale comparative
genomics analyses in this study help elucidate the unique patterns
of evolution in a rust proteome and its associated secretome.

PUTATIVE EFFECTOR FAMILIES
With the completion of the Cqf draft genome, it is important to
identify proteins that may be involved in establishing disease, such
as effectors, on oak and pine hosts. Based on the evolutionary
forces presumed to act on effectors, in combination with a trio of
rust pathogen genomes facilitating comparative analyses, we can
now do experiments not previously feasible. We suggest this is a
reasonable approach to identifying putative effectors that com-
plements more conventional methods. Previous studies searched
for effectors within other systems based on the presence of a sig-
nal peptide, cysteine richness, and short protein lengths (<300
aa) (Joly et al., 2010; Cantu et al., 2011; Duplessis et al., 2011b;
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FIGURE 6 | Families gained and lost in rust pathogens and Cqf have varying levels of taxonomic conservation. The proportion of gene families (y-axis)
that contain protein members from 1 to 16 fungal taxa (x-axis) among those that have either expanded or contracted in the rust fungi or Cqf.

Table 3 | Cqf -specific duplicated gene families contain predominantly

uncharacterized proteins.

Gene family annotation Number of gene families (proteins)

No hits 183 (1510)

Unknown protein 57 (430)

20S Proteasome subunit alpha 6 2 (9)

Zinc finger CCHC-type protein 1 (33)

HIV-1 retropepsin, polyprotein 1 (13)

Polysaccharide lyase family 4 1 (7)

Reverse transcriptase 1 (5)

MFS transporter, inorganic
phosphate transporter

1 (5)

CFEM domain containing protein 1 (5)

Functional annotation of the 248 gene families duplicated only in Cqf by BLASTp

against the non-redundant NCBI database (minimum e-values of 1e-10). A fam-

ily was ascribed a function if more than two proteins in the family received

the same top annotated BLASTp hit. The number of proteins within families

is indicated in parentheses.

Hacquard et al., 2012; Saunders et al., 2012). This study high-
lights the usefulness of comparative genomic analyses to examine
the evolutionary history of each secretome member, and that this
approach can also be complemented with structural character-
istics of predicted secreted proteins. The rationale behind these
comparisons is that effector families conserved in rust fungi and
unique to Cqf are candidates for conditioning rust pathogen and
Cqf infection strategies, respectively.

We observed species-specific proteomic gene family
gains/duplications in the Cqf lineage, a subset of which represents
putative effectors. The paralogous nature (i.e., multi-copy) of
their protein family members indicates functional redundancy,

which is consistent with other pathogenic fungi (Kamper et al.,
2006; Saitoh et al., 2012). We have identified two lines of evidence
that point toward neo- and sub-functionalization in Cqf putative
effector families. First, differential subcellular localization pre-
dictions have been observed within putative effector families. In
about 34% of Cqf -specific families, only a subset of proteins are
secreted from the fungal cell, while remaining family members
are not predicted for secretion, thus remaining within the fungal
cell. This pattern suggests that secreted proteins with effector
function may have evolved from non-secreted proteins without
an effector function or vice versa. Second, changes in domain
architecture of proteins within putative effector families also
points to neo- or subfunctionalization. For example family
5485 contains MCO laccase-like enzymes and a single clade of
three Cqf proteins that have acquired a MCO copper binding
site in the evolution of this family. It is possible that these
proteins have novel or distinct functions within Cqf than their
paralogs within the genome. This family is a strong putative
effector family because all Cqf members belong to the predicted
secretome and it has undergone Cqf -specific family duplications.
Protein members within this family co-localize in the genome,
possibly resulting from tandem duplication from non-equal
crossing over. Various functions have been ascribed to previously
identified fungal MCOs including lignin degradation (Leonowicz
et al., 2001; Lundell et al., 2010), melanin synthesis (Langfelder
et al., 2003), fruiting body formation (Kues and Liu, 2000),
and pathogenicity on hosts (Zhu and Williamson, 2004). This
family has expanded in Cqf, the first sequenced rust pathogen
that forms stem galls in woody tissues, and we hypothesize that
these enzymes play a role in gall formation. The most common
function for laccases/MCOs in basidiomycete fungi is lignin
metabolism (Thurston, 1994; Kües and Rühl, 2011). However,
this gene family exhibits a lack of conservation with known
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FIGURE 7 | Domain structure, phylogenetic relationships, and

colocalization of copper oxidases. (A) Phylogenetic relationship
estimated with TreeFix (Wu et al., 2013) for the 12 members of Family
5485. Tree reconstructed with Tree of Life viewer (Letunic and Bork, 2011).
See methods for additional details for gene tree estimation. Branch lengths
are not informative for this tree. Domain architectures are indicated for each
protein: N-terminal signal peptides per SignalP 4.0 (blue; Petersen et al.,
2011); (MCu1—IPR01117) Multicopper oxidase Type 1 (green);
(MCu2—IPR011706) Multicopper oxidase Type 2 (orange);
(MCu3—IPR011707) Multicopper oxidase Type 3 (purple); and
(CuBS—IPR002355) Multicopper oxidase, copper-binding site as
determined by InterPro (red; Hunter et al., 2012). The colocalization of
proteins on scaffolds is indicated by branches sharing the identical colors.
Thin black branches do not colocalize. (B) Co-localization of proteins within
MCO Family 5485 on scaffolds 7, 91, and 114. Family 5485 members are
denoted with the ID above each gene model. Secretome members are blue
arrows and non-secreted proteins are orange arrows. Gene orientation on
the scaffold is indicated with arrows. Note: gene lengths are not to scale.

MCOs of lignin-degrading wood rots (P. chrysosporium and
S. lacrymans), which points to the possibility that these enzymes
may be involved in pathogenicity or may metabolize a plant sub-
strate other than lignin. On both hosts, Cqf infects primary tissue
that lacks high levels of lignification such as spongy mesophyll
cells of oak leaves (Mims et al., 1996) and vascular cambium of
pine (Gray et al., 1982). If the Family 5485 enzymes are involved
in lignin degradation, the enzymatic activity may occur late in
gall development on the pine host, where the tissues are more
heavily lignified due to secondary wall formation. Though their
biochemical targets are unknown in planta, we hypothesize that
Family 5485 enzymes are secreted during infection and condition
the gall phenotype on the pine host. Further studies are required
to elucidate their true role in disease.

FIGURE 8 | Family 9417 proteins harbor both signal peptides and

CFEM domains domains and colocalize in the Cqf genome. Domain
architecture of Family 9417 protein members where signal peptides (blue),
CFEM Interpro domains (green), GPI anchor sites (orange), and predicted
transmembrane domains (red) are indicated for each protein. Three proteins
colocalize together on scaffold 43, the remaining on scaffold 5 (indicated on
right).

A second gene family that has expanded in the Cqf lin-
eage is Family 9417, which includes five Cqf -specific paralogs
that co-localize in the genome. Similar to Family 5485, differen-
tial domain architecture within this family implies that neo- or
subfunctionalization may have occurred. Family 9417 contains
putative effectors that harbor conserved, fungal-specific CFEM-
domains. These domains exhibit a characteristic cysteine distribu-
tion and have a broad taxonomic conservation in fungi (Kulkarni
et al., 2003; Martin et al., 2008; Perez et al., 2011). Predicted func-
tions of proteins harboring CFEM domains include critical roles
in appressorial development (Choi and Dean, 1997; DeZwaan
et al., 1999), signal transducers, adhesion and cell-surface recep-
tors (Kulkarni et al., 2003). In contrast to Family 5485 proteins,
which may interact with the host during infection, the molecular
target for Family 9417 proteins could be fungal. We hypothesize
these proteins are secreted and may play roles during infection of
the host.

EVOLUTION OF GENE GAIN AND LOSS
Patterns of gene family loss and gain for rust fungi highlight
major shifts in their proteomes, possibly associated with the rust
pathogen’s obligate biotrophic lifestyle. The origin of the rust
pathogen clade is associated with nearly five times more losses, or
family contractions, than duplications. There are many possible
mechanisms for gene loss in rust fungi. For this reason, further
investigations are required to both identify specific mechanisms
and quantify their levels of effects on gene family evolution in
rust fungi. However, we hypothesize that the since obligate biotro-
phy has evolved multiple times in fungi (Spanu, 2012), the skew
toward gene loss in the rust pathogen lineage might be asso-
ciated with the shift from the life history of its ancestral state
to that of the obligate biotrophic pathogens we observe today.
These lost and/or contracted families exhibit broad taxonomic
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conservation and may have been constituents of the ancestral
“core” fungal gene set, suggesting that they are unnecessary for
obligate biotrophic but may be necessary for free-living and sym-
biotic species. For example, enzymes integral to the sulfur and
nitrogen assimilation pathways are missing in Cqf (unpublished,
jgi.doe.gov/Cronartium), Mlp, and Pgt (Duplessis et al., 2011b).
This also suggests that evolution for obligate biotrophy drives
toward an irreversible life history shift (Spanu, 2012).

Although the rusts have undergone considerable gene fam-
ily losses and contractions, they exhibit some of the largest
proteomes in fungi. Much of their proteome size appears
to be due to species-specific duplications. Nearly one-third
(32.1%) of all observed duplications across all of the sam-
pled basidiomycete fungi are rust taxon-specific duplications.
The high levels of species-specific duplication yield dispropor-
tionately greater numbers of newly-evolved genes in the rust
pathogen genomes compared to ancient or conserved genes
(genes shared with older lineages) in each proteome. The pres-
ence of so many species-specific duplications suggests that
the rusts have highly labile genomes. This is consistent with
the large (>10%) genomic size variation detected in progeny
from a single Cqf cross relative to parental isolates (Anderson
et al., 2010). Such rapid changes, occurring in the span of
a single generation, could facilitate the gene gains and losses
observed in our analyses. The close association with hosts
may foster a labile and diverse genome, enabling the para-
sites to rapidly adapt to the continually evolving host resistance
pathways.

COMPARATIVE ANALYSIS AND GENETIC MAPPING TO VALIDATE
PUTATIVE EFFECTORS
Further characterization of putative effectors in Cqf could be
accomplished with analysis of selection potentially arising from
host resistance mechanisms (Allen et al., 2004; Aguileta et al.,
2009; Barrett et al., 2009; Thrall et al., 2012). In addition, expres-
sion analysis can be informative, since secreted proteins with
specific expression profiles during infection are stronger effec-
tor candidates (Ellis et al., 2009). Time-course experiments have
been successful in other rust pathogen systems to elucidate the
effector-like proteins involved in multiple or highly specific stages
during infection (Joly et al., 2010; Duplessis et al., 2011a; Bruce
et al., 2014). Also, resequencing of closely related rust pathogens
such as Cronartium ribicola, C. flaccidum, and Peridermium hark-
nessii (Vogler and Bruns, 1998) would improve precision of gene
family delineations and identification of true singleton Cqf effec-
tors, which are likely to be more newly evolved than effectors in
families, and may therefore be products of highly-specific host-
Cqf coevolution. Finally, a subset of the predicted effectors are
avirulence proteins and are, by definition, involved in genotype-
specific “gene-for-gene” interactions with hosts. These putative
avirulence effectors can be validated through genetic mapping
to their corresponding host resistance genes, an approach that
has previously been successful in identifying the first avirulence
protein locus in Cqf (Kubisiak et al., 2011). Altogether, these val-
idation approaches will yield true members of the Cqf secretome
and provide additional insight into the biological functions for
effectors infecting oak and pine.
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