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ABSTRACT: Using four-dimensional scanning transmission
electron microscopy, we demonstrate a method to visualize grains
and grain boundaries in WSe2 grown by metal organic chemical
vapor deposition (MOCVD) directly onto silicon dioxide. Despite
the chemical purity and uniform thickness and texture of the
MOCVD-grown WSe2, we observe a high density of small grains
that corresponds with the overall selenium deficiency we measure
through ion beam analysis. Moreover, reconstruction of grain
information permits the creation of orientation maps that
demonstrate the nucleation mechanism for new layers−triangular
domains with the same orientation as the layer underneath induces
a tensile strain increasing the lattice parameter at these sites.

KEYWORDS: 4D-STEM, 2D materials, grain boundaries, MOCVD, orientation, strain

As the silicon-based industry is reaching scaling and
performance limits, there has been an increasing emphasis

on research into promising two-dimensional (2D) semi-
conducting materials, such as layered transition metal
dichalcogenides (TMDs),1,2 in addition to new devices
envisioned in the nanophotonics3 and quantum4−6 application
spaces. For example, 2D MoS2, WS2, and WSe2 are excellent
candidates for room-temperature electronic, photonic, and
valleytronic devices3,7,8 as they exhibit high photocurrent and
carrier generation with the decrease in the number of layers,
while retaining functionality to external fields such as strain.9

At present, atomically thin 2D TMDs materials for studies of
fundamental physics are obtained by exfoliation from high-
quality bulk crystals, or grown by the use of powder
vaporization albeit with higher carrier concentrations and
point defects, while the focus for industrial relevance centers
on metal organic chemical vapor deposition (MOCVD).10,11

However, while these techniques reproduce films with high
uniformity and scalability, the lateral semiepitaxial growth from
each nucleation site is prone to the formation of structural
defects. For example, the coalescence of grains during lateral
growth results in the formation of a polycrystalline film of
stitched grain boundaries (GBs) ranging from the nanometer
to centimeter scale in size12−15 which are usually difficult to
identify unless using a high-resolution imaging technique on a
small portion of the lattice. Hence, the ongoing challenge has
been to map grain size and intergrain misorientation angles
(defined as the relative difference in the direction of in-plane
lattice vector a) in a large field of view without altering or

destroying the sample. This characterization is vital because
grains’ distribution and intergrain misorientation angle strongly
affect the mechanical,14 thermal,16 and electrical transport17

properties of 2D TMDs. For instance, the value of the
misorientation angle at a GB can reduce the carrier mobility by
several orders of magnitude.18−20 Therefore, understanding the
extent and distribution of grains can provide fundamental
insights into TMD growth mechanisms and help to optimize
large-area growth methodologies for specific applications as is
currently being developed for MoS2 and WS2.

21,22 Since
MOCVD-grown 2D materials are usually polycrystalline, one
of the challenges in grain distribution analysis resides in
accurately identifying the GBs over a large area. In that context,
implementing lattice-sensitive techniques suitable over many
length scales can be advantageous for the detection of “hidden”
or “buried” grains of any size over a large field of view. For
instance, four-dimensional scanning transmission electron
microscopy (4D-STEM) enables the fast collection of
convergent-beam/nanobeam electron diffraction (CBED/
NBED) patterns on a 2D array of spatial positions23 in
which various computational analyses can reveal structural
variations on a pixel-by-pixel basis over different scales while
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reducing knock-on damage in traditionally very challenging
samples.24−26 As a result, 4D-STEM has proven to be a
powerful technique for determining strain profiles, creating
electrostatic maps, and generating misorientation maps for
many 2D materials.27−32

Here, we report the use of patterned-probe 4D-STEM to
visualize the hidden grain distribution and orientation in high-
purity MOCVD WSe2 grown directly on a SiO2 substrate. The
integrated cross-correlation strength of diffracted Bragg peaks
in individual NBED patterns revealed hidden grains in the film.
In addition, we observed the most probably misorientation
angle between grains, the spatial strain and lattice parameter
profiles, and fracture mechanism through statistical analyses of
the 4D-STEM data sets.
Figure 1a shows the TEM image of a WSe2 film after transfer

onto a Quantifoil TEM grid (edge of the film outlined in red

dotted line). A clean and rapid transfer of the 2D material was
achieved via a sacrificial polymer33 (details given in Supporting
Information). Figure 1b shows a high-angle annular dark-field
(HAADF)-STEM image of the suspended film on one of the
holes of the grid. The MOCVD-grown WSe2 consists of a
continuous layer with some additional nucleated bi- or few-
layer WSe2 triangular domains which appear brighter in the
HAADF scan, consistent with PL which indicated a mean
thickness of 1−2 layers. The diffraction pattern in Figure 1c
indicates that the layered material is highly polycrystalline like
many other MOCVD-grown 2D TMDs due to the lateral
growth and coalescence of grains formed in the initial stage of
the growth process. The grains forming the WSe2 film are not
visible in the HAADF-STEM image in Figure 1b. Figure 1d
presents a TEM image of a focused ion beam (FIB)-prepared
cross-section of WSe2 on SiO2/Si and confirms that the sample

Figure 1. (a) BF-TEM image of the transferred WSe2 film on a holey carbon grid. The red dotted line represents the sample edges. (b) HAADF-
STEM image of the sample suspended over a single hole. The continuous film exhibits overgrowth, as observed by the triangular islands on top of
the film. (c) Selected area electron diffraction pattern of the polycrystalline film. (d) Cross-sectional TEM image of the MOCVD-grown WSe2
shows a thickness of one layer at the far right and two layers in the rest of the field of view.

Figure 2. (a) Mean of 121 Raman spectra showing the main vibrational modes for the 1−2 layer WSe2. (b) Mean of 5760 PL spectra showing a
single asymmetric peak with a maximum at 1.67 eV. (c) Spatial map of the fitted dominant excitonic transition wavelength, and (d) histogram of
the dominant peak wavelength indicate nearly homogeneous emission centered around 740 nm (single Gaussian peak, μ = 741.1 nm, σ = 1.4 nm),
suggesting a highly uniform film.
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is 1−2 layers in thickness. The crystalline particles on the
surface of the WSe2 film form a thin Au layer deposited to
protect the sample during the FIB cross-section preparation.
Figure 2 demonstrates the quality of the MOCVD-grown

WSe2 films obtained through confocal micro-Raman and
photoluminescence (PL) spectroscopy. Figure 2a shows
Raman spectrum over a 50 × 50 μm2 area using 532 nm
wavelength excitation with incident power ∼670 μW. The
instrument’s response function using a reference diamond
sample is described in Figure S1, Supporting Information.
Accurate positions and line widths of the peaks were obtained
by fixing the Gaussian component of the Voigt function to 0.83
cm−1, which represents the instrumental and laser line width
broadening for the experimental configuration described in the
Supporting Information. Additional spectra as a function of
laser power are shown in Figure S2, Supporting Information,
indicating no detectable sample-heating effects. The first order
semidegenerate E′ and A′1 peaks (E1

2g and A1g in bulk) are
found at 247.00 and 251.02 cm−1 with intrinsic line widths of
7.40 and 3.93 cm−1, respectively.34,35 The second-order
resonant Raman mode at 260.59 cm−1 is related to the
2LA(M) mode and has a line width of 4.38 cm−1. The broad
peak ∼300 cm−1 is deconvoluted into the 302.60 cm−1 from
the Si substrate, and the broad 307.98 cm−1 B2g mode with line
width of 14.44 cm−1 is associated with vibration between layers
in WSe2.

36 The high intensity ratio (7.1 ± 1.9) between the
E′+A′1 combination mode and the 2LA(M) mode, as well as
the separation between the peaks (9.6 cm−1) and the presence
of the B2g mode, suggest the sample averages around two layers
thick.36−39 We note that overgrowth (bilayer) triangular
crystals depicted in Figure 1b are averaged together with the
monolayer film in the diffraction-limited beam diameter and so

the mean spectrum incorporates this variation in layer
thickness, which is the reason for calculating statistically
relevant data sets over regions hundreds-of-square-micro-
meters in size. Figure 2b presents the mean PL spectra
obtained by mapping over a 68 × 48 μm2 region measured
with 532 nm excitation at ∼670 μW power. The broad peak
with maximum at 743.5 nm is related to the emission of direct
transition excitons.40 Since the position and shape of the PL
peak are layer dependent, the presence of a single asymmetric
peak (no distinguishable shoulder) suggests the sample is 1−2
layers thick.38,41−43 There is no detection of defect emission at
lower energies44 as shown in the PL point spectra over a
broader spectral window (Figure S3, Supporting Information).
Figure 2c,d shows the spatial profile of the fitted dominant PL
emission wavelength, and the corresponding histogram shows
narrow distribution of emission with a maximum at 741.1 ±
1.4 nm (Gaussian 1σ). These results indicate that the high-
purity MOCVD-grown WSe2 film is homogeneous and
uniform with an average thickness of 1−2 layers.
For many applications, thickness uniformity over inch-size

areas is the main indicator of quality in 2D TMDs. However,
controlling the formation and distribution of grains is one of
the most fundamental aspects for enhancing properties,
performance, and ultimately the quality of 2D-based devices.
Moreover, real-space characterization of grains at the nano/
atomic scale requires high-resolution techniques, for example
TEM, STEM, or scanning tunneling microscopy (STM),
which can only access a portion of the lattice in a small field of
view; therefore, high-resolution imaging of atomic columns or
individual defects in polycrystalline WSe2 does not provide a
representative analysis of the distribution of the grains in the
sample. Likewise, analyzing grain distribution using conven-

Figure 3. (a) Schematic of the 4D-STEM experiment on a 2D TMD material with GBs (highlighted in yellow). (b) HAADF-STEM image of the
WSe2 suspended over vacuum. The dotted box denotes 4D-STEM scan area. (c) Mean NBED pattern of the area in (b), and (d) patterned Bragg
disk. (e) The virtual apertures in (c) produce the corresponding-color virtual images in (e), scale bar is 50 nm. (f) The diffracted peak density map
reconstruction provides a faster and more reliable method to identify GBs in an arbitrary area. (g) HAADF-STEM image of a continuous area WSe2
film, (h) 4D-STEM integrated intensity map, and (i) diffracted peak density map. Triangular overgrowth islands are marked in black lines. (j)
Distribution of grain size for a population N = 250 gives a mean diameter of 37.1 ± 13.3 nm.
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tional electron diffraction requires collecting a series of dark-
field images45−49 to form a false color image. Although valid,
this approach becomes a tedious task when performing
statistical analyses over hundreds to thousands of grains, as is
the case when the sample is composed of small stitched grains
≤100 nm in size. Additional methodologies to visualize GBs in
2D TMDs like selective oxidation50,51 and surface etching52

require altering the grains’ pristine structure, that is,
introducing artifacts in the measured size, especially for
nanometer-sized grains. In contrast, 4D-STEM allows the
recording of thousands of NBED patterns which permits
extracting orientation information over an arbitrary field of
view while causing minimum damage to the sample under
controlled irradiation conditions.53−55

Figure 3a shows a schematic of the 4D-STEM experiment
using a custom patterned probe to enhance the disk detection
in the postprocessing stage.56 The hidden grains are defined as
the array of pixels in close proximity with the same orientation,
while the GBs correspond to the pixels in which there is a
contribution of two or more different NBED patterns. Figure
3b shows a HAADF-STEM image of the WSe2 film near a
fracture; a 4D-STEM scan of an area of 34 × 32 pixels in 5 nm
steps (marked in white) produces the mean NBED pattern
shown in Figure 3c, composed of diffraction from a patterned
probe as shown in Figure 3d. Virtual images (Figure 3e) are
created by placing a virtual aperture in the spots marked in red,
blue, green, and yellow on the {100} disk and show different
grains excited with each of the apertures. Hence, as we suspect
a large number of grains in the 5.1 × 104 nm2 area, it is not
practical to find the complete set of grains in the scanned area
by placing virtual apertures.
Nevertheless, since there is not significant thickness variation

that can affect the intensity distribution in the patterned probe,

a reconstructed image from integrating all of the intensities at
each pixel position gives a straightforward method to compare
the patterns from a grain and the patterns from a GB. A
comparison between the two is given in Figure S4, Supporting
Information. We show the diffracted peak density map in
Figure 3f (each real-space pixel is calculated as the total
number of diffracted Bragg peaks) with inverted colors to make
the GBs appear dark. The intensity map can detect individual
grains even at the folded area on the right end (as seen on the
real-space image in Figure 3b) and near the crack propagating
on the MOCVD-grown WSe2 (highlighted with a gray line).
An additional example given in Figure 3g−i over a more
extended area shows the HAADF-STEM real-space image, 4D-
STEM integrated intensity map (each real space pixel is
calculated as the sum intensity of all pixels in the
corresponding NBED pattern), and the diffracted peak density
map, respectively. A large number of hidden grains become
visible on the intensity map from the continuous WSe2 film.
For reference, we mark the position of the triangular islands in
black in Figure 3i. The grain size distribution in Figure 3j
reveals a mean grain size of 37.1 ± 13.3 nm, which gives a grain
density of ∼580 grains/μm2 after analysis of data sets from
several regions.
Once the grain distribution was obtained, we calculated the

in-plane rotation angle between grains (or at the GB). The first
step in 4D-STEM data analysis is to calculate the center
position of all the diffraction disks at every pixel site. Using the
open-source Python package py4DSTEM,57 we can accurately
detect the center of the disks by cross-correlation between the
4D-STEM data set and a reference vacuum scan of the
patterned probe. The probe’s particular “star” shape aids the
detection and reduces error arising from intradisk features or
false positives due to weak reflections.56 We find the

Figure 4. (a) HAADF (top) and 4D-STEM (bottom) images of suspended WSe2. (b) From a sinogram at each position, the total intensity or score
is plotted with respect to the angular position. The most likely lattice vectors in red have the highest score. (c) Reconstruction of grains, GBs, and
relative misorientation angles. (d) Histogram of orientation angles shows a most likely orientation at 41.1° and a most likely misorientation
between grains of ∼7.8°. (e) Maps of the strain tensor components εxx, εyy, and εxy. (f) Distribution and map of the variation in the a lattice
constant. Considerable strain and tension are observed on the triangular islands overgrowing on the film.
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orientation within a grain by measuring the angle between the
first lattice vector and an arbitrarily point defined as rotation
zero (along the x-axis in diffraction space). Because at the GBs
several grains diffract at the same time, the orientation is then
assigned to the grain with the highest intensity. In cases where
the integrated intensity of several grains in a single pixel is
similar, we assigned a rotation angle value of zero (black pixel)
to highlight the frontiers of the GBs. Figure 4a shows the real-
space HAADF-STEM image and the 4D-STEM reconstruction
image, respectively. We used a small convergence semiangle for
the probe (1 mrad), which leads to high-resolution in
diffraction space at the expense of poor real-space resolution.
Therefore, we mark the position of the top triangular domains
on the 4D-STEM images for visual reference.
The pair of lattice vectors in a single crystalline domain have

the same length but with the second lattice vector rotated by
60°. We calculate the pair of lattice vectors at each pixel
position by performing a Radon transform on each pattern to
create a sinogram of the intensity projection of the 2D array
over a range of angles. For each angular position, the total
intensity is considered the score. Figure 4b shows the
integrated intensity of the sinogram from the pattern in the
inset, where the angle between each pair of peaks with
matching color is 60°; each grain orientation is indicated in the
NBED pattern on the inset. The orientation pair with the
higher score (red) is the most likely lattice vector for this pixel
position. All of the NBED patterns are fit by rotating the lattice
vectors to the first quadrant allowing only a 0−60° rotation
angle. Figure 4c shows the final orientation map where the
discrete change in the color scale corresponds to a 2°
increment. The orientation of the grains (visualized with
arrows) represents the relative in-plane rotation with respect to
the x-axis in the NBED patterns. Notice the area highlighted in
white with a single crystalline orientation for the triangular
islands and the film, meaning the second layer growing on the
initial uniform WSe2 film follows the orientation of the crystal
supporting it. We note that the color scheme used here was
deliberately chosen to highlight low and high angle grains, and
the data plotted with a periodic color map is given in Figure
S5, Supporting Information. The distribution of the relative
orientation of the pixels presented in Figure 4d shows a
random orientation of the grains. The most frequent
orientations 4σ above the mean (dashed line) are at 14.1°,
41.1°, and 48.3° with respect to the x-axis in the NBED
patterns. The most frequent relative misorientations, defined as
the angular difference between grains (marked with red
arrows), is 7.8°. The observed low value of the preferential
misorientation angle can be a crucial factor in optimizing
synthesis methodologies to enhance carrier mobility since, for
example, low misorientation angles have been reported to have
a stronger effect on carrier mobility than higher angle
misorientations CVD-grown MoS2.

20

Using the position of the lattice vectors at each pixel, Figure
4e displays maps of the components of the strain tensor εxx, εyy,
and the shear εxy, where the color scale indicates relative
changes in the strain from −1.0% (compressive) to +1.0%
(tensile). We used the average position of the lattice vectors as
the unstrained reference material; therefore, the calculated
values are relative to the entire map. The strain’s x- and y-
components show a positive ∼1% tension on the triangular
islands, which we can associate with a stretch of the lattice in
these new nucleation sites as they try to follow the same
orientation as the grain below it. For the uniform film, we

observe tensile strain at edge areas near the GBs (represented
in light black), while inside the grains, we observe a slight
compressive (negative) strain of around −0.5%. On the other
hand, the shear component of the strain εxy remains almost
unstrained except for the GBs, where the random orientation
of the grains caused localized positive and negative shear.
We calculated the lattice constant a for the MOCVD-grown

WSe2 by using the relation between the lattice vector for the
(100) reflection and the lattice parameter a of a hexagonal
crystal q2 = 4/(3a2), the lattice parameter on each pixel
position xy was calculated as the average of the N peaks
detected in (100) equivalent reflections as

∑=
=

a
N q

2
3

1 1
xy

i

N

i1 (1)

Figure 4f shows the slight asymmetric distribution of a in the
FOV, which can be fitted with two Gaussian functions as two
preferential a values of 3.277 ± 0.006 and 3.290 ± 0.008 Å for
the green and blue subpeak fits, corresponding to the film and
the triangular islands, respectively. The lattice constant map is
in good agreement with the strain maps, which indicate a slight
compression on the uniform WSe2 film and a tensile strain in
the triangular islands and areas near a GB. Despite the
relatively uniform thickness of the sample, the high density of
small grains semirandomly oriented in the MOCVD-grown
WSe2 film suggests a high density of intrinsic defects produced
during the synthesis. In an attempt to corroborate and quantify
defects present in the sample, we used Rutherford back-
scattering spectrometry (RBS) to extract the stoichiometry of
the MOCVD-grown WSe2 (Figure S6, Supporting Informa-
tion). The RBS results indicate a scattering yield W/Se ratio of
1:1.66, suggesting a selenium substoichiometry parameter
WSe2−x of x = 0.34. This value is considerably higher than the
x = 0.0258 and 0.086 selenium substoichiometries obtained for
different WSe2 syntheses and is most likely a result of the high
density of nucleation sites forming small ∼37 nm grains in the
wafer-scale film of this work.
The spatial resolution of 4D-STEM is limited by the need to

balance the real-space resolution with the ability to clearly
locate the diffraction disks in reciprocal space. Typical real-
space resolution is on the order of 1.5 nm with the
instrumental configuration used here. Complementary electron
microscopy techniques such as traditional electron backscatter
diffraction (EBSD) is not feasible with 2D materials.
Transmission Kikuchi diffraction (TKD, also referred to as
transmission-EBSD) may be possible with direct electron
detection techniques, however conventional detectors require
primary beam energies above 5 kV to enable the scattered
electrons to excite the phosphor on the camera.28,59 At these
energies the interaction between the primary electrons and the
2D material is rather weak. In order to generate the Kikuchi
diffraction patterns utilized in either EBSD or TKD, the beam
must undergo a number of inelastic scattering events in order
to generate a spectrum of electron energies which then scatter
off of the lattice planes near the exit surface. At energies greater
than 5 kV, the necessary polychromatic radiation is not
generated and thus these techniques are not feasible. Far-field
diffraction does occur and has been utilized in other work,54,60

however this requires direct-transmission detection in a
scanning electron microscope. In an attempt to discern even
the very weak TKD signal present from our WSe2 film (see
Figure S7, Supporting Information), the data collected from
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the monolayer WSe2 showed no signs of Kikuchi diffraction,
while nanoparticles of copper placed on the film as a control
experiment were readily indexable. This leaves 4D-STEM as
the only suitable experimental technique capable of nanoscale
crystallographic characterization needed to understand the
physical properties of these films.
In summary, using 4D-STEM to characterize grains and GBs

by comparing the integrated intensity at each pixel is a
consistent methodology that relies on intensity variations
caused by the number of diffracting grains. The 1−2 layer thick
film consisted of grains semirandomly oriented and with a
more frequent misorientation angle of ∼8°. The high density
of defects created a slight tensile strain at the GBs and
additional layer nucleation domains. Collecting 4D data sets
provides information on local orientation at each grain; hence
grain size, orientation, and lattice parameters can all be
analyzed from the pristine surface of MOCVD-grown WSe2
without physical or chemical alteration of the sample. Lastly,
the characterization technique developed here can play an
important future role in investigations of the properties of 2D
materials for a wide range of applications especially in the
nanophotonics, surface coatings, and nanoelectronics areas.
The structural information yielded by this investigation can
serve as a useful starting point for models such as phase field
calculations when predicting functionality (mechanical proper-
ties, polarizability, permeation, and so forth). With advance-
ments in fast electron detectors and new data science
techniques being applied to large diffraction data sets, we are
enthusiastic that this technique will help to enable automated
crystal orientation mapping (ACOM)61 in TEM in a
statistically meaningful way.
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