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THE PRIMITIVE COHOMOLOGY OF THE THETA DIVISOR OF AN ABELIAN
FIVEFOLD

E. IZADI, CS. TAMÁS, AND J. WANG

Dedicated to Herb Clemens

Abstract. The primitive cohomology of the theta divisor of a principally polarized abelian variety of

dimension g contains a Hodge structure of level g− 3 which we call the primal cohomology. The Hodge

conjecture predicts that this is contained in the image, under the Abel-Jacobi map, of the cohomology

of a family of curves in the theta divisor. In this paper we use the Prym map to show that this version

of the Hodge conjecture is true for the theta divisor of a general abelian fivefold.
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Introduction

Let A be a principally polarized abelian variety (ppav) of dimension g ≥ 4, let Θ be a symmetric

theta divisor in A, and assume that Θ is smooth. The cohomology group

Hg−1(Θ,Z)

contains a natural sublattice of rank g!− 1
g+1

(
2g
g

)
(see [IvS, p. 561])

K := Ker(Hg−1(Θ,Z)
j∗−→ Hg+1(A,Z)),

which we call the primal cohomology of Θ. There is also a Hodge structure H ⊂ Hg−1(Θ,Z) which

fits in an exact sequence

0 −→ K −→ H −→ Hg−3(A,Z) −→ 0.

By [IvS, p. 562], these Hodge structures are all of level g − 3. For a rational Hodge structure

V := (VQ, VQ ⊗ C = ⊕p+q=nV p,q) of weight n, the level l(V ) of V is defined as the positive integer

l(V ) := max{ |p− q| | V p,q 6= 0 }.

Grothendieck’s version of the Hodge conjecture states that ifHg−1(Θ,Q) contains a Hodge substructure

of level g − 3, then it is contained in the image, under Gysin push-forward, of the cohomology of a

smooth (possibly reducible) variety of dimension g − 2. After tensoring with Q we have

HQ := H⊗Q = KQ ⊕ θ ·Hg−3(A,Q)

where θ := [Θ] is the cohomology class of Θ and θ·Hg−3(A,Q) is the image ofHg−3(A,Q) ∼= Hg−3(Θ,Q)

in Hg−1(Θ,Q). The subspace θ ·Hg−3(A,Q) is also a Hodge substructure of level g − 3 and satisfies

the Hodge conjecture since it is in the image, for instance, of the cohomology of an intersection of a
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translate of Θ with Θ. Therefore the Hodge conjecture for HQ is equivalent to the Hodge conjecture

for KQ.

An equivalent formulation of the Hodge conjecture is that HQ or KQ is contained in the image, under

the Abel-Jacobi map, of the cohomology of some family of curves in Θ (see e.g. [I, pp. 492-493] for

a proof of this elementary fact). For g = 4, it was proved in [IvS] that the family of Prym-embedded

curves in Θ is a solution to this problem for HQ.

For g = 5 a general ppav is again a Prym variety. However, in this case, every component of

the family of Prym-embedded curves in Θ parametrizes curves that are translates of a single curve.

Therefore the image of the cohomology of any of these components is contained in θ · Hg−3(A,Q).

Hence the family of Prym-embedded curves in Θ cannot be a solution to the Hodge conjecture for the

primal cohomology KQ.

Denote by Ag the coarse moduli space of principally polarized abelian varieties of dimension g.

Representing (A,Θ) as a Prym variety and using some interesting geometric constructions, we construct

a different family of curves in Θ which is a solution to the Hodge conjecture for HQ for (A,Θ) general

in A5.

Theorem 1. For (A,Θ) in a non-empty Zariski open subset of A5, the general Hodge conjecture holds

for the Hodge structure HQ ⊂ H4(Θ,Q) and hence KQ ⊂ H4(Θ,Q).

As the rational cohomology of Θ is the sum of KQ and the rational cohomology of A, our result,

together with the main result of [H], implies

Corollary 2. For (A,Θ) in the complement of countably many proper Zariski closed subsets of A5,

the general Hodge conjecture holds for Θ.

Note that there are relatively few examples of lower level Hodge substructures of the cohomology of

algebraic varieties that are not already contained in the images of the cohomologies of subvarieties for

trivial reasons. Some of the most interesting such examples are provided by abelian varieties, such as

abelian varieties of Weil type (see [I]) and the primal cohomology of theta divisors. In fact we are not

aware of any nontrivial examples that do not involve abelian varieties in some way. As far as we are

aware, the primal cohomology of the theta divisor of an abelian fivefold is the first nontrivial case of

a proof of the Hodge conjecture for a family of fourfolds of general type. The proof was considerably
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more difficult than the case of of the theta divisor of the abelian fourfold worked out in [IvS] and

required a difficult degeneration argument and nontrivial and interesting geometric constructions. As

is often the case with deep conjectures such as the Hodge conjecture, the level of difficulty goes up

rapidly with the dimension of the varieties concerned or, perhaps more accurately, with their Kodaira

dimension.

It would be interesting to know whether the Hodge structure K is irreducible. This would consid-

erably simplify our computation of the Abel-Jacobi map as in that case we would only have to prove

that its image intersects K nontrivially.

Letting R6 denote the moduli space of étale double covers of curves of genus 6, further note that

the monodromy group of the Prym map R6 → A5 is the Weyl group W (E6) of the exceptional Lie

algebra E6 (see [Do, Theorem 4.2]). Also, the lattice K has rank 78 for g = 5 which is equal to the

dimension of E6. So one might wonder whether it is possible to define a natural isomorphism between

KC := K⊗ C and E6.

We now explain the general outline of our proof.

A general ppav of dimension 5 is the Prym variety of an étale double cover of smooth curves X̃ → X

with X general of genus 6.

Using the 5-gonal construction (see [ILS]), we construct a family of curves in Θ (see Section 1)

Fr
ρ2
//

ρ1

��

Θ

G̃1
5

dependent on the choice of a general point r ∈ X̃. Here G̃1
5 is an étale double cover of the variety

G1
5(X) parametrizing pencils of degree 5 on X (∼= W 1

5 (X) if X is not a plane quintic), which is a

smooth irreducible surface for X sufficiently general. The Abel-Jacobi map for this family of curves

is, by definition,

ρ2∗ρ
∗
1 : H2(G̃1

5)→ H4(Θ).

The image of the Abel-Jacobi map defines a Hodge substructure of level ≤ 2 of the cohomology of Θ.

Theorem 1 is a direct consequence of
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Theorem 3. The Hodge structure HQ is the sum of θ ·H2(A,Q) and the image of ρ2∗ρ
∗
1.

We prove Theorem 3 by specializing the étale double cover X̃ → X to a Wirtinger cover. To define

a Wirtinger cover, choose two general points p and q on a general curve C of genus 5 and let Cpq be the

nodal curve of genus 6 obtained from C by identifying p and q. The Wirtinger cover C̃pq is obtained

as the union of two copies C1 and C2 of C, with the copy of p on each curve identified with the copy

of q on the other. The Prym variety of the Wirtinger cover C̃pq → Cpq is naturally isomorphic to the

polarized Jacobian (J(C),ΘC) of the curve C (see e.g. Section 2.4 below).

In most of the paper we work with a one-parameter family X → T of curves of genus 6 over an

analytic disc T with smooth total space, with general fiber Xt a general curve of genus 6 and special

fiber X0 = Cpq at 0 ∈ T a general one-nodal curve of genus 6. We also assume given an étale double

cover X̃ → X whose special fiber (X̃0 → X0) = (C̃pq → Cpq) is the Wirtinger cover described above.

To this family one associates the family of polarized Prym varieties (A,Θ) → T with special fiber

(A0,Θ0).

The plan of the paper is as follows.

In Section 1 we construct the family of curves Fr in the general case. In Section 2 we describe the

family of curves in the Wirtinger double cover case. We also explicitly describe the flat limit G0 of the

base Gt := G̃1
5(Xt) of the family. This is the transverse union of two smooth isomorphic surfaces. We

prove that the total space G → T of the family of the Gt is smooth.

In Section 3 we describe the total space of the family of theta divisors Θ → T . The singular locus

of Θ0 is a translate of the smooth genus 11 curve W 1
4 ⊂ Pic4C ∼= JC parametrizing pencils of degree

4. We prove that the total space Θ has ten ordinary double points corresponding to the five gi ∈ W 1
4 ,

i = 1, ..., 5, such that h0(gi − p− q) > 0, and their residuals hi := |KC − gi|.

In Section 4, we construct a semistable reduction Θ̃ of the family {Θt }. The central fiber Θ̃0 of the

new family has two components M1 and M2, where M1 is a resolution of Θ0 and M2 is the exceptional

divisor. During this process T is replaced by a double cover ramified only at 0 and we also replace the

family G by G̃, which is a resolution of the base change of G to this double cover.

In Section 5 we recall the necessary background material about the Clemens-Schmid exact sequence

and limit mixed Hodge structures.
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In Section 6 we compute the limit mixed Hodge structure induced by the family Θ̃ on the cohomology

of Θt. The weight filtration is nonzero only in weights 3, 4, 5 with associated graded pieces as follows:

Gr3H
4(Θt) ∼= Gr5H

4(Θt) ∼= Q12

and

Gr4H
4(Θt) ∼= Q264.

To extend the family of curves to the central fiber we first assume given a section r : T → X̃ , t 7→ rt of

the family of curves X̃ . Next we replace the families Frt by their images in the products Gt×Θt. The

Abel-Jacobi map on the fiber at t can then be described as the map induced by the cycle (ρ1, ρ2)∗[Frt ] ∈

H6(Gt ×Θt):

H2(Gt)
ρ∗1 // H2(Gt ×Θt)

∪(ρ1,ρ2)∗[Frt ]
// H8(Gt ×Θt)

ρ2∗
// H4(Θt).

To compute the limit of these maps at 0, we need a semistable reduction of the fiber product G̃ ×T Θ̃.

This is constructed in Section 7. The resulting space P is a small resolution of the fiber product

G̃ ×T Θ̃.

In Section 8 we show how the computation of the Abel-Jacobi map on the general fiber can be

reduced to computing it on (the strata of) the special fiber. We summarize the latter computations

in Propositions 8.1-8.4 and show how Theorem 3 follows from them.

Sections 9 and 10 describe the limit families of curves at t = 0.

In Section 11 we prove Propositions 8.1-8.4. In other words, we compute the image of the Abel-

Jacobi map AJ on the graded level with respect to the weight filtration:

Gr2H
2(G̃)→ Gr4H

4(Θ̃)(0.1)

and

Gr1H
2(G̃)→ Gr3H

4(Θ̃)(0.2)

Finally in the Appendix (Section 12) we gather some technical results needed in the rest of the

paper.
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Remark 4. (1) For g ≤ 2, g! − 1
g+1

(
2g
g

)
= 0 so K = 0. For g = 3, the lattice K has rank 1 and level

0, i.e., it is generated by a Hodge class. The abelian variety (A,Θ) = (JC,ΘC) is the Jacobian of a

curve of genus 3. The theta divisor is isomorphic to the second symmetric power C(2) of C and K is

generated by the class θ − 2η where η is the cohomology class of the image of C in C(2) via addition

of a point p of C:

C ↪→ C(2)

t 7→ t+ p.

(2) The primitive cohomology, in the sense of Lefschetz, is the subspace

H4
pr(Θ,Q) := Ker

(
H4(Θ,Q)

∪θ|Θ−→ H6(Θ,Q)
)
.

The relation between the primitive and the primal cohomology is

H4
pr(Θ,Q) = KQ ⊕ j∗H4

pr(A,Q),

where

H4
pr(A,Q) := Ker

(
H4(A,Q)

∪θ2

−→ H8(A,Q)
)
.

Note that in the case of hypersurfaces in projective space the primal and primitive cohomology coincide.

Notation and Conventions

(1) Unless otherwise specified, all singular cohomology groups are with Q-coefficients.

(2) For a smooth curve C of genus g and integer k > 0, choose a symplectic basis

ξi ∈ H1(C,Z) ∼= H1(Pick C,Z), i = 1, ..., 2g.

Put ξ′i := ξi+g, σi = ξiξ
′
i for i = 1, .., g and denote θ =

∑g
i=1 σi the class of the theta divisor in

Pick C. We also denote ξi, σi and θ the pull backs to the k-th symmetric power C(k) under the

natural map

C(k) → Pick C.

Finally, denote η ∈ H2(C(k),Z) the class of the cycle p+ C(k−1) ⊂ C(k) for some p ∈ C.

(3) We will interchangeably refer to elements of Pick C as invertible sheaves or complete linear

systems. We use ≡ to denote linear equivalence between divisors and D1 ≤ D2 means D2−D1
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is an effective divisor. As usual, we denote W r
d ⊂ Picd the scheme parametrizing complete

linear systems of degree d and dimension r. By a grd we will mean a linear system of degree d

and dimension r.

(4) For products of symmetric powers of C, we denote ωk := pr∗kω ∈ H•(C(n1) × ... × C(nk) × ...),

where ω ∈ H•(C(nk)) and prk is the k-th projection.

(5) Via translation by an invertible sheaf of degree g − 1, we identify JC = Pic0C with Picg−1C

so that ΘC is identified with Riemann’s theta divisor W 0
g−1 ⊂ Picg−1C.

(6) As usual, ωC will denote the dualizing sheaf of C and KC an arbitrary canonical divisor on C.

1. The family of curves in Θ: the general case

Let X be a smooth curve of genus 6 with an étale double cover X̃ of genus 11. For a pencil M of

degree 5 on X consider the curve BM defined by the pull-back diagram

BM ⊂ X̃(5)

↓ ↓

P1 = |M | ⊂ X(5).

By [B2, p. 360] the curve BM has two isomorphic connected components, say B1
M and B2

M . Put

M ′ = |KX −M |. Then for any D ∈ BM ⊂ X̃(5) and any D′ ∈ BM ′ ⊂ X̃(5), the push-forward to X of

D +D′ is a canonical divisor on X. Hence the image of

BM ×BM ′ −→ Pic10 X̃

(D,D′) 7−→ OX̃(D +D′)

is contained in the preimage of ωX by the Norm map Nm: Pic10 X̃ → Pic10X. This preimage has two

connected components, say A1 and A2, each a principal homogeneous space under the Prym variety

(A,Θ) of the cover X̃ → X and parametrizing divisors whose spaces of global sections are even,

respectively odd, dimensional. If we have labeled the connected components of BM and BM ′ in such a

way that B1
M ×B1

M ′ maps into A1, then B2
M ×B2

M ′ also maps into A1 while B1
M ×B2

M ′ and B2
M ×B1

M ′

map into A2.

In order to obtain a family of curves in the theta divisor Θ = ΘX̃→X = 1
2
ΘX̃ |A1 of the Prym variety

A, we globalize the above construction.
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The scheme W 1
5 (X) parametrizing complete linear systems of degree 5 and dimension at least 1 on

X has a determinantal structure which is smooth for X sufficiently general. Let G1
5(X) denote the

scheme over W 1
5 (X) parametrizing pencils of degree 5. Note that W 1

5 (X) is a surface unless X is

hyperelliptic.

The universal family P 1
5 of divisors of the elements of G1

5 is a P1 bundle over G1
5 with natural maps

P 1
5 −→ X(5)

↓

G1
5

↓

W 1
5

whose pull-back via X̃ → X gives us the family of the curves BM as M varies:

B −→ X̃(5)

↓ ↓

P 1
5 −→ X(5)

↓

G1
5.

The parameter space of the connected components of the curves BM is an étale double cover G̃1
5 of G1

5.

The family of curves in the theta divisor of the Prym variety will be constructed as follows. Assuming

that X is not a plane quintic, the natural map G1
5 → W 1

5 is an isomorphism. We have the involution

ι : M 7→M ′ := |KX −M | on W 1
5 and hence also on G1

5. First define a family of surfaces ′F over G1
5 as

the fiber product
′F −→ B

↓ ↓ι%

B
%−→ G1

5.

As noted above, the image of ′F in Pic10 X̃ maps into Nm−1(ωX) ⊂ Pic10 X̃ which also shows that ′F

has two connected components. One component, denoted ′F1, maps into A1 and the other, denoted

′F2, maps into A2. The fiber of ′F1 over a point |M | ∈ G1
5 has two connected components B1

M × B1
M ′

and B2
M ×B2

M ′ .
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Therefore, if we make the base change

′′F1
//

��

′F1

��

G̃1
5

// G1
5,

′′F1 splits into two connected components (both isomorphic to ′F1 over C but their maps to G̃1
5 differ

by the involution of G̃1
5). We denote F the component which has fiber B1

M × B1
M ′ over the point

parametrizing B1
M .

Finally, we think of F as a correspondence

F � � // G̃1
5 × X̃(5) × X̃(5)

and define our family of curves Fr by intersecting F with the pull back of the divisor r + X̃(4) in the

first factor X̃(5) for a general point r ∈ X̃. The variety F ′r is the image of Fr in G̃1
5 ×Θ:

Fr
(ρ1,ρ2)

//

ρ1

��

F ′r ⊂ G̃1
5 ×Θ

G̃1
5.

Remark 1.1. It is easy to check that Fr maps generically injectively to G̃1
5×Θ. So the push-forward

of the cycle class [Fr] is the cycle class [F ′r].

2. The family of curves in Θ: the degeneration to a Wirtinger cover

Let X̃ → X be the family of étale double covers over T specializing to the Wirtinger cover C̃pq → Cpq

at 0 ∈ T as explained in the introduction.

Also assume that X and X̃ are smooth.

Consider the smooth one-parameter family

J5Cpq −→ J 5

↓ ↓

0 ∈ T
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obtained as a compactification of the relative degree 5 Picard scheme of X . The fiber of J 5 → T is

Pic5Xt for t 6= 0 and the fiber at t = 0 is the usual compactification J5Cpq of Pic5Cpq obtained as

follows.

2.1. The compactified Jacobian of Cpq. Let PPic5Cpq be the unique projective line bundle over

Pic5C containing the Gm-bundle Pic5Cpq → Pic5C. Then PPic5Cpq \ Pic5Cpq is the union of the

zero section Pic5
0
∼= Pic5C and the infinity section Pic5

∞
∼= Pic5C of PPic5Cpq → Pic5C. The

compactification J5Cpq is obtained from PPic5Cpq by identifying x ∈ Pic5C = Pic5
0 with x⊗OC(p−

q) ∈ Pic5C = Pic5
∞. The points of J5Cpq \ Pic5Cpq are the push-forwards ν∗N where ν : C → Cpq is

the normalization map and N ∈ Pic4C.

2.2. The support of W 1
5 (Cpq) and of its compactification W

1

5(Cpq). Let W
1

5(Cpq) be the sub-

variety of J5Cpq parametrizing torsion-free rank 1 sheaves M of degree 5 such that h0(M) ≥ 2. Let

Wpq ⊂ W 1
5 (C) ⊂ Pic5C be the surface consisting of those L such that h0(L − p − q) > 0, and let Xp

and Xq be the two curves p + W 1
4 (C) and q + W 1

4 (C) in Wpq. Pull-back via the normalization map

gives a morphism

ν∗ : W 1
5 (Cpq) −→ Wpq

whose image is Wpq \Xp ∪Xq. We have

Lemma 2.1. The morphism ν∗ : W 1
5 (Cpq) → Wpq is injective. Its inverse extends to a birational

morphism

(ν∗)−1 : Wpq −→→ W
1

5(Cpq)

that is bijective on Wpq \Xp ∪Xq and sends p+ g1
4 and q + g1

4 to ν∗g
1
4.

The involution ι extends to Wpq and sends L to |KC + p+ q − L|. It also descends to W
1

5(Cpq) and

sends ν∗g
1
4 to ν∗(|KC − g1

4|).

Proof. If M ∈ W 1

5(Cpq) is invertible, then the pull-back ν∗M is an invertible sheaf of degree 5 on C

and we have the usual exact sequence

0 −→M −→ ν∗ν
∗M −→ sk −→ 0

where sk is a skyscraper sheaf of length 1 supported at the singular point of Cpq. It follows that if

h0(M) ≥ 2, then h0(ν∗M) ≥ 2 also. Since C is a general curve of genus 5 and ν∗M has degree 5, we
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have h0(ν∗M) ≤ 2. So the map H0(ν∗M) = H0(ν∗ν
∗M)→ H0(sk) obtained from the above sequence

is zero. Since this map factors through the evaluation map H0(ν∗M)→ (ν∗M)p ⊕ (ν∗M)q, a moment

of reflection will show that a map ν∗ν
∗M −→→ sk that is zero on global sections and has locally free

kernel exists if and only if neither p nor q are base points of |ν∗M | and the unique nonzero section of

ν∗M that vanishes at p also vanishes at q.

Conversely, given an invertible sheaf L of degree 5 on C such that neither p nor q are base points of

|L| and the unique nonzero section of L vanishing at p also vanishes at q, one sees immediately that

there is a unique quotient map

ν∗L−→→ sk

onto a skyscraper sheaf of rank 1 supported at the singular point of Cpq such that the resulting map

on global sections

H0(ν∗L) −→ H0(sk)

is zero. The kernel of such a map is also immediately seen to be an invertible sheaf of degree 5 on Cpq.

Thus W 1
5 (Cpq) maps injectively into Wpq under ν∗.

If M is not locally free, then it is the direct image of a g1
4 ∈ W 1

4 (C). We have two exact sequences

0 −→ ν∗g
1
4 −→ ν∗(p+ g1

4) −→ sk −→ 0,

0 −→ ν∗g
1
4 −→ ν∗(q + g1

4) −→ sk −→ 0,

that give us two representations of M as the kernel of a surjective map from the pushforward of

an invertible sheaf to sk. Thus ν∗ maps p + g1
4 and q + g1

4 to ν∗g
1
4. The statements about ι are

immediate. �

Note that Wpq ⊂ Pic5C naturally embeds in C(3) via two different maps: q1 : L 7→ Γ3 := |KC − L|

and q2 : L 7→ Γ′3 := |L− p− q|. We have

Proposition 2.2. The surface Wpq is smooth for C, p and q general.

Proof. For L ∈ Wpq, via the two embeddings of Wpq in C(3), the tangent space to Wpq at L is contained

in the tangent spaces to C(3) at Γ3 and Γ′3. Embedding C(3) in Pic0C via subtraction of a fixed divisor

of degree 3, the projectivizations of these two tangent spaces can be identified (after a translation)

with the respective spans 〈Γ3 〉 and 〈Γ′3 〉 of Γ3 and Γ′3 in the canonical space |KC |∗ ∼= PT0 Pic0C. To
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prove Wpq is smooth at L, i.e. TLWpq has dimension 2, it suffices to show that 〈Γ3 〉 6= 〈Γ′3 〉, since the

intersection 〈Γ3 〉 ∩ 〈Γ′3 〉 is then a projective line which contains PTLWpq.

Using Riemann Roch and Serre Duality it is immediately seen that a divisor of degree ≥ 5 on C

cannot span a space of dimension ≤ 2 in |KC |∗. So, if 〈Γ3 〉 = 〈Γ′3 〉, then Γ3 and Γ′3 have a divisor of

degree at least 2 in common: Γ3 = Γ2 + t and Γ′3 = Γ2 + t′ for some Γ2 ∈ C(2) and t, t′ ∈ C. Note that

by our assumptions Γ3 + Γ′3 + p+ q ∈ |KC | is a canonical divisor.

If t = t′, then the span 〈Γ3 + Γ′3 + p + q 〉 is a hyperplane in |KC |∗ which is tangent to the

canonical image of C at three distinct points or has even higher tangency to the canonical curve. Such

hyperplanes form a family of dimension 1 for C general, hence choosing p and q sufficiently general,

this can be avoided.

If t 6= t′, then the span 〈Γ2+t+t′ 〉 is a plane, and, by Riemann Roch and Serre Duality, |Γ2+t+t′| ∈

W 1
4 (C), hence |KC − Γ2 − t − t′| ∈ W 1

4 (C). However |KC − Γ2 − t − t′| = |p + q + Γ2|. The divisors

of g1
4 := |Γ2 + t + t′| and h1

4 := |KC − Γ2 − t− t′| = |p + q + Γ2| are cut on C by the two rulings of a

quadric of rank 4 (since C is general, it is not contained in any quadrics of rank 3). Since Γ2 appears

in both g1
4 and h1

4, the line 〈Γ2 〉 contains the singular point of this quadric of rank 4. There is a

one-parameter family of such secants to C and for each such secant 〈Γ2 〉, there are exactly 5 (counted

with multiplicities) divisors p + q such that h0(Γ2 + p + q) ≥ 2. Therefore there is a one-parameter

family of divisors p+ q such that h0(Γ2 + p+ q) ≥ 2 for some Γ2 such that 〈Γ2 〉 contains the singular

point of some quadric of rank 4 containing C. Taking p + q outside this one-parameter family this

case is also eliminated. �

The computation of the Hilbert polynomial of W
1

5(Cpq) in Lemma 12.5 shows that W
1

5(Cpq), with its

reduced scheme structure, is the flat limit of W 1
5 (Xt). Therefore, if W1

5 ⊂ J 5 is the family of sheaves

with at least two independent global sections on each fiber Xt, then W1
5 → T is flat. Moreover, we

have

Proposition 2.3. The total space W1
5 is smooth.

Proof. This is clear at any invertible sheaf M ∈ W 1
5 (Xt) or M ∈ W 1

5 (Cpq). Suppose therefore that

M ∈ W 1

5(Cpq)\W 1
5 (Cpq). We need to prove that the Zariski tangent space toW1

5 at M is 3-dimensional,

i.e., it is equal to the Zariski tangent space to W
1

5(Cpq) at M . By Lemma 12.5, the morphismW1
5 → T

is flat and its scheme-theoretical fiber at 0 is W
1

5(Cpq) with its reduced structure. So the tangent space
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to W
1

5(Cpq) at M is the kernel of the differential of the map W1
5 → T at M and it is equal to the

tangent space to W1
5 if and only this differential is zero. Now the fact that this differential is zero

follows from the fact that the differential of the map J 5 → T is zero at M because J 5 is smooth and

J 5 → T is flat. �

2.3. The surface G̃1
5 in the Wirtinger double cover case. Let P 1

5 be the universal P1 bundle over

W
1

5(Cpq) whose fiber over M ∈ W 1

5(Cpq) is PH0(Cpq,M). The following fibered diagram is the limit

of the analogous diagram in the smooth case:

B //

��

C̃
(5)
pq

��

P 1
5

//

��

C
(5)
pq

W
1

5(Cpq).

(2.1)

The horizontal map in the second row is as follows. If M ∈ W 1
5 (Cpq) and 0 6= s ∈ H0(Cpq,M), then

the image of s in C
(5)
pq is div(s) = ν∗(div(ν∗s)). If M ∈ W 1

5(Cpq) \W 1
5 (Cpq), then M = ν∗g

1
4 and the

image of s ∈ H0(Cpq,M) = H0(C, g1
4) is ν∗(div(s) + p) = ν∗(div(s) + q) ∈ C(5)

pq .

Lemma 2.4. The surface G̃1
5(Cpq) is the union of two copies of Wpq, denoted W1 and W2, where

Xkp = W 1
4 (C) + p ⊂ Wk is identified with X3−k,q = W 1

4 (C) + q ⊂ W3−k for k = 1, 2.

Proof. First note that C̃
(5)
pq has the following irreducible components:

C
(5)
1 ∪ (C

(4)
1 × C2) ∪ (C

(3)
1 × C

(2)
2 ) ∪ (C

(2)
1 × C

(3)
2 ) ∪ (C1 × C(4)

2 ) ∪ C(5)
2 .

Accordingly, for a given M ∈ W 1
5 (Cpq), the two connected components B1

M and B2
M of the curve BM

embed, respectively, into

(C
(4)
1 × C2) ∪ (C

(2)
1 × C

(3)
2 ) ∪ C(5)

2

and

C
(5)
1 ∪ (C

(3)
1 × C

(2)
2 ) ∪ (C1 × C(4)

2 ).
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This first shows that G̃1
5(Cpq) has two irreducible components and that the double cover G̃1

5(Cpq) →

G1
5(Cpq) is split away from ν∗W

1
4 (C). The claim of the lemma over ν∗W

1
4 (C) follows from the fact

that, for a fixed M , the components B1
M and B2

M are exchanged by the involution induced by that

exchanging C1 and C2 in C̃pq. �

An immediate consequence of Lemma 2.4 is

Corollary 2.5. For a general double cover X̃ → X, the double cover G̃1
5 → G1

5 is nontrivial.

2.4. The pair (A0,Θ0). Denote (A,Θ)→ T the family of principally polarized Prym varieties of the

above family of double covers of curves.

Following Beauville [B1, pp. 175-176], the Prym variety A0 associated to the Wirtinger cover is

given by the following diagram

A0

∼= //

��

J(C)

��

1 // C∗ // J(C̃pq)
ν∗ //

Nm
��

J(C̃)

Nm

��

// 0

1 // C∗ // J(Cpq) // J(C) // 0

where J(C̃pq) and J(Cpq) are the generalized (noncompact) Jacobians, Nm is the Norm map, and

ν : C̃ = C1 q C2 → C̃pq is the normalization map.

To obtain a canonical theta divisor in A0, we fix a bidegree (d1, d2) such that d1 + d2 = 10 and the

following holds.

3 There exists a line bundle N on C̃pq of multidegree (d1, d2), so that h0(N) = 0.

By [B1, p. 153], the only bidegrees satisfying 3 are (6, 4), (4, 6) and (5, 5). If there is a one-parameter

family of line bundles N on X̃ with N0 = N|C̃pq
of bidegree (d1, d2), we can modify N by twisting

with a component of C̃pq so that N0 has either bidegree (6, 4) or (5, 5).

Proposition 2.6. We have a canonical identification (A0,Θ0) ∼= (Pic4C,ΘC).

Proof. Denote Pic6,4(C̃pq) the principal homogeneous space over J(C̃pq) parametrizing line bundles of

bidegree (6, 4) on C̃pq. We identify A0 with the subvariety of Pic6,4(C̃pq) consisting of line bundles N
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such that Nm(N) = ωCpq . Note that Nm−1(ωCpq) only has one connected component by the diagram

above (Pic6,4(C̃pq) is not compact). We then define the theta divisor Θ0 of A0 as the locus of line

bundles N ∈ A0 ⊂ Pic6,4(C̃pq) such that h0(N) > 0.

We have an isomorphism A0

∼=→ Pic4C which sends N to N |C2 . This is an isomorphism because N is

determined by ν∗N by the diagram above and N |C2 determines ν∗N since Nm(ν∗N) = N |C1 ⊗N |C2
∼=

ωC(p+ q). We claim that if h0(C̃pq, N) 6= 0, then h0(C2, N |C2) 6= 0. If not, let 0 6= s ∈ H0(C̃pq, N) be

such that s|C2 = 0: then s|C1 vanishes at p and q. Thus 0 6= s|C1 ∈ H0(C1, N |C1(−p − q)). However,

since N |C1(−p− q)⊗N |C2
∼= ωC , we have h0(C1, N |C1(−p− q)) = h1(C2, N |C2) = h0(C2, N |C2) = 0, a

contradiction. Thus the canonical identification sends Θ0 isomorphically to ΘC . �

2.5. The family of curves in the limit. Denote the total space of the family of the double covers

Gt := G̃1
5(Xt) by G. The space G is an étale double cover of W1

5 and therefore smooth by Proposition

2.3. The central fiber G0 of G is described in Lemma 2.4.

Assume we are also given a section r : t 7→ rt of X̃ → T . Let F (resp. Fr) be the closure in

G ×T X̃ (5) ×T X̃ (5) of the family of fourfolds (resp. threefolds) Ft (resp. Frt) constructed in Section 1

for the fibers over t 6= 0.

By construction, the central fiber F0 of F fibers over G0 = W1 ∪W2. The fiber over M ∈ Wk is the

surface Bk
M ×Bk

M ′ , where B1
M and B1

M ′ live in

(C
(4)
1 × C2) ∪ (C

(2)
1 × C

(3)
2 ) ∪ C(5)

2

and B2
M and B2

M ′ live in

C
(5)
1 ∪ (C

(3)
1 × C

(2)
2 ) ∪ (C1 × C(4)

2 ).

3. The degeneration of theta divisors

Let (A,Θ) = { (At,Θt) }t∈T be a 1-parameter family of principally polarized Abelian varieties of

dimension 5 with smooth total space A. Assume that for t 6= 0, the fiber Θt of Θ is smooth and that

the fiber of (A,Θ) at 0 is the polarized Jacobian (A0 = JC,Θ0 = ΘC) of a smooth curve C of genus 5.

We will obtain information about the cohomology of Θt from the cohomology of Θ0 using limit mixed

Hodge structures. We shall see below that the total space Θ is singular. We first need to modify the
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family (A,Θ) using base change and blow-ups to obtain a family of theta divisors with smooth total

space whose central fiber is a divisor with simple normal crossings.

3.1. The singularities of Θ. Denote by H the Siegel upper half space and consider the Riemann

theta function θ(z, τ) on C5 × H. After possibly replacing T with a finite cover we can assume that

there is a map τ : T → H such that the family (A,Θ) is the inverse image, via τ , of the universal family

of polarized abelian varieties over H. In particular, we can assume that the family Θ is defined by

{ (z, t) ∈ C5×T : θ(z, τ(t)) = 0 } (modulo the action of the lattice of At). Denote F (z, t) := θ(z, τ(t)).

Since Θt is smooth for t 6= 0, the total space Θ is smooth away from the special fiber Θ0. In the

case we are interested in, the singularities of the special fiber Θ0 are all double points and hence the

singularities of the total family Θ are at worst double points.

We compute the singularities of Θ locally, using the heat equation: ∂θ/∂τij = ∂2θ/∂zi∂zj modulo

multiplication by a constant. Here the τij denote coordinates on H and the zi coordinates on an

abelian variety A. We write τ(t) = (τij(t))1≤i,j≤5 and let τ̇ij(t) denote the derivative of τij(t) with

respect to t. We also put τ̇ := τ̇(0) and τ̇ij := τ̇ij(0).

Throughout the rest of this section, we use the notation ∂i := ∂/∂zi, ∂ij := ∂2/∂zi∂zj and ∂it :=

∂2/∂zi∂t, etc. We also use the summation convention: when an index appears twice in a single term,

it implies summation of that term as the index goes from 1 to 5.

Proposition 3.1. A point (z, 0) is a singular point of Θ exactly when (z, 0) is a singular point of

Θ0 such that the equation qz ∈ S2H1(OA0)∗ of the quadric tangent cone to Θ0 at z vanishes on the

infinitesimal deformation direction τ̇ = (τ̇ij)1≤i,j≤5 ∈ S2H1(OA0) under duality.

Proof. By the heat equation, at a point (z, t) ∈ Θ the equation of the tangent hyperplane to Θ in A

is the pullback from the Siegel space of the equation

Zi∂iθ + Tij∂ijθ = 0,

where the Zi are the coordinates on the tangent space to a fiber At and the Tij coordinates on the

tangent space to H at τ(t).

This gives the equation

∂iF (z, t)Zi + (τ̇ij(t)∂ijF (z, t)) Ω = 0,
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where Ω is the coordinate on the tangent space to T at t.

So the point (z, 0) is singular on Θ if and only if it is singular on Θ0 and

τ̇ij(t)∂ijF (z, 0) = 0.

Since

qz = ZiZj∂ijF (z, 0),

the proposition follows. �

The partial derivatives of F are:

∂tF (z, t) = ∂τijθ(z, τ(t))τ̇ij(t) = ∂ijθ(z, τ(t))τ̇ij(t) = ∂ijF (z, t)τ̇ij(t),

∂itF (z, t) = ∂t(∂iF (z, t)) = ∂ijkF (z, t)τ̇jk(t),

∂ttF (z, t) = ∂ijklF (z, t)τ̇ij(t)τ̇kl(t) + ∂ijF (z, t)τ̈ij(t).

3.2. The case A0 ' J(C) ' Pic4C. In this case the theta divisor Θ0 = W 0
4 (C) of the special fiber is

smooth outside the curve W 1
4 := W 1

4 (C) and W 1
4 is an ordinary double curve on it. Therefore we have

F (p, 0) = 0, ∀p ∈ W 1
4 ,

∂iF (p, 0) = 0, ∀i, ∀p ∈ W 1
4 ,

rank
(
∂ijF (p, 0)

)
1≤i,j≤5

= 4, ∀p ∈ W 1
4 .

Theorem 3.2. For τ sufficiently general, the singularities of Θ consist of ten ordinary double points.

In the case where (A,Θ) is the family of Prym varieties of a family of double covers (X̃ ,X ) as in 2.4,

the ten distinct singular points g1, . . . , g5, h1, . . . , h5 of Θ are the g1
4’s cut on C by quadrics of rank

4 containing C and its secant 〈 p + q 〉. In other words, h0(gi − p − q) > 0 and hi = |K − gi| up to

relabeling.

Proof. We use the calculations in Section 3.1. The annihilator of the deformation direction

τ̇ = (τ̇ij)1≤i,j≤5 ∈ S2H1(OA0)

is a hyperplane in S2H0(ωC) which, for τ sufficiently general, gives a hyperplane in the space I2(C)

of quadrics containing the canonical image of C and hence a line l in PI2(C) ∼= P2. The quadrics of

rank 4 containing the canonical model of C are the elements of Q, a plane quintic in PI2(C). Those
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whose equations vanish on τ are the elements of the intersection l∩Q which, for τ sufficiently general,

consists of 5 distinct points, say q1, . . . , q5. There are ten distinct points in the singular locus W 1
4 of

Θ0 above these five points: the g1
4’s cut on C by the rulings of q1, . . . , q5. Hence we see that Θ has

exactly ten distinct singular points.

In the case where our family of abelian varieties is a family of Prym varieties of double covers with

central fiber a Wirtinger cover, the deformation direction τ̇ is the image, via the differential of the

Prym map, of the infinitesimal deformation direction, say η, of double covers induced by the family

(X̃ ,X ). As the Prym map sends the locusW6 of Wirtinger covers in R6 into the Jacobian locus J5, its

differential induces a linear map from the 1-dimensional normal space NCpq toW6 to the 3-dimensional

normal space NJC to J5. It is well known, see e.g. [DS, p. 45], that the normal space to J5 at JC

can be canonically identified with the dual I2(C)∗ to I2(C). By [DS, p. 86], the image of PNCpq in

PI2(C)∗ = PNJC is the pencil of quadrics containing the canonical image of C together with its secant

〈 p+ q 〉. This is also the line that we denoted l above. Therefore the points q1, . . . , q5 are the quadrics

of rank 4 containing C and 〈 p + q 〉. The line 〈 p + q 〉 is contained in exactly one ruling of qi and we

denote gi the g1
4 cut on C by that ruling. We then have h0(gi − p − q) > 0. The second ruling of qi

cuts hi := |KC − gi| on C.

It remains to prove that the ten singular points are ordinary double points. The degree 2 term of

the Taylor expansion of F near a singular point (z, t) is (using the heat equation up to a scalar):

ZiZj∂ijF + (Ziτ̇jk∂ijkF ) Ω + (τ̇ij τ̇kl∂ijklF + τ̈ij∂ijF ) Ω2.

The first part of the above is the equation of the quadric qz which has rank 4. In a basis adapted to

qz we have the matrix of second partials of F

0 1 0 0 0 τ̇jk∂1jkF

1 0 0 0 0 τ̇jk∂2jkF

0 0 0 1 0 τ̇jk∂3jkF

0 0 1 0 0 τ̇jk∂4jkF

0 0 0 0 0 τ̇jk∂5jkF

τ̇jk∂1jkF τ̇jk∂2jkF τ̇jk∂3jkF τ̇jk∂4jkF τ̇jk∂5jkF τ̇ij τ̇kl∂ijklF

+τ̈ij∂ijF


.
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So we need to see that this matrix has rank 6 at the points of W 1
4 . In other words, for τ sufficiently

general the coefficient τ̇jk∂5jkF (z, 0) is not zero. Taking τ̇ij = λiλj such that the point (λi) ∈ Cg =

H1(OA0) = T0A0 is on the osculating cone to Θ0 and is otherwise general, this means that the vertex

of the quadric qz is not contained in the tangent space to the osculating cone to Θ0 at the point (λi).

For a general choice of the λi this is a consequence of [KS] page 353. �

4. The semistable reduction of the family of theta divisors

As before denote (A,Θ) → T the family of principally polarized Prym varieties associated to the

étale cover X̃ → X . The central fiber is the Jacobian A0
∼= Pic4C of a general curve of genus 5.

By Theorem 3.2, the total space Θ has ten ordinary double points on W 1
4 : g1, . . . , g5, which satisfy

h0(gi − p− q) > 0, and hi := |KC − gi|. We will construct a semistable reduction of Θ and, in Section

6, use the Clemens-Schmid exact sequence to compute the cohomology of Θt.

4.1. The base change and first blow-ups. To construct our semistable reduction, we first make a

base change of degree 2, then resolve singularities. Let T b → T be a degree 2 cover. After possibly

shrinking T , we assume that the cover T b → T has a unique branch point at 0 ∈ T . Pulling back, we

obtain the family Θb ⊂ Ab → T b and Θb is singular along W 1
4 ⊂ Θ0. We define Θ̃ as the blow-up of

Θb along its singular locus W 1
4 . We will see that Θ̃ is a resolution of Θb whose special fiber Θ̃0 is a

simple normal crossings divisor (Ab → T b is still a smooth family):

Θ̃ −→ Θb −→ Θ

↓ ↓

T b −→ T.

To make our family of curves compatible with the base change, we also need to take the base change

of G to T b and then blow up along the singular locus of Gb to obtain a semistable family. The resulting

space is G̃:

G̃ −→ Gb −→ G

↓ ↓

T b −→ T.

Recall that, by Lemma 2.4, the fiber of G at t = 0 is the union of two copies of Wpq, denoted W1 and

W2, where Xkp = W 1
4 (C) + p ⊂ Wk is identified with X3−k,q = W 1

4 (C) + q ⊂ W3−k. After blowing up
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along the singular locus X1p qX1q ⊂ Gb, the central fiber G̃0 of G̃ has four components: W1, W2, P1

and P2, where P1, resp. P2, is a P1 bundle over X1p = X2q, resp. X1q = X2p. The four components

meet as below:

X1q

X1p

X2p

X2q

P2

P1

W1 W2

Notation 4.1. From now on we will replace T by T b and the families Θ ⊂ A → T , G → T , F → T

and X̃ → X → T by their base changes to T b.

4.2. The central fiber Θ̃0.

Proposition 4.2. The total space Θ̃ is smooth. Its special fiber Θ̃0 is a divisor with simple normal

crossings with the following two irreducible components.

(1) The component M1 which is the blow-up of Θ0 along W 1
4 .

(2) The component M2 which is the exceptional divisor, i.e. the projectivized normal cone to Θ

along W 1
4 . Therefore M2 is a fibration over W 1

4 . At the points gi and hi the fibers Qsing
3i of M2

are isomorphic to the singular quadric Qsing
3 of rank 4 in P4. At all the other points of W 1

4 , the

fibers of M2 are isomorphic to the smooth quadric hypersurface Q3 ⊂ P4.

The intersection M12 = M1 ∩M2 is a P1 × P1 bundle over W 1
4 . In particular, it is smooth.

Proof. It immediately follows from the definition of Θ̃ that Θ̃0 has two components, one of which is

the blow-up M1 of Θ0 and the other the projectivized normal cone M2 of W 1
4 in Θ. To prove the

assertions about the smoothness of M1,M2 and M12 and the fibers of M2 over W 1
4 we work in local

coordinates near each of the ten points gi and hi of Theorem 3.2.

By Theorem 3.2, before our base change of degree 2 the local equation of Θ near one of the points

gi or hi can be written as xy + zw + st = 0 in A6 where t is a local analytic coordinate on T centered

at 0. Hence, after base change, the local equation is

xy + zw + st2 = 0.
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In the above coordinates, the equations of W 1
4 are

x = y = z = w = t = 0.

Hence, locally, Θ̃ is obtained from Θ by blowing up the ideal I = (x, y, z, w, t). Furthermore, s gives a

local coordinate on W 1
4 . For any given nonzero value of s, the local equation of Θ defines a quadric of

rank 5 in P4 and, for s = 0, the equation defines a quadric of rank 4 in P4. This proves the assertions

about the fibers of M2 → W 1
4 .

Now let X, Y , Z, W , T be the homogeneous coordinates on the blow-up. We have the relations

rank

 x y z w t

X Y Z W T

 ≤ 1.

By symmetry, we only need to check the following cases.

(1) {X 6= 0 }. Θ̃ is locally isomorphic to

Spec
C[x, Y, Z,W, T, s]

(Y + ZW + sT 2)
,

which is clearly smooth. Θ̃0 is given by the equation t = 0, i.e., xT = 0, hence has two smooth

components meeting transversely, defined locally by the equations T = 0 and x = 0. The

equation T = 0 locally defines the component M1 while x = 0 locally defines M2.

(2) {T 6= 0 }. Θ̃ is locally isomorphic to

Spec
C[X, Y, Z,W, t, s]

(XY + ZW + s)
.

In this open subset, the total space and the central fiber are both smooth and t = 0 locally

defines the component M1.

�

Proposition 4.3. (1) The divisor M1 can be identified with the correspondence

M1 = { (D4, B4) ∈ C(4) × C(4)| D4 +B4 ∈ |KC | }
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with the two projections p1 and p2 to C(4). We have a fibered diagram

M1
p1

}}zzzzzzz p2

!!DDDDDDD

C(4)

φ !!DDDDDDDDD
C(4)

ψ}}zzzzzzzzz

Θ0

where φ is the natural map sending D4 to OC(D4) and ψ sends B4 to ωC(−B4).

(2) Both p1 and p2 are birational morphisms and can be realized as the blow-up of C(4) along the

smooth surface

C1
4 = {D ∈ C(4) | h0(OC(D)) ≥ 2 }.

(3) The double locus M12 is the fiber product

M12
p′1

}}{{{{{{{{ p′2

!!CCCCCCCC

C1
4

φ′   BBBBBBBB
C1

4

ψ′~~||||||||

W 1
4

Proof. Immediate. �

5. General facts about the Clemens-Schmid exact sequence

We briefly review some general facts about the Clemens-Schmid exact sequence in this section. In

Section 6, we will apply this general theory to compute the cohomology of Θ̃0 and Θ̃t.

5.1. The Clemens-Schmid exact sequence. Given any semistable degeneration

Y0
//

��

Y

��
{ 0 } // T
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of relative dimension n, where Y deformation retracts to Y0, denote

Hm
t := Hm(Yt,Q),

Hm := Hm(Y ,Q) ∼= Hm(Y0,Q),

Hm := Hm(Y ,Q) ∼= Hm(Y0,Q).

It follows from the work of Clemens-Schmid [C], [Sc], and Steenbrink [St], that one can define mixed

Hodge structures on H∗t , H∗ and H∗ such that we have an exact sequence of mixed Hodge structures

// H2n+2−m
α // Hm

i∗t // Hm
t

N // Hm
t

β
// H2n−m

α // Hm+2 //(5.1)

where N is the logarithm of the monodromy operator, it : Yt ↪→ Y is the inclusion of the general fiber

into the total space, α is the composition

H2n+2−m(Y)
PD // Hm(Y , ∂Y) // Hm(Y),

where PD denotes Poincaré Duality, and β is the composition

Hm(Yt)
PD // H2n−m(Yt)

it∗ // H2n−m(Y).

5.2. The weight filtrations on Hm and Hm. Recall from [Mo, p. 103] that there is a Mayer-Vietoris

type spectral sequence abutting to H•(Y0) with E1 term

Ep,q
1 = Hq(Y

[p]
0 ).

Here Y
[p]

0 is the disjoint union of the codimension p strata of Y0, i.e.,

Y
[p]

0 :=
∐
i0,...,ip

Zi0 ∩ . . . ∩ Zip

where the Zij are distinct irreducible components of Y0.

The differential d1

Ep,q
1

∼=
��

d1 // Ep+1,q
1

∼=
��

Hq(Y
[p]

0 )
d1 // Hq(Y

[p+1]
0 )
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is the alternating sum of the restriction maps on all the irreducible components. By [Mo, p. 103] this

sequence degenerates at E2.

The weight filtration is given by

WkH
m :=

⊕
p+q=m, q≤k

Ep,q
∞ =

⊕
p+q=m, q≤k

Ep,q
2 .

Therefore the weights on Hm go from 0 to m and

GrkH
m ∼= Em−k,k

2 =
Ker(d1 : Hk(Y

[m−k]
0 )→ Hk(Y

[m−k+1]
0 ))

Im(d1 : Hk(Y
[m−k−1]

0 )→ Hk(Y
[m−k]

0 ))
.

We also put a weight filtration on Hm:

W−kHm := (Wk−1H
m)⊥

under the perfect pairing between Hm and Hm. With this definition,

Gr−kHm
∼= (GrkH

m)∨.

5.3. The monodromy weight filtration on Hm
t . Associated to the nilpotent operator N is an

increasing filtration of Q-vector spaces

0 ⊂ W0 ⊂ W1 ⊂ ... ⊂ W2m = Hm
t .

Let Km
t := KerN ⊂ Hm

t be the monodromy invariant subspace. It inherits an induced weight filtration

from Hm
t . We refer to [Mo, pp. 106-109] for the precise definition of the monodromy weight filtration

and the fact that this filtration on Hm
t can be computed via its induced filtration on Km

t :

GrkH
m
t
∼= GrkK

m
t ⊕Grk−2K

m
t ⊕ ...⊕Grk−2b k

2
cK

m
t(5.2)

for k ≤ m, and

GrkH
m
t
∼= Gr2m−kH

m
t ,(5.3)

for k > m.

The weight filtrations on Hm and Km
t are related by the Clemens-Schmid exact sequence. Below

are the basic facts we will use (see [Mo, pp. 107-109]).
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(1) The pull-back map i∗t induces an isomorphism

GrkH
m

∼= // GrkK
m
t for k ≤ m− 1.(5.4)

(2) There is an exact sequence

0 // Grm−2K
m−2
t

// Grm−2n−2H2n+2−m
α // GrmH

m // GrmK
m
t

// 0 .(5.5)

5.4. Mixed Hodge structures on H•c (Y). Now suppose furthermore that Y is an analytic open

subset of a smooth projective variety Y of dimension n+ 1. We have a sequence of isomorphisms

H2n+2−m
c (Y) ∼= H2n+2−m(Y ,Y \ Y) ∼= H2n+2−m(Y ,Y \ Y0),

where the last isomorphism follows from the fact that Y \ Y0 deformation retracts to Y \ Y .

Both H•(Y) and H•(Y \ Y0) admit canonical mixed Hodge structures ([De], [Du, 1022-1024]). The

relative singular cochain complex S•(Y ,Y \ Y0) is quasi isomorphic to the mapping cone of the chain

map

S•(Y)→ S•(Y \ Y0).

Using a standard mapping cone construction (see, for instance, [Du, pp. 1205-1207]), we can put a

canonical mixed Hodge structure on H•(Y ,Y \ Y0), and therefore on H•c (Y), such that the maps in

the long exact sequence

... // Hm−1(Y \ Y0) // Hm(Y ,Y \ Y0) // Hm(Y) // Hm(Y \ Y0) // ...(5.6)

are morphisms of mixed Hodge structures.

There is also a spectral sequence [Du, pp. 1025-1027] for the mapping cone, dual to the Mayer-

Vietoris type spectral sequence in Section 5.2, abutting to H•c (Y). This spectral sequence is in the

second quadrant, degenerates at E2, and has E1 terms

Ep,q
1,c = Hq+2p−2(Y

[−p]
0 ),
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for p ≤ 0. The differential

Ep,q
1,c

// Ep+1,q
1,c

Hq+2p−2(Y
[−p]

0 )
dc1 // Hq+2p(Y

[−p−1]
0 )

is the alternating sum of Gysin morphisms. We have the duality

(Ep,q
1 )∨ ∼= E−p,2n+2−q

1,c

The increasing weight filtration is given by

WkH
m
c (Y) =

⊕
p+q=m,q≤k

Ep,q
2,c .

The weights on Hm
c (Y) go from m to 2m− 2 and, for m ≤ k ≤ 2m− 2,

GrkH
m
c (Y) ∼= Em−k,k

2,c =
Ker(H2m−k−2(Y

[k−m]
0 )→ H2m−k(Y

[k−m−1]
0 ))

Im(H2m−k−4(Y
[k−m+1]

0 )→ H2m−k−2(Y
[k−m]

0 ))

with the convention that Y
[−1]

0 = ∅.

The mixed Hodge structures on Hm(Y) and H2n+2−m
c (Y) ∼= H2n+2−m(Y ,Y \ Y0) are dual to each

other. We have

GrkH
m(Y)∨ ∼= Gr2n+2−kH

2n+2−m
c (Y).

6. The monodromy weight filtration on the cohomology of Θt

We apply the general theory in Section 5 to the case Y = Θ̃ to compute the cohomology of Θt in

this section. By the Hard Lefschetz Theorem

Hm(Θt) ∼= H8−m(Θt)(6.1)

and, by the Lefschetz Hyperplane Theorem,

Hm(Θt) ∼= Hm(At) ∼= Q(10
m)(6.2)

form ≤ 3. The only remaining case is the middle cohomologyH4(Θt). We will describe the monodromy

weight filtration on it.
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According to the general theory explained in Section 5, in order to compute the monodromy weight

filtration on the cohomology of Θt we first need to compute the cohomology of the central fiber

Θ̃0 = M1 ∪M2.

6.1. The cohomology of the strata of Θ̃0. In this subsection we compute the cohomology of M1,

M2 and M12 and describe their generators. The various spaces fit into the commutative diagram with

Cartesian squares

M2

π2

''

M12
? _

j2
oo � �

j1
//

p′1
��

π12

��

M1

p1

��

C1
4
� � l //

φ′

��

C(4)

φ

��

W 1
4
� � h // Pic4(C) = A0

(6.3)

where we denote p′1 (resp. φ′) the restriction of p1 (resp. φ) to M12 (resp. C1
4) and jk : M12 →Mk the

inclusion map.

Lemma 6.1. We have the following table of Betti numbers.

Table 1.

h0 h1 h2 h3 h4 h5 h6 h7 h8

C1
4 1 22 2 22 1 0 0 0 0

C(4) 1 10 46 130 256 130 46 10 1
M1 1 10 47 152 258 152 47 10 1
Q3 1 0 1 0 1 0 1 0 0

Qsing
3 1 0 1 0 2 0 1 0 0
M12 1 22 3 44 3 22 1 0 0
M2 1 22 2 22 12 22 2 22 1

Proof. This is a straightforward computation so we only sketch the idea.

(1) By Proposition 4.3, M1 is the blow-up of C(4) along C1
4 . So we have H•(M1) = p∗1H

•(C(4)) ⊕

j1∗p
′
1
∗H•−2(C1

4). The cohomology of C(4) was computed by Macdonald [Ma]:

Hk(C(4)) =

d k
2
e⊕

β=0

ηβ ·Hk−2β(Pic4C).
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(2) Since M12 (resp. C1
4) is a smooth fibration over W 1

4 with fibers P1 × P1 (resp. P1), we can

apply the Leray spectral sequence to π12 : M12 → W 1
4 (resp. φ′) to compute the cohomology of

M12 and C1
4 .

(3) The variety M2 is a fibration over W 1
4 with general fiber isomorphic to the smooth quadric

threefold Q3 and ten special fibers isomorphic to the singular quadric Qsing
3 of rank 4. Since

the base is a curve, the Leray spectral sequence for π2 degenerates at E2.

We present the Leray spectral sequence computation for H4(M2,Q), the other cohomology groups are

similar and somewhat easier to compute. The E2 terms are

Ep,q
2 = Hp(W 1

4 , R
qπ2∗Q).

Let U ⊂ W 1
4 be a small analytic disc, open neighborhood of a critical value of π2. Then π−1

2 (U) is

homotopic to a smooth fiber π−1
2 (t) = Q3 with a real 4-cell B4 attached to π−1

2 (t) along a vanishing

sphere S3. Since h3(Q3) = 0, this amounts to increasing h4 by 1. Thus

Rqπ2∗Q ∼=


Q⊕ (⊕10

i=1Qi) q = 4,

Q q = 2,

0 otherwise,

where Qi is the skyscraper sheaf with stalk Q supported at the i-th critical point. Therefore

dimQE
p,4−p
2 = dimQE

p,4−p
∞ = hp(W 1

4 , R
4−pπ2∗Q) =


11 p = 0,

1 p = 2,

0 otherwise.

This gives h4(M2) = 12. �

Notation 6.2. Denote ek ∈ H2(Mk) the class of M12 in Mk, f ∈ H2(M12) the class of a fiber π−1
12 (t) and

τ1 := p′1
∗l∗η ∈ H2(M12) (see Diagram (6.3)). Here l∗η is represented by the curve C1

4 ∩ (x+C(3)) ⊂ C1
4

for x ∈ C general, and τ1 is represented by a P1 bundle over this curve. The product τ1 · f ∈ H4(M12)

is the class of the ruling of π−1
12 (t) ∼= P1 × P1 which projects to a point under p1, and the product

j∗2e2 · f is the hyperplane class in π−1
12 (t). We also have the relation

−j∗1e1 = j∗2e2.
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Furthermore, denote [P2
i ], i = 1, . . . , 5 (resp. i = 6, . . . , 10) the class of the projective plane spanned

by a line of the ruling corresponding to τ1 · f and the vertex of the singular quadric Qsing
3i = π−1

2 (gi)

(resp. Qsing
3i = π−1

2 (hi−5)).

Lemma 6.3. We have the following generators for the cohomology:

H2(M12) = 〈 f, τ1, j
∗
2e2 〉 ∼= Q3,

H3(M12) = τ1 · π∗12H
1(W 1

4 )⊕ j∗2e2 · π∗12H
1(W 1

4 ) ∼= Q44,

H4(M12) = 〈 f · τ1, f · j∗2e2, τ1 · j∗2e2 〉 ∼= Q3,

H3(M1) = p∗1H
3(C(4))⊕ j1∗π

∗
12H

1(W 1
4 ) ∼= Q152,

H4(M1) = p∗1H
4(C(4))⊕ 〈 j1∗f, j1∗τ1 〉 ∼= Q258,

H3(M2) = e2 · π∗2H1(W 1
4 ) ∼= Q22

H4(M2) = 〈 [P2
i ], j2∗f, j2∗τ1 | i = 1, ..., 10 〉 ∼= Q12.

Proof. The statements about M1 follow from the formula for the cohomology of a blow-up and the

statements about M2 and M12 follow from the Leray spectral sequence. �

6.2. The cohomology of Θ̃0. Recall that Q ⊂ PI2(C) is the plane quintic parametrizing quadrics of

rank 4 and also the quotient of W 1
4 by the involution exchanging g1

4 with |KC − g1
4| (see the proof of

Theorem 3.2). We have

Proposition 6.4. The weight filtration on H4 := H4(Θ̃0) = H4(M1 ∪M2) is as follows:

GrkH
4 = 0 for k ≤ 2;

Gr3H
4 ∼= H1(W 1

4 )

h∗H1(Pic4 C)
∼= H1(Q) ∼= Q12;

Gr4H
4 = Ker(H4(M1)⊕H4(M2)

j∗1−j∗2−→ H4(M12)) ∼= Q267.

Proof. We apply the spectral sequence of Section 5.2, which degenerates at E2, to the case Y = Θ̃.

Since Θ̃0 = M1∪M2, the E1 term of the spectral sequence has only two nonzero columns corresponding
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to p = 0 and p = 1. Thus, from the definition of the weight filtration, we obtain

GrkH
4 ∼= E4−k,k

2 = 0 for k ≤ 2,

Gr3H
4 ∼= E1,3

2 = Coker(H3(M1)⊕H3(M2)
j∗1−j∗2−→ H3(M12)),

Gr4H
4 ∼= E0,4

2 = Ker(H4(M1)⊕H4(M2)
j∗1−j∗2−→ H4(M12)).

We compute E1,3
2 in Lemma 6.5. By Lemma 6.6, the image of j∗1 − j∗2 is equal to H4(M12), therefore

E0,4
2
∼= Q267 by a dimension count. �

Lemma 6.5. We have isomorphisms Coker(H3(M1) ⊕ H3(M2)
j∗1−j∗2−→ H3(M12)) ∼= H1(W 1

4 )

h∗H1(Pic4 C)
∼=

H1(Q) ∼= Q12.

Proof. By Lemma 6.3,

H3(M1)=p∗1H
3(C(4))⊕ j1∗π∗12H

1(W 1
4 )

and, by [Ma, p. 325],

H3(C(4)) = H3(Pic4(C))⊕ η ·H1(Pic4C).

Note that

H3(Pic4C)
p∗1◦ φ∗ // H3(M1)

j∗1 // H3(M12)

is zero since φ ◦ p1 ◦ j1 = h ◦ φ′ ◦ p′1 (see Diagram 6.3) and H3(W 1
4 ) = 0.

Furthermore, we see from Lemma 6.3 that the image of

H3(M2) = e2 · π∗2H1(W 1
4 )

j∗2 // H3(M12)

is equal to j∗1(j1∗π
∗
12H

1(W 1
4 )) = j∗1e1 · π∗12H

1(W 1
4 ). This is because

j∗1 ◦ j1∗ = j∗1e1 ∪ • = −j∗2e2 ∪ •.

Therefore we have

Coker(j∗1 − j∗2) ∼=
τ1 · π∗12H

1(W 1
4 )

j∗1p
∗
1(η ·H1(Pic4C))

∼=
H1(W 1

4 )

h∗H1(Pic4C)
∼= H1(Q) ∼= Q12.

�
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Lemma 6.6. The map j∗2 : H4(M2)→ H4(M12) acts as follows

j∗2 : j2∗f 7−→ f · j∗2e2,

j2∗τ1 7−→ τ1 · j∗2e2,

[P2
i ] 7−→ f · τ1 for i = 1, ..., 10.

The map j∗1 : H4(M1) = p∗1H
4(C(4))⊕ 〈 j1∗f, j1∗τ1 〉 → H4(M12) acts as follows

j∗1 : − j1∗f 7−→ f · j∗2e2,

−j1∗τ1 7−→ τ1 · j∗2e2,

p∗1ω 7−→ p′1
∗
l∗ω ∈ Qf · τ1, ∀ ω ∈ H4(C(4)).(6.4)

As a consequence, j∗k : H4(Mk)→ H4(M12) is surjective for k = 1, 2.

Proof. The Lemma follows from the formula

j∗k ◦ jk∗ = − ∪ j∗kek

for k = 1, 2 and the definition of [P2
i ] (see Notation 6.2). �

6.3. The monodromy weight filtration on H4
t .

Proposition 6.7. The weight filtration on H4(Θt) is as follows:

(1) GrkH
4
t = 0, for k ≤ 2, or k ≥ 6.

(2) Gr5H
4
t
∼= Gr3H

4
t = i∗t Gr3H

4 ∼= H1(W 1
4 )

h∗H1(Pic4 C)
∼= H1(Q) ∼= Q12.

(3) There is an exact sequence

0 // H2(M12)
(−j1∗,j2∗)

// Gr4H
4

i∗t // Gr4H
4
t

// 0 .

Consequently, Gr4H
4
t
∼= Q264 and H4(Θt) ∼= Q288.

Proof. If k ≤ 3, by (5.2) and (5.4),

GrkH
4
t
∼= GrkK

4
t ⊕ ...⊕Grk−b k

2
cK

4
t
∼= GrkH

4 ⊕ ...⊕Grk−b k
2
cH

4.
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Therefore, the statements about GrkH
4
t for k ≤ 3 follow immediately from the computation of the

weight filtration on H4 in Proposition 6.4.

For k = 4,

Gr4H
4
t
∼= Gr4K

4
t ⊕Gr2K

4
t ⊕Gr0K

4
t
∼= Gr4K

4
t .

The exact sequence (5.5) becomes,

0 // Gr2K
2
t

// Gr−6H6

α // Gr4H
4 // Gr4K

4
t

// 0 .

By Lemma 6.9 below, the image of α is equal to (−j1∗, j2∗)H
2(M12) and (−j1∗, j2∗) is clearly injective.

Therefore (3) holds. The statements for k ≥ 5 follow by symmetry (see Section 5.3). �

Proposition 6.8. The induced monodromy filtration on the primal cohomology Kt ⊂ H4
t and Ht =

Kt ⊕ θH2(At) satisfies the following:

(1) GrkKt
∼= GrkH

4
t for k = 3, 5.

(2) We have an exact sequence

(I ⊕H4(M2)) ∩Gr4H
4

i∗t // Gr4 Ht
// 0,

where I := p∗1(θH2(Pic4C)⊕ ηH2(Pic4C)⊕ η2)⊕ 〈 j1∗f, j1∗τ1 〉 ⊂ H4(M1).

Proof. Since the family of Prym varieties At does not degenerate, we have Gr6H
6(At) ∼= H6(At)

and Gr5H
6(At) = Gr7H

6(At) = 0. Therefore Gr3H
4(Θ4) and Gr5H

4(Θt) map to zero under Gysin

push-forward. This implies the first statement of the proposition. Now consider the commutative

diagram

H4(M1 ∪M2)
∼= //

j0∗
��

H4(Θ̃)
i∗t //

j∗
��

H4(Θt)

jt∗
��

H6(Pic4C)
∼= // H6(A)

∼= // H6(At).

Since the induced Gysin map on the graded piece

Gr4H
4(M1 ∪M2)

j0∗−→ Gr6H
6(Pic4C) ∼= H6(Pic4C)

sends (I ⊕ H4(M2)) ∩ Gr4H
4 to the subspace θ2H2(Pic4C) and the bottom horizontal maps are

isomorphisms, we see that i∗t sends (I ⊕ H4(M2)) ∩ Gr4H
4 into Gr4 Ht. By Proposition 6.7 (3), the
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kernel of i∗t is 3-dimensional, therefore i∗t sends (I⊕H4(M2))∩Gr4H
4 onto Gr4 Ht by a simple dimension

count. �

It remains to describe the 3-dimensional image of α in (5.5). Recall from the definition of the

spectral sequence in Section 5.2 that Gr4H
4 fits in the exact sequence

0 // Gr4H
4 // H4(M1)⊕H4(M2)

d0,4
1 =j∗1−j∗2 // H4(M12) // 0.

The composition of the natural map

H2(M12)
(−j1∗,j2∗)

// H4(M1)⊕H4(M2)

with d0,4
1 is zero, therefore (−j1∗, j2∗) factors through Gr4H

4:

H2(M12)
(−j1∗,j2∗)

vvnnnnnnnnnnnn
(−j1∗,j2∗)
��

0 // Gr4H
4 // H4(M1)⊕H4(M2)

d0,4
1 // H4(M12) // 0.

Lemma 6.9. The image of α : Gr−6H6 −→ Gr4H
4 is equal to the image of

H2(M12)
(−j1∗,j2∗)

// Gr4H
4 ⊂ H4(M1)⊕H4(M2).

Proof. We have the isomorphism Gr−6H
∨
6
∼= Gr6H

6 and the latter fits into the exact sequence

0 // Gr6H
6 // H6(M1)⊕H6(M2)

j∗1−j∗2 // H6(M12) // 0

whose Poincaré dual is

0 // H0(M12)
(j1∗,−j2∗)

// H2(M1)⊕H2(M2) // (Gr6H
6)∨ // 0.

The map α is induced by

H6(Θ̃)
PD // H4(Θ̃, ∂Θ̃) // H4(Θ̃) ∼= H4(M1 ∪M2) .
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On the graded level,

α : Gr−6H6 = (Gr5H
6)∗ =

H2(M1)⊕H2(M2)

H0(M12)
−→ Gr4H

4

is induced by the map

H2(M1)⊕H2(M2) −→ Gr4H
4 ⊂ H4(M1)⊕H4(M2)

(γ1, γ2) 7−→ (−j1∗(j
∗
1γ1 − j∗2γ2), j2∗(j

∗
1γ1 − j∗2γ2)).

Since the map

j∗1 − j∗2 : H2(M1)⊕H2(M2) // H2(M12)

is surjective, the image of α is equal to the 3-dimensional image of H2(M12) via (−j1∗, j2∗). �

7. The semistable reduction of the fiber product

7.1. We need to construct a semistable reduction for the fiber product G̃ ×T Θ̃. The central fibers of

G̃ and Θ̃ are described in Section 4.1 and Proposition 4.2 respectively. We follow the notation there.

The total space of G̃ ×T Θ̃ is singular along Xkp ×M12 and Xkq ×M12 for k = 1, 2. The semistable

reduction is simply the blow-up P of G̃ ×T Θ̃ along the union of W1 ×M1 and W2 ×M1 and it sits in

the commutative diagram with Cartesian squares

P

##FFFFFFFF
ρ2

**UUUUUUUUUUUUUUUUUUUUUUUUUUUU

ρ1

��,
,,,,,,,,,,,,,,,,,,,,,,,,,

G̃ ×T Θ̃ //

��

Θ̃

��
G̃ ×T Θ

ε2 //

ε1
��

Θ

��
G̃ // T.

Proposition 7.1. The blow-up P of G̃ ×T Θ̃ along the union of W1×M1 and W2×M1 is a semistable

family whose central fiber P0 has eight components:
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(1) For k = 1, 2, the total transform ˜Wk ×M1 of Wk ×M1, which is isomorphic to the blow-up of

Wk ×M1 along Xkp ×M12 ∪Xkq ×M12.

(2) The proper transforms ˜P1 ×M2 and ˜P2 ×M2 of P1 × M2 and P2 × M2 respectively, which

are isomorphic to the blow-ups of P1 ×M2 and P2 ×M2 along X1p ×M12 ∪ X2q ×M12 and

X1q ×M12 ∪X2p ×M12 respectively.

(3) The proper transforms of P1 ×M1, P2 ×M1, W1 ×M2 and W2 ×M2, which are unchanged

under the blow-up.

Proof. We check locally that this is indeed a semistable reduction. Locally, the total space of the fiber

product near, say, X1p ×M12, is isomorphic to the product of an affine space and

Spec
C[x, y, z, w, t]

(xy − t, zw − t)
∼= Spec

C[x, y, z, w]

xy − zw
.(7.1)

In the above local coordinates, X1p ×M12 is defined by the ideal (x, y, z, w) and blowing up G̃ ×T Θ̃

along W1 ×M1 amounts to blowing up (7.1) along the ideal (x, z). Let X, Z be the corresponding

homogeneous coordinates in the blow-up. By symmetry, it is sufficient to check the result on the chart

{X 6= 0 }. Here P is isomorphic to the product of an affine space and

Spec
C[x, y, Z, w]

y − Zw
∼= Spec C[x, Z, w]

which is smooth. The central fiber in this chart is given by t = xy = xZw which is a simple normal

crossing divisor.

The other assertions about the components of the central fiber are immediate. �



PRIMITIVE COHOMOLOGY OF THETA DIVISORS 37

7.2. The eight components of the central fiber P0 meet as follows

˜W1 ×M1

k c

a
p b

P1 ×M1

c e

d

˜W2 ×M1

e i

gf h

P2 ×M1

i k

j

W1 ×M2

l m

a

˜P1 ×M2

m n

d

b f

W2 ×M2

n o

g

˜P2 ×M2

o l

j

h p

↓

X1q X1p
W1

X1p X2q
P1

X2q X2p
W2

X2p X1q
P2

The lines with the same label indicate the subvarieties that are glued together to form the double loci

of the central fiber. The horizontal lines represent the loci that project onto M12 via ρ2 and the vertical

lines the loci that project onto either Xkp or Xkq by ρ1. The slanted lines represent exceptional loci:

these are P1-bundles over the products Xkp ×M12 and Xkp ×M12, hence are contracted by ρ1 and ρ2.

The dual graph of the central fiber is

The four vertices of the inside square correspond to the four components in the top row of the previous

picture and the four vertices of the outside square to the bottom row. The shaded triangles correspond

to triple intersections in the central fiber.

7.3. Let Pic(10)(X/T ) be the (noncompact) relative Picard scheme whose central fiber is Pic6,4(C̃pq).

There is a rational map ψ : X̃ (5)×T X̃ (5) 99K Pic(10)(X/T ) which is regular on the fibers over t 6= 0. We

will show in Proposition 9.1 that the rational map id× ψ : G ×T X̃ (5) ×T X̃ (5) 99K G ×T Pic(10)(X/T )
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restricted to F ⊂ G ×T X̃ (5) ×T X̃ (5) is regular. In other words, we have the following commutative

diagram

F � � //

��

G ×T X̃ (5) ×T X̃ (5)

id×ψ
���
�
�

G ×T Θ � � // G ×T A �
� // G ×T Pic(10)(X/T ).

Notation 7.2. Denote F ′,F ′r the images of F ,Fr in G ×T Θ, and F ′′,F ′′r and F ′′′,F ′′′r the proper

transforms of F ′ and F ′r in G̃ ×T Θ, P respectively. We summarize the relations between the various

spaces in the diagram below:

F ′′′r ⊂ F ′′′
� � //

��

P

��

G̃ ×T Θ̃

��

F ′′r ⊂ F ′′
� � //

��

G̃ ×T Θ

��

� � // G̃ ×T A

��
Fr ⊂ F

FF




















// F ′r ⊂ F ′
� � // G ×T Θ �

� // G ×T A.

8. Abel-Jacobi maps on the generic and special fibers:

outline of the proof of Theorem 3

The Abel-Jacobi map AJ on the total space is the composition

H2(G̃)
ρ∗1 // H2(P)

∪[F ′′′r ]
// H8(P)

ρ2∗
// H4(Θ̃),

where the Gysin map ρ2∗ is defined as

H8(P)
PD∼= H6

c (P)∨
(ρ∗2)∨

// H6
c (Θ̃)∨

PD∼= H4(Θ̃),

where PD denotes Poincaré duality. As explained in Section 5.4, there exist canonical mixed Hodge

structures on H6
c (P) and H6

c (Θ̃), such that ρ∗2 (and therefore (ρ∗2)∨) is a morphism of mixed Hodge

structures. Thus the Abel-Jacobi map AJ, as a composition of such, is also a morphism of mixed

Hodge structures.
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By functoriality of the morphisms involved, we have a commutative diagram

H2(G̃) //

AJ
��

H2(Gt)

AJt

��

H4(Θ̃) // H4(Θt),

where the images of the horizontal maps are the monodromy invariant parts of the cohomology groups

of Gt and Θt.

8.1. The map AJ on the E1 terms. The maps ρ∗1, ∪[F ′′′r ] and ρ∗2 are defined on the E1 terms of the

spectral sequences in Section 5 and commute with the differentials d1.

For k = 0, 1, the map ρ∗1 on the E1 terms is

G̃E
k,2−k
1

ρ∗1 // PE
k,2−k
1

H2−k(G̃
[k]
0 )

ρ∗1 // H2−k(P [k]
0 ).

If, for a stratum S in P [k]
0 , ρ1(S) is not contained in G̃

[k]
0 , then the projection of ρ∗1 onto the summand

H2−k(S) ⊂ H2−k(P [k]
0 ) is zero (some components of P [1]

0 map onto components in G̃
[0]
0 , c.f. Section 7).

Cup-product with [F ′′′r ] induces the horizontal maps

PE
k,2−k
1

∪[F ′′′r ]
// PE

k,8−k
1

H2−k(P [k]
0 )

∪[F ′′′r ]
// H8−k(P [k]

0 ),

where the lower horizontal map is cup-product with the cycle class of the scheme-theoretic intersection

of F ′′′r with each component in P [k]
0 .

The map ρ∗2 on cohomology with compact supports is

Θ̃E
−k,k+6
1,c

ρ∗2 // PE
−k,k+6
1,c

H4−k(Θ̃
[k]
0 )

ρ∗2 // H4−k(P [k]
0 ).
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Similarly to the case of ρ∗1 above, we only pull back to the strata of P [k]
0 which map to Θ̃

[k]
0 . Thus the

dual map ρ2∗ = (ρ∗2)∨ is induced by the usual Gysin maps between the relevant strata:

PE
k,8−k
1

ρ2∗
//

Θ̃E
k,4−k
1

H8−k(P [k]
0 )

ρ2∗
// H4−k(Θ̃

[k]
0 ).

To compute the graded parts of the Abel-Jacobi maps (see (0.1) and (0.2)), we first compute the

Abel-Jacobi map AJk on the E1 terms for k = 0, 1:

AJk : H2−k(G̃
[k]
0 )

ρ∗1 // H2−k(P [k]
0 )

∪[F ′′′r ]
// H8−k(P [k]

0 )
ρ2∗
// H4−k(Θ̃

[k]
0 ),

then pass to the E2 terms of the corresponding spectral sequences.

8.2. Proof of the main theorem. Notation as in Section 6.1. We divide the proof of Theorem 3

into four propositions.

For the Abel-Jacobi map on the E1 terms, we write

AJ0 =: (AJ0
1,AJ0

2) : H2(G̃
[0]
0 )→ H4(Θ̃

[0]
0 ) = H4(M1)⊕H4(M2).

We have

Proposition 8.1. The image of the map AJ0
1 : H2(G̃

[0]
0 )→ H4(M1) contains the subspace

I := p∗1(θH2(Pic4C)⊕ ηH2(Pic4C)⊕ η2)⊕ 〈 j1∗f, j1∗τ1 〉

modulo 〈 j1∗f, j1∗τ1 〉 ⊕ p∗1(θH2(Pic4C)).

Proposition 8.2. The map AJ0
2 : H2(G̃

[0]
0 )→ H4(M2) is surjective modulo 〈 j2∗f, j2∗τ1 〉.

For AJ1, we have

Proposition 8.3. The image of AJ1 : H1(G̃
[1]
0 )→ H3(Θ̃

[1]
0 ) = H3(M12) contains τ1 · π∗12H

1(W 1
4 ).

Next we pass to the Abel-Jacobi map on the E2 terms.
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Proposition 8.4. The image of the restriction of AJ0 = (AJ0
1,AJ0

2) to

Gr2H
2(G̃) = Ker(H2(G̃

[0]
0 )

d1→ H2(G̃
[1]
0 ))

contains (I ⊕H4(M2)) ∩Gr4H
4(Θ̃) modulo (−j1∗, j2∗)H

2(M12) + (p∗1(θH2(Pic4C)), 0).

Assuming the above four propositions, we can prove our main theorem.

Proof. of Theorem 3. Identifying H4(At) with a subspace of H4(Θt) via pull-back, we have H4(Θt) =

(Kt ⊗Q)⊕H4(At), and, since At does not degenerate,

Gr3H
4(Θt) = Gr3(Kt ⊗Q),

and

Gr4H
4(Θt) = Gr4(Kt ⊗Q)⊕H4(At).

Consider the commutative diagram

H2(G̃)
i∗t //

AJ
��

H2(Gt)

AJt

��

H4(Θ̃)
i∗t // H4(Θt).

Proposition 8.3 implies that the image of AJt sends Gr1H
2(Gt) = i∗t Gr1H

2(G̃) surjectively to Gr3H
4(Θt) =

i∗t Gr3H
4(Θ̃) ∼= H1(W 1

4 )

H1(Pic4 C)
= H1(Q). Since the logarithm of the monodromy operator N induces an

isomorphism from Gr5H
4(Θt) to Gr3H

4(Θt) and from Gr3H
2(Gt) to Gr1H

2(Gt), we conclude that

AJt sends Gr3H
2(Gt) surjectively to Gr5H

4(Θt).

Next, by Lemma 6.9, the ambiguity (−j1∗, j2∗)H
2(M12) restricts to zero under i∗t . Therefore, by

Propositions 6.8 and 8.4, the image of Gr2H
2(Gt) by AJt contains Gr4(Ht ⊗Q) modulo θtH

2(At).

Combining the above, we see that the image of AJt contains Ht⊗Q modulo θtH
2(At). Since, as we

observed earlier, θtH
2(At) is always contained in the image of H2(Θt ∩ Θta) for a ∈ At general, the

theorem follows (here Θta is the translate of Θt by a). �
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9. The cycles at time zero: before resolving the family of theta divisors

9.1. The central fiber F0. We list the intersections of the central fiber F0 of F with each component

Wk × (C
(d1)
1 × C(d2)

2 ) × (C
(e1)
1 × C(e2)

2 ) in Tables 2 and 3. The left column lists the ambient spaces of

all possible bidegrees. The middle column gives the conditions defining the cycles F0 in each ambient

space.

For each pair of bidegrees (d1, d2) and (e1, e2), we define a morphism

ψ(d1,d2)(e1,e2) : F0 ∩
(
Wk × (C

(d1)
1 × C(d2)

2 )× (C
(e1)
1 × C(e2)

2 )
)
−→ Θ0 ⊂ Pic4C

(L,Dd1 , Dd2 , D
′
e1
, D′e2) 7−→ OC(Dd2 +D′e2 −m(p+ q)),

where m is the integer such that d2 + e2 = 4 + 2m. These morphisms are listed case by case in the

rightmost column of Tables 2 and 3.

9.2. The morphism to Θ0.

Proposition 9.1. The rational map

id× ψ : G ×T X̃ (5) ×T X̃ (5) 99K G ×T Pic(10)(X/T )

extends to a morphism when restricted to F ⊂ G ×T X̃ (5) ×T X̃ (5) (see Section 7.3 for the notation).

Proof. We need to extend the rational map ψ to the central fiber F0 of F . As explained in Section

2.4, the natural extension of the map ψ to a general point of Wk × (C
(d1)
1 × C(d2)

2 ) × (C
(e1)
1 × C(e2)

2 )

is given by ψ(d1,d2)(e1,e2). Therefore we need to show that the morphisms ψ(d1,d2)(e1,e2) coincide on the

intersection of F0 with the overlaps of the different components of G0 × C̃(5)
pq × C̃(5)

pq . For instance, a

point (p+g1
4, D2, D3 = B2 +p,D′4 = B′3 +q, a′) ∈ F0∩W1× (C

(2)
1 ×C

(3)
2 )× (C

(4)
1 ×C2) is identified with

(q + g1
4, D2 + q, B2, B

′
3, a
′ + p) ∈ F0 ∩W2 × (C

(3)
1 × C

(2)
2 ) × (C

(3)
1 × C

(2)
2 ). The images under ψ(2,3)(4,1)

and ψ(3,2)(3,2) are both equal to OC(B2 + a′+ p). Therefore all the ψ(d1,d2)(e1,e2)|F0 glue together and we

obtain a morphism from F0 to Θ0. �
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Ambient Spaces F0 Image under ψ

(L,D4, a,D
′
4, a
′) ∈ W1 × (C

(4)
1 × C2)× (C

(4)
1 × C2)

{
D4 + a ∈ |L|
D′4 + a′ ∈ |L′|

OC(a+ a′ + p+ q)

(L,D4, a,D
′
2, D

′
3) ∈ W1 × (C

(4)
1 × C2)× (C

(2)
1 × C

(3)
2 )

{
D4 + a ∈ |L|
D′2 +D′3 ∈ |L′|

OC(a+D′3)

(L,D4, a,D
′
5) ∈ W1 × (C

(4)
1 × C2)× C(5)

2

{
D4 + a ∈ |L|
D5 ∈ |L′|

KC(−D4)

(L,D2, D3, D
′
4, a
′) ∈ W1 × (C

(2)
1 × C

(3)
2 )× (C

(4)
1 × C2)

{
D2 +D3 ∈ |L|
D′3 + a′ ∈ |L′|

OC(D3 + a′)

(L,D2, D3, D
′
2, D

′
3) ∈ W1 × (C

(2)
1 × C

(3)
2 )× (C

(2)
1 × C

(3)
2 )

{
D2 +D3 ∈ |L|
D′2 +D′3 ∈ |L′|

KC(−D2 −D′2)

(L,D2, D3, D5) ∈ W1 × (C
(2)
1 × C

(3)
2 )× C(5)

2

{
D2 +D3 ∈ |L|
D5 ∈ |L′|

KC(−D2 − p− q)

(L,D5, D
′
4, a
′) ∈ W1 × C(5)

2 × (C
(4)
1 × C2)

{
D5 ∈ |L|
D′4 + a′ ∈ |L′|

KC(−D′4)

(L,D5, D
′
2, D

′
3) ∈ W1 × C(5)

2 × (C
(2)
1 × C

(3)
2 )

{
D5 ∈ |L|
D′2 +D′3 ∈ |L′|

KC(−D′2 − p− q)

(L,D5, D
′
5) ∈ W1 × C(5)

2 × C
(5)
2

{
D5 ∈ |L|
D′5 ∈ |L′|

KC(−2p− 2q)

Table 2. Cycles in W1 × C(5)
pq × C(5)

pq

Recall that we have a tower of blow-ups and algebraic cycles in each blow-up.

F ′′′r
� � //

��

P

��

G̃ ×T Θ̃

��

F ′′r
� � //

��

G̃ ×T Θ

��

� � // G̃ ×T A

��
Fr // F ′r

� � // G ×T Θ �
� // G ×T A.
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Ambient Spaces F0 Image under ψ

(L,D5, D
′
5) ∈ W2 × C(5)

1 × C
(5)
1

{
D5 ∈ |L|
D′5 ∈ |L′|

OC(2p+ 2q)

(L,D5, D
′
3, D

′
2) ∈ W2 × C(5)

1 × (C
(3)
1 × C

(2)
2 )

{
D5 ∈ |L|
D′3 +D′2 ∈ |L′|

OC(D′2 + p+ q)

(L,D5, a
′, D′4) ∈ W2 × C(5)

1 × (C1 × C(4)
2 )

{
D5 ∈ |L|
a′ +D′4 ∈ |L′|

OC(D′4)

(L,D3, D2, D
′
5) ∈ W2 × (C

(3)
1 × C

(2)
2 )× C(5)

1

{
D3 +D2 ∈ |L|
D′5 ∈ |L′|

OC(D2 + p+ q)

(L,D3, D2, D
′
3, D

′
2) ∈ W2 × (C

(3)
1 × C

(2)
2 )× (C

(3)
1 × C

(2)
2 )

{
D3 +D2 ∈ |L|
D′3 +D′2 ∈ |L′|

OC(D2 +D′2)

(L,D3, D2, a
′, D′4) ∈ W2 × (C

(3)
1 × C

(2)
2 )× (C1 × C(4)

2 )

{
D3 +D2 ∈ |L|
a′ +D′4 ∈ |L′|

KC(−D3 − a′)

(L, a,D4, D
′
5) ∈ W2 × (C1 × C(4)

2 )× C(5)
1

{
a+D4 ∈ |L|
D′5 ∈ |L′|

OC(D4)

(L, a,D4, D
′
3, D

′
2) ∈ W2 × (C1 × C(4)

2 )× (C
(3)
1 × C

(2)
2

{
a+D4 ∈ |L|
D′3 +D′2 ∈ |L′|

KC(−a−D′3)

(L, a,D4, a
′, D′4) ∈ W2 × (C1 × C(4)

2 )× (C1 × C(4)
2 )

{
a+D4 ∈ |L|
a′ +D′4 ∈ |L′|

KC(−a− a′ − p− q)

Table 3. Cycles in W2 × C(5)
pq × C(5)

pq

Denote F(d1,d2)(e1,e2) the intersection of Fr0 with Wk × (C
(d1)
1 × C

(d2)
2 ) × (C

(e1)
1 × C

(e2)
2 ), and λ :=

(λ1, λ2) : Fr0 → G0 ×Θ0 the restriction of id× ψ to Fr0 .

9.3. The cycle F ′′r0. Recall that G̃0 has four components W1,W2, P1, P2, where Pk is a P1 bundle over

Xkp for k = 1, 2 (see Section 4.1). We use the notation F ′′r0|Wk×Θ0 , F ′′r0|Pk×Θ0 to denote the components

of F ′′r0 which lie in Wk ×Θ0, Pk ×Θ0 respectively.

Proposition 9.2. (1) The cycle F ′′r0|W1×Θ0 is the push-forward under λ of

Fr01 := F(4,1)(4,1) q F(4,1)(2,3) q F(2,3)(4,1) q F(2,3)(2,3).
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(2) The cycle F ′′r0 |W2×Θ0 is the push-forward of

Fr02 := F(5,0)(3,2) q F(5,0)(1,4) q F(3,2)(3,2) q F(3,2)(1,4) q F(1,4)(3,2) q F(1,4)(1,4).

(3) The cycle F ′′r0|Pk×Θ0 is the image of the fiber product

Fr0|Pk
//

��

Fr0|Xkp

��
Pk // Xkp,

where Fr0|Pk
maps to Pk via projection and to Θ0 via λ2.

Proof. Since any component of F0 with bidegree (0, 5) + (e1, e2) does not intersect Fr0 , we see that

F(0,5)(e1,e2) is empty. From Tables 2 and 3, we see that F(4,1)(0,5), F(2,3)(0,5) and F(d1,d2)(5,0) are contracted

by λ and their image by λ is contained in the closure of the image of cycles of other bidegrees. For

other bidegrees, λ is generically injective on any irreducible component. This proves the first two

statements. The third statement follows immediately from the construction of F ′′r0 . �

10. The cycles at time zero: after resolving the family of theta divisors

10.1. The cycle F ′′′r is the proper transform of F ′′r under

P // G̃ ×T Θ̃ // G̃ ×T Θ

where the arrow on the right is the blow-up of G̃ ×T Θ along G̃0 × W 1
4 and the arrow on the left,

which is a small resolution, is the blow-up of G̃ ×T Θ̃ along qk(Wk ×M1). The central fiber of P has

8 components (see Section 7), where ˜Wk ×M1 and Pk ×M1 are the main components and Wk ×M2,

˜Pk ×M2 are the exceptional components.

Proposition 10.1. F ′′′r0 |W̃k×M1
is the proper transform of F ′′r0|Wk×Θ0 under the birational morphism

˜Wk ×M1
// Wk ×M1

(id,p1)
// Wk × C(4)

(id,φ)
// Wk ×Θ0.

Proof. The inverse of the birational morphism

˜Wk ×M1
// Wk ×M1

// Wk ×Θ0
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is defined on the open subset (Wk \ (Xp ∪Xq))× (Θ0 \W 1
4 ). This open subset contains an open dense

subset of F ′′r0 |Wk×Θ0 . �

10.2. The center of the blow-up. Next we study F ′′′r0 |Wk×M2 , which is the scheme-theoretic inter-

section of F ′′′r with the exceptional divisor Wk ×M2. So F ′′′r0 |Wk×M2 is the projectivized normal cone

to the scheme-theoretic intersection F ′′r0 ∩ (Wk ×W 1
4 ) ⊂ F ′′r0|Wk×Θ0 in F ′′r . We first study the center of

the blow-up.

By Proposition 9.2, F ′′r0|Wk×Θ0 is the image of

Fr0k
(λ1,λ2)

// F ′′r0|Wk×Θ0 ⊂ Wk ×Θ0 .

Denote Zk ⊂ Fr0k the inverse image scheme of F ′′r0 ∩ (Wk ×W 1
4 ) ⊂ F ′′r0 |Wk×Θ0 and put Z := Z1 ∪ Z2

and Z(d1,d2)(e1,e2) = Z ∩ F(d1,d2)(e1,e2). Then Zk maps onto W 1
4 ⊂ Θ0 by λ2 and we have the Cartesian

diagram

Zk //
� _

��

W 1
4� _

��
Fr0k

λ2 // Θ0.

(10.1)

Proposition 10.2. The cycle Z1 is 1-dimensional and, for s1
4 6= gi or hi, the fiber λ−1

2 (s1
4) ∩ Fr01 is

finite. For i = 1, . . . 5, the fiber λ−1
2 (gi) ∩ Fr01 is 1-dimensional (modulo finitely many points) and its

support is listed in Table 4.

The fiber λ−1
2 (hi) ∩ Fr01 is also 1-dimensional with support described in Table 5.

Proof. We study Z1 case by case according to the bidegree. The proof is divided into three Lemmas:

10.4, 10.5 and 10.7. �

Proposition 10.3. Z2 is 1-dimensional and, for s1
4 6= gi or hi, the fiber λ−1

2 (s1
4) ∩ Fr02 is finite. For

i = 1, . . . 5, the fiber λ−1
2 (gi) ∩ Fr02 is 1-dimensional with support described in Table 6.

The fiber λ−1
2 (hi) ∩ Fr02 is 1-dimensional with support described in Table 7.

Proof. The proof is entirely analogous to that of Proposition 10.2, we omit the details. �
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Ambient Spaces Support of λ−1
2 (gi) ∩ Fr01

(L,D4, a,D
′
4, a
′) ∈ W1 × (C

(4)
1 × C2)× (C

(4)
1 × C2)


a+ a′ + p+ q ≡ gi

h0(L− a− r0) > 0

D4 ≡ L− a,D′4 ≡ L′ − a′

(L,D4, a,D
′
2, D

′
3) ∈ W1 × (C

(4)
1 × C2)× (C

(2)
1 × C

(3)
2 )


D′3 + a ≡ gi
L = a+ gj, j 6= i, a ∈ C
r0 ≤ D4 ≡ gj
D′2 ≡ hi − (gi − p− q)

(L,D4, a,D
′
2, D

′
3) ∈ W1 × (C

(4)
1 × C2)× (C

(2)
1 × C

(3)
2 )


D′3 + a ≡ gi
L = hi + p+ q − c, c ∈ C
h0(L− r0 − a) > 0, D4 ≡ L− a
D′2 = a+ c

(L,D2, D3, D
′
4, a
′) ∈ W1 × (C

(2)
1 × C

(3)
2 )× (C

(4)
1 × C2)


D3 + r0 ≡ gi
L = c+ gi, c ∈ C
a′ = r0, D

′
4 ≡ hi + p+ q − c− r0

D2 = r0 + c

(L,D2, D3, D
′
4, a
′) ∈ W1 × (C

(2)
1 × C

(3)
2 )× (C

(4)
1 × C2)


D3 + a′ ≡ gi
L = r0 + gi
D′4 ≡ hi + p+ q − r0 − a′, a′ ∈ C
D2 = a′ + r0

Table 4.

Ambient Spaces Support of λ−1
2 (hi) ∩ Fr01

(L,D4, a,D
′
2, D

′
3) ∈ W1 × (C

(4)
1 × C2)× (C

(2)
1 × C

(3)
2 )


D′3 + a ≡ hi
L = a+ gi, a ∈ C
r0 ≤ D4 ≡ gi
D′2 = p+ q

Table 5.

Lemma 10.4. For any s1
4 ∈ W 1

4 , the intersection λ−1
2 (s1

4) ∩ F(4,1)(4,1) is empty except when s1
4 = gi.

The support of the intersection λ−1
2 (gi) ∩ F(4,1)(4,1) is of pure dimension 1 and equal to

{ (L,D4, a,D
′
4, a
′) | a+ a′ + p+ q ≡ gi, h

0(L− r0 − a) > 0, D4 ≡ L− a,D′4 ≡ L′ − a′ }.
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Ambient Spaces Support of λ−1
2 (gi) ∩ Fr02

(L,D5, D
′
3, D

′
2) ∈ W2 × C(5)

1 × (C
(3)
1 × C

(2)
2 )


D′2 + p+ q ≡ gi

h0(L′ −D′2) > 0, D′3 ≡ L′ −D′2
r0 ≤ D5 ≡ L

(L,D5, a
′, D′4) ∈ W2 × C(5)

1 × (C1 × C(4)
2 )


c ≤ D′4 ≡ gi
L = hi + p+ q − c, c ∈ C
a′ = c

r0 ≤ D5 ≡ L

Table 6.

Ambient Spaces Support of λ−1
2 (hi) ∩ Fr02

(L,D3, D2, a
′, D′4, ) ∈ W2 × (C

(3)
1 × C

(2)
2 )× (C1 × C(4)

2 )


D3 + a′ ≡ gi
r0 ≤ D3

L = c+ gi, c ∈ C
D2 = a′ + c,D′4 ≡ hi + p+ q − c− a′

(L, a,D4, D
′
3, D

′
2) ∈ W2 × (C1 × C(4)

2 )× (C
(3)
1 × C

(2)
2 )


D′3 + r0 ≡ gi
L = hi + p+ q − c, c ∈ C
a = r0, D4 = hi + p+ q − c− r0

D′2 = r0 + c

Table 7.

Proof. The map λ : F(4,1)(4,1) → W1 × Θ0 factors through the projection of F(4,1)(4,1) ⊂ W1 × (C
(4)
1 ×

C2)×(C
(4)
1 ×C2) to W1×C2×C2, which is generically injective. The image of F(4,1)(4,1) in W1×C2×C2

consists of (L, a, a′) such that

h0(L− r0 − a) > 0.

The image of Z(4,1)(4,1) = Z∩F(4,1)(4,1) under the projection is defined scheme-theoretically by imposing

an extra condition

h0(a+ a′ + p+ q) > 1.

If a + a′ + p + q ≡ s1
4 ∈ W 1

4 , then s1
4 is equal to one of the gi. This first shows that λ−1

2 (s1
4) is

empty unless s1
4 = gi for some i. Then it shows that there are only finitely many choices for a, hence

λ−1
2 (gi) ∩ F(4,1)(4,1) of pure dimension 1 and is as described . �
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Lemma 10.5. For s1
4 6= gi or hi, the intersection λ−1

2 (s1
4)∩F(4,1)(2,3) is finite. The intersection λ−1

2 (hi)∩

F(4,1)(2,3) (up to finitely many points) has support

{ (L,D4, a,D
′
2, D

′
3) | L = a+ gi, a ∈ C, r0 ≤ D4 ≡ gi, D

′
3 ≡ hi − a,D′2 = p+ q },

and the intersection λ−1
2 (gi) ∩ F(4,1)(2,3) (again, up to finitely many points) has support

{ (L,D4, a,D
′
2, D

′
3) | L = a+ gj, j 6= i, a ∈ C, r0 ≤ D4 ≡ gj, D

′
3 ≡ gi − a,D′2 ≡ hi − (gi − p− q) }

and

{ (L,D4, a,D
′
2, D

′
3) | L = hi + p+ q − c, c ∈ C, h0(L− r0 − a) > 0, D′3 ≡ gi − a,D′2 = a+ c) }.

Proof. Consider the projection of Z(4,1)(2,3) to W1×C2×C(3)
2 consisting of (L, a,D′3) satisfying equations

h0(L′ −D′3) > 0(10.2)

h0(L− r0 − a) > 0(10.3)

h0(a+D′3) > 1.(10.4)

Fix any s1
4 ∈ W 1

4 (C). Suppose a + D′3 ≡ s1
4. In the canonical space |KC |∗, the span 〈D′3 〉 is a plane

(C is not trigonal). By Riemann-Roch, a ∈ 〈D′3 〉. We have two cases:

(1) a 6≤ Γ′3 := KC−L′. In this case, h0(L′−D′3) = h0(KC−Γ′3−D′3) > 0 implies h0(KC−Γ′3−s1
4) > 0,

i.e. h0(L′ − s1
4) > 0. If s1

4 6= gi, then L′ = p+ s1
4 or L′ = q + s1

4 because h0(L′ − p− q) > 0. In

either case, there are finitely many choices of a satisfying condition (10.3) and therefore there

are finitely many points in Z(4,1)(2,3) that map to s1
4. If s1

4 = gi, then there exists c ∈ C such

that L′ = c+ gi and (10.3) becomes

h0(K + p+ q − (c+ gi)− r0 − a) = h0(hi + p+ q − c− r0 − a) > 0.

For each c, there are 4 choices of a satisfying the above condition, so (L, a,D′3) belongs to

{ (L = hi + p+ q − c, a,D′3 = gi − a) | c ∈ C, h0(hi + p+ q − c− r0 − a) > 0 }.

Finally, there is a unique lifting of such (L, a,D′3) to a point (L,D4, a,D
′
2, D

′
3) in Z(4,1)(2,3) as

described in the statement.
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(2) a ≤ Γ′3. Write Γ′3 = a+ Γ′2. The conditions defining the fiber of Z(4,1)(2,3) over s1
4 are

h0(KC − a− Γ′2 −D′3) = h0(KC − s1
4 − Γ′2) > 0

h0(KC − Γ3 − a− r0) = h0(Γ′3 + p+ q − a− r0) = h0(Γ′2 + p+ q − r0) > 0

a+D′3 ≡ s1
4

Put h1
4 := |KC − s1

4| so that, by the above, h0(h1
4 − Γ′2) > 0. There are two subcases:

(a) h0(Γ′2 + p+ q) = 2. So the second condition above is automatically satisfied.

Here Γ′2 + p+ q ∈ gi for some i.

Claim 10.6. The five g1
4s containing Γ′2 are gi and hj for j 6= i.

To prove this, denote lpq the line in P2 = P(I2(C)) consisting of quadrics vanishing on

the secant line 〈 p + q 〉 in |KC |∗. There are five rank 4 quadrics Qj, j = 1, ..., 5 in

lpq, corresponding to the intersection of lpq with the quintic curve parametrizing rank 4

quadrics in P(I2(C)). For each j, gj is cut on C by one ruling of Qj. Let S be the base

locus of the pencil lpq. Then S is a Del Pezzo surface of degree 4. By construction 〈 p+ q 〉

is contained in S. Since the span 〈 p + q + Γ′2 〉 is a plane in |KC |∗, S ∩ 〈 p + q + Γ′2 〉 is a

conic containing 〈 p + q 〉, thus S ∩ 〈 p + q + Γ′2 〉 = 〈 p + q 〉 ∪ 〈Γ′2 〉. Therefore the pencil

of quadrics containing 〈Γ′2 〉 is also lpq. We know that 〈 p + q + Γ′2 〉 ⊂ Qi. For all j 6= i,

Qj ∩ 〈 p + q + Γ′2 〉 = S ∩ 〈 p + q + Γ′2 〉 = 〈 p + q 〉 ∪ 〈Γ′2 〉. So Γ′2 and 〈 p + q 〉 belong

to different rulings of Qj, i.e., Γ′2 is contained in the ruling of Qj corresponding to hj for

j 6= i. The claim is proved.

Thus h1
4 = gi or h1

4 = hj for some j 6= i.

So those (L, a,D′3) which map to s1
4 = hi are

{ (L = a+ gi, a,D
′
3 ≡ hi − a) | a ∈ C }.

Similarly, the (L, a,D′3) which map to s1
4 = gj for j 6= i are

{ (L = a+ gi, a,D
′
3 ≡ gj − a) | a ∈ C, j 6= i }.

There are unique liftings to points in Z(4,1)(2,3) as described in the statement of the propo-

sition.
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(b) h0(Γ′2 + p+ q) = 1. Then the second condition implies h0(Γ′2− r0) > 0. For each s1
4, there

are finitely many choices of Γ′2 = r0 + b satisfying the first condition and for each choice

of Γ′2, there are finitely many choices of a such that a + Γ′2 ∈ Wpq (because this means

h0(KC−a−Γ′2−p−q) > 0, and, since h0(Γ′2 +p+q) = 1, we have h0(KC−Γ′2−p−q) = 1

as well). Therefore, there are no positive dimensional fibers.

�

Lemma 10.7. (1) The only positive dimensional fibers in Z(2,3)(4,1) are λ−1
2 (gi) ∩ Z(2,3)(4,1). For

each i, the 1-dimensional components of λ−1
2 (gi) ∩ Z(2,3)(4,1) are supported on the curve

{ (L,D2, D3, D
′
4, r0) | L = c+ gi, c ∈ C,D2 = r0 + c,D3 ≡ gi − r0, D

′
4 ≡ hi + p+ q − c− r0 }

and

{ (L,D2, D3, D
′
4, a
′) | L = r0 + gi, D2 = a′ + r0, D3 ≡ gi− a′, D′4 ≡ hi + p+ q− r0− a′, a′ ∈ C }.

(The second curve is contracted by λ = (λ1, λ2), and therefore does not contribute to the

Abel-Jacobi map in Section 11.)

(2) All fibers in Z(2,3)(2,3) are finite.

Proof. (1) The projection of Z(2,3)(4,1) to Wpq × C(3)
2 × C2 is the locus of (L,D3, a

′) satisfyingh
0(L−D3 − r0) > 0

h0(a′ +D3) > 1.

As in the previous lemma, only the inverse image of gi is positive dimensional. It is equal to

{ (L = c+ gi, a
′ = r0, D3 ≡ gi − r0) | c ∈ C } ∪ { (L = r0 + gi, D3 ≡ gi − a′, a′) | a′ ∈ C }.

As before, we can uniquely lift these curves to Z(2,3)(4,1).
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(2) The projection of Z(2,3)(2,3) to Wpq × C(2)
1 × C

(2)
1 is the locus of (L,D2, D

′
2) satisfying

h0(L−D2) > 0

h0(L′ −D′2) > 0

r0 ≤ D2

h0(KC −D2 −D′2) > 1.

These cycles are also 1-dimensional but there are only finitely many points mapping to a fixed

s1
4 (we choose r0 general such that r0 + p+ q is not in any g1

4).

�

By the previous three Lemmas, Proposition 10.2 is proved.

We also need to describe the components of Z1 which lie over X1p under λ1. This will be needed in

the computation of the Abel-Jacobi map in Section 11.3.

Lemma 10.8. The scheme Z1 has the following components which map onto X1p by λ1. Each

component maps onto W 1
4 by λ2. They are supported on

{ (L,D2, D3, D
′
4, r0) | L = p+ g1

4, D3 ≡ g1
4 − r0, D2 = p+ r0, D

′
4 ≡ p+ g1

4 − r0 } ⊂ Z(2,3)(4,1),

{ (L,D4, p,D
′
2, D

′
3) | L = p+ g1

4, r0 ≤ D4 ≡ g1
4, D

′
3 ≡ KC − g1

4 − a } ⊂ Z(4,1)(2,3),

and

{ (L,D4, a,D
′
2, D

′
3) | L = p+ g1

4, h
0(g1

4 − r0 − a) > 0, D4 ≡ p+ g1
4 − a,D′3 ≡ KC − g1

4 − a,D′2 = a+ q }

⊂ Z(4,1)(2,3).

Proof. Fix a general L = p+ g1
4 ∈ X1p. One easily sees from Table 2 that only Z(2,3)(4,1) and Z(4,1)(2,3)

have a point over L.

In Z(2,3)(4,1), the condition h0(p+ g1
4 −D3− r0) > 0 implies that either D3 ≡ g1

4 − r0 or D3 = p+B2

with h0(g1
4 − r0 − B2) > 0. In the first case, h0(a′ + D3) > 1 implies a′ = r0. This is because D′3 is

contained in at most one pencil of degree 4. Thus we obtain the first curve in the statement of the

lemma. The second case does not happen because |a′+p+B2| cannot be a pencil for p and g1
4 general.
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In Z(4,1)(2,3), there are four choices of a such that h0(p + g1
4 − r0 − a) > 0. The condition h0(L′ −

D′3) = h0(q + KC − g1
4 − D′3) > 0 implies that either h0(KC − g1

4 − D′3) > 0 or D′3 = p + B′2 with

h0(KC − g1
4 − B′2) > 0. In the first case, h0(a + D′3) > 1 implies that D′3 ≡ KC − g1

4 − a. This is

because D′3 is contained in at most one pencil of degree 4. Thus we obtain the curves in the statement

of the lemma. In the second case, |a+ q +D′2| is not a pencil for q and g1
4 general. Note that the last

component is a degree 3 cover of X1p under λ1. �

10.3. Infinitesimal study of Fr0 and Z. In this subsection, we prove that each irreducible compo-

nent of the center of the blow-up F ′′r0 ∩ (Wk ×W 1
4 ) is generically smooth, or equivalently, generically

reduced. We also prove that F ′′r0 is smooth at a general point in each irreducible component of

F ′′r0 ∩ (Wk ×W 1
4 ).

The infinitesimal study is similar for all components. So let us take one component, say the image

in W1 ×Θ0 of the curve in Z(4,1)(2,3)

{ (L,D4, a,D
′
2, D

′
3) | L = a+ gi, a ∈ C, r0 ≤ D4 ≡ gi, D

′
3 ≡ hi − a,D′2 = p+ q } .

This curve projects isomorphically to (with identification C1 = C2 = C)

Z ′(4,1)(2,3) = { (L, a,D′3) | L = a+ gi, a,D
′
3 ≡ hi − a, a ∈ C } ⊂ W1 × C × C(3).(10.5)

It suffices to show that the curve Z ′(4,1)(2,3) is generically reduced. To this end, recall that by [ACGH,

p 189], for any line bundle M of degree d on C, and v ∈ H1(OC) = TM PicdC a tangent vector, all

sections in H0(C,M) extend to first order along v if and only if

(v, ImµM)S = 0

where (, )S is the pairing for Serre duality and

µM : H0(M)⊗H0(KC −M)→ H0(KC)

is the multiplication map.

Note that Imµgi is of codimension 1 in H0(KC) by the base point free pencil trick.
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If we embed W1 × C × C(3) in Pic5C × Pic1C × Pic3C, by the previous paragraph, the tangent

space to W1 × C × C(3) at the point (L, a,D′3) consists of (v1, v2, v3) ∈ H1(OC)⊕3 such that

v1 ∈ Imµ⊥L ∩ Imµ⊥L′ ,(10.6)

v2 ∈ H0(KC − a)⊥,(10.7)

v3 ∈ H0(KC −D′3)⊥.(10.8)

Lemma 10.9. A tangent vector (v1, v2, v3) ∈ H1(OC)⊕3 of Wpq × C × C(3) is tangent to Z ′(4,1)(2,3) ⊂

Wpq × C × C(3) at (L = a+ gi, a,D
′
3 = hi − a) if, in addition, the following holds

v1 + v3 ∈ H0(KC − p− q)⊥,(10.9)

v1 − v2 ∈ H0(KC − (gi − r0))⊥,(10.10)

v2 + v3 ∈ Imµ⊥gi .(10.11)

Proof. The cycle Z ′(4,1)(2,3) is defined scheme-theoretically by (10.2), (10.3), and (10.4). These translate

into the above conditions for infinitesimal deformations. �

Proposition 10.10. Each irreducible component of F ′′r0 ∩ (Wk ×W 1
4 ) is generically smooth.

Proof. We only prove the proposition for the component which is the image in W1 ×Θ0 of Z ′(4,1)(2,3).

Fix a general point (L = a+ gi, a,D
′
3 ≡ hi − a). Consider the linear map from the tangent space of

Z(4,1)(2,3) to H1(OC) which sends (v1, v2, v3) to v2 + v3. Its image is 1-dimensional by (10.11). To show

the tangent space of Z(4,1)(2,3) is 1-dimensional, it suffices to show that the kernel of this linear map is

trivial, i.e. if v2 + v3 = 0, then v1 = v3 = 0.

So assume v2 + v3 = 0. Then

v1 + v3 = v1 − v2 ∈ H0(KC − p− q)⊥ ∩H0(KC − (gi − r0))⊥.

Since the pencil KC − (gi − r0) = hi + r0 does not have base points at p or q and can separate p and

q, we conclude

H0(KC − p− q)⊥ ∩H0(KC − (gi − r0))⊥ = (H0(KC − p− q) +H0(KC − (gi − r0)))⊥ = 0.
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Therefore v1 = −v3. Now by (10.6) and (10.7), v1 = v2 = −v3 ∈ Imµ⊥L ∩ Imµ⊥L′ ∩H0(KC − a)⊥ = 0

for a ∈ C general, this implies v1 = v2 = v3 = 0. �

Proposition 10.11. The scheme Fr0k is smooth at a general point of each component of Zk.

Proof. Again we only check the proposition for a general point of the image in W1 × Θ0 of (10.5).

The defining conditions for F(41)(23) ⊂ W1 × C × C(3) are (10.2) and (10.3). The tangent space of

Fr0 at (L = a + gi, a,D
′
3 = hi − a) consists of (v1, v2, v3) satisfying the conditions from (10.6) to

(10.10). Projection to the v1 summand of (v1, v2, v3) is surjective and the kernel of this projection is

1-dimensional. The proposition follows. �

10.4. The structure of the projectivized normal cone. Note that F ′′′r0 |Wk×M2 is the projectivized

normal cone of Fr0 ∩ (Wk ×Θ0) in F ′′r .

We have the commutative diagram

Ck //

��

F ′′′r0 |Wk×M2

ρ2
//

��

M2

π2

��

Zk

λ1 &&MMMMMMMMMMMMMM

(λ1,λ2)
// F ′′r0 ∩ (Wk ×W 1

4 )
Pr2 //

Pr1
��

W 1
4

Wk

(10.12)

where Ck is defined by the left square being a fiber product.

Proposition 10.12. Ck is generically a P2 bundle over the curve λ−1
2 (∪i{ gi, hi }) ∩ Zk.

Proof. Since Wk × M2 is a divisor in the total space P , F ′′′r0 |Wk×M2 = F ′′′r ∩ (Wk × M2) is purely

3-dimensional. Furthermore, by Propositions 10.10 and 10.11, at a generic point of any compo-

nent of λ−1
2 (∪i{ gi, hi }) ∩ Zk, both Zk and Fr0k are smooth. Thus there is an open dense subset

of λ−1
2 (∪i{ gi, hi })∩Zk where the dominant map Ck → Zk is a P2 bundle. So the general fiber of Ck is

a 2-dimensional linear subspace of the singular quadric threefold Qsing
3 which is the fiber of M2 over

one of the gi or hi. Therefore the general fiber is a P2 passing through the vertex of Qsing
3 . �

11. The Abel-Jacobi map

We are now ready to prove Propositions 8.1 to 8.4.
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11.1. Proof of Proposition 8.1: The map AJ0
1 : H2(G̃

[0]
0 )→ H4(M1).

We will show that it is enough to compute the restriction of AJ0
1 to the direct summand H2(W1) of

H2(G̃
[0]
0 ). This map is the correspondence induced by the cycle [F ′′′r0 |W̃1×M1

] ∈ H6(W̃1 ×M1). We use

the notation introduced in Section 6.1.

There are two reduction steps:

(1) First, since we are computing AJ0
1 modulo 〈 j1∗f, j1∗τ1 〉 in Proposition 8.1 (recall thatH4(M1) ∼=

p∗1H
4(C(4))⊕ 〈 j1∗f, j1∗τ1 〉), it suffices to check that the image of the composition

H2(W1)
AJ0

1 // H4(M1)
p1∗
// H4(C(4))

contains ηH2(Pic4C)⊕ η2 modulo θH2(Pic4C). Recall (see Proposition 10.1) that F ′′′r0 |W̃1×M1

is the proper transform of F ′′r0|W1×Θ0 under

W̃1 ×M1 −→ W1 ×M1 −→ W1 × C(4) −→ W1 ×Θ0.

By the projection formula, p1∗◦AJ0
1 is induced as a correspondence map by the proper transform

F ′′r0|W1×C(4) of F ′′r0 |W1×Θ0 in the intermediate space W1 × C(4):

H2(W1) // H2(W1 × C(4))
∪[F ′′r0

|
W1×C(4) ]

// H8(W1 × C(4)) // H4(C(4)).

(2) Second, we will prove that in fact the image by p1∗ ◦ AJ0
1 of the subspace (q1, q2)∗H2(C(3) ×

C(3)) of H2(W1) contains ηH2(Pic4C) ⊕ η2 modulo θH2(Pic4C). We therefore compute the

composition AJ0
1

AJ0
1 : H2(C(3) × C(3))

(q1,q2)∗
// H2(W1)

p1∗◦AJ0
1// H4(C(4)) // H4(C(4))

θH2(Pic4 C)
,

where

(q1, q2) : Wpq −→ C(3) × C(3)

L 7−→ (Γ3,Γ
′
3)

is the embedding used in Section 2.2.
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Lemma 11.1. The Kunneth component of [F ′′r0|W1×C(4) ] ∈ H6(W1×C(4)) in H2(W1)⊗H4(C(4)) is the

restriction to W1 × C(4) ⊂ C(3) × C(3) × C(4) of

(−2θ1 + 4η1 + 4η2)η2
3 + 4δ2

13η3 + (θ1 − η1)θ3η3.(11.1)

in H6(C(3) × C(3) × C(4)) modulo θ3H
2(Pic4C), where δkl =

∑5
i=1(ξkiξ

′
li + ξliξ

′
ki).

Proof. The Kunneth component of [F ′′r0|W1×C(4) ] in H2(W1) ⊗ H4(C(4)) is computed case by case for

each bidegree in Appendix 12.4. It is the sum of the classes in (12.3), (12.4), (12.5), (12.6), (12.7),

which is equal to the restriction to W1 × C(4) ⊂ C(3) × C(3) × C(4) of

[−2θ1 + 4η1 + 4η2] η2
3 +

[
2δ2

23 + δ2
13 − δ13δ23 + (θ1 − η1)θ3

]
η3.(11.2)

Consider the commutative diagram

Wpq

q1

zzvvvvvvvvv q2

$$HHHHHHHHH

C(3)

��

C(3)

��

Pic3(C)
τ // Pic3(C)

where τ is the involution sending M to KC − p− q −M . Since τ ∗(ξi) = −ξi, we see immediately that

q∗1(ξi) = −q∗2(ξi),

δ13|W1×C(4) = −δ23|W1×C(4) .

Therefore (11.2) simplifies to (11.1). �

For any ω ∈ H2(C(3)), denote ω1 its pull back to C(3)×C(3) under the first projection (see Notation

(4)). Now, using the class (11.1), we obtain

AJ0
1(ω1) = prC(4)∗

{
ω1

[
(−2θ1 + 4η1 + 4η2)η2

3 + 4δ2
13 + (θ1 − η1)θ3η3

] }
|W1×C(4) .
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Expanding δ2
13 =

∑5
i,j=1

[
2ξ1iξ

′
1jξ
′
3iξ3j − ξ1iξ1jξ

′
3iξ
′
3j − ξ′1iξ′1jξ3iξ3j

]
, we obtain

AJ0
1(ω1) =

[∫
W1

ω1(−2θ1 + 4η1 + 4η2)

]
η2 + 8

5∑
i,j=1

[∫
W1

ω1ξ1iξ
′
1j

]
ξ′iξj

−4
5∑

i,j=1

[∫
W1

ω1ξ1iξ1j

]
ξ′iξ
′
j − 4

5∑
i,j=1

[∫
W1

ω1ξ
′
1iξ
′
1j

]
ξiξj +

[∫
W1

ω1(θ1 − η1)

]
θη.

Noting that the class of the image ofW1 in C(3) by q1 or q2 is θ−η, and q1∗q
∗
2η = 1

2
θ2−θη+η2 ∈ H2(C(3)),

the above formula becomes

AJ0
1(ω1) =

[∫
C(3)

ω(−2θ + 4η)(θ − η) + 4

∫
C(3)

ω(
1

2
θ2 − θη + η2)

]
η2(11.3)

+8
5∑

i,j=1

[∫
C(3)

ωξiξ
′
j(θ − η)

]
ξ′iξj − 4

5∑
i,j=1

[∫
C(3)

ωξiξj(θ − η)

]
ξ′iξ
′
j

−4
5∑

i,j=1

[∫
C(3)

ωξ′iξ
′
j(θ − η)

]
ξiξj +

[∫
C(3)

ω(θ − η)2

]
θη.

Now a simple computation using the ring structure of H•(C(3)) described in Macdonald [Ma] gives

AJ0
1(η1) = 10η2 − 11θη,

AJ0
1(ξ1iξ1j) = cijξiξjη for 0 6= cij ∈ Z, j 6= i± 5,

AJ0
1(σ1k) = 8η2 − 11θη + 16σkη,

Thus the image of AJ0
1 contains ηH2(Pic4C)⊕ η2 modulo θH2(Pic4C). �

11.2. Proof of Proposition 8.2: The map AJ0
2 : H2(G̃

[0]
0 ) −→ H4(M2).

We will work with the restriction of AJ0
2 to the direct summand H2(W1)⊕H2(W2) of H2(G̃

[0]
0 ):

H2(Wk)
ρ∗1 // H2(Wk ×M2)

∪[F ′′′r0
|Wk×M2

]
// H8(Wk ×M2)

ρ2∗
// H4(M2) .

The relations between the various spaces involved are summarized in diagram (10.12). The projection

of F ′′′r0 |Wk×M2 to Wk is supported on curves. By Section 10.2, the image curve contains the following
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special curves in Wk

Ci := { c+ gi | c ∈ C }, C ′i := ι(Ci), i = 1, ...5,

X1p = { p+ g1
4 | g1

4 ∈ W 1
4 (C) },

X1q = { q + g1
4 | g1

4 ∈ W 1
4 (C) },

where ι(L) = |KC + p + q − L|. By Lemma 6.3, H4(M2) is generated by j2∗f , j2∗τ1, [P2
i ] and [P2

i+5]

(recall that f is the class of the fiber of π12 : M12 −→ W 1
4 and see Lemma 6.3 for the definition of P2

i ).

Lemma 11.2. Put [C]tot := [C1] + ...+ [C5]. For any (α, β) ∈ H2(W1)⊕H2(W2),

AJ0
2(α) =

5∑
i=1

(∫
W1

α · [Ci]
)

[P2
i+5] +

5∑
i=1

(∫
W1

α · ([C]tot + 4[C ′i] + 2q∗1(θ − η))

)
[P2
i ]

modulo 〈 j2∗f 〉, and,

AJ0
2(β) = −

5∑
i=1

(∫
W2

β · (3[Ci] + [C ′i])

)
[P2
i+5] +

5∑
i=1

(∫
W2

β · ([C ′i] + q∗2(θ − η))

)
[P2
i ]

modulo 〈 j2∗f 〉.

Proof. By Sections 10.2 and 10.3, the scheme F ′′r0 ∩ (Wk ×W 1
4 ) is of pure dimension 1 and generically

reduced on each of its components.

Represent α as the cohomology class of a real 2-chain in general position. By definition, AJ0
2(α) is

the push-forward to M2 of the pull-back of λ∗1α ∪ [Z1] to Ck. By Proposition 10.12, the fibers of Ck
over λ−1

2 (∪i{ gi, hi }) ∩ Zk are isomorphic to P2.

Since we are computing AJ0
2 modulo 〈 j2∗f 〉 ∈ H4(M2), we only need to compute the intersection of

λ∗1α with λ−1
2 (∪i{ gi, hi })∩Z1. The components of λ−1

2 (∪i{ gi, hi }))∩Z1 are described in Proposition

10.2. For instance, the curve supported on

{ (L,D4, a,D
′
4, a
′) | a+ a′ + p+ q ≡ gi, h

0(L− r0 − a) > 0, D4 ≡ L− a,D′4 ≡ L′ − a′ }

has two components since we can switch a and a′. Each component projects to a curve in W1 whose

class is (θ1 − η1)|W1 by the secant plane formula (Section 12.2). Thus the contribution of this curve is∫
W1
α · 2(θ1 − η1)[P2

i ]. The formula for AJ0
2(α) now easily follows.
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The computation of AJ0
2(β) is analogous. The minus sign in the formula for AJ0

2(β) comes from the

fact that the maps to Θ0 on the curves

{ (L,D3, D2, a
′, D′4) | L = c+ gi, c ∈ C, r0 ≤ D3, a

′ +D3 ≡ gi, D2 = a′ + c,D′4 ≡ hi + p+ q − c− a′ }

⊂ Z(3,2)(1,4)

{ (L, a,D4, D
′
3, D

′
2) | L = hi + p+ q − c, a = r0, r0 +D′3 ≡ gi, c ∈ C,D′2 = r0 + c } ⊂ Z(1,4)(3,2).

are given by OC(KC − D3 − a′) and OC(KC − D′3 − a) respectively (instead of OC(D3 + a′) and

OC(D′3 + a)). Thus the P2 fibers over these curves are in the rulings opposite to those of P2
i+5. Since

we work modulo j2∗f , the two rulings differ by a minus sign. �

We need the following Lemma to study the rank of AJ0
2.

Lemma 11.3. We have the following intersection numbers in the smooth surface Wpq

C2
i = C ′2i = −2, CiC

′
i = CiCj = C ′iC

′
j = 0, CiC

′
j = 2, for i 6= j.

Proof. Clearly CiCj = C ′iC
′
j = 0 for i 6= j. To compute C2

i , consider the exact sequence

0 // NCi|Wpq
// NCi|C(3)

// Nq2(Wpq)|C(3)|Ci
// 0 .

Under the embedding q2 : Wpq → C(3) sending L to |L − p − q|, Ci is a complete intersection with

cohomology class η2 ∈ H4(C(3)). Therefore, c1(NCi|C(3)) = 2. We also have c1(NWpq |C(3)|Ci
) =∫

C(3) [Wpq] · [Ci] =
∫
C(3)(θ − η)η2 = 4. We conclude that C2

i = −2.

Now we compute CiC
′
j. Suppose x+ gi ∼ p+ q + hj − y for some x, y ∈ C. Then

D2i := gi − p− q = hj − x− y.

By Claim 10.6, for a fixed i, the g1
4s containing D2i are gi and hl for l 6= i. This implies CiC

′
i = 0 and

CiC
′
j = 2 (embedding C(3) in Pic3C, one easily sees that the intersection of Ci and C ′j is transverse

for a general choice of p+ q). �
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Using the formula in Lemma 11.2 and the intersection numbers in Lemma 11.3 we compute

AJ0
2 : H2(W1)⊕H2(W2) −→ H4(M2)/〈 j2∗f 〉

(12[Ci]− 3[C]tot + 2q∗2(η − σi), 3[Ci]) 7−→ −58[P2
i ] + 44

5∑
j 6=i,j=1

[P2
j ] mod 〈 j2∗f 〉.(11.4)

It immediately follows that the image of AJ0
2 contains 〈 [P2

i ] | i = 1, . . . , 5 〉 modulo j2∗f . We then

compute that

AJ0
2([Ci], [C

′
i]) = −6

5∑
j 6=i,j=1

[P2
j+5](11.5)

modulo 〈 [P2
i ], j2∗f | i = 1, ..., 5 〉. Proposition 8.2 follows immediately. �
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11.3. Proof of Proposition 8.3: The map AJ1 : H1(G̃
[1]
0 ) −→ H3(M12).

It follows from Sections 7.2 and 8.1 that the only double loci of the central fiber P0 inducing

non-trivial Abel-Jacobi maps are those which map to Xkp or Xkq under ρ1 and map to M12 under

ρ2. These are the slanted lines in the picture in Section 7.2. Recall (see Section 4.1) that H1(G̃
[1]
0 ) =

H1(X1p)⊕H1(X1q)⊕H1(X2p)⊕H1(X2p) and H3(M12) = τ1 ·π∗12H
1(W 1

4 )⊕j∗2e2 ·π∗12H
1(W 1

4 ) (see Lemma

6.3). To prove Proposition 8.3, it is sufficient to prove that the image of the summand H1(X1q) by

AJ1 contains τ1 · π∗12H
1(W 1

4 ). The map AJ1 on this summand is given by

H1(X1p)
ρ∗1 // H1(E1p)

∪[F ′′′r0
|E1p

]
// H7(E1p))

ρ2∗
// H3(M12) ,(11.6)

where E1p corresponds to the slanted line labeled b in the picture in Section 7.2. Therefore E1p is a

P1-bundle over X1p ×M12 and fits into the diagram

E1p

��
X1p ×M12

//

��

M12

X1p.

By the projection formula, to compute (11.6), it suffices to compute the correspondence induced by the

push-forward cycle of [F ′′′r0 |E1p ] to X1p×M12. Denote Y ′ the projectivized normal cone of F ′′r0∩(W1×W 1
4 )

in F ′′r0|W1×Θ0 . By construction, Y ′ has dimension 2 and Y ′ = (W1 ×M12) ∩ F ′′′r0 |W1×M2 .

The components of Z1 which dominate X1p are described in Lemma 10.8. Let Z1p denote the union

of these components and let Y be the fiber product Z1p ×F ′′r0
∩(Wk×W 1

4 ) Y
′, which is generically a P1-

bundle over Z1p (the P1 in the ruling corresponds to τ1 because the map λ2 from F(4,1)(2,3) and F(2,3)(4,1)
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factors through C(4) φ→ Θ0):

Y //

��

Y ′ //

��

M12

π12

��

Z1p

(λ1,λ2)
//

λ1

��

F ′′r0 ∩ (Wk ×W 1
4 )

Pr1
��

Pr2 // W 1
4

X1p
// W1.

For a real 1-cycle α in general position in X1p, the inverse image of α in Y is a P1-bundle over α. The

push-forward of the class of this P1-bundle to M12 is a class in H3(M12). As the class of α varies in

H1(X1p) ∼= H1(W 1
4 ), the class in H3(M12) spans τ1 · π∗12H

1(W 1
4 ) because X1p and W 1

4 are isomorphic

to each other. �
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11.4. Proof of Proposition 8.4: Passage to the E2 terms.

Recall that G̃0 has four components and E0,2
2 = Gr2H

2(G̃0) is the kernel of

H2(G̃
[0]
0 )

d1 //

∼=
��

H2(G̃
[1]
0 )

∼=
��⊕2

k=1 H
2(Wk)⊕H2(Pk) //

⊕2
k=1H

2(Xkp)⊕H2(Xkq)

Consider the subspace of Gr2H
2(G̃0) consisting of (x1, x2, β1, β2) with xk ∈ H2(Wk) and βk ∈ H2(Pk)

such that βk is a multiple of the class of fiber of the P1-bundle Pk. Since we always have∫
Xkp

βk =

∫
X3−k,q

βk,

the compatibility condition defining Ker(d1) becomes∫
Xkp

xk =

∫
X3−k,q

x3−k.(11.7)

Because the cycles F ′′′r0 |Pk×M1 and F ′′′r0 |Pk×M2 come from a base change (Proposition 9.2), the maps AJ0
1

and AJ0
2 are trivial on βk ∈ H2(Pk). We will therefore write AJ0

i (x1, x2) := AJ0
i (x1, x2, β1, β2).

Now start with (γ1, γ2) ∈ (I ⊕H4(M2)) ∩ Gr4H
4(Θ̃0). The condition (γ1, γ2) ∈ Gr4H

4(Θ̃0) means

j∗1γ1 = j∗2γ2 ∈ H4(M12) by Proposition 6.4. By Proposition 8.2, we can choose (x1, x2) ∈ H2(W1) ⊕

H2(W2) such that

γ2 − AJ0
2(x1, x2) ∈ 〈 j2∗f, j2∗τ1 〉.

Furthermore, note that in formula (11.4) and (11.5), we have chosen x1 and x2 so that∫
X1p

x1 =

∫
X2q

x2,

∫
X1q

x1 =

∫
X2p

x2.

Subtracting (AJ0
1(x1, x2),AJ0

2(x1, x2)) from (γ1, γ2), we may assume γ2 ∈ 〈 j2∗f, j2∗τ1 〉 ⊂ H4(M2). Now

choose ω ∈ H2(C(3)) such that for i = 1, ..., 5 (see Section 11.2 for the notation),∫
X1p

q∗1ω =

∫
X1q

q∗1ω = 0(11.8)
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and ∫
Ci

q∗1ω =

∫
W1

q∗1ω · ([C]tot + 4[C ′i] + 2q∗1(θ − η)) = 0.(11.9)

The equations (11.8) imply (q∗1ω, 0) ∈ Gr2H
2(G̃0). The equations (11.9) imply

AJ0
2(q∗1ω, 0) ∈ 〈 j2∗f, j2∗τ1 〉

by the formula for AJ0
2 in Lemma 11.2.

By the secant plane formula,

q1∗[Ci] =
1

2
θ2 − θη + η2,

q1∗[C
′
i] = η2,

q1∗[X1p] = q1∗[X1q] =
1

2
θ2 − θη.

Therefore the equations (11.8) and (11.9) together impose two conditions on ω since

〈 q1∗[Ci], q1∗(2[C ′i] + q∗1(θ − η)), q1∗[X1p], q1∗[X1q] 〉 = 〈 θ2, θη, η2 〉 = 〈 θη, η2 〉 ⊂ H4(C(3)).

So, if we choose

ω ∈ 〈 ξiξj, σk − σ1| i 6= j ± 5, k = 2, ..., 5 〉 = 〈 θη, η2 〉⊥,

by the formula for AJ0
2 in Lemma 11.2, AJ0

2(q∗1ω, 0) ∈ 〈 j2∗f, j2∗τ1 〉. Similarly, we can choose ω′ ∈

H2(C(3)) such that q∗1(ω′) satisfies (11.8) and

AJ0
2(0, q∗1ω

′) ∈ 〈 j2∗f, j2∗τ1 〉.

By formula (11.3), if we modify (γ1, γ2) by a linear combination of (AJ0
1(q∗1ω, 0),AJ0

2(q∗1ω, 0)), (AJ0
1(0, q∗1ω

′),AJ0
2(0, q∗1ω

′))

and (p∗1(θH2(Pic4C)), 0), we have γ1 = −j1∗y1 and γ2 = j2∗y2 for y1, y2 ∈ H2(M12). But since

j∗1γ1 = j∗2γ2 ∈ H4(M12), we conclude immediately that y1 = y2, thus (γ1, γ2) ∈ Im(−j1∗, j2∗). �

12. Appendix

12.1. The cohomology of C(k). For a smooth curve C of genus g, let m be the natural map from

the Cartesian power Ck to C(k). We identify the cohomology H•(C(k)) with its image under m∗, which

is the invariant subring of H•(Ck) under the action of the symmetric group Sk.
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Macdonald [Ma] proved that the cohomology ring H•(C(k),Z) is generated by (see Notation and

Conventions (2))

ξi ∈ H1(C(k),Z) ∼= H1(Pick(C),Z), i = 1, ..., 2g

and the class η ∈ H2(C(k),Z) subject to the following relations:

ξIξ
′
J(σK − η)ηd = 0(12.1)

where I,J ,K are mutually disjoint subsets of { 1, ..., g } and |I|+ |J |+ 2|K|+ d = k + 1, ξI = Πi∈Iξi,

(σK − η) = Πi∈K(σi − η), etc.

12.2. The secant plane formula [ACGH, p. 342]. Let |V | ⊂ |L| be a grd. Fix d ≥ k ≥ r and

consider the following cycle

{D ∈ C(k)| E −D ≥ 0 for some E ∈ |V | } ⊂ C(k).

The cohomology class of the above cycle is given by

k−r∑
l=0

(
d− g − r

l

)
ηlθk−r−l

(k − r − l)!
(12.2)

12.3. The Gysin maps. If ω ∈ H•(Ck,Z), the Gysin push-forward for the sum map

m∗ : H
•(Ck,Z)→ H•(C(k),Z)

is given by

m∗(ω) =
∑
σ∈Sk

σ∗(ω).

If ω is Sk-invariant, then

m∗(ω) = k! ω

reflecting the fact that m is generically k! to 1.

Fix k1 + k2 = k, and let m1 and m2 be the symmetrization maps

Ck
m1 // C(k1) × C(k2)

m2 // C(k).
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For a cohomology class ω′ ∈ H•(C(k1) × C(k2)) we have

m2∗(ω
′) =

1

deg(m1)
m∗(m

∗
1ω
′) =

1

deg(m1)

∑
σ∈Sk

σ∗(m∗1ω
′).

In our case gC = 5 and we have the following lemmas (whose proofs are straightforward computations).

Lemma 12.1. The Gysin map m∗ : H
2(C(2) × C(2)) −→ H2(C(4)) acts as follows:

1⊗ θ 7−→ θ + 10η,

1⊗ η 7−→ 3η,

ξi ⊗ ξj 7−→ 2ξiξj for j 6= i± 5,

ξi ⊗ ξi±5 7−→ 2ξiξi±5 ∓ 2η,

ξiξj ⊗ 1 7−→ ξiξj for j 6= i± 5.

Lemma 12.2. The Gysin map m∗ : H
4(C(2) × C(2)) −→ H4(C(4)) acts as follows:

η ⊗ (ξi · ξi+5) 7−→ ηξiξi+5 + η2,

η ⊗ ξiξj 7−→ ηξiξj for j 6= i± 5,

η ⊗ η 7−→ 2η2,

ηξi ⊗ ξj 7−→ ηξiξj for j 6= i± 5,

ηξi ⊗ ξi±5 7−→ ηξiξi±5 ∓ η2,

σk ⊗ σk 7−→ 2σkη for k = 1, ..5,

σk ⊗ σl 7−→ σkσl + η2 k 6= l,

σk ⊗ ξkξj 7−→ ξkξjη for j 6= k + 5,

σk ⊗ ξiξj 7−→ σkξiξj for i, j /∈ { k, k + 5 },

η2 ⊗ 1 7−→ η2.



68 E. IZADI, CS. TAMÁS, AND J. WANG

Lemma 12.3. The Gysin map m∗ : H
4(C × C(3)) −→ H4(C(4)) acts as follows:

η ⊗ ξiξj 7−→ η · ξiξj for 1 ≤ i, j ≤ 10,

1⊗ ηξiξj 7−→ η · ξiξj for j 6= i± 5,

1⊗ ησi 7−→ η · σi + η2,

ξi ⊗ ξjξkξl 7−→ ξiξjξkξl for j, k, l 6= i± 5,

ξi ⊗ ξi±5ξkξl 7−→ ξiξi±5ξkξl ∓ η · ξkξl for k, l 6= i± 5,

ξi ⊗ ηξj 7−→ ηξiξj for j 6= i± 5,

ξi ⊗ η · ξi±5 7−→ η · ξiξi±5 ∓ η2,

η ⊗ η 7−→ η2,

1⊗ η2 7−→ 2η2.

12.4. The cycle class of F ′′r0|W1×C(4). We use the secant plane formula (Section 12.2) to compute the

cycle class of F ′′r0|W1×C(4) in each bidegree. For each bidegree (d1, d2) + (e1, e2), the corresponding cycle

F(d1,d2)(e1,e2) ⊂ Wk × C(d1)
1 × C(e1)

1 × C(d2)
2 × C(e2)

2 projects generically injectively to a product of some

of the factors. Since the map λ : F(d1,d2)(e1,e2) → Wk × Θ0 factors through these projections, we only

need the cycle class of the projection of F(d1,d2)(e1,e2).

(1) (4,1)+(2,3) We first compute the class of the projection of F(4,1)(2,3) to C(3) × C(3) × C × C(3)

(with the identification C1 = C2 = C and the embedding of W1 into C(3) × C(3) via (q1, q2))

The cycles are given by the following conditions

(Γ3,Γ
′
3, a,D

′
3) ∈ C(3) × C(3) × C × C(3)

h0(KC − p− q − Γ3 − Γ′3) > 0

h0(KC − Γ′3 −D′3) > 0

h0(KC − Γ3 − r0 − a) > 0

The map λ2|F(4,1)(2,3)
factors through m which sends (Γ3,Γ

′
3, a,D

′
3) to (Γ3,Γ

′
3, a+D′3) ∈ C(3) ×

C(3) × C(4).
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By the secant plane formula (12.2), the cycle class is given by the pull-back under the sum

map from C(3) × C(3) (the first and fourth factor) to C(6) of the class

1

2
θ2 − ηθ + η2 ∈ H4(C(6))

cupped with the pull-back to C(3) × C (second and third factor) of

θ − η ∈ H2(C(4)),

then restriction to W1 × C × C(3). Thus we obtain (c.f. Notation (4))[
1

2
(θ2 + θ4 + δ24)2 − (η2 + η4)(θ2 + θ4 + δ24) + (η2 + η4)2

]
· [(θ1 + θ3 + δ13)− (η1 + η3)] .

We only need the Kunneth component of this cycle class in H2(C(3) × C(3)) ⊗ H4(C × C(3)).

We organize the terms according to the types in the Kunneth decomposition.

(a) Type (2, 0, 0, 4).(
1

2
θ2

4 − θ4η4 + η2
4

)
(θ1 − η1) =

(∑
i<j

[σ4iσ4j]− θ4η4 + η2
4

)
(θ1 − η1)

=

(∑
i<j

[(σ4i + σ4j) · η4 − η2
4]− θ4η4 + η2

4

)
(θ1 − η1)

= 3
(
θ4η4 − 3η2

4

)
(θ1 − η1)

(b) Type (0, 2, 2, 2)(
1

2
δ2

24 + θ2θ4 − θ2η4 − θ4η2 + 2η2η4

)
(θ3 − η3) =

(
1

2
δ2

24 + θ2θ4 − θ2η4 − θ4η2 + 2η2η4

)
4η3

(c) Type (1, 1, 1, 3)

(θ4δ24 − η4δ24) δ13

By Lemma 12.3, the push-forwards of these classes to C(3) × C(3) × C(4) are

(a)

m∗
(
3θ4η4 − 9η2

4

)
(θ1 − η1) = 3

(
θ3η3 − η2

3

)
(θ1 − η1)(12.3)
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(b)

m∗

(
1

2
δ2

24 + θ2θ4 − θ2η4 − θ4η2 + 2η2η4

)
4η3(12.4)

= m∗
(
2η3δ

2
24

)
+ 4m∗ [(θ2θ4 − θ2η4 − θ4η2 + 2η2η4) η3]

= m∗2η3

5∑
i,j=1

[
−ξ2iξ2jξ

′
4iξ
′
4j + 2ξ2iξ

′
2jξ
′
4iξ4j − ξ′2iξ′2jξ4iξ4j

]
+4m∗ [(θ2θ4 − θ2η4 − θ4η2 + 2η2η4)η3]

= 2η3

5∑
i,j=1

[
−ξ2iξ2jξ

′
3iξ
′
3j + 2ξ2iξ

′
2jξ
′
3iξ3j − ξ′2iξ′2jξ3iξ3j

]
+4
[
θ2η3θ3 − θ2η

2
3 − η2η3θ3 + 2η2η

2
3

]
= 2η3δ

2
23 + 4

[
θ2η3θ3 − θ2η

2
3 − η2η3θ3 + 2η2η

2
3

]
(c) For i 6= j, using the formula

m∗ξ
′
3iξ
′
4jσ4k =


0, k = j

ξ′3iξ
′
3jη3, k = i

ξ′3iξ
′
3jσ3k, k 6= i, j

and

m∗ξ
′
3iξ
′
4jη4 = ξ′3iξ

′
3jη3,
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we compute that

m∗(θ4 − η4)δ13δ24(12.5)

= m∗(θ4 − η4)
5∑

i,j=1

[
−ξ1iξ2jξ

′
3iξ
′
4j − ξ′1iξ′2jξ3iξ4j + ξ1iξ

′
2jξ
′
3iξ4j + ξ′1iξ2jξ3iξ

′
4j

]
= m∗(θ4 − η4)

5∑
i=1

[−ξ1iξ2iξ
′
3iξ
′
4i − ξ′1iξ′2iξ3iξ4i + ξ1iξ

′
2iξ
′
3iξ4i + ξ′1iξ2iξ3iξ

′
4i]

+m∗(θ4 − η4)
5∑

i,j=1,i 6=j

[
−ξ1iξ2jξ

′
3iξ
′
4j − ξ′1iξ′2jξ3iξ4j + ξ1iξ

′
2jξ
′
3iξ4j + ξ′1iξ2jξ3iξ

′
4j

]
= 0 +

5∑
i=1

[
ξ1iξ

′
2i(−σ3iθ3 + η3θ3 − η2

3) + ξ′1iξ2i(σ3iθ3 − η3θ3 + η2
3)
]

+
5∑

i,j=1,i 6=j

[
−ξ1iξ2jξ

′
3iξ
′
3j − ξ′1iξ′2jξ3iξ3j + ξ1iξ

′
2jξ
′
3iξ3j + ξ′1iξ2jξ3iξ

′
3j

]
θ3

= δ12(η3θ3 − η2
3) + δ13δ23θ3

(2) (2,3)+(4,1)

The cycle is

{ (Γ3,Γ
′
3, a
′, D3) ∈ C(3) × C(3) × C × C(3) | h0(OC(KC − r0 − Γ3 −D3) > 0 }.

The map m sends (Γ3,Γ
′
3, a
′, D3) to (Γ3,Γ

′
3, a
′ +D3) ∈ C(3) × C(3) × C(4).

Its class is the pull-back under the sum map to H6(C(3) × C(3)) of

θ3

6
− ηθ2

2
+ η2θ − η3 ∈ H6(C(6)).

which is equal to

1

6
(θ1 + θ4 + δ14)3 − 1

2
(η1 + η4) (θ1 + θ4 + δ14)2 + (η1 + η4)2 (θ1 + θ4 + δ14)− (η1 + η4)3.
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The contributing terms in the Kunneth decomposition have type (2, 0, 0, 4):

1

2

(
θ1θ

2
4 + θ4δ

2
14

)
− 1

2

(
η1θ

2
4 + η4δ

2
14

)
− θ1η4θ4 + 2η1η4θ4 + θ1η

2
4 − 3η1η

2
4

=
1

2
(θ1 − η1)

(
8θ4η4 − 20η2

4

)
+

1

2
(θ4 − η4)δ2

14 + (2η1 − θ1)η4θ4 + (θ1 − 3η1)η2
4

= 2(θ1 − η1)
(
2θ4η4 − 5η2

4

)
+
(
η4δ

2
14 + 4θ1η

2
4 − θ1θ4η4

)
+ (2η1 − θ1)η4θ4 + (θ1 − 3η1)η2

4

= η4δ
2
14 + 2(θ1 − η1)η4θ4 + (−5θ1 + 7η1)η2

4

Pushing forward to C(3) × C(3) × C(4) :

m∗
[
η4δ

2
14 + 2(θ1 − η1)η4θ4 + (−5θ1 + 7η1)η2

4

]
(12.6)

=
(
η3δ

2
13 − 2θ1η

2
3

)
+ 2(θ1 − η1)

(
η3θ3 + 5η2

3

)
+ 2(−5θ1 + 7η1)η2

3

= η3δ
2
13 + 2(θ1 − η1)η3θ3 + 2(−θ1 + 2η1)η2

3

(3) (2,3)+(2,3)

The cycle consists of (Γ3,Γ
′
3, D2, D

′
2) ∈ C(3) × C(3) × C(2) × C(2) given by the conditions

h0(KC − Γ3 −D2) > 0,

h0(KC − Γ′3 −D′2) > 0,

r0 ∈ D2.

The map m sends (Γ3,Γ
′
3, D2, D

′
2) to (Γ3,Γ

′
3, D2 + D′2) ∈ C(3) × C(3) × C(4). Note that in

this bidegree, m is not a lifting of λ2|F(2,3)(2,3)
. As in the previous case, the cycle class is the

restriction to W1 × C(2) × C(2) of

[(θ1 + θ3 + δ13)− (η1 + η3)] · [(θ2 + θ4 + δ24)− (η2 + η4)] · η3.

The contributing terms in the Kunneth decomposition are

(a) Type (2, 0, 2, 2)

[θ1θ4 + η1η4 − η1θ4 − θ1η4] · η3.

(b) Type (2, 0, 4, 0)

(θ3 − η3)(θ2 − η2)η3 = 4(θ2 − η2) · η2
3.
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(c) Type (1, 1, 3, 1)

δ13δ24 · η3.

Pushing these classes forward to H4(C(3) × C(3) × C(4)) by m∗, we obtain

(a)

m∗ [(θ1 − η1)η3θ4 + (η1 − θ1)η3η4] = (θ1 − η1)
(
η3θ3 + 5η2

3

)
+ (η1 − θ1)

(
2η2

3

)
= (θ1 − η1)η3θ3 + 3(θ1 − η1)η2

3

(b)

m∗
[
4(θ2 − η2) · η2

3

]
= 4(θ2 − η2) · η2

3

(c)

m∗ [(δ13δ24)η3]

= m∗

5∑
i,j=1

[
−ξ1iξ2jξ

′
3iξ
′
4j + ξ1iξ

′
2jξ
′
3iξ4j + ξ′1iξ2jξ3iξ

′
4j − ξ′1iξ′2jξ3iξ4j

]
η3

=
5∑

i,j=1

[
−ξ1iξ2jξ

′
3iξ
′
3j + ξ1iξ

′
2jξ
′
3iξ3j + ξ′1iξ2jξ3iξ

′
3j − ξ′1iξ′2jξ3iξ3j

]
η3 + η2

3

5∑
i=1

[ξ1iξ
′
2i − ξ′1iξ2i]

= δ13δ23η3 + δ12η
2
3

Finally, since λ2 sends (Γ3,Γ
′
3, D2, D

′
2) to KC(−D2 − D′2) (instead of OC(D2 + D′2)), we apply the

involution p2∗p
∗
1 to the sum of the classes in (a), (b), (c) as in Lemma 12.4 to obtain the cycle class

(θ1 − η1)θ3(θ3 − η3) + 3(θ1 − η1)

(
1

2
θ2

3 − θ3η3 + η2
3

)
(12.7)

+4(θ2 − η2)

(
1

2
θ2

3 − θ3η3 + η2
3

)
+ δ13δ23(θ3 − η3) + δ12

(
1

2
θ2

3 − θ3η3 + η2
3

)
.

Lemma 12.4. The correspondence

M1 = { (D4, B4) ∈ C(4) × C(4)| D4 +B4 ≡ KC }
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induces an involution p2∗p
∗
1 : H4(C(4))→ H4(C(4)) where p1 and p2 are the two birational projections

to C(4). Under the decomposition

H4(C(4)) ∼= H4(Pic4C)⊕ ηH2(Pic4C)⊕ C · η2,

p2∗p
∗
1 acts as identity on H4(Pic4C), sends η · ω to (θ − η) · ω for any ω ∈ H2(Pic4C), and η2 to

θ2

2
− ηθ + η2.

Proof. First note that the proper transform of the algebraic cycle r0 + C(3) under the birational map

p2p
−1
1 is the cycle

{B4 ∈ C(4)| h0(KC − r0 −B4) > 0) }

whose cohomology class is θ− η by the secant plane formula (12.2). Therefore p2∗p
∗
1 sends η to θ− η.

Similarly, the proper transform of 2r0 + C(2) is

{B4 ∈ C(4)| h0(KC − 2r0 −B4) > 0) }

whose cohomology class is θ2

2
− ηθ + η2, i.e.

p2∗p
∗
1η

2 =
θ2

2
− ηθ + η2.

Now let us prove the statement on the summand ηH2(Pic4C). Consider the commutative diagram

M1
p1

{{wwwwwwww p2

##GGGGGGGG

C(4)

φ
��

C(4)

φ

��

Pic4C Pic4C
τoo

where τ sends L to KC − L. For any ω ∈ H2(C(4)),

p∗1 (η · φ∗ω) = p∗1η · p∗1φ∗ω = p∗1η · (p∗2φ∗τ ∗ω)

By the projection formula,

p2∗p
∗
1(η · φ∗ω) = (p2∗p

∗
1η) · (φ∗τ ∗ω) = (θ − η) · φ∗ω
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Similarly, the statement about theH4(Pic4C) summand is a consequence of the projection formula. �

12.5. The reducedness of W 1
5 (Cpq) and of its compactification W

1

5(Cpq).

Lemma 12.5. The surface W
1

5(Cpq) is reduced and is the flat limit of the family of W 1
5 (Ct) as t goes

to 0.

Proof. We will prove that W
1

5(Cpq) with its reduced scheme structure is the flat limit of the family of

W 1
5 (Ct) as t goes to 0. By [So] the family of theta divisors specializes to the ample Cartier divisor

Θpq := {M ∈ J5Cpq | h0(M) > 0 }

on J5Cpq. We will prove that the Hilbert polynomial of W
1

5(Cpq) with its reduced scheme structure

and with respect to Θpq is equal to the Hilbert polynomial of W 1
5 (Ct) with respect to Θt for t 6= 0.

To compute the Hilbert polynomial of W
1

5(Cpq), we use the normalization map (see Lemma 2.1)

µ = (ν∗)−1 : Wpq −→ W
1

5(Cpq).

From this we obtain an exact sequence

0 −→ O
W

1
5(Cpq)

−→ µ∗OWpq −→M −→ 0

whereM is a sheaf supported on the image of W 1
4 (C) in W

1

5(Cpq). It is immediately seen, by restricting

the above sequence to W 1
4 (C), that

M∼= OW 1
4 (C)

so that we have the exact sequence

(12.8) 0 −→ O
W

1
5(Cpq)

−→ µ∗OWpq −→ OW 1
4 (C) −→ 0.

To compute χ(O
W

1
5(Cpq)

(nΘpq)), we therefore compute χ(OWpq(nΘpq)) and χ(OW 1
4 (C)(nΘpq)).

By [BC, p. 57], the inverse image of the divisor Θpq in PPic5Cpq is numerically equivalent to the

sum of reduced divisors

(ν∗)−1ΘC,x + Pic5
0

where we use the notation of 2.1, ΘC,x is the image of ΘC ⊂ Pic4C in Pic5C by the addition of the

general point x ∈ C and (ν∗)−1ΘC,x is the closure of (ν∗)−1ΘC,x ⊂ Pic5Cpq in PPic5Cpq.
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Now, we have

(ν∗)−1ΘC,x = {M ∈ Pic5Cpq | h0(ν∗M(−x)) > 0 }.

The trace of (ν∗)−1ΘC,x on the image of Wpq in PPic5Cpq is reduced for a general choice of x and is

equal to

ΘC,x|Wpq = {L ∈ Wpq | h0(L(−x)) > 0 }.

Furthermore, it is immediate that

Pic5
0 |Wpq = Xq.

To compute the degree of Θpq on W 1
4 (C), we use the isomorphism W 1

4 (C) ∼= Xp. In this way we

immediately see that the restriction of Pic5
0 to W 1

4 (C) is zero while (ν∗)−1ΘC,x pulls back to ΘC |W 1
4 (C)

via the natural embedding W 1
4 (C) ⊂ Pic4C. Therefore, summarizing the above, we have

χ
(
nΘpq|Wpq

)
= χ

(
nΘC,x|Wpq +Xq

)
and,

χ
(
nΘpq|W 1

4 (C)

)
= χ

(
nΘC |W 1

4 (C)

)
.

To compute χ(nΘC |Wpq), we use the embedding q1 of Wpq in C(3) given by g1
5 7→ |K − g1

5|. Via this

embedding Wpq is identified with the reduced surface in C(3)

{Γ3 | h0(KC − p− q − Γ3) > 0 }

whose cohomology class by the secant plane formula (Section 12.2) is θ− η. By Hirzebruch-Riemann-

Roch

χ
(
n
(
ΘC |Wpq +Xq

))
=

1

2
n
(
ΘC |Wpq +Xq

) (
c1

(
TWpq

)
+ n

(
ΘC |Wpq +Xq

))
+

1

12

(
c2

1

(
TWpq

)
+ c2

(
TWpq

))
.

By [Ma, p. 332 (14.5)], the total Chern class of C(3) is

(1 + η)−6

5∏
i=1

(1 + η + σi) = 1− η − θ − 9η2 + 6ηθ − 56η3.

So, using the tangent bundle sequence

0 −→ TWpq −→ TC(3)|Wpq −→ OWpq(Wpq) −→ 0,
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we compute

c
(
TWpq

)
=
(
1− 2θ − 9η2 + 4η · θ + 2θ2

)
|Wpq .

Now, since Xq is the restriction of the zero section of a P1-bundle to Wpq, we have

X2
q = 0.

Furthermore, the degree of ΘC on Xq is 10 since this is a Prym-embedded curve in Pic4C. By the

above,

c1

(
TWpq

)
= 2θ|Wpq ,

hence the degree of c1(TWpq) on Xq is 20. Putting all this together with the relations in [Ma, p. 325

(6.3)], we obtain

χ
(
nΘpq|Wpq

)
= 30n2 − 50n+ 22.

To compute χ(nΘC |W 1
4 (C)), note that W 1

4 (C) has genus 11 and its cohomology class in Pic4C is twice

the minimal class, i.e., [
W 1

4 (C)
]

= 2
[ΘC ]4

4!
.

Therefore, by Riemann-Roch for curves,

χ
(
nΘC |W 1

4 (C)

)
= 1− 11 + deg

(
nΘC |W 1

4 (C)

)
= 10n− 10.

Finally, by (12.8),

χ
(
O
W

1
5(Cpq)

(nΘpq)
)

= χ
(
nΘpq|Wpq

)
− χ

(
nΘpq|W 1

4 (C)

)
= 30n2 − 60n+ 32.

To compute the Hilbert polynomial of W 1
5 (Ct) for t 6= 0, we only need to do so for one smooth curve

X of genus 6 such that dimCW
1
5 (X) = 2. If X is trigonal, W 1

5 (X) is the reduced union of two copies

of X(2) (see [T]):

W 1
5 (X) = X(2) + g1

3 ∪KX −
(
X(2) + g1

3

)
.

The intersection of these two components is the reduced curve

X2

(
g1

4

)
= {D2 | h0(g1

4 −D2) > 0 } ⊂ X(2)
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where g1
4 = |KX − 2g1

3|. As in the previous case, we have the normalization exact sequence

0 −→ OW 1
5 (X) −→ µ∗OX(2)

∐
X(2) −→ OX2(g1

4) −→ 0.

So

χ
(
nΘX |W 1

5 (X)

)
= 2χ (nΘX |X(2))− χ

(
nΘX |X2(g1

4)

)
.

This time, using similar methods, we compute

χ (nΘX |X(2)) = 15n2 − 24n+ 10,

χ
(
nΘX |X2(g1

4)

)
= 12n− 12

and

χ
(
nΘX |W 1

5 (X)

)
= 30n2 − 60n+ 32.

�
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