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Abstract

The ability to control cellular functions can bring about many developments in basic biological research and its applications.
The presence of multiple signals, internal as well as externally imposed, introduces several challenges for controlling cellular
functions. Additionally the lack of clear understanding of the cellular signaling network limits our ability to infer the
responses to a number of signals. This work investigates the control of Kaposi’s sarcoma-associated herpesvirus reactivation
upon treatment with a combination of multiple signals. We utilize mathematical model-based as well as experiment-based
approaches to achieve the desired goals of maximizing virus reactivation. The results show that appropriately selected
control signals can induce virus lytic gene expression about ten folds higher than a single drug; these results were validated
by comparing the results of the two approaches, and experimentally using multiple assays. Additionally, we have
quantitatively analyzed potential interactions between the used combinations of drugs. Some of these interactions were
consistent with existing literature, and new interactions emerged and warrant further studies. The work presents a general
method that can be used to quantitatively and systematically study multi-signal induced responses. It enables optimization
of combinations to achieve desired responses. It also allows identifying critical nodes mediating the multi-signal induced
responses. The concept and the approach used in this work will be directly applicable to other diseases such as AIDS and
cancer.
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Introduction

There is an increasing interest in utilizing and applying systems

biological approaches to study a wide range of problems in

biology. In this work, we apply different systems biological

approaches to investigate the effects of multiple signals on cellular

signaling processes with the goals of understanding and controlling

these processes. As a model systems, we use the reactivation of

Kaposi’s Sarcoma-associated herpesvirus (KSHV) to investigate

the effects of several drugs on a quantifiable process, virus

reactivation. KSHV, also known as human herpesvirus-8 (HHV-

8), is a member of the herpesvirus family, which includes simplex

viruses, Epstein-Barr virus (EBV) and cytomegalovirus [1,2]. A

significant amount of malignancies are associated with herpesvirus

infection. Epstein-Barr virus (EBV) is associated with non-

Hodgkins lymphomas and nasopharyngeal carcinoma (NPC).

Human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus

(HHV-8/KSHV) is the etiologic agent of Kaposi’s sarcoma (KS),

the most frequently occurring malignancy in AIDS patients.

Additionally, KSHV establishes long-term latent infection in

lymphocytes and is associated with primary effusion lymphoma

and lymphoproliferative diseases [2].

Herpesviruses have two distinct phases in their life cycle: latency

and lytic replication. Latency is one strategy for viruses to achieve

life-long persistent infection. During latency, the viral genome is

replicated by cellular DNA polymerase and only a few gene

products are expressed at low levels. A reactivation process causes

the virus to enter the lytic replication state from latency and upon

replication of the viral genome by a viral DNA polymerase, viral

progeny are produced, frequently resulting in cell death. Virus

reactivation is controlled by a cellular signaling process in which

cellular signals are amplified and can be measured with markers

such as Green Fluorescent Protein (GFP) or luciferase. In earlier

work, we identified RTA (replication and transcription activator)

of KSHV, an immediate-early gene, as the switch in the

reactivation process [3–5]. In latently-infected cells, the expression

of RTA is necessary and sufficient to disrupt KSHV latency and

trigger the complete lytic replication process [3]. RTA functions as

a transcription factor which activates, in addition to its own,

multiple downstream genes including the early viral transcript
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polyadenylated nuclear RNA (PAN), and subsequently the whole

viral lytic cascade. PAN is directly activated by RTA and is the

most abundant viral transcript in the lytic cycle [3,6–8].

Reactivation, the switch from latency to lytic replication, is an

important process for KSHV pathogenesis and a target for the

development of therapeutic strategies for the associated tumors.

Investigation of the multi-drug regulated reactivation process

provides important information for the associated cancer treat-

ment. It should be therapeutically advantageous to intentionally

activate the viral lytic cycle in tumor cells in the presence of an

anti-herpesviral drug, such as ganciclovir [9,10]. The expression of

viral thymidine kinase (vTK) and phosphotransferase (vPT), both

viral early lytic genes, will allow ganciclovir to be phosphorylated

in infected cells, leading to inhibition of DNA replication. In

addition, metabolized ganciclovir can cause additional ‘‘bystand-

er’’ killing effects [11,12] that may result in lysis of neighboring

tumor cells. Furthermore, strong immune responses to a large

amount of lytic antigens may contribute to the destruction of

tumor lesions.

Maximal induction of virus replication is necessary for an

effective therapeutic approach. Several studies have looked at

inducing KSHV reactivation with a single drug [13–16]. While a

single drug can induce KSHV reactivation, an effective agent for

clinical applications is yet to be identified. Achieving high rates of

lytic-cycle reactivation of KSHV may require the concurrent

activation of several signal transduction pathways within the cell.

However, the use of multiple drugs brings about several challenges

such as the experimental complexity associated with testing several

drugs with various concentrations. The sequential addition of a

different drug to an optimal combination of drugs need not

provide optimal results due to the complexity of the signaling

network. Additionally, the use of multiple signals may not induce

an increase in viral lytic replication as activation of some non-

primary targets can be cause unexpected results in the presence of

combinations of drugs, potentially leading to blocking of virus

reactivation. Furthermore, multiple signals can cause deregulation

of multiple cellular processes leading to cell stress and ultimately

cell death.

Here, we utilize different approaches to study the problem of

multi-signal induced KSHV reactivation. First, we utilized

mathematical modeling and learning tools to enable systematic

and effective selection of combinations of drugs that can result in

high reactivation. This approach is based on using input-output

data obtained by testing a relatively small number of signal

combinations to create a mathematical model that can predict the

responses to the complete space of combinations of considered

signals and their respective concentrations. The model, in turn, was

used for further analysis of the system and to select combinations

that can control the cellular responses in a desired manner. Second,

we utilized a stochastic search algorithm to drive a set of

experimental trials with the goal of identifying combinations of

signals that can yield high reactivation. The results of both

approaches were compared and further experimental assays were

used to validate the results. Third, we used a combination of linear

regression models and subset selection algorithms to identify key

factors influencing the multi-signal driven responses. We were able

to identify multiple drug interactions that play a dominant role in

the response. These interactions represent a subset of the possible

connections between the signaling targets.

Results

Five drugs were selected to be tested in combination (See

Materials and Methods). Each of the drugs reactivates KSHV with

varying degrees. With the utilization of the five drugs that function

in different yet potentially connected signaling processes (Figure 1A),

KSHV reactivation can serve as an excellent model system

illustrating how multiple cellular signals are processed. The five

drugs are: Bortezomib, db-cAMP, Prostratin, Valproate, and

Dexamethasone. Bortezomib is a proteasome inhibitor that at least

in part reactivates KSHV by inhibiting NF-kB activity [13].

DibutyrylcAMP (db-cAMP) is a cell-permeable cAMP analog that

activates the PKA pathway [14]. Prostratin activates the PKC

pathway [13]. Valproate shares structure and mechanism similar-

ities with the histone deacetylase inhibitor butyrate [15]. Dexa-

methasone is a glucocorticoid regulating the activation of some

transcription factors and apoptosis-related genes [16,17].

In order to quantify the viral reactivation response, the RTA

binding site in the PAN promoter was identified [7] and a GFP

reporter system was constructed. The reporter system BC-3-G,

uses BC-3 cells (a primary effusion lymphoma cell line latently

infected with KSHV) where a GFP protein is expressed under the

control of a minimal lytic promoter of Polyadenylated Nuclear

RNA (PAN), the most abundant KSHV early lytic transcript

[4,8,18]. Therefore, the expression of GFP following the activation

of the PAN promoter served as a sensitive indicator of KSHV

reactivation. The specificity of the reporter has been demonstrated

in a previous study [19].

Measurement of virus reactivation was achieved using flow

cytometry where we measured the number of activated cells, i.e.,

GFP positive, and the total number of cells, i.e., the number of

dead and living cells. The reactivation rate (performance) of any

given combination was set to be the ratio of GFP positive cells to

the total number of cells including dead cells.

Modeling of mutli-signal induced KSHV reactivation
Investigation of the combinatorial effect of multiple participat-

ing pathways on reactivation can be achieved by treating the

latently-infected cells with related chemical agents. Single drug

dose curves for each chemical agent were obtained to determine

the range of effectiveness of each individual chemical agent

(Figure 1B). Based on the sensitive range of each individual agent

determined from the curves, we selected the ranges of the

concentrations to be used. Subsequently, the ranges were divided

into ten concentrations using two-fold dilutions and setting the

lowest concentration to zero (Table 1). The ten different

concentrations of each drug comprised an input space of 105

possible drug combinations in total. Testing this number of

combinations poses significant challenges (cost, labor, time, etc…).

The choice of 10 concentrations depends on the shape and

smoothness of the response and can be increased for finer

sampling of the system response. However, the increase will lead to

an increase in the number of tests.

Using a uniform probability distribution over the set of all

combinations of concentrations of five drugs, we randomly

selected 600 different combinations to be experimentally tested.

Six sets of experiments were conducted. In each set, 100 data

points along with a positive control, a single drug (TPA) known to

reactivate the virus [20,21], were evaluated using the GFP reporter

system. The latently infected BC-3-G cells were treated with the

combinations for one hour, after which the drugs were washed

out, and measurements were taken 16 hours later to allow enough

time for GFP synthesis and assembly upon reactivation.

The inputs (drug combinations) and their corresponding

measured outputs (reactivation rates) were used to generate a

mathematical model, KSHV reactivation model. The predictive

reactivation model approximates the KSHV reactivation rate as

induced by a combination of drugs within the specified range of

Multi-Signal Control of KSHV Reactivation
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drug concentrations. The model can be used to simulate and

predict reactivation rates in response to all combinations of the five

chemical agents. The combinations are not limited to the 600

tested combinations and include all combinations of the lower

order mixtures, i.e., two, three, and four-drug combinations. The

use of this relatively small number of combinations is facilitated by

the assumption that the response function to these five drugs is

reasonably smooth. If the response function is not very smooth

then it would require testing of additional combinations to

improve the accuracy and prediction power of the model.

Several methods can be used to generate a mathematical model.

We utilize neural networks, linear regression [22,23], and partial

least squares regression [24]. Artificial neural networks are

biologically inspired adaptive information processing systems.

Artificial neural networks have been successfully applied to a wide

range of problems in various disciplines including biological,

medical, engineering, and financial [25,26]. The combination of

linear regression with partial least squares or all subset regression

provided the ability to reduce the dimensionality of the problem

and provides insight into which variables have the most influence

on the observed responses.

We trained a multi-layered perceptron with the data and

obtained a representative predictive model (see the Material and

Methods section). The model gave a correlation coefficient of more

than 95% between the calculated and experimental data of the

training set (Figure 2A). This indicates that the model has a

reasonable prediction power but requires generalization. Therefore,

the model was tested with an independently and randomly selected

data set of 48 different combinations experimentally tested several

months after the 600 points. The model was able to predict the

corresponding reactivation rates with a correlation coefficient of

82%, a good fit considering the variability of cell responses due to

varying cell conditions at different measurement times (Figure 2B).

Model-based optimization of KSHV reactivation
The predictive model generated provides the ability to

determine combinations that can lead to high reactivation rates

as predicted by the model. The simulated reactivation rates of all

105 combinations were enumerated. A simple sorting algorithm

was used to rank the combinations in order of simulated

reactivation rates. It is important to note that while a single best

performing combination can be selected based on enumeration of

all performances, the relevance of this best performing combina-

tion is not high due to measurement noise and modeling errors.

Therefore, one is interested in looking at the distribution of top

performing combinations. The top ranking 50 combinations were

determined (Figure 3A). The distributions of individual concen-

trations within this group of points shows that lower to middle

concentrations of Bortezomib are predominant. The distribution

of concentrations of the other four drugs indicates that medium to

high concentrations are predominant. The distribution of the

performances within the top performing points indicates that the

variation is within 3% of the maximum.

An alternate approach to determine the top performing

combinations is to utilize a search algorithm, deterministic or

stochastic. Examples include gradient descent algorithms [27],

genetic algorithms [28], the cross entropy method (CE) [29–31], as

well as other stochastic search and combinatorial optimization

algorithms. While a simple sorting algorithm suffices to sort all the

performances, we apply a stochastic search algorithm here to

search for optimal combinations based on the model to mimic

similar experiments that we performed. This enables us to

compare the outcomes of the two search experiments and to

assess the possibility of running such algorithms to drive a set of

experiments.

The cross entropy algorithm was implemented in silico using the

KSHV predictive reactivation model (see Materials and Methods).

The simulated CE optimization showed that generally after about

14 iterations, the individual drug concentrations converged to 0 or

1.25 nM for Bortezomib, 4 mM or 8 mM for db-cAMP, 40 uM

or 80 uM for Prostratin, 6 mM for Valproate, and 100 nM

or 200 nM for Dexamethasone, to achieve consistently high

reactivation (Figure 3A). The approach for optimizing combina-

tions through the simple selection of the maximum possible dose of

each drug does not result in a better reactivation rate than the

optimized combination. The reactivation rate with the maximum

Figure 1. Single-drug effects of KSHV reactivation and related
cellular signaling. (A) Shown are the five drugs that are used in the
drug combinations and the mechanisms by which they induce KSHV
reactivation. The diagram also illustrates the known crosstalk among
these five drugs. ? : Synergistic effect; \ : Inhibitory effect.
Representative known interactions among different molecules: a.
Proteasome inhibitor prevents the activation of NF-kB [43,44]. b. PKC
activates NF-kB in T and B lymphocytes [45,46]. c. NF-kB inhibits
herpesvirus reactivation in vitro and in vivo [13,47]. d. Glucocorticoids
such as Dexamethasone inhibit NF-kB activity through induction of IkB
[48,49]. e. Dexamethasone and cAMP may synergistically regulate the
expression of a subset of genes in lymphocytes [40]. f. PKA pathway and
PKC pathway can synergize [50] or antagonize [51] each other in
different circumstances. (B) Shown are the KSHV reactivation rates upon
treatment with the five drugs individually (Blue: Bortezomib, Red: db-
cAMP, Green: Prostratin, Purple: Valproate, Cyan: Dexamethasone). The
nine concentrations used are nine two-fold dilutions of the following
maximum concentrations for the drugs Bortezomib 320(nM), db-cAMP
8(mM), Prostratin 80(uM), Valproate 6(mM), Dexamethasone 400(nM).
The concentrations are also the nine concentrations (Conc. I) in Table 1.
doi:10.1371/journal.pone.0020998.g001

Multi-Signal Control of KSHV Reactivation
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doses of each agent, applied for one hour, is nearly 5%, where as it

is about 42% with the optimized combination.

Experiment-based optimization of KSHV reactivation
An alternate approach to optimizing drug combinations is the

use of a search algorithm implemented experimentally rather than

on a mathematical model. Recently, several examples of this

approach has emerged in biology [32–36]. This approach can

identify potent combinations and is useful in many situations

where one is only interested in knowing which combination

maximizes a pre-defined performance function.

The experimental cross entropy implementation proceeded in a

sequence of experimental iterations. Our results showed that after 12

to 14 iterations, the drug concentrations converged to the ranges

leading to consistently high reactivation rates (Figure 3B). The

concentration ranges were 0–5 nM for Bortezomib, 4–8 mM for db-

cAMP, 20–40 uM for Prostratin, 1.5–3 mM for Valproate, and a

wide range of 0–200 nM (centered around 100 nM) for Dexameth-

asone. We further narrowed down the drug concentration ranges

through another small set of iterations with drug concentrations more

densely distributed within the initially determined ranges (Table 1).

As expected, more consistently high reactivation rates were observed

with the progress of the CE iterations. The optimal drug

combinations obtained from the experimental CE method were

consistent with the results from the simulated CE method as well as

the direct enumeration (Figure 3A). This result experimentally

validated the feasibility of a model-based approach in characterizing

and optimizing multi-drug combinations.

Functional validation of selected combinations
Using two different approaches, we were able to identify a range

of concentrations for which high virus reactivation rates are

achievable. The results of the two approaches were consistent. To

further validate the findings, we conducted sets of experiments to

compare the performance of a selected combination from the

identified range to the performances of single drugs.

Table 1. Table of drug concentrations used in this study.

Drug Name Conc. No. 1 2 3 4 5 6 7 8 9 10

Bortezomib Conc. I (nM) 0 1.25 2.5 5 10 20 40 80 160 320

(C1) Conc. II (nM) 0 1.25 2.5 3.75 5

db-cAMP Conc. I (mM) 0 0.03 0.06 0.13 0.25 0.5 1 2 4 8

(C2) Conc. II (mM) 4 5 6 7 8

Prostratin Conc. I (uM) 0 0.31 0.63 1.25 2.5 5 10 20 40 80

(C3) Conc. II (uM) 20 25 30 35 40

Valproate Conc. I (mM) 0 0.02 0.05 0.09 0.19 0.38 0.75 1.5 3 6

(C4) Conc. II (mM) 1.5 2 2.5 3 3.5

Dexamethasone Conc. I (nM) 0 1.56 3.12 6.25 12.5 25 50 100 200 400

(C5) Conc. II (nM) 0 3 25 100 200

Conc. I indicates the concentration used for the model-based KSHV reactivation modeling and for the experiment-based optimization. Conc. II indicates the set of
refined concentrations used in the second part of the experiment-based optimization. These concentrations were used in Figures 1 and 3.
doi:10.1371/journal.pone.0020998.t001

Figure 2. Predictive modeling of reactivation rates. (A) Shown is the correlation between the measured reactivation (x-axis) and the predicted
reactivation (trained outputs) (y-axis) using 588 out of 600 total input-output points (see methods section - Neural network model). The circles
represent individual data points. The dotted diagonal line represents a perfect fit between the measured and predicted reactivation rates. (B) The
measured and predicted reactivation rates of 48 new randomly selected drug combinations. The x-axis shows the measured reactivation rates, and
the y-axis showed the predicted reactivation rates using the predictive reactivation model.
doi:10.1371/journal.pone.0020998.g002

Multi-Signal Control of KSHV Reactivation
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The KSHV early lytic protein K8 is activated by, and expressed

after the expression of KSHV RTA (ORF50). It is important for

initiating viral DNA replication in the lytic cycle, thus a good

marker for viral lytic replication. Western blot analysis of K8

showed that the selected drug combination can cause a much

higher induction of K8 than any single drug. The conclusion was

consistent 8 hours and 12 hours post treatment (Figure 4A).

Additionally, we looked at the effect of the selected drug

combination on the KSHV lytic transcripts RTA (ORF50) and

PAN. RTA plays a central role in regulating the switch from

latency to lytic replication in KSHV [3]. The activation of RTA

(ORF50) is the first event in KSHV reactivation. It encodes the

initiator of the viral lytic gene expression program. PAN

(polyadenylated nuclear RNA), is the most abundant transcript

made during the lytic cycle, and is directly induced by RTA [6].

Quantitative analysis of these two lytic transcripts shows results

similar to the western blot study of K8. Both lytic transcripts were

induced approximately ten folds higher using the selected

combination than the best concentration of any single drug. The

results were also consistent at two different time points (Figure 4B).

Our data shows that the combination treatment can potentially

accelerate the reactivation process. Furthermore, we tested the

virion production using Q-PCR upon treatment with a single drug

and the optimal combination. The results show that there is an

increase in virion production with the optimal combination over

any single drug (Figure 4C).

Examining drug interactions
The signaling network involves complex connections between

various molecules that can be perturbed through a large number

of external signals. The signals can cause inhibition of certain

molecules/pathways and stimulation of others. The interactions

amongst these molecules or pathways are very complex and very

hard to predict. Alternately, looking at interactions between the

input signals and the measured cellular outputs can shed some

light on the induced behaviors at the systems level. Particularly, we

can uncover some of the interactions of the signaling that are

involved in generating the responses upon stimulation with

multiple stimuli.

Based on the predictive reactivation model, we simulated the

interactions generated by the five drugs. The data represents a

complex multi-dimensional data set. While some mathematical

tools can be useful in reducing this complexity, one might be

interested in visually examining the behaviors represented by such

a large data set. To that end we created an interactive webpage

which displays the KSHV reactivation rates for varying concen-

trations of the considered drugs [37].

Our findings indicate that the dose dependent effect of the

individual drugs on reactivation greatly depended on the amounts

of the other drugs within the same treatment (Figure 5, webpage

on accompanying CD). The results clearly indicate that drugs can

interact to produce higher levels of cellular activity. However this

improvement in reactivation is dependent on the concentrations of

the drugs and needs to be optimized. The KSHV reactivation rate

in the absence of drugs Valproate and Dexamethasone are less

than the corresponding rates when these two drugs are present at

certain concentrations (Figure 5). The non-optimized addition of

drugs to the system might not result in a noticeable improvement.

In addition, the presence of appropriate doses of the drugs

Valproate and Dexamethasone results in an increase of the

effective range (the range for which high reactivation rates can be

achieved) of drugs Bortezomib, db-cAMP, Prostratin. This

provides the ability to use the drugs with lower concentrations

while maintaining high reactivation rates.

The addition of low concentrations of Bortezomib to combina-

tions of db-cAMP and Prostratin does not result in a significant

Figure 3. Characterization of the effect of drug combinations on KSHV reactivation. (A) Distribution of the concentrations of the five
drugs in the 50 drug combinations that lead to the highest KSHV reactivation rates simulated by the predictive reactivation model (blue bars). The
drug concentration ranges in the optimal drug concentrations generated by the experiment-based cross entropy procedure are shaded in red. The
bottom right figure shows a histogram of the reactivation rate of the top performing 50 samples. (B) Representative KSHV reactivation outputs for
five-drug combinations. The results of the 1st (top graph) and 12th (middle graph) iterations in the first set of optimization iterations, and the 3rd
(bottom graph) iteration in the second set of optimization iterations with smaller concentration ranges are shown. The x-axis represents the different
drug combinations used in each iteration; the y-axis shows relative percentage of GFP-positive cells in the total cell population. The highest
percentage of GFP-positive cells in individual iterations is set as 1.
doi:10.1371/journal.pone.0020998.g003

Multi-Signal Control of KSHV Reactivation
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increase in performance. Higher concentrations of Bortezomib

result in a significant decrease in performance. Examining the

effect of only adding Valproate to combinations of Bortezomib,

db-cAMP, and Prostratin, we notice an increase in performance,

indicating that Valproate interacts positively with the three-drug

combinations to improve the reactivation. The sole addition of

Dexamethasone to combinations of Bortezomib, db-cAMP, and

Prostratin results in a smaller increase in performance. The

increase becomes less when high concentrations of Bortezomib are

used.

The above results reflect visual analysis of the responses, in the

sequel, we seek to quantitatively analyze these interactions to

determine the most significant ones. Such can be achieved using

mathematical modeling similar to what is used for optimization.

While a drawback of neural networks models is that they are

black-box models and do not shed light onto how the different

inputs are processed to produce the outputs, other modeling

techniques can help in this regard. We fitted a linear regression

model to represent the relationship between the drugs and the

reactivation (see methods section). The model utilizes 31 variables

(regressors) that represent drug concentrations as well as

interaction terms between the drugs.

The correlation coefficient between the experimental data and

predicted data based on the linear model was 85%, the correlation

coefficient for the additional 48 points was 83%. The model

provides an insight into which factors play the biggest role in the

response (Figure 6A). In agreement with the observations in the

single dose-response curves and the neural network model,

Prostratin and db-cAMP strongly influence virus reactivation.

Additionally, there are other two and three-drug interactions that

influence the response. Given this large number of model

variables, we sought to find the key variables that affect the

response. A partial least squares regression shows that around 10

components are sufficient to describe the variance in the output

data (Figure 6B). The components of partial least squares model

would be hard to interpret given the large number of variables.

Instead, we pursue a subset selection algorithm based on all the

Figure 4. Experimental validation of results. The figure shows the experimental validation results of the optimal drug combination for KSHV
reactivation determined via the cross entropy algorithm. (A) Western blots showing KSHV lytic protein K8 expression 8 hr or 12 hr after drug
treatment. The results were quantified as indicated in the material and methods section. (B) RT-Q-PCR showing the level of KSHV lytic transcripts
ORF50 and PAN 4 hr or 8 hr after drug treatment. (C) Q-PCR of virion DNA copy-numbers measured 48 hours after treatment.
doi:10.1371/journal.pone.0020998.g004

Multi-Signal Control of KSHV Reactivation
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possible subset regressions [38]. The algorithm provides the best

models of 1,2,3, . . . ,31 variables. In total, the algorithm provides

the best 31 models out of 231{1 possible models.

The residual sum of squares of the best models shows that there is

no significant reduction in the residual sum of squares for models

with more than 10 variables (95% reduction in the residual sum of

squares). This indicates that 10 variables are sufficient to generate a

model with comparable prediction and error to the 31-variable

model (Figure 6C). The 10 variables of the best 10-variable model

include the concentrations of the five drugs and products of two, and

three-drug concentration (Figure 6D). This shows that the response

is not only influenced by the individual drugs, but also by two and

three-drug interactions. Most notably, there is strong negative

interaction between Prostratin and Bortezomib, and strong positive

interactions between db-cAMP and Prostratin, db-cAMP and

Dexamethasone. A three-drug negative interaction between db-

cAMP, Prostratin, and Dexamethasone is also present. Examination

of models of 12 and 15 regressors shows that other three and four-

drug interactions are present such as Bortezomib–Prostratin–

Valproate, Bortezomib–db-cAMP–Prostratin, db-cAMP–Prostra-

tin–Valproate, Bortezomib–db-cAMP–Prostratin–Valproate, and

Bortezomib–db-cAMP–Prostratin–Dexamethasone.

Evaluation of effective subsets of combinations
Testing a system with five drugs provides advantages over studying

mixtures of a smaller set of drugs. A system level study of combinations

of multiple drugs enables fast and effective selection of a smaller subset

of drugs that is most potent. Although a set of five drugs was used in

this study, it is sometimes desirable to use a smaller number of drugs

that can interact in a desirable way. We computed the maximum

predicted reactivation rate for all possible mixtures of two, three, four,

and five drugs, as well as for single drugs (Figure 7A). The figure shows

there are significant differences between the maximum achievable

reactivation rates using two, three and four drugs.

For two-drug mixtures, there is over a six-fold difference between

best and worst two-drug combinations. A mixture of Bortezomib and

Dexamethasone or Valproate and Dexamethasone perform poorly

even compared to a single drug. In contrast, a combination of db-

cAMP and Prostratin have a reactivation rate higher than the sum of

the individual reactivation rates. Prostratin and Valproate exhibit a

similar behavior. This is consistent with our findings of strong positive

interaction between Prostratin and Valproate. A mixture of

Bortezomib and Prostratin does not improve on the best reactivation

rate of Prostratin, suggesting negative or no interaction between the

two drugs. This is also consistent with the findings presented above.

For three-drug combinations, the best combination is more than

twice as effective as the worst mixtures. Furthermore, the best

three-drug mixture is about 130% more effective than the best

two-drug mixture. Four and five-drug mixture are slightly more

effective than the best three-drug mixture. The four-drug mixtures

generally perform better than than the three-drug mixtures.

Without a study of the combinations of five drugs, evaluating the

reactivation rates for combinations of two drugs requires conducting

10 experiments individually to determine the maximum reactiva-

tion rate of the 10 possible two-drug combinations out of a set of

possible five drugs. Selection of three or four-drug combinations

requires similar experiments. Therefore, the combinations of the

systems approach, computational tools, and experimental design

enabled efficient multi-signal control of cellular/viral processes.

Discussion

Our results indicate that the use of combinations of drugs can

have a substantial effect on virus reactivation. In particular,

multiple drugs can interact and induce higher levels of virus

reactivation. However, the combination needs to be judiciously

selected out of a large number of drug concentration combina-

tions. The use of an improperly selected combination can have a

drastic effect on the cellular response and on virus reactivation.

The low reactivation rates of combinations imply either the

ineffectiveness of these combinations in reactivating the virus or

the high toxicity of these combinations. The biological relevance of

our results was supported by multiple experimental assays that

directly measured viral lytic replication products, and demon-

strated a synergistic reactivation by a proper drug combination,

much higher than by any individual drug, a pattern very consistent

with what was obtained in the fluorescent reporter system. The

measurement of virion production 48 hours post treatment also

confirms our findings and provides additional proof of the validity

of our approach. The work presented here, builds upon our recent

work in which the approaches used here were introduced to

address another problem of multiple signal response quantification

and analysis and were applied to study the differential response of

Figure 5. Multi-drug response maps of KSHV reactivation.
Figure showing plots of the KSHV reactivation rates as a function of
drugs db-cAMP and Prostratin, for various concentrations of drug
Bortezomib. The colors are solely a function of the reactivation levels in
each panel. (A) Drugs Valproate and Dexamethasone are fixed at zero.
(B) Drugs Valproate and Dexamethasone are fixed at 6 mM and
210.5 nM.
doi:10.1371/journal.pone.0020998.g005
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cancer and normal cells [39]. The work describes additional

applications and illustrates the potency of such approaches.

With the development of genomics and proteomics, more and more

cellular components and their physical interactions are identified.

However, their dynamic functional interactions have not been studied

extensively or quantitatively. Systems biological approaches are

emerging with the aim of understanding these functional interactions.

In retrospect, a mathematical model-based approach provides means

for understanding system level behaviors exhibited by the interacting

cellular components in response to one or multiple stimuli.

Moreover, the emerging interest and need to develop

combination therapies and individualized medicine calls for

additional efforts in analyzing multi-signal induced cellular

responses. Studies should also involve examining multiple cellular

outputs or network signaling intermediates in response to multiple

cellular inputs. The approach used in this work is capable of

addressing such problems. Additionally, examining the kinetics of

cellular responses will allow for more dynamic control.

This study using KSHV reactivation as a model system to study

multi-signal response quantification, a general issue in cell biology.

The concept and the approach used in this work will be directly

applicable to other problems such as Epstein-Barr Virus (EBV)-

associated malignancies. Moreover, many cancers and HIV

associated malignancies can benefit from systematic approaches

to studying multi-signal induced responses.

Experiment-based versus model-based optimization
The selection of suitable drug combinations was achieved using two

different approaches. The experiment-based cross entropy implemen-

tation involved iterative testing of combinations in order to search for

best performing combinations. The algorithm showed reasonable

convergence. The advantages of experiment-based optimization are

apparent when the objective function is clearly defined and we are

interested in achieving that goal in a reasonably smaller number of

tests. Furthermore, when there is no interest in deducing more

information regarding the relationship between input signals and

output responses, an experiment-based optimization approach can

yield satisfactory results without added experimental overhead.

On the other hand, a model-based approach was also quite

effective in achieving the desired goals. The results were consistent

between the two different approaches emphasizing the power of

using various mathematical tools to study biological problems.

Generating a predictive model required testing a relatively small

number of drug combinations. As the combinations are tested over

a shorter period of time, the sensitivity of this approach to

variations in cell conditions is less prevalent than the experiment-

based approach. Another advantage of a model-based approach is

that it enables optimizing combinations based on a different

number of performance functions with varying sets of parameters

without additional experimental measurement. This allows

efficient analysis of multiple optimization questions and enables

Figure 6. Dimensionality reduction of the predictive reactivation model. (A) Plot of the regression coefficients of the different regressors
used in linear regression. (B) Plot of the percentage of variance explained as a function of the number of Partial Least Squares components used in
Partial Least Squares Regression. (C) Plot of the lowest residual sum of squares for models of 1,2, . . . ,31 regressors. (D) Plot of the regressor
coefficients of the best model using 10 regressors. The regressors are shown as well.
doi:10.1371/journal.pone.0020998.g006
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customization of combinations to specific needs, e.g., personaliza-

tion of treatment based on an individual’s characteristics. The

model also can be used to study problems beyond the optimization

and control of cellular responses such as analyzing the relation-

ships between the various signals in view of the effects of these

signals on some measured the cellular outputs.

On network targets and interactions
The selected drugs target distinct parts within the signaling

network. Yet, there are significant interactions between the targets

of these drugs through other molecules within the signaling network.

To illustrate this, we have summarized the interactions as predicted

by the neural network model and through the regression analysis

(Figure 7B). These interactions represent an abstracted set of

interactions that highlight the subset of the signaling network that is

most involved upon treatment with multiple drugs in the tested cells.

The negative interaction between Bortezomib and Prostratin is

consistent with the observation based on the neural network

model. The positive interactions between db-cAMP and prostra-

tin, and valproate and Prostratin are also consistent with the

observations based on the neural network model. The reported

interactions indicate that PKC activates NF-kB in T and B

lymphocytes. It has been reported that NF-kB inhibits reactivation

both in vitro and in vivo (Figure 1A). In view of the more complex

Figure 7. Evaluation of combinatorial effects of drugs on reactivation and cellular signaling. (A) Plot of the maximum achievable
reactivation rates using combinations of two, three, four, and five drugs as predicted by the mathematical KSHV reactivation model. (B) A summary of
the predicted interactions between the applied drugs and their effects of these interactions on KSHV reactivation. ? : Synergistic effect; \: Inhibitory
effect.
doi:10.1371/journal.pone.0020998.g007
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interactions exhibited and the variation in the responses, it

remains unclear whether NF-kB is a potential target for the

interaction between Prostratin and Botezomib.

The comparison between known knowledge of the cellular

pathways targeted by the drugs and the potential interactions we

have obtained from the drug combination study can shed light on

the molecular mechanisms of reactivation regulation by cellular

factors. For example, some of our observations of the drug

interactions here are consistent with our knowledge about the

signaling pathways these drugs target. In view of the positive

interaction between db-cAMP and Dexamethasone, it is suggested

that Dexamethasone could potentiate PKA signaling and thereby

facilitate PKC signaling, possibly through the synergistic effect on

CRE-mediated gene expression, and CREB may be playing an

important role in the mediation of CRE-dependent transcription

[40,41]. A speculation of the phenomenon we observed in our

reactivation system is that at low PKA and PKC activity level, the

synergizing effect between Bortezomib and Dexamethasone is

significant; when the PKA and PKC activity level is high enough

with large doses of db-cAMP and Prostratin, which are required

for a higher reactivation rate, the contribution of the potentiating

effect of Bortezomib and Dexamethasone becomes minimal.

When Bortezomib concentration is high, it could inhibit the

downstream molecules of PKA and PKC pathways [42]. This is

consistent with our observation that when there are large amounts

of db-cAMP and Prostratin, increasing Bortezomib has an

inhibitory effect.

On the other hand, the data provides several questions that can

be the basis for new studies. The results suggest that a strong

positive interaction exists between Valproate and Prostratin. The

underlying mechanisms of this interaction are not clear and

require further investigation. Moreover, it is of importance to

investigate further the causes of positive or negative interactions of

the signals inducing reactivation. The utilization of the proper

interactions, by judicious selection of drug doses, led to a

significant increase in virus reactivation. Furthermore, there are

indications of accelerated response with a combination of signals

as opposed to a single signal. This potential acceleration in the

response suggests the nonlinearity of the cellular responses. It

provides multiple opportunities to verify, analyze, and quantify this

change, particularly for providing a mathematical framework for

this change, as well as for studying some of its mechanistic causes.

Materials and Methods

Selection of drugs for KSHV reactivation
In our previous work, a genome-wide cDNA screen was

performed to systematically identify cellular signals that regulate

viral reactivation [19]. Combined with existing literature, a list of

signals that reactivate KSHV was identified. In this study, five

drugs were selected to investigate the effect of multiple signals on

the reactivation of KSHV. The five drugs are: Bortezomib, db-

cAMP, Prostratin, Valproate, and Dexamethasone. Each of the

five drugs was shown to reactivate the virus from latency to

different extents.

Bortezomib is a proteasome inhibitor that at least in part

reactivates KSHV by inhibiting NF-kB activity [13]. Dibutyr-

ylcAMP (db-cAMP) is a cell-permeable cAMP analog that

activates the PKA pathway [14]. Prostratin activates the PKC

pathway [13]. Valproate shares structure and mechanism

similarities with the histone deacetylase inhibitor butyrate [15].

Dexamethasone is a glucocorticoid regulating the activation of

some transcription factors and apoptosis-related genes [16,17].

With the utilization of the five drugs that function in different

yet potentially connected signaling processes (Figure 1A), KSHV

reactivation can serve as an excellent model system illustrating

how multiple cellular signals are processed. One additional

objective is maximizing reactivation through the proper selection

of signal combinations. The interactions in the figure are an

oversimplified set of interactions of the drugs used. The simplified

diagram serves to illustrate some of the known interactions within

the cell upon treatment with various drugs. The drugs are also

known to affect other targets in addition to the intended target

enzymes and as such can lead to unknown interactions. Moreover,

each pathway has various interactions with more pathways that

are not depicted. Furthermore, upon treatment with multiple

stimuli, only a subset of these interactions will play the main role in

the response. Hence, it is important to identify this subset as it can

shed light into the inner workings of the cellular machinery in the

presence of multiple signals. The study represents an initial effort

to address the challenges of such complex interactions.

Cell preparation and measurements
The BC-3-G cell line was established as previously described

[9]. Briefly, the parental cell line BC-3 is latently infected with

KSHV. The BC-3-G cell line was established by cotransfecting

pPAN-122-d2EGFP (a construct expressing enhanced EGFP

driven by activation of PAN promoter) and a construct containing

a puromycin-resistant gene. The selected cell colonies were

maintained in RPMI 1640 medium containing 15% FBS and

puromycin, and periodic check of GFP inducibility was per-

formed. The KSHV reactivation level was indicated by the

percentage of GFP+ve cells in the total cell population as

measured on a Becton Dickinson FACScan Analytic Flow

Cytometer.

In our setup, the cells were plated in 24-well plates (5|105

cells/well). The next day a series of drug solutions were freshly

made either by diluting the stocks with media (all drugs except

valproate) or from dry powder (valproate) as manufacturers

suggested, so that 1006 solutions were available for desired

concentrations for each drug. The cells were treated with drug

combinations by adding individual 1006 drug solutions into the

well and mixing by pipetting up and down. The cells were then

returned to the incubator for 1 hour. Afterwards the cells were

washed and incubated for an additional 16 hours in fresh media to

allow enough time for the viral responses to the drug treatment to

be converted to quantitative GFP expression. Then the GFP

measurements by FACS were taken. The FACS acquisition and

analysis settings were validated by including the same positive

(TPA-treated cells) and negative (DMSO-treated cells) controls for

each set of experiments.

The western blots were performed using a rabbit polyclonal

antibody against KSHV early lytic protein K8, and the

quantification of the western blot bands was done using the

Image-Quant image analysis software (Molecular Dynamics).

The RT-Q-PCR was performed in an Opticon2MJ thermocycler

(MJ Research). The primers used for RT-Q-PCR were: ORF50-F (5-

CACAAAAATGGCGCAAGATGA-3) and ORF50-R (5- TGGT-

AGAGTTGGGCCTTCAGTT-3); PAN-F (5-GCCGCTTCT-

GGTTTTCATTG-3) and PAN-R (5-TTGCCAAAAGCGAC-

GCA-3); GAPDH-F (5-GAAGGTGAAGGTCGGAGTC- 3) and

GAPDH-R (5-GAAGATGGTGATGGGATTTC-3).

Measurement of virion production. Supernatants from

cells treated with chemicals were collected and cleared by

centrifugation first at 200 | g for 3 min, followed by another

centrifugation at 3000 | g for 5 min. Cleared supernatants were

then treated with DNase I (Invitrogen) at a concentration of
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100 U/ml for 1 hr. After heat-inactivation of DNase I at 650C for

30 min in the presence of 10 mM of EDTA, supernatants were

treated with proteinase K (Sigma-Aldrich) at 650C for 2 hrs.

Virion DNA was extracted with phenol/chloroform, followed by

DNA precipitation with ethanol. DNA was air-dried, dissolved in

40 ml of TE buffer, and measured with RT-Q-PCR using primers

specific for the KSHV major capsid gene.

Neural network model
A multi-layered perceptron with two hidden layers was used to

fit the model. The hidden layers consisted of 40 and 20 neurons

respectively. The transfer function (activation function) of each

neuron is a sigmoidal function. The selection of this neural

network structure was a result of trying different structures with a

varying number of neurons. The input and output data was pre-

processed prior to training by mapping them into the [21, 1]

range. Outputs of the network were post-processed to map them

back to the original range. Preprocessing of data allows for better

training of the network. A back-propagation Levenberg-Mar-

quardt algorithm was used to train the neural network. The neural

network fitting algorithm divides the data into three sets, training

(98%), validation (1%), and testing (1%). The training and

validation sets are used to train the model and prevent overfitting

of data. The testing data is used for post analysis to assess the

models predictive capabilities. However, this set is small and no

meaningful conclusions can be drawn from it. Instead, we tested

an additional set of 48 combinations and used that to test the

generalizability of the model (see main text). The low percentages

of validation and training set sizes were chosen to maximize the

number of points used to fit the model. Training of the model was

done using the neural network toolbox of Matlab.

Cross entropy description and setup
We applied the cross entropy combinatorial optimization

algorithm both to the predictive reactivation model and

experimentally to optimize multi-drug combinations for high

KSHV reactivation. The search process evolves in iterations in

which the performances of selected points are evaluated. The

selected points are randomly chosen using joint Gaussian

probability density function over the set of all combinations. The

assumption of independence between the different input variables

results in a joint density function which is the product of Gaussian

distributions, each associated with an input variable. Each

Gaussian distribution has a mean and a standard deviation which

are continuously updated through the iterations of the algorithm.

The means and standard deviations of the distributions reflect the

current belief of the values of the maximizing inputs as well as the

confidence level. The evolution of the means and standard

deviations is based on the convex combination of the current

means and standard deviations, and the means and standard

deviations of a top performing percentage of model-predicted (or

experimentally-measured) performances. The algorithm termi-

nates when the change in the means becomes small and the

standard deviations approach zero.

In the experimental CE implementation, and similar to the

simulated CE implementation, 45 drug combinations were

selected in our setup to enable the collection of as many stimuli-

response data as enabled by manual measurements. In each

iteration, the performances of 45 randomly chosen sample

combinations were experimentally evaluated. The top performing

16% of combinations were used to update the means and standard

deviations. The choice of 45 combinations was based on a feasible

number of combinations to be tested manually in duplicates and

based on the previous section. The iterations proceeded for

months.

The response of the virus is experimentally measured and is

denoted by the function

y~J KSHV (u),

where u~(u1,u2,u3,u4,u5), with uj corresponding to the concen-

trations of drug j. Therefore, for any vector v~(v1,v2,v3,v4,v5),
J KSHV (v) denotes the KSHV reactivation rate as measured

experimentally with the drug concentrations being v1,v2,v3,v4,v5.

Because of the large range of concentrations used, the input range

was mapped to the log2 range, i.e., the range of each input is

~uumin
j ~ log2 umin

j ,

~uumax
j ~ log2 umax

j :

Notice that since the smallest value for the concentrations is

zero, taking the log is not possible. Instead, we replace the zero

elements in the concentrations with a pseudo element equal to one

half of the lowest concentration greater than zero. Whenever the

random outcome of a sample element is the pseudo element, it is

replaced with zero in the testing stage.

Therefore, the elements of the samples, i.e., vj,i, j~1, . . . ,N,N~

45 and i~1, . . . ,5, can be randomly generated using independent

probability density functions fi(:,½m̂mi,ŝsi�). The parameters m̂mi and ŝsi

are estimated in every iterations using the cross entropy method (see

the supplemental methods section for more information). The initial

value of the vector ĥh~(m̂m1,ŝs1,m̂m2,ŝs2,m̂m3,ŝs3,m̂m4,ŝs4,m̂m5,ŝs5) was set to

ĥh~({26:0754,6:0553,{11:4658,6:0553,{18:1096,6:0553,{11:
8808,6:0553,{25:7535,6:0553). The choice for the initial values of

the means was based on picking a point in the middle of the possible

range of concentrations. The choice for the standard deviation was

made large enough to have the initial random outcomes span the

space properly.

To make sure that all data points lie within the allowable input

range, any point lying outside the allowable input range was

dropped and a new point was generated using the same

probability density function. Furthermore, the random outcomes

are rounded off or discretized to the nearest possible concentration

value in the following manner. First, let ~vvc
j,i be a randomly

generated element in the log2 range. Locate the two concentra-

tions directly smaller and directly larger than the randomly

generated concentration; denote these points by p1 and p2

respectively. The discretized value in the log2 range is

~vvd
j,i~

p1, ~vvc
j,i

1
2

(p1zp2);

p2, ~vvc
j,i§(p1zp2):

(

The discretized log2 concentration, ~vvd
j,i, is converted to the normal

range using vj,i~2~vvd
j,i. A smoothing update of both m̂mj and ŝsj was

also used as indicated in the supplements methods. The smoothing

parameter values were a~0:9,b~0:03 and m~0:8. Moreover, the

elite sample fraction was set to r~0:16, i.e., the top performing

seven samples are used to generate the new parameter ĥh.

It is important to note that implementation of the CE method to

the mathematical model is not necessary unless the number of
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drugs and concentration is very large, in which case the CE

method provides a computational faster approach for searching for

the optimal. For systems with 5 drugs a simple sorting algorithm

that ranks combinations based on their performance suffices and is

reasonably fast.

Linear regression and variable selection
We used a regression model that is linear in the log of the

concentrations. The model is of the form

Y~b0zX1b1zX2b2z . . . zXnbn~XB,

where Y is the output of the model (reactivation rate), bi are the

coefficients of the model, and Xi are the regressors. A total of 31

regressors were used, the regressors correspond to the individual

concentrations, and products of concentrations for two, three,

four, and five-drug mixtures. The product terms reflect interac-

tions between the drugs. All regressors were standardized to zero

mean and unit variance.

Examining the eigenvalues of the correlation matrix X0X,

multicollinearity was checked and the model exhibited multi-

collinearity, i.e., the regressors are not linearly independent.

Therefore, a smaller number of regressors can be used without loss

of prediction. To reduce the dimensionality, we utilize different

approaches. Partial least squares was used in one approach,

however, interpretation of the reduced variables is not easy given

the large number of variables used. The second method we used

was all-subset regression. Here an efficient branch-and-bound

algorithm is used to sort through 231{1 models and to determine

the best models of 1,2, . . . ,31 variables [38]. Selection of the

number of variables that best describe the data is based on finding

the smallest model that results in 95% reduction in the residual

sum of squares.

Evaluation of the convergence of the cross entropy
method

To evaluate the convergence of the cross entropy method, we

ran several simulations. First, one thousand different runs of cross

entropy were executed, each using 45 samples per iteration. The

same initial means and standard deviations were used for all one

thousand runs. The results showed that the algorithm converged

to combinations whose performance is within 16% of the

maximum performance. Out of the one thousand runs, 556

converged within 5% of the maximum performance and 778

within 10% of maximum performance. A similar set of simulations

was also conducted except that the initial means for the one

thousand runs were randomly chosen, thereby starting with

different parts of the combination space. All one thousand runs

converged within 21% of the maximum. 557 runs converged to

within 5% of the maximum performance, whereas 776 converged

within 10% of the maximum performance.

A similar set of simulations was also conducted in which the

number of samples per iterations was increased to 100 samples,

thereby sampling the combination space with a higher density.

The results show that with all runs starting from the same initial set

of means and standard deviations, all runs converged to

combinations with a performance within 13% of the maximum

performance. Out of the one thousand runs 730 converged within

5% and 922 within 10%. Starting with randomly chosen means at

the beginning of every run resulted in similar numbers with all one

thousand runs converging within 13% of the maximum perfor-

mance, with 735 runs converging within 5% and 935 converging

within 10%.

In the above simulations, the algorithm used the performances

of the top performing 16% of the samples within each iteration to

update the means and standard deviations. Decreasing the

number to 8% with 100 samples per iteration the algorithm

converged within 12% of the maximum performance for all one

thousand runs starting with the same initial set of means and

standard deviations. 850 converged within 5% and 987 converged

within 10%. Starting from randomly chosen means convergence

was to within 16% of the maximum performance with 859 runs

converging within 5% and 984 runs within 10%.

In all, the simulations suggest that the optimization algorithm is

capable of consistently identifying top performing combinations

without requiring to test many samples. This also introduces an

important question on whether the algorithm can be utilized to

drive a set of experimental trials to optimize the reactivation of the

virus reactivation. Such a result would provide validation of the

computational approach and would also suggest a direct

experimental approach that can be used to optimize drug

combinations through a sequence of trials.
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