UC Merced

UC Merced Electronic Theses and Dissertations

Title
Tensor Computation Based on Heterogeneous Memory

Permalink
https://escholarship.org/uc/item/3d5162n8g

Author
Liu, Jiawen

Publication Date
2022

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3d5162n8
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED
Tensor Computation Based on Heterogeneous Memory

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy
in
Electrical Engineering and Computer Science
by

Jiawen Liu

Committee in charge:

Dong Li, University of California Merced, Chair
Florin Rusu, University of California Merced
Hyeran Jeon, University of California Merced
Jiajia Li, College of William & Mary

Spring 2022

Copyright
Jiawen Liu, Spring 2022
All rights reserved.

The dissertation of Jiawen Liu is approved, and it
is acceptable in quality and form for publication

on microfilm and electronically:

Professor Dong Li, Chair

Professor Florin Rusu

Professor Hyeran Jeon

Professor Jiajia Li

University of California, Merced

Spring 2022

il

ABSTRACT OF THE DISSERTATION

Tensor Computation Based on Heterogeneous Memory
by

Jiawen Liu

Doctor of Philosophy in Electrical Engineering and Computer Science
University of California Merced, Spring 2022

Dong Li, University of California Merced, Chair

Tensors, which generalize matrices to more than two dimensions, are fundamental
to many disciplines, such as scientific computing and machine learning. Improving
the performance and scalability of tensor computation is essential to those domains.
The recent advance of heterogeneous memory is promising to deliver large-scale,
high-performance tensor computation. However, it is challenging to leverage memory
heterogeneity because of performance disparity between memory components. Tensor
computation, often characterized with irregular memory access patterns, large working
set size, and unknown tensor dimension size, makes the usage of heterogeneous memory
more challenging.

In this dissertation, we propose efficient and scalable heterogeneous memory
systems for tensor computation to solve the challenges. The core innovation in
our proposed systems is to introduce system-architecture-tensor co-designs, taking
advantage of intersectional domain knowledge in runtime system policies, architecture
characteristics, and tensor features. In particular, our approach takes into account
runtime system policies (e.g., policies of data migration, prefetching, concurrency
control), architecture characteristics (e.g., characteristics in emerging non-volatile
memories, 3D-stacked memories, accelerators with massive parallelism), and tensor
features (e.g., high data dimensionality, varying memory access patterns, irregular
data distribution in the data structure) for tensor computation.

The evaluation results show that: (1) with evaluating various sparse tensor
contraction datasets, our design brings 28—576 times speedup over the state-of-the-art

sparse tensor contraction design; (2) with evaluating various sparse tensor contraction

v

sequence datasets, our design brings 327-7362 times speedup over the state-of-the-art
work; (3) with evaluating various tensor-based neural network training workloads, our
design achieves up to 24 times and 4 times better energy consumption compared to
CPU and GPU respectively; (4) with evaluating various tensor-based neural network
training workloads, our design achieves up to 50% (33% on average) performance

improvement compared to the state-of-the-art TensorFlow.

ACKNOWLEDGEMENTS

First and foremost, I sincerely thank my advisor, Prof. Dong Li. Prof. Dong
Li has been an exceptional advisor, and I have been very fortunate to receive his
guidance for the five years of my Ph.D. journey. In retrospect, I learned from Prof.
Dong Li how to define a problem in year one and two, solve this problem in year
three and four, and spread the discovery in year five. In each step, Prof. Dong Li
gave me extremely visionary advice, most generous support, and most sincere and
constructive feedback. Prof. Dong Li’s expertise and experience made his advice
very insightful, and his enthusiastic of impactful research greatly motivated me. Prof.
Dong Li’s research foresight, technical depth, and commitment to the students is a
valuable treasure for me. I had the unique privilege to have access to Prof. Dong
Li’s professional expertise and brilliant thinking. Prof. Dong Li offered me invaluable
advice, diligently guided me through challenging problems, and taught me to perceive
the philosophy. I feel very fortunate to have Prof. Dong Li be my advisor.

It has been an honor to work with many great collaborators outside UC Merced.
I sincerely thank Prof. Jiajia Li. She was my mentor during my internship at Pacific
Northwest National Laboratory (PNNL). Her ambition and foresight ignited my
passion for pursuing the research in tensor computation. I sincerely thank Prof. Jishen
Zhao at University of California, San Diego, and Prof. Dimitrios Nikolopoulos at
Virginia Tech for their insightful discussions and priceless support for my research.
I would also like to thank Dr. Gokcen Kestor at PNNL, Dr. Adnan Aziz at Meta,
and Qingqing Zhou at Tencent America for mentoring me during my internships for
valuable advise and guidance for my research.

I give sincere thanks to my mom and dad. I can’t forget the encouragements I
get from you when I came to US thousands of miles away from home, and I can’t
accomplish what I did without your love. Thank you for nurturing me and set me a
great role model.

Finally, I would like to thank my wife, for your endless love and support. Thank
you for being my best friend, my partner, and my compass when I got lost along my
PhD journey. Thank you for studying with me, cooking with me, staying with me,
and even discussing new research ideas with me. I am so fortune to have you with me,

and am looking forward to our future adventures together.

vi

TABLE OF CONTENTS

| Signature Pagel 0oL iii
| Abstractl iv
| Acknowledgements|o vi
| Table of Contentsl 0oL vii
| List of Figures|. X
I List of Tables 1
(Chapter 1 Introduction| oo 2
(.1 Contributionsf 4

(Chapter 2 Background|o oo 6
2.1 Sparse Tensors|. 6

[2.2 Sparse Tensor Contraction 7

[2.3 Neural Network Training| 8

[2.4 Dataflow-Based Machine Learning Frameworkl 9

[2.5 Feasibility of Heterogeneous PIM Architecturel 9

[2.6 Intel Optane DC Persistent Memory Module| 9

(Chapter 3 Sparta: Efficient and Parallel Sparse Tensor Contraction on Het- |
| erogeneous Memory Systems| 11
3.1 Motivationl 11

3.2 Designl 14

[3.2.1 Sparse Tensor Contraction Algorithm| 14

[3.2.2 Data Placement on Persistent Memory-based Hetero- |

geneous Memory Systems| 21

3.3 Fwvaluation|o 26

[3.3.1 Evaluation Setup| 26

[8.3.2 Overall Performancel 27

[3.3.3 Performance Comparison to [Tensor|. 29

[3.3.4 T'hread Scalabilityl 29

[3.3.5 Sparta on Heterogeneous Memory Systems| 29

3.4 Related Workl 31

[3.0 Summary| 32

[Chapter 4 Athena: High-Performance Sparse Tensor Contraction Sequences |
| on Heterogeneous Memory| 33
M1 Motivationl 33

/] Designl 37

[4.2.1 Algorithm Design| 37

vil

[4.2.2 Data Management on PMM-based Heterogeneous

Memory Systems| 43

4.3 BEvaluation| 47
[4.3.1 Evaluation Setup| 47
4.3.2 Overall Performancel 48
[4.3.3 Optimization Analysisf 49
[4.3.4 Performance Comparison to [Tensor|. 53
[4.3.5 Application in Chemistry|. 53

4.4 Related Workl L 54
[4.5 Summary| 55
[Chapter 5 Processing-in-Memory for Energy-efficient Neural Network Train- |
| ing: A Heterogeneous Approach| 56
.1 Motivationlo 56
[>.1.1 NN Training Characterization| 56
[>.1.2 Software Design Challenges and Opportunities| . . . 58
[.1.3 CPU vs. GPU — Where to Attach Heterogeneous |
PIMs?o oo 60

5.2 Designl 60
[5.2.1 Heterogeneous PIM Architecturel 61
[5.2.2 Programming Model for Heterogeneous PIM| 61
[>.2.3 Runtime System Design| 67
[5.2.4 Implementation| 69

[>.3 Experimental Setup|. 72
(b.3.1 Simulation Frameworkl 72
[5.3.2 Power and Area Modelingl 73
b.3.3 Workloads 73
[>.3.4 Real Machine Configurations|. 73

b4 Bvaluationlo 74
[>.4.1 Execution Time Analysis/ 74
[5.4.2 Energy Consumption Analysis| 76
[>.4.3 Comparison with Prior PIM-based NN Acceleration| 76
[>.4.4 Sensitivity Study|o 7
[>.4.5 Evaluation of Sottware Impact| 7
[>.4.6 Mixed Workloads Analysis| 79
[>.4.7 Energy Efficiency Analysisf 80

b5 Related Workl L. 81
[>.5.1 Processing-in-memory for Machine Learning| 81
[5.5.2 Processing-in-memory for General Applications| 82

[5.5.3 Other Accelerator Optimization for Machine Learning.| 82

(.6 Summary|

viii

83

[Chapter 6 Runtime Concurrency Control and Operation Scheduling tor High |

| Pertormance Neural Network Trainingl 84
6.1 Motivationl 84

[6.1.1 Performance Variance with Different Concurrency| . 85

[6.1.2 Impact of Input Data Size| 86

[6.1.3 Co-Running Operations| 87

6.2 Designl 88

0621 Overviewl. 88

[6.2.2 Regression Model-Based Performance Modell 90

[6.2.3 Hill Climbing Algorithm-Based Performance Modell 93

[6.2.4 Runtime Scheduling|. 95

[6.3 Experiment Setup|. L. 98

[6.3.1 Training Models, Data Set and Framework| 98

6.3.2 Hardware Platforml 99

[6.3.3 Controlling Intra-op Parallelism| 99

0.4 Fvaluation|o o 99

[6.4.1 Applying Concurrency Control for Individual Opera- |

tons 100

[6.4.2 Applying Operations Co-running| 101

[6.4.3 Applying Hyper-threadingl 101

[6.4.4 Putting all together.| 103

[6.4.5 Comparing with the manual optimization.| 104

6.5 Related Workl 104

[6.5.1 Pertormance Optimization for Dataflow-based Frame- |

worksl. 104

[6.5.2 Thread Concurrency Throttlingl 105

(6.6 Summary| 105

[Chapter 7 Conclusion|. 106
Bibliography| 109

X

LIST OF FIGURES

Figure 3.1: Workflow of the traditional SpTC-SPA and Sparta on Z =X xgﬁy 14
Figure 3.2: Percentage of execution time breakdown of SpTC-SPA (Algo- |
rithm ([1). | oo oo 19

| Figure 3.3: Pertormance after placing a data object in PMM while leaving |
| others in DRAM. The x axis shows the data object placed in PMM. |
| “All in DRAM” means all data objects are placed in DRAM. . . . 23

Figure 3.4: Speedups of HtY4+HtA (i.e., Sparta) and COOY +HtA over COOY+SPA
(i.e., SPTC-SPA) for SpTCs on Chicago, NIPS, Uber, Vast and

| Uracil with 1-mode, 2-mode and 3-mode.[. 27
| Figure 3.5: Speedups of Sparta over I'Tensor on Hubbard-2D model using |
| different SpT'C expression with ditferent sparse input tensors.| . . 28
[Figure 3.6: Thread scalability of parallel Sparta on SpTCs on NIPS with |
| 1-mode, Vast with 2-mode and NIPS with 3-mode.| 28
[Figure 3.7: Speedups of Sparta, [AL, Memory mode and Dram-only over |
| Optane-only for SpT'Cs on Chicago®, NIPS*, Vast®, Flickr, Delicious |
| and Nell-2 with 1-mode, 2-mode and 3-mode.| 28
[Figure 3.8: Memory bandwidth ot Sparta, IAL, PMM Memory mode and |
| Optane-only on Vast with 1I-mode SpTC.| 30
[Figure 3.9: Peak memory consumption ot SpT'Cs on Chicago™, NIPS*, Vast™, |
| Flickr, Delicious and Nell-2 with 1-mode, 2-mode and 3-mode.|. . 30
[Figure 4.1: Workflow of Type 1 dependency ot two SpT'Cs in Table [2.2] using |
| shared hash table-represented sparse accumulator and hash table- |
| represented sparse tensor summation (indicated by red arrows) |
I OO 39
[Figure 4.2: Workflow of the dynamic data placement based on data semantics.| 42
[Figure 4.3: Overall speedups of Athena over Sparta tfor SpTCSeq on 12 tensors.| 48
[Figure 4.4: Percentage of execution time breakdown ot Athena. |. 49
[Figure 4.5: Peak memory consumption of SpTCSeq on 12 tensors.. 49
[Figure 4.6: Speedups of Athena with hash-table represented summation over |
| Sparta with traditional linear search-based summation. | 50
[Figure 4.7: 7 Stage Parallelism” and ”Shared-HtA” optimization speedup over |
| the "Sparta + Summation” as the baseline.| 51
| Figure 4.8: Speedups of Athena, IAL, Memory Mode and DRAM-only over |
| PMM-only for SpTCSeq.|. 52
[Figure 4.9: Speedups of Athena over ['Tensor on Hubbard-1D-T', Hubbard-1D- |
| P, Hubbard-1D-Z and Hubbard-2D models using difterent SpTCSeq |
| with different sparse input tensors.| 53
[Figure 5.1: Our profiling framework for profiling NN training workloads in |
| TensorFlow.. 57
[Figure 5.2: Four categories of NN training operations.| 57
[Figure 5.3: Architecture overview of the proposed heterogeneous PIM | 62

[Figure 5.4:

The process of executing NN training with our software framework

| design.. 63
[Figure 5.5: Enabling OpenCL platform model on heterogeneous PIM systems. 64
[Figure 5.6: An example of the recursive PIM kernel.| 65
[Figure 5.7: Heterogeneous PIM implementation.|. 71
[Figure 5.8: Execution time breakdown of ive NN models.| 72
[Figure 5.9: Normalized dynamic energy of various NN models.. 74
[Figure 5.10: Performance and energy comparison with Neurocube.| 75
[Figure 5.11: Execution time breakdown of various NN models with 3D memory |
| frequency scaling.[. o oL 76
[Figure 5.12: Execution time with Progr PIM scaling.|. 78
[Figure 5.13: Execution time with and without RC and OP.| 79
[Figure 5.14: Dynamic energy with and without RC and OP|. 79
| Figure 5.15: Hardware utilization with and without RC and OP| 79
| Figure 5.16: Execution time of multiple NN training models with our design |
| and sequential execution, respectively| 79
[Figure 5.17: Energy efficiency and power with 3D memory frequency scaling.| 80
[Figure 6.1: Performance variance of three operations with different intra-op |
| parallelisms. The reported execution time is the total execution |
| time of one thousand runs. | 85
[Figure 6.2: Our runtime framework and its workflow. T'he notation “I'S” is |

the total number of training steps.| 90

[Figure 6.3:

Quantitying the contribution of the four strategies. Comparing |

the performance of our runtime, manual optimization, and the |

recommendation by Tensorklow. 100

| Figure 6.4:

The variance of the number of co-running operations along with |

the NN model training. The figures (a), (b) and (c¢) do not have

Strategy 4 (but have Strategy 3); The figures (d), (e) and (f) have

otrategy 4 in place. The red lines in the figures are the inter-op |

parallelism recommended by Tensorklow. 103

x1

LIST OF TABLES

[Table 2.1:

List of symbols and notation.|. 0.

[Table 2.2:

Expression dependency between two SpTCs.|

[Table 3.1:

Memory access patterns associated with data objects in six stages

("Ran” = Random; "Seq” = Sequential; "RW” = Read-Write; "RO”

= Read-Only; "WO” = Write-Only). (Note that for HtZ in Sum-

mation, we employ temporal locality to always maintain the most

frequently used bucket in DRAM. The memory access pattern ot

key-value nodes within the bucket is still random. For 2., the

first two passes are “Seq, RO” and the last pass is “Ran, RO”.)|. .

(Table 3.2:

Characteristics of sparse tensors in the evaluation.|

(Table 4.1:

Characteristics of sparse tensors in the evaluation|

[Table 4.2:

A 10-SpTC sequence from a CCSD(T) model|

23
26

47
52

[Table 5.1:

Operation profiling results tor three neural network models. “Cl”=

computation intensive; “MI”"=memory intensive.|

(Table 5.2:

Extending OpenCL for the heterogeneous PIM.[.

[Table 5.4:

System configurations.|

58
64
68
72

(Table 6.1:

Study the performance of NN models with different inter-op and

itra-op parallelisms. The performance baseline for calculating

speedup 1s the performance with the configuration recommended

by the TensorFlow programming guide (68 threads for intra-op

parallelism and 1 for inter-op parallelism).|

(Table 6.2:

Study the impact of input data size on operation performance. The

pertormance baseline for calculating performance variance is the

performance with using 68 threads. The reported time is the total

| execution time of one thousand runs)

Mable 6.3:

Co-running two operations with three strategies. The performance

baseline for calculating speedup is performance of serial execution

of two operations. The reported time is the total execution time of

one thousand runs.

[Table 6.4:

Prediction accuracy of a set of regression models. |

[Table 6.5:

Performance prediction accuracy for four NN models based on the

hill cimbing-based performance model.|

Mable 6.6:

Pertformance improvement of the top five most time-consuming

operations in four NN models by recommendation and by applying

Strategies 1 and 2. The pertormance baseline for calculating speedup

1s the performance with the configuration recommended by the

TensorFlow programming guide (68 threads for intra-op parallelism

and 1 for inter-op parallelism),|

102

Chapter 1
Introduction

The tensor is a mathematical object that generalizes matrices. A tensor can have
any dimension, and is ubiquitous in mathematics and sciences. The tensor is widely
used in machine learning [1l 2] [3], data mining [4], social networks analytics [5, 6],
signal processing [7], healthcare analytics [8, O], and so on. Thus, improving the
performance and efficiency of tensor computation is essential in many fields and
realistic applications. Compared with computation on general data objects, tensor
computation is more challenging due to the following reasons.

First, it is challenging to handle multi-index searches efficiently in tensor compu-
tation. The challenge includes performance and scalability issues associated with high
data dimensionality, large memory consumption, and resource contention on cache
hierarchy and memory bandwidth. For example, a sparse tensor contraction (SpTC)
has indirect memory accesses to the second input tensor, caused by the non-zero indices
of the first input tensor. The indirect memory accesses of the second input tensor and
the sparse accumulator, which happen more often with the high-dimensional tensors,
are not cache friendly.

Second, tensor computation can easily cause performance issue due to redundant
computation and memory operations. For example, in the type that two SpTCs share
an identical input tensor, the processing on this input in the second SpTC can be
avoided. Because of the shared data objects, computation and memory access on
intermediate data objects are also performed repeatedly. For example, in the type
that the output tensor of the first SpTC becomes the input tensor in the second SpTC,

the intermediate results in the accumulation of the first SpTC can be directly reused

to do the computation of the second SpTC, skipping multiple stages in the sequential
execution. This performance issue becomes severer when the redundant computation
and memory access dominate the execution. Moreover, the performance suffers when
we perform an SpTC sequence with a larger number of contractions.

Third, tensor computation can involve large data sets and immense computation,
which can cause frequent and expensive data movement across the memory hierarchy.
For example, neural network (NN) training based on TensorFlow or Pytorch is
implemented using tensors and tensor computation. NN training easily consumes
hundreds of GB memory and billions of tensors [10]. Training NN models (especially
those large natural-language-processing models, such as GTP-2 [I1] and Megatron-
LM [12]) can take tens of hours using tens of NVIDIA V100 GPU [13]. Training those
models involves massive amount of tensor operations [14]. This leads to frequent data
movement across the memory hierarchy. As NN models become deeper and larger, we
expect that tensor computation in NN training will involve even larger data sets and
more computation.

Fourth, thread-level concurrency control is challenging in tensor computation,
because of diverse memory access patterns in tensors operations. We must efficiently
manage thread-level concurrency for tensor operations to achieve efficient parallel
execution. Some tensor operations do not have good scalability, because of caching
effects and thread spawning overhead. Using a large number of threads on a many-
core machine to run those tensor operations does not necessarily result in the best
performance [I5]. The problem of deciding thread-level concurrency for each tensor op-
eration is coupled with the thread affinity problem (i.e., deciding the binding between
threads and cores) [16], which makes this concurrency management problem even more
challenging in tensor operations with diverse memory access patterns. Furthermore,
we must decide how to co-run tensor operations. When tensor operations do not
have unresolved dependency and each individual operation does not sufficiently utilize
hardware resources (e.g., physical cores), co-running operations may improve memory
bandwidth and thus improve performance. However, currently, there is no systematic
approach to efficiently control tensor operations concurrency and schedule those large
amounts of tensor operations with considering diverse memory access patterns. The
existing runtime system frameworks simply use the same thread-level parallelism for

all operations and schedule operations simply according to operation dependency [17].

In this dissertation, we aim to develop memory-oriented systems that overcome

the above challenges for high-performance tensor computation.

1.1 Contributions

We briefly summarize the main contributions of this proposal as follows.

e We introduce Sparta, a high-performance sparse tensor contraction (SpTC)
system for arbitrary-order element-wise SpTC by using multi-dimensional, ef-
ficient hash table representation for the accumulator and larger input tensor,
and all-stage parallelization. Furthermore, we explore the emerging Optane-
based heterogeneous memory to address memory capacity limitation suffered
in the traditional tensor computation, and show that static data placement on

heterogeneous memory can outperform dynamic data migration.

e We present Athena, a high-performance system for SpTC sequences. Athena
introduces new data structures, leverages emerging Optane-based heterogeneous
memory architecture, and adopts stage parallelism. In particular, Athena intro-
duces shared hash table-represented sparse accumulator to eliminate unnecessary
input processing and data migration; Athena uses a novel data-semantic guided
dynamic migration solution to make the best use of the Optane-based heteroge-
neous memory for high performance; Athena also co-runs execution phases with

different characteristics to enable high hardware utilization.

e We propose a heterogeneous processing-in-memory (PIM) architecture to reduce
memory copy overhead between the host processor and the main memory. We
further propose a programming model by extending OpenCL programming model
in order to support effective and efficient memory synchronization between main
memory and PIM. Moreover, we build a runtime system to dynamically schedule
and pipeline tensor operations, based on profiled memory characteristics of

tensor operations.

e We provide a novel and robust performance prediction model to predict per-
formance of tensor operations by capturing diverse memory access patterns of

tensor operations and cache sharing between threads. Moreover, we propose a

set of domain-specific operation scheduling policies to reduce data movement

overhead with the consideration of non-uniform memory access.

Chapter 2

Background

2.1 Sparse Tensors

A tensor can be regarded as a multidimensional array. Each of its dimensions is
called a mode, and the number of dimensions or modes is its order. For example, a
matrix of order 2 means it has two modes (rows and columns). We represent tensors

RIXJXKXL (

with calligraphic capital letters, e.g., X € a tensor with four modes), and

Ty 18 its (4,7, k, [)-element. Table [2.1] summarizes notation and symbols for tensors.

Table 2.1: List of symbols and notation.

Symbols ‘ Description

X,Y,Z | Sparse tensors

Z =X x }ZL}} Y | Tensor contraction between two tensors

Nx | Tensor order of X
I1,J,K,L I, | Tensor mode sizes
nnzx | #Non-zeros of the input tensor X
N | #Mode-FX sub-tensors of X
nnzr | The #Non-zeros of sub-tensors of X
ptrr | Pointers for mode-FX sub-tensor locations of X
CX | A set of contract modes in X, {n} in xi;n}} contraction
FX | A set of free modes in X, |[FX|+ |CX| = Ny
CX | Contract mode indices of a non-zero element in X
FX | Free mode indices of a non-zero element in X
valX | A set of non-zero values in X
valX, | Value of a non-zero element in X

Table 2.2: Expression dependency between two SpTCs.

Type Feature Expressions

1 Output as input ' =XxYand Z +=W x Z’
2 Identical input & Different output % +=X xYand Z' +=W x Y
3 Different input & Shared output ZL4+=XxYandZ +=WxV
4 Identical input & Shared output L4+=XxYandZ +=WxY
5 Independent Z4+=XxYand Z +=WxV

2.2 Sparse Tensor Contraction

Tensor contraction, a.k.a. Tensor-Times-Tensor (TTT) or mode-({n}, {m}) prod-
uct [18], is an extension of matrix multiplication, denoted by

Z=2x{Y, (2.1)

where {n} and {m} are tensor modes to do contraction.

Example: T =X xgﬁ Y. This contraction operates on I3 and I, in X and
Jyand JyinY (I3 = Jp) and (I = J3). All of the four modes are contract modes
(annotated with C'x = {3,4} and Cy = {1,2}), and the other modes are free modes.

This example’s operation is formally defined as:

I3(J1) I4(J2

)
Ziisisin = Y, D TirisisisTiujaiais- (2.2)
i3(j1)=1144(j2)=1

The number of modes of the output %, Ny = |Fx|+|Fy| = (Nx —|Cx]|) + (Ny —
|Cy|). This is our walk-through example in the following discussion.

Element-wise Sparse Tensor Contraction. Element-wise sparse tensor
contractions (SpTC) emerges in the applications of chemistry and physics [19, 20,
21], 22, 23, 24], where both input and output tensors have element-wise sparsity.
Sparta [25] is the state-of-the-art algorithm for an arbitrary-order, element-wise SpTC.
Sparta introduces a hash table-based representation for input sparse tensors and a
sparse accumulator for a single element-wise sparse tensor contraction. The Sparta
SpTC algorithm contains five stages: input processing, index search, accumulation,
writeback, output sorting stages. Refer to [25] for more details.

Sparse Tensor Contraction Sequences Sparse tensor contractions sequence

(SpTCSeq) is widely used in many methods. For example, SpTCSeq can be derived

from the well-known Coupled Cluster Single Double (Triple), CCSD(T) [26], in
chemistry [24] and from the notable Hubbard model [27] in physics [19]. Within
an SpTCSeq, multiple SpTCs could have dependence between each other or be
independent, and they might share some identical tensors in different ways.

We summarize common expression types of SpTCSeq in Table 2.2l Five types
could exist for two arbitrary SpTCs. In Type 1, the output tensor of the first SpTC, Z’,
used as an input tensor of the second SpTC; In Type 2, both SpTCs have an identical
input tensor Y; In Type 3, the two SpTCs use different input tensors but generate
the same output tensor Z; In Type 4, both SpTCs use an identical input tensor Y
and share the output tensor Z; In Type 5, the two SpTCs are totally independent
from each other. We quantify the occurrence percentage of the five types of SpTCSeq
in CCSD(T) [26] from chemistry. Types 1-5 account for 85%, 9%, 6%, 8% and 91%
of all SpTCSeq, respectively. Note that the sum of all types is more than 100%,
because an SpTC equation could fall into more than one type. Besides, sparse tensor
summation, the ”+” operator in most expressions of Table [2.2] is common in sparse

tensor contractions sequences (e.g., accounts for 90% in CCSD(T) [26] in chemistry).

2.3 Neural Network Training

NN training could be expensive, because it is an iterative process involving large
training data sets. Many NN take hours or even days for training, even on the
state-of-the-art GPU [28]. Although using GPU to train neural network is common,
using multi/many-core processors (e.g., Intel Knights Landing) to train neural network
is also becoming common [29] 30, 311, [32].

Training an NN often involves a large number of iterative steps (thousands and
even millions of steps). In each step, a batch of samples is fed into the NN. Except the
first step which is often used for performance profiling to determine appropriate data
layout [33], initialize data based on device configuration, and estimate performance by
a cost model empirically or analytically [34], all other steps have the same computation
and memory access patterns. Performance of each step (particularly execution time
and the number of main memory accesses) remains stable across steps. The above
characteristics allow us to build performance models based on dynamic profiling of the
first few steps and use the profiling results to improve performance of the following

steps.

Note that the word “performance” in this paper refers to the execution time, not

modeling accuracy of NN.

2.4 Dataflow-Based Machine Learning Framework

The state-of-the-art ML frameworks, such as TensorFlow, Caffe2 and MxNet,
decompose an ML model into fine-grained operations. Similar to task-based parallel
programming models [35] such operation-based ML frameworks greatly improve
hardware utilization and system throughput [34]. Within a training step of NN
training, there can be tens of different operations, and each operation can be invoked
hundreds of times, each of which is an operation instance. Different instances of an
operation can have different input data sizes.

TensorFlow allows users to control operation concurrency. The operation concur-
rency includes inter-op parallelism and intra-op parallelism. However, such control
of operation concurrency has to be manually decided by the user. Furthermore, the
intra-op parallelism is enforced uniformly on all operations, ignoring the scalability

difference between operations.

2.5 Feasibility of Heterogeneous PIM Architecture

The logic layer of 3D memory stacks has area, power, and thermal limitations.
But previous studies demonstrated the feasibility of adopting both fixed-function and
programmable PIMs, while meeting these constraints [36]. We adopt similar method-

ologies to ensure the feasibility of our architecture implementation (Chapter [5.2.4)).

2.6 Intel Optane DC Persistent Memory Module

The recent release of the Intel Optane DC Persistent Memory Module (PMM)
is the first byte-addressed non-volatile memory (NVM) in the market. PMM can
be configured to work in either Memory or AppDirect mode. In the Memory mode,
DRAM is a hardware-managed, directly-mapped write-back cache to PMM and is
transparent to applications. In the AppDirect mode, the placement of data objects on
PMM and DRAM can be explicitly controlled by the programmers.

PMM can provide up to 6TB memory capacity on a single machine, but has 2.2-
3.5 higher access latency and 2.7-6.2 x lower bandwidth than the traditional DRAM.
Sparta [25] statically allocates data objects to either DRAM or PMM according to

10

their memory access patterns. However, this simple static data placement does not
work best for all data objects, especially data objects with random read /write memory
access. Our work leverages the AppDirect mode with dynamic data management and

leads to better performance than the Memory mode.

Chapter 3

Sparta: Efficient and Parallel
Sparse Tensor Contraction on

Heterogeneous Memory Systems

3.1 Motivation

Tensors, especially those high-dimensional sparse tensors are attracting increasing
attentions, because of their popularity in many applications. High-order sparse tensors
have been studied well in tensor decomposition on various hardware platforms [37,
38, 139, [40], 4], 42, [43], 44), 145, [46], 47, 48], [49] with a focus on the product of a sparse
tensor and a dense matrix or vector.

Nevertheless, the two sparse tensor contraction (SpTC), foundation for a spectrum
of applications, such as quantum chemistry, quantum physics and deep learning [19]
20, 211, 221, 23], 24], are still lack of sufficient research, especially with element-/pair-
wise sparsity. In essence, SpTC, a high-order extension of sparse matrix-matrix
multiplication (SpGEMM), multiplies two sparse tensors along with their common
dimensions. Efficient SpTC introduces multiple challenges.

First, the size and non-zero pattern of the output tensor are unknown before
computation. Thus, memory allocation for the output tensor is difficult. Unlike
operations such as a sparse tensor multiplies a dense matrix/vector where the size of
the output data is predictable, the output tensor of an SpTC is usually sparse and

the non-zero pattern (e.g., the number of non-zero elements and their distribution) is

11

12

unpredictable before the actual computation. Sparse data objects and unpredictable
output size also exist in SpPGEMM. Two popular approaches have been proposed to
solve these issues for SpP GEMM while are not efficient for SpTC. The first approach,
using an extra symbolic phase [50] to predict the accurate output size and non-
zero pattern, suffers from expensive pre-processing and is unaffordable in a dynamic
sparsity environment. This issue is especially severe in SpTC, because an SpTC with
the exactly same input is usually computed only once in a long sequence of tensor
contractions [24]. However, with the symbolic approach, every SpTC is attached to
both a symbolic phase and SpTC computation, which is very expensive, especially for
large applications. The second approach makes a loose upper-bound prediction on
the memory consumption of the output tensor. However, a tight prediction for SpTC
of high-order tensors is very difficult because its more contract dimensions make the
prediction less accurate based on the existed prediction algorithms [51) [52].

Second, irregular memory accesses along with multi-dimensional index search to
the second input tensor and accumulator introduce performance problems. Similar to
SpGEMM, SpTC has indirect memory accesses to the second input tensor, caused
by the non-zero indices of the first input tensor. Take an SpGEMM C = A x B as
an example. A non-zero A(0,1) gets, e.g. B(1,1), to perform multiplication; while
A(0,10) computes with, e.g. B(10,2). Those irregular memory accesses of B and
the sparse accumulator, which happen more often with the high-dimensional tensors,
are not cache friendly. In addition, index search and accumulator, which is used to
address irregular memory accesses in SpTC, is more expensive than that in SpGEMM.
Our evaluation shows that they takes 54% of SpTC performance on average.

Third, massive memory consumption caused by large input and output tensors
and intermediate results creates pressure on the traditional DRAM-based machine.
Sparse tensors from real-world applications easily consume a few to dozens of GB
memory, while the output tensor could be even larger, because it contains more
non-zero elements than any of the input sparse tensor. The intermediate results could
be large as well, especially for multi-threading environment where each thread has
its own intermediate results. Compared to the well-studied sparse tensor times dense
matrices/vectors [43], 45] [46, [37], SpTC results in substantial memory consumption
easily, which can be beyond typical DRAM capacity (up to a few hundreds of GB)

on a single machine. However, expanding DRAM capacity is not cost effective, while

13

adding cheap but much slower SSD causes significant performance drop. This memory
capacity problem is becoming more serious in those HPC applications with increasing
dimension size in tensors [24], 19, 53, 54, 55] 50, [18].

To address the first two challenges, we propose Sparta (Algorithm [2)) with per-
formance optimizations executed in five stages: input processing, index search, accu-
mulation, writeback, and output sorting. In particular, we employ dynamic arrays
to accurately allocate memory space for the accumulator and output tensor to avoid
the unknown output challenge. For multi-threading environment, we introduce a
thread-private, dynamic object to store the output tensor from each thread for better
parallelization. To address the irregular memory access challenge, we perform per-
mutation and sorting on input sparse tensors before computation, thus significantly
improve temporary locality of non-zeros in the first input tensor and spacial locality
of non-zeros in the second input tensor. Furthermore, we adopt hash table-based
approaches based on a large-number representation for the second tensor and accu-
mulator to significantly speed up the process of multi-dimensional search in SpTC.
With the above optimizations, Sparta substantially outperforms the traditional SpTC
algorithm extended from SpGEMM. By evaluating real data from quantum chemistry
and physics, our element-wise Sparta beats their block-sparse algorithms by 7.1x on
average.

To address the third challenge, we explore the emerging persistent memory-
based heterogeneous memory (HM). In particular, recent Intel Optane DC Persistent
Memory Module (PMM) provides bandwidth and latency only slightly inferior to that
of DRAM but with only half of the price. PMM often pairs with a small DRAM
to build HM, where frequently accessed data objects placed in DRAM and the rest
resided in PMM with several TBs of large memory capacity. It is performance-
critical to decide the placement of data objects of SpTC (input and output tensors
and intermediate results) on PMM-based HM, to make best use of DRAM’s high
bandwidth and low latency without causing frequent data movement between PMM
and DRAM. We first characterize memory read/write patterns associated with those
data objects in SpTC, and reveal the performance sensitivity of SpTC to the placement
of those data objects on PMM and DRAM. Sparta then prioritizes the data placement
between DRAM and PMM statically based on our knowledge on the SpTC algorithm

and characterization of data objects for best performance. Sparta effectively avoids

14

Input Processing Computation Output Sorting
1 F C C F i
(s Ja)(r J2) val (i1 J2)(js ja) val i: E
OENZEN i (j; ja) val “T-4
5000
Y: Pl 1st SPA: F
04 220 i io)(js Ja) val
. 05 60 0 [OIE 220
F c c e I: . AZ:
T :
(i i) (is i (in i)(is is) i:- 103120
0 ommH A
X: 0 i)
0] ’
-7 '
-) // :
@ Index Search T 2 \r x” Index
€ Accumulation I’V K val ’ NA\ m'o |:I
) ey alue_ _ Key Value
@ Writeback 1 LN 1 LN s jo valt {9 N Gojoy el | (D Value (vaD)

\
- —-p SpTC-HtY-HtA 0

v .

3,4.0 Key in

oy srosen PO EEB i @ @D O e
Build hash table D

Permute/Sort @) 12 HEA: 3]

Value in
hash table

(e

Figure 3.1: Workflow of the traditional SpTC-SPA and Sparta on Z =X xgﬂ Y.

unnecessary data movement suffered in the traditional application-agnostic solutions
(such as hardware-managed DRAM caching [57) 58| [59] or software-based page hotness
tracking [60, 6T, 62, 63, (62, 165, /66, 7).

3.2 Design

3.2.1 Sparse Tensor Contraction Algorithm

This section introduces our SpTC algorithms, SpTC-SPA and Sparta, to address
the challenges of unknown output and irregular memory accesses along with multi-

dimensional index search.

Overview

Figure depicts the workflow of our SpTC algorithm. Our algorithm has five
stages: @ input processing, @ index search, @ accumulation, @ writeback, and @
output sorting, where @ and @ are called input/output processing collectively, and @,
® and @ are computation collectively. We describe the input/output processing stages
in this section and the computation stages will be illustrated in Lines [13] and [19]

Input processing @. Figure uses two tiny sparse tensors X and Y as input

examples. When the modes of X or Y are not in the ”correct mode order”, permutation

15

Algorithm 1: SpTC-SPA: Sparse tensor contraction of Example 2: Z =

X xgﬁ Y, extended from SpGEMM [68] with sparse accumulator (SPA)

Input: Input tensors X € RItx/2xlsxla and Y ¢ RNx2xIsxJs contract modes
Cx ={3,4}, Cy = {1,2}
Output: The output tensor % € RIx/2xJsxJa
1 Permute and sort X, Y if not yet;
2 for X(i1,i2,:,:) in X do
Initiate a sparse accumulator SPA
for Non-zero x(iy,i2,13,14) in X(i1,i2,:,:) do
for Non-zero y(is,i4, j3,ja) in Y(is,i4,:,:) do
v = x(i1, 12,13, 14) X y(i3,14, j3, ja)
if SPA(js,j4) exists then
‘ Accumulate SPA(js,js)+ =v
else
10 L Append v to SPA

© N o A~ w

11 | Write SPA back to Z(i1,i2,:,:)

12 Permute and sort % as needed
13 return %

and sorting are needed. ”Correct mode order” means: The contract modes C'x ((i3,14)
in Figure are the rightmost modes of X and Cy ((j1, j2)) are the leftmost modes
of Y. X is first permuted to the “correct mode order* by exchanging mode indices,
which is cheap for COO format E] Then according to the new mode order, all the
non-zero elements of X are sorted using a quick sort algorithm with the complexity of
O(nnzxlog(nnzx) where nnzx is the number of non-zero elements in X. In Figure 3.1}
X only needs sorting due to its correct mode order; permutation and sorting are both
needed for Y. Permutation and sorting are necessary to improve data locality for an
efficient implementation of our SpTC algorithms.

Output sorting @. The output Z is not sorted from our algorithms’ computation
pattern (see Lines [13| and [19 for details). Depending on the needs, sorting could be
acted on Z after the computation, using the quick sort algorithm. This could avoid
its potential sorting when used as an input for the subsequent SpTC computations.

In our algorithms, sorting on Z is by default.

IFor example, to exchange modes i; and iy, we only need to switch the pointers of inds[1] and
inds|2].

16

Sparse Accumulator for High-order Sparse Tensors

Sparse accumulator (SPA) is a popular approach in sparse matrix-sparse matrix
multiplication (SpGEMM) [68, 69], which uses a sparse representation to hold the
indices and non-zero values of the current active matrix row to do accumulation
and is conceptually parallel. We extend SPA to SpTC (named SpTC-SPA) for an
arbitrary-order sparse tensor and any contraction operation. Figure uses the
fourth-order tensor contraction example to illustrate the five stages.

Index search @. Take x(0,1,0,0) in Figure to illustrate, the indices (0, 0)
in mode-3 and 4 are used to search in Y for sub-tensor Y(0,0, :,:) to multiply with. A
linear search iterates non-zeros of Y until Y(0,0,:,:) is found.Similarly in Algorithm [I]
we loop all non-zeros of X by units of sub-tensors in Line [2] For each non-zero
x(iy,12,13,14), we use the indices (is,i4) to do linear search in Y to locate the sub-
tensor Y(is, i4,:,:) to perform multiplication. The linear search has the complexity
O(nnzy) by searching all non-zeros of Y in the worst case. To solve multi-dimensional
index search challenge, we will construct Y as a hash table in Line [19]

We explain the reason of using COO format in our algorithms by comparing with
the popular compressed storage row (CSR) [70] and its generalization compressed
sparse fiber (CSF) [40] formats. For example, we can direct locate row indices in
a CSR-represented sparse matrix, but not column indices. Similarly, except the
first mode, all the other contract modes have to do linear search as well in a CSF-
represented sparse tensor. (Refer to [43] 40] for more details) Thus, index search on
CSF-represented Y will not be significantly better than its COO representation.

Accumulation @. In Figure [3.1] if (0,0, :,:) is found,
x(0,1,0,0) times every non-zero in Y(0,0,:,:), and accumulate the result to SPA.
For example, z(0, 1,0, 3) accumulates the product of x(0,1,0,0) and y(0,0,0, 3). If
SPA(0,3) is already exists, it adds this product; otherwise, the product along with
its indices (0, 3) are appended to the SPA.

In Algorithm [1] since every X(i1, 2, :, :) independently accumulates to (i1, 4s, :, :),
the sparse accumulator SPA is allocated for each sub-tensor of X. For each non-zero
x(iy,d9,13,14), if found Y(is, iy, :,:) in index search, all non-zeros in Y(is, iy, :,:) are
stored contiguously and have spacial data locality due to the permutation and sorting of

Y in input processing. Since every non-zero in Y(is, iy, 3, :) compute with x(iy, is, i3, 4),

17

thus X gets temporary data locality. If SPA(js,js) already exists, it adds up the
product v; otherwise, v along with its indices (js, j4) are dynamically appended to
SPA. We also employ the linear search to locate SPA(j3,j4) with the complexity
O(|SPA]), the size of SPA. Once the traverse of all non-zeros in X(iy, is,:,:) is done,
SPA contains the final results of Z(iy,is,:,:). The same multi-dimensional search
challenge occurs in index search stage, which is optimized with hash table in Line

Writeback @. Figure shows the simple write-back stage by copying SPA
values to Z(0,1,:,:). In Line we will introduce another temporary data for better
parallelization and memory locality.

To solve the challenge of the unknown output size, traditionally two approaches,
a two-phase method with symbolic and numeric phases [50] and a loose upper-bound
size prediction [51], [52], have been investigated. Symbolic phase counts the number
of non-zero elements of the output, which is expensive, then precise memory space
is allocated to proceed the computation (numeric phase). A loose upper-bound size
prediction uses probabilistic or upper bound methods to allocate large enough memory;,
which is more than sufficient, for the output. In SpTC-SPA, we use dynamic vectors
for the SPA and output tensor, like progressive method [69] but more precise. The
total time complexity of SpTC-SPA is

Tspa = O(nnzxlog(nnzx) + nnzylog(nnzy)) (3.1
+ O(2 x nnzx X nnzy + nnzz) + O(nnzzlog(nnzz)) .

, where the three terms correspond to the time complexity of input processing,
computation with index search, accumulation, and writeback, and output sorting.
Figure illustrates the execution time breakdown of the stages of SpTC-SPA. This
evaluation matches theoretical analysis in Eq. , the SpTC time is dominated by
computation stage. Stages @ and @, shown together as input/output processing, takes
less than 1% of the algorithm. Compared to the two-phase method, our SpTC-SPA
approach highly reduces the input processing time; while compared to the prediction
methods, SpTC-SPA can highly reduce SPA and the output space. Thus, our SpTC-
SPA algorithm is a good baseline for SpTCs, by following the spirit of SPGEMM SPA
approach with dynamic, precise memory allocation, and good data locality, to support

arbitrary-order sparse tensors and any tensor contraction operations. Stages @ and

18

Algorithm 2: Sparta: Sparta sparse tensor contraction for arbitrary-order
data.
Input: Input tensors X € RIXINx and Y € R %Ny | contract modes Cy,
Cy
Output: The output tensor Z
1 Permute and sort X if needed;
2 Obtain Np, |FX|, sub-tensors of X, and its ptrp;
3 Convert Y to HtY with LN(CY) as keys and (LN (FY),valY) as values;

4 // Compute: Z2 =X xg;i Y

5 for fin1,...,Nr do

6 Initiate thread-local HtA with FY as keys

7 for nz in ptrp(f],...,ptre[f + 1] do

8 if LN(C)X) is not found in HtY then

9 L continue

10 for (LN(F),),val},) in (LN(FY),VY) of HtY do
11 v =wvalX, * valY,

12 if LN(FY,) is found in HtA then

13 ‘ Accumulate valZT+ = v

14 else

15 | Insert (LN(F),),v) to HtA
16 Form (FX,FY)) as coordinates and vallT" as non-zero value and append to

Z’local

17 Gather thread-local Zyqq; independently to %
18 Permute and sort % if needed
19 return %

@® arc the performance bottlenecks in Figure for all of our test cases and from
Equation (3.1)). We will emphasize optimizing these two stages in Lines [13| and .

Hash table-represented Sparse Tensor

To address the problems of multi-dimensional index search and inherit good data
locality from SpTC-SPA, we propose the hash table-represented input tensor Y with
specifications for sparse tensors for the index search stage.

Figure depicts the process of converting Y represented in COO format into
a hash table HtY with a large-number representation and its usage in the example
SpTC. The index search for Y(0,0,:,:) uses X’s contract indices (0,0), which is taken
as the keys of HtY naturally. Since we need to keep the information of free indices of
Y. (0, 3), and non-zero values 4.0 for the next stage @, the tuple ((0,3),4.0) is put to
the values of HtY . Since the keys of HtY are index tuples, as the tensor order grows,

it is difficult and time-consuming to do key matching on multi-dimensional tuples.

19

BIndex Search [[@Accumulation B Write Back W Input/output Processing
1::: ? ? ? o —
60% % % %
Chicago NIPS |Chicago NIPS Uber Vast Uracil |Chicago NIPS Uber Vast Uracil
1-Mode 2-Mode 3-Mode

Figure 3.2: Percentage of execution time breakdown of SpTC-SPA (Algorithm .

We introduce a large-number representation, noted as the LN function in Figure [3.1]
which converts a sparse index tuple to a large index in a dense pattern. For example,
(0, 3) tuple is converted to 3 = 0 x Jy + 3. Unique identifiers are extremely important
for a fast hash table search. This large-number representation obtains unique numbers
for every tuple of keys in HtY, hence the index search becomes faster on HtY by doing
integer comparison for keys. To create HtY from Y in COO format, we use separate
chaining hash table [71] with given-sized buckets to distribute the keys. Compared to
COO format, the contract indices have no duplication due to the unique key feature
of a hash table, which reduces the index search space. To maintain the good spacial
data locality from Algorithm [I} for the non-zeros having the same key in Y, we adopt
dynamic array to construct the values of HtY .

The creation and usage of HtY for an arbitrary-order SpTC with random contract
modes C'x and Cy are illustrated in Algorithm [2 The three for-loops are in the same
order with those in Algorithm [I} The first and second loop sub-tensors in X and
non-zeros in the sub-tensor using ptryg to indicate locations respectively. The indices
of contract modes Cy and the tuple of free modes and non-zero value (FY,val¥) are
taken as the keys and values of HtY respectively in Line [3] For each non-zero element
nz, we search LN(CX), the large-number representation of the contract indices C'x of
X, in HtY (Line . Compared to the linear search in SpTC-SPA with the complexity
O(nnzy), the time complexity of hash table search on HtY is significantly reduced
to O(1) [71]. We also optimize input processing, the COO-to-hashtable conversion is
faster than permutation and sorting of Y, O(nnzy) versus O(nnzylog(nnzy)).

Our proposed hash table-represented sparse tensor with the large-number com-

pressed keys highly improves the SpTC performance by efficiently addressing multi-

20

dimensional index search issue and maintain temporary and spacial data locality. To
reduce the frequency of index search, we always treat the larger input tensor as Y in

our SpTC algorithms.
Hash table-based Sparse Accumulator

Hash table [50] [72, [73] [74], hashmap [75], and heap [76] are popular data structures
to represent the accumulator in state-of-the-art SpGEMM research, where hash table
performs the best from prior evaluations [50]. As mentioned in Line 13| and Figure ,
stage @ in SpTC-SPA could dominate the performance of an SpTC. To more efficiently
accumulate the intermediate results, we propose a hash table-based accumulator HtA,
shown in Figure . We take the free indices of Y, (0, 3), as a key and refer to the
intermediate result as the values of the hash table. Separate chaining hash table and
the large-number representation LN are also adopted here for fast key matching and
hash search.

We observe the key of HtA ((0,3) in Figure is the same with the free indices
of Y in the value tuples of HtY (also (0,3)). To avoid the key conversion for HtA, we
convert the free indices of Y to the large-number representation in stage @ (Line [3[in
Algorithm . We directly retrieve the keys from the values of HtY ', avoiding mode
indices-key conversion between HtY and the accumulator HtA during computation.
As depicted in Figure [3.1] and Algorithm [2] the accumulation performs similar to
SpTC-SPA but on hash table HtA instead.

By far, we form the Sparta SpTC algorithm (Algorithm . Compared to SpTC-
SPA, we replace Y and SPA with two hash table HtY and HtA with large-number
representation respectively. Sparta solves the multi-dimensional index search challenge,
get faster processing for input Y, extract unnecessary index computation/conversion
out of the computation, while maintain the good data locality shown in SpTC-SPA,

to reduce the SpTC execution time. The total time complexity of Sparta:

Tsparta = O(nnzxlog(nnzx) + nnzy) (32)
+ O(2 X nnzx X MNZpapg + nnzz) + O(nnzzlog(nnzyz)) .

, where nnzpq., is the average size of all sub-tensors (e.g. Y(j1,jo,:,:) in Algo-

rithm . The three terms correspond to the time complexity of stages @, computation

21

with @, @, and @, and @. Eq. (3.2)) shows that depending on different sparse tensors,
the SpTC time could be dominated by different stages.

Parallelization

We parallelize all the five stages of SpTC-SPA and Sparta algorithms. For stage
@, since permutation takes negligible time, we parallelize the quick sort algorithm
using OpenMP tasks, which is also used in stage @. Sparta has the COO-to-hashtable
representation for Y in stage @, we parallelize sub-tensors of Y and use locks on the
buckets of HtY to ensure correct insertion and updates. Since the separate chaining
hash table relatively evenly distributes the search requests, locks on multi-threading
gets an acceptable performance (7.8 x speedup on average over a sequential version
using 12 threads in our experiments).

In computation, we parallelize the outermost loop for sub-tensors of X (Line
in Algorithm [1] and Line [f] in Algorithm [2). Thus, the sparse accumulator SPA in
SpTC-SPA and hash table accumulator HtA in Sparta are both thread-private and
each thread can do accumulation independently. Due to the dynamic output structure,
directly write the intermediate thread-local SPA or HtA results to % is not feasible.
We introduce thread-local dynamic Zj,., in Algorithm [2] to write the intermediate
results. After one thread completes its execution, we have the size of Zj,., which can
be used to allocate the space for Z. Then each thread could writes its Zj,.q to 2
in a parallel pattern. The introduction of Zj,.,; helps to solve the unknown output
challenge in multi-threading parallel environment and improves stage @ with the cost

of the affordable thread-local storage Zjyqq-
3.2.2 Data Placement on Persistent Memory-based Hetero-

geneous Memory Systems

We discuss our approaches to leveraging HM to address the memory capacity
bottleneck of SpTC.

Characterization Study

To motivate our solution of data placement on heterogeneous memory, we charac-
terize memory accesses of major data objects of Sparta (Algorithm , in terms of
access patterns (sequential/random and read/write) in Table Five stages, input

processing @, computation (combined @ index search, @ accumulation, @ writeback)

22

and output sorting @, are considered with six major data objects, i.e., the two input
tensors (X and Y), the hash table-represented second input tensor (HtY'), thread-local
hash table-based accumulator (HtA), the thread-local temporary data (Zca), and
the output tensor ().

We study the performance impact of the placement of six data objects on tensor
Nell-2 with 2-Mode contraction in Figure [3.3] by evaluating Sparta on a server with
an HM with PMM and DDR4. We use the execution time to reflect the underneath
PMM and DRAM memory characteristics and an accurate performance behavior of
SpTC. Our baseline is the Sparta execution time when residing all data in DRAM,
which achieves the fastest performance on the HM. We perform six tests: each one by
placing only one data object in PMM, while leaving the others stay in DRAM. We
have three interesting observations that guide our data placement for Sparta.

Observation 1: Performance difference between read and write mat-
ters a lot to performance of Sparta. For example, the memory access pattern
associated with Y in the stage @ is sequential read-only, and placing it on PMM
causes ignorable performance loss; In contrast, the memory access pattern associated
with Zy,q in the stage @ is sequential write-only, and placing it on PMM causes
12.9% performance loss. The bandwidth difference between read and write on PMM
is about 3, which leads to the difference in Sparta’s performance.

Observation 2: Sequential and random accesses have large perfor-
mance difference. For example, the memory access pattern associated with Y in the
stage @ is sequential read-only, and placing it on PMM causes ignorable performance
loss; In contrast, the memory access pattern associated with HtY in the stage @
is random read-only, and placing it on PMM causes 30.8% performance loss. The
performance difference between sequential and random accesses on PMM is due to the
unique architecture of PMM (e.g., the combining buffer in devices [77]); Sequential
accesses also makes hardware prefetching more effective for improving data locality.

Observation 3: The performance of Sparta is not sensitive to the
placement of some data objects on PMM. For exampling, placing X and Y on
PMM, Sparta has ignorable performance loss, because of the memory access patterns
discussed in the above two observations.

The first two observations are unique to PMM compared to traditional DRAM.

Read and write, sequential and random accesses both has small performance difference

23

Table 3.1: Memory access patterns associated with data objects in six stages (”Ran”
= Random; ”Seq” = Sequential; "RW” = Read-Write; "RO” = Read-Only; "WO” =
Write-Only). (Note that for HtZ in Summation, we employ temporal locality to always
maintain the most frequently used bucket in DRAM. The memory access pattern of
key-value nodes within the bucket is still random. For 2., the first two passes are
“Seq, RO” and the last pass is “Ran, RO”.)

Stages ‘ Data Objects

X Y Hty HtA Dotocal Z Tt || M2
Input Processing @ | Ran, RW | Seq, RO | Ran, RW - - - - -
Index Search @ Seq, RO - Ran, RO - - -
Accumulation @ - - - Ran, RW | Seq, WO -
Writeback @ - - - - Seq, RO | Seq, WO
Output Sorting @ - - - - - Ran, RW - -
Summation @ - - - - - Seq, RO | Ran, RO | Ran, RW

210 M Input Processing [@Index Search B Accumulation & Writeback [Output Sorting

w
(]
_'g 140 136.8 137.4
[=
=)
=
3 70
Q
x
]

0

All in DRAM X Y HtY HtA Z_local z

Figure 3.3: Performance after placing a data object in PMM while leaving others in
DRAM. The x axis shows the data object placed in PMM. “All in DRAM” means all
data objects are placed in DRAM.

in DRAM. We get the same observations for other 14 datasets.
Data Placement Strategy

Driven by the characterization results, we use the following data placement
strategy. X and Y is always on PMM, because of the observation 3. For the other
four data objects, we decide their placement in DRAM, following the priority of HtY
= HtA > Zyocqr = 2. For each of the four data objects, we make best efforts to place
it into DRAM. This means that given a data object, if there is remaining DRAM
space after excluding that consumed by the data objects with higher priority, then
that object is placed into DRAM as much as possible; If there is no remaining DRAM
space, that object is placed into PMM.

To implement the above data placement strategy, we must estimate the memory

consumption of the four data objects, to decide whether they should be placed into

24

DRAM or not. We discuss it as follows.

The placement of HtY. We estimate the memory consumption of HtY using
Equation based on tensor information and knowledge on data structures used in
HtY. In Equation , Sizemy is the memory consumption of HtY'; Size.,, Siz€;d,
and Size,q are the size of the entry pointer for a bucket in HtY', the size of an index,
and the size of a value, respectively; # Bucketsg;y is the number of buckets in HtY;

nnzy is the number of non-zero elements in Y; Ny is the number of modes of Y.

Sizemy = Sizee, - #Bucketspyy + nnzy - (Sizeid, - Ny

+ Sizeyq + Sizeep) (3.3)

Equation includes the memory consumption for metadata (i.e., the pointers
pointing to each bucket in the hash table, modeled as Size,, - #Bucketspyy); Equa-
tion [3.3] also includes the memory consumption for storing all non-zero elements of Y
in HtY , each of which consumes memory for an index, a value, and a pointer pointing
to another element, modeled as Size;q, - Ny + Sizeyq + Sizee.

To use Equation [3.3] we must know nnzy and #Bucketspy. nnzy as a tensor
feature is typically known; # Bucketsyy is defined by the user, and hence is known.

The placement of HtA. We use Equation to estimate the memory con-
sumption of HtA. While Equation [3.3| estimates the exact memory consumption,

Equation gives an upper bound on the memory consumption (Sizega).

Sizemia = Sizeep - #Bucketspia + 2R aw - M omas - (S12€id0

|FY | + Sizeya + Sizeep) (3.4)

In Equation , | Y| is the number of free modes of Y; nnzy, is the maximum

Fmax
size of all non-zero sub-tensors X(F~,:,...,:); nnz}, . represents the maximum size
Y . . X Y -
of all non-zero sub-tensors Y(C",:,...,:). The product of nnzp,, ., and nnzyp,, . gives

an upper bound on the number of non-zero elements stored in HtA.
Equation gives an upper bound, because we do not know the exact number of

non-zero elements in Y that have the same contract indices as those in X; We use the

25

maximum number to give an upper bound and ensure there is enough space allocated
in DRAM for HtA. Using the upper bound does not cause significant waste of DRAM
space, because HtA per thread is usually 10-50 MB (even with the largest dataset
using 768GB memory in our evaluation). Given tens of threads in a machine, the
upper bound takes only a few GB of DRAM, which is typically a small portion of
DRAM space in an HPC server.

To use Equation 3.4} we must know nnzy,

Fmax

Y X

Y
Fmaz: "2 Fmax

and nnzp,, 0.

and nnz
are known after the stage @, and the dynamic allocation of HtA can happen after
the stage @ but before the stage @ where HtA is accessed. Hence, Equation can
be used to effectively direct data placement. In addition, DRAM is evenly partitioned
between threads for placing HtA per thread, in order to avoid load imbalance.

The placement of Z,,.,;. The memory consumption of Z;,., can be estimated
after HtA is filled (Line 16 in Algorithm [2)) and before memory allocation for Zyseq
happens. The memory consumption of Z,., is equal to the size of HtA plus the size
of Fé “NNZHa, Where Fji refers to free indices of a non-zero element in X and nnzgia
is the number of non-zero elements in HtA. In addition, DRAM is evenly partitioned
between threads for placing Zy,.q; per thread, in order to avoid load imbalance.

The placement of Z. The size of Z is the summation of the size of Z,.q in
each thread. The size of % is estimated in Line 17 in Algorithm [2, before memory
allocation for Z happens.

Static placement vs. dynamic migration. The data placement strategy
in Sparta is static, which means a data object, once placed in DRAM or PMM,
is not migrated to PMM or DRAM in the middle of execution. The traditional
solutions are application agnostic and dynamic. They track page (or data) access
frequency [60, 61], 62, [63], 64, 65, 66, 67] or manage DRAM as a hardware cache
for PMM [57, 58] 59L [78] to decide the placement of data objects on DRAM and
PMM. The traditional solutions, once determining frequently accessed data (hot data),
dynamically migrate hot or cold data between DRAM and PMM for high performance.
However, those dynamic migration solutions cannot work well in our case because
they can cause unnecessary data movement. For example, the performance of Sparta
is not sensitive to the placement of X and Y on PMM and DRAM, because of their
sequential read patterns. The dynamic solutions can unnecessarily migrate them

to DRAM for high performance. For another example, HtY has a random access

26

pattern. Any dynamic migration solution cannot effectively capture its pattern and
hence causes unnecessary data migration. Our evaluation results in the evaluation
show that two dynamic migration solutions (i.e., hardware-based Memory mode and
software-based TAL [79]) perform worse than Sparta by 10.7% (up to 28.3%) and
30.7% (up to 98.5%) respectively.

Other datasets. We evaluate 15 datasets in total, and 11 of them shows the
same priority for data placement (i.e., HtY = HtA > Zypeqr = %). However, there
are four cases showing different priority (i.e., HtA = HtY > Zj,cq and Z). For those
uncommon cases, we can use the same methodology to determine data placement;

Our methods to determine the sizes of the data objects are still valid.

3.3 Evaluation

3.3.1 Evaluation Setup

Platforms. The experiments in Sections [3.3.2, [3.3.3| and [3.3.4] are run on a Linux

server consisting of 96 GB DDR4 memory and Intel Xeon Gold 6126 CPU including 12

physical cores with 2.6 GHz frequency on one socket. The experiments in Section [3.3.5]
are run on an Intel Optane Linux server containing Intel Xeon Cascade-Lake CPU
including 24 physical cores with 2.3 GHz frequency. Each socket has 6 x 16 GB of
DRAM and 6 x 128 GB Intel Optane DIMMs. All implementations (Sparta and other
approaches) are compiled by gce-7.5 and OpenMP 4.5 with -O3 optimization option.
All experiments were conducted on a single socket with one thread per physical core.
Each workload was run 10 times and we report the average execution time.

Datasets and expression. We use sparse tensors, derived from real-world applica-

Table 3.2: Characteristics of sparse tensors in the evaluation.

Tensors Order Dimensions #Nonzeros Density
Nell-2 3 12K x 9K x 28K 76M 2.4 x 107°
NIPS 4 2K x 3K x 14K x 17K 3M 1.8 x 1076
Uber 4 183 x 24 x 1K x 1K 3M 2 x 1074
Chicago 4 6K x 24 x 77 x 32 5M 1 x 1072
Uracil 4 90 x 90 x 174 x 174 10M 4.2 x 1072
Flickr 4 320K x 28M x 2M x 731 113M 1.1 x 107
Delicious 4 533K x 17TM x 2M x 1K 140M 4.3 x 1071
Vast 5 165K x 11K x 2 x 100 x 89 26M 8 x 1077

27

1000 EHtY+HtA mCOOY +HtA COOY +SPA 576

133

179 157 193
100 83
10
. . . h.01 1 1.07 1 1.02 1
1

Chicago NIPS Uber Vast Uracil

Speedup

Chicago NIPS Chicago NIPS Uber Vast Uracil

1-Mode 3-Mode

Figure 3.4: Speedups of HtY-+HtA (i.e., Sparta) and COOY+HtA over COOY+SPA
(i.e., SpTC-SPA) for SpTCs on Chicago, NIPS, Uber, Vast and Uracil with 1-mode,

2-mode and 3-mode.

tions, that appear in Table ordered by modes and nonzero density. The tensors
are included in FROSTT [80]. Tensor Uracil [81], 24] is from a real-world CCSD model
in quantum chemistry, formed by cutting off values smaller than 1 x 10~® verified by
chemists.

For some SpTC, the memory requirement is larger than the system memory
capacity. We do not evaluate the performance of those SpTC. For a tensor with
different expression, we use a “*” to distinguish. For example, Chicago and Chicago*
are the same tensors with different expression. Sparta includes five stages, @ input

processing, computation (combined @, @, @), and @ output sorting.

3.3.2 Overall Performance

Figure shows the performance comparison of using HtY+HtA (i.e., Sparta),
COOY+HtA and COOY+SPA (i.e., SpTC-SPA) on tensors Chicago, NIPS, Uber,
Vast and Uracll with 1-mode, 2-mode and 3-mode SpTC respectively. In Figure (3.4
we observe that HtY+HtA significantly outperforms COOY+HtA with 1.4 — 565x
performance improvement. The results show that HtY is much efficient than COOY.
Also, we found that COOY+HtA significantly outperforms COOY-+SPA with 1% —
42x performance improvement. The results expose that HtA is much efficient than
SPA.

We observe that the performance improvement of Sparta over COOY-SPA on
Uracil with 3-mode is larger than others. This is because the execution time of
stage @ dominates the total execution time (99.3%) and the total execution time is
relatively large (1072 seconds) than others. Based on the time complexity difference
between HtY and COOY in stage @, the larger execution time SpTC spends, the

larger performance improvement Sparta can achieve. In Figure the total execution

28

10.0

8.0 MW Sparta lITe7nssor
7.3 ’ .

. 8.0 |7.1 6.6 7.2 6.3 7.1 6.9 6.8
S 6.0
T
o
2 40
wv

2.0

0.0

SpTC1 SpTC2 SpTC3 SpTC4 SpTC5 SpTC6 SpTC7 SpTC8 SpTCY SpTClO

Figure 3.5: Speedups of Sparta over I'Tensor on Hubbard-2D model using different

SpTC expression with different sparse input tensors.

|
: 180 461 r 121720 1671 12 | 600 555 r 12 :
|
! 150 L 10 | 600 10 | 500 - - 10 |
-~ |
: g 120 -8 1480 a0 8 400 -8 al
= 3
I s 90 { 82 L6 360 6 | 300 - 289 -6 3!
! g 60 t 4 | 240 19 4 200 - 16, w4"’:
| = 1
| 30 - 2 36t2 120 % 7212 {100 ¥ snla |
|
! 0 0 0 0 0 0
! 1 2 4 8 12 1 2 4 8 12 1 2 4 8 12 !
| # of Threads # of Threads # of Threads |
| |
| 1-Mode 2-Mode 3-Mode JI
Figure 3.6: Thread scalability of parallel Sparta on SpTCs on NIPS with 1-mode,

Vast with 2-mode and NIPS with 3-mode.

1.8

M Sparta MIAL Memory mode

1.6
.48

1.4

Speedup

1.2 1.09

1.04
1.0

0.8

Optane-only

DRAM-only

1.26

1.03 1.02 1.08

2 [l kb

Chicago* NIPS* Vast* Flickr | Chica,

1-Mode

go* NIPS* Vast* Flickr

2-Mode

Delicious Nell-2

NIPS* Vast* Flickr Delicious

Chicago*

3-Mode

Figure 3.7: Speedups of Sparta, IAL, Memory mode and Dram-only over Optane-only
for SpTCs on Chicago*, NIPS*, Vast*, Flickr, Delicious and Nell-2 with 1-mode,

2-mode and 3-mode.

is dominated by stages @ and @ in COOY-SPA (99.6%). Since the execution time of
® and @ is highly reduced by Sparta, the execution time of stages @ and @ might

not be the bottleneck of an SpTC. In our experiments with Sparta, the time in @
accounts for 4.7%; the time of stage @ is 61.6%; the time of stage @ is 9.6%; the

stage @ accounts for 3.3% an

d @ is 20.8%.

29

3.3.3 Performance Comparison to I'Tensor

In this experiment, we compare the performance of Sparta and I'Tensor. ITen-
sor [19] is a state-of-the-art library for multi-threading, block-sparse tensor contraction
on a single machine, which is the most related to Sparta among other works. ITensor
is configured with its best configurations described in its repository [82]. SpTC ex-
pressions with different tensors (SpTC1 to SpTC10) are from a well-known quantum
physics model (Hubbard-2D) [27] in ITensor [82], and those tensors are formed by
cutting off values smaller than 1 x 107® verified by physicists. We choose ITen-
sor as a representative for comparison rather than others (such as libtensor [55],
TiledArray [53], CTF [54] and TACO [83]), because libtensor only supports sequential
block-wise SpTC [55] while TiledArray and CTF are distributed, and TACO does not
support high-order SpTC yet. Figure shows the performance comparison between
Sparta and ITensor. We observe that Sparta significantly outperforms I'Tensor with
7.1x performance improvement on average. We demonstrate that Sparta can also be

employed for applications featured with block-wise SpTC.

3.3.4 Thread Scalability

Figure 3.6 shows the performance of parallel Sparta over the sequential version.
Sparta achieves 10.2x, 9.3x and 10.7x speedup on NIPS with 1-mode, Vast with
2-mode and NIPS with 3-mode using 12 threads. Different stages have different thread
scalability. Evaluation with 15 datasets using Sparta, the average speedup of parallel
execution over sequential execution achieves: 10.4 x in stage @; 10.9 x in stage @;
9.5 x in stage @; 6.8 x in stage @ and 6.2 x in @. Though the thread scalability
of stages @ and @ are not as good as the computation stages (@,8.@), the SpTC
is always dominated by the computation stages. Thus, Sparta achieves high overall

thread scalability.

3.3.5 Sparta on Heterogeneous Memory Systems

Now we study the performance of Sparta on HM, compared with a state-of-the-art
solution for HM management (i.e., IAL (Improved Active List) [79]), hardware-
managed cache approach (i,e, PMM Memory mode), Optane-only (i.e., AppDirect
mode with assigning all data objects to Optane) and DRAM-only (i.e., assign all data
objects to DRAM). TAL is configured with its best configurations based on the IAL

e===Sparta-DRAM e====|AL-DRAM Memory Mode-DRAM === Optane-Only-DRAM

e Sparta-PMM === |AL-PMM Memory Mode-PMM e==== Optane-Only-PMM

Figure 3.8: Memory bandwidth of Sparta, IAL, PMM Memory mode and Optane-only
on Vast with 1-mode SpTC.

800

600

400

200

Peak Memory Consumption (GB)

Chicago*
Delicious
Chicago*
Delicious

1-Mode 3-Mode

Figure 3.9: Peak memory consumption of SpTCs on Chicago*, NIPS*, Vast*, Flickr,
Delicious and Nell-2 with 1-mode, 2-mode and 3-mode.

repository [84]. Figure shows the peak memory consumption of SpTCs in the
experiment.

As shown in Figure [3.7, Sparta outperforms IAL with 30.7% performance im-
provement on average (up to 98.5%). Also, Sparta achieves 10.7% (up to 28.3%)
and 17% (up to 65.1%) performance improvement on average than PMM Memory
mode and Optane-only approaches respectively. Furthermore, Sparta is comparable to
DRAM-only approach with only 6% performance loss. For some SpTC (e.g., Chicago*

with 3-mode), because the memory bandwidth requirement is small, the performance

31

difference between Sparta and Optane-only is small. For example, if we assign all data
objects to DRAM (i.e., DRAM-only, the configuration with the best performance) on
Chicago* with 3-mode, the performance improvement is only 6% over Optane-only.
In Figure [3.8] we observe that the average PMM memory bandwidth of TAL is
larger than Sparta. This is because IAL causes undesirable data movement and such
data movement causes higher PMM memory bandwidth. The average DRAM memory
bandwidth of PMM memory mode is larger than Sparta because PMM Memory mode
manages DRAM as a hardware cache for PMM and unnecessarily migrates data
objects to DRAM for high performance without being able to be aware of access

patterns of data objects.

3.4 Related Work

Tensor contraction. Tensor contraction has a long history in scientific computing
in chemistry, physics, and mechanics. Dense tensor contraction has been studied for
decades on diverse hardware platforms [85, [86l, 87, 88, 89, 90| 54 911, [92], 93], 04, O5].
The state-of-the-art sparse tensor contractions emphasize on block-sparse tensor
contractions, between two tensors with non-zero dense blocks. The general approaches
extract dense block-pairs of the two input tensors, then do multiplication by calling
dense BLAS linear algebra and have the output tensor pre-allocated from domain
knowledge or a symbolic phase [96], 97, 08, [99], such as libtensor [55, 56], TiledArray,
and Cyclops Tensor Framework [100]. Our work proposes an efficient element-sparse
tensor contraction and shows its performance advantages if a practical cutoff value
gets quantum chemistry or physics data below 5% non-zero density. This work will be
valuable for deep learning after introducing sparsity from model or data compression.
Sparse tensor formats. Researchers are making continuous effort on developing
sparse tensor formats for high-order data, including compressed sparse fiber (CSF) [40],
balanced and mixed-mode CSF (BCSF, MM-CSF) [39, 38], flagged COO (F-COO) [42],
and hierarchical coordinate (HiCOO) [37] for general sparse tensors, and mode-generic
and -specific formats for structured sparse tensors [I01]. We choose COO format in
this work as a start because CSF format also needs expensive search to locate Y due
to multi-dimensionality. Our hashtable-represented Y is a new approach to compress
a sparse tensor customized to a tensor contraction. This work is orthogonal to the

tensor format works and will adopt a more compressed format for the sparse tensor X

32

according to SpT'C operations.

Sparse matrix-matrix multiplication. Sparse matrix-matrix multiplication (SpGEMM)
has been well-studied [74), [73], 72, [51], [76], 50, [75 102 68, 83]. Our hash table imple-
mentations can be improved from more advanced algorithms in 72}, [73] [74, [103].

Data management on heterogeneous memory systems attracts a lot of attention
recently. Many research efforts [60] [61) 62, 63], [64] 65, [66], [67] use a software-based
solution to track data objects or page hotness to decide data placement on HM; Many
research efforts [57, (58,59, [78] use a hardware-based solution to profile memory accesses
and decide data placement on HM. All of those solutions use dynamic migration and are
application-agnostic. Sparta is different from them in terms of static data placement

and application awareness.

3.5 Summary

SpTC plays an important role in many applications. However, how to efficiently
implementing SpTC faces multiple challenges, such as unpredictable output size,
time-consuming process to handle irregular memory accesses, and massive memory
consumption. In this paper, we introduce Sparta, a high performance SpTC algorithm
to address the above challenges based on the innovation of leveraging new data
representation, data structures and emerging HM architecture. Sparta shows superior
performance: evaluating with 15 datasets, we show that Sparta brings 28 — 576 x
speedup over the traditional sparse tensor contraction; With our algorithm- and
memory heterogeneity-aware data management, Sparta brings extra performance
improvement on HM built with DRAM and PMM over a state-of-the-art software-
based data management solution, a hardware-based data management solution and
PMM-only by 30.7% (up to 98.5%), 10.7% (up to 28.3%) and 17% (up to 65.1%)

respectively.

Chapter 4

Athena: High-Performance Sparse
Tensor Contraction Sequences on

Heterogeneous Memory

4.1 Motivation

Tensors, especially those high-dimensional sparse tensors, are attracting increasing
attentions, because of their popularity in many applications. High-order sparse tensors
have been studied well in tensor decomposition on various hardware platforms [37,
38, 139, [40], 4], 42, [43], 44), 145, [46], 47, 48], [49] with a focus on the product of a sparse
tensor and a dense matrix or vector. The two sparse tensor contraction (SpTC) has
been studied well [96], 53, 07, 98], 99, 25] 53, 100, 55 56] where block-wise sparsity is
the main focus. As the needs of element-/pair-wise sparsity emerge in applications
from chemistry, physics and deep learning [19, 20], 21} 22| 23, 24], the recent work
[25] studied element-wise SpTC. In essence, SpTC, a high-order extension of sparse
matrix-matrix multiplication (SpGEMM), multiplies two sparse tensors along with
their common dimensions.

Nevertheless, SpTC commonly is shown as sequences in quantum chemistry,
quantum physics and deep learning [19, 20, 21| 22| 23], 24] as a foundation of coupled
cluster single double (Triple), CCSD(T) [26], high-order tensor decomposition methods,
etc. An SpTC sequence (SpTCSeq) performs a sequence of sparse tensor contractions

which could be independent or have different dependency types. While sequences of

33

34

tensor contraction have been studied [88] with a focus on independent contractions and
limited dependency types, such as identical input and shared outputs , an SpTCSeq
is still lack of sufficient research for element-wise contractions and other dependency
types. For example, Type 1 dependency, the output tensor of an SpTC taken as an
input in another SpTC, occurs in 85% contractions in CCSD(T) from the NWChem
library and has not been studied yet. However, multiple challenges impede obtaining
high performance for a whole SpTC sequence.

First, redundant computation and memory traffic in an SpTCSeq lead to per-
formance issues since it shares data objects across different SpTCs. As shown in
Table [2.2] an SpTCSeq could include four dependency types and some data objects
are shared across different SpTCs. Computation and memory traffic on the shared
data objects are performed repeatedly. For example, in the type that two SpTCs
share an identical input tensor, the processing on this input in the second SpTC can
be avoided. Because of the shared data objects, computation and memory access on
intermediate data objects are also performed repeatedly. For example, in the type that
the output tensor of the first SpTC becomes the input tensor in the second SpTC, the
intermediate results in the accumulation of the first SpTC can be directly reused to do
the computation of the second SpTC, skipping multiple stages in the sequential execu-
tion. (Details in Line This performance issue becomes severer when the redundant
computation and memory access dominate the execution. Moreover, the performance
suffers when we perform an SpTCSeq with a larger number of contractions.

Second, large memory consumption from large input and output tensors and
intermediate results causes a memory capacity issue and creates pressure on the
traditional DRAM-based machine. Sparse tensors from real-world applications easily
consume a few to dozens of GB memory, while the output tensor could be even
larger when generated with more non-zero elements than any of the input. The
intermediate results could be large as well, especially in multi-threading environment
where each thread has its local intermediate results. Compared to the well-studied
sparse tensor times dense matrices/vectors [43], [45] 46| [37], SpTC results in substantial
memory consumption easily, which can be beyond typical DRAM capacity (up to
a few hundreds of GB) on a single machine. The memory capacity problem in an
SpTCSeq becomes much more serious than in an individual SpTC. This memory

capacity problem is especially pronounced in those HPC applications with increasing

35

dimension sizes of tensors [24] 19 53, 54, 55] 506], [18]. Expanding DRAM capacity is
not cost-effective, while adding cheap but much slower Solid-State Drive (SSD) causes
significant performance drop.

Third, an SpTCSeq suffers from inefficient hardware utilization due to the diverse
computation and memory patterns of different stages in an SpTC. For example, the
accumulation stage in an SpTC with tensor Disilane, the average memory bandwidth
is only 19.3% of the peak memory bandwidth, while the average CPU utilization is
71.9%; for index search stage (proposed in [25]) in an SpTC with the same tensor
Disilane, the average CPU utilization is only 34.2% while the memory bandwidth
is 44.1%. Given a 2-SpTC sequence, if we simply run the SpTCs sequentially, the
hardware (e.g., computing units or memory bandwidth) is not fully utilized; If we
co-run stages in the same intensive pattern, e.g., both memory-intensive, the SpTCSeq
suffers from resource (e.g., memory bandwidth) contention; How to efficiently arrange
stages across SpTCs in a sequence to achieve efficient hardware utilization without
resource contention is challenging.

To address the above challenges, we propose Athena, a high-performance frame-
work for SpTC sequences. To address the first challenge, we introduce shared hash
table-represented sparse accumulator. In particular, given two SpTCs, we adopt hash
table-represented sparse accumulator with reusing intermediate results in the first
SpTC and then perform index search in the second SpTC to eliminate finishing up
stages of the first SpTC and the starting expense of the second SpTC. Moreover, we
retain shared data objects across SpTCs to eliminate unnecessary input processing and
data migration. We also introduce a hash table-represented sparse tensor summation
to significantly increase the performance of summation stages which are widely used
in SpTC sequences. Athena effectively avoids redundant computation and memory
operations in an SpTCSeq with shared data objects.

To address the second challenge, we explore the persistent memory-based het-
erogeneous memory (HM). In particular, the emerging Intel Optane DC Persistent
Memory Module (PMM) provides up to 9TB memory capacity per node, which can
be leveraged to address the memory capacity problem faced by SpTCSeq. PMM has
slightly inferior bandwidth and latency (compared to DRAM) but with much lower
price. As a result, PMM is often paired with a small DRAM, such that frequently
accessed data objects can be placed into DRAM while the rest reside in PMM with

36

large memory capacity. PMM and DRAM builds a heterogeneous memory system.

The PMM-based HM raises a question on how to perform an SpTCSeq given
limited DRAM space for high performance. Effectively placing data objects of an
SpTCSeq in DRAM and PMM for high performance is critical to use PMM to address
the memory capacity problem faced by SpTCSeq. To decide data placement on HM,
the traditional solutions track page (or data) access frequency [60], 611, 62, [63] [64], 65
60, [67, 104), T05] or manage DRAM as a hardware cache for PMM [57, [58], 59, 78],
and then reactively place frequently accessed data objects into DRAM subject to the
DRAM capacity constraint. However, those solutions are application-agnostic, and
cause unnecessary and frequent data movement because of short-term variance in
memory access patterns. The static data placement strategy [25] places data objects
in DRAM or PMM without triggering dynamic migration in the middle of application
execution. However, this strategy lacks the flexibility of handling irregular memory
access patterns but with certain temporal locality.

Athena addresses the above problem by introducing a data-semantics guided data
placement. This solution strikes a good balance between the static and dynamic data
placement. In particular, it leverages data semantics to guide dynamic data placement.
Instead of tracking the number of memory accesses at runtime as in the traditional
dynamic data placement, we use the algorithm knowledge to reason the numbers of
memory accesses (or hotness) at data object level during the construction of critical
data structures in SpTCSeq, and then associate those numbers with data objects.
After using the data semantics to identify those data objects, Athena is able to use
hotness information to guide dynamic data placement.

To address the third challenge, we introduce stage parallelism for an SpTCSeq.
We first characterize computation and memory behaviors of different stages in an
SpTCSeq. Next, we co-run those stages in an SpTCSeq with respect to their integer
operations (IOP)-, floating point operations (FLOP)-, or memory-intensive patterns,
to avoid resource contentions and meanwhile improve the utilization of CPU and
memory bandwidth. Hyperthreading technique is used for data prefetching and higher
memory bandwidth usage to gain better overlapping between two stages. For exascale
problems deployed in a distributed environment, Athena could help to reduce the
number of nodes needed for computation due to its capability to solve large sparse

tensors on each single node.

37

Our main contributions are summarized as follows:

e We introduce the first, high-performance SpTCSeq system for element-wise

sparse tensor contraction sequence, named Athena.

e We explore the emerging PMM-based HM to address memory capacity limitation
suffered in the tensor computations, and use algorithm knowledge and data

semantics to guide dynamic data placement.

e Evaluating with 12 datasets, we show that Athena brings 327-7362 x speedup
over the state-of-the-art SpTC algorithm. With the dynamic data placement
guided by data semantics, Athena brings performance improvement on HM built
with DRAM and PMM over a state-of-the-art software-based data management
solution, a hardware-based data management solution, and PMMe-only by 1.58 x

(up to 2.09x), 1.82x (up to 2.58x) and 2.34x (up to 2.94x) respectively.

4.2 Design

4.2.1 Algorithm Design

This section introduces our SpTCSeq algorithm for the five dependency types in
Table and efficient sparse tensor summation.

Hash Table-Represented Sparse Tensor Summation

A general process of two element-wise sparse tensor summation is as follows.
Given a sparse output tensor Z,,.. produced from previous SpTCs or other operations
(hidden in the ”+=" operator in Table and a sparse output tensor Z in the
current SpTC, the sparse tensor summation performs three steps. First, a non-zero
element along with its indices from Z,,. is selected. Next, the summation searches the
corresponding non-zero element(s) in Z with the exact same tuple of indices. Finally,
if the particular non-zero element in % with the same indices is found, % is updated
with the sum of the two non-zero values under the tuple of indices. Otherwise, the
non-zero element in %, is appended to Z as a new element. Meanwhile, the non-zero
elements of Z which are not updated during the summation remain the same. This

process is expensive in the searching step due to multi-dimensionality of the tuple of

38

Algorithm 3: Sparta: sparse tensor contraction sequence for arbitrary-
order data in the expression Z =X XCY Y ng W + Zopye.

Input: Input tensors X € RV >INy Y e RIXXINy and W e RIV>Ivw |
contract modes Cx, Cy, Cy, and output tensor Z,,. produced from
previous SpTCs

Output: The output tensor 2

1 Permute and sort X if needed;

2 Obtain Np, |F¥|, sub-tensors of X, and its ptrp;
3 Convert Y to HtY and W to HtW

4 for finl,..., Ny do

5 Initiate thread-local HtA and Shared-HtA

6 for nz in ptrp(f],...,ptre[f + 1] do

7 Index_Search(cy,, HtY)

8 Accumulation(fY,, vX, 0¥, vft4)

9 for (key,vf*4) in HtA do

10 if key is not found in HtW then

11 L continue

12 for (LN(fV),v") in (LN(F"), VW) of HtW do
13 if LN(fW) is found in HtW then

14 | Accumulate vSHi4 = pHtA * W

15 else

16 | Insert (LN(f3Y), v * o) to Shared-HtA
17 Form (f.X, f) as coordinates and v #*4 as non-zero value and append to

Z’local

18 Gather thread-local Z,., independently to %
19 Convert % to HtZ with MZ as keys,

20 for nz in Zpre do

21 if LN(mné"e) is not found in HtZ then
22 ‘ Append (LN(mggm), vérre) to HtZ
23 else

24 t Append (LN(mné”e), vZrre + v?) to HtZ

25 Convert HtZ to %, and permute/sort % if needed
26 return 2

indices as keys and dynamically updating % especially with appending new non-zero
elements from 2.

To address the above problems, we propose the hash table-represented sparse ten-
sor summation for an SpTC. Figure depicts our proposed approach as Summation,
stage 5 (The rest stages will be explained in Line 26). It is extremely time-consuming
to perform key matching on multi-dimensional tuples, especially when the tensor order

is large high [25]. We adopt the hash table representation from the work [25] by first

39

q Input Processing Comp ion @ Output Sorting

F . C. F__C. Key Value F F Key Value
(v i)(is i) val L o (i ip)(is is) VAl LN (3ja) {val} (ir i)k ke)Val LN (i1 iz kskd4) {val} F__F val
0001 [NiO [T HEETS o b2 Lyt < (ir_i)(ks ki)
ofoTo]2 w20 TR 2, .o @ ([THER 0 @ | [HER
0/1/0|0 80 1] 00 3.0 : B [@6:000) : 24'0 [N 6:000)) ', B [0 [T 284%
T 1 24.0 :
@ [T o | o mE 30
1 1 1
|’ Key Value ,l ,/ // 1 :
F o C. v LN Gijo) {LNGajavaly 1 -7 - ! 9.
(s Ja)(j1 j2) val \ 1, Lo S | !
03 (00 a0 »° Doy o Q) - v !
GEIEN 0 - -1 > %50 YIS | ‘ b
AEACNEN o &8/ . ; [
05 0|1 meo Lo |
4,7.0 ! Key Value ! Key Value 1
@ -'l 1 LN (ks ka) {val} H (iFi)(kl: k) val IN(irizksks) qval) | [
1 .l 12,
]] 7 0 D DO 0 @ - [index
I 1st:
Key vae O o ea» R e & () Value (val
F . C LN (k1 koHLN (ks k), val} [Olof o8y 3.0 O & alue (val)
(ks kifks k) val ’ 2: 0 (&)
0 004 30 N @ C>o- O Keyin
07 [F2] [JON IS0 107 e hash table
L[o 2.0 a
Value in
@ @ Index Search € Accumulation @ Writeback @ Summation C hash table

Figure 4.1: Workflow of Type 1 dependency of two SpTCs in Table using shared
hash table-represented sparse accumulator and hash table-represented sparse tensor

summation (indicated by red arrows)

converting the sparse output tensor % in COO format to a hash table-represented
HtZ. The index tuples of Z are taken as the keys of HtZ naturally, different from
the key construction in Sparta [25]. A large-number representation, noted as the LN
function in Figure [4.1] is also leveraged to convert a sparse index tuple to a large
and unique index. The index search is improved by 1) reduced searching space of the
unique index keys of the hash table; 2) pinpointing the targeted index much faster
than the traditional linear search approach with a constant algorithm complexity.
To fast update Z and maintain good spacial data locality, we adopt dynamic arrays
to construct the values of HtZ for the non-zeros having the same key. HtZ is then
converted back to % as the final output. As shown in line 19 to 24 in Algorithm
Athena converts % to HtZ and then iterates all non-zeros in Z,,.. If the nnz index is
not found in HtZ, Athena appends the key-value pair to HtZ. Otherwise, Athena
appends the index along with the summed values to HtZ.

Our hash table-represented sparse tensor summation extends to support the fused
multiplication and summation and plays a critical role for performance when the size

of output tensor is similar to or even larger than input tensors in an SpTC.
Shared Hash Table-Represented Sparse Accumulator

We observe that the traditional approach for Type 1 dependency (Output as
input) in Table leads to repeated and inefficient computations and data movement

40

because the two SpTCs share some intermediate data objects. To address this
problem, we introduce a shared hash table-represented sparse accumulator (named
Shared-HtA). Figure depicts the workflow of our Shared-HtA design. The first
SpTC, Z' = X x Y, follows the five-stage computation proposed in the work [25]:
input processing, index search, accumulation, writeback, output sorting, stages 1-4
and 6. The hash table-represented summation is the new stage 5.

Once the index search and accumulation stages of the first SpTC are completed,
we treat the free modes Fy of Y in HtA to be the contract modes of the second SpTC.
We then employ Fy as the key to search the corresponding contract modes Cy, in
HtW in another index search stage for the second SpTC, Z += W x Z'. For example,
in Figure , 3 is used as the key in the 2"¢ HtA to search the corresponding contract
modes (3) in HtW. Next, we generate the Shared-HtA to store the intermediate
results during the accumulation stage of the second SpTC (2 and 24.0). Once the
index search and accumulation of X with the same free modes are completed (i.e.,
index search and accumulation stages in both black and red arrows in Figure
, the intermediate results of Shared-HtA are converted back to COO format ((0,2)
tuple) and appended to Z along with its accumulated result (24.0) for summation
and output sorting stages. Finally, the intermediate Shared-HtA is released to save
memory space. This approach also leverages the same large-number representation
approach in the work [25] and converts the input tensor W of the second SpTC to the
hash table representation HtW. The full algorithm of Shared-HtA is illustrated in
line 4 - 18 in Algorithm [3] Athena first completes the index search and accumulation
in the first SpTC in line (5-8). Athena then iterates each key-value pair in HtA
and leverages Shared-HtA to calculate and store the intermediate results (line 9-17).
Finally, Athena gather thread-local Z,., independently to Z (line 18).

By employing the Shared-HtA, we eliminate multiple time consuming stages: ap-
pending intermediate results in the accumulation stage, writeback and output sorting
stages of the first SpT'C and input permutation/sorting in the input processing stage
of the first SpTC’s output and large-number conversion in the index search stage of
the second SpTC. Therefore, our proposed Shared-HtA avoids the repeated computa-
tion and eliminate unnecessary data movement and hence significantly improves the
performance and memory efficiency for an SpTCSeq in Type 1.

Types 2-4 dependency in Table is less frequently occurred compared to Type

41

1. Type 4 has been studied in previous research [106], which converted to Z 4=
(X +W) x Y to improve performance through contraction fusion and replacing one
tensor product with a summation operation. For an SpTCSeq in Types 2 and 3
dependency, we could utilize a simple strategy to avoid redundant data movement
between DRAM and storage (or PMM) if the DRAM space is adequate. For Type
2, after completing the first SpTC, the identical input tensor Y remains in DRAM:;
similarly for the shared output tensor Z for Type 3.

Stage Parallelism

We propose stage parallelism to better utilize machine resources, such as CPU
and memory bandwidth. This is different from the prior research [106, 88] which
uses strategies, like compiler-based tensor contraction expression generator [106] or
hand-tuned optimization [88], to obtain independent expressions of an SpTCSeq
in an optimal order following dependency types. After resolving different types of
dependent SpTCSeq, we treat an SpTCSeq in Types 1-5 as a single simple/compound,
independent SpTC in this section.

Stage characterization. We first explore the characteristics of the six stages
(i.e., input processing, index search, accumulation, writeback, summation and output
sorting) in the SpTC algorithm (Algorithm [3)) and categorize them into IOP-, FLOP-,
and memory-intensive behaviors. We calculate the compulsory number of integer
operations (IOPs), floating point operations (FLOPs), and memory traffic of the
stages. The word ”compulsory” means the minimum requirements of operations or
memory traffic assuming an infinite cache size, which gives a fundamental idea of an
algorithm behavior and has been used in performance model analysis [107]. Diverse
I0Ps, FLOPs, and memory traffic behaviors have been observed in the six stages.

In particular, we observe that three stages, namely input processing, index
search and output sorting, dominated by integer operations (IOPs). Sorting and/or
permutation, the primary components of input processing and output sorting stages,
have frequent index comparison and exchanging. Index search performs search on
index tuples, thus only IOPs are needed. These stages are referred to as I0P-intensive
stages. Accumulation and summation stages, referred to as FLOP-intensive stages,
consist of the core floating point operations of a tensor contraction. The writeback

stage has pure memory access, named memory-intensive stages. IOP-, FLOPS-, and

42

COO0 (X) COO0->Key->Bucket BucketArray Sorted BucketArray
COO_idx Nnz_idx Val (#Bucket =3) | Idx || Frequency || B_idx || Nnz_idx | | Idx ” Frequency ” B_idx ” Nnz_idx |
(1)' 832 ;‘0 Convert! g gg z g ::g Convert Sort
2. 011 30 T 011 >4 >1 0 1 0 0 o 3 1 2,3,5 <«+-Hotpointer
3. 101 4.0 101 ->10 ->1 1 3 1 23,5 1 2 2 1.4
4. 102 5.0 102 >11 ->2 2 2 2 1,4 2 1 0 0
5. 111 6.0 1711 >13 >1
Summation
M
HtY HtY
DRAM PMM DRAM PMM COO (Y)
. Coo_idx Nnz_idx Val
= Totbocket @) ~ i Migrate Cold bucket (0) o 000 110
:____(FL"‘_S*‘_EE)___,:_ ----- (Finished) | Hot bucket (0) | | Cold bucket (M) | « Construct, ' 004 129
. Fommmmmmmmn 2. 020 19.0
- 4 Coldbucket (M) |iai--Cold pointer : : 3. 120 17.0
e P e
gt ; 5. 200 16.0

.
B2
Hot bucket (M) Q® Cold bucket (N-1) Management | Hot bucket (M-1) | | Cold bucket (N-1) |

Figure 4.2: Workflow of the dynamic data placement based on data semantics.

memory-intensive stages utilize different computing units or memory components to
fulfill, which makes it possible to parallelize them from multiple SpTCs to improve
hardware utilization. The above observations on stage characterization drive our
design.

Concurrency control. Based on the stage characterization study and the fact
that an SpTCSeq includes a large amount of independent SpTCs (accounting for 91%
of all SpTCs in a chemistry application), we propose stage parallelism to improve
hardware utilization for high performance. In particular, given an SpTCSeq, Athena
co-runs an [IOP-, FLOP-, or memory-intensive stage in an SpTC with alternative
intensive stages in another SpTC.

Athena employs hyper-threading to co-run the stages with different intensive
behaviors. This means that a memory-intensive stage and a compute (IOP/FLOP)-
intensive stage or an IOP-intensive stage and a FLOP-intensive stage share a physical
CPU core and use two hyperthreads to co-run. Because of the complementary charac-
teristics of the two stages, using hyperthreading to co-run them increase instruction
throughput (hence increasing CPU utilization). Athena co-runs two SpTCs but not
more at the same time, because of the following reasons. (1) We conduct 32 tests using
12 input problems ranging from small to large datasets (see Table , and find that
co-running two compute stages in a core using hyperthreading leads to at least 94.1%
CPU utilization, which is sufficiently high; The co-run between an IOP-intensive stage
and a FLOP-intensive stage is sufficient because of their compute-intensive feature.
More than two SpTCs may incur instruction pipeline stall due to the limited integer

or floating point function units. (2) Our tests also show that using one thread to

43

run a memory-intensive stages consumes at least 60.3% of peak memory bandwidth.
Hence, co-running a memory-intensive stage with another compute-intensive stage
is enough to improve the utilization of memory bandwidth. In general, the accurate
number of SpTCs to co-run is determined by the CPU utilization of individual stages

and heavily relying on input and output data.

4.2.2 Data Management on PMM-based Heterogeneous Mem-
ory Systems

We leverage the heterogeneous memory system to address the memory capacity

bottleneck in an SpTCSeq.
Static Data Placement

We consider eight major data objects in the six stages of an individual SpTC.
The eight major data objects are the two input tensors (X and Y), the hash table-
represented second input tensor (HtY'), the thread-local hash table-based accumulator
(HtA), the thread-local temporary data (Zcar), the output tensor (Z,,.) produced
from previous SpTCs, the output tensor (Z) in the current SpTC, and the hash
table-represented output tensor (HtZ).

Athena uses the static data placement strategy [25] to decide the placement of
X, Y, HtA, Zjpe and Z on DRAM and PMM for individual SpTCs. This strategy
considers memory access patterns associated with each data object, and places them
in DRAM or PMM without migration in the middle of an SpTC execution. This
strategy leads to higher performance than dynamic data placement, because of the
avoidance of unnecessary data movement, discussed in [25]. In particular, for each
SpTC, Athena places X, Y and Z,,. on PMM, because memory accesses to them are
sequential and read-only in computation. Such a memory access pattern does not
lead to big performance difference between placing data objects on DRAM and PMM,
because of effective hardware prefetching and higher PMM performance in read (refer
to [25] for details). Athena places HtA, Zypeq and Z in DRAM, following the priority
of HtA > Zypeqr = 2, according to the performance variance when moving them from
PMM to DRAM (a data object causing higher variance has a higher priority). For
large data objects such as HtA, Z,.. and Z, Athena makes the best efforts to place
them on DRAM. This means that given a data object, if there is remaining DRAM

44

space after excluding the memory consumed by data objects with higher priority, that
data object is placed into DRAM as much as possible; If there is no remaining DRAM
space, that data object is placed into PMM.

Athena is different from Sparta [25] in terms of data placement from the following
perspectives. First, Athena manages data objects from all SpTCs together. This
means that when the DRAM space is not large enough to save all data objects, not
only data objects in an individual SpTC are managed following the priority discussed
above, but also all data objects across SpTCs are managed following the above priority.
This cross-SpTCs static data placement is feasible, because the sizes of data objects
can be estimated [25] and the execution order of the six stages is known. For the
data objects with the same priority in different SpTCs, Athena gives higher DRAM
priority to those SpTCs with smaller memory footprint. This is because the SpTC
with less memory footprint tends to have shorter execution time and hence can release
the DRAM space to other SpTCs sooner.

Second, Athena dynamically migrates HtY and HtZ between DRAM and PMM,
instead of using the static data placement in Sparta. This is because the two data
objects have a large amount of random memory accesses. For example, the memory
read/write accesses to HtY and HtZ account for 45% and 27% of all memory accesses
in an SpTCSeq with the tensor Disilane (see Table for Disilane). Placing them
to DRAM can lead to significant performance improvement. However, the two data
objects are the largest ones among all data objects and using the static data placement
places most of data in PMM, which causes large performance loss. Athena uses a
dynamic data placement strategy based on data semantics to place hot data from the

two data objects into DRAM as much as possible, discussed as follows.
Dynamic Data Placement based on Data Semantics

Dynamic data placement has been employed to enable high performance on
heterogeneous memory [60, 611, [62], 63, 64 65, [66], 67, 57, 58], 59, [78, 104) 1T05]. Most
of those solutions are application agnostic, which means that they track page (or data)
access frequency [60, 611, 62, 63, 64, 65, 66, 67] or manage DRAM as a hardware cache
for PMM [57, 58, 59, [78] without the knowledge of data semantics. However, the
data semantics gives critical indications on memory access patterns, which is useful

to direct data placement and avoid unnecessary data movement. Leveraging data

45

semantics to direct data placement has recently been used in data analytics workloads
(e.g., traffic analysis) [108]. We study how to use data semantics to build HtY and
HtZ and direct data placement in an SpTCSeq.

HtY and HtZ have random memory access patterns but still have hot non-
zero elements frequently accessed. Those non-zero elements can be eliminated out of
DRAM because of short-term variance in memory access patterns, if we use application-
agnostic solutions. Using data semantics we can keep hot non-zero elements in DRAM
to address the above problem. Furthermore, using data semantics allows us to know
in advance which non-zero elements will be accessed, enabling effective prefetching
from PMM to DRAM.

The existing HtY and HtZ built from Y and Z are based on the hash table [25],
which is difficult to get the number of accesses for each element in advance to direct
data placement, and the access order of non-zero elements in the hash table is also
random, making prefetching difficult. Hence, we introduce a new method that exposes
element hotness, during the construction of the hash table-based HtY and HtZ. As
a result, using the semantics of HtY and HtZ, the data hotness is associated with
data, allowing Athena to implement dynamic data placement and prefetching.

Figure depicts the workflow of our design. Our design has four steps: bucket
conversion, bucket sorting, hash table construction, and semantics-guided dynamic
data placement.

Bucket conversion. Figure 4.2 uses tiny sparse tensors X and Y as an example.
Using the method in [25], Athena first converts indices tuple of non-zero elements
to keys based on the large-number representation function (LN), in order to make
the key of each element unique. But different from [25], after the above conversion,
Athena uses a common hash function (the Jenkins hash function) to distribute indices
to different buckets. The number of buckets equals to the number of non-zero elements
inY (or).

Bucket sorting. In the bucket conversion step, Athena records the number of
non-zero elements in each bucket, which indicates the number of accesses to each
bucket. The number of accesses to each bucket can be determined based on the
number of non-zero elements, because SpTCSeq iterates non-zero elements in X (or
Zyre) and then performs index search in HtY (or HtZ). The numbers of non-zero

elements collected from buckets form a bucket array. The size of the bucket array is

46

determined by the number of non-zero elements in Y (or). Athena sorts the bucket
array in an decreasing order. The sorting is necessary to enable quick identification of
bucket hotness.

Hash table construction. Athena constructs the hash table-represented sparse
tensor HtY from Y using the existing approach. But different form it, during the hash
table construction, Athena traverses the sorted bucket array from the most accessed
bucket (i.e., the bucket 0) and puts them into DRAM one by one till DRAM runs out
of space. At that point, the remaining buckets, including those with the number of
accesses as zero, are placed into PMM.

During the bucket placement on HM, Athena leverages a simple analytical model
to estimate the memory requirement of each bucket: Size g, - Nx + Size,q + Sizeep,
in which Stze;q,, Size,q and Size,, are the size of an index, the size of a value, and
the size of the entry pointer pointing to the bucket, respectively; Ny is the number of
modes of X.

Data-semantics guided data management. During the computation stages,
Athena maintains two helper threads to manage data between DRAM and PMM. The
first helper thread is referred to as the migration thread. Whenever an element is
accessed, the number of accesses for the corresponding bucket in the bucket array is
reduced by one. Once the number of accesses for a hot bucket in DRAM becomes zero,
meaning that the bucket will not be accessed any more, Athena put the hot bucket ID
to an FIFO queue for the migration thread to move to PMM. The migration thread
continuously checks the FIFO queue to migrate the bucket to PMM.

The second helper thread is referred to as the prefetching thread. When there
is DRAM space for HtY (or HtZ) in DRAM, the prefetching thread migrates the
hottest bucket from PMM to DRAM before it is needed by computation.

The semantics guided data management in Athena significantly improves the
performance by directing data placement based on the expected data hotness/coldness

using data semantics.

47

4.3 Evaluation

4.3.1 Evaluation Setup

Platforms. We use an Intel Optane (PMM) Linux server, equipped with an Intel
Xeon Cascade-Lake CPU including 24 physical cores at 2.3 GHz frequency. The
CPU is attached with 6x 16 GB of DRAM and 6x 128 GB Intel PMM DIMMs. All
implementations (Athena and other approaches) are compiled by gee-7.5 and OpenMP
4.5 with -03. All experiments were conducted on a single socket with one thread per
physical core. Similar to recent work [25] 62 63, [109], we use one-socket evaluation to
highlight data movement between DRAM and PMM. Each workload is run 10 times
and we report the average execution time.

Datasets We use sparse tensors summarized in Table [4.I] Those tensors are derived
from real-world applications. Six tensors are derived from the well-known Coupled
Cluster Singles and Doubles with perturbative triples correction, CCSD(T) [26] from
chemistry [24]; Four tensors are derived from the notable Hubbard model from
quantum physics in ITensor [19]; Two tensors are from large sparse tensor collection
FROSTT [80]. Tensors in chemistry and physics are constructed by cutting off
magnitude values smaller than 1 x 107 verified by domain scientists. We evaluate
a real-world chemistry and four physics applications with Athena in Section [4.3.5]
and Section [4.3.4] separately to study the effectiveness of Athena. We use a 4-SpTC
sequence in Types 1 and 5 dependencies for each experiment to benchmark the
performance if not mentioned otherwise. Section will show the applications of

Table 4.1: Characteristics of sparse tensors in the evaluation

Domains Tensors Order Dimensions #Non-zeros Density
Benzene 4 336 x 336 x 42 x 42 AM 1.9 x 1072
Cytosine 4 400 x 400 x 58 x 58 19M 3.4 x 1072
Chemistry Disila'ne 4 270 x 270 x 34 x 34 4M 4.2 x 1072
Guanine 4 280 x 280 x 78 x 78 32M 6.6 x 1072
Siosi3 4 64 x 64 x 186 x 186 6M 4.0 x 1072
Uracil 4 90 x 90 x 174 x 174 10M 4.2 x 1072
Hubbard-1D-P 5 4 x4 x93 x 36 x 432 0.3M 6.3 x 1073
Physics Hubbard-1D-T' 5 131 x 4 x 413 x 36 x 4 0.4M 5.1 x 1073
Hubbard-1D-Z 5 4 x 129 x 184 x 24 x 4 0.1M 5.2 x 1073
Hubbard-2D 5 4 x4 x 111 x 24 x 528 0.3M 6.6 x 1073
Others NIPS 4 2K x 3K x 14K x 17K 3M 1.8 x 1076
Vast 5 165K x 11K x 2 x 100 x 89 26M 8.0 x 1077

48

7362 6955
10000 sgg3 5854 5836 4910 _—
995 1210
1000 565 851
327
s
T
$ 100
o
wv
10

e e e (3 < N Q A) X
N & 3 (& % Q S
&z ,&o“’\ ‘ ‘;@0 é\\o 9@9 0@ ,9 b'» b"' &ﬁ' N R
® & F & & & F

Figure 4.3: Overall speedups of Athena over Sparta for SpTCSeq on 12 tensors.

chemistry using a real SpTCSeq with ten SpTCs. Eight tensors exceed the DRAM
capacity (96 GB) on our platform, which indicates the necessity of using PMM.

4.3.2 Overall Performance

In this experiment, to study the performance of Athena, we compare Athena with
Sparta [25], the state-of-the-art element-wise sparse tensor contraction framework for
an individual SpTC on heterogeneous memory. In general, as shown in Figure [4.3
Athena achieves 327-7362 x speedups over Sparta for SpTC sequences on 12 real-world
tensors. Hash table-based sparse tensor summation contributes the most, 42-838 Xx;
while shared sparse accumulator and stage parallelism methods obtains 2.67-6.82
x and 1.21-1.46x speedup respectively. Performance analysis for every proposed
optimization will be given in Section [£.3.3]

Figure depicts the performance breakdown of Athena. Index search and
accumulation stages are the most expensive stages for most tensors, which are in the
computation part of an SpTC. Some tensors (e.g., Vast and Nell2) spend more time
in output sorting than input processing stage, while some tensors (e.g., Hubbard-1D-
T, Hubbard-1D-Z, Hubbard-2D) are vice versa, though they both use sorting and
permutation algorithms. This is determined by the output tensor size versus the input
tensors. For example, the size of the output tensor in Vast is 21 x larger than the size
of input tensor, while the size of the output tensor in Hubbard-1D-Z is 78% of the

input tensor.

49

& Input Processing K Index Search mAccumulation B Writeback © Summation @Output Sorting
100%

80%

60%

40%

20%

Figure 4.4: Percentage of execution time breakdown of Athena.

500

400

300

200

100

Peak Memory Consumption (GB)

o

Figure 4.5: Peak memory consumption of SpTCSeq on 12 tensors.

Figure shows the peak memory consumption of SpTC sequences in the
experiment. Eight tensors consume more than DRAM space (96 GB), which cannot be
performed without PMM memory. This indicates the large data used in applications
and the necessity of using PMM. For even larger problems deployed in a distributed
environment, Athena could help to reduce the number of nodes needed for computation

due to the usage of the large PMM capacity.

4.3.3 Optimization Analysis

Hash table-based sparse tensor summation. Figure shows the perfor-
mance of using hash table-based sparse tensor summation on the 12 tensors respectively.
In Figure 4.6, we observe that Athena significantly outperforms Sparta by 42-838

x. The results show that our proposed hash table-based sparse tensor summation in

20

1000 665 838

100

Speedup

10

Figure 4.6: Speedups of Athena with hash-table represented summation over Sparta
with traditional linear search-based summation.

Athena is more efficient than the traditional linear search-based summation.

Shared sparse accumulator. The shared sparse accumulator design in Athena
reuses intermediate results of an SpTCSeq in Type 1 expression dependency to avoid
redundant computation and memory operations and retains shared data objects to
eliminate unnecessary input processing and data migration. Figure [£.7] shows the
performance of using the shared sparse accumulator design (”Shared-HtA” in gray
bars) in Athena compared to the sequential execution of the 4-SpTC sequence. We
observe that Athena with the shared sparse accumulator design greatly outperforms
the sequential execution by 2.67-6.82 x, where Siosi3 obtains 6.82x and Hubbard-1D-Z
is 2.67x. Because the performance improvement of shared sparse accumulator derives
from eliminating the redundant computation and memory operations in some stages,
the performance improvement of leveraging shared sparse accumulator depends on
the weights of those stages (i.e., for the first SpT'C, the process of intermediate results
appending in the accumulation stage, writeback stage and output sorting stage; for the
second SpTC, the process of input permutation/sorting in the input processing stage
and the process of large-number conversion in the index search stage). For example,
those stages account for 85.3% of the total execution time in the Siosi3 while only
account for 62.5% of the total execution time in the Hubbard-1D-Z.

Stage parallelism. Given a 4-SpTC sequence, the stage parallelism design in
Athena co-runs stages in diverse patterns, [OP-, FLOP- and memory-intensive between

two consecutive independent SpTCs. Figure shows the performance of using the

o1

12.0
m Stage Parallelism + Shared-HtA m Shared-HtA

10.0

8.9

Speedup

Figure 4.7: ”Stage Parallelism” and ”Shared-HtA” optimization speedup over the
”Sparta + Summation” as the baseline.

stage parallelism in Athena compared to its sequential execution for this SpTCSeq. We
observe that our proposed stage parallelism outperforms the sequential execution using
Athena with 21%-46% performance improvement. Athena with the stage parallelism
improves 14-19% CPU utilization and 12-24% memory bandwidth compared to the
sequential execution. The performance improvement in different tensors varies because
the execution time of overlapped stages varies. For example, the stage parallelism
gains 17.6% performance improvement on Vast while 31.5% on Disilane. Assume
the ideal case without considering the potential resource contention of co-running a
4-SpTC sequence, the upper bound of performance improvement in Vast could achieve
21.2% and in Disilane is 37.8%. Our stage parallelism is quite close to ideal upper
bound. The performance of the ideal case is measured by separately running stages in
the critical path. For some small sparse input tensors, the thread scalability is poor
due to the inadequate parallelism in the index search and accumulation stages. Stage
parallelism can bring extra performance improvement in this case. For example, stage
parallelism for the four small tensors in physics, having the least non-zeros in all 12
tensors, brings 11% to 22% extra performance improvement than the other eight.
Data management on PMM-based heterogeneous memory systems.
We study the performance of employing the semantics guided data management

on HM, compared with a state-of-the-art solution for HM management (i.e., IAL

52

24 W Athena WIAL W Memory Mode Optane-onl Ty DRAM-only

1.8

1.2

Speedup
1.99
2.07
2.01
2.28
2.19
1.96
1.81
2.17
2.21

1.46
1.15

1.71
47

-

1.29

0.99
1.29

1.03
1.25

1.19
1.06

0.6

1.03
1.07
1.17
1.05
1.08
1.13
1.19
87
1.13
1.11

3 3

0.94
1.03
0.91

0.

= = = = = = = =
o o o o o o o o
o o o o o o o o
0.0
Benzene Cytosine Disilane Guanine Siosi3 Uracil Hubbard-1D-P Hubbard-1D-T Hubbard-1D-Z Hubbard-2D NIPS Vast

Figure 4.8: Speedups of Athena, IAL, Memory Mode and DRAM-only over PMM-only
for SpTCSeq.

(Improved Active List) [79]), the hardware-managed cache approach (i,e, PMM Memory
Mode), PMM-only (i.e., the AppDirect mode assigning all data objects to PMM) and
DRAM-only (i.e., assign all data objects to DRAM). IAL is configured with its best
configurations based on the TAL repository [84].

As shown in Figure[4.8] Athena with the semantics guided data management design
outperforms IAL by 1.58 % on average (up to 2.09x). Also, Athena achieves 1.82x (up
to 2.58x) and 2.34x (up to 2.94x) performance improvement on average than PMM
Memory Mode and PMM-only respectively. For some tensors (e.g., Hubbard-1D-Z),
because the average memory bandwidth requirement is relatively smaller compared
to others, the performance difference between Athena and PMM-only is small (47%
improvement). For example, with Hubbard-1D-Z, if we place all data objects to
DRAM (i.e., DRAM-only), the performance improvement is only 58%, compared to
PMM-only.

We observe that the average PMM memory bandwidth of IAL is larger than that
of Athena. This is because IAL causes undesirable data movement that consumes
higher PMM memory bandwidth. The average DRAM memory bandwidth of PMM

Table 4.2: A 10-SpTC sequence from a CCSD(T) model.

K [ha, h3, 1, h2]+ = —0.125 % L[pL, p2, h3, hd] * M[pL, p2, hl, h2]
N[p3, p&, hl, b2+ = 1.0 * K[Ii4, b3, hl, 2] * M[p3, pa, hd, 13|
Olpl, h3,p4, h2]+ = 0.5« L[p2,p4, h3, h1] * M[pl,p2, hl, h2]
N[p3,p, hl, h2[+ = 1.0 * O[p4, hid, pL, hl] * M [p3, p1, ik, 2]
Plpl, h3,p4, h2] = —0.5 * L[p2, p4, h3, h1] * Q[p2,pl, h1, h2]
R[p3,p4,h1, h2]+ = —1.0 x P[p4, h4, pl, hl] * Q[pl, p3, h4, h2]
Slpl, h3,p4, h2]4+ = 0.5 « T'[p2, p4, h3, h1] « U[pl, p2, h1, h2]
V(p3,p4, h2, h1]+ = 1.0 x S[p4, hd, p1, h1] x Q[p3, p1, h2, h4]
R[p3,p4,h1, h2]+ = 1.0 x S[p4, hd, p1, hl] « U[p3, p1, h4, h2]
V[p3, ph, 12, 1]+ = —1.0 + Ppa, hd, p1, b1] * M[p3, p1, b, 2]

23

20

m Athena ITensor

16

17.2 17.3
14.9
136 143
121
" 11.8 112
10.2 10.3
9.5 9.2
8
4
0

SpTCsl SpTCs2 SpTCs3 | SpTCs4 SpTCs5 SpTCs6 | SpTCs7 SpTCs8 SpTCs9 |SpTCs10 SpTCsll SpTCsi2

Speedup

Hubbard-1D-T Hubbard-1D-P Hubbard-1D-Z Hubbard-2D

Figure 4.9: Speedups of Athena over ITensor on Hubbard-1D-T, Hubbard-1D-P,
Hubbard-1D-Z and Hubbard-2D models using different SpTCSeq with different sparse
input tensors.

memory mode is larger than that of Athena, because PMM Memory Mode manages
DRAM as a hardware cache for PMM and unnecessarily prefetches data objects to
DRAM for high performance without being able to be aware of semantic hotness of

data objects.

4.3.4 Performance Comparison to ITensor

In this experiment, we compare the performance of Athena and ITensor, which
is a state-of-the-art library for block-sparse, multi-threading tensor contraction on a
single machine. As applications in ITensor only include independent SpTCs (Type 5)
without summation, we employ stage parallelism and semantic-hotspot-based data
management in Athena and compare the performance of Athena and with I'Tensor.
SpTCs with different tensors (SpTCsl to SpTCs12) are from well-known quantum
physics models (Hubbard-1D-T, Hubbard-1D-P, Hubbard-1D-Z and Hubbard-2D) [27]
in ITensor [82] with cutting off values smaller than 1 x 107%. Figure shows
the performance comparison between Athena and I'Tensor. We observe that Athena

significantly outperforms ITensor with 12.6x performance improvement on average.

4.3.5 Application in Chemistry

We study the performance of Athena on a real-world SpTC sequence from
NWChem in chemistry. NWChem is a well-known computational chemistry library for

quantum chemical and molecular dynamics functionality [24]. We select a 10-SpTC

o4

sequence derived from CCSD(T) [26]. The 10-SpTC sequence is concluded in Table
and cover 5 different expression types. We compare the performance of Athena to
Sparta [25] on this sequence. Athena achieves 6232x speedup over Sparta combining
all our designs. In particular, Athena achieves 635x speedup with hash table-based
sparse tensor summation; 1.9x with semantic-hotspot-based data management; 4.3 x

with shared sparse accumulator; 1.2x with stage parallelism.

4.4 Related Work

Sparse tensor contraction. Dense tensor contraction has been studied for decades
on diverse hardware platforms [85 86, 87, 88, 89, 90, 54, [91], 92, O3] 04, 05], in
scientific computing including chemistry, physics, and mechanics. The state-of-the-art
studies focus on block-sparse tensor contractions with dense blocks in tensors. The
conventional approaches first extract dense block-pairs of the two input tensors, and
then perform multiplication by calling dense BLAS linear algebra. Finally, those
approaches pre-allocate the output tensor using domain knowledge or a symbolic phase
approach [96] 53], 97, 98, [99], such as TiledArray [53], Cyclops Tensor Framework [100],
and libtensor [55, [56]. The state-of-the-art work Sparta focuses on element-wise
sparse tensor contractions [25], solving the high dimensionality challenges through
hash table-based approaches and addressing the unknown output tensor and irregular
memory access challenges by dynamic allocation, permutation and sorting. Athena
develops element-wise sparse tensor contraction by optimizing tensor summation as
well, frequently occurred in contraction sequences.

Sparse tensor contraction sequences. Sparse tensor contraction often occurs as
sequences in a spectrum of applications, such as quantum chemistry, quantum physics
and deep learning [19, 20} 211, 22], 23]. Some existing work optimizes tensor computation
sequences. AutoHOOT [106] decomposes a dense tensor contraction workload into
task sequences and overlaps the computation and communication task sequences to
reduce the communication overhead in a distributed execution. DLTC [88] takes
input tensor computation sequences and generates optimized derivative sequences
by automatic differentiation. TensorFlow [110] leverages a directed acyclic graph
to represent the computation and data flow of tensor-based operator sequences and
co-run the tensor-based operator sequences in an FIFO method. Athena is different

from them in terms of leveraging the domain-knowledge of SpTC sequences to achieve

5}

high performance.

Data management on heterogeneous memory systems. Heterogeneous
memory management attracted plenty of research efforts in recent years [65] [61) 62, 60,
11T}, 112], 113]. These works explore various page-level data placement polices on HM
based on main memory access profiling result. Thermostat [60] uses sampling-based
profiling to track page table and migrates hot pages into DRAM. RAMinate [61],
Heteros [62], Yan et al. [65] propose the state-of-the-art memory management solutions
for general purpose which guides page placement based on an existing Linux page
replacement mechanism. Application-specific HM management solutions [114] [115] 64
63, [77, [1T6l 117, 118, [119] 120l 121) 122] leverage domain knowledge to further improve
performance. MyNVM [I15] proposes a software-managed multi-level caches policy to
treat DRAM and NVM as caches for hard drives. Sparta [25] leverages application
awareness and static data placement to avoid unnecessary data movement. Athena
is different from these works in terms of exposing data semantics and dynamically

managing data objects across SpTCs.

4.5 Summary

Efficiently computing sparse tensor contraction sequences (SpTCSeq) is critical
to many applications. However, it is challenging, due to its redundant computation
and memory operations, massive memory consumption, and inefficient utilization of
hardware. In this paper, we explore solutions to address those challenges based on
algorithm knowledge and characterization of workloads in SpTCSeq. We introduce
Athena, a high performance framework for SpTC sequences. Athena is based on a
set of novelty in data structures, runtime techniques, and emerging Optane-based
memory architecture. Evaluating with 12 datasets, we show that Athena brings
significant speedup (327-7362 X) over the state-of-the-art SpTC algorithm. Athena
also showcases its effectiveness in quantum chemistry and physics applications. For
exascale problems deployed in a distributed environment, Athena could help to reduce
the number of nodes needed for computation due to its capability to solve large sparse

tensors on each single node.

Chapter 5

Processing-in-Memory for
Energy-efficient Neural Network
Training: A Heterogeneous

Approach

5.1 Motivation

We motivate our software/hardware coordinated design by discussing the chal-
lenges of accelerating machine learning training workloads. We employ three widely
used CNN training models — VGG-19 [123], AlexNet [124], and DCGAN [125] — as
examples in this chapter. However, our observations can also be applied to various

other training workloads (Chapter .

5.1.1 NN Training Characterization

In order to understand the characteristics of NN training workloads, we develop a
profiling framework (Figure by leveraging TensorBoard [126] and Intel VTune [127]
to collect software and hardware counter information of training operations. Measuring
the number of main memory accesses of individual operations during training can
be inaccurate due to the extra cache misses imposed by simultaneously executing
operations. As such, we disable inter-operation parallelism to ensure characterization

accuracy of individual operations.

56

57

Hardware Counters

| ¥
NN Training Timeline Profiler Operation Operation
Workloads = ¥ TensorBoard = Profiling = Ranking
F Tensor!

Intermediate | > Operation trace | | > Input/output data size
Output: ¢) » __Input/output data address

> Operation DAG [| > Operation execution timeJ‘ (Table 1)

Figure 5.1: Our profiling framework for profiling NN training workloads in TensorFlow.

Execution Time | Memory Access % Example Operations
Long Low Conv2D in VGG-19
Long High Conv2DBackpropFilter in VGG-19
Short High Slice in DCGAN
Short Low Reshape in AlexNet

Figure 5.2: Four categories of NN training operations.

Table [5.1] illustrates our profiling results of top five most time-consuming and
memory-intensive operations, respectively, with three training models. Each model
has tens of different types of operations and requires thousands of iterative steps to
train; In each step, each type of operation can be invoked up to tens of times. We only
show results within one training step. But the characteristics remain stable across
training steps.

We make three key observations. First, only several operations dominate training
execution time. For example, top five operations in VGG-19 model consume over
95% of total execution time. Second, the most time-consuming operations are also
the most memory intensive. In fact, the top five most time-consuming operations
contribute to over 98% of total main memory accesses across all three models. We
further classify operations into four classes, shown in Figure [5.2] The first class of
operations is compute intensive, and does not have to be offloaded to PIMs, but we
can offload them when there are idling hardware units in PIMs. The second class
of operations is our target to offload to PIMs. The third class is unusual, and the
fourth class does not have big performance impact on model training. The above two
observations motivate us to adopt a PIM architecture to accelerate NN training in
order to reduce data movement between the host processor and the main memory.

Third, time-consuming and memory-intensive operations require heterogeneous
computation types. It appears that many of such operations are multiplication and
addition (e.g., MatMul) or can be decomposed so (e.g., Conv2D). This is inline

with previous works on machine learning acceleration [128, [129]. Yet, significant

Table 5.1: Operation profiling results for three neural network models.

computation intensive; “MI”=memory intensive.

o8

“CI” —

VGG-19
Top 5 CI Ops Execution Time(%) | #Invocation Top 5 MI Ops #Main Memory Access(%) | #Invocation
1. Conv2DBackpropFilter 40.15 16 1. Conv2DBackpropFilter 42.52 16
2. Conv2DBackpropInput 32.68 15 2. BiasAddGrad 35.68 16
3. BiasAddGrad 11.92 16 3. Conv2DBackpropInput 21.06 15
4. Conv2D 10.34 16 4. MaxPoolGrad 0.22 16
5. MaxPoolGrad 1.49 16 5. Relu 0.14 19
Other 13 ops 3.37 232 Other 13 ops 0.38 229
AlexNet
Top 5 CI Ops Execution Time(%) | #Invocation Top 5 MI Ops #Main Memory Access(%) | #Invocation
1. Conv2DBackpropFilter 33.64 5 1. BiasAddGrad 44.64 3
2. Conv2DBackpropInput 33.46 4 2. Conv2DBackpropInput 36.61 4
3. MatMul 13.54 6 3. Conv2DBackpropFilter 14.79 5
4. Conv2D 10.48 5 4. Relu 1.20 8
5. BiasAddGrad 4.62 3 5. Conv2D 0.46 5
Other 13 ops 4.26 121 Other 13 ops 2.30 119
DCGAN
Top 5 CI Ops Execution Time(%) | #Invocation Top 5 MI Ops #Main Memory Access(%) | #Invocation
1. Conv2DBackpropFilter 19.98 4 1. Conv2DBackpropFilter 37.21 4
2. Conv2DBackpropInput 17.18 4 2. Conv2DBackpropInput 28.09 4
3. MatMul 14.28 12 3. Slice 17.18 14
4. Conv2D 10.53 4 4. Conv2D 5.45 4
5. Mul 9.89 84 5. Mul 2.22 84
Other 47 ops 28.14 821 Other 47 ops 9.85 819

amount of top time-consuming and memory-intensive operations cannot simply be
implemented by pure multiplication and addition. For instance, Relu is an activa-
tion function that incorporates conditional statement; MaxPool is a sample-based
discretization process; ApplyAdam is a first-order gradient-based optimization of
stochastic objective functions. Complex operations, such as Conv2DBackpropFilter
and Conv2DBackproplInputs, include other logic and computations beyond multi-
plication and addition. Such non-multiply-add operations can consume over 40%
of total execution time. Furthermore, studies on modern multi-tenancy [130] and
multimodel training [131] workloads also demonstrate such heterogeneous computation
requirement. This observation motivates us to adopt a heterogeneous PIM architecture
that combines fixed-function logic and programmable cores.

Most previous works on PIM adopt either fixed-function [I128] or programmable [129]
computation components in the logic layer of 3D die-stacked memory. In the follow-
ing, we discuss feasibility, challenges, opportunities of accelerating NN training with

software/hardware co-design of heterogeneous PIM.

5.1.2 Software Design Challenges and Opportunities

There are three challenges for the software design: (1) How do we enable high
productivity of system programmers and ease-of-adoption of PIM-based NN training
accelerators? (2) How do we develop a unified programming model that can efficiently

accommodate the host processor, fixed-function PIMs, and programmable PIMs? (3)

29

How do we balance hardware utilization at runtime?

One candidate baseline programming model is OpenCL [132], which is widely
used in accelerator-based heterogeneous computing platforms (e.g., GPU and FPGA).
We adopt OpenCL, due to its portability, expressiveness, and ability to enable high
programming productivity to support programming on heterogeneous systems (details
are discussed in Chapter [5.2.2)). However, it is not straightforward to adopt OpenCL
for NN model training on the heterogeneous PIM architecture. (1) How do we map
the platform model of OpenCL to the heterogeneous PIM architecture? (2) Given the
execution model of OpenCL with limited considerations on hardware utilization, how
do we make the best use of CPU (the host processor) and different types of PIMs? (3)
Given the memory model of OpenCL with limited considerations on synchronization
between hardware units, how do we meet the requirement of frequent synchronizations
from NN operations?

Trade-offs between parallelism and programmability. Fixed-function PIMs
typically offer high computation parallelism by executing fine-grained, simple opera-
tions distributed across massive amount of logic units. However, they are less flexible
than programmable PIMs that can be programmed to accommodate a large variety of
operations. Furthermore, fixed-function PIMs can impose high performance overhead
by (i) frequent operation-spawning and (ii) host-PIM synchronization. Programmable
PIMs typically execute coarse-grained code blocks with less frequent host-PIM syn-
chronization. However, the limited number of computational units in programmable
PIMs can lead to much lower parallelism than in fixed-function PIMs.

Opportunities in runtime system scheduling. Substantial opportunities exist
in leveraging system-level software to optimize resource sharing among various sys-
tem components. The heterogeneity of our architecture introduces requirements on
scheduling model-training operations across the host processor (CPU), fixed-function
PIMs and programmable PIMs, based on the dynamic utilization of compute resources
on these system components. Yet, we observe that NN training workloads tend to
have repeatable (hence predictable) computation behavior over the execution time. As
such, system software can accurately predict and dynamically schedule the operations
by profiling the resource utilization of various compute elements in the first few steps
of modeling training. Such dynamic profiling-based scheduling can achieve the best

utilization of computation resources, while improving energy efficiency.

60

5.1.3 CPU vs. GPU — Where to Attach Heterogeneous PIMs?

Today, NN-training workloads can be executed on both CPU- and GPU-based
systems. Recent silicon interposer technology allows both types of systems to adopt
3D die-stacked memories closely integrated with logic components. For example,
modern GPU device memories [133] are implemented by high-bandwidth memory
technology. High-end CPU servers integrate high-bandwidth memories using the
DRAM technology adopted from hybrid memory cubes.

Our heterogeneous PIMs are logic components closely integrated with die-stacked
memories. Therefore, they are generally applicable to both CPU or GPU systems.
However, this work focuses on the software design for heterogeneous PIMs attached
on CPU systems, due to the constraint of current GPU systems. Today, GPU systems
often fuse and organize computation kernels into NN layers rather than fine-grained
operations, because of the inefficiency of compute preemption and thread scheduling.
This significantly limits the flexibility of operation scheduling on GPU.

The NVIDIA Volta GPU provides certain support for fine-grained acceleration of
NN training operations, yet only available with limited number of threads. Modern
CPU systems are easy to access and program; this enables easy-to-adopt and flexible

programming abstraction and system library functions.

5.2 Design

To address the aforementioned challenges, we propose a software/hardware co-
design of heterogeneous PIM framework to accelerate NN training. Our design consists
of a heterogeneous PIM architecture, an extended OpenCL programming model, and
a runtime system. Figure depicts our architecture configuration. Figure shows
the process of building and executing NN training with our software framework. Given
an OpenCL kernel to implement an operation, our system extracts code sections from
the kernel and compiles them into a set of binaries to run on CPU, programmable
PIM, and fixed-function PIMs, respectively. After the training workload starts to
execute, our runtime scheduler profiles the first step of training to obtain operation
characterization. It then performs dynamic scheduling of operations across CPU,
programmable PIM, and fixed-function PIMs in the rest of training steps. Our runtime

system incorporates two key components: (i) an operation-pipeline scheme, which

61

allows multiple NN operations to co-run on PIMs to improve hardware utilization
and (ii) a recursive operation-execution scheme, which allows the programmable
PIM to call fixed-function PIMs to improve hardware utilization and avoid frequent
synchronization between CPU and PIMs.

Software/hardware co-design principles. Our software design supports our
hardware configuration in the following manner. First, our software design offers a
portable programming model across the host processor, fixed-function PIMs, and the
programmable PIM. Our programming model provides a unified abstract to program
various PIMs, which need to be programmed in separate manners in conventional
systems. Our runtime scheduling scheme effectively optimizes PIM hardware utilization.
Our runtime system also enables recursive calls between the programmable PIM and
fixed-function PIMs. Our architecture design supports our software design in two
ways: our heterogeneous PIM architecture enables efficient NN training acceleration
by exploiting the heterogeneous characteristics of software operations; We employ
a set of hardware registers to track PIM hardware utilization information, which is

required by our runtime scheduling.

5.2.1 Heterogeneous PIM Architecture

To accommodate various types of operations that are likely to execute on PIMs,
we adopt a heterogeneous PIM architecture consisting of (i) a programmable PIM,
which is an ARM core and (ii) massive fixed-function PIMs, which are adders and
multipliers distributed across all memory banks. While our design can be used with
various 3D die-stacked memory devices, we employ a 32-bank memory stack (where a
bank is a vertical slice in the stack) as an example in this work. Figure depicts our
architecture configuration. Chapter describes hardware implementation details.

5.2.2 Programming Model for Heterogeneous PIM

We extend the OpenCL programming model to program the heterogeneous PIM.
OpenCL has been widely employed to enable program portability across accelerator-
based, heterogeneous computing platforms (e.g., GPU and FPGA). We use OpenCL
because of the following reasons. First, by treating the fixed-function PIMs and
programmable PIM as accelerators, the semantics of OpenCL naturally fit into the

heterogeneous PIM environment. Second, writing a program for the heterogeneous

“B0 Fixed-function PIM One Programmable PIM &5
. / Memory
/ 7 Controller
Y, D j (S5} (S5} (%) (52) ﬁnd Router
5 ®[c] glc] ®ilcl |®c] |®[c] | AEdge
@ ||D D (&> ® D ® | Bank
é gle]l ®lc] ®lc] \®[c]/®[c]\|®[c] 4 Banks
% @ @ @ @ GB \Q\\\A Central
Sllelcl lelc] [®lc] |®lc] |®[c] |glc]| [Bank
3o ® ® ® @ ®
S |-
2lelc] ®lc] & ®c] |® ®[c
Q- A Corner
o N ! Bank
8 Banks DRAM
DRAM
DRAM
DRAM !

1<
Silicon Interposer

>}

62

(a) Heterogeneous PIM architecture overview.

Operation
Offloading
CPU Core Core Core Core éddrr]ess ﬂ
Cache | | Cache | | Cache Cache Xchange
TLBs / MMU -
Last-level Cache
Memory Controller
ﬁ | /I In-order Core
Memory Address | ¢ e
) Translation)/ FIFOs g S
S Fixed-function PIM ||| Pese e / 5 O
Controller / o=
K ‘ Register File Bank }4— eS8
Programmable PIM I’
Scratchpad Memory or
g] g] $°~4. Cache Bank NI
\ Crossbar Network T~

(b) Operation offloading between CPU and PIM. (c) Architecture of programmable PIM.

Figure 5.3: Architecture overview of the proposed heterogeneous PIM.

PIM based on an abstract and unified hardware model in OpenCL, the programmer
can write the program just once but run it on a variety of PIMs. Therefore, by
using OpenCL, we can hide hardware variety of the heterogeneous PIM from system
programmers, improve their productivity, and enable code portability.

Other programming models, such as OpenACC [134] 135] and OpenMP [136],

1
P ' il Runti h li
' rogram i H Compile - |(#1) Binary files to run on CPU i i untime Scheduling E
1
! op_1(...) i E Operations ':'V (#2) Binary files to run on programmable PIM | | . Profiling '
! i !| (OpencL [#3) Binary fil fixed-function PIMs | 1 | |
H 2 . inary files to run on fixed-function slia 1
! NN model.cl | | ©P-2(-) 1| kernels) = - — = 4 < i
! 0! o) (#4) Binary files with parts of an operation to |, | H
| op_3(...) ! ! " |run on programmable PIM and other parts |} | Scheduling !
' b b on fixed-function PIMs ! !
i ' '

Figure 5.4: The process of executing NN training with our software framework design.

can also hide hardware heterogeneity and reduce programmers’ burden. However,
these are higher-level programming models, which rely on compilers to transform
programs into a lower-level programming model, such as OpenCL, to enable code
portability. We focus on OpenCL in our study, because it provides a foundation for
those higher-level programming models.

Overview of our programming model. Table [5.2] summarizes our extension
to OpenCL. Our platform model includes multiple types of heterogeneous devices.
Such platform model is driven by the characteristics of NN training operations. Our
execution model adds (i) recursive kernel invocation to enable kernel invocation
between PIMs to support complex NN operations (e.g., Conv2DBackpropFilter) and
(ii) operation pipeline to improve hardware utilization for small NN operations with
limited parallelism (e.g., Slice). Finally, we extend the memory model to support a
single global memory shared between the host processor and accelerators. We also add
explicit synchronization across different PIMs and CPU (host processor) to enforce
execution orders across NN operations.

OpenCL background. The existing OpenCL adopts a host-accelerator platform
model as shown in Figure [5.5[(a). A host processor connects to one or more compute
devices (i.e., accelerators). A compute device is divided into one or more compute
units, each of which is further divided into one or more processing elements (PE). An
OpenCL program consists of kernels for compute devices and a host program. The
host program runs on CPU and enqueues commands to a command-queue attached
to a compute device.

In order to employ OpenCL programming model on the heterogeneous PIM
system, we investigate how to map the heterogeneous PIM system onto the OpenCL
model, and extend the OpenCL model for efficient runtime scheduling. In the following,
we discuss our mapping method from the perspectives of platform model, execution

model, and memory model. Table summarizes our programming model extension.

64

Table 5.2: Extending OpenCL for the heterogeneous PIM.

Native OpenCL Extensions for Heterogeneous PIM
Platform model | Host + accelerators (e.g., host + GPU). Host + two types of accelerators (fixed-
function PIMs and programmable PIM) driven
by the characteristics of NN training.

Execution model | Host submits work to accelerators. .
e Host submits work to accelerators;

e Accelerators submit work to accelerators
(i-e., recursive kernel invocation);

e Work execution pipeline (i.e., operation
pipeline);

e Work scheduling based on dynamic profiling.

Memory model
y e Multiple types of memory with a relaxed | e A single global memory with a relaxed con-

consistency model; sistency model;

e The global memory is not shared; e The global memory is shared;

e No defined synchronization across accelera- | e Explicit synchronization across PIMs and
tors. CPU.

A compute device based a programmable PIM

- ;— Host C“:' N CLE
d A compute s : : :

|:||:| CIEEES
n device based 5

on all fixed N JEIEI ﬂ :

A compute device E]'RAcstlon mm

== A processing /"“\
|:| element A compute unit
DD D D 4 (fixed funct,on PIMs A processing element

™A compute unit in a bank) (A fixed function PIM)
(a) OpenCL platform model. (b) Heterogeneous PIM platform model.

4 1

Figure 5.5: Enabling OpenCL platform model on heterogeneous PIM systems.
Heterogeneous PIM platform model. Figure[5.5(b) illustrates our platform model.

A large number of fixed-function PIMs provide massive parallelism for data processing.
Each fixed-function PIM is a PE (in the OpenCL jargon). All fixed-function PIMs in
all memory banks form a compute device. All fixed-function PIMs in a bank form
a compute unit. Each programmable PIM is a compute device; each core of the
programmable PIM is a PE. Hence, within the context of OpenCL, a heterogeneous
PIM system has heterogeneous compute devices. We expose fixed-function PIM
and programmable PIM as distinct compute devices to give control flexibility to the
runtime system for operation scheduling. An OpenCL operation can be offloaded to
any compute device that supports the operation execution.

Execution model. Tasks (i.e., operations in NN model training) to be launched on
any PIM are represented as kernels managed by a host program, as in a traditional
OpenCL program. If the task includes instructions that cannot be executed on the
fixed-function PIM, then the task will not be scheduled by the OpenCL runtime to run

on the fixed-function PIM. Otherwise, a task can run anywhere (CPU, fixed-function

65

E .

= {ConvZDBackpropFllter(...) Fixed-function
D R P . i

§| L.Compphasel | pecurssive PV

E| I Conv(.) i > |-

S| 1 CompPhase2 B0

<l I

[a

Figure 5.6: An example of the recursive PIM kernel.

PIM, and programmable PIM). The OpenCL runtime (on CPU) is in charge of task
scheduling between different PIMs and CPU. Leveraging low-level APIs (Chapter
and hardware registers, the runtime can determine whether a specific PIM is busy
and whether a specific task is completed. We describe the scheduling algorithm
in Chapter [5.2.3] Binary files for a task to run on CPU, fixed-function PIM, or
programmable PIM are generated during the compilation stage. Given an OpenCL
kernel for a task, we generate four binary files as shown in Figure [5.4 Chapter [5.2.4]
discusses details of binary generation.

Binaries (#3) and (#4) in Figure |5.4| allow recursive PIM kernel, a new execution
scheme for our heterogeneous PIM design. A kernel in the programmable PIM
can trigger data processing with fixed-function PIMs. This is supported by the
programmable PIM runtime and implemented by calling small kernels loadable on fixed-
function PIMs. By combining multiple kernels into a single kernel, the recursive PIM
kernel scheme reduces overhead of kernel spawning and synchronization between the
host and PIMs. Figure shows an example that further explains the recursive PIM
kernel. In the example, we illustrate an NN operation, Conv2DBackpropFilter, which is
offloaded to the programmable PIM as a kernel; the kernel includes computation phases
1 and 2 that cannot be offloaded to the fixed-function PIMs. Conv2DBackpropFilter
includes convolution computation (“Conv(...)" in the figure); The programmable PIM
offloads this portion of computation to fixed-function PIM as a smaller kernel. The
computation phases 1, 2 and convolution are combined as a single recursive PIM
kernel, which reduces the synchronization between CPU and PIMs.

In general, the four binary files provide convenience for scheduling on CPU,
the fixed-function PIMs and programmable PIM, and hence allows the runtime to
maximize utilization of CPU and PIMs.

Memory model. The existing OpenCL defines four distinct memory regions in a

66

compute device: global, constant, local, and private. On a heterogeneous PIM system,
only a single global memory (i.e., the main memory) exists. In addition, the global
memory is shared between CPU and PIMs, and addressed within a unified physical
address space. This memory model requires synchronization at multiple points: (1)
between CPU and PIMs; and (2) between different PIMs. The synchronization is
necessary to avoid data race and schedule operations.

To implement effective synchronization, we employ the programmable PIM to
drive the synchronization and avoid frequent interrupts to CPU. In particular, for
synchronization between CPU and PIMs, the programmable PIM checks the completion
of operations offloaded to PIMs (either programmable or fix function PIMs) and sends
the completion information to CPU. For synchronization between different PIMs, the
programmable and fix function PIMs synchronize through global variables in main
memory.

Between CPU and PIMs, we introduce explicit synchronization points to syn-
chronize the accesses to shared variables. To the host processor, the whole set of
fixed-function PIMs or the programmable PIM appear as another processor. We
employ standard synchronization schemes (e.g., barriers and locks), similar to the ones
in a shared-memory multiprocessor. For fixed-function PIMs, their operations are
atomic and the synchronization points are not expected in the middle of operations.
For programmable PIMs, the synchronization points can be in the middle of a kernel.
This is feasible based on global lock variables shared between CPU and PIMs. To
support memory consistency, we adopt a relaxed memory consistency model, which
aims to improve performance and reduce hardware complexity. In particular, an
update to a memory location by a fixed-function PIM is not visible to all the other
fixed-function PIMs at the same time. Instead, the local view of memory from each
fixed-function PIM is only guaranteed to be consistent right after the kernel call to
fixed-function PIMs. Between the fixed-function PIMs and programmable PIM, we
employ the same consistency scheme: updates to memory locations by the entire set of
fixed-function PIMs are not visible until the end of the kernel call to the fixed-function
PIMs.

Because of our shared memory model, there is no data copy overhead before and
after PIM kernel calls. Based on the above synchronization schemes, PIM kernel calls

can be launched asynchronously to overlap computation on CPU and PIMs.

67

Support for easy program maintenance. To use the extended OpenCL pro-
gramming model, operations need to be re-written using OpenCL. To write OpenCL
code for operations, one can use OpenACC directives and compilers [134, [135] to
automatically transform the original code into OpenCL code. This can significantly
simplify the programming work. Furthermore, the number of operations for machine
learning models is limited (tens of operations). Hence, using OpenCL to implement
those machine learning operations is feasible. Other than that, however, the higher
level software components (e.g., most of the middleware components, operation APIs,
and Python syntax for using machine learning models) remain the same. This enables

easy maintenance of machine learning frameworks.

5.2.3 Runtime System Design

Our runtime system is in charge of scheduling operations to fixed-function PIMs,

programmable PIM, and CPU. To minimize NN training time, the runtime strives to
maximize utilization of PIMs and CPU to optimize system throughput. The runtime
schedules operations based on the following two steps.
Step 1: profiling. The runtime profiles performance of all operations on CPU. The
profiling happens in only one step of NN model training. NN model training typically
has a large amount of iterative steps (thousands and even millions of steps). Using
one step for profiling has ignorable impact on performance. In addition, all steps
almost have the same classes of operations; performance of operations (particularly
execution time and the number of main memory access) remains stable across steps.
Therefore, one step is sufficient for profiling purpose. During profiling, the runtime
executes operations one by one in CPU, collecting execution time and the number
of main memory access level cache misses of each operation with hardware counters.
Based on the profiling results in the step, the runtime employs the following algorithm
to determine the candidate operations to be offloaded to PIMs.

To determine the candidate operations, the runtime sorts operations into two
lists (in descending order) based on execution time and the number of main memory
accesses, respectively. Each operation in each of the two lists is correlated to an index,
i.e., each operation has two indexes. With each operation, the runtime calculates a
global index by adding these two indexes. Based on the global indexes, the runtime

sorts operations into a global list. The runtime chooses top operations in the global

68

Table 5.3: Low-level APIs for PIMs.

Name Description
int pim_fix(int* pim_ids, void* args, Asks specific fixed-function PIMs to work
void* ret, size_t num_pim) with input arguments args and

return results ret and a work ID.
int pim_prog(int pim_id, pim_program kernel, void* args, | Asks a programmable PIM to work on a kernel

int* args_offset, void* ret, size_t ret_size) (an operation) and return a work ID.
int pim_status(int pim_id) Checks whether a specific PIM is busy.
int work_query(int work_id) Checks whether a specific operation is completed.
Queries the computation location (pim_ids)
void work_info(int work_id, int* pim_ids, int* data_loc) and input/output data location (i.e, which

DRAM banks) for a specific operation.

list to offload to PIMs. Those top operations account for x% of total execution time

of one step (x = 90 in our evaluation). The above algorithm is inspired by feature

selection process in machine learning [137]. The goal of this algorithm is to select

those operations that are both time-consuming and have a large number of main

Memory accesses.

Step 2: scheduling. Given the candidate operations to offload, the runtime makes

the scheduling decision based on the following three principles.

e Scheduling operations to execute on fixed-function PIMs as much as possible.

e Scheduling operations to execute on PIMs (not CPU) as much as possible. In case
all fixed-function or programmable PIMs are busy, the runtime will schedule the
candidate operations to execute on CPU;

e Scheduling needs to respect data dependency across operations.
The first principle favors fixed-function PIMs over other compute units, because

fixed-function PIMs are more energy efficient and typically performs faster with higher
parallelism than other compute units. The second principle avoids CPU idling and
introduces parallelism between CPU and PIMs. The third principle ensures execution
correctness. Each operation defined in the machine learning frameworks typically has
explicit input and output data objects (e.g., Tensors in TensorFlow), which provides
convenience in tracking data dependencies across operations.

Operation pipeline. The above scheduling algorithm and principles enable operation
pipeline to maximize hardware utilization. In particular, when an operation in a step
cannot fully utilize fixed-function PIMs, our runtime schedules an operation in the
next step to execute a portion of its computation by utilizing idling fixed-function
PIMs as long as the two operations do not depend on each other.

In essence, these two operations can enable a pipelined execution manner. For

69

instance, in AlexNet, a single convolution operation with a filter size of 11x11 consumes
121 multiplication and 120 addition (241 fixed-function PIMs in total). In case we have
444 fixed-function PIMs in total (Chapter , the utilization of fixed-function PIMs
is only 54%. To improve hardware utilization, the runtime can schedule multiplication
and addition from an operation (or operations) in the next step to execute on fixed-
function PIMs. Once the convolution operation in the current step is completed, the
partially executed operation(s) from the next step can immediately utilize the newly
released fixed-function PIMs to improve hardware utilization and performance. This
indicates that an operation can dynamically change its usage of PIMs, depending
on the availability of PIMs. Such dynamic nature of operation execution is feasible
based on a runtime system running on the programmable PIM (Chapter presents

implementation details).

5.2.4 Implementation

Low-level APIs for PIM Runtime System

We introduce several low-level API functions for fixed-function and programmable
PIMs. These API functions allow direct control of individual PIMs, and provide
foundation for our runtime. The APT achieves the following functionality: (1) offloading
a specific operation into specific PIM(s); (2) tracking the status of PIMs, including
examining whether a PIM is busy or not; (3) querying the completion of a specific
operation; (4) querying the computation location (i.e., which PIM) and input/output
data location (i.e, which DRAM banks) for a specific operation. Table [5.3| summarizes

our API functions.
OpenCL Binary Generation

To schedule operations to execute on CPU, fixed-function PIMs, or programmable
PIM, we generate four binary files (Figure[5.4). In order to generate the binary file (#3)
that corresponds to a portion of a large operation (an OpenCL kernel) to execute on
fixed-function PIMs (e.g., the convolution within the operation Conv2DBackpropFilter),
we first extract code sections from the corresponding OpenCL kernel. We then trans-
form these code sections into a set of small kernels to execute on fixed-function PIMs.
Finally we compile them into binary file (#3). In the original OpenCL kernel, these

extracted code regions are replaced with the kernel calls and then compiled into

70

binary file (#4) to execute on the programmable PIM. Binary files (#1) and (#2) are

generated during the regular compilation stage.
Runtime Implementation

Our runtime consists of two components, which execute on the CPU and the
programmable PIM, respectively.
The runtime on CPU. To support our runtime scheduling, we extend the runtime
system of TensorFlow by adding approximately 2000 lines of code. The runtime on CPU
schedules operations on CPU and PIMs, based on hardware utilization information
provided by the low-level APIs. It does not support the implementation of recursive
PIM kernels. In other words, the runtime on CPU is only responsible for offloading a
kernel — which can have a part of its computation offloadable to fixed-function PIMs
— to the programmable PIM. Our modifications to TensorFlow runtime include (1)
device initialization and characterization using OpenCL intrinsics; (2) creating a device
context and instance for a PIM device; (3) providing a new OpenCL device abstraction
to other components of Tensorflow; (4) a mechanism to communicate with the runtime
on the programmable PIM. This is one-time modification to Tensorflow, but can
support various PIM hardware configurations without involving system programmers’
future efforts.
The runtime on programmable PIM. The runtime on the programmable PIM
supports recursive PIM kernels and operation pipeline. In particular, a kernel with a
part of its computation replaced with kernel calls to fixed-function PIMs is handled by
the runtime on the programmable PIM, which automatically offloads the computation
to fixed-function PIMs. In order to keep track of the dynamic utilization of fixed-
function PIMs, our runtime on the programmable PIM records the numbers of additions
and multiplications already completed in each operation offloaded to the programmable

PIM, as well as the remaining additions and multiplications.
Hardware Implementation

Figure |5.3| and Figure illustrate our hardware implementation. The pro-
grammable PIM employs an ARM Cortex-A9 processor with four 2GHz cores. Each
core has an in-order pipeline. In individual NN training models, operations that
are potentially offloaded to the programmable PIM (e.g., ApplyAdam, MaxPooling,
and ReLU) are typically not executed at the same time. Therefore, we only adopt

71

Fixed-Function PIM Register PIM
Request Queue File Controller
Conv2D —> ~II_
Core e \
X
2 3AL To Register File
Programmable PIM
Request Queue_ —x 7o FIEO
Filter — H(S — -
=
Conv2D & FIFO
BackpropFilter T So
CPU CL§ Opcode

Figure 5.7: Heterogeneous PIM implementation.

one programmable PIM in our design. Even if we simultaneously train multiple NN
models, the chance of having multiple operations to use the programmable PIM at
the same time is low according to our evaluation with mixed workload analysis.

Because a significant portion of NN training operations can be decomposed
to addition and multiplications, we implement our fixed-function PIMs as 32-bit
floating point multipliers and adders. We implement equal numbers of multipliers
and adders in the pool of fixed-function PIMs. Our low-level APIs allow us to map
operations to fixed-function PIMs that are in the same bank as input data of the
operations. In addition, we accommodate random memory access pattern in NN
computation by adopting buffering mechanisms [128]. We determine the fixed-function
PIM configurations by employing a set of architectural level area, power, and thermal
modeling tools, including McPAT [I38] and HotSpot [139], to perform design space
exploration of the logic die of 3D DRAM. Based on our study, the total number
of allowed fixed-function PIMs is limited by the area of the logic die. With our
baseline 3D DRAM configuration, we can distribute 444 fixed-function PIMs (pairs
of multipliers and adders) across the 32 banks in the logic die. It is impossible to
distribute these fixed-function PIMs evenly to each bank. We consider the placement
of the fixed-function PIMs on 32 banks based on the following policy: we place more
fixed-function PIMs on edge and corner banks than on central banks (Figure (a)).
The rationale behind is that the banks at the edge and corner have better thermal
dissipation paths than central banks. Therefore, these banks can support higher
computation density.

Furthermore, we employ a set of registers as shown in Figure 5.7 Each register

72

Table 5.4: System configurations.

CPU Intel Xeon E5-2630 V3@2.4GHz
Main memory 16GB DDR4
Operating system Ubuntu 16.04.2
GPU NVIDIA GeForce GTX 1080 Ti (Pascal)
GPU cores 28 SMs, 128 CUDA cores per SM, 1.5GHz
L1 cache 24KB per SM
L2 cache 4096KB
Memory interface 8 memory controllers, 352-bit bus width
GPU main memory 11GB GDDR5X
g T N Shaanena

Time (ms)

150 . "
00 2000 200 3000 300 0000 @ Operation time
20000 2000 100 2000 200 20000 2000
1000 100
10000 1000 |'| H H 50 n 1000 ﬂ 100 10000 1000 |-| ﬂ
. ’ B, 5|
og cpPu PU d tero. GPU

4
U Progr. Fixed Hetero GPU Progr. Fixed Hetero. GPU CPU Progr. Fixed Hetero. G U P e Heter
PIM PIM - PIM PM - PIM PIM PIM PIM PIM PIM PIM PIM PIM PIM PIM

(a) VGG-19. (b) AlexNet. (c) DCGAN. (d) ResNet-50. (e) Inception-v3.

rogr. Fixed Hetero. GPU CPU Progr. Fi

Figure 5.8: Execution time breakdown of five NN models.

indicates the idling of either a bank of fixed-function PIMs or the programmable PIM.
The registers allow our software runtime scheduler to query the completion of any

computation and decide the idleness of processing units.

5.3 Experimental Setup

5.3.1 Simulation Framework

In order to evaluate the performance of our design, we model fixed-function
PIM and programmable PIM architectures, respectively, using Synopsys Design
Compiler [140] and PrimeTime [I41] with Verilog HDL. We adopt HMC 2.0 [142]
timing parameters and configurations for our evaluation of 3D memory stack. Baseline
memory frequency is set to 312.5 MHz, which is the same as HMC 2.0 specification [142].
This is also used as the working frequency of our heterogeneous PIM. We employ a
trace generator developed on Pin [I43] to collect instruction trace, when running our
OpenCL kernel binaries on CPU. We develop a python-based, trace-driven simulation
framework based on our design to evaluate the execution time of various training

workload traces. Our simulator also incorporates our runtime scheduling mechanisms.

73

5.3.2 Power and Area Modeling

We adopt 10nm technology node for the host CPU and the logic die of the PIMs;
25nm technology node for the DRAM dies. We measure CPU and GPU power with
VTune [144] and nvidia-smi, respectively. Our power model considers whole system
power when we evaluate the power of heterogeneous-PIM-based systems, including
CPU and the memory stack. We calculate the power and area of the programmable
PIM using McPAT [138]. We evaluate the power and area of fixed-function PIMs
using Synopsys Design Compiler [140] and PrimeTime [141].

5.3.3 Workloads

We evaluate various training models, including VGG-19 [123], AlexNet [124],

Deep Convolutional Generative Adversarial Networks (DCGAN)) [125], ResNet-
50 [28], Inception-v3 [145], Long Short Term Memory (LSTM) with dropout [146] and
Word2vec [147]. LSTM and Word2vec are evaluated in Section [5.4.6] The rest models
are widely used in recent studies on CNN training and image classification.
Training Datasets. We employ ImageNet as training data set of VGG-19, AlexNet,
ResNet-50, and Inception-V3. ImageNet is a large image dataset with millions of
images belonging to thousands of categories. DCGAN employs MNIST dataset [14§].
LSTM adopts Penn Tree Bank (PTB) [146] dataset. Word2vec employs “questions-
words” dataset [149] in TensorFlow.
Training framework and batch Size. We adopt TensorFlow [I10] as our training
framework. We adopt default batch sizes of each training model in TensorFlow. The
batch size of VGG-19, AlexNet and Inception-v3 is 32. The batch size of Word2vec
and ResNet-50 is 128. DCGAN has a batch size of 64. LSTM employs a batch size of
20.

5.3.4 Real Machine Configurations

To compare performance and energy efficiency of heterogeneous PIM with GPU
and CPU, we run the training models on (1) NVIDIA GeForce GTX 1080 Ti graphic
card [150] and (2) CPU listed in Table 5.4, Our GPU-based training evaluations
adopt CUDA 8 [I51] and NVIDIA cuDNN 6.0 library [I52]. GPU utilizations of
each training model in TensorFlow are: Inception-v3 (average: 62%; peak: 100%);

ResNet-50 (average: 44%; peak: 58%); AlexNet (average: 30%; peak: 34%); VGG-19

74

1.00E+04 1

EDCGAN DAlexNet OVGG-19 NResNet-50 O Inception-v3
1577 1286

1.00E+03 -

1.00E+02 -

1.00E+01 -

Normalized dynamic
energy consumption

§

CPU Progr. PIM Fixed PIM Hetero. PIM GPU

1.00E+00 -

Figure 5.9: Normalized dynamic energy of various NN models.

(average: 63%; peak: 84%); DCGAN (average: 28%; peak 42%. We use NVIDIA’s
profiling tool [I53] and Intel’s VTune [127] to collect performance and power statistics.

5.4 Evaluation

Our experiments compare among the following five configurations, including our

design.
e CPU - Executing all training operations on CPU;
e GPU - Executing all training operations on GPU;

e Progr PIM — Programmable PIMs only, which executes all operations on as
many ARM-based programmable cores as needed by workloads (without our

runtime scheduling);

e Fixed PIM - Fixed-function PIMs only, which executes the operations that
can be offloaded on fixed-function PIM and other operations on CPU (without

our runtime scheduling);

e Hetero PIM — Our heterogeneous PIM design (including our runtime schedul-
ing).

5.4.1 Execution Time Analysis

Figure shows execution (training) time of various NN training models. We
break down the execution time into synchronization time, data movement time and
operation time (i.e., computation time in CPU, GPU or PIMs). For GPU-based
systems, the data movement time is the time for data transfer between main memory
and GPU global memory. Certain amount of data transfer time is overlapped with

GPU computation, e.g. by copying a minibatch of images to the GPU memory, while

5

N

o
IS
o

w

o
w
o

N

o
N
o

=
o

Energy consumption
ratio of Neurocube to

Hetero. PIM
=
o o

o

Execution time ratio of
Neurocube to Hetero. PIM

[
z
<
Q
O
a

VGG-19
AlexNet
ResNet
50
inceptio
n-v3

VGG-19
AlexNet

o
s 2
g 3
OV)

(9]

o

inception-v3

(a) Execution time comparison. (b) Energy consumption comparison.

Figure 5.10: Performance and energy comparison with Neurocube.

the computation on GPU is processing another minibatch. Our breakdown only shows
the data transfer time that is not hidden by the computation. For PIM-based systems,
the data movement time is the time for data transfer between CPU and the main
memory. Our runtime scheduling allows operations to execute concurrently on CPU
and PIMs.

We observe that PIM-based designs (including Fixed PIM, Progr PIM and Hetero
PIM) perform much better than CPU, with 19%-28x performance improvement.
Compared with Progr PIM and Fixed PIM, our design has 2.5x-23x and 1.4x-5.7x
performance improvement, respectively. PIM-based designs also significantly reduce
data movement overhead, compared to CPU and GPU. Overall, Hetero PIM leads to
the lowest synchronization and data movement overhead among all configurations.

The performance benefit of Hetero PIM stands out with larger training models
and larger working sets due to (i) more reduction in data movement and (ii) higher
parallelism between host CPU and PIMs introduced by more offloadable operations.
DCGAN has smaller model and working set than others. Therefore, Hetero PIM
appears to result in worse performance than GPU with DCGAN; yet, compared with
other configurations, our design still significantly improves performance. ResNet is a
large training model with large working sets. As a result, Hetero PIM leads to better
performance than GPU with ResNet. With other training models, Hetero PIM leads
to performance close to (within 10% of) GPU. GPU has good performance because
of its massive thread-level parallelism. Our design leads to much better performance

than all other configurations.

76

@ Operation time

DOData movement

mSynchronization

Time (ms)

Py P PU
(a) VGG-19. (b) AlexNet. (c) DCGAN. (d) ResNet-50. (e) Inception-v3.

Figure 5.11: Execution time breakdown of various NN models with 3D memory
frequency scaling.

5.4.2 Energy Consumption Analysis

Figure [5.9| shows the dynamic energy consumption of the five NN models with
five different configurations. The energy consumption results are normalized to the
results of Hetero PIM. We observe substantial energy benefit of using our design: it
consumes 3x-24x and 1.3x-5x less energy than CPU and GPU, respectively. CPU
consumes higher dynamic energy than Hetero PIM, Fixed PIMs, and GPU, even
though its power consumption is the lowest among all of these configurations (note
that we take CPU power into account when we calculate the power of PIMs and GPU,
in order to evaluate full-system power consumption). This is because CPU has the
longest execution (training) time. Furthermore, we notice that the dynamic energy
consumption of Progr PIM is higher than that of other configurations, because the
speed of Progr PIM is only slightly faster than that of CPU, yet the dynamic power of
Progr PIM is higher than that of CPU due to the additional processing units in Progr
PIM. Overall, Hetero PIM leads to the lowest dynamic energy consumption across all

configurations.

5.4.3 Comparison with Prior PIM-based NN Acceleration

Figure |5.10| shows a quantitative comparison between our design and a recent
PIM-based NN accelerator design, Neurocube [129] (qualitative comparison is in
Chapter . Neurocube also reduces data movement overhead and improves energy
efficiency by using PIM technology. However, our work outperforms Neurocube in
terms of performance and energy efficiency. With highly compute-intensive models,
such as VGG-19 and Inception-V3, our design achieves much higher performance and
energy-efficiency improvement than Neurocube. Even with less compute-intensive

models, such as DCGAN, our work can achieve at least 3x higher performance and

7

energy efficiency than Neurocube. The reason for the improvement is two-fold: (1)
Neurocube only adopts programmable PIMs, while our design employs energy-efficient,
highly-parallel fixed-function PIMs to accelerate fine-grained operations; (2) Our
design employs runtime scheduling that effectively optimizes hardware utilization

(evaluated in Section [5.4.5)).

5.4.4 Sensitivity Study

Frequency Scaling. We adopt three different frequencies for fixed-function PIMs
and programmable PIM: their original frequencies (1x), doubling of their frequencies
(2x) and quadrupling of their frequencies (4x). We use a phase-locked loop module
to change the frequency. We study execution (training) time with the different
frequencies.

Figure [5.11] shows the results. We observe that with higher frequency, the

heterogeneous PIM performs better than GPU. With 2x frequency, Hetero PIM
performs 36% and 17% better than GPU, with VGG-19 and AlexNet, respectively.
With 4x frequency, Hetero PIM performs 37% and 60% better than GPU, with
VGG-19 and AlexNet respectively. We also observe that the synchronization and data
movement overheads are reduced, when using higher frequencies.
Programmable PIM Scaling. We employ three different configurations for Hetero
PIM, while keeping the area of logic die in the memory stack unchanged. We scale
the number of Progr PIM (ARM cores) from one to two to 16, while the rest of the
logic die area is used to implement Fixed PIM. The three configurations are labeled
as 1P, 4P and 16P, respectively.

Figure shows our results. The figure reveals that the performance difference
between the three configurations is relatively small. The performance difference
between 16P and 1P is 12%—14%. The reason is two-fold: (1) One Progr PIM is
sufficient for the NN models to schedule and pipeline operations; (2) Using more Progr
PIMs loses more Fixed PIMs, given the constant area in the logic layer of memory

stacks.

5.4.5 Evaluation of Software Impact

We isolate the the impact of our software (runtime) techniques from that of

Hetero PIM hardware. We aim to provide more insightful analysis on the effectiveness

78

300

@ 3000
% 2000 200
EAIRINRDREIRR |
0 I |
1P 4P 16P| 1P 4P 16P 1P 4P 16P| 1P 4P 16P| 1P 4P 16P
VGG-19 Inception-v3 AlexNet DCGAN ResNet-50

Figure 5.12: Execution time with Progr PIM scaling.

of software/hardware co-design. In particular, we study execution time, energy and
utilization of Fixed PIM with and without the recursive PIM kernel call (RC) and
operation pipeline (OP) — our two major runtime techniques. Without RC and OP,
we also compare Hetero PIM hardware design with Fized PIM and Progr PIM, in
terms of execution time and energy. This comparison allows us to study the impact of
Hetero PIM architecture with the absence of our runtime techniques.

Execution time analysis. As shown in Figure [5.13, Hetero PIM without runtime
scheduling performs better than Progr PIM and Fixed PIM by up to 8.5x. This
demonstrates the necessity of using Hetero PIM architecture. However, comparing
with Fixed PIM, the performance benefit of Hetero PIM hardware is not significant
(7%-30%). After incorporating the runtime scheduling techniques, the performance
of Hetero PIM is improved by up to 3.8x. This result demonstrates the necessity of
using an efficient runtime to maximize the benefit of Hetero PIM architecture.
Energy analysis. Figure |5.14] shows our energy results normalized to the energy of
Hetero PIM with RC and OP. We have similar observations as the execution time
analysis: Hetero PIM without runtime scheduling performs better than Progr PIM
and Fixed PIM by up to 2.7x. With RC and OP, we further reduce the energy of
Hetero PIM by up to 3.9x.

PIM utilization analysis. Figure shows our utilization results. With RC only,
the utilization of Fixed PIM in Hetero PIM is improved by up to 66% (VGG-19);
With OP, the utilization of Fixed PIM is further improved by up to 18% (AlexNet);
With RC and OP, the utilization of Fixed PIM is close to 100%. The reason for the
poor hardware utilization with neither RC nor OP is the lack of scheduling for the
operations that do not have sufficient parallelism or cannot be completely offloaded to

Fixed PIM.

79

Prog. PIM [@ Fixed-Func. PIM W Hetero. PIM without RC and OP
1.00E+05 31194 O Hetero. PIM with RC and without OP @ Hetero. PIM with RC and OP

25424
,g 1.00E+04 542 %
‘o 1.00E+03 363312
E 141 135 138 113 106
1.00E+02 : % 58 54
1.00E+01 : 17/ i /
VGG-19 AlexNet DCGAN ResNet-50 Inception-v3

Figure 5.13: Execution time with and without RC and OP.

Prog. PIM [Fixed-Func. PIM W Hetero. PIM without RC and OP
1.00E+04 O Hetero. PIM with RC and without OP O Hetero. PIM with RC and OP
2444.0 2191.1
1.00E+03
187.4
100.589.0

1.00E+02

1.00E+01

Normalized dynamic
energy consumption

1.00E+00

VGG-19 AlexNet DCGAN ResNet-50 Inception-v3

Figure 5.14: Dynamic energy with and without RC and OP.

W Hetero. PIM without RC and OP [Hetero. PIM with RC and without OP

100% (] Hetero. PIM with RC and OP
o < 80%
s 2
z ¥ 60%
2 = 40%
© S
R i [I 1
0%
VGG-19 AlexNet DCGAN ResNet-50 Inception-v3
Figure 5.15: Hardware utilization with and without RC and OP.
5000 500 M Hetero. PIM
’g 4000 400 @ Sequential Execution
‘g’ 3000 300
E 2000 H H H 200
Ll -
0 ml mll
Il , o | ' [S) e .9 ! , [S] o \ o
9z 28 5E 8, ¢8 g 8% %= 28 3% 5.4
OH GBT 89 29T sh €% 99 G© T4 ZQ3T
9- ©5 9% 875 2- 35 B8~ 95 &9 $“5
>z £% 2 = < <z Sz R

Figure 5.16: Execution time of multiple NN training models with our design and
sequential execution, respectively.

5.4.6 Mixed Workloads Analysis

We also evaluate the case, when multiple models co-run in the same system [154].

We co-run two NN training models: a CNN model and a non-CNN model. The CNN

80

5 DCGAN AlexNet VGG-19 ResNet-50 Inception-v3 —8— DCGAN —8 - AlexNet - 8= VGG-19
g 02 14 120 4 100 390 f.ioet ResNets0 = * Inception-v3 /»:
= el

= o1 100 3 g 2 200 ST,

L] 11 60 =

7} 80) o 2

$ o1 g

: \\ o 0 40 100 TR

g o0s 20 1 20 C

2

= 0 05 20 0 0

xoax A X 2X 4xX 1X 2X ax X1 X2 X4 X1 X2 X4 1X 2X ax GPU

(a) Energy delay product of five CNN models with different frequencies. (b) Power comparison.

Figure 5.17: Energy efficiency and power with 3D memory frequency scaling.

model can execute on CPU and PIMs, subject to our runtime scheduling; the non-CNN
model executes on CPU or the programmable PIM, when they are idle. Figure|5.16
shows the results of six co-run cases. In each case, “Hetero. PIM” indicates that
we simultaneously execute both models, with the total execution time matched (i.e.,
when the CNN model executes for one step, the non-CNN model can execute one or
multiple steps because the latency of the CNN model in one step can be longer than
the non-CNN model in one step); “Sequential Execution” indicates that we execute
the two models one after another in serial.

The results show that Hetero. PIM achieves 69%-83% performance improvement
compared with Sequential Execution. Such improvement comes from high utilization of
CPU and the programmable PIM in our design. With Sequential Execution, there can
be no operations available to execute even though CPU and the programmable PIM
are idle due to dependency between operations within the same model. Hetero. PIM
avoids hardware idling, because operations across different models have no dependency

and can execute simultaneously.

5.4.7 Energy Efficiency Analysis

We study energy efficiency of the PIMs with different frequencies as in Chap-
te. We use energy-delay-product (EDP) as the metric to evaluate energy efficiency.
Figure m (a) shows the results. The figure reveals that the most energy efficient
point is not the original frequency for the five models. The 4x frequency is the most
energy efficient for the five models. The tradeoff between energy consumption and
execution time leads to such results. Thus, we conclude that higher frequency tends
to be more energy efficient for NN model training. Figure (b) compares power
consumption between GPU and Hetero PIM with different frequencies. In general,
GPU is very power hungry. It consumes 1.5x to 2.6x more power than Hetero PIM

with high frequency (4x). Compared with GPU, Hetero PIM can be highly power

81

efficient.

5.5 Related Work

To our knowledge, this is the first work to propose a software/hardware co-design of
a heterogeneous-PIM-based acceleration framework for NN training. Whereas previous
PIM-based accelerator designs [155] 156, 157, 158, 159, 160, 1611, 128] investigated the
mapping of workloads on either fixed-function or programmable PIMs, it is unclear
how to coordinate software and hardware designs to best utilize PIM technologies to

support the heterogeneity requirement of NN training workloads.

5.5.1 Processing-in-memory for Machine Learning

Recent PIM-based machine learning accelerator designs strive to leverage the
memory cells of nonvolatile memory technologies to execute NN inference opera-
tions [128] 162, 163, 164]. However, NN training typically incorporates substantial
complex operations as we identified. It is difficult to accommodate these complex
operations in previous processing-in-memory-cell designs. Azarkhish et al. [165] and
Schuiki et al. [I66] adopt RISC-V cores [167] and a streaming coprocessor in die-
stacked DRAM to accelerate convolution networks or SGD. However, the RISC-V
cores are merely used to control the arithmetic elements in the streaming coprocessor.
Furthermore, both designs require users to modify code and perform tiling based on
new APIs. Schuiki et al.’s study [166] only focuses on a specific operation (SGD).
Azarkhish et al.’s design [165] primarily aims at inference and requires data to be
carefully laid out in memory with 4D tiling. This constraint on data layout leads
to inefficient training, because intermediate activations after each layer need to be
re-tiled [166]. Neurocube [129] accelerates CNN inference and training by integrat-
ing programmable processing elements in the logic layer of 3D die-stacked DRAM.
However, using programmable PIMs alone cannot provide the massive parallelism and
execution efficiency enabled by heterogeneous PIMs. Furthermore, the aforementioned
previous studies do not consider dynamic runtime scheduling of operations. Our
experiment results demonstrate an efficient heterogeneous PIM design with runtime

scheduling.

82

5.5.2 Processing-in-memory for General Applications

Fujiki et al. [I61] proposed a ReRAM-based in-memory processor architecture
and data-parallel programming framework. The study introduces a compact instruc-
tion set for memory array with processors. The programming framework combines
dataflow and vector processing, employs TensorFlow input, and generates code for
in-memory processors. Our work also employs TensorFlow, but optimizes operations
scheduling and introduces PIM heterogeneity. Ahn et al. [156] explores mapping of
PIM operations based on data locality of applications, while we schedule operations
in multiple dimensions — hardware utilization, data locality, and data dependency.
Ahn et al. [I60] introduced PIM for parallel graph processing. The design offers an
efficient communication method between memory partitions and develops prefetchers
customized for memory access patterns of graph processing. Other works introduce
PIM architectures based on 3D-stacked memory. For example, Zhang et al. [16§]
presented an architecture for programmable, GPU-accelerated, in-memory processing
implemented using 3D die-stacking. The throughput-oriented nature of GPU architec-
tures allows efficient utilizaztion of high memory bandwidth provided by 3D-stacked
memory, while offering the programmability required to support a broad range of
applications. Akin et al. [I57] presented a set of mechanisms that enable efficient data
reorganization in memory using 3D-stacked DRAM. However, the aforementioned
studies cannot efficiently accelerate NN training workloads, because they cannot fully
accommodate the heterogeneous computing requirement in NN training. Furthermore,
these studies do not consider efficient programming model and runtime system to

accommodate the hardware heterogeneity as explored in our study.

5.5.3 Other Accelerator Optimization for Machine Learning.

Recent works explored software- and hardware-based approaches for a variety
of inference acceleration [169] [170], 171, 172, 173]. Most of these works focused on
improving performance and energy efficiency of NN inference. However, training
is much more compute and memory intensive than inference. The data movement
overhead in training is much more significant. Several prior studies [174) [175], [176]
investigated architecture design for NN training. However, these studies focus on

addressing the memory capacity constraint issues caused by a large amount of feature

83

maps generated in CNN training. The data movement bottleneck is not fully explored.

5.6 Summary

In this chapter, we propose a software and hardware co-design of heterogeneous
PIM approach, combining the power of programmable PIM and fixed-function PIMs,
for NN training. Our software design enables (1) a portable and unified program-
ming model across CPU, fixed-function PIMs, and programmable PIM; (2) runtime
scheduling that effectively optimizes PIM hardware utilization and maximizes NN-
operation-level parallelism. Our design not only allows natively training models to
execute on heterogeneous PIM, but also enables easy maintenance of machine learning
frameworks. Our design achieves significant improvement in performance and energy

efficiency with various NN training workloads.

Chapter 6

Runtime Concurrency Control and
Operation Scheduling for High
Performance Neural Network

Training

6.1 Motivation

We study the performance characteristics of operations to motivate our concur-
rency control and operation scheduling. We perform our study from three perspectives:
(1) Operation performance variance with different thread-level parallelisms; (2) Impact
of the input data size on operation performance; (3) Performance impact of co-running
operations.

Hardware platform. We use Intel Knights Landing (KNL) processor (Xeon Phi
7250) as a manycore example in the rest of the work. Several leadership supercomputers
are based on KNL, including Cori at Lawrence Berkeley National Lab and Theta at
Argonne National Lab. KNL provides strong computation capabilities to train and
deploy neural networks [I77]. We use KNL processors at Cori for our study.

A KNL processor can contain 68 cores, each of which supports four hardware
threads (in total 272 hardware threads). 68 cores are organized into 34 tiles (i.e.,
two cores per tile). Two cores in the same tile share a 1 MB L2 cache (the last level

cache). KNL has a 16GB on-package high-bandwidth memory. This memory can

84

85

10 3 ——Conv2DBackpropFilter
\ — -Conv2DBackpropInput
. xR e Conv2D
® :
o 8
£
c
k]
3
g 6
x
L
4

1 8 16 24 32 40 48 56 64
Number of threads

Figure 6.1: Performance variance of three operations with different intra-op parallelisms.
The reported execution time is the total execution time of one thousand runs.

be configured as a transparent, direct-mapped hardware cache. This configuration is
called “cache mode”. The cache mode is the most common mode in a KNL-based
HPC. All the tests in this work use the cache mode of KNL. With the cache mode, all
data sets of NN models in our tests are placed in the high-bandwidth memory and
there is no effect of non-uniform memory access (NUMA).

We use TensorFlow (v1.9) in our study. We develop a performance profiling
framework by leveraging TensorBoard [126] and Intel VTune [144] to collect timing
and hardware counter information of operations. The default intra-op and inter-op
parallelisms in Tensorflow are set as the number of logical cores of the hardware
platform (272 in KNL). However, the TensorFlow performance guide [I7] recommends
the user to set the inter-op parallelism as the number of sockets (which is one in our
platform) and set the intra-op parallelism as the number of physical cores, which is 68

in our platform.

6.1.1 Performance Variance with Different Concurrency

We change the intra-op and inter-op parallelisms when running a couple of NN
models (particularly ResNet-50 and DCGAN). Table summarizes the results.
There is a significant performance variance across different cases. The default case (68
threads for intra-op parallelism and 1 for inter-op parallelism), which is our baseline,
does not result in the best performance. There is up to 28% performance difference
between the default case and the most performant case, as shown in Table [6.1]

Furthermore, we change the number of threads to run individual operations (i.e.,

not the whole NN model). When running each operation with multiple threads, we

86

Table 6.1: Study the performance of NN models with different inter-op and intra-op
parallelisms. The performance baseline for calculating speedup is the performance with
the configuration recommended by the TensorFlow programming guide (68 threads
for intra-op parallelism and 1 for inter-op parallelism).

Parallelism ResNet-50 DCGAN
Inter-op | Intra-op | Time (ms) | Speedup | Time (ms) | Speedup

1 34 1414 0.98 484 1.21
1 68 1382 1.00 524 1.00
1 136 2257 0.61 1045 0.50
2 34 1088 1.27 411 1.28
2 68 1213 1.14 501 1.04
2 136 4017 0.34 1238 0.42
4 34 1169 1.18 434 1.21
4 68 3048 0.45 565 0.93
4 136 4782 0.29 1469 0.36

put those threads with data sharing into the same tile for best performance (threads
resident in the same tile share the last level cache). We do not use hyper-threading
for the tests. When we run those individual operations, we develop a series of scripts
to run them as standalone operations to avoid any performance interference between
operations as in the NN model training.

Figure[6.1)shows the execution times of three operations, Conv2D BackpropFilter,
Conv2D— BackpropInput and Conv2D with different number of threads. The three
operations are common and among the most time-consuming operations in NN
training [I78].

For those three operations, we use certain input data sizes in the NN model
Inception-v3 [145].

Figure reveals that we achieve the best performance, when we use 26, 36 and
45 threads to run the three operations respectively. There is up to 17.3% performance
difference between the default concurrency (i.e., 68 threads) and the best case. The
scalability of the three operations with the given input data size is limited on KNL
due to thread spawning overhead and non-parallelizable code regions.

Observation 1. The intra-op parallelism must be chosen differently for different

operations, in order to achieve the best performance of individual operations.

6.1.2 Impact of Input Data Size

An NN model can involve many instances of an operation in a training step.
Different instances of the operation can use different input data sizes. For example, in

Inception-v3, the operation Conv2D BackpropF'ilter has 42 instances in a training

87

step, each of which uses different input data sizes.

We study three operations from Inception-v3, which are Conv2D BackpropFlilter,
Conv2D— BackpropInput and Conv2D. We change the input data sizes of the three
operations. For each input data size, we change the intra-op parallelism to find the
best performance. Table [0.2| shows the results. The table shows that as we change
the input data sizes, we need to use different numbers of threads to achieve the best
performance. For example, for Conv2D BackpropF'ilter with the input data size
par_input as (32,8,8,384), we need to use 26 threads to achieve the best performance,
while with the input data size par_input as (32,17,17,384) and par_input (32,8,8,2048),
we need to use 42 and 68 threads, respectively.

Observation 2. The best concurrency (in terms of the optimal number of threads

per operation) changes, as we change the input data size of the operation.

6.1.3 Co-Running Operations

We study the performance of co-running operations. We use three strategies
to run two operations. First, we run them in serial, and each operation uses 68
threads. This strategy would be used by the TensorFlow runtime by default. Second,
we leverage two hardware threads (hyper-threading) in each core to allow the two
operations to co-occupy 68 cores (i.e., each operation uses 68 cores and there is one
hardware thread per core for each operation). Third, we evenly partition 68 cores
between the two operations (i.e., each operation uses 34 core; only one hardware
thread per core). The performance of co-running the two operations is the time span
from launching them to finishing both of them.

Table summarizes the results of co-running Conv2D BackpropFilter and
Conv2D Backprop— Input. The input size for the operations is par_input (32,8,8,2048).
Given this input size, the number of threads to achieve the best performance for the
two operations is 68.

Table[6.3|reveals that the third strategy achieves the best performance. Comparing
with the first strategy, the third one has 38% performance improvement, although in-
dividual operations have performance loss (25% and 17% for Conv2D BackpropFilter
and Conv2D BackpropInput respectively). Hyper-threading (the second strategy) is
helpful in this study: we have 3% performance improvement (comparing with the first

strategy).

88

Table 6.2: Study the impact of input data size on operation performance. The
performance baseline for calculating performance variance is the performance with
using 68 threads. The reported time is the total execution time of one thousand runs.

Operation Type Input data size | Time (s) | Intra-Op Parallelism | Performance Variance

(32,8,8,384) 7.2 26 17.3%

Conv2DBackpropFilter | (32,17,17,384) 11.1 42 10.2%
(32,8,8,2048) 20.3 68 0%

(32,8,8,384) 5.8 36 9.8%

Conv2DBackpropInput | (32,17,17,384) 8.7 56 2.3%
(32,8,8,2048) 19.6 68 0%

(32,8,8,384) 4.7 45 11.1%

Conv2D (32,17,17,384) 7.4 63 3.5%
(32,8,8,2048) 14.8 66 2.0%

Table 6.3: Co-running two operations with three strategies. The performance baseline
for calculating speedup is performance of serial execution of two operations. The
reported time is the total execution time of one thousand runs.

Strategies #Threads | Time (s) | Speedup
Serial execution 68 41.1 1
Co-run with hyper-threading 68+68 39.9 1.03
Co-run with threads control 34434 29.8 1.38

Observation 3. Co-running operations are helpful for overall performance
improvement, even though individual operations may have performance loss when

co-running them.

6.2 Design

6.2.1 Overview

Our motivation examples demonstrate the necessity of dynamically changing
concurrency (intra-op and inter-op parallelisms) and scheduling operations to reduce
training time. Driven by the motivation examples, we use a performance model-driven
approach to extend the TensorFlow runtime. Figure generally depicts our runtime
and its workflow.

In particular, we explore two performance models to predict performance (ex-
ecution time) of each operation with different intra-op parallelisms. We study the
performance modeling accuracy and model portability across architectures and op-
eration implementations. We further extend the TensorFlow runtime to schedule
operations to enable co-running operations.

Our two performance models are based on dynamic profiling. The performance

models use a few training steps (the profiling steps) to profile operations and then

89

make performance prediction on operations with various intra-op parallelisms.

Our first performance model uses machine learning models (a set of regression
models) to make the performance prediction. Those models use characteristics of
operations as input features. We characterize computation and memory access patterns
of operations by collecting performance events during the profiling steps. However, the
machine learning models have low prediction accuracy because execution times of some
operations are short and collecting performance events with hardware counters within
such short times is not accurate. Furthermore, the regression models are architecture
dependent and have to be re-trained on a new platform.

Our second performance model is based on the hill climbing algorithm [179]. Our
hill climbing algorithm aims to find the best performance (the shortest execution)
and corresponding number of threads to run an operation with a given input data
size. The algorithm starts with a certain number of threads to run the operation,
then attempts to find another number of threads with a shorter execution time by
making an incremental change to the number of threads. If the change produces
a shorter execution time, another incremental change is made to the number of
threads until no further execution time is reduced. When running the hill climbing
algorithm, the runtime tests a few cases (i.e., the profiling cases) and measure their
execution times. To predict the performance of any untested case, we use linear
interpolation to predict the performance of the untested case based on the measured
performance of two profiling cases. The hill climbing algorithm-based performance
model is lightweight and accurate. Different from the first performance model, it is
architecture-independent and require no knowledge of operations. Hence, we use the
second performance model to guide the runtime.

Our runtime system decides (1) the optimal intra-op parallelism for each operation
and (2) which operations to co-run to increase system utilization. The performance
model determines the optimal number of threads for an operation that results in the
shortest execution time. To avoid frequent changes of operation concurrency, which
may lead to sub-optimal overall performance, we optimize operation concurrency
for the largest input size, which yield overall better performance. Furthermore, our
runtime decides which operations should co-run and how they should interleave. We
analyze a set of candidate execution scenarios and select the one that best suits the

current execution flow to increase overall system throughput and hardware utilization

90

NN Training

1
Training Training | | | Training Training Training
.ﬂ"rk'oads = Step 1 StepN | 1 |stepN+1| [step TS-1| |StepTs
ensor L 1
-’ Se -
~ Ny P -, : ~o - - -
Profiling ' Dynamic
G : Scheduling
Performance : ﬁ
I
Model 1 Strategies:
@ : » Selective intra-op concur. ctrl.
Performance | » Co-running operations
Prediction Results > Hyper-hreading

Figure 6.2: Our runtime framework and its workflow. The notation “T'S” is the total
number of training steps.

under the constraints of available computing resources. Our runtime system also
leverages hyper-threading to allow multiple operations to share the same physical

cores to improve system throughout. In the following, we describe our design in detail.

6.2.2 Regression Model-Based Performance Model

Our first performance models, which are regression-based, predict performance
for 68 cases, each of which has a specific number of threads. For each case, we have a
performance model to make prediction (68 performance models in total). For each
prediction case, there is only one thread per core. We do not predict the cases with
multiple threads per core (i.e., using hyper-threading), because hyper-threading often
causes performance slowdown, when running a single operation.

Among the 68 prediction cases, 34 of them have at most one thread in each tile.
In other words, those 34 cases do not have any cache sharing between threads. The
remaining 34 cases have either two threads or no threads in each tile. In other words,
those 34 cases have cache sharing between threads. For those 34 cases, we only use
even number of threads. We do not consider odd number of threads, because that
makes some tile have only one thread, causing load imbalance between tiles.

Note that we use 68 performance models to predict 68 cases. We do not try to
build a single model to predict performance of the optimal case (the case with the
shortest execution time), because the runtime system needs to know the performance
of many cases to decide which operations to co-run. We also do not try to build a
single model to predict performance of 68 cases, because of the complexity of model
training and low prediction accuracy (as low as 25% according to our study).

Each performance model collects a set of workload features as model input, using

91

a few training steps. We consider thread affinity while collecting features. Thread
affinity decides the binding between threads and cores. For those threads with large
data sharing, we want to bind them into the same tile, such that those threads can
reuse data in the L2 cache of the tile. Given the number of threads per tile and total
number of threads to run an operation, different thread affinity can result in different
performance. Our model aims to predict performance with the best thread affinity.

When running operations with a specific number of threads and measuring the
execution times of those operations, we carefully choose which two threads should
share a tile. In particular, we put the threads with continuous IDs into the same
tile. For example, threads 1 and 2 share a tile, and threads 3 and 4 share a tile.
This method is based on the following observation: The multi-threading mechanism
(i.e., OpenMP) used in TensorFlow on KNL is implemented in the Intel MKL-DNN
library, and this mechanism parallelizes operations by assigning iterations of the major
computation loop to threads in order, and neighbor iterations tend to access the same
data set, hence the threads with continuous IDs that work on the neighbor iterations
tend to have data sharing.

The above method provides a lightweight and practical solution to enforce thread
affinity for best performance. There are other solutions that involve compiler and
runtime analysis [I80], but they are expensive.

Feature Selection. We use performance events collectible by hardware counters,
and the execution time of the operation, as features. In total there are 27 features.

On KNL, there are 26 performance events collectible by hardware counters.
Using all of them as features is problematic due to the following reasons. First,
those performance events cannot be collected at the same time. We need at least
four training steps to collect those events separately, which increases the number of
training steps for profiling. Second, some features are not informative, discriminating
and independent. For example, the number of branch instructions and number of
conditional branch instructions are correlated and redundant, and should not be
selected together.

We employ the decision tree estimator to select features. We choose four features:
number of CPU cycles, number of last level cache misses, number of last level cache ac-
cesses and number of level 1 cache hits. We also normalize the numbers of performance

events by the total number of instructions to make the feature values independent of

92

Table 6.4: Prediction accuracy of a set of regression models.

#Sample (N) | Metrics | Gradient Boosting | K-Neighbors | TSR | OLS | PAR
1 Accuracy 61% 56% 37% | 2% | 18%

R? 0.961 0.818 0.779 | 0.981 | 0.196

4 Accuracy 57% 67% 17% | 21% | 14%

R? 0.957 0.592 0.539 | 0.951 | 0.175

3 Accuracy 51% 56% 26% | 31% | 18%

R? 0.972 0.589 0.965 | 0977 | 0.177

16 Accuracy 34% 26% 13% | 14% | 1%

R? 0.959 0.585 0.852 | 0.892 | 0.159

total number of instructions. The normalization makes the performance model usable
for workloads with different number of instructions.

Feature collection. We collect features using N sample cases. Each sample case
uses a specific number of threads to run a training step. All operations in this training
step use the same number of intra-op parallelism. In the training step, we run the
operations in serial to avoid performance interference among multiple operations and
ensure accuracy of feature collection.

We choose sample cases by evenly sampling the search space of possible intra-op
parallelisms with the consideration of cache sharing. Using those sample cases is
meant to be representative of all cases.

To decide the number of sample cases (N), we change N to study its impact on
modeling accuracy. The results are summarized in Table [6.4f The results reveal that
N has a significant impact on modeling accuracy, but a large N is not helpful for
improving modeling accuracy. Also, using a large N can cause large runtime overhead,
because of frequent counting performance events for a large number of operations. In
our test with ResNet-50, when N = 16, the runtime overhead is up to 20%.
Regression models. We experiment with ten regression models and compare their
accuracy, including random forest, k-nearest neighbors, gradient boosting, e-support
vector machine regressions (e-SVR) with linear, poly and RBF kernels, decision tree,
Bayesian automatic relevance determination (ARD), ordinary least squares (OLS),
passive aggressive regression (PAR), multiple layer perceptron (MLP) with sgd, lbfgs
and adam kernels and Theil Sen Regression (TSR).

Training Data Set. For training data set, we collect operation information from
three common NN models with TensorFlow (particularly ResNet-50 with CIFAR-10
dataset, DCGAN [125] with MNIST dataset and Inception-v3 with ImageNet dataset.

To increase training data set, we vary batch size from 16 to 256. When we run those

93

operations in the three NN models , we develop scripts to run them as standalone
operations, similar to what we do in the motivation examples (Section [6.1)).
Model Testing. We test model accuracy with DCGAN. Table [6.4] shows the results.

We use two metrics, modeling accuracy and R? (the coefficient of determination). The

modeling accuracy is defined as 1 — n% > where n; is the size of the test data

set, and g; and y; are the predicted and actual execution times, respectively.

Table [6.4] shows that the regression-based performance models do not present
good accuracy for the selection of operation concurrency. Using the most accurate
regression model (k-neighbors) to direct NN model training (ResNet-50 in particular),
we have performance loss (30%).

We attribute those prediction inaccuracy to possible inaccuracy in hardware coun-
ters to collect performance events. Using hardware counters can be inaccurate. Fur-
thermore, the regression model-based performance models are architecture-dependent.
The regression models need to be re-trained on a platform with different hardware
counters.

Because of the above reasons, we propose to use a hill climbing algorithm to

direct the selection of intra-op parallelism for operations.

6.2.3 Hill Climbing Algorithm-Based Performance Model

We describe our hill climbing algorithm as follows. Similar to the regression-based
performance models, we use N training steps to run operations in serial with different
number of threads. In particular, we first use one thread to run each operation and
measure execution time in one step. Then, we increase the number of threads by
x (named as interval) to run each operation and measure its execution time. By
increasing the number of threads, the execution time can decrease. We further to
increase the number of threads by x in the following steps, until one of the following
two cases happens: (1) the execution time increases; (2) we reach the maximum
number of cores to run threads. If (1) happens, then we stop changing the number of
threads for this operation and claim that we find the best number of threads to run
the operation in the last time step. If (2) happens, then the best number of threads
to run the operation is the maximum number of cores.

We consider thread affinity in the above hill climbing algorithm. In particular,

given a specific number of threads to run an operation, we run the operation twice

94

Table 6.5: Performance prediction accuracy for four NN models based on the hill
climbing-based performance model.

Intervals
Models 2 4 8 16
ResNet-50 | 98.13% | 95.45% | 83.42% | 31.12%
DCGAN 97.16% | 94.43% | 51.54% | 10.14%
Inception-v3 | 97.91% | 94.22% | 73.21% | 21.21%
LSTM 95.56% | 90.45% | 41.34% | 11.03%

with two training steps: one step with cache sharing between threads, and the other
without cache sharing between threads.

The output of the above hill climbing algorithm includes not only the shortest
execution time and corresponding number of threads, but also the execution time of
those sampling cases in the N training steps. To predict the performance of those cases
that are not tested in the N steps, we simply use linear interpolation. For example, if
we measure the execution time of using one and four threads for an operation (z = 3
in this example), then the execution time of using two and three threads will be
approximated based on a linear interpolation between the execution times of using
one and four threads.

N (the number of training steps to run sample cases) is related to x. Assuming
that the maximum number of cores is C, then N is at most C'/z x 2 (we have “2”,
because we consider both cache-sharing and no-cache-sharing cases.)

Performance prediction accuracy. We run ResNet-50, DCGAN, Inception-v3
and LSTM. and use the hill climbing algorithm-based performance model to predict
performance of those cases not executed in the N steps. We change = from 2, 4, 8 to
16. Table shows the prediction accuracy. The prediction accuracy is the average
prediction accuracy for all operations. In general, we achieve very high prediction
accuracy (up to 98.13% with x = 2 and 95.45% with = = 4), much higher than
regression model-based performance models (Section [6.2.2)).

Discussion. Using the hill climbing algorithm has two potential problems.
First, the “shortest execution time” found by the hill climbing algorithm may be a
“local optimum” solution, not a “global optimum” solution. However, after extensive
evaluation of operation performance (1025 operations in four NN models) with different
number of threads, we observe that the local optimum is always the global optimum.
As the number of threads changes, the variance of execution time is shown as a convex

function.

95

Second, if the interval x is large, it is possible that the hill climbing algorithm
may skip the optimum. For example, assuming that the hill climbing algorithm has
tested the case of eight threads, x = 4, and the optimum is the case of 10 threads,
then the hill climbing algorithm will only test the case of 12 threads and skip the
optimum. The case of 12 threads is incorrectly selected as the optimum. However,
our evaluation reveals that the optimum found by the hill climbing is pretty close
to the real optimum. With the evaluation of four NN models (ResNet-50, DCGAN,
Inception-v3 and LSTM) and = = 4, the performance difference between the two
optimums is less than 2%.

In conclusion, the performance model based on hill climbing is a practical and
effective approach for performance profiling and prediction. Comparing with the
regression model-based performance models, the hill climbing has the following advan-
tages: (1) No need of performance model training; (2) architecture independence; (3)
no need of considering operation characteristics, hence can accommodate any future

change of operations in TensorFlow; and (4) better accuracy.

6.2.4 Runtime Scheduling

The runtime decides (1) intra-op parallelism for each operation, and (2) which
operations to co-run. The existing runtime system in TensorFlow employs a first-in-
first-out policy to schedule operations: The operations that are ready to run are simply
executed in the order they put into the operation queue. All operations use the same
intra-op parallelism and inter-op parallelism defined by the user before the training
starts. Such scheduling strategy loses performance without sufficient consideration of
operation scalability and hardware utilization. Our runtime avoids this problem and
schedules operations based on the following strategies.

Strategy 1: Deciding intra-op parallelism for individual operations
based on the performance model. After running the hill climbing algorithm in
the first few steps, the runtime runs each instance of each operation using the number
of threads that can lead to the shortest execution time. This indicates that different
operations may use different number of threads; This also indicates that different
instances of an operation with different input data sizes may also use different numbers
of threads.

Strategy 2: Avoiding frequent change of operation concurrency. In

96

practice, Strategy 1 might not lead to better performance than the execution with
the default TensorFlow configuration. The reason is because of frequent change of
operation concurrency, which causes cache thrashing and large thread management
overhead (e.g., thread spawning or binding to cores). In Strategy 2, the runtime avoids
frequent change of operation concurrency. In particular, the operation, no matter
what input data size it uses, always use the same number of threads, but different
operations can still use different number of threads. The number of threads to run
the operation is determined by the operation instance with the largest input data size
(the most time-consuming instance), such that the execution time of this operation
instance is the shortest.

Strategy 3: Co-running operations to maximize hardware utilization.
To decide which operations should co-run and how they should co-run, we use the
following algorithm. For any operation ready to run, we use three different numbers
of threads as candidates to run the operation (The “three” is an empirical number).
The three candidates should be the most performant ones (i.e., the ones with the
shortest execution times). Whenever some physical cores are idling, either because
an operation is just finished or because we just start the training, we examine those
operations ready to run. For each of those operations, we check if any of its three
candidates can fit into the idling cores without decreasing system throughput. We
decide whether system throughput will be decreased by ensuring that the candidate
does not take longer execution time than ongoing operations in busy cores.

For example, an operation ready to run has three candidates, which are (1) using
18 threads (no cache sharing) that takes 1.5 seconds; (2) using 20 threads (no cache
sharing) that takes 1.3 seconds; and (3) using 16 threads (no cache sharing) that takes
2.1 seconds. We have 20 idling cores, and the remaining 48 cores run an ongoing
operation that needs 1.9 seconds to finish. We choose the candidate (1) to co-run
with the ongoing operation, because it takes shorter execution time than the ongoing
operation (1.5 vs. 1.9 seconds), and can fit into the 20 idling cores. We do not use
20 threads to fit into the 20 idling cores, because using 18 threads can release two
idling cores to run another operation and we want to maximize operations co-running
to increase system throughput. An argument to support using 20 threads is that we
finish the operation earlier and then run another operation. However, according to our

experience, maximizing operations co-running (using 18 threads) is helpful to system

97

throughput and hence more beneficial for performance. Note that the above execution
times for operations are predicted based on the performance model.

If we cannot find any operation that can fit into the idling cores without decreasing
system throughput, we choose the most time-consuming operation to run.

Strategy 3 should not conflict with Strategy 2. If the number of threads to run
an operation based on Strategy 3 is quite different from the number of threads chosen
by Strategy 2 (the difference in the number of thread is larger than 2 and “2” is an
empirical value), then we will use the number of threads chosen by Strategy 2 to run
the operation. This method avoids disruptive changes to intra-op parallelism for each
operation.

Strategy 3 is lightweight and can make a quick decision on how to co-run operations,
such that the runtime overhead is small. Based on our profiling on four neural
networks (ResNet-50, DCGAN, Inception-v3 and LSTM), we seldom have more than
five operations ready to run. Hence, Strategy 3 does not need to explore a lot of
operations to make the decision.

Strategy 4: Leveraging hyper-threading to run multiple operations.
Some scalable operations can take all 68 cores and never allow any operation to co-run.
However, we find that running small operations using hyper-threading along with the
time-consuming, scalable operations can be beneficial for performance. This means
that the small operations share physical cores with the time-consuming operations,
enabling another type of co-run.

At runtime, when the runtime finds an operation using 68 cores, the runtime then
tries to co-run small operations. The small operations are defined as those operations
that have shortest serial-execution time in the operation-ready queue.

Putting all together. The runtime uses Strategies 1-2 to decide the number
of threads to run for each operation based on the performance model. This can be
done right after running the hill climbing algorithm in the first few training steps (the
profiling steps). After that, the runtime decides how to co-run operations based on
Strategies 3-4. The runtime repeatedly uses the four strategies until all operations are
finished. Note that to minimize runtime overhead, some decisions based on Strategy 3
to co-run operations can be reused without repeatedly running Strategy 3.

Discussion. Our performance model is used to predict performance for individual

operations, and does not capture performance interference between operations when

98

co-running them. Hence, when we use the performance model to direct operations to
co-run, the performance loss of individual operations can be unexpected low because
of performance interference. Our runtime can record such cases and avoid co-running
such operations in the future train steps. In practice, we do not find significant

performance slowdown in individual operations when co-running them.

6.3 Experiment Setup

6.3.1 Training Models, Data Set and Framework

We employ CIFAR-10, MNIST, ImageNet and PTB training dataset for ResNet-
50, DCGAN, Inception-v3 and LSTM respectively. The batch sizes of ResNet-50,
DCGAN, Inception-v3 and LSTM are 64, 64, 16 and 20, respectively. We adopt
TensorFlow (v1.9) as our NN training framework. We use the implementation of
ResNet-50, Inception-v3 and LSTM from the TensorFlow software package [181] and
DCGAN from [I82]. In TensorFlow, the default intra-op and inter-op parallelisms
are set as the number of logical cores of the hardware platform (272 in KNL). As
discussed in Chapter [6.1] the TensorFlow performance guide recommends to set the
inter-op parallelism as the number of sockets (which is one in our platform) and set the
intra-op parallelism as the number of physical cores, which is 68 in our platform. Since
the performance of the TensorFlow default configuration is much worst (more than 10
times slower) than the recommended configuration from the TensorFlow performance
guide, we use the recommended configuration as the baseline in our evaluation. The

performance with the recommended configuration is annotated as “Recommendation”

in Figure [6.3] and Table [6.6]

The performance reported in this chapter is the execution time of one training
step. Recall that the performance of one training step remains stable across training
steps, hence the execution time of one training step is good for performance evaluation.
In addition, there is no accuracy loss in NN models with our runtime, because our
runtime does not make any change to the input data sizes of operations, does not
change any NN model parameters, and does not violate any dependency between

operations.

99

6.3.2 Hardware Platform

We use a machine with an Intel Knights Landing (KNL) processor (Xeon Phi
7250) at the Cori supercomputer at Lawrence Berkeley National Lab as our test
platform. Section [6.1] has more details for KNL.

6.3.3 Controlling Intra-op Parallelism

On Intel KNL, TensorFlow uses operations implemented in both MKL-DNN and
Eigen. Dynamically changing intra-op parallelism for those operations implemented
in the Eigen causes large runtime overhead (larger than 10%), because the Eigen
decomposes an operation into a large number of tasks, and changing intra-op paral-
lelism of an operation causes frequent task-pushing into and task-popping out of a
queue associated with each thread. MKL-DNN uses OpenMP threads to parallelize
operations, and there is negligible overhead to change intra-op parallelism for those
operations implemented in MKL-DNN. Hence, in our evaluation, we only change
intra-op parallelism for those operations implemented in MKL-DNN. Those operations
take more than 70% of total NN training time.

To enable dynamic change of intra-op parallelism for a few operations (e.g.,
batch_normalization in DCGAN), we have to make small changes to the operation
implementation. For example, we have to allocate a larger memory space for some
variables during operation initialization. However, the changes are minor and have no
impact on operation performance.

In general, the implementation of our runtime incurs limited overhead (less than
1%). Also, the number of profiling steps is small (less than 0.05% of total training
steps). Hence, the profiling overhead is negligible.

6.4 Evaluation

Figure [6.3]d compares the performance of our runtime system with that of the
recommended TensorFlow configuration (labeled as “recommendation”) and of manual
optimization. For manual optimization, we manually change intra-op and inter-op
parallelisms uniformly enforced on all operations, aiming to find the best configuration.
The manual optimization is not a scalable solution, because we have to exhaustively

test every possible combination of intra-op and inter-op parallelisms to find the best

100

mRecommendation = Applying Strategies 1 and 2 u Applying Strategies 1 and 2 = Applying Strategy 3

15 ¢
A 1.35 125

11.02 11.02 1 1 1 1
cl e 1 1k
212
|2

o 05 05 |
0 0
ResNet-50 DCGAN Incepiton-v3 LSTM ResNet-50 DCGAN Incepitonb&TM
(a) Applying Strategies 1 and 2 (b) Applying Strategy 3

m Recommendation @ Manual Optimization = Our Runtime

m Applying Strategy 3 Applying Strategy 4
1.43

151 15

1 1.04

g 1F

he}

Q

()

& 05t 05 |
0 0

ResNet-50 DCGAN Incepiton-v3 LSTM
(c) Applying Strategy 4 (d) Our Runtime

Better

ResNet-50 DCGAN Incepiton-v3 LSTM

Figure 6.3: Quantifying the contribution of the four strategies. Comparing the perfor-
mance of our runtime, manual optimization, and the recommendation by TensorFlow.

configuration.
Figure [6.3]d reveals that our runtime leads to the best performance in all tests.

Our runtime performs at least 17% (Inception-v3) and up to 49% (ResNet-50) better
than the recommendation. Our runtime performs even better (at least 2%) than the
manual optimization for three NN models (ResNet-50, DCGAN and LSTM), and
performs similar (2% worse) to the manual optimization (Inception-v3).

The above results demonstrate the superior performance of our runtime system.
To further understand the performance contributions of four runtime strategies, we

apply them one by one. The results are shown in Figure [6.3]a-Figure [6.3]c.

6.4.1 Applying Concurrency Control for Individual Opera-

tions

Figure [6.3] shows that applying Strategies 1 and 2 alone, we have 14% performance
improvement for LSTM, 12% for DCGAN and 2% for ResNet-50 and Inception-v3.
Table[6.6]shows the execution times of the top five most time-consuming operations

of four NN models with the recommended TensorFlow configuration and with Strategies

101

1 and 2 in place. The table reveals that we have better performance for all operations,
up to 34% performance improvement.

Some operations do not have performance improvement after applying Strategies
1 and 2, however these operations (e.g., Conv2D in ResNet-50) with our runtime
can use less number of threads than with the recommendation, while achieving the
same performance. Using less number of threads introduces opportunities to co-run

operations.

6.4.2 Applying Operations Co-running

To isolate the effects of co-running operations from Strategy 4, we apply Strategy
3 after using Strategies 1 and 2 without Strategy 4.

Figure [6.3]b shows the results. The performance reported in the figure is normal-
ized by the performance of applying Strategies 1 and 2. By using Strategy 3, ResNet-50
achieves 35% performance improvement. LSTM achieves 25% performance improve-
ment. DCGAN and Inception-v3 achieve 15% and 7% performance improvement,

respectively.

6.4.3 Applying Hyper-threading

To isolate the effects of Strategy 4 from other strategies, we apply Strategy 4
after applying Strategy 3 (this implicitly indicates that we also apply Strategies 1 and
2).

Figure [6.3]c¢ shows the results. The performance reported in the figure is nor-
malized by the performance of applying Strategies 3. ResNet-50, DCGAN, and
Inception-v3 achieve 8%, 4%, and 7% performance improvement, respectively. LSTM
has no performance improvement, because almost no operation in LSTM needs all of
cores to achieve best performance, hence there is few opportunity to apply Strategy 4.

To further study the effectiveness of Strategy 4, we record the number of co-
running operations along with the NN training. In particular, whenever there is an
operation finished or launched, we record the number of co-running operations at the
moment. Finishing or launching an operation is an event. Figure shows the number
of co-running operations whenever an event happens. There are a large number of
events (sometimes millions of events), in just one training step. Presenting the number

of co-running operations for all events makes the figure very intensive and difficult

102

Table 6.6: Performance improvement of the top five most time-consuming operations
in four NN models by recommendation and by applying Strategies 1 and 2. The
performance baseline for calculating speedup is the performance with the configura-
tion recommended by the TensorFlow programming guide (68 threads for intra-op
parallelism and 1 for inter-op parallelism).

Operations Execution Time (ms) Speedup
Recommendation \ Applying Strategies 1 and 2
ResNet-50
Conv2DBackpropFilter 158 146 1.08
InputConversion 131 122 1.07
Tile 107 105 1.02
Mul 103 100 1.03
ToTf 79 78 1.01
Inception-v3
AvgPool 759 730 1.04
Tile 539 532 1.01
Conv2DBackpropFilter 479 475 1.01
MaxPooling 455 422 1.08
InputConversion 416 413 1.01
DCGAN
Conv2DBackproplnput 164 144 1.14
Conv2DBackpropFilter 133 110 1.21
ApplyAdam 84 72 1.17
BiasAddGrad 26 23 1.17
FusedBatchNorm 15 14 1.03
LSTM
SparseSoftmaxCross 11.71 8.76 1.34
BiasAddGrad 2.03 1.98 1.03
Mul 1.36 1.09 1.25
AddN 1.02 0.87 1.17
MatMul 0.95 0.93 1.02

103

2
S 4 5 THTT T [] NN
® 4
2
e 2 1
g 1 1 ’
Q2
; 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Event ID Event ID Event ID
(a) ResNet-50 after applying Strategy 3 (b) DCGAN after applying Strategy 3 (c) Inception-v3 after applying Strategy 3
2
$ 4 5 W T TR It
©
£ s :
S, 3 2
s 2
3 1 1
-1 1
g 0 0 | | 0‘
z 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Event ID Event ID Event ID
(d) ResNet-50 after applying Strategy 4 (e) DCGAN after applying Strategy 4 (f) Inception-v3 after applying Strategy 4

Figure 6.4: The variance of the number of co-running operations along with the NN
model training. The figures (a), (b) and (c¢) do not have Strategy 4 (but have Strategy
3); The figures (d), (e) and (f) have Strategy 4 in place. The red lines in the figures
are the inter-op parallelism recommended by TensorFlow.

to read. Hence, we present the number of co-running operations for 6000 events in
Figure 6.4 The events happen in the middle of one step. Figure does not show the
results for LSTM, because there is no change in co-running operations after applying
Strategy 4.

Figure[6.4]shows that with Strategy 4 in place, the number of co-running operations
is larger than that without Strategy 4 (but with Strategy 3). The average number of
co-running operations for 6000 events with Strategy 4 in place for three NN models
are 1.89, 2.04, and 1.74, while without Strategy 4 (but with Strategy 3), the average
number is 1.61, 1.62, and 1.52. Hence, Strategy 4 enables a larger number of co-running
operations.

In general, we notice both Strategies 3 and 4 can dynamically change the number

of co-running operations, instead of fixing the number of inter-op parallelism as in the

traditional TensorFlow (shown as red lines in Figure [6.4).

6.4.4 Putting all together.

Figure [6.3ld shows the performance after applying all strategies together and
compares it with the performance of the recommendation and manual optimization.
We observed that ResNet-50 achieves the largest performance improvement (49%)
among the four NN models. Such a large performance improvement largely comes from

applying Strategy 3. Many operations in ResNet-50 are not scalable, which brings a lot

104

of opportunities to apply Strategy 3 to co-run operations. Furthermore, ResNet-50 has
many small operations which can run together with those time-consuming operations,

by applying hyper-threading (Strategy 4).

6.4.5 Comparing with the manual optimization.

Figure [6.3ld compares the performance of the manual optimization and our
runtime. We observed that the performance of ResNet-50, DCGAN and LSTM
by our runtime can achieve 8%, 7% and 2% performance improvement than the
manual optimization, respectively. Our experiments show that for ResNet-50, manual
optimization sets intra-op and inter-op parallelisms as 16 and 4. For DCGAN, manual
optimization sets them as 34 and 2. For LSTM, manual optimization sets them as 2
and 2.

For Inception-v3, our runtime performs 2% worse than the manual optimization.
The manual optimization sets intra-op and inter-op parallelisms as 68 and 2, respec-
tively. Such configuration is closing to the configurations chosen by our runtime for
most of operations. Hence our runtime performs similar to manual optimization. Our
runtime has slight performance loss (2%). We suspect that the slight performance

loss comes from changing intra-op parallelism across operations.

6.5 Related Work

6.5.1 Performance Optimization for Dataflow-based Frame-
works

Recent works explore performance optimization for dataflow-based frameworks [183)],
184, [185] (186, [178]. Mirhoseini et al. [183] [184] propose a method that first sched-
ules the operations to groups and then places those groups onto devices. Hafner et
al. [I85] allow the TensorFlow execution engine to parallelize computation to improve
training performance. Liu et al. [I78] propose a software and hardware co-design of
heterogeneous processing-in-memory system that schedules NN training operations
across compute resources to improve hardware utilization.

Our work is different from the existing efforts. We propose runtime schedul-
ing strategies that co-run operations to improve hardware utilization and system

throughput on manycore platforms. We also explore performance modeling to predict

105

performance of operations with various intra-op parallelisms, which is not explored in

the existing efforts.

6.5.2 Thread Concurrency Throttling

Previous work explores dynamic thread concurrency throttling to achieve the
optimal performance [187, 188, 189]. Pusukuri et al. [I88] develop a framework to
dynamically determine an appropriate number of threads that identifies near optimal
number of threads with OpenMP to achieve the optimal performance. Sanzo et al. [I87]
proposes a self-regulation approach that predicts the scalability of applications to
improve performance.

Our concurrency throttling approach differs from them, in that we not only study
concurrency for individual operations, but also study inter-op concurrency control by

co-running operations with various runtime scheduling strategies.

6.6 Summary

The new generation of ML frameworks such as TensorFlow and PyTorch embraces
a dataflow model and represents computation by a directed graph composed of
operations. Training an NN model based on such ML frameworks can generate a lot
of operations, which brings challenges to manage them for best performance. We
expect such challenges will be more pronounced in the future NN models. In this
work, we study how to automatically decide intra-op parallelism for each operation
and how to co-run operations to improve performance. We use a performance model-
driven approach to guide the runtime system to parallelize and schedule operations.
Guided by the performance model, we introduce a set of practical and effective
scheduling strategies. Applying the performance model and scheduling strategies to
the TensorFlow runtime, we achieve great performance improvement. Our work reveals
many opportunities to improve the performance of NN training through concurrency

control and operation scheduling.

Chapter 7

Conclusion

In this dissertation, we introduce a high performance SpTC algorithm to address
the above challenges based on the innovation of leveraging new data representation,
data structures and emerging HM architecture. We then present a high performance
framework for SpTC sequences, which is based on a set of novelty in data structures,
runtime techniques, and emerging Optane-based memory architecture. Also, we have
demonstrated a software/hardware co-design of a heterogeneous PIM framework for
high performance, memory-oriented and energy-efficient tensor-based NN training.
Finally, we present an end-to-end tensor-based runtime system for efficient concurrency
control and operation scheduling towards tensor-based NN training.

Future Work. Sparse tensor computations have inputs that include a majority
of zeroes. In order to minimize the inefficiency of storing and computing zero-valued
data, applications store only the nonzero data, with auxiliary data structures to search
for the locations of these values. As a result, sparse tensor computation often exhibits
unpredictable memory-access patterns that include indirection through the auxiliary
data structures. Hence, in many modern computer architectures, the performance of
sparse tensor computations is dominated by the movement of data across nodes and
memory hierarchy. However, it is challenging to achieve high-performance and efficient
data movement for sparse tensor computations, because of hardware heterogeneity
and high dimensionality.

In order to address the above challenges, I plan to design a framework on
heterogeneous memory and computing systems to optimize how sparse tensors are

organized in memory, how sparse tensor computations are structured to minimize the

106

107

movement of data, and how the correlation between computation and movement of
data makes the most efficient use of the heterogeneous hardware. The novel and most
significant aspects of my research agenda include: (1) a sparse tensor compression
technique that can be aware of and adaptive to features of diverse architectures to
increase performance and efficiency of sparse tensor computations; (2) a memory
manager to efficiently migrate sparse tensors in heterogeneous memories with the
consideration of memory properties (e.g., latency, bandwidth and capacity); and (3)
a runtime system to automatically schedule and optimize data- and computation-
dependency for sparse tensor computations.

It remains future work to investigate tensor computation in disaggregated data
centers. Cloud computing has become one of the most important aspects of how our
society operates today. Cloud computing is supported by many large data centers
around the world, each containing thousands of machines. Resource disaggregation
has recently been proposed as a means of improving data centers’ memory and proces-
sor utilization, energy efficiency, and reliability by physically separating computing,
memory, and storage resources into disaggregated components and connecting those
components via a network fabric. However, such a physical separation poses three
significant performance issues for tensor computations. First, when accessing disag-
gregated memory and storage resources frequently, there is a severe problem issue
because of the unawareness of data location and data transfer overhead among the
disaggregated resources via a network fabric. Second, because of the unique features
of tensor computations (e.g., high data dimensionality and varying memory access
patterns), existing approaches for disaggregated data centers that are tensor-agnostic
can easily cause severe spatial and temporal locality issues in disaggregated compute,
memory, and storage resources, and hence cause severe performance loss. Third,
diverse memory characteristics (e.g., asymmetric latency, bandwidth, capacity, and
persistency) in disaggregated memory resources incur significant performance loss
because existing approaches do not consider those diverse memory characteristics in
disaggregated data centers.

To address the performance issues, this future work aims to build tensor-aware,
in-network memory management for tensor computations in disaggregated data cen-
ters. In this research project, I will (1) exploit emerging programmable network

hardware (e.g., SmartNIC) in disaggregated data centers to facilitate performant

108

access to disaggregated resources connecting by a network fabric; (2) build unified
memory abstraction based on unique tensor characteristics at a datacenter scale,
where each disaggregated resource can access tensors effectively; (3) propose a scalable
disaggregated memory scheduler to manage memory migration across disaggregated
resources based on characteristics of diverse disaggregated memory types and runtime

memory statistics.

Bibliography

1]

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learning spatio-temporal
features with 3d residual networks for action recognition. In Proceedings of
the IEEE International Conference on Computer Vision Workshops, pages
3154-3160, 2017. [1]

Yoon Kim. Convolutional neural networks for sentence classification. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 17461751, 2014.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779-788, 2016.

Joon Hee Choi and S Vishwanathan. Dfacto: Distributed factorization of tensors.
In Advances in Neural Information Processing Systems, pages 1296-1304, 2014.

ol

Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Par-
cube: Sparse parallelizable tensor decompositions. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 521-536.
Springer, 2012.

Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos.
Parcube: Sparse parallelizable candecomp-parafac tensor decomposition. ACM
Transactions on Knowledge Discovery from Data (TKDD), 10(1):1-25, 2015.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus
Telgarsky. Tensor decompositions for learning latent variable models. Journal
of Machine Learning Research, 15:2773-2832, 2014.

Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. Marble: high-throughput pheno-
typing from electronic health records via sparse nonnegative tensor factorization.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 115-124, 2014.

Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You
Chen, Bradley A Malin, and Jimeng Sun. Rubik: Knowledge guided tensor

109

[17]

[18]

[19]

[20]

110

factorization and completion for health data analytics. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1265-1274, 2015. [I]

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018. [I]

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAl Blog,
1(8):9, 2019.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter
language models using gpu model parallelism. arXiv preprint arXiv:1909.080535,
2019. [

Nvidia data center deep learning product performance.
https://developer.nvidia.com/deep-learning-performance-training-inference.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing
of deep neural networks: A tutorial and survey. Proceedings of the IEFE,
105(12):2295-2329, 2017.

Tim Cramer, Dirk Schmidl, Michael Klemm, and Dieter an Mey. Openmp
programming on intel r xeon phi tm coprocessors: An early performance com-
parison. In Proc. Many Core Appl. Res. Community (MARC) Symp, pages
38-44, 2012. [I]

Matthew Curtis-Maury, Filip Blagojevic, Christos D Antonopoulos, and Dim-
itrios S Nikolopoulos. Prediction-based power-performance adaptation of mul-
tithreaded scientific codes. IEEE Transactions on Parallel and Distributed
Systems, 19(10):1396-1410, 2008.

TensorFlow Performance Guide. https://www.tensorflow.org/performance/
performance_guide!| [I} [6.1]

Andrzej Cichocki. Era of big data processing: A new approach via tensor
networks and tensor decompositions. CoRR, abs/1403.2048, 2014. , ,

Matthew Fishman, Steven R White, and E Miles Stoudenmire. The ITensor
software library for tensor network calculations. arXiv preprint arXiw:2007.14822,

2020. 2222 BN B33 AT A3T 4.4

Christoph Koppl and Hans-Joachim Werner. Parallel and low-order scaling
implementation of hartree-fock exchange using local density fitting. Journal of

chemical theory and computation, 12(7):3122-3134, 2016. , , ,

https://www.tensorflow.org/performance/performance_guide
https://www.tensorflow.org/performance/performance_guide

[21]

[22]

23]

[24]

[25]

[30]

[31]

111

Christoph Riplinger, Peter Pinski, Ute Becker, Edward F Valeev, and Frank
Neese. Sparse maps—a systematic infrastructure for reduced-scaling electronic
structure methods. ii. linear scaling domain based pair natural orbital coupled
cluster theory. The Journal of chemical physics, 144(2):024109, 2016. 2.2} [3.1]

A1 B4

Lingjie Li, Wenjian Yu, and Kim Batselier. Faster tensor train decomposition
for sparse data. arXiv preprint arXiv:1908.02721, 2019. 2.2] [3.1] .1}

Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce Fontaine,
Yijian Zou, Jack Hidary, Guifre Vidal, and Stefan Leichenauer. Tensornetwork:
A library for physics and machine learning. arXiv preprint arXiv:1905.01330,

2019. 22 B1) A1) E4)

Edoardo Apra, Eric J Bylaska, Wibe A De Jong, Niranjan Govind, Karol
Kowalski, Tjerk P Straatsma, Marat Valiev, HJJ van Dam, Yuri Alexeev, James
Anchell, et al. Nwchem: Past, present, and future. The Journal of chemical

physics, 152(18):184102, 2020. [2.2] 2.2 B.1] 3.3.1]} [4.1] [4.3.1] [4.3.5]

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. Sparta: High-
performance, element-wise sparse tensor contraction on heterogeneous memory.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, 2021. [2.2] [4.1] 26} [4.2.2] [4.3.1], [£.3.2] [4.3.5]

T Daniel Crawford and Henry F Schaefer. An introduction to coupled cluster
theory for computational chemists. Reviews in computational chemistry, 14:33—

136, 2000. 2.2, {1}, B30 E3.5]

Tilman Esslinger. Fermi-hubbard physics with atoms in an optical lattice. Annu.

Rev. Condens. Matter Phys., 1(1):129-152, 2010. [2.2]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Samyam Rajbhandari, Yuxiong He, Olatunji Ruwase, Michael Carbin, and
Trishul Chilimbi. Optimizing cnns on multicores for scalability, performance and
goodput. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Karna, Daina Moise, Simon J Pennycook,
et al. Cosmoflow: Using deep learning to learn the universe at scale. In
Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, page 9. ACM, 2018.

Yang You, Aydin Bulug, and James Demmel. Scaling deep learning on gpu and
knights landing clusters. In Proceedings of the International Conference for High

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

112

Performance Computing, Networking, Storage and Analysis, page 9. ACM, 2017.
2.0}

Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas,
Md Mostofa Ali Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji,
Mikhail Smorkalov, et al. Deep learning at 15pf: supervised and semi-supervised
classification for scientific data. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, page 7.
ACM, 2017.

Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou. Optimizing
memory efficiency for deep convolutional neural networks on gpus. In Proceedings
of the International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), 2016.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. 2.3] 2]

Hans Vandierendonck, Polyvios Pratikakis, and Dimitrios S Nikolopoulos. Par-
allel programming of general-purpose programs using task-based programming
models. In 3rd USENIX workshop on Hot Topics in Parallelism (HotPar 2011).
USENIX Association, 2011.

Yuxiong Zhu, Borui Wang, Dong Li, and Jishen Zhao. Integrated thermal
analysis for processing in die-stacking memory. In Proceedings of the Second
International Symposium on Memory Systems, pages 402-414, 2016.

Jiajia Li, Jimeng Sun, and Richard Vuduc. HiCOQO: Hierarchical storage of
sparse tensors. In Proceedings of the ACM/IEEE International Conference on
High Performance Computing, Networking, Storage and Analysis (SC), Dallas,

TX, USA, November 2018. 3.1

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram
Krishnamoorthy, and P. Sadayappan. An efficient mixed-mode representation
of sparse tensors. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 19, pages
49:1-49:25, New York, NY, USA, 2019. ACM.

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P Sa-
dayappan. Load-balanced sparse mttkrp on gpus. In 2019 IEEFE International

[41]

[42]

[43]

[46]

[47]

[48]

[49]

113

Parallel and Distributed Processing Symposium (IPDPS), pages 123-133. IEEE,
2019. 1, B4 (L]

Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis.
SPLATT: Efficient and parallel sparse tensor-matrix multiplication. In Proceed-
ings of the 29th IEEE International Parallel € Distributed Processing Symposium,

IPDPS, 2015. B3] [13] B4}, 1]

Jiajia Li, Bora Ucar, Umit V. Catalytirek, Jimeng Sun, Kevin Barker, and
Richard Vuduc. Efficient and effective sparse tensor reordering. In Proceedings
of the ACM International Conference on Supercomputing, ICS ’19, pages 227-237,
New York, NY, USA, 2019. ACM. 3.1}

B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi. A unified optimization
approach for sparse tensor operations on GPUs. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER), pages 47-57, Sept 2017.

B4 E.1

Shaden Smith and George Karypis. Accelerating the Tucker decomposition
with compressed sparse tensors. In European Conference on Parallel Processing.

Springer, 2017. 3.1} [13]

Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Prakash Murali,
Shivmaran S. Pandian, Yogish Sabharwal, and Dheeraj Sreedhar. On optimizing
distributed Tucker decomposition for sparse tensors. In Proceedings of the 32nd
ACM International Conference on Supercomputing, ICS ’18, 2018.

Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc. Model-
driven sparse cp decomposition for higher-order tensors. In 2017 IEEE interna-
tional parallel and distributed processing symposium (IPDPS), pages 1048-1057.

IEEE, 2017. 1]

O. Kaya and B. Ugar. Parallel Candecomp/Parafac decomposition of sparse
tensors using dimension trees. SIAM Journal on Scientific Computing, 40(1):C99-

C130, 2018. BI]

Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard Vuduc, Elizabeth
Searles, Michael Thompson, and Jimeng Sun. SPARTan: Scalable PARAFAC?2
for large & sparse data. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 17, pages 375-384,
New York, NY, USA, 2017. ACM. 3.1},

Shaden Smith and George Karypis. A medium-grained algorithm for distributed
sparse tensor factorization. In Parallel and Distributed Processing Symposium

(IPDPS), 2016 IEEE International. IEEE, 2016. [3.1]

Jiajia Li, Yuchen Ma, Chenggang Yan, and Richard Vuduc. Optimizing sparse
tensor times matrix on multi-core and many-core architectures. In Proceedings

[55]

[56]

[57]

[58]

114

of the Sizth Workshop on Irreqular Applications: Architectures and Algorithms,
IA"3 ’16, pages 26-33, Piscataway, NJ, USA, 2016. IEEE Press. [3.1]

Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Bulug. High-
performance sparse matrix-matrix products on intel knl and multicore architec-
tures. In Proceedings of the 47th International Conference on Parallel Processing

Companion, pages 1-10, 2018. 3.1} [13] [19} B.4]

Rasmus Resen Amossen, Andrea Campagna, and Rasmus Pagh. Better size
estimation for sparse matrix products. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 406—419.

Springer, 2010. 3.1} 3] [3.4]

Edith Cohen. On optimizing multiplications of sparse matrices. In International
Conference on Integer Programming and Combinatorial Optimization, pages

219-233. Springer, 1996. [3.1]

Chong Peng, Justus A Calvin, Fabijan Pavosevic, Jinmei Zhang, and Edward F
Valeev. Massively parallel implementation of explicitly correlated coupled-
cluster singles and doubles using tiledarray framework. The Journal of Physical

Chemistry A, 120(51):10231-10244, 2016. 3.3.3 [4.1]

Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel. Cyclops
tensor framework: Reducing communication and eliminating load imbalance in
massively parallel contractions. In 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, pages 813-824. IEEE, 2013. B.1}, B.3.3] [3.4]

A1 B4

Samuel Manzer, Evgeny Epifanovsky, Anna I Krylov, and Martin Head-Gordon.
A general sparse tensor framework for electronic structure theory. Journal of

chemical theory and computation, 13(3):1108-1116, 2017. [3.1] B.4 1]

Evgeny Epifanovsky, Michael Wormit, Tomasz Kus, Arie Landau, Dmitry
Zuev, Kirill Khistyaev, Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and
Anna I Krylov. New implementation of high-level correlated methods using a
general block tensor library for high-performance electronic structure calculations.

Journal of computational chemistry, 34(26):2293-2309, 2013. k1]

Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page Placement in
Hybrid Memory Systems. In International Conference on Supercomputing (ICS),

May 2011. BT, B22) B 1)

H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu. Row
buffer locality aware caching policies for hybrid memories. In 2012 IEEE 30th

International Conference on Computer Design (ICCD), 2012. , 3.2.2 , ,
4.2, 2

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

115

Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen. Exploiting
Program Semantics to Place Data in Hybrid Memory. In PACT, 2015. B.1] 3.2.2]

B4 LI [A.2.2

Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-transparent
page management for two-tiered main memory. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12,

2017, pages 631-644, 2017. BT, B22 B4, (-1, (22 B4

Takahiro Hirofuchi and Ryousei Takano. Raminate: Hypervisor-based virtual-
ization for hybrid main memory systems. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pages 112-125, New York, NY,

USA, 2016. ACM. B, B22, B4 i

S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. Heteroos — os design
for heterogeneous memory management in datacenter. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA), pages

521-534, June 2017. B0} B.2.2} B4, 1} {-2-2}, {31} {.4]

K. Wu, Y. Huang, and D. Li. Unimem: Runtime Data Management on Non-
Volatile Memory-based Heterogeneous Main Memory. In International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, 2017.

Kai Wu, Jie Ren, and Dong Li. Runtime Data Management on Non-
Volatile Memory-Based Heterogeneous Memory for Task Parallel Programs.
In ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, 2018. 3.1} [3.2.2] 3.4} [4.1] [4.2.2] [4.4]

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nimble page
management for tiered memory systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, pages 331-345, New York, NY, USA, 2019.

ACM. B1B.2.2 B4 BT 2.2 A1

Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. Data
Tiering in Heterogeneous Memory Systems. In European Conference on Computer

Systems, 2016. [3.1], 3.2.2] .4, {.1] £.2.2]

Seongdae Yu, Seongbeom Park, and Woongki Baek. Design and Implementation
of Bandwidth-aware Memory Placement and Migration Policies for Heteroge-
neous Memory Systems. In International Conference on Supercomputing (ICS),

2017. B 322 BA BT 2.2

116

[68] Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition. ACM Transactions on Mathematical Software (TOMS),

4(3):250-269, 1978. [1] [13]

[69] John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in matlab:
Design and implementation. SIAM Journal on Matriz Analysis and Applications,
13(1):333-356, 1992.

[70] Richard Wilson Vuduc and James W Demmel. Automatic performance tuning

of sparse matrix kernels, volume 1. University of California, Berkeley Berkeley,
CA, 2003. [13]

[71] Wikipedia. Hash table. https://en.wikipedia.org/wiki/Hash_table, Dec 2020.

[72] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Bulug. Performance
optimization, modeling and analysis of sparse matrix-matrix products on multi-
core and many-core processors. Parallel Computing, 90:102545, 2019. [I9]

[73] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. High-performance and
memory-saving sparse general matrix-matrix multiplication for nvidia pascal
gpu. In 2017 46th International Conference on Parallel Processing (ICPP),
pages 101-110. IEEE, 2017. [I9, [3.4]

[74] Pham Nguyen Quang Anh, Rui Fan, and Yonggang Wen. Balanced hashing and
efficient gpu sparse general matrix-matrix multiplication. In Proceedings of the
2016 International Conference on Supercomputing, pages 1-12, 2016.

[75] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. Performance-
portable sparse matrix-matrix multiplication for many-core architectures. In 2017
IEEFE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 693-702. IEEE, 2017.

[76] Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Oded
Schwartz, Sivan Toledo, and Samuel Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific

Computing, 38(6):C624-C651, 2016. [19]

[77] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve
Swanson. An empirical guide to the behavior and use of scalable persistent

memory. In 18th USENIX Conference on File and Storage Technologies (FAST
20), 2020.

[78] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong Li, and Jishen Zhao.
Processing-in-memory for energy-efficient neural network training: A heteroge-
neous approach. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 655-668. IEEE, 2018. [3.2.2] B.4] [4.1]

117

[79] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nimble
Page Management for Tiered Memory Systems. In ASPLOS, 2019. [3.2.2] [3.3.5],
433l

[80] Shaden Smith, Jee W Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu,
and George Karypis. Frostt: The formidable repository of open sparse tensors

and tools, 2017.

[81] Evgeny Epifanovsky, Karol Kowalski, Peng-Dong Fan, Marat Valiev, Spiridoula
Matsika, and Anna I Krylov. On the electronically excited states of uracil. The
Journal of Physical Chemistry A, 112(40):9983-9992, 2008.

[82] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. ITensor: A
C++ library for efficient tensor network calculations. Available from https:

//github.com/ITensor/ITensor, August 2020. [3.3.3]

[83] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman
Amarasinghe. The tensor algebra compiler. Proc. ACM Program. Lang.,
1(OOPSLA):77:1-77:29, October 2017. |3.3.3]

[84] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Repository
of Nimble Page Management for Tiered Memory Systems in ASPLOS2019.
Available from https://github.com/ysarch-lab/nimble_page_management_

asplos_2019, July 2020.

[85] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Krish-
namoorthy, Ajay Panyala, Louis-Noél Pouchet, Atanas Rountev, and Pon-
nuswamy Sadayappan. A code generator for high-performance tensor contrac-
tions on gpus. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 85-95. IEEE, 2019. ,

[86] Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fabrice
Rastello, Atanas Rountev, and P Sadayappan. Analytical cache modeling and
tilesize optimization for tensor contractions. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,

pages 1-13, 2019. [3.4] [£4]

[87] Jinsung Kim, Aravind Sukumaran-Rajam, Changwan Hong, Ajay Panyala,
Rohit Kumar Srivastava, Sriram Krishnamoorthy, and Ponnuswamy Sadayappan.
Optimizing tensor contractions in ccsd (t) for efficient execution on gpus. In
Proceedings of the 2018 International Conference on Supercomputing, pages

96-106, 2018. 54} {4

[88] Pai-Wei Lai, Kevin Stock, Samyam Rajbhandari, Sriram Krishnamoorthy, and
Ponnuswamy Sadayappan. A framework for load balancing of tensor contraction
expressions via dynamic task partitioning. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,

pages 1-10, 2013. [3.4] A1}, 26| [£.4]

https://github.com/ITensor/ITensor
https://github.com/ITensor/ITensor
https://github.com/ysarch-lab/nimble_page_management_asplos_2019
https://github.com/ysarch-lab/nimble_page_management_asplos_2019

[39]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

118

Albert Hartono, Qingda Lu, Thomas Henretty, Sriram Krishnamoorthy, Huaijian
Zhang, Gerald Baumgartner, David E Bernholdt, Marcel Nooijen, Russell
Pitzer, J Ramanujam, et al. Performance optimization of tensor contraction
expressions for many-body methods in quantum chemistry. The Journal of
Physical Chemistry A, 113(45):12715-12723, 2009. [3.4]

Alexander A Auer, Gerald Baumgartner, David E Bernholdt, Alina Bibireata,
Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao, Robert Harrison, Sriram
Krishnamoorthy, Sandhya Krishnan, et al. Automatic code generation for many-
body electronic structure methods: the tensor contraction engine. Molecular

Physics, 104(2):211-228, 2006.

Edgar Solomonik, Devin Matthews, Jeff R Hammond, John F Stanton, and James
Demmel. A massively parallel tensor contraction framework for coupled-cluster
computations. Journal of Parallel and Distributed Computing, 74(12):3176-3190,

2014. B4, {4

So Hirata. Tensor contraction engine: Abstraction and automated parallel
implementation of configuration-interaction, coupled-cluster, and many-body
perturbation theories. The Journal of Physical Chemistry A, 107(46):9887-9897,

2003. B4, 4

Devin Matthews. High-performance tensor contraction without BLAS. CoRR,

abs/1607.00291, 2016. 3.4}

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Ten-
sorLy: Tensor learning in Python. CoRR, abs/1610.09555, 2018. ,

Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka. Tensor contractions with
extended BLAS kernels on CPU and GPU. In 2016 IEEE 23rd International
Conference on High Performance Computing (HiPC), pages 193-202, Dec 2016.

B4 E4

Daniel Kats and Frederick R Manby. Sparse tensor framework for implemen-
tation of general local correlation methods. The Journal of Chemical Physics,

138(14):144101, 2013. [3.4]

David Ozog, Jeff R Hammond, James Dinan, Pavan Balaji, Sameer Shende,
and Allen Malony. Inspector-executor load balancing algorithms for block-
sparse tensor contractions. In 2013 42nd International Conference on Parallel

Processing, pages 30-39. IEEE, 2013. 4.4

Ilia Sivkov, Patrick Seewald, Alfio Lazzaro, and Jiirg Hutter. DBCSR: A blocked
sparse tensor algebra library. arXiv preprint arXiv:1910.13555, 2019.
4.4

Thomas Hérault, Yves Robert, George Bosilca, Robert Harrison, Cannada
Lewis, and Edward Valeev. Distributed-memory multi-GPU block-sparse tensor

[100]

[101]

[102]

103]

104]

[105]

[106]

107]

108

[109]

[110]

119

contraction for electronic structure. PhD thesis, Inria-Research Centre Grenoble—

Rhone-Alpes, 2020. 3.4} 4.1} [£.4]

Ryan Levy, Edgar Solomonik, and Bryan K Clark. Distributed-memory dmrg via
sparse and dense parallel tensor contractions. arXiv preprint arXiw:2007.05540,

2020. 34, (1) {4

M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. Efficient and scalable
computations with sparse tensors. In High Performance Fxtreme Computing
(HPEC), 2012 IEEE Conference on, pages 1-6, Sept 2012. (3.4

Weifeng Liu and Brian Vinter. An efficient gpu general sparse matrix-matrix
multiplication for irregular data. In 2014 IEEFE 28th International Parallel and
Distributed Processing Symposium, pages 370-381. IEEE, 2014.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: scalable
hashing on persistent memory. arXw preprint arXiv:2003.07302, 2020.

Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. Sentinel:
Efficient tensor migration and allocation on heterogeneous memory systems for
deep learning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 598-611. IEEE, 2021. [4.1]

Jie Ren, Minjia Zhang, and Dong Li. HM-ANN: Efficient Billion-Point Nearest
Neighbor Search on Heterogeneous Memory. In Neurips, 2020. [4.0],

Linjian Ma, Jiayu Ye, and Edgar Solomonik. Autohoot: Automatic high-order
optimization for tensors. arXiv preprint arXiv:2005.04540, 2020.

Samuel Webb Williams. Auto-tuning performance on multicore computers.
University of California, Berkeley Berkeley, CA, 2008.

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay.
AIFM: High-Performance, Application-Integrated Far Memory. In Proceedings
of the Symposium on Operating Systems Design and Implementation, 2020.

Kai Wu, Jie Ren, and Dong Li. Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, page 31. IEEE Press, 2018. 4.3.7]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), pages 265-283,

2016. 4} (.33

[111]

[112]

[113]

[114]

[115]

[116]

[117]

118

[119]

[120]

120

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democ-
ratizing billion-scale model training. In USENIX Annual Technical Conference

(ATC), 2021.

Zhen Xie, Wengian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li. Md-hm:
Memoization-based molecular dynamics simulations on big memory system. In
Proceedings of the 35th ACM International Conference on Supercomputing, 2021.

44

Jie Ren, Kai Wu, and Dong Li. Exploring non-volatility of non-volatile memory
for high performance computing under failures. In 2020 IEEE International
Conference on Cluster Computing (CLUSTER), pages 237-247. IEEE, 2020.

Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur Mutlu,
Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. Panthera: Holistic memory
management for big data processing over hybrid memories. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, 2019. 4.4

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying
Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing
DRAM Footprint with NVM in Facebook. In Proceedings of the Thirteenth
FEuroSys Conference, 2018. 4.4

Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav
Pingali. Single machine graph analytics on massive datasets using intel optane
dc persistent memory, 2019.

Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren. Atmem: Adaptive
data placement in graph applications on heterogeneous memories. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and
Optimization, CGO 2020, 2020. [£.4]

R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,
Changwoo Min, and Sudarsun Kannan. Durable transactional memory can scale
with timestone. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems,
ASPLOS "20, 2020.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. Recipe: Converting concurrent dram indexes to persistent-
memory indexes. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 19, 2019. |4.4

Jie Liu, Jiawen Liu, Wan Du, and Dong Li. Performance analysis and character-
ization of training deep learning models on mobile device. In 2019 IEEE 25th

[121]

[122]

[123]

124]

[125]

[126]

[127]

[128]

[129]

[130]

121

International Conference on Parallel and Distributed Systems (ICPADS), pages
506-515. TEEE, 2019.

Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible, and comprehensive
bug detection for persistent memory programs. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 503-516, 2021.

Jiawen Liu, Zhen Xie, Dimitrios Nikolopoulos, and Dong Li. {RIANN}: Real-
time incremental learning with approximate nearest neighbor on mobile devices.
In 2020 {USENIX} Conference on Operational Machine Learning (OpML 20),
2020. 4.4

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. [5.1]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012. 5.1}, [5.3.3]

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. CoRR,

abs/1511.06434, 2015. .1} [5.3.3]

TensorBoard: Visualizing learning, https://www.tensorflow.org/programmers_gu

ide/summa ries_and_tensorboard. [5.1.1],

Intel, Vtune user’s guide, https://software.intel.com/en-us/get-started-with-

vtune/. [5.1.1]

Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,
Yu Wang, and Yuan Xie. PRIME: A novel processing-in-memory architecture
for neural network computation in ReRAM-based main memory. In Proceedings
of the 43rd International Symposium on Computer Architecture, pages 27-39,

2016. 11} -1} :24, [5:5}, F-5.1

Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. Neurocube: A programmable digital neuromorphic architec-
ture with high-density 3D memory. In Proceedings of the 43rd International
Symposium on Computer Architecture, pages 380-392, 2016. [5.1.1], 5.1.1], [5.4.3]
.51

Scott Boag, Parijat Dube, Benjamin Herta, Waldemar Hummer, Vatche Ishakian,
Jayaram K. R., Michael Kalantar, Vinod Muthusamy, Priya Nagpurkar, and
Florian Rosenberg. Scalable Multi-Framework Multi-Tenant Lifecycle Manage-
ment of Deep Learning Training Jobs. In Workshop on ML Systems at NIPS’17,
2017. BI.T]

[131]

[132]

[133]

[134]
[135]
[136]

[137]

138

[139)]

[140]

[141]

[142]

[143]

144]

122

MultiModel: Multi-task ~ machine learning across domains,
https://ai.googleblog.com/2017/06 /multimodel-multi-task-machine-
learning.html.

OpenCL. http://www.khronos.org/opencl/.

NVIDIA, TITAN Xp, https://www.nvidia.com /en-
us/geforce/products/10series/titan-xp/.

Openarc. https://ft.ornl.gov/research/openarc. |5.2.2]
Ipmacc compiler. https://github.com/lashgar/ipmacc.

OpenMP Forum. OpenMP Fortran application program interface, version 1.1.

http://www.openmp.org, 1999.

Hans van Halteren, Jakub Zavrel, and Walter Daelemans. Improving accuracy
in word class tagging through the combination of machine learning systems.
Computational linguistics, 27(2):199-229, 2001.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 469—

480, 2009. [5.2.4,5.3.2]

Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivaku-
mar Velusamy, and David Tarjan. Temperature-aware microarchitecture: mod-
eling and implementation. ACM Transactions on Architecture and Code Opti-

mization, 1(1):94-125, 2004.

Synopsys. Design compiler. https://www.synopsys.com/support/training/
rtl-synthesis/design-compiler-rtl-synthesis.html. [5.3.1}

Synopsys. Primetime. https://www.synopsys.com/support/training/

signoff/primetimel-fcd.html. |5.3.1]

HMCC. Hybrid memory cube specification 2.0. http://http://www.
hybridmemorycube.org/.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 190-200, New York, NY, USA, 2005.

James Reinders. Vtune performance analyzer essentials. Intel Press, 2005. {5.3.2),
0. 1]

http://www.khronos.org/opencl/
https://ft.ornl.gov/research/openarc
https://github.com/lashgar/ipmacc
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/signoff/primetime1-fcd.html
https://www.synopsys.com/support/training/signoff/primetime1-fcd.html
http://http://www.hybridmemorycube.org/
http://http://www.hybridmemorycube.org/

123

[145] Christian Szegedy, Vincent Vanhoucke, Sergey Toffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

p.3.3, [6.1.1]

[146] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329, 2014.

[147] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111-3119, 2013.

[148] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. Compu-
tational linguistics, 2010.

[149] Tensorflow, questions-words dataset, http://download.tensorflow.org/data/questions-
words.txt. [5.3.3]

[150] NVIDIA, GeForce GTX 1080 Ti, https://www.nvidia.com/en-
us/geforce/products/.

[151] NVIDIA CUDA. http://www.nvidia.com/cuda. [5.3.4]
[152] cudnn. https://developer.nvidia.com/cudnn. [5.3.4

[153] NVIDIA, Profiler user’s guide, http://docs.nvidia.com/cuda/profiler-users-
guide/.

[154] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. Ease.ml: Towards
multi-tenant resource sharing for machine learning workloads. Proc. VLDB
Endow., 11(5), 2018. [5.4.6

[155] Gabriel H. Loh, Nuwan Jayasena, Mark H. Oskin, Mark Nutter, David Roberts,
Mitesh Meswani, Dongping Zhang, and Mike Ignatowski. A processing-in-
memory taxonomy and a case for studying fixed-function PIM. In WoNDP,
pages 1-6, 2013. [5.5

[156] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled
instructions: A low-overhead, locality-aware processing-in-memory architecture.
In Proceedings of the 42Nd Annual International Symposium on Computer

Architecture, pages 336-348, 2015.

[157] Berkin Akin, Franz Franchetti, and James C. Hoe. Data reorganization in
memory using 3D-stacked DRAM. In Proceedings of the Annual International
Symposium on Computer Architecture, pages 131-143, 2015. [5.5]

[158] Lifeng Nai and Hyesoon Kim. Instruction offloading with HMC 2.0 standard:
A case study for graph traversals. In Proceedings of the 2015 International
Symposium on Memory Systems, pages 258-261, 2015. [5.5]

http://www.nvidia.com/cuda
https://developer.nvidia.com/cudnn

[159]

[160]

[161]

[162]

163

[164]

[165]

[166]

[167]

[168]

[169]

124

Yasuko Eckert, Nuwan Jayasena, and Gabriel H. Loh. Thermal feasibility of
die-stacked processing in memory. In WoNDP, pages 1-6, 2014. [5.5

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
scalable processing-in-memory accelerator for parallel graph processing. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture,

pages 105-117, 2015. 5.5 5.5.2

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. In-memory data parallel
processor. In Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
'18, pages 1-14, New York, NY, USA, 2018. ACM. [5.5]

Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. ISAAC:
A convolutional neural network accelerator with in-situ analog arithmetic in
crossbars. In Proceedings of the 43rd International Symposium on Computer

Architecture, pages 14-26, 2016.

Peiqi Wang, Yu Ji, Chi Hong, Yongqgiang Lyu, Dongsheng Wang, and Yuan
Xie. SNrram: an efficient sparse neural network computation architecture based
on resistive random-access memory. In Proceedings of the 55th Annual Design
Automation Conference, page 106. ACM, 2018.

Shaahin Angizi, Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. CMP-PIM:
an energy-efficient comparator-based processing-in-memory neural network ac-
celerator. In Proceedings of the 55th Annual Design Automation Conference,
pages 105-110. ACM, 2018.

Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. Neurostream: Scalable
and energy efficient deep learning with smart memory cubes. IEEFE Transactions
on Parallel and Distributed Systems, 29(2):420-434, 2018.

Fabian Schuiki, Michael Schaffner, Frank K. Giirkaynak, and Luca Benini. A
scalable near-memory architecture for training deep neural networks on large
in-memory datasets. arXiv, abs/1803.04783, 2018. [5.5.1

RISC-V: The free and open RISC instruction set architecture. https://riscv.
org/.

Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L. Greathouse,
Lifan Xu, and Michael Ignatowski. TOP-PIM: Throughput-oriented pro-
grammable processing in memory. In Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing, pages

85-98, 2014. [5.5.7]

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang
Lee, Sae Kyu Lee, José Miguel Hernandez-Lobato, Gu-Yeon Wei, and David

https://riscv.org/
https://riscv.org/

[170]

171]

[172]

[173]

174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

125

Brooks. Minerva: Enabling low-power, highly-accurate deep neural network
accelerators. In Proceedings of the 43rd International Symposium on Computer
Architecture, pages 267-278, 2016.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. In ISCA, pages

367-379. IEEE, 2016.

Hadi Esmaeilzadeh, Adrian Sampson, and Luis Ceze et al. Neural acceleration
for general-purpose approximate programs. In MICRO, pages 449-460. IEEE

Computer Society, 2012.

Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer
CNN accelerators. In MICRO, pages 1-12. IEEE, 2016.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. DaDianNao: A machine-learning supercomputer. In
IEEE/ACM International Symposium on Microarchitecture, 2014. |5.5.3

Minsoo Rhu, Natalia Gimelshein, and Jason Clemons et al. vDNN: Virtualized

deep neural networks for scalable, memory-efficient neural network design. In
MICRO, 2016. [5.5.3]

Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon,
and Stephen W Keckler. Compressing DMA engine: Leveraging activation
sparsity for training deep neural networks. In HPCA, pages 78-91, 2018.

Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady
Pekhimenko. Gist: Efficient data encoding for deep neural network training. In

ISCA, pages 1-14, 2018.

TensorFlow at NERSC. http://www.nersc.gov/users/data-analytics/
data-analytics-2/deep-learning/using-tensorflow-at-nersc/.

Jiawen Liu, Hengyu Zhao, Matheus Almeida Ogleari, Dong Li, and Jishen Zhao.
Processing-in-memory for energy-efficient neural network training: A heteroge-
neous approach. In Proceedings of the 51th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 1-14. ACM, 2018. [6.1.1]

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

Abdelhafid Mazouz, Denis Barthou, et al. Performance evaluation and analysis
of thread pinning strategies on multi-core platforms: Case study of spec omp
applications on intel architectures. In High Performance Computing and Simu-
lation (HPCS), 2011 International Conference on, pages 273-279. IEEE, 2011.

TensorFlow Models. https://github.com/tensorflow/models. m

http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/using-tensorflow-at-nersc/
http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/using-tensorflow-at-nersc/
https://github.com/tensorflow/models

[182]

[183)]

[184]

[185]

[186]

[187]

[188]

[189)]

126

A tensorflow implementation of Deep Convolutional Generative Adversarial
Networks. https://github.com/carpedm20/DCGAN-tensorflow. [6.3.]]

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen,
Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff

Dean. Device placement optimization with reinforcement learning. arXiv preprint
arXiv:1706.04972, 2017. [6.5.]]

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and Jeff
Dean. A hierarchical model for device placement. arXiv preprint arXiv:1406.3897,
2018.

Danijar Hafner, James Davidson, and Vincent Vanhoucke. Tensorflow agents:
Efficient batched reinforcement learning in tensorflow. CoRR, abs/1709.02878,
2017.

Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight: Optimizing device
placement for training deep neural networks. In International Conference on
Machine Learning, pages 1662-1670, 2018. [6.5.1

Pierangelo Di Sanzo, Francesco Del Re, Diego Rughetti, Bruno Ciciani, and
Francesco Quaglia. Regulating concurrency in software transactional memory:
An effective model-based approach. In Self-adaptive and self-organizing systems,
2013 1ieee Tth international conference on, pages 31-40, 2013. 6.5.2

Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan. Thread reinforcer:
Dynamically determining number of threads via os level monitoring. In Workload
Characterization (IISWC), 2011 IEEE International Symposium on, pages 116—

125. IEEE, 2011.

Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco Quaglia.
Machine learning-based self-adjusting concurrency in software transactional
memory systems. In Modeling, Analysis €& Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2012 IEEE 20th International Symposium
on, pages 278-285. IEEE, 2012. [6.5.2]

https://github.com/carpedm20/DCGAN-tensorflow

	Signature Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contributions

	Background
	Sparse Tensors
	Sparse Tensor Contraction
	Neural Network Training
	Dataflow-Based Machine Learning Framework
	Feasibility of Heterogeneous PIM Architecture
	Intel Optane DC Persistent Memory Module

	Sparta: Efficient and Parallel Sparse Tensor Contraction on Heterogeneous Memory Systems
	Motivation
	Design
	Sparse Tensor Contraction Algorithm
	Data Placement on Persistent Memory-based Heterogeneous Memory Systems

	Evaluation
	Evaluation Setup
	Overall Performance
	Performance Comparison to ITensor
	Thread Scalability
	Sparta on Heterogeneous Memory Systems

	Related Work
	Summary

	Athena: High-Performance Sparse Tensor Contraction Sequences on Heterogeneous Memory
	Motivation
	Design
	Algorithm Design
	Data Management on PMM-based Heterogeneous Memory Systems

	Evaluation
	Evaluation Setup
	Overall Performance
	Optimization Analysis
	Performance Comparison to ITensor
	Application in Chemistry

	Related Work
	Summary

	Processing-in-Memory for Energy-efficient Neural Network Training: A Heterogeneous Approach
	Motivation
	NN Training Characterization
	Software Design Challenges and Opportunities
	CPU vs. GPU – Where to Attach Heterogeneous PIMs?

	Design
	Heterogeneous PIM Architecture
	Programming Model for Heterogeneous PIM
	Runtime System Design
	Implementation

	Experimental Setup
	Simulation Framework
	Power and Area Modeling
	Workloads
	Real Machine Configurations

	Evaluation
	Execution Time Analysis
	Energy Consumption Analysis
	Comparison with Prior PIM-based NN Acceleration
	Sensitivity Study
	hLEvaluation of Software Impact
	Mixed Workloads Analysis
	Energy Efficiency Analysis

	Related Work
	Processing-in-memory for Machine Learning
	Processing-in-memory for General Applications
	Other Accelerator Optimization for Machine Learning.

	Summary

	Runtime Concurrency Control and Operation Scheduling for High Performance Neural Network Training
	Motivation
	Performance Variance with Different Concurrency
	Impact of Input Data Size
	Co-Running Operations

	Design
	Overview
	Regression Model-Based Performance Model
	Hill Climbing Algorithm-Based Performance Model
	Runtime Scheduling

	Experiment Setup
	Training Models, Data Set and Framework
	Hardware Platform
	Controlling Intra-op Parallelism

	Evaluation
	Applying Concurrency Control for Individual Operations
	Applying Operations Co-running
	Applying Hyper-threading
	Putting all together.
	Comparing with the manual optimization.

	Related Work
	Performance Optimization for Dataflow-based Frameworks
	Thread Concurrency Throttling

	Summary

	Conclusion
	Bibliography

