
UCLA
Papers

Title
Disruption Tolerant Shell

Permalink
https://escholarship.org/uc/item/43c8d4qd

Authors
Lukac, Martin
Girod, Lewis
Estrin, D

Publication Date
2006-05-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43c8d4qd
https://escholarship.org
http://www.cdlib.org/

Disruption Tolerant Shell∗

Martin Lukac
UCLA CENS

3563 Boelter Hall
Los Angeles, CA 90095

mlukac@cs.ucla.edu

Lewis Girod
MIT CSAIL

32 Vassar St.
Cambridge, MA 02139

girod@nms.csail.mit.edu

Deborah Estrin
UCLA CENS

3563 Boelter Hall
Los Angeles, CA 90095

destrin@cs.ucla.edu

ABSTRACT
Wireless network technology is being applied to a wide range
of scientific and engineering problems and across a wide dy-
namic range of spatial scales. When node placement is con-
strained by the application (e.g, coupled to sensor placement
needs), and can not rely on pre-existing infrastructure (e.g.,
cellular infrastructure or power-lines), such systems may ex-
perience erratic link qualities and intermittent node discon-
nection. These characteristics, combined with unpredictable
environmental conditions, make it difficult to rely upon tra-
ditional end to end connections for regular high bandwidth
data acquisition and for system management and configura-
tion. We have implemented and deployed such a “challenged
network” system of 50 nodes for use by seismologists along a
part of the Mesoamerican Subduction Experiment (MASE)
broadband seismic array, stretching 500 KM from Acapulco
to Tampico through Mexico city. In addition to supporting
Delay Tolerant data transfer of relatively high bandwidth
seismic data, our system includes a reliable asynchronous
remote shell interface (referred to as Disruption Tolerant
Shell, DTS) to accomplish the management on these types
of system. We present the implementation of this solution
and its evaluation on a 13 node portion of the MASE net-
work.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management; C.2.2 [Network
Protocols]: Applications

General Terms
Design, Management, Performance

Keywords
Delay tolerant networking, ad-hoc networks, wireless sensor
networks, system management

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCF-0120778.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

1. INTRODUCTION
As existing wireless technology is being applied to a wider

range of scientific and engineering problems, it is becoming
more difficult to rely upon traditional end to end connections
for regular high bandwidth data acquisition and for system
management and configuration. Sensor placement is nec-
essarily determined by the application, with secondary con-
sideration to connectivity. For deployments located far from
pre-existing infrastructure such as cellular systems, power-
lines, or wired network access, the deployed system must
create its own network infrastructure. In our case, scale and
placement requirements imposed by the application substan-
tially reduce the feasibility of provisioning a high availability
end to end network.

Creating end to end connectivity is more than just an
issue of hardware costs. Each station requires permission,
installation, adequate solar power, and protection. There-
fore nodes are frequently placed at a distance that push the
capabilities of the wireless links. These “stretched” links
are particularly sensitive to environmental transients and
therefore the resulting network is “challenged” in that we
can not count on high availability end to end paths. For
example on a path A-B-C-D-E, each link may be available
95% of the time, but because the disruptions are not nec-
essarily correlated, the end to end path availability is 81%.
Our application requires every bit of data to be delivered
and all management tasks to be reliably completed within
the time it takes to establish and maintain a reliable end to
end connection.

Patterns of poor links, disconnections, and disruptions can
make it difficult to obtain an end to end connection a suf-
ficient percent of the time to achieve necessary bandwidth
and latency needs. With such variability in the network,
the existing Delay Tolerant Networking (DTN) techniques
[6] work well for data delivery, but existing system manage-
ment methods and tools fail. While these conditions may
not be the common case and end-to-end solutions work much
of the time, they may fail at the times when configuration
and management is most necessary. These tools are what
we describe as “online” applications: they expect reliable
end to end links with low latencies. Adapting these tools to
work in challenged network environments requires changing
the way the tool fundamentally operates, changing the un-
derlying network services model, or both. We have designed
and deployed a system to achieve the required application
performance of delivering sensor data and managing nodes
over such a network that experiences erratic link qualities
and intermittent node disconnections.

The Mesoamerican Subduction Experiment (MASE) broad-
band seismic array [3] is a challenged network. MASE con-
sists of 100 seismic stations stretching 500 KM from Aca-
pulco to Tampico via Mexico city. Of these 100 stations,
50 are stand-alone data-logger systems, while 50 are part
of an experimental networked sensing system. The net-
worked nodes are based on the Stargate [10] platform and are
networked to peers over 5-10 Km distances using hi-power
802.11B cards and directional antennae. In some cases, the
best network topology reflects the physical topology, and
the result is a tree like configuration. In other cases, the
network topology is more complex, particularly when trade
offs were made for a good sensor location. In all cases, relay
nodes were required.

Because of poor links and other disruptions, end-to-end
performance in this network falls off rapidly as the number
of hops increases. This has led us to use DTN techniques
for data transfer rather than multiple parallel end to end
connections. The sensor data is buffered, stored into bun-
dles, and transferred hop by hop until it reaches a sink node.
Our implementation of this technique only changes the way
a data delivery tool operates and not the underlying network
services: we use TCP to transfer the data bundles between
hops. In addition to delivering the data, we add meta-data
to the bundles as they are transferred between links to track
the movement of the data and to collect information about
the individual links.

System management beyond the first few hops into the
network becomes difficult as end to end connections become
extremely high latency and unreliable. The goal with sys-
tem management is to perform a management task on all
the nodes in the network or to query system information
from all the nodes in the network without disrupting the
data movement. To accomplish this, we adapted an existing
management tool, the remote shell, by changing the way it
fundamentally operates. We pair this new type of shell with
a new underlying network service call StateSync. StateSync
is a reliable and efficient publish-subscribe mechanism that
provides a low latency transport for state dissemination sim-
ilar to DTN. The result of the combination is the Disruption
Tolerant Shell (DTS).

DTS uses StateSync to reliably disseminate shell com-
mands and scripts and to return their results. DTS specifi-
cally addresses the situations where end to end connections
fail at critical times, are intermittent, or are just not pos-
sible. DTS provides a tractable management environment:
it enables the user to issue commands once and be certain
that all nodes will execute them, whenever and however they
manage to get connected. The majority of the time, DTS
will have lower latency than an end to end management sys-
tem, including the cases where the end to end systems fail
to establish and sustain connections. The remainder of the
time DTS will have comparable latency to and end to end
system.

DTS is currently deployed on a 13 node network that be-
gins in Cuernavaca, as shown in Figure 1. Section 2 covers
related work. Section 3 provides some analysis of the de-
ployed network. Section 4 describes the implementation of
DTS. Section 5 discusses our evaluation of DTS.

2. RELATED WORK
DTN ideas and techniques used in our system are drawn

from Interplanetary Internet [4] research and other DTN

Figure 1: The approximate path of the entire MASE
seismic network. The lighter dots centered on Mex-
ico City represent the 50 networked stations of the
transect.

architectures [6]. In particular the idea of buffering data into
bundles as well as transmitting the with deliberate store and
forwards along each hop towards the destination. However,
we do not make any changes to underlying network services
for sensor data delivery, but instead use TCP for one hop
transfers.

DTS depends on StateSync [8] to reliably disseminate
management commands and responses. StateSync was de-
signed to extend the ideas of previous abstractions such as
Hood [12] and protocols such as Trickle [11] to support of a
specific class of applications. Where Hood and Trickle were
designed to run on very lightweight sensor platforms such
as Motes [9], StateSync is designed to take advantage of the
more plentiful resources available on the Stargate platform.

Many distributed system management tools exist which
allow remote configuration and command execution. In par-
ticular, tools from the distributed processing fields have ca-
pabilities similar to DTS. Additionally there are many tools
to monitor and collect status information, such as Nagios [2],
from large networks. The difference between DTS and these
tools is that they all require reliable end to end connections.

3. NETWORK CHARACTERISTICS
The goal of the seismic network is to deliver data from

accelerometers at each station. The data produced is pack-
aged every hour to create approximately 1.5MB bundles.
The bundles are transported hop by hop on a path towards
the sink using a simple TCP transfer component which sup-

Node Lat Long ID Site Name
A 18◦59.974’ 99◦14.422’ Cuernavaca Norte (repeater)
B 18◦59.974’ 99◦14.422’ CUNO Cuernavaca Norte
C 18◦52.567’ 99◦12.211’ Palmida (repeater)
D 18◦49.720’ 99◦14.633’ TEMI Temixco
E 18◦52.314’ 99◦11.851’ JIUT Jiutepec
F 18◦55.740’ 99◦13.322’ Cuernavaca Centro (repeater)
G 18◦55.740’ 99◦13.322’ CUCE Cuernavaca Centro
H 18◦47.017’ 99◦12.960’ XOCH Municipal Xochitepec
I 18◦42.050’ 99◦14.961’ APOT Apotla
J 18◦39.132’ 99◦15.657’ SJVH San Jos Vista Hermosa
K 19◦03.604’ 99◦13.006’ PTCU Cerro Tres Cumbres
L 19◦01.890’ 99◦16.241’ VLAD Huitzilac
M 18◦44.779’ 99◦14.989’ ATLA Atlacholoaya

Table 1: The table lists the the thirteen node network one which DTS is deployed. Node A is connected
over wired Ethernet to a PC with internet connectivity. Each non relay station is dug into the ground and
contains a custom box with a Stargate, a battery, a Kinemetrics Q330, and a Guralp CMG-3T (in a nearby
dug out vault). Where convenient, existing radio towers, masts, and rooftops are used otherwise the antennae
are mounted to the solar panel mast.

Figure 2: A diagram of the network topology of
the Cuernavaca network. The arrows represent the
direction of file transfers and are marked with the
mean effective bandwidth, the mean number of re-
tries and the number of samples. Node K did
not transfer any files over the period of collected
files. Not all the transfers for the collected data are
shown. Figure 3 shows the range and variability of
the bandwidth and retries of characteristic links.

ports resuming a partially transferred file after a timeout1.
These transfers provide an opportunity to characterize the
network by recording information about how long the trans-
fers take and the number of times the TCP connection is lost
and reestablished (a retry) for each bundle. As each bun-
dle is transferred over a hop the transfer time and number
of retries are added to the bundle. The characterization
is important because each node has limited disk space (1-
4GB). If the links are not good enough to transfer a nodes
local data and the data from upstream nodes, the disk will

1We initially tried using scp but it did not support resumes
and when trying to transfer over bad links, it would stall for
up to 20 minutes before closing the connection and retrying.
If no data is transferred for 45 seconds, our TCP transfer
component closes the connection and attempts to resume
the file.

fill up and eventually data will be lost. When such links
are detected, someone must physically visit the stations and
attempt to fix the situation. The characterization is also
important because it can provide clues as to how well other
software might perform on the network.

The collected transfer times between the nodes can be
used to determine the estimated bandwidth for each link.
The estimated bandwidth for each link is what provides our
characterization of the network and can be used to evaluate
the effectiveness of the network. To determine the effec-
tiveness we can compare the estimated bandwidth to the
required bandwidth for any node along any given path. For
instance, consider a node at the edge of the network without
any other nodes sending data through it. Given that each
node generates 24 files a day with each file approximately
1.5MB, the minimum required sustained bandwidth would
be about 416 bytes per second. The minimum required sus-
tained bandwidth will be greater for nodes that are closer
to the sink, since they will be along the path to the sink for
other nodes.

Each of the sub networks has one station that is connected
to the internet, so all the nodes send the bundles to this sink
node. To determine the path to the sink, we build a sink
tree based on the ETX path metric [5]. To reliably dissem-
inate the path metric information and build the paths we
use the StateSync mechanism which is a reliable and effi-
cient publish-subscribe mechanism described in Section 4.5.
Each node uses StateSync to publish information over one
hop including the sink’s ID and the publishing nodes full
chosen path and ETX to the sink.

The thirteen-node network beginning in Cuernavaca and
heading south contains the stations shown in Table 1. Some
of the information collected from the transfer information
added to the bundles is represented in Figure 2. Each ar-
row represents the movement of bundles, with the source
pointing towards the destination. Each arrow also shows
the mean effective bandwidth, the mean number of retries,
and the total number of files transferred along that hop.
The effective bandwidth is the bandwidth computed using
the file size over the total time it takes to transfer the file
including resumes and the time between retries. The data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

F
ra

ct
io

n

KB/s

Distribution of Effective Bandwidth Measurements for Typical Links

J-F (5 similar)
M-I (3 similar)

E-B (5 similar)
D-C (0 similar)

������
������
������
������
������
������

��
��
��
��
��
��

��
��
�

��
��
�

������
������
���

��
��
�
������
���
��
�
	�		�	
	�	

���
�

� ���
�
���� �� �������

� �������
�

 0

 20

 40

 60

 80

 100

>10109876543210

Pe
rc

en
t

Retries

Percentage of Retries for J−F

J − F

��
��
��
��
��

��
��
��
��
��

������
������
������
������
������

������
������
������
������
������

������ ������ � � !�!"�" #$ %& '()* +�+,�, -�-.�. /�//�/0�0
0�0

 0

 20

 40

 60

 80

 100

>10109876543210

Pe
rc

en
t

Retries

Percentage of Retries for M−I

M − I

1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�11�1
1�1

22
22
22
22
22
22
22
22
22
2

33
3
44
4
5�56 7�78 9�9: ;;<< ==>> ?@ A�AB CD E�EF G�GH

 0

 20

 40

 60

 80

 100

>10109876543210

Pe
rc

en
t

Retries

Percentage of Retries for E−B

E − B

II
II
II
II
II
II
II
II
II
II
II
II

JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ
JJ

K�KK�KL�LL�L M�MN�N O�OP�P Q�QR�R ST UV WX YZ [�[\�\]�]^�^ _�_`�` 0

 20

 40

 60

 80

 100

>10109876543210

Pe
rc

en
t

Retries

Percentage of Retries for D−C

D − C

Figure 3: The bandwidth and retry percentages for a selection of four nodes. The chosen links are represen-
tative of all the links in the network and the number of similar links is indicated. More than half of the links
have a highly variable bandwidth which indicates the instability of the links and that performance varies over
time.

shows that the bundles take multiple paths to the sink. This
indicates that the links are variable enough to cause the path
to the sink to change. The link variability is most likely due
to environmental conditions.

Figure 3 shows the distribution of effective bandwidth
measurements for four representative nodes and the num-
ber of other hops that have similar distributions as well as
the percentage of retries for the representative hops. This
data supports, as does Figure 2, that over the entire net-
work, the bandwidth varies greatly from hop to hop. The
hops that have a larger overall bandwidth have a large vari-
ability over that bandwidth. This indicates the instability
of the links and that performance varies over time. This is
most likely due to the long distances of the links and the
environmental conditions.

4. DTS
DTS is a remote management facility designed to manage

large numbers of nodes connected by challenged networks.
DTS makes this management problem tractable by ensur-
ing exactly one execution of a series of commands, and by
providing centralized collection of responses, given a range
of disconnected and poorly connected networks. Ensuring
that all scripts run on all nodes is the key to providing a
tractable management environment, and as our tests in Sec-
tion 5 show, DTS achieves 100% success rate. This result
follows from the design of DTS, which ensures that it will
succeed as long as there is eventually a connection between
a given node and a node that has already received the com-
mand. In this section, we describe DTS from the top down:
what DTS provides to the user, details on the implemen-
tation of DTS, how DTS uses a reliable and efficient pub-
lish and subscribe mechanism called StateSync, and how
StateSync works.

4.1 The DTS Service Model
DTS provides a centralized management interface in which

commands to all nodes are issued from a management sta-
tion, broadcast to the network, and asynchronous responses
from all nodes are collected and reported back to that sta-
tion. DTS does not assume that all commands issued will
be idempotent; thus nodes receiving a command execute it

exactly once. This means that DTS cannot protect against
failures stemming from failures in the commands themselves
that yield indeterminate results, for example a script that
causes an unexpected node reboot. However, in these cases
DTS does guarantee to report that such a failure potentially
occurred. If a user issues a script known to be idempotent
and that script fails, the user can repeatedly reissue the com-
mand via DTS until success responses have been received
from all nodes.

The responses to commands are also broadcast to the en-
tire network. This means that in addition to being visible
at the management station, collated responses can also be
seen from any node in the network. This feature is quite use-
ful to technicians in the field who want to monitor results
and perform maintenance operations with rapid turnaround.
Commands may also be issued from the field, and these com-
mands and their responses will also be collated at the central
management station.

The latency observed by a user of DTS varies depend-
ing on the state of the network. In cases where the net-
work is well–connected, DTS performance is 10s of seconds:
slightly slower than parallel end–to–end ssh sessions. How-
ever, lengthy disconnections can introduce unbounded la-
tency, especially if a field technician must be dispatched to
physically visit a location and repair an antenna. However,
the DTS service model ensures that even if some parts of the
network are unreachable when commands are issued, they
will propagate node to node and be executed on nodes as
soon as they become available.

These extreme variations in expected latency make it dif-
ficult to devise an algorithm to tell when a particular job
has successfully “completed”. This is especially true when
we consider the wide variety of exceptional conditions that
are encountered during maintenance tasks, and the fact that
some nodes may remain off-line permanently. Rather than
relying on an algorithm, the DTS system relies on the user
to resolve ambiguous cases. Since the user knows how many
nodes exist in the network and whether they are functional,
DTS leaves the determination of whether a particular job
has completed on all nodes up to the user.

The user interface provided by DTS is currently a command–
line interface similar to a remote shell with several concur-

rent background jobs and convenient access to the collated
responses from completed jobs; a future version will use
a database–backed web interface. In addition to execut-
ing standard shell commands, DTS includes two more spe-
cialized built in features: ongoing status reporting and file
transfer.

The first is the ability to create a “status client” on any
particular EmStar [7] status device. Anytime the status
device updates within a given refractory period, the latest
output from the status device is republished. For these types
of response, an additional sequence number is included with
each response message to distinguish these sequential up-
dates.

This status feature enables existing deployments to be
instrumented with unanticipated state reporting “on–the–
fly” and while running live. For example, this facility can
be used to monitor disk usage or link quality to neighbors
without installing additional software on the node. More
complex predicates can be implemented by scripts that are
pushed out using DTS and then return periodic replies via
this status reporting facility. For instance, a script that
looked for and reported certain anomalous packets might
be instrumental in tracking down a bug that only occurred
once the system was deployed into this more challenged and
inconvenient environment.

The second feature is the ability to push a file from one
node to all the other nodes in the network. This feature
uses a single-hop file transfer module (described briefly in
Section 3) as an underlying component. For every trans-
fer issued, each node reports a list of known neighbors and
the status of the transfer to each neighbor, along with an
additional sequence number to indicate the freshness of the
transfer status. This feature can be used to upgrade binaries
and deploy new scripts.

4.2 How DTS Works
DTS reliably broadcasts commands to the network, exe-

cutes each command exactly once on each node, and then
reliably broadcasts a summary of the output of each com-
mand to the network. Commands and responses stored on
any given node in the network are reliably synchronized to
neighboring nodes as they become available. In this way,
data floods through the network via hop–by–hop reliable
transfers, independently of any pre-existing routing fabric.

Commands are keyed by the source node (typically the
management station) and by a per-source sequence number.
Once a node receives commands it will execute them in the
order they were issued, and the return value and the output
of each command is then broadcast back. Because of the
potentially unbounded latencies in the network (especially
in the event that links are down permanently), commands
and responses persist in the network until the user at the
management station chooses to flush them. If any node
is unreachable when a command is issued and remains un-
reachable until after the command has been removed from
the network, then the node will never have executed the
command.

4.3 Command and Response Dissemination
To disseminate the commands and responses, DTS imple-

ments an “epidemic” algorithm that transmits stored com-
mand and response data to any neighboring nodes that have
not yet received it. This algorithm is implemented above

a reliable and efficient single-hop publish–subscribe mecha-
nism called StateSync, and described in Section 4.5. The
interface to StateSync allows an application to publish ta-
bles of data, and the implementation efficiently propagates
changes to those tables.

Using this interface, each node publishes and subscribes
to three tables: a commands table, a responses table, and
a table containing a per-source starting sequence number.
The command and response entries both contain a source
identifier, a command sequence number, type fields, and a
payload field. The response entries also include a return
value field, and depending on the command type, an extra
sequence number in the payload to help distinguish newer
responses from updating responses. DTS populates these
tables based on stored information and submits them to the
pub–sub interface to be transmitted to all direct neighbors.
As each neighboring node receives new information, it in-
corporates it into its existing data store and republishes,
propagating the data one hop further.

The per-source starting sequence numbers represent the
oldest command issued by a node that should be in the sys-
tem. Any commands and responses with sequence numbers
below this value for the particular command source node
will be discarded. The per-source starting sequence num-
ber is controlled by the user, who may increment it after all
nodes have reported responses. This mechanism provides a
simple and efficient way for users to clear out old command
data after a maintenance operation completes, although it
does not provide the ability to remove arbitrary command
from the network. For synchronous maintenance operations
over the entire running network, this mechanism provides a
simple and easily understood interface.

4.4 Execution and Storage
The commands are executed by piping them to a forked

instance of Bash[1]. While the order of execution of com-
mands from different source nodes is not guaranteed, com-
mands from any single source node are guaranteed to be
executed in order according to sequence number. When a
command completes, the first 4KB of its output is published
in a response entry. If a command has not finished within
a given time limit, any data output up to that time is pub-
lished as a response entry. The command is then allowed
to finish and the remaining output is discarded. The time
limit was chosen based on our experience and the types of
commands we frequently run. There are many ways to han-
dle long running commands and future version of DTS will
support allowing the user to choose how timeouts are han-
dled.

The shell also provides the ability to execute a command
only on a specific node. All other nodes in the network still
respond to this type of command with an acknowledgment,
thus assuring the user that the command is propagating
through the network. The user may also restrict commands
from running on the node they are issued at.

If at any point a node is rebooted, a script fails, or the
DTS service crashes, DTS ensures that no command will
run more than once. Several mechanisms are implemented
to achieve this. First, whenever a new command is received
from the network, it is immediately saved to persistent stor-
age on disk. These command tables are read from disk on
start-up and populated into the system.

Second, before a command is executed, a new marker file

is created to indicate that execution has begun on that com-
mand. As soon as that command finishes, the output of that
command is stored in a separate result file. If DTS starts up
and it finds an the marker file and no result file, it assumes
there was a failure and does not execute the command, in-
stead publishing a failure notice.

Third, published “start” sequence numbers are saved per-
sistently upon arrival from the network. This helps to quickly
weed out old commands and responses when there are lengthy
disconnections and node outages.

4.5 Reliable State Dissemination
StateSync [8] is a reliable and efficient publish–subscribe

mechanism. It defines a data model based on tables of key–
value pairs (KVP), to which new KVPs may be added or
removed. It implements a broadcast dissemination protocol,
in which published data is propagated a specified number of
hops.

StateSync lends itself to applications which require re-
liable delivery, have large amounts of data to share, and
for which the data elements being shared have an expected
lifespan that is long compared to the system latency require-
ments. DTS falls under the scope of these requirements.
DTS requires reliable delivery of its tables in the presence
of bad links, and StateSync’s log mechanism enables updates
to be efficiently propagated in small pieces. DTS response
tables can include up to 4KB of data per response, and thus
can represent a sizable amount of data. The lifespan of the
data in DTS is determined by the user, but data is typi-
cally retained for the duration of a maintenance operation,
which might be anywhere from 15 minutes to hours. These
lifespans are significantly longer than the expected system
latency (when well–connected) of 10–20 seconds.

The StateSync implementation supports both single-hop
and multi-hop modes. However, in our DTS implementa-
tion we use it only in a single-hop mode, and implement
our own multi-hop epidemic protocol. Underneath its sim-
ple pub–sub interface, StateSync generates a log of publi-
cation updates, implements a retransmission protocol, and
transparently handles node restarts, late joiners, intermit-
tent joiners, and low quality links. We will describe some
more of the details of StateSync in the following subsections.

4.5.1 Data Model and Log Mechanism
The StateSync data model is typed key–value pairs (KVP),

with the id of the source node implicitly appended to the
key, so that each node has an independent key space. Each
KVP has a type that determines its key length and to which
table it belongs. Applications define their own types, and
thus create a new table by publishing KVPs of that type.
Tables are always published and received as complete tables,
as in a soft–state mechanism. This method guarantees that
the application can never be out of sync with the StateSync
system.

When an application publishes a new table, the system
computes the difference between that table and the currently
published table, and appends any changes to the current log
for that node. Thus, as applications modify their tables,
the StateSync log for that node grows, appending “ADD”
entries when a new KVP is added or when a value for an
existing key changes, and appending “DEL” entries when
an existing key is deleted. Large entries are fragmented into
smaller log entries, so that the protocol can run over UDP

without IP fragmentation. This log is transferred reliably
to other nodes, where it is executed to construct a set of
tables that are presented to applications. This means that
for small changes, such as adding an additional command,
the log entry that must be transmitted is quite small. When
no changes are occurring, the protocol periodically sends a
refresh message containing the sequence number of the most
recent log entry, so that receivers know whether they are
missing data.

Repeated additions and deletions can result in logs that
contain redundant and unnecessary information. When a
log reaches a certain level of redundancy, the node publish-
ing the log will “checkpoint” it by appending a “TERM”
command, and begin a new empty active log. This check-
pointing process does not require any part of the existing log
to be retransmitted, because when a “TERM” command
is received, the receiver will internally copy over all non-
redundant entries in the old log to create the new active
log. In the event that a node is completely out of sync, ei-
ther because it is a new node, or because it has been off-line
for a long time, or because of some kind of bug, the system
will need to entirely replay both the checkpointed log and
the active log.

For DTS, the log mechanism means that the system can
recover from brief disconnections without excessive over-
head, because only the recent log updates will be required
to bring the two peers back into sync. The log mechanism
also enables low overhead in cases where the state does not
change significantly for long periods of time, because the cur-
rent state can be verified by transmitting a single sequence
number.

4.5.2 Retransmission Protocol
Each source node broadcasts new entries in its log as they

are created, but these messages may be lost due to poor link
quality. The StateSync retransmission protocol is a receiver-
driven protocol that requests retransmissions based on gaps
in log entry sequence numbers. In the event that the last
entry in the log is lost, a refresh message replaying the most
recent sequence number is used to inform receivers that they
are missing data. This protocol allows nodes to stay syn-
chronized with higher efficiency than simply retransmitting
the entire state periodically.

In the event that a sequence gap is detected, receivers
schedule NACK requests for specific ranges of sequence num-
bers to fill in the gaps. The NACKs have a brief initial delay
followed by an exponential back-off. The timing parameters
governing the emission of refresh messages and NACKs can
be tuned to match application requirements.

When any kind of inconsistency is detected, a special mes-
sage type called NACK INIT is issued. This message re-
quests that the full 64-bit log entry sequence number be
sent (normally this sequence number is abbreviated). Since
this sequence number is randomized on start-up and incre-
mented monotonically, this approach significantly reduces
the probability that a node’s new log is confused with a
previously published log after a reboot.

5. RESULTS
We evaluated DTS against a comparable end to end man-

agement method. Issuing commands using DTS is similar
to using ssh as a remote execution tool over end to end
connections. We evaluated how well DTS and ssh perform

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

F
ra

ct
io

n

Seconds

Latency of DTS vs. end-to-end ssh

Successful ssh trials (98.9%)
Successful DTS trials (100%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

F
ra

ct
io

n

Seconds

Latency of DTS vs. end-to-end ssh for node G

Successful ssh trials (94.2%)
Successful DTS trials (100%)

Figure 4: The latency of DTS compared to ssh for all the existing nodes as well as a comparison of DTS and
ssh on node G. Node G had the highest latency of all the nodes for both the DTS and the ssh tests. For all
the nodes 90% of the time the latency of DTS is lower than the latency of ssh and the remaining 10% of the
time the latency is comparable. DTS is successful 100% of the time and in the cases where the end to end
connection for ssh fails the latency of DTS has a lower latency.

under relatively typical circumstances for this particular line
of 13 nodes. The results show that 90% of the time DTS has
lower latency than ssh. The remaining 10% of the time DTS
has comparable latency to ssh. As the link quality degrades
DTS will out-perform ssh both in latency and in percentage
of commands successfully executed because it does not need
to create and maintain end to end connections.

5.1 Experimental Setup
We created a statically routed virtual network within the

nodes existing ad-hoc network, using standard Linux facil-
ities. The routes were chosen based on the experience and
feedback of the students and staff who installed the system
and aligned the directional antenna’s as well as observations
of the output of our link quality estimator. For both the end
to end and DTS tests, 11 of the 13 nodes were used (see Ta-
ble 1). Nodes H and L were inoperable for the duration of
the experiment because they were very poorly connected.
The poor connectivity would result in an extremely high
failure rate for ssh and latency on the order of hours for
DTS.

The experiment was driven by a program running on node
A. The test program would issue commands to DTS and an
ssh script and collect the responses. The same command
was issued via ssh and DTS, in an interleaved fashion. This
command in each case was “cat” on a small status file (ap-
proximately 500 bytes), so that both the request and re-
sponse should fit in a single packet. The test program would
begin by issuing one “cat” command to DTS and wait for
responses form all the operating nodes. The test program
would record how long it would take for a response from
each node to propagate to node A. Once all the responses
were propagated to node A, the test program would remove
the command from the network and begin an ssh trial. The
ssh trial was performed by a script which work fork 11 in-
stances of ssh, one for each active node in the network. The
test program would record whether each instance of ssh was
able to execute the command or not and how long each in-

stance took to succeed or fail. Once all the instances of ssh
had returned, the test program would begin the next DTS
trial. There were approximately 360 DTS and ssh trials per-
formed over approximately 12 hours during which the link
qualities of the network were relatively stable. The condi-
tions over these 12 hours were relatively typically for this
network, but still the entire variability of the network as
shown in Section 3 was not explored.

5.2 Performance
Figure 4 shows a CDF of the latency of DTS compared

with ssh for all the nodes as well as for node G alone. In
the analysis of this data, there are two cases to consider: the
case where end to end connections are available and the case
where end to end connections are not available. In the cases
when were end to end connections were available, in 90%
of the experiments DTS had lower latency. In these cases,
there were two dominant factors causing ssh to have greater
latency. These factors were the launching of 11 processes
for each trial and each process creating a cryptographically
secure end to end connection. In the remaining 10% of the
experiments, the latency of DTS and ssh are comparable.
We believe that in these situations there were end to end
connections available, but the network speed was slow. The
slow network speed had a similar affect on the latency of
DTS and ssh.

In the absence of high availability end to end connections,
DTS will reach 100% of the nodes, whereas ssh fails on some
fraction of the nodes. This is evident in the CDF for node
G, which only reaches 94.2% since 5.8% of the end to end
trials failed. Node G was not the farthest from the sink in
terms of hops, but had poor link quality so it had the largest
latencies for both DTS and the end to end ssh tests. As the
link quality degrades event more, the latency of ssh will be-
come greater quicker than the latency of DTS because the
network will be more prone to situations that make end to
end connections difficult to create and sustain. DTS does
not have this problem because the node bordering a discon-

nection will notice when the link is usable again and will
immediately use it to propagate commands and responses.

When an application such as ssh fails, it has to attempt
to reestablish and sustain the end to end connections again.
This introduces a lot of extra latency as well as the pos-
sibility of missing a potentially small window in which the
end to end connection is actually available. The extra la-
tency comes from the long delays before ssh finally times out
and fails. The length of these delays are not reflected in the
CDFs in Figure 4, beacuse the graph only include data from
successfull ssh connections. For all the ssh commands which
failed, none of the delays were less than 2 minutes with some
of the delays in the tens of minutes. One approach to try
to improve the latency of ssh and to deal with the failure
cases is to shorten the timeout on ssh and retry. This lowers
the chances of missing a window in which an end to end
connection is available but will use up more resources and
network bandwidth. The approach DTS takes is similar,
but it is localized to the link with the disconnection instead
of the entire end to end path. Finally, there are situations
where end to end connection never exist. Ssh will never suc-
ceed in these cases. DTS provides a guarantee that it will
succeed as long as there is some pattern of connections to
every node. This guarantee, coupled with equivalent or bet-
ter performance in disconnected environments, makes DTS
well suited to system management tasks.

6. FUTURE WORK
We plan on deploying DTS on the remaining 3 sections of

the MASE network. This will provide more opportunities
to evaluate DTS.

Currently the interface to DTS is limited to a test program
and the interactive shell. The interface can be expanded to
support issuing DTS specific scripts to automate repeated
tasks through cron.

DTS does not limit the types of commands that can be
issued. Just like any other shell, a user can potentially dam-
age the file system in such a way that it requires re-flashing
the node to recover. To help prevent these types of prob-
lems, DTS needs to understand the commands being issued
and have specific rules preventing certain types of opera-
tions and shell commands. For instance, simply requiring
full paths for commands and not allowing shell expansion
can prevent some common shell scripting mistakes.

The error handling for both individual commands and
node state can be improved. As the system scales simply
reporting that there was a problem and leaving it up to the
user to determine the state of the node is not tractable.
There are multiple paths to providing better error handling,
but an initial step could be for each node to keep a com-
pressed log to attempt to provide accountability for when
there is a problem. This log could be published or retrieved
only when queried for.

StateSync currently uses broadcast UDP packets. These
broadcast UDP packets do not benefit from link layer re-
transmissions as all unicast traffic does. Changing StateSync
to use unicast UDP packets could potentially benefit the la-
tency and help reduce traffic.

We would also like to implement a centralized control for
all four of the lines of seismic stations through a web inter-
face. This will help evaluate the usability and performance
of DTS in larger networks.

7. ACKNOWLEDGMENTS
We would like to thank Allen Husker, Igor Stubailo, Paul

Davis, and all the students and staff from the UCLA Earth
and Space Sciences and UNAM for the countless hours spent
building and installing the entire system.

8. REFERENCES
[1] http://www.gnu.org/software/bash/.

[2] http://www.nagios.org.

[3] Middle america subduction experiment (mase),
http://www.tectonics.caltech.edu/mase/,
http://research.cens.ucla.edu/research. Caltech
Tectonics Observatory and UNAM Institutes of
Geophysics and Geology and UCLA Center for
Embedded Network Sensors and UNAM Center for
Geosciences.

[4] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf,
B. Durst, K. Scott, and H. Weiss. Delay-tolerant
networking: an approach to interplanetary internet.
IEEE Communications Magazine, 2003.

[5] D. S. J. De Couto, D. Aguayo, J. Bicket, and
R. Morris. A high-throughput path metric for
multi-hop wireless routing. In Proceedings of the 9th
ACM International Conference on Mobile Computing
and Networking (MobiCom ’03), San Diego,
California, September 2003.

[6] K. Fall. A delay-tolerant network architecture for
challenged internets. In SIGCOMM ’03: Proceedings
of the 2003 conference on Applications, technologies,
architectures, and protocols for computer
communications. ACM Press, 2003.

[7] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos,
N. Ramanathan, and D. Estrin. Emstar: a software
environment for developing and deploying wireless
sensor networks. In Proceedings of the 2004 USENIX
Technical Conference, Boston, MA, 2004.

[8] L. Girod, M. Lukac, A. Parker, T. Stathopoulos,
J. Tseng, H. Wang, D. Estrin, R. Guy, and E. Kohler.
A reliable multicast mechanism for sensor network
applications. Technical report, CENS, April 25, 2005
2005.

[9] J. Hill and D. Culler. Mica: A wireless platform for
deeply embedded networks. IEEE Micro, 22(6):12–24,
Nov/Dec 2002.

[10] Intel. Intel stargate, http://platformx.sourceforge.net.

[11] P. Levis, N. Patel, D. E. Culler, and S. Shenker.
Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor
networks. In Proceedings of 1st Symposium on
Networked Systems Design and Implementation (NSDI
2004), March 29-31, 2004, San Francisco, California,
2004.

[12] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor
networks. In MobiSYS ’04: Proceedings of the 2nd
international conference on Mobile systems,
applications, and services, pages 99–110, New York,
NY, USA, 2004. ACM Press.

