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appears in the International Conference on Learning Representations (ICLR), 2018 [112]. The

dissertation author was a primary author of the paper.

Chapter 6 is based on “Differentially Private Continual Release of Graph Statistics” by

Shuang Song, Sanjay Mehta, Staal A. Vinterbo, Susan Little and Kamalika Chaudhuri which is

under submission. The dissertation author was the primary author of the paper.

Chapter 7 is based on “Pufferfish Privacy Mechanisms for Correlated Data” by Shuang

Song, Yizhen Wang and Kamalika Chaudhuri, which appears in the International Conference on

Management of Data (SIGMOD), 2017 [132]. The dissertation author was a primary author of

the paper.

Section 7.5 of Chapter 7 is based on “Composition Properties of Inferential Privacy for

Time-Series Data” by Shuang Song and Kamalika Chaudhuri, which appears in the Allerton

Conference on Communication, Control and Computing, 2017 [129]. The dissertation author

was the primary author of the paper.

Finally, my thanks go to many anonymous reviewers for their helpful comments.

xii



VITA

2012 Bachelor of Science, The Hong Kong University of Science and Technology, Hong
Kong

2015 Master of Science, University of California, San Diego

2018 Doctor of Philosophy, University of California, San Diego

xiii



ABSTRACT OF THE DISSERTATION

Privacy-Preserving Algorithms for Machine Learning

by

Shuang Song

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Professor Kamalika Chaudhuri, Chair

Modern machine learning increasingly involves personal data, such as healthcare, finan-

cial and user behavioral information. However, models trained on such data can reveal detailed

information about the data and cause a serious privacy breach. Consequently, it is important to

design algorithms that can analyze the sensitive data while still preserving privacy.

This thesis advances the state-of-the-art of privacy-preserving machine learning in the

following two major aspects.

First, this thesis addresses the challenges in differentially private large-scale machine

learning. On the one hand, with a large amount of sensitive user data, privacy-preserving

learning algorithms are expected to achieve improved utility. On the other hand, big data imposes
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additional challenges, including performance (a.k.a Volume), data noise (a.k.a Veracity), a large

number of classes and distributed sources (a.k.a Variety). This thesis presents (1) private versions

of the widely used stochastic gradient descent (SGD) algorithm with generalization to data from

multiple sources of different privacy requirements, and (2) an improved version of the Private

Aggregation of Teacher Ensembles (PATE) framework which can scale to learning tasks with a

large number of output classes and uncurated, imbalanced training data.

Second, this thesis considers privacy-preserving data analysis beyond tabular data. Differ-

ential privacy is best suited for tabular data, where each record corresponds to all the information

about an individual and records are independent of each other. However, many real-world

applications involve non-tabular sensitive data, such as epidemic transmission graphs and mea-

surement of the physical activity of a single subject across time. To analyze disease transmission

graphs, or more general, graphs with sensitive information stored in each node, this thesis

considers privacy-preserving continual release of graph statistics, such as the percentages of

highly-active patients over time. The proposed algorithm outperforms the baselines in utility

over a range of parameters. For physical activity measurement, or more generally, data with

correlation, this thesis looks at a recent generalization of differential privacy, called Pufferfish

privacy, that addresses privacy concerns in correlated data. Two mechanisms that work under

different scenarios are proposed, and one of them is evaluated on real and synthetic time-series

data.
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Chapter 1

Introduction

Modern machine learning increasingly involves sensitive personal data such as healthcare,

financial and user behavioral information. With models trained on such data, researchers can

gain invaluable insights into real-world problems across various domains. However, these trained

models may unexpectedly reveal details of the sensitive data like an individual user’s health

condition and daily activities, which causes serious moral and legal concerns. To address the

concerns while keeping the positive social impact of machine learning, it is therefore important

to design algorithms that analyze sensitive personal data while protecting individuals’ privacy.

There has been a long line of work on conducting data analysis while preventing identi-

fication of individual participants from the results of the analysis [58, 37, 118, 121, 59, 114] –

this is formally called statistical disclosure control [34] (see [3] for a survey of the field prior to

1989). Before the era of differential privacy, one of the most commonly used privacy-protection

techniques had been anonymization, where the main idea is to remove personally identifiable

information, such as name, gender, age and geographical information, from a dataset before

releasing it. However, it was proven by previous studies that severe privacy breach can still

happen with anonymized data. In 2006, The New York Times identified and interviewed a user

from an anonymized search log dataset published by AOL [9]. The attack succeeded because

the search logs, though anonymized, contain user-specific queries that reveal one’s age, gender,

address and occupation – enough for the inference of the one’s identity. Another example
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proving the failure of anonymization is the Netflix Prize data leak. Using the Internet Movie

Database (IMDb) as a source of background knowledge, researchers were able to identify a

significant number of users from the anonymized movie rating dataset published by Netflix [103].

There have been extensions of anonymization such as k-anonymity [135], `-diversity [94] and

t-closeness [89]. However, most of them are known to be vunlunarble to attacks with auxiliary

information [63].

Previous studies have also shown that privacy breach can happen even if we hide the

dataset and release only aggregate statistics. [40] proved theoretically that an adversary can

reconstruct a dataset almost exactly with aggregate statistics. Such privacy breaches happened on

real applications as well. [140] presented an attack on GWAS (genome-wide association study),

a study that aims at finding the associations between single-nucleotide polymorphisms (SNPs)

and diseases. It demonstrated that when given a large number of SNPs statistics and the genomic

data of an individual, an adversary is able to determine if this individual is in the case group and

therefore has the disease. Another example is the model inversion attack presented in [61]. By

making queries to a neural network trained for a face-recognition task, an adversary is able to

recover images of users whose data is included in the training process.

The failures of anonymization and releasing aggregate information motivate the necessity

for a stronger and mathematically rigorous definition of privacy.

Differential privacy [45], a cryptographically-motivated definition of privacy, satisfies

such requirements. It has gained significant attention ever since its proposal and has emerged as

the gold standard in data privacy. Informally, an algorithm satisfies differential privacy if the

probability of any outcome does not change significantly when a single individual’s private data

changes. An adversary is therefore unable to make much inference about an individual given

the algorithm’s output even with auxiliary information about the rest of the dataset or unlimited

computational power. Individuals thus will not incur a significant privacy loss when allowing

their data to be used by a differentially private algorithm. In the formal definition, a parameter ε

quantifies the privacy loss of an algorithm, making differential privacy a mathematically rigorous
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definition.

The basic techniques for achieving differential privacy in simple queries include the

Laplace mechanism [45], the Gaussian mechanism [44] and the exponential mechanism [100].

All techniques guarantee differential privacy by injecting randomness in the algorithm. The

amount of randomness is determined by the privacy parameter as well as a property of the query

function called the global sensitivity, which measures the maximum amount of change in the

function value when one individual’s record changes. Based on the these basic techniques,

differentially private algorithms have been designed for numerous machine learning tasks such

as empirical risk minimization [26, 10, 12, 62], Bayesian inference [38, 142, 152, 60, 65],

recommender system [99], deep learning [128, 1], and unsupervised learning tasks such as

dimensionality reduction [18, 28, 52] and clustering [18, 109, 134]. The key challenge in

differentially private algorithm design is the privacy-utility tradeoff. In short, guaranteeing

privacy involves randomizing the algorithms’ output which impacts the performance or utility

of the resulting procedures. For example, in parameter estimation, guaranteeing privacy may

increase the mean-squared error of the estimator.

Differential privacy has also spawned a rich body of research on privacy definitions,

including several variants of differential privacy that capture the privacy concerns in scenarios not

considered by differential privacy. For instance, local differential privacy [77, 42, 43] considers

the case where there is no trusted data holder who collects and analyzes the sensitive data as in

differential privacy. Instead, individuals’ data is perturbed locally before being transferred to

and analyzed by an untrusted party. Local differential privacy is thus a strictly stronger notion

compared to differential privacy and enables data collection under more restricted conditions.

Another variant, Pufferfish privacy [84], is a generalization of differential privacy customized for

data with correlation. While differential privacy does not adequately address privacy issues in

correlated data, Pufferfish protects individuals’ privacy against adversaries who possess prior

knowledge about the correlation across multiple individuals.

This thesis advances privacy-preserving machine learning in two major aspects.
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Differentially private large-scale machine learning

First, the presented thesis addresses the challenges in differentially private large-scale

machine learning. Due to the increasing rate of data collection and generation, just like other

machine learning tasks, privacy-preserving learning is required to be capable of handling a

large amount of data. On the positive side, with a large amount of user data, the privacy-utility

tradeoff is expected to be less intensive as it is easier to hide individuals’ information in the

large crowd. On the other side, however, non-private machine learning algorithms can still

cause privacy breach, and big data imposes additional challenges, including performance (a.k.a

Volume), data noise (a.k.a Veracity), a large number of classes and distributed sources (a.k.a

Variety). It remains unclear how to perform large-scale machine learning with differential privacy.

This thesis presents two methods that tackle these challenges.

• Chapter 3 considers the stochastic gradient descent (SGD) algorithm, which is one of

the most commonly used algorithms in large-scale machine learning for its simplicity,

scalability and convergence guarantee. We derive differentially private versions of the SGD

algorithm and evaluate them on real and synthetic datasets. The experimental results show

that for classification using logistic regression, differentially private single-point SGD

has high variance, but a moderate increase in the batch size can improve the performance

significantly. For low-dimensional problems, the private algorithm’s performance is close

to that of non-private SGD.

Additionally, with a small modification, the differentially private SGD algorithms can

be adapted to the local differential privacy setting, where each individual provides a

perturbed gradient. Specifically, we consider the scenario where private data is collected

from multiple sources with heterogeneous privacy preferences. For example, a drug test

might be performed at different medical institutes which operate under different privacy

regulations and a researcher wants to combine the results to perform a more comprehensive

analysis. In a simplified yet general case where the training data is from two sources,
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one more privacy-demanding and one less, we show both theoretically and empirically

that the order in which we should process the two datasets to get good performance

depends on the learning rate of the private SGD algorithm. We also provide a heuristic for

choosing different learning rates for the two datasets and demonstrate empirically that our

algorithm outperforms the naive approaches using a single learning rate or using the less

privacy-demanding data only. These results are presented in Chapter 4.

• In Chapter 5, we revisit a machine learning framework called the Private Aggregation of

Teacher Ensembles, or PATE [111], and develop techniques that improve its scalability

and practical applicability. PATE is a recently proposed framework that offers scalable,

high-utility machine learning with strong privacy-protection guarantees. In the PATE

framework, multiple “teacher” models are trained on disjoint sensitive data (e.g., different

users’ data), and PATE uses the teachers’ aggregated consensus answers in a black-box

fashion to supervise the training of a “student” model. PATE guarantees differential privacy

by adding random noise to the aggregate answers used to train the student and releasing

only the student model.

It is worth emphasizing that the privacy guarantee of PATE is agnostic to the underlying

models used by the teachers and the student. Besides, PATE is, by nature, a distributed

machine learning framework; the sensitive data can be stored in multiple servers where

each server trains a teacher model locally and simultaneously. Thus, communication cost

is only paid for transporting the trained teacher models to an aggregator which uses them

to answer queries from the student. The original PATE, however, was applied to only

simple tasks like MNIST, without any realistic and larger-scale evaluation.

We propose new techniques that improve PATE in terms of its privacy, utility, and scalability.

When evaluated on a character recognition task with 150 output classes, the improved

PATE demonstrates its applicability on uncurated, large-scale data. To this end, we claim

that the improved PATE is a significant step towards large-scale learning with privacy.
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Privacy-preserving data analysis on non-tabular data

Differential privacy guarantees that the participation of any individual does make a

significant difference to the outcome of the algorithm. It is therefore best suited for tabular

data where all the information of an individual is stored as one single record and records are

independent of each other. However, in many real-world applications, the sensitive data that

needs to be protected is non-tabular, where each protected entity affects multiple records through

the intrinsic structure or correlation in the data.

Consider, for example, a disease transmission graph that encodes how a disease transmits

among individuals. Analyzing the general statistics on such a graph provides valuable information

for epidemiology research. At the same time, due to the sensitive nature of certain diseases, we

need to make sure that the infection status of any individual is protected. The structure of the

graph can cause additional difficulty, as a highly infectious individual can change the structure of

the graph drastically and it is therefore non-trivial to hide the evidence of the existence of such

an individual while maintaining a reasonable level of utility.

Another type of non-tabular data is data with correlation. Consider, for example, a simple

time-series application – measurement of physical activity of a single subject across time. The

goal here is to release aggregate statistics on the subject’s activities over a long period (say a

week) and the entity to be protected is the activity at any specific instant (say, 10:30am on Jan

4). If the measurements are made at small intervals, then the records form a highly correlated

time-series as human activities change slowly over time. The activities performed before or after

provide strong evidence about what the subject was doing at a given time, introducing additional

challenges in privacy-protection for correlated data. To address privacy challenges in this kind of

data, we need a generalization of differential privacy that can capture the data correlation and

protect the entities under such correlation.

• To tackle the difficulty in the disease transmission graph example, in Chapter 6, we consider

the problem of privacy-preserving continual release of graph statistics on sensitive graphs
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where nodes and their associated edges appear over time in an online manner. We consider

HIV transmission data collected from patients in a particular region over multiple years.

By measuring similarities between HIV sequences of different patients, we can build

an HIV transmission network where each node represents one patient and each edge an

occurrence of transmission. Epidemiologists can understand how HIV propagates by

studying properties of the network over time. Since there is a considerable social stigma

associated with HIV, we need to ensure that privacy of the included patients is not violated

when we release statistics of the network. Additionally, analyses may need to happen

intermittently so that properties of the network as it evolves may be studied.

To apply differential privacy in such a scenario, it is essential to determine what a single

individual’s data contribute to the graph. Prior work has looked at two forms of differential

privacy in graphs – edge differential privacy, where an edge corresponds to an individ-

ual’s private value, and node differential privacy, where a single node corresponds to an

individual. In the HIV transmission graph example, a patient corresponds to a node, and

hence node differential privacy is our privacy notion of choice. The main challenge in

the continual privacy-preserving release of graph statistics is maintaining a good privacy-

utility tradeoff, as a node with a huge number of adjacent edges can change the statistics

drastically and hiding the effect of a node can require a significant amount of noise.

In Chapter 6, we show that if there is a publicly known upper bound on the maximum

degree of any node in the entire graph sequence, then we can release private sequences

of simple statistics such as the number of high-degree nodes and subgraph counts with

relatively high accuracy. Experiments on both real and synthetic datasets show that our

algorithm outperforms the baselines in utility over a range of privacy parameters.

• To address the privacy concerns in correlated data such as that in the activity tracking

example, in Chapter 7, we consider Pufferfish privacy [84], a generalization of differential

privacy that captures data correlation. The standard differential privacy does not offer
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enough protection for data with correlation; whereas group differential privacy, a direct

adoption of differential privacy, adds noise proportional to the number of correlated

records and causes unnecessary utility loss. On the contrary, Pufferfish privacy captures

data correlation with a parameter Θ representing a class of distributions that plausibly

generate the data. It protects the sensitive information in the data against all adversaries

whose beliefs lie in Θ. With this specification, Pufferfish offers both privacy and the hope

for utility when a large number of individuals or entries are correlated, yet the “average

amount” of correlation is low.

The main challenge in using Pufferfish privacy is a lack of suitable mechanism. We there-

fore provide the first mechanism, called the Wasserstein Mechanism, which applies to any

general Pufferfish instantiation. Moreover, we consider the case when the data correlation

can be captured by a Bayesian network and propose a computationally efficient mechanism,

called the Markov Quilt Mechanism. As a case study, we derive a simplified version of

the mechanism for time-series data. We provide privacy and utility guarantees, establish

composition properties, and demonstrate the practical applicability of the mechanism

through experimental evaluations on synthetic as well as real data.

The rest of the thesis is structured as follows. Chapter 2 reviews the definition and

properties of differential privacy, as well as some variants of differential privacy relevant to

this thesis. Chapter 3 presents the differentially private SGD algorithms, with the extension to

local differentially private SGD with data coming from sources of different privacy requirements

presented in Chapter 4. Chapter 5 discusses the improved version of the PATE framework. Next,

Chapter 6 presents the algorithm for continual release of graph statistics under node differential

privacy. Algorithms achieving Pufferfish privacy for correlated data are introduced in Chapter 7.
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Chapter 2

Differential Privacy and Its Variants

This chapter reviews the formal definition of differential privacy, some of its properties,

and the commonly used basic algorithms that achieve it. Moreover, this chapter reviews several

variants of differential privacy relevant to this thesis, including Rényi differential privacy, local

differential privacy, and Pufferfish privacy.

2.1 Differential Privacy

Differential privacy considers the setting where a trusted data curator has access to a

sensitive dataset D; an untrusted data analyst send statistical queries about D to the curator, who

then answers the queries with a randomized algorithmM. We can assume that the sensitive

dataset D contains n records from a data universe X and each record contains the sensitive

information from a single individual that needs to be protected. Differential privacy guarantees

that each record has little influence on the output of the randomized algorithm M, and an

adversary thus cannot infer much about the presence or absence of any individual in the dataset

from the query results.

2.1.1 The Definition

Before defining differential privacy, we present the definition of the distance between

two datasets.
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Definition 2.1.1 (Distance between Datasets). Given datasets D,D′ ∈ X n, the distance between

them, denoted by d(D,D′), is the minimum number of records in D that need to be changed to

convert D to D′. If d(D,D′) = 1, we call D and D′ neighboring datasets.

Differential privacy ensures that the participation of a single individual in a dataset does

not change the probability of any outcome by much, which is captured by requiring an algorithm

to have similar output distributions under any pair of neighboring datasets.

Definition 2.1.2 (ε-Differential Privacy). A randomized algorithmM is said to guarantee ε-

differential privacy if for any neighboring datasets D and D′, and for any w ∈ Range(M), we

have

P (M(D) = w) ≤ eε · P (M(D′) = w) ,

where the probability is with respect to the randomness inM.

In this definition, ε is a parameter often called the privacy budget or the privacy risk. A

larger value of ε implies higher privacy risk. It can be shown that any non-trivial algorithm that

guarantees differential privacy needs to be a randomized algorithm.

A relaxed definition – (ε, δ)-differential privacy, is as follows.

Definition 2.1.3 ((ε, δ)-Differential Privacy). A randomized algorithmM is said to guarantee

(ε, δ)-differential privacy if for any neighboring datasets D and D′, and for any S ⊆ Range(M),

we have

P (M(D) ∈ S) ≤ eε · P (M(D′) ∈ S) + δ,

where the probability is with respect to the randomness inM.

Intuitively, ε and δ together quantify the privacy risk; δ is the probability with which eε

fails to bound to ratio between the two probabilities. When δ = 0, (ε, δ)-differential privacy re-
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duces to ε-differential privacy. Usually, ε-differential privacy is referred to as the pure differential

privacy.

2.1.2 Basic Tools

Two basic algorithms that are commonly used for differentially private release of numeri-

cal queries are the Laplace Mechanism [45] and the Gaussian Mechanism [44]. Both algorithms

add random noise to the exact query value, where the noise has standard deviation proportional

to a quantity called the global sensitivity of the query function. Intuitively, the global sensitivity

of a query function f measures the maximum amount of change in the value of f when one

record in the dataset changes.

Definition 2.1.4 (Global Sensitivity). Let f : X n → Rd be a query function and ‖·‖ be a

distance metric. The global sensitivity of f with respect to ‖·‖ is defined as

GS (f, ‖·‖) = max
d(D,D′)=1

‖f(D)− f(D′)‖.

The L1 and L2 norm are the most commonly used distance metric. When f is a scalar

function or the distance metric is clear from the context, we may omit ‖·‖ in the notation.

Let Lap (β) be a random variable drawn from the Laplace distribution with mean 0 and

scale parameter β, i.e., a distribution with probability density function ρ(z) = 1
2β

exp
(
− |z|

β

)
.

Given a dataset D, a numerical query function f : X n → Rd, and a privacy parameter ε, the

Laplace Mechanism returns

f(D) + (Z1, . . . , Zd), with Zi drawn i.i.d. from Lap
(

GS (f, ‖·‖1)

ε

)
.

It can be shown that the Laplace Mechanism guarantees ε-differential privacy [45].

To achieve (ε, δ)-differential privacy, one can use the Gaussian Mechanism, which adds

Gaussian noise to the actual query value f(D). Given a dataset D, a numerical query function
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f : X n → Rd, and privacy parameters (ε, δ), the Gaussian Mechanism returns

f(D) + Z, with Z drawn from N
(
0, σ2Id

)
where σ ≥

√
2 log(1.25/δ)GS (f, ‖·‖2)

ε
,

and Id is the identity matrix of size d. This mechanism guarantees (ε, δ)-differential privacy for

any ε, δ ∈ (0, 1).

2.1.3 Properties of Differential Privacy

We review two important properties of differential privacy that allow us to use the basic

tools as building blocks to construct algorithms for more sophisticated tasks.

First, differential privacy is immune to post-processing [48], which means any operation

on the output of a differentially private algorithm does not increase the privacy risk.

Theorem 2.1.5 (Post-processing). LetM : X n → Y be an (ε, δ)-differentially private algorithm

and f : Y → Z be an arbitrary function. Then f ◦M : X n → Z is (ε, δ)-differentially private.

To build a differentially private algorithm for a sophisticated task, we may consider

composing several subroutines each guaranteeing a certain level of privacy. How do we quantify

the overall privacy loss of such a composition? The composition theorems of differential privacy

offer the answer.

There are two types of composition – parallel and sequential. The former captures the

case where multiple differentially private subroutines run on disjoint subsets of the entire dataset,

whereas the latter captures the case where they run on the same dataset, potentially adaptively.

Now we review the composition properties of differential privacy under these two scenarios.

Theorem 2.1.6 (Parallel Composition). For i ∈ [k], let Mi be an εi-differentially private

algorithm. Given a dataset D, let {D(1), . . . , D(k)} be k disjoint subsets of D. LetM be defined

asM(D) = (M1(D1),M2(D2), . . . ,Mk(Dk)). ThenM is maxi∈[k] εi-differentially private.
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For sequential composition, we say a sequence of mechanisms (M1, . . . ,Mk) are

chosen adaptively if Mi can be chosen based on the outputs of the previous mechanisms

M1(D), . . . ,Mi−1(D).

Theorem 2.1.7 (Basic Sequential Composition). If a mechanismM consists of a sequence of

adaptive mechanismsM1, . . . ,Mk such that for any i ∈ [k],Mi guarantees (εi, δi)-differential

privacy, thenM guarantees
(∑k

i=1 εi,
∑k

i=1 δi

)
-differential privacy.

The advanced composition theorem [51] provides a tighter bound for sequential compo-

sition of (ε, δ)-differentially private algorithms.

Theorem 2.1.8 (Advanced Sequential Composition). If a mechanismM consists of a sequence

of adaptive mechanismsM1, . . . ,Mk such that for any i ∈ [k],Mi guarantees (ε, δ)-differential

privacy, thenM guarantees
(√

2k log(1/δ′)ε+ kε(eε − 1), δ′ + kδ
)

-differential privacy for

any δ > 0.

2.2 Rényi Differential Privacy

Rényi Differential Privacy, or RDP [101], is a relaxation of the pure differential privacy

defined with the Rényi Divergence. RDP shares important properties like post-processing and

composition with differential privacy. It is strictly stronger than (ε, δ)-differential privacy and

can be converted to a curve of (ε(δ), δ)-differential privacy guarantees. RDP allows tighter

analysis for tracking the privacy loss of the composition of differentially private algorithms. In

this section, we review the definition and some properties of RDP.

2.2.1 The Definition

We first define the Rényi Divergence and then RDP.

Definition 2.2.1 (Rényi Divergence). The Rényi divergence of order λ between two probability
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distributions P and Q is defined as:

Dλ(P‖Q) ,
1

λ− 1
logEx∼Q

[
(P (x)/Q(x))λ

]
=

1

λ− 1
logEx∼P

[
(P (x)/Q(x))λ−1

]
.

Definition 2.2.2 (Rényi Differential Privacy (RDP)). A randomized mechanismM is said to

guarantee (λ, ε)-RDP with λ ≥ 1 if for any neighboring datasets D and D′,

Dλ(M(D)‖M(D′)) =
1

λ− 1
logEx∼M(D)

[(
P (M(D) = x)

P (M(D′) = x)

)λ−1
]
≤ ε.

RDP generalizes pure differential privacy in the sense that ε-differential privacy is

equivalent to (∞, ε)-RDP.

2.2.2 Properties of Rényi Differential Privacy

[101] provides the following composition property of RDP and the conversion from RDP

to (ε, δ)-differential privacy.

Theorem 2.2.3 (Composition of RDP). If a mechanismM consists of a sequence of adaptive

mechanisms M1, . . . ,Mk such that for any i ∈ [k], Mi guarantees (λ, εi)-RDP, then M

guarantees
(
λ,
∑k

i=1 εi

)
-RDP.

Theorem 2.2.4 (From RDP to DP). If a mechanismM guarantees (λ, ε)-RDP, thenM guaran-

tees
(
ε+ log 1/δ

λ−1
, δ
)

-differential privacy for any δ ∈ (0, 1).

Furthermore, RDP captures the privacy guarantee of Gaussian noise in a much cleaner

and more accurate manner [101] compared to (ε, δ)-differential privacy.

Theorem 2.2.5 (RDP Guarantee of the Gaussian Mechanism). Given a dataset D ∈ X n and

a query function f : X n → R with GS (f) = 1, then the Gaussian Mechanism which outputs

f(D) +N (0, σ) guarantees
(
λ, λ

2σ2

)
-RDP for all λ ≥ 1.
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2.3 Local Differential Privacy

Local differential privacy [144, 42, 77] is a stronger notion of privacy motivated by

differential privacy [45]. Unlike differential privacy which assumes the existence of a trusted

curator with direct access to the sensitive dataset, local differential privacy considers the situation

in which individuals do not trust any curator. In this model, an untrusted algorithm is allowed to

access a perturbed version of a sensitive dataset through a sanitization interface, and must use

this perturbed data to perform some estimation. The amount of perturbation is controlled by ε,

the privacy risk parameter. The strong guarantee offered by local differential privacy makes it an

attractive choice in many industrial applications [56, 138, 39].

Definition 2.3.1 (Local Differential Privacy). LetD = (X1, . . . , Xn) be a sensitive dataset where

each Xi ∈ D corresponds to data about individual i. A randomized sanitization mechanism

M which outputs a disguised version (U1, . . . , Un) of D is said to provide ε-local differential

privacy to individual i, if for all x, x′ ∈ D and for all S ⊆ S,

P (Ui ∈ S|Xi = x) ≤ eε · P (Ui ∈ S|Xi = x′) , (2.1)

where the probability is taken over the randomization in the sanitization mechanism.

As is in differential privacy, the parameter ε measures the privacy risk and smaller ε

implies less privacy risk. Local differential privacy allows different ε value for different individual

records in the dataset. We can use the Laplace mechanism to guarantee local differential privacy,

where the global sensitivity measures how much Ui can change when the value of Xi changes.

2.4 Pufferfish Privacy

Pufferfish privacy [84] is a generalization of differential privacy [45] which captures the

data correlation.
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2.4.1 The Definition

A Pufferfish framework is instantiated by three parameters – a set S of secrets, a set

Q ⊆ S × S of secret pairs, and a class of data distributions Θ. S is the set of possible facts

about the dataset that we might wish to hide, and could refer to a single individual’s private data

or part thereof. Q is the set of secret pairs that we wish to be indistinguishable. Finally, Θ is a

set of distributions that can plausibly generate the data, and controls the amount and nature of

correlation. Each θ ∈ Θ represents a belief an adversary may hold about the data, and the goal

of the privacy framework is to ensure indistinguishability in the face of these beliefs.

Definition 2.4.1 (Pufferfish Privacy). A privacy mechanismM is said to be ε-Pufferfish private

in a framework (S,Q,Θ) if for all θ ∈ Θ with X drawn from distribution θ, for all secret pairs

(si, sj) ∈ Q, and for all w ∈ Range(M), we have

e−ε ≤ PM,θ(M(X) = w|si, θ)
PM,θ(M(X) = w|sj, θ)

≤ eε (2.2)

when si and sj are such that P (si|θ) 6= 0, P (sj|θ) 6= 0.

Unlike differential privacy, the probability in (2.2) is with respect to the randomized

mechanism and the actual data X , which is drawn from a θ ∈ Θ; to emphasize this, we use the

notation X instead of D.

[84] shows that ε-differential privacy is a special case of Pufferfish, where S is the set of

all facts of the form six = Individual i has value x for i ∈ {1, . . . , n} and x in a domain [k], Q is

set of all pairs (six, s
i
z) for x and z in [k] with x 6= z, and Θ is the set of all distributions where

each individual is distributed independently. Moreover, we cannot have both privacy and utility

when Θ is the set of all distributions [84]. Consequently, it is essential to select Θ wisely; if Θ is

too restrictive, then we may not have privacy against legitimate adversaries, and if Θ is too large,

then the resulting privacy mechanisms may have little utility.
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2.4.2 Properties of Pufferfish Privacy

An alternative interpretation of (2.2) is that for X ∼ θ, θ ∈ Θ, for all (si, sj) ∈ Q, and

for all w ∈ Range(M), we have:

e−ε · P (si|θ)
P (sj|θ)

≤ P (si|M(X) = w, θ)

P (sj|M(X) = w, θ)
≤ eε · P (si|θ)

P (sj|θ)
. (2.3)

In other words, the knowledge of M(X) does not affect the posterior ratio of the likelihood of si

and sj , compared to the initial belief.

Pufferfish privacy is immune to post-processing. However, it does not always com-

pose [84] as in differential privacy. In Chapter 7, we will study the composition properties of

Pufferfish under restricted conditions.
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Chapter 3

Differentially Private Stochastic Gradient
Descent

3.1 Overview

In the data-rich setting, at first blush it appears that learning algorithms can enjoy

both low privacy risk and high utility. However, optimization methods for large data sets

must also be scalable. Stochastic gradient descent (SGD) algorithms have received significant

attention recently because they are simple and satisfy the same asymptotic guarantees as more

computationally intensive learning methods [115, 127]. However, because these guarantees are

asymptotic, to obtain reasonable performance on finite data sets practitioners must take care

in setting parameters such as the learning rate (step size) for the updates. To alleviate some

of this sensitivity and improve the performance of SGD in the finite sample setting, several

works [31, 36, 137] have suggested grouping updates into “mini-batches.” This can improve the

robustness of the updating at a moderate expense in terms of computation, but also introduces

the batch size as a free parameter.

In this chapter, we derive differentially private versions of single-point SGD and mini-

batch SGD and evaluate them on real and synthetic data sets. These algorithms work for gradient

descent for general convex objectives – we illustrate the approach using logistic regression for

classification. We demonstrate that differentially private single-point SGD has high variance,

but a moderate increase in the batch size can improve the performance significantly. For low-
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dimensional problems, the private algorithm’s performance is close to non-private SGD. However,

we show that there is a limit to how much the batch size can help, and that the performance is

dependent on the learning rate.

3.1.1 Related Work

The work most connected to the current chapter are those on differentially private

classification [26, 123]. Duchi et al. proposed an SGD method for local privacy [42]. Stochastic

gradient methods are on example of online learning methods. Another approach to differentially

private online learning was proposed by Jain et al. [75]; however, their algorithm is more

computationally intensive than ours. The PINQ [98] package uses a noisy sum operation to

compute full noisy gradient steps for logistic regression [146]. There the goal was exchanging

iterations for accuracy. The noisy perceptron method [17] also uses iterative noisy updates to

learn a classifier. We focus here on the effect of step size and batch size for SGD methods, so we

do not compare the performance for these specific classification methods.

3.2 Preliminaries

While the methods we propose work for general optimization methods, we will describe

the problem in terms of a classification problem. There, the data are n labelled examples

(x1, y1), . . . , (xn, yn), where xi ∈ Rd, and yi ∈ {−1, 1}. We assume that for all i, the norm

‖xi‖≤ 1. In linear classification, our goal is to find a hyperplane through the origin that largely

separates the examples labeled 1 from those labeled −1. The most popular method of training

such a linear classifier based on labelled data is by solving a regularized convex optimization

problem:

w∗ = argmin
w∈Rd

λ

2
‖w‖2+

1

n

n∑
i=1

`(w, xi, yi) (3.1)

Here w is the normal vector to the hyperplane separator, and ` is a convex loss function. Popular

choices for ` in the machine learning literature are the logistic loss `(w, x, y) = log(1 + e−yw
>x),
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which leads to Logistic Regression, and the hinge loss `(w, x, y) = max(0, 1− yw>x), which

leads to Support Vector Machines (SVMs).

SGD is an iterative algorithm for solving the regularized convex optimization problem

in 3.1. SGD begins with an initial point w0, and at step t, updates the iterate as:

wt+1 = wt − ηt(λwt +∇`(wt, xt, yt)) (3.2)

Here ηt is a learning rate, and the (sub)gradient ∇`(wt, xt, yt) is computed based on a single

example (xt, yt).

In SGD with mini-batch updates, instead of a single example, the update at each step t is

based on a small subset Bt of examples of size b. Specifically,

wt+1 = wt − ηt

λwt +
1

b

∑
(xi,yi)∈Bt

∇`(wt, xi, yi)

 (3.3)

Both of these methods are approximations of a full gradient update – if the point(s) at

each time t are sampled uniformly from {1, 2, . . . , n} then the expected gradient step at each

iteration is equal to a gradient step on the full objective function in (3.1). More generally, we

can consider general empirical risk minimization with convex loss functions. We study the

L2-regularized objective because strong convexity allows favorable theoretical guarantees.

3.3 SGD with Differential Privacy

A differentially-private version of the SGD update can be written as:

wt+1 = wt − ηt (λwt +∇`(wt, xt, yt) + Zt) , (3.4)
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where each Zt is a random noise vector in Rd drawn independently from the density:

ρ(z) ∝ e−(ε/2)‖z‖ (3.5)

A differentially-private version of the mini-batch update using a batch Bt of examples of

size b can be written as:

wt+1 = wt − ηt

λwt +
1

b

∑
(xi,yi)∈Bt

∇`(wt, xi, yi) +
1

b
Zt

 . (3.6)

where Zt is again drawn from the density in (3.5).

Theorem 3.3.1 shows that provided the initialization point w0 is determined independent

of the sensitive data, the batches Bt are disjoint, and the ‖∇`(w, x, y)‖ is bounded for all w,

these updates are ε-differentially private.

Theorem 3.3.1 (Privacy of SGD and Mini-Batch Updates). Suppose we run SGD with mini-batch

updates in (3.6) for T batches B1, . . . , BT . If the initialization point w0 is chosen independent of

the sensitive data, the batches Bt are disjoint, and if ‖∇`(w, x, y)‖≤ 1 for all w, and all (xi, yi),

then SGD with mini-batch updates is ε-differentially private.

The key idea of the proof is the observation that provided the conditions of the theorem

hold, the global sensitivity of each update is 2ηt
b

. The proof now follows by combining this

observation with results of Dwork et al. [45], and using the fact that the privacy guarantee does

not degrade across batches as the samples used in the batches are disjoint.

Because we add noise at each iteration, the SGD procedure guarantees differential privacy

in a “local” sense – each individual i may choose an εi and this method can guarantee differential

privacy at different levels εi for different individuals by adjusting the distribution of Zt. A slightly

different notion of local privacy was also studied by Duchi et al. [42] in the statistical setting:

there the algorithm can sample individuals from a distribution with unknown parameter and the

goal is to estimate the parameter. At each time their algorithm can samples a new individual
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and receives a noisy subgradient estimate. They use mirror descent to guarantee privacy under a

variant of differential privacy based on a mutual information criterion.

3.4 Experiments

3.4.1 Datasets

We consider three classification tasks – one on a synthetic dataset and two on real data.

Our synthetic dataset consists of n = 10,000 samples drawn uniformly from a 5-dimensional

sphere, and is linearly separable with margin 0.001. For our first classification task on real data,

we use the KDDCup99 dataset [119], an intrusion detection dataset on network connections. We

address the normal vs. malicious classification task, and use a subsample of size 50,000. For our

second task on real data, we address the “1 vs. all” classification task on the MNIST dataset [88],

which consists of 60,000 training examples and 10,000 test examples of images of handwritten

digits 0 to 9. In both cases, we preprocess the data by normalizing each feature, projecting each

row to the unit ball, and then reducing the data dimension by random projections, which preserve

differential privacy. We use a reduced dimension of d = 9 for KDDCup, and d = 15 for MNIST.

3.4.2 Procedure

We use SGD to train a logistic regression model. For each update, we use the mini-

batch update from (3.6) for batch sizes b ∈ {1, 2, 5, 10, 20, 50}, with regularization parameter

λ = 0.0001 and ε = 1. In each case, we make a single pass over the entire training data. To

maintain numerical stability, after each update, we project the iterate wt onto a ball of radius

1/λ. For each experiment we investigated a few different schemes for setting the learning rates.

We averaged the objective function values obtained over 20 random permutations of the training

data as well as fresh random samples of the noise Zt for the private algorithm. The error bars are

at a single standard deviation. Since we are interested in the optimization performance, we plot

the objective function value – in future work we will also investigate the classification accuracy.
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Figure 3.1. Objective function value vs. number of iterations for private and non-private
algorithms on the MNIST and KDDCup99 data sets. Horizontal axis is scaled so that the

number of samples is the same.
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Figure 3.2. Objective function value vs. batch size b for private and non-private algorithms on
MNIST and KDDCup99.
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3.4.3 Mini-batching reduces variance

The first question we ask is how SGD would fare with batch size 1, since this is the case

which has been most studied in the literature. The top half of Figure 3.1 shows the objective

value for the MNIST data set versus the number of samples in the algorithm for learning rate

ηt = 1/
√
t. For batch size b = 1, differentially private SGD is far from the non-private objective

and furthermore has high variance. That is, the noise added in each iteration prevents the

algorithm from converging. However, a modest batch size b = 10, as shown in the lower half of

the figure, reduces the variance of differentially private SGD to the point of matching non-private

SGD, even for a moderate number of data points.

The other plots in Figure 3.1 show that this behavior also holds for the KDDCup99 data

set. Although the variance of the differentially private algorithm decreases slowly, choosing

b = 5 makes the mini-batch SGD performance nearly identical to that of the non-private mini-

batch SGD. What these two experiments indicate is that in terms of objective value, guaranteeing

differential privacy can come for “free” using SGD with moderate batch size. We emphasize here

that all of these examples are low-dimensional problems, and the privacy parameter ε = 1. It is

well-known that differentially private learning algorithms often have a sample complexity that

scales linearly with the data dimension d and inversely with the privacy risk ε. Thus a moderate

reduction in ε or increase in d may require more data. It would be interesting to see if increasing

the batch size can still make private SGD match non-private SGD in these settings.

3.4.4 Choosing appropriate parameters

Our next experiment is to find the impact of batch size on the performance of these

algorithms. Figure 3.2 shows the objective value as a function of batch size for private SGD,

non-private SGD, and a centralized learning procedure which solves the optimization using all of

the data points. In all cases, increasing the batch size improved the performance of private SGD,

but there is a limit – for step size 1/
√
t, much larger batch sizes actually degrade performance.
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Figure 3.3. Objective function value vs. number of data points for private and non-private
algorithms on synthetic data for batch size b = 5.

Because we choose to make a single pass over the data to limit the noise per iteration, increasing

the batch size decreases the number of iterations, and therefore there is an optimal choice of b for

each problem. With a larger learning rate 10/
√
T , the performance for larger batches does not

degrade as much, and the end value of the objective is closer to that of the centralized learning

algorithm.

Many analyses of SGD in the strongly convex case suggest that a learning rate ηt = 1/λt

guarantees fast convergence rates [115]. In our case λ is quite small, meaning the objective is not

very strongly convex. To see the impact of the noise added for differential privacy, we simulated

two learning rates, 1/
√
t and 1/λt, on the synthetic data with b = 5. The results in Figure 3.3

show that choosing a rapidly decreasing step size dramatically increases the variance of private

SGD. In practice, choosing the step size in stochastic approximation schemes is often a matter of

art, and differentially private noise complicates this choice.

3.5 Conclusions

We investigated how differential privacy affects mini-batched stochastic gradient descent

(SGD). When data is plentiful, privacy is “affordable,” and SGD strategies are more computation-
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ally efficient. We showed that in many cases the performance of differentially private SGD was

close to that of non-private SGD, especially with larger batch sizes. In stochastic optimization,

both the variability of the algorithm and the impact of privacy-preserving noise can be amelio-

rated by processing groups of points together. Our experiments show that privacy affects both

the optimal batch size b and learning rate ηt. Some interesting future directions suggested by this

chapter include: quantifying the impact of the dimension d and privacy parameter ε, allowing

different εi’s for each point, and using multiple passes through the data to trade off iterations,

total privacy loss (via composition results for differential privacy), and error. These modifications

could make differentially private learning more effective in practical settings.

We note that the algorithm presented in this chapter is one of the early works on differen-

tially private SGD. Some related work that appers later on includes [128], [1] and [147]. [128]

proposed a distributed system that trains neural networks with differentially private SGD. The

proposed algorithm selectively updates the parameters of the neural network and uses the sparse

vector technique to improve the privacy-utility tradeoff. [1] proposed a differentially private

SGD algorithm with additive Gaussian noise and evaluated it on neural networks, achieving

comparable utility as non-private SGD. The privacy analysis is improved by keeping track of

the privacy loss with moments accountant, a notion closely related to Rényi differential privacy.

Both algorithms use gradient truncating to control the global sensitivity of the parameters. Addi-

tionally, [147] proposed an algorithm that injects random noise only at the end of the training

process. The algorithm guarantees differential privacy for convex objective functions.

Acknowledgments

KC and SS would like to thank NIH U54-HL108460, the Hellman Foundation, and NSF

IIS 1253942 for support.

This chapter is based on “Stochastic gradient descent with differentially private updates”

by Shuang Song, Kamalika Chaudhuri and Anand Sarwate, which appears in the Global Confer-

26



ence on Signal and Information Processing (GlobalSIP), 2013 [130]. The dissertation author

was the primary author of the paper.

27



Chapter 4

Local Differentially Private SGD with Het-
erogeneous Privacy Requirements

4.1 Overview

Modern large-scale machine learning systems often integrate sensitive data from several

sources. In many cases, these sources provide data of a similar type (i.e. with the same features)

but collected under different privacy requirements. For example, patient records from different

studies of a particular drug may be combined to perform a more comprehensive analysis. These

different studies, each conducted under different privacy regulations, require different levels of

random noise for privacy-protection purposes, resulting in data of varying quality.

In this chapter, we adopt a model in which data is observed through heterogeneous noise,

where the noise level reflects the quality of the data source. We study how to use stochastic

gradient algorithms to learn from data of heterogeneous quality. In full generality, learning from

heterogeneous data is essentially the problem of domain adaptation – a challenge for which

good and complete solutions are difficult to obtain. Instead, we focus on the special case of

heterogeneous noise and show how to use information about the data quality to improve the

performance of learning algorithms which ignore this information.

The motivating example about combining patient records for a drug study can be formu-

lated as locally differentially private learning from multiple sites. Under local differential privacy,

the learner accesses the data via noisy estimates, where the noise guarantees privacy [42, 43]. In
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many applications, we are required to learn from sensitive data collected from individuals with

heterogeneous privacy preferences, or from multiple sites with different privacy requirements;

this results in the heterogeneity of noise added to ensure privacy.

Moreover, our model of heterogeneous data does not merely suit locally differentially

private machine learning; it captures a general scenario where data of different qualities are

combined in a learning task. For example, a collection of images with annotations from experts

as well as non-experts may be combined to learn a predictor – a situation which we call

heterogeneous random classification noise (RCN). Under random classification noise [79], labels

are randomly flipped before being presented to the algorithm. The heterogeneity in the noise

addition comes from combining labels of variable quality – such as labels assigned by domain

experts with those assigned by a crowd.

To our knowledge, [33] was the first to provide a theoretical study of how to learn

classifiers from data of variable quality. In their formulation, like ours, data is observed through

heterogeneous noise. Given data with known noise levels, their study focuses on finding an

optimal ordering of the data and a stopping rule without any constraint on the computational

complexity. We instead shift our attention to studying computationally efficient strategies for

learning classifiers from data of variable quality.

We propose a model for variable data quality which is natural in the context of large-scale

learning using stochastic gradient descent (SGD) and its variants [21, 13]. We assume that the

training data are accessed through an oracle which provides an unbiased but noisy estimate

of the gradient of the objective. The noise comes from two sources: the random sampling of

a data point, and additional noise due to the data quality. Our two motivating applications –

learning with local differential privacy and learning from data of variable quality – can both be

modeled as solving a regularized convex optimization problem using SGD. Learning from data

with heterogeneous noise in this framework thus reduces to running SGD with noisy gradient

estimates, where the magnitude of the added noise varies across iterations.

Main results. We study noisy stochastic gradient methods when learning from multiple
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data sets with different noise levels. For simplicity we consider the case where there are two data

sets, which we call Clean and Noisy. We process these data sets sequentially using SGD with

learning rate O (1/t). We address some basic questions in this setup:

In what order should we process the data? Suppose we use standard SGD on the union

of Clean and Noisy. We show theoretically and empirically that the order in which we should

process the datasets to get good performance depends on the learning rate of the algorithm: in

some cases we should use the order (Clean,Noisy) and in others (Noisy,Clean).

Can we use knowledge of the noise rates? We show that using separate learning rates that

depend on the noise levels for the clean and noisy datasets improves the performance of SGD.

We provide a heuristic for choosing these rates by optimizing an upper bound on the error for

SGD that depends on the ratio of the noise levels. We analytically quantify the performance of

our algorithm in two regimes of interest. For moderate noise levels, we demonstrate empirically

that our algorithm outperforms using a single learning rate and using clean data only.

Does using noisy data always help? The work [33] suggests that if the noise level of

noisy data is above some threshold, then noisy data will not help. Moreover, when the noise

levels are very high, our heuristic does not always empirically outperform simply using the clean

data. On the other hand, our theoretical results suggest that changing the learning rate can make

noisy data useful. How do we resolve this apparent contradiction?

We perform an empirical study to address this question. Our experiments demonstrate

that very often, there exists a learning rate at which noisy data helps; however, because the actual

noise level may be far from the upper bound used in our algorithm, our optimization may not

choose the best learning rate for every data set. We demonstrate that by adjusting the learning

rate we can still take advantage of noisy data.

For simplicity we, like previous work [33], assume that the algorithms know the noise

levels exactly. However, our algorithms can still be applied in the presence of approximate

knowledge of the noise levels, and our result on the optimal data order only needs to know which

dataset has more noise.
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4.1.1 Related Work

There has been significant work on the convergence of SGD assuming analytic properties

of the objective function, such as strong convexity and smoothness. When the objective function

is λ-strongly convex, the learning rate used for SGD is O (1/λt) [106, 4, 115, 7], which leads to

a regret of O (1/λ2t) for smooth objectives. For non-smooth objectives, SGD with learning rate

O (1/λt) followed by some form of averaging of the iterates achieves O (1/λt) [107, 105, 126,

148, 41].

There is also a body of literature on differentially private classification by regularized

convex optimization in the batch [26, 122, 83] as well as the online [75] setting. In this chapter,

we consider classification with local differential privacy [144, 42], a stronger form of privacy

than ordinary differential privacy. [42] proposes learning a classifier with local differential

privacy using SGD. Recent work [10] provides an improved privacy analysis for non-local

privacy. This chapter is an extension of these papers to heterogeneous privacy requirements.

[33] studied classification when the labels in each data set are corrupted by RCN of

different rates. Assuming the classifier minimizing the empirical 0/1 classification error can

always be found, they propose a general theoretical procedure that processes the datasets in

increasing order of noise, and determines when to stop using more data. In contrast, our noise

model is more general and we provide a polynomial time algorithm for learning. Our results

imply that in some cases the algorithm should process the noisy data first, and finally, our

algorithm uses all the data.

4.2 The Model

Similar as in Chapter 3, we consider linear classification in the presence of noise. We are

given T labelled examples (x1, y1), . . . , (xT , yT ), where xi ∈ Rd, and yi ∈ {−1, 1} and our goal

is to find a hyperplane w that largely separates the examples labeled 1 from those labeled −1. A
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standard solution is via the following regularized convex optimization problem:

w∗ = argmin
w∈W

f(w) :=
λ

2
‖w‖2+

1

T

T∑
i=1

`(w, xi, yi). (4.1)

Here ` is a convex loss function, and λ
2
‖w‖2 is a regularization term. Popular choices for ` include

the logistic loss `(w, x, y) = log(1+e−yw
>x) and the hinge loss `(w, x, y) = max(0, 1−yw>x).

Stochastic Gradient Descent (SGD) is a popular approach to solving (4.1): starting with

an initial w1, at step t, SGD updates wt+1 using the point (xt, yt) as follows:

wt+1 = ΠW (wt − ηt(λwt +∇`(wt, xt, yt))) . (4.2)

Here Π is a projection operator onto the convex feasible setW , typically set to {w : ‖w‖2≤ 1/λ}

and ηt is a learning rate (or step size) which specifies how fast wt changes. A common choice

for the learning rate for the case when λ > 0 is c/t, where c = Θ(1/λ).

4.2.1 The Heterogeneous Noise Model

We propose an abstract model for heterogeneous noise that can be specialized to two

important scenarios: differentially private learning, and random classification noise. By heteroge-

neous noise we mean that the distribution of the noise can depend on the data points themselves.

More formally, we assume that the learning algorithm may only access the labeled data through

an oracle G which, given a w ∈ Rd, draws a fresh independent sample (x, y) from the underlying

data distribution, and returns an unbiased noisy gradient of the objective function∇f(w), based

on the example (x, y):

E [G(w)] = λw +∇`(w, x, y), E
[
‖G(w)‖2

]
≤ Γ2. (4.3)

The precise manner in which G(w) is generated depends on the application. Define the noise

level for the oracle G as the constant Γ in (4.3); larger Γ means more noisy data. Finally, to
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model finite training datasets, we assume that an oracle G may be called only a limited number

of times.

Observe that in this noise model, we can easily use the noisy gradient returned by G to

perform SGD. The update rule becomes:

wt+1 = ΠW (wt − ηtG(wt)) . (4.4)

The SGD estimate is wt+1.

In practice, we can implement an oracle such as G based on a finite labelled training set

D as follows. We apply a random permutation on the samples in D, and at each invocation,

compute a noisy gradient based on the next sample in the permutation. The number of calls

to the oracle is limited to |D|. If the samples in D are drawn iid from the underlying data

distribution, and if any extraneous noise added to the gradient at each iteration is unbiased and

drawn independently, then this process will implement the oracle correctly.

To model heterogeneous noise, we assume that we have access to two oracles G1 and

G2 implemented based on datasets D1 and D2, which can be called at most |D1| and |D2| times

respectively. For j = 1, 2, the noise level of oracle Gj is Γj , and the values of Γ1 and Γ2 are

known to the algorithm. In some practical situations, Γ1 and Γ2 will not be known exactly;

however, our algorithm in Section 4.4 also applies when approximate noise levels are known,

and our algorithm in Section 4.3 applies even when only the relative noise levels are known.

4.2.1.1 Local Differential Privacy

Consider learning a linear classifier from a sensitive labeled dataset while ensuring local

privacy (see Chapter 2 for more details) of the participants. This problem can be expressed

in our noise model by setting the sanitization mechanism as the oracle. Given a privacy risk

ε, for w ∈ Rd, the oracle GDP draws a random labeled sample (x, y) from the underlying data

distribution, and returns the noisy gradient of the objective function at w computed based on
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(x, y) as

GDP(w) = λw +∇`(w, x, y) + Z, (4.5)

where Z is independent random noise drawn from the density: ρ(z) ∝ e−(ε/2)‖z‖.

[42] showed that this mechanism provides ε-local privacy assuming analytic conditions

on the loss function, bounded data, and that the oracle generates a fresh random sample at each

invocation. The following result shows how to set the parameters to fit in our heterogeneous

noise model. The proof is provided in the supplement.

Theorem 4.2.1. If ‖∇`(w, x, y)‖≤ 1 for all w and (x, y), then GDP(w) is ε-local differentially

private. Moreover, for any w such that ‖w‖≤ 1
λ

, E[GDP(w)] = λw +∇E(x,y)[`(w, x, y)], and

E[‖GDP(w)‖2] ≤ 4 +
4(d2 + d)

ε2
.

In practice, we may wish to learn classifiers from multiple sensitive datasets with different

privacy parameters. For example, suppose we wish to learn a classifier from sensitive patient

records in two different hospitals holding data sets D1 and D2, respectively. The hospitals have

different privacy policies, and thus different privacy parameters ε1 and ε2. This corresponds to a

heterogeneous noise model in which we have two sanitizing oracles – GDP
1 and GDP

2 . For j = 1, 2,

GDP
j implements a differentially private oracle with privacy parameter εj based on dataset Dj and

may be called at most |Dj| times.

4.2.1.2 Random Classification Noise

In the random classification noise model of [79], the learning algorithm is presented

with labelled examples (x1, ỹ1), . . . , (xT , ỹT ), where each ỹi ∈ {−1, 1} has been obtained by
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independently flipping the true label yi with some probability σ. [104] showed that solving

argmin
w

λ

2
‖w‖2+

1

T

T∑
i=1

˜̀(w, xi, ỹi, σ) (4.6)

yields a linear classifier from data with random classification noise, where ˜̀ is a surrogate loss

function corresponding to a convex loss `:

˜̀(w, x, y, σ) =
(1− σ)`(w, x, y)− σ`(w, x,−y)

1− 2σ
,

and σ is the probability that each label is flipped. This problem can be expressed in our noise

model using an oracle GRCN which on input w draws a fresh labelled example (x, ỹ) and returns

GRCN(w) = λw +∇˜̀(w, x, ỹ, σ).

The SGD updates in (4.4) with respect to GRCN minimize (4.6). If ‖x‖≤ 1 and ‖∇`(w, x, y)‖≤ 1,

we have EGRCN(w) [=]λw +∇`(w, x, y) and E‖GRCN(w)‖22 [≤] 3 + 1/(1− 2σ)2, under the random

classification noise assumption, so the oracle GRCN satisfies the conditions in (4.3) with Γ2 =

3 + 1/(1− 2σ)2.

In practice, we may wish to learn classifiers from multiple datasets with different amounts

of classification noise [33]; for example, we may have a small dataset D1 labeled by domain

experts, and a larger noisier dataset D2, labeled via crowdsourcing, with flip probabilities σ1 and

σ2. We model this scenario using two oracles – GRCN
1 and GRCN

2 . For j = 1, 2, oracle GRCN
j is

implemented based on Dj and flip probability σj , and may be called at most |Dj| times.

4.3 Data order depends on learning rate

Suppose we have two oracles GC (for “clean”) and GN (for “noisy”) implemented based

on datasets DC, DN with noise levels ΓC,ΓN (where ΓC < ΓN) respectively. In which order
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should we query the oracle when using SGD? Perhaps surprisingly, it turns out that the answer

depends on the learning rate. Below, we show a specific example of a convex optimization

problem such that with ηt = c/t, the optimal ordering is to use GC first when c ∈ (0, 1/λ), and

the optimal ordering is to use GN first when c > 1/λ.

Let |DC|+|DN|= T and consider the convex optimization problem:

min
w∈W

λ

2
‖w‖2− 1

T

T∑
i=1

yiw
>xi, (4.7)

where the points {(xi, yi)} are drawn from the underlying distribution by GC or GN. Suppose

G(w) = λw−yx+Z where Z is an independent noise vector such that E[Z] = 0, E[‖Z‖2] = V 2
C

if G is GC, and E[‖Z‖2] = V 2
N if G is GN with V 2

N ≥ V 2
C .

For our example, we consider the following three variants of SGD: CF and NF for “clean

first” and “noisy first” and AO for an “arbitrary ordering”:

1. CF: For t ≤ |DC|, query GC in the SGD update (4.4). For t > |DC|, query GN.

2. NF: For t ≤ |DN|, query GN in the SGD update (4.4). For t > |DN|, query GC.

3. AO: Let S be an arbitrary sequence of length T consisting of |DC| C’s and |DN| N’s. In

the SGD update (4.4) in round t, if the t-th element St of S is C, then query GC; else, query

GN.

In order to isolate the effect of the noise, we consider two additional oracles G ′C and G ′N;

the oracle G ′C (resp. G ′N) is implemented based on the dataset DC (resp. DN), and iterates over

DC (resp. DN) in exactly the same order as GC (resp. GN); the only difference is that for G ′C (resp.

G ′N), no extra noise is added to the gradient (that is, Z = 0). The main result of this section is

stated in Theorem 4.3.1.

Theorem 4.3.1. Let {wCF
t }, {wNF

t } and {wAO
t } be the sequences of updates obtained by running

SGD for objective function (4.7) under CF, NF and AO respectively, and let {vCFt }, {vNFt } and
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{vAOt } be the sequences of updates under CF, NF and AO with calls to GC and GN replaced by

calls to G ′C and G ′N. Let T = |DC|+|DN|.

1. If the learning rate ηt = c/t where c ∈ (0, 1
λ
), then E‖vCFT+1−w

CF
T+1‖2

[≤]E‖vAOT+1−w
AO
T+1‖2

[.]

2. If the learning rate ηt = c/t where c > 1/λ, then E‖vNFT+1−w
NF
T+1‖2

[≤]E‖vAOT+1−w
AO
T+1‖2

[.]

This means arbitrary ordering is worse than sequentially processing one dataset after the

other except when c = 1/λ. If the learning rate is small, then SGD should use the clean data first

to aggressively proceed towards the optimum. If the learning rate is larger, then SGD should

reserve the clean data for refining the initial estimates given by processing the noisy data.

4.4 Adapting the learning rate to the noise level

We now investigate whether the performance of SGD can be improved by using different

learning rates for oracles with different noise levels. Suppose we have oracles G1 and G2 with

noise levels Γ1 and Γ2 that are implemented based on two datasets D1 and D2. Unlike the

previous section, we do not assume any relation between Γ1 and Γ2 – we analyze the error for

using oracle G1 followed by G2 in terms of Γ1 and Γ2 to choose a data order. Let T = |D1|+|D2|.

Let β1 = |D1|
T

and β2 = 1 − β1 = |D2|
T

be the fraction of the data coming from G1 and G2,

respectively. We adapt the gradient updates in (4.4) to heterogeneous noise by choosing the

learning rate ηt as a function of the noise level. Algorithm 1 shows a modified SGD for

heterogeneous learning rates.

Algorithm 1. SGD with varying learning rate
1: Inputs: Oracles G1,G2 implemented by data sets D1, D2. Learning rates c1 and c2.
2: Set w1 = 0.
3: for t = 1, 2, . . . , |D1| do
4: wt+1 = ΠW

(
wt − c1

t
G1(wt)

)
5: end for
6: for t = |D1|+1, |D1|+2, . . . , |D1|+|D2| do
7: wt+1 = ΠW

(
wt − c2

t
G2(wt)

)
8: end forreturn w|D1|+|D2|+1.
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Consider SGD with learning rate ηt = c1/t while querying G1 and with ηt = c2/t while

querying G2 in the update (4.4). We must choose an order in which to query G1 and G2 as well as

the constants c1 and c2 to get the best performance. We do this by minimizing an upper bound

on the distance between the final iterate wT+1 and the optimal solution w∗ to E[f(w)] where f is

defined in (4.1), and the expectation is with respect to the data distribution and the gradient noise;

the upper bound we choose is based on [115]. Note that for smooth functions f , a bound on the

distance ‖wT+1 − w∗‖ automatically translates to a bound on the regret f(wT+1)− f(w∗).

Theorem 4.4.1 generalizes the results of [115] to our heterogeneous noise setting; the

proof is in the supplement.

Theorem 4.4.1. If 2λc1 > 1 and if 2λc2 6= 1, and if we query G1 before G2 with learning rates

c1/t and c2/t respectively, then the SGD algorithm satisfies

E
[
‖wT+1 − w∗‖2

]
≤ 4Γ2

1

T
· β

2λc2−1
1 c2

1

2λc1 − 1
+

4Γ2
2

T
· (1− β2λc2−1

1 )c2
2

2λc2 − 1
+O

(
1

Tmin(2,2λc1)

)
. (4.8)

Two remarks are in order. First, the first two terms in the right hand side dominate the

other term. Second, our proof techniques for Theorem 4.4.1, adapted from [115], require that

2λc1 > 1 in order to get a O(1/T ) rate of convergence; without this condition, the dependence

on T is Ω(1/T ).

4.4.1 Algorithm description

Our algorithm for selecting c1 and c2 is motivated by Theorem 4.4.1. We propose an

algorithm that selects c1 and c2 by minimizing the quantityB(c1, c2) which represents the highest

order terms in Theorem 4.4.1:

B(c1, c2) =
4Γ2

1β
2λc2−1
1 c2

1

T (2λc1 − 1)
+

4Γ2
2(1− β2λc2−1

1 )c2
2

T (2λc2 − 1)
. (4.9)
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Given λ, Γ1, Γ2 and β1, we use c∗1 and c∗2 to denote the values of c1 and c2 that minimizeB(c1, c2).

We can optimize for fixed c2 with respect to c1 by minimizing c21
2λc1−1

; this gives c∗1 = 1/λ, and
c∗21

2λc∗1−1
= 1/λ2, which is independent of β1 or the noise levels Γ1 and Γ2. Minimizing B(c∗1, c2)

with respect to c2 can be now performed numerically to yield c∗2 = argminc2 B(c∗1, c2). This

yields optimal values of c1 and c2.

Now suppose we have two oracles GC, GN with noise levels ΓC and ΓN that are imple-

mented based on datasets DC and DN respectively. Let ΓC < ΓN, and let βC = |DC|
|DC|+|DN|

and

βN = |DN|
|DC|+|DN|

be the fraction of the total data in each data set. Define the following functions:

HCN(c) =
4Γ2

Cβ
2λc−1
C

λ2
+

4Γ2
N(1− β2λc−1

C )c2

2λc− 1
,

HNC(c) =
4Γ2

Nβ
2λc−1
N

λ2
+

4Γ2
C(1− β2λc−1

N )c2

2λc− 1
.

These represent the constant of the leading term in the upper bound in Theorem 4.4.1 for

(G1,G2) = (GC,GN) and (G1,G2) = (GN,GC), respectively.

Algorithm 2 repeats the process of choosing optimal c1, c2 with two orderings of the data – GC
first and GN first – and selects the solution which provides the best bounds (according to the

higher order terms of Theorem 4.4.1).

Algorithm 2. Selecting the Learning Rates
1: Inputs: Data sets DC and DN accessed through oracles GC and GN with noise levels ΓC and

ΓN.
2: Let βC = |DC|

|DC|+|DN|
and βN = |DN|

|DC|+|DN|
.

3: Calculate cCN = argmincHCN(c) and cNC = argmincHNC(c).
4: if HCN(cCN) ≤ HNC(cNC) then
5: Run Algorithm 1 using oracles (GC,GN), learning rates c1 = 1

λ
and c2 = cCN.

6: else
7: Run Algorithm 1 using oracles (GN,GC), learning rates c1 = 1

λ
and c2 = cNC.

8: end if
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4.4.2 Regret Bounds

To provide a regret bound on the performance of SGD with two learning rates, we need

to plug the optimal values of c1 and c2 into the right hand side of (4.9). Observe that as c1 = c2

and c2 = 0 are feasible inputs to (4.9), our algorithm by construction has a superior regret bound

than using a single learning rate only, or using clean data only.

Unfortunately, the value of c2 that minimizes (4.9) does not have a closed form solution,

and as such it is difficult to provide a general simplified regret bound that holds for all Γ1, Γ2

and β1. In this section, we consider two cases of interest, and derive simplified versions of the

regret bound for SGD with two learning rates for these cases.

We consider the two data orders (Γ1,Γ2) = (ΓN,ΓC) and (Γ1,Γ2) = (ΓC,ΓN) in a

scenario where ΓN/ΓC � 1 and both βN and βC are bounded away from 0 and 1. That is, the

noisy data is much noisier. The following two lemmas provide upper and lower bounds on

B(c∗1, c
∗
2) in this setting.

Lemma 4.4.2. Suppose (Γ1,Γ2) = (ΓN,ΓC) and 0 < βN < 1. Then for sufficiently large ΓN/ΓC,

the optimal solution c∗2 to (4.9) satisfies

2c∗2λ ∈
[

1 +
2 log(ΓN/ΓC) + log log(1/βN)

log(1/βN)
, 1 +

2 log(4ΓN/ΓC) + log log(1/βN)

log(1/βN)

]
.

Moreover, B(c∗1, c
∗
2) satisfies:

B(c∗1, c
∗
2) ≥

4Γ2
C(log(ΓN

ΓC
) + 1

2
log log 1

βN
)

λ2T log( 1
βN

)

B(c∗1, c
∗
2) ≤4Γ2

C

λ2T

(
4 +

4 + 2 log(ΓN

ΓC
) + log log( 1

βN
)

log( 1
βN

)

)
.

Observe that the regret bound grows logarithmically with ΓN/ΓC. Moreover, if we only

used the cleaner data, then the regret bound would be 4Γ2
C

λ2βCT
, which is better, especially for large

ΓN/ΓC. This means that using two learning rates with the noisy data first gives poor results at
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high noise levels.

Our second bound takes the opposite data order, processing the clean data first.

Lemma 4.4.3. Suppose (Γ1,Γ2) = (ΓC,ΓN) and 0 < βC < 1. Let σ = (ΓN/ΓC)−2. Then for

sufficiently large ΓN/ΓC, the optimal solution c∗2 to (4.9) satisfies: 2c∗2λ ∈
[
σ, 8

βC
σ
]
. Moreover,

B(c∗1, c
∗
2) satisfies:

B(c∗1, c
∗
2) ≥ 4Γ2

C

λ2βCT
β

8σ/βC
C

B(c∗1, c
∗
2) ≤ 4Γ2

C

λ2βCT
βσC

(
1 + σ

log(1/βC)

4

)
.

If we only used the clean dataset, then the regret bound would be 4Γ2
C

λ2βCT
, so Lemma 4.4.3

yields an improvement by a factor of β(ΓN/ΓC)−2

C

(
1 +

(
ΓN

ΓC

)−2
log(1/βC)

4

)
. As βC < 1, observe

that this factor is always less than 1, and tends to 1 as ΓN/ΓC tends to infinity; therefore the

difference between the regret bounds narrows as the noisy data grows noisier. We conclude that

using two learning rates with clean data first gives a better regret bound than using only clean

data or using two learning rates with noisy data first.

4.5 Experiments

We next illustrate our theoretical results through experiments on real data. We consider

the task of training a regularized logistic regression classifier for binary classification under

local differential privacy. For our experiments, we consider two real datasets – MNIST (with the

task 1 vs. Rest) and Covertype (Type 2 vs. Rest). The former consists of 60, 000 samples in

784 dimensions, while the latter consists of 500, 000 samples in 54-dimensions. We reduce the

dimension of the MNIST dataset to 25 via random projections.

To investigate the effect of heterogeneous noise, we divide the training data into subsets

(DC, DN) to be accessed through oracles (GC,GN) with privacy parameters (εC, εN) respectively.

We pick εC > εN, so GN is noisier than GC. To simulate typical practical situations where cleaner
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(f)
Figure 4.1. Column 1 plots |f(wT+1)− f(vT+1)| vs. constant c for λ = 0.001. Column 2 plots
final objective function value vs. εN for εC = 10. Column 3 plots final objective function value
vs. c2 for εN = 2 (top) and εN = 1 (bottom). Top row shows figures for MNIST and bottom row

for Covertype.

data is rare, we set the size of DC to be βC = 10% of the total data size. We set the regularization

parameter λ = 10−3, ΓC and ΓN according to Theorem 4.2.1 and use SGD with mini-batching

(batch size 50).

Does Data Order Change Performance? Our first task is to investigate the effect of

data order on performance. For this purpose, we compare three methods – CleanFirst, where all

of DC is used before DN, NoisyFirst, where all of DN is used before DC, and Arbitrary, where

data from DN ∪DC is presented to the algorithm in a random order.

The results are in Figures 4.1a and 4.1d. We use εC = 10, εN = 3. For each algorithm,

we plot |f(wT+1)− f(vT+1)| as a function of the constant c in the learning rate. Here f(wT+1)

is the function value obtained after T rounds of SGD, and f(vT+1) is the function value obtained

after T rounds of SGD if we iterate over the data in the same order, but add no extra noise to the

gradient. (See Theorem 4.3.1 for more details.) As predicted by Theorem 4.3.1, the results show

that for c < 1
λ

, CleanFirst has the best performance, while for c > 1
λ

, NoisyFirst performs best.

42



Arbitrary performs close to NoisyFirst for a range of values of c, which we expect as only 10%

of the data belongs to DC.

Are Two Learning Rates Better than One? We next investigate whether using two

learning rates in SGD can improve performance. We compare five approaches. Optimal is the

gold standard where we access the raw data without any intervening noisy oracle. CleanOnly uses

only DC with learning rate with the optimal value of c obtained from Section 4.4. SameClean

and SameNoisy use a single value of the constant c in the learning rate for DN ∪DC, where c is

obtained by optimizing (4.9)1 under the constraint that c1 = c2. SameClean uses all of DC before

using DN, while SameNoisy uses all of DN before using DC. In Algorithm2, we use Algorithm 2

to set the two learning rates and the data order (DC first or DN first). In each case, we set εC = 10,

vary εN from 1 to 10, and plot the function value obtained at the end of the optimization.

The results are plotted in Figures 4.1b and 4.1e. Each plotted point is an average of

100 runs. It is clear that Algorithm2, which uses two learning rates, performs better than both

SameNoisy and SameClean. As expected, the performance difference diminishes as εN increases

(that is, the noisy data gets cleaner). For moderate and high εN, Algorithm2 performs best, while

for low εN (very noisy DN), CleanOnly has slightly better performance. We therefore conclude

that using two learning rates is better than using a single learning rate with both datasets, and

that Algorithm2 performs best for moderate to low noise levels.

Does Noisy Data Always Help? A natural question to ask is whether using noisy data

always helps performance, or if there is some threshold noise level beyond which we should not

use noisy data. Lemma 4.4.3 shows that in theory, we obtain a better upper bound on performance

when we use noisy data; in contrast, Figures 4.1b and 4.1e show that for low εN (high noise),

Algorithm2 performs worse than CleanOnly. How do we explain this apparent contradiction?

To understand this effect, in Figures 4.1c and 4.1f we plot the performance of SGD using

two learning rates (with c1 = 1
λ

) against CleanOnly as a function of the second learning rate c2.

The figures show that the best performance is attained at a value of c2 which is different from

1Note that we plug in separate noise rates for GC and GN in the learning rate calculations.

43



the value predicted by Algorithm2, and this best performance is better than CleanOnly. Thus,

noisy data always improves performance; however, the improvement may not be achieved at the

learning rate predicted by our algorithm.

Why does our algorithm perform suboptimally? We believe this happens because the

values of ΓN and ΓC used by our algorithm are fairly loose upper bounds. For local differential

privacy, an easy lower bound on Γ is
√

4(d2+d)
ε2b

, where b is the mini-batch size; let c2(L) (resp.

c2(U)) be the value of c2 obtained by plugging in these lower bounds (resp. upper bounds from

Theorem 4.2.1) to Algorithm 1. Our experiments show that the optimal value of c2 always lies

between c2(L) and c2(U), which indicates that the suboptimal performance may be due to the

looseness in the bounds.

We thus find that even in these high noise cases, theoretical analysis often allows us

to identify an interval containing the optimal value of c2. In practice, we recommend running

Algorithm 2 twice – once with upper, and once with lower bounds to obtain an interval containing

c2, and then performing a line search to find the optimal c2.

4.6 Conclusion

We propose a model for learning from heterogeneous noise that is appropriate for studying

stochastic gradient approaches to learning. In our model, data from different sites are accessed

through different oracles which provide noisy versions of the gradient. Learning under local

differential privacy and random classification noise are both instances of our model. We show

that for two sites with different noise levels, processing data from one site followed by the other

is better than randomly sampling the data, and the optimal data order depends on the learning

rate. We then provide a method for choosing learning rates that depends on the noise levels

and showed that these choices achieve lower regret than using a common learning rate. We

validate these findings through experiments on two standard data sets and show that our method

for choosing learning rates often yields improvements when the noise levels are moderate. In the
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case where one data set is much noisier than the other, we provide a different heuristic to choose

a learning rate that improves the regret.

There are several different directions towards generalizing the algorithms here. Firstly,

extending the results to multiple sites and multiple noise levels will give more insights as to how

to leverage large numbers of data sources. This leads naturally to cost and budgeting questions:

how much should we pay for additional noisy data? Our results for data order do not depend on

the actual noise levels, but rather their relative level. However, we use the noise levels to tune the

learning rates for different sites. If bounds on the noise levels are available, we can still apply

our heuristic. Adaptive approaches for estimating the noise levels while learning are also an

interesting approach for future study.
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Chapter 5

Scalable Private Learning with PATE

5.1 Overview

Recently, two promising, new model-training approaches have offered the hope that

practical, high-utility machine learning may be compatible with strong privacy-protection guar-

antees for sensitive training data [2]. This chapter revisits one of these approaches, Private

Aggregation of Teacher Ensembles, or PATE [111], and develops techniques that improve its

scalability and practical applicability. PATE has the advantage of being able to learn from the

aggregated consensus of separate “teacher” models trained on disjoint data, in a manner that

both provides intuitive privacy guarantees and is agnostic to the underlying machine-learning

techniques (cf. the approach of differentially-private stochastic gradient descent [1]). In the

PATE approach multiple teachers are trained on disjoint sensitive data (e.g., different users’

data), and uses the teachers’ aggregate consensus answers in a black-box fashion to supervise

the training of a “student” model. By publishing only the student model (keeping the teachers

private) and by adding carefully-calibrated Laplace noise to the aggregate answers used to train

the student, the original PATE work showed how to establish rigorous (ε, δ) differential-privacy

guarantees [111].However, to date, PATE has been applied to only simple tasks, like MNIST,

without any realistic, larger-scale evaluation.

The techniques presented in this chapter allow PATE to be applied on a larger scale

to build more accurate models, in a manner that improves both on PATE’s intuitive privacy-
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Figure 5.1. Our proposed technique, Confident-GNMax, improves on the original PATE
(LNMax) on all measures. Left: Accuracy is higher.Middle: Privacy cost is quartered. Right:

Intuitive privacy is improved. These are results for a character-recognition task.

protection due to the teachers’ independent consensus as well as its differential-privacy guaran-

tees. As shown in our experiments, the result is a gain in privacy, utility, and practicality – an

uncommon joint improvement.

The primary technical contributions of this chapter are new mechanisms for aggregating

teachers’ answers that are more selective and add less noise. On all measures, our techniques

improve on the original PATE mechanism when evaluated on the same tasks using the same

datasets, as described in Section 5.4. Furthermore, we evaluate both variants of PATE on a new,

large-scale character recognition task with 150 output classes, inspired by MNIST. The results

show that PATE can be successfully utilized even to uncurated datasets – with significant class

imbalance as well as erroneous class labels – and that our new aggregation mechanisms improve

both privacy and model accuracy.

To be more selective, our new mechanisms leverage some pleasant synergies between

privacy and utility in PATE aggregation. For example, when teachers disagree, and there is no

real consensus, the privacy cost is much higher; however, since such disagreement also suggest

that the teachers may not give a correct answer, the answer may simply be omitted. Similarly,

teachers may avoid giving an answer where the student already is confidently predicting the

right answer. Additionally, we ensure that these selection steps are themselves done in a private

manner.
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To add less noise, our new PATE aggregation mechanisms sample Gaussian noise, since

the tails of that distribution diminish far more rapidly than those of the Laplace noise used in the

original PATE work. This reduction greatly increases the chance that the noisy aggregation of

teachers’ votes results in the correct consensus answer, which is especially important when PATE

is scaled to learning tasks with large numbers of output classes. However, changing the sampled

noise requires redoing the entire PATE privacy analysis from scratch (see the full paper [112] for

more details).

Finally, of independent interest are the details of our evaluation extending that of the

original PATE work. In particular, we find that the virtual adversarial training (VAT) technique

of [102] is a good basis for semi-supervised learning on tasks with many classes, outperforming

the improved GANs by [124] used in the original PATE work. Furthermore, we explain how to

tune the PATE approach to achieve very strong privacy (ε ≈ 1.0) along with high utility, for our

real-world character recognition learning task.

This chapter is structured as follows: Section 5.1.1 is the related work section; Section

5.2 gives a background on PATE; Section 5.3 describes our improved aggregation mechanisms;

Section 5.4 details our experimental evaluation; Section 5.5 offers conclusions; and proofs can

be found in the full paper [112].

5.1.1 Related Work

The first learning algorithms adapted to provide differential privacy with respect to

their training data were often linear and convex [113, 26, 130, 12, 68]. More recently, success-

ful developments in deep learning called for differentially private stochastic gradient descent

algorithms [1], some of which have been tailored to learn in federated [96] settings.

Differentially private selection mechanisms like GNMax (Section 5.3.1) are commonly

used in hypothesis testing, frequent itemset mining, and as building blocks of more complicated

private mechanisms. The most commonly used differentially private selection mechanisms are

exponential mechanism [100] and LNMax [14]. Recent works offer lower bounds on sample
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complexity of such problem [133, 8].

The Confident and Interactive Aggregator proposed in this chapter (Section 5.3.2 and

Section 5.3.3 resp.) use the intuition that selecting samples under certain constraints could result

in better training than using samples uniformly at random. In machine learning theory, active

learning [30] has been shown to allow learning from fewer labeled examples than the passive

case (see e.g. [69]). Similarly, in model stealing [139], a goal is to learn a model from limited

access to a teacher network. There is previous work in differential privacy literature [71, 120]

where the mechanism first decides whether or not to answer a query, and then privately answers

the queries it chooses to answer using a traditional noise-addition mechanism. In these cases, the

sparse vector technique [49, Chapter 3.6] helps bound the privacy cost in terms of the number

of answered queries. This is in contrast to our work where a constant fraction of queries get

answered and the sparse vector technique does not seem to help reduce the privacy cost. Closer

to our work, [23] considers a setting where the answer to a query of interest is often either very

large or very small. They show that a sparse vector-like analysis applies in this case, where one

pays only for queries that are in the middle.

5.2 Background and Overview

We introduce essential components of our approach towards a generic and flexible

framework for machine learning with provable privacy guarantees for training data.

5.2.1 The PATE Framework

Here, we provide an overview of the PATE framework. To protect the privacy of training

data during learning, PATE transfers knowledge from an ensemble of teacher models trained on

partitions of the data to a student model. Privacy guarantees may be understood intuitively and

expressed rigorously in terms of differential privacy.

Illustrated in Figure 5.2, the PATE framework consists of three key parts: (1) an ensemble

of n teacher models, (2) an aggregation mechanism and (3) a student model.
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Figure 5.2. Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets
of the sensitive data, (2) a student model is trained on public data labeled using the ensemble.

Teacher models: Each teacher is a model trained independently on a subset of the data whose

privacy one wishes to protect. The data is partitioned to ensure no pair of teachers will have

trained on overlapping data. Any learning technique suitable for the data can be used for any

teacher. Training each teacher on a partition of the sensitive data produces n different models

solving the same task. At inference, teachers independently predict labels.

Aggregation mechanism: When there is a strong consensus among teachers, the label they

almost all agree on does not depend on the model learned by any given teacher. Hence, this

collective decision is intuitively private with respect to any given training point – because such

a point could have been included only in one of the teachers’ training set. To provide rigorous

guarantees of differential privacy, the aggregation mechanism of the original PATE framework

counts votes assigned to each class, adds carefully calibrated Laplace noise to the resulting vote

histogram, and outputs the class with the most noisy votes as the ensemble’s prediction. This

mechanism is referred to as the max-of-Laplace mechanism, or LNMax, going forward.

For samples x and classes 1, . . . ,m, let fj(x) ∈ [m] denote the j-th teacher model’s

prediction and ni denote the vote count for the i-th class (i.e., ni , |fj(x) = i|). The output

of the mechanism is A(x) , argmaxi (ni(x) + Lap (1/γ)). Through a rigorous analysis of this

mechanism, the PATE framework provides a differentially private API: the privacy cost of each

aggregated prediction made by the teacher ensemble is known.

Student model: PATE’s final step involves the training of a student model by knowledge transfer
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from the teacher ensemble using access to public – but unlabeled – data. To limit the privacy

cost of labeling them, queries are only made to the aggregation mechanism for a subset of public

data to train the student in a semi-supervised way using a fixed number of queries. The authors

note that every additional ensemble prediction increases the privacy cost spent and thus cannot

work with unbounded queries. Fixed queries fixes privacy costs as well as diminishes the value

of attacks analyzing model parameters to recover training data [151]. The student only sees

public data and privacy-preserving labels.

5.2.2 Rényi Differential Privacy

[111] note that the natural approach to bounding PATE’s privacy loss – by bounding the

privacy cost of each label queried and using strong composition [51] to derive the total cost –

yields loose privacy guarantees. Instead, their approach uses data-dependent privacy analysis.

This takes advantage of the fact that when the consensus among the teachers is very strong, the

plurality outcome has overwhelming likelihood leading to a very small privacy cost whenever

the consensus occurs. To capture this effect quantitatively, [111] rely on the moments accountant,

introduced by [1] and building on previous work [22, 50].

Rényi Differential Privacy or RDP [101] generalizes pure differential privacy (δ = 0) and

is closely related to the moments accountant. We choose to use RDP as a more natural analysis

framework when dealing with our mechanisms that use Gaussian noise. The definition of RDP

and its composition properties, relation to (ε, δ)-differential privacy are introduced in Chapter 2.

While both (ε, δ)-differential privacy and RDP are relaxations of pure ε-differential

privacy, the two main advantages of RDP are as follows. First, it composes nicely; second,

it captures the privacy guarantee of Gaussian noise in a much cleaner manner compared to

(ε, δ)-differential privacy. This lets us do a careful privacy analysis of the GNMax mechanism as

stated in Theorem 5.3.1. While the analysis of [111] leverages the first aspect of such frameworks

with the Laplace noise (LNMax mechanism), our analysis of the GNMax mechanism relies on

both.
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5.2.3 PATE Aggregation Mechanisms

The aggregation step is a crucial component of PATE. It enables knowledge transfer from

the teachers to the student while enforcing privacy. We improve the LNMax mechanism used

by [111] which adds Laplace noise to teacher votes and outputs the class with the highest votes.

First, we add Gaussian noise with an accompanying privacy analysis in the RDP frame-

work. This modification effectively reduces the noise needed to achieve the same privacy cost

per student query.

Second, the aggregation mechanism is now selective: teacher votes are analyzed to decide

which student queries are worth answering. This takes into account both the privacy cost of

each query and its payout in improving the student’s utility. Surprisingly, our analysis shows

that these two metrics are not at odds and in fact align with each other: the privacy cost is the

smallest when teachers agree, and when teachers agree, the label is more likely to be correct thus

being more useful to the student.

Third, we propose and study an interactive mechanism that takes into account not only

teacher votes on a queried example but possible student predictions on that query. Now, queries

worth answering are those where the teachers agree on a class but the student is not confident in

its prediction on that class. This third modification aligns the two metrics discussed above even

further: queries where the student already agrees with the consensus of teachers are not worth

expending our privacy budget on, but queries where the student is less confident are useful and

answered at a small privacy cost.

5.2.4 Data-dependent Privacy in PATE

A direct privacy analysis of the aggregation mechanism, for reasonable values of the

noise parameter, allows answering only few queries before the privacy cost becomes prohibitive.

The original PATE proposal used a data-dependent analysis, exploiting the fact that when the

teachers have large agreement, the privacy cost is usually much smaller than the data-independent
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bound would suggest.

In this chapter, we perform a data-dependent privacy analysis of the aggregation mech-

anism with Gaussian noise. This change of noise distribution turns out be technically much

more challenging than the Laplace noise case. The full analysis can be found in the full ver-

sion [112].This increased complexity of the analysis however does not make the algorithm any

more complicated and thus allows us to improve the privacy-utility tradeoff.

Sanitizing the privacy cost via smooth sensitivity analysis. An additional challenge

with data-dependent privacy analyses arises from the fact that the privacy cost itself is now a

function of the private data. Further, the data-dependent bound on the privacy cost has large

global sensitivity (a metric used in differential privacy to calibrate the noise injected) and is

therefore difficult to sanitize. To remedy this, we use the smooth sensitivity framework proposed

in [110].

The full paper [112] describes how we add noise to the computed privacy cost using

this framework to publish a sanitized version of the privacy cost. The final analysis shows that

the incremental cost of sanitizing our privacy estimates is modest – less than 50% of the raw

estimates – thus enabling us to use precise data-dependent privacy analysis while taking into

account its privacy implications.

5.3 Improved Aggregation Mechanisms for PATE

The privacy guarantees provided by PATE stem from the design and analysis of the

aggregation step. Here, we detail our improvements to the mechanism used by [111]. As outlined

in Section 5.2.3, we first replace the Laplace noise added to teacher votes with Gaussian noise,

adapting the data-dependent privacy analysis. Next, we describe the Confident and Interactive

Aggregators that select queries worth answering in a privacy-preserving way: the privacy budget

is shared between the query selection and answer computation. The aggregators use different

heuristics to select queries: the former does not take into account student predictions, while the
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latter does.

5.3.1 The GNMax Aggregator and Its Privacy Guarantee

This section uses the following notation. For a sample x and classes 1 to m, let fj(x) ∈

[m] denote the j-th teacher model’s prediction on x and ni(x) denote the vote count for the i-th

class (i.e., ni(x) = |{j: fj(x) = i}|). We define a Gaussian NoisyMax (GNMax) aggregation

mechanism as:

Mσ(x) , argmax
i

{
ni(x) +N (0, σ2)

}
,

whereN (0, σ2) is the Gaussian distribution with mean 0 and variance σ2. The aggregator outputs

the class with noisy plurality after adding Gaussian noise to each vote count. In what follow,

plurality more generally refers to the highest number of teacher votes assigned among the classes.

The Gaussian distribution is more concentrated than the Laplace distribution used

by [111]. This concentration directly improves the aggregation’s utility when the number

of classes m is large. The GNMax mechanism satisfies (λ, λ/σ2)-RDP, which holds for all

inputs and all λ ≥ 1 (precise statements and proofs of claims in this section can be found in the

full paper [112]. A straightforward application of composition theorems leads to loose privacy

bounds. As an example, the standard advanced composition theorem applied to experiments in

the last two rows of Table 5.1 would give us ε = 8.42 and ε = 10.14 resp. at δ = 10−8 for the

Glyph dataset.

To refine these, we work out a careful data-dependent analysis that yields values of

ε smaller than 1 for the same δ. The following theorem translates data-independent RDP

guarantees for higher orders into a data-dependent RDP guarantee for a smaller order λ. We

use it in conjunction with Theorem 5.3.2 to bound the privacy cost of each query to the GNMax

algorithm as a function of q̃, the probability that the most common answer will not be output by

the mechanism.

Theorem 5.3.1 (informal). LetM be a randomized algorithm with (µ1, ε1)-RDP and (µ2, ε2)-
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RDP guarantees and suppose that given a dataset D, there exists a likely outcome i∗ such

that P (M(D) 6= i∗) ≤ q̃. Then the data-dependent Rényi differential privacy forM of order

λ ≤ µ1, µ2 at D is bounded by a function of q̃, µ1, ε1, µ2, ε2, which approaches 0 as q̃ → 0.

The new bound improves on the data-independent privacy for λ as long as the distribution

of the algorithm’s output on that input has a strong peak (i.e., q̃ � 1). Values of q̃ close to 1

could result in a looser bound. Therefore, in practice we take the minimum between this bound

and λ/σ2 (the data-independent one). The theorem generalizes Theorem 3 from [111], where it

was shown for a mechanism satisfying ε-differential privacy (i.e., µ1 = µ2 =∞ and ε1 = ε2).

The final step in our analysis uses the following lemma to bound the probability q̃ when

i∗ corresponds to the class with the true plurality of teacher votes.

Proposition 5.3.2. For any i∗ ∈ [m], we have P (Mσ(D) 6= i∗) ≤ 1
2

∑
i 6=i∗ erfc

(
ni∗−ni

2σ

)
, where

erfc is the complementary error function.

In the full paper [112], we detail how these results translate to privacy bounds. In short,

for each query to the GNMax aggregator, given teacher votes ni and the class i∗ with maximal

support, Theorem 5.3.2 gives us the value of q̃ to use in Theorem 5.3.1. We optimize over µ1

and µ2 to get a data-dependent RDP guarantee for any order λ. Finally, we use composition

properties of RDP to analyze a sequence of queries, and translate the RDP bound back to an

(ε, δ)-DP bound.

Expensive queries. This data-dependent privacy analysis leads us to the concept of an

expensive query in terms of its privacy cost. When teacher votes largely disagree, some ni∗ − ni
values may be small leading to a large value for q̃: i.e., the lack of consensus amongst teachers

indicates that the aggregator is likely to output a wrong label. Thus expensive queries from a

privacy perspective are often bad for training too. Conversely, queries with strong consensus

enable tight privacy bounds. This synergy motivates the aggregation mechanisms discussed in

the following sections: they evaluate the strength of the consensus before answering a query.
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5.3.2 The Confident-GNMax Aggregator

In this section, we propose a refinement of the GNMax aggregator that enables us to filter

out queries for which teachers do not have a sufficiently strong consensus. This filtering enables

the teachers to avoid answering expensive queries. We also take note to do this selection step

itself in a private manner.

The proposed Confident Aggregator is described in Algorithm 3. To select queries with

overwhelming consensus, the algorithm checks if the plurality vote crosses a threshold T . To

enforce privacy in this step, the comparison is done after adding Gaussian noise with variance

σ2
1 . Then, for queries that pass this noisy threshold check, the aggregator proceeds with the usual

GNMax mechanism with a smaller variance σ2
2 . For queries that do not pass the noisy threshold

check, the aggregator simply returns ⊥ and the student discards this example in its training.

In practice, we often choose significantly higher values for σ1 compared to σ2. This is

because we pay the cost of the noisy threshold check always, and without the benefit of knowing

that the consensus is strong. We pick T so that queries where the plurality gets less than half the

votes (often very expensive) are unlikely to pass the threshold after adding noise, but we still

have a high enough yield amongst the queries with a strong consensus. This tradeoff leads us to

look for T ’s between 0.6× to 0.8× the number of teachers.

The privacy cost of this aggregator is intuitive: we pay for the threshold check for every

query, and for the GNMax step only for queries that pass the check. In the work of [111], the

mechanism paid a privacy cost for every query, expensive or otherwise. In comparison, the

Confident Aggregator expends a much smaller privacy cost to check against the threshold, and

by answering a significantly smaller fraction of expensive queries, it expends a lower privacy

cost overall.
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Algorithm 3. – Confident-GNMax Aggregator: given a query, consensus among teachers is
first estimated in a privacy-preserving way to then only reveal confident teacher predictions.
Require: input x, threshold T , noise parameters σ1 and σ2

1: if maxi{nj(x)}+N (0, σ2
1) ≥ T then . Privately check for consensus

2: return argmaxj {nj(x) +N (0, σ2
2)} . Run the usual max-of-Gaussian

3: else
4: return ⊥
5: end if

5.3.3 The Interactive-GNMax Aggregator

While the Confident Aggregator excludes expensive queries, it ignores the possibility

that the student might receive labels that contribute little to learning, and in turn to its utility.

By incorporating the student’s current predictions for its public training data, we design an

Interactive Aggregator that discards queries where the student already confidently predicts the

same label as the teachers.

Given a set of queries, the Interactive Aggregator (Algorithm 4) selects those answered

by comparing student predictions to teacher votes for each class. Similar to Step 1 in the

Confident Aggregator, queries where the plurality of these noised differences crosses a threshold

are answered with GNMax. This noisy threshold suffices to enforce privacy of the first step

because student predictions can be considered public information (the student is trained in a

differentially private manner).

For queries that fail this check, the mechanism reinforces the predicted student label

if the student is confident enough and does this without looking at teacher votes again. This

limited form of supervision comes at a small privacy cost. Moreover, the order of the checks

ensures that a student falsely confident in its predictions on a query is not accidentally reinforced

if it disagrees with the teacher consensus. The privacy accounting is identical to the Confident

Aggregator except in considering the difference between teachers and the student instead of only

the teachers votes.

In practice, the Confident Aggregator can be used to start training a student when it can
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Algorithm 4. – Interactive-GNMax Aggregator: the protocol first compares student predic-
tions to the teacher votes in a privacy-preserving way to then either (a) reinforce the student
prediction for the given query or (b) provide the student with a new label predicted by the
teachers.
Require: input x, confidence γ, threshold T , noise parameters σ1 and σ2, total number of

teachers M
1: Ask the student to provide prediction scores p(x)
2: if maxj{nj(x)−Mpj(x)}+N (0, σ2

1) ≥ T then . Student does not agree with teachers
3: return argmaxj{nj(x) +N (0, σ2

2)} . Teachers provide new label
4: else if max{pi(x)} > γ then . Student agrees with teachers and is confident
5: return arg maxj pj(x) . Reinforce student’s prediction
6: else
7: return ⊥ . No output given for this label
8: end if

make no meaningful predictions and training can be finished off with the Interactive Aggregator

after the student gains some proficiency.

5.4 Experimental Evaluation

Our goal is first to show that the improved aggregators introduced in Section 5.3 enable

the application of PATE to uncurated data, thus departing from previous results on tasks with

balanced and well-separated classes. We experiment with the Glyph dataset described below

to address two aspects left open by [111]: (a) the performance of PATE on a task with a larger

number of classes (the framework was only evaluated on datasets with at most 10 classes) and

(b) the privacy-utility tradeoffs offered by PATE on data that is class imbalanced and partly

mislabeled. In Section 5.4.2, we evaluate the improvements given by the GNMax aggregator

over its Laplace counterpart (LNMax) and demonstrate the necessity of the Gaussian mechanism

for uncurated tasks.

In Section 5.4.3, we then evaluate the performance of PATE with both the Confident

and Interactive Aggregators on all datasets used to benchmark the original PATE framework, in

addition to Glyph. With the right teacher and student training, the two mechanisms from Section

5.3 achieve high accuracy with very tight privacy bounds. Not answering queries for which
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teacher consensus is too low (Confident-GNMax) or the student’s predictions already agree with

teacher votes (Interactive-GNMax) better aligns utility and privacy: queries are answered at a

significantly reduced cost.

5.4.1 Experimental Setup

MNIST, SVHN, and the UCI Adult databases. We evaluate with two computer vision

tasks (MNIST and Street View House Numbers [108]) and census data from the UCI Adult

dataset [85]. This enables a comparative analysis of the utility-privacy tradeoff achieved with

our Confident-GNMax aggregator and the LNMax originally used in PATE. We replicate the

experimental setup and results found in [111] with code and teacher votes made available online.

The source code for the privacy analysis as well as supporting data required to run this analysis

is available on Github.1

A detailed description of the experimental setup can be found in [111]; we provide here

only a brief overview. For MNIST and SVHN, teachers are convolutional networks trained on

partitions of the training set. For UCI Adult, each teacher is a random forest. The test set is

split in two halves: the first is used as unlabeled inputs to simulate the student’s public data and

the second is used as a hold out to evaluate test performance. The MNIST and SVHN students

are convolutional networks trained using semi-supervised learning with GANs à la [124]. The

student for the Adult dataset are fully supervised random forests.

Glyph. This optical character recognition task has an order of magnitude more classes

than all previous applications of PATE. The Glyph dataset also possesses many characteristics

shared by real-world tasks: e.g., it is imbalanced and some inputs are mislabeled. Each input is

a 28× 28 grayscale image containing a single glyph generated synthetically from a collection

of over 500K computer fonts.2 Samples representative of the difficulties raised by the data are

depicted in Figure 5.3. The task is to classify inputs as one of the 150 Unicode symbols used to

1https://github.com/tensorflow/models/tree/master/research/differential privacy
2Glyph data is not public but similar data is available publicly as part of the notMNIST dataset.
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generate them.

This set of 150 classes results from pre-processing efforts. We discarded additional classes

that had few samples; some classes had at least 50 times fewer inputs than the most popular

classes, and these were almost exclusively incorrectly labeled inputs. We also merged classes that

were too ambiguous for even a human to differentiate them. Nevertheless, a manual inspection of

samples grouped by classes—favorably to the human observer – led to the conservative estimate

that some classes remain 5 times more frequent, and mislabeled inputs represent at least 10% of

the data.

To simulate the availability of private and public data (see Section 5.2.1), we split data

originally marked as the training set (about 65M points) into partitions given to the teachers.

Each teacher is a ResNet [73] made of 32 leaky ReLU layers. We train on batches of 100 inputs

for 40K steps using SGD with momentum. The learning rate, initially set to 0.1, is decayed after

10K steps to 0.01 and again after 20K steps to 0.001. These parameters were found with a grid

search.

We split holdout data in two subsets of 100K and 400K samples: the first acts as

public data to train the student and the second as its testing data. The student architecture is a

convolutional network learnt in a semi-supervised fashion with virtual adversarial training (VAT)

from [102]. Using unlabeled data, we show how VAT can regularize the student by making

predictions constant in adversarial3 directions. Indeed, we found that GANs did not yield as

much utility for Glyph as for MNIST or SVHN. We train with Adam for 400 epochs and a

learning rate of 6 · 10−5.

5.4.2 Comparing the LNMax and GNMax Mechanisms

Section 5.3.1 introduces the GNMax mechanism and the accompanying privacy analysis.

With a Gaussian distribution, whose tail diminishes more rapidly than the Laplace distribution,

3In this context, the adversarial component refers to the phenomenon commonly referred to as adversarial
examples [15, 136] and not to the adversarial training approach taken in GANs.
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we expect better utility when using the new mechanism (albeit with a more involved privacy

analysis).

To study the tradeoff between privacy and accuracy with the two mechanisms, we run

experiments training several ensembles of M teachers for M ∈ {100, 500, 1000, 5000} on the

Glyph data. Recall that 65 million training inputs are partitioned and distributed among the M

teachers with each teacher receiving between 650K and 13K inputs for the values of M above.

The test data is used to query the teacher ensemble and the resulting labels (after the LNMax and

GNMax mechanisms) are compared with the ground truth labels provided in the dataset. This

predictive performance of the teachers is essential to good student training with accurate labels

and is a useful proxy for utility.

For each mechanism, we compute (ε, δ)-differential privacy guarantees. As is common

in literature, for a dataset on the order of 108 samples, we choose δ = 10−8 and denote the

corresponding ε as the privacy cost. The total ε is calculated on a subset of 4,000 queries, which

is representative of the number of labels needed by a student for accurate training (see Section

5.4.3). We visualize in Figure 5.4 the effect of the noise distribution (left) and the number of

teachers (right) on the tradeoff between privacy costs and label accuracy.

Observations. On the left of Figure 5.1, we compare our GNMax aggregator to the

LNMax aggregator used by the original PATE proposal, on an ensemble of 1000 teachers and for

varying noise scales σ. At fixed test accuracy, the GNMax algorithm consistently outperforms

the LNMax mechanism in terms of privacy cost. To explain this improved performance, recall

notation from Section 5.3.1. For both mechanisms, the data dependent privacy cost scales linearly

with q̃ – the likelihood of an answer other than the true plurality. The value of q̃ falls of as e−x2

for GNMax and e−x for LNMax, where x is the ratio (ni∗ − ni)/σ. Thus, when ni∗ − ni is (say)

4σ, LNMax would have q̃ ≈ e−4 = 0.018..., whereas GNMax would have q̃ ≈ e−16 ≈ 10−7,

thereby leading to a much higher likelihood of returning the true plurality. Moreover, this reduced

q̃ translates to a smaller privacy cost for a given σ leading to a better utility-privacy tradeoff.

As long as each teacher has sufficient data to learn a good-enough model, increasing
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Figure 5.3. Some example inputs from the Glyph dataset along with the class they are labeled
as. Note the ambiguity (between the comma and apostrophe) and the mislabeled input.
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Figure 5.4. Tradeoff between utility and privacy for the LNMax and GNMax aggregators on
Glyph: effect of the noise distribution (left) and size of the teacher ensemble (right).

Table 5.1. Utility and privacy of the students. For MNIST, Adult, and SVHN, we use the labels
of ensembles of 250 teachers published by [111] and set δ = 10−5 (to the exception of SVHN

where δ = 10−6). All Glyph results use an ensemble of 5000 teachers and δ is set to 10−8.

Queries Privacy Accuracy

Dataset Aggregator answered bound ε Student Baseline

MNIST

LNMax [111] 100 2.04 98.0%

99.2%LNMax [111] 1,000 8.03 98.1%

Confident-GNMax (T=200, σ1=150, σ2=40) 286 1.97 98.5%

SVHN

LNMax [111] 500 5.04 82.7%

92.8%LNMax [111] 1,000 8.19 90.7%

Confident-GNMax (T=300, σ1=200, σ2=40) 3,098 4.96 91.6%

Adult
LNMax [111] 500 2.66 83.0%

85.0%
Confident-GNMax (T=300, σ1=200, σ2=40) 524 1.90 83.7%

Glyph

LNMax 4,000 4.3 72.4%

82.2%Confident-GNMax (T=1000, σ1=500, σ2=100) 10,762 2.03 75.5%

Interactive-GNMax, two rounds 4,341 0.837 73.2%
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the number M of teachers improves the tradeoff – as illustrated on the right of Figure 5.4 with

GNMax. The larger ensembles lower the privacy cost of answering queries by tolerating larger

σ’s. Combining the two observations made in this Figure, for a fixed label accuracy, we lower

privacy costs by switching to the GNMax aggregator and training a larger number M of teachers.

5.4.3 Student Training with the GNMax Aggregation Mechanisms

As outlined in Section 5.2, we train a student on public data labeled by the aggregation

mechanisms. We take advantage of PATE’s flexibility and apply the technique that performs

best on each dataset: semi-supervised learning with Generative Adversarial Networks [124] for

MNIST and SVHN, Virtual Adversarial Training [102] for Glyph, and fully-supervised random

forests for UCI Adult. In addition to evaluating the total privacy cost associated with training

the student model, we compare its utility to a non-private baseline obtained by training on the

sensitive data (used to train teachers in PATE): we use the baselines of 99.2%, 92.8%, and 85.0%

reported by [111] respectively for MNIST, SVHN, and UCI Adult, and we measure a baseline of

82.2% for Glyph. We compute (ε, δ)-privacy bounds and denote the privacy cost as the ε value

at a value of δ set accordingly to number of training samples.

Confident-GNMax Aggregator. Given a pool of 500 to 12,000 samples to learn from

(depending on the dataset), the student submits queries to the teacher ensemble running the

Confident-GNMax aggregator from Section 5.3.2. A grid search over a range of plausible values

for parameters T , σ1 and σ2 yielded the values reported in Table 5.1, illustrating the tradeoff

between utility and privacy achieved. We additionally measure the number of queries selected by

the teachers to be answered and compare student utility to a non-private baseline.

The Confident-GNMax aggregator outperforms LNMax for the four datasets considered

in the original PATE proposal: it reduces the privacy cost ε, increases student accuracy, or both

simultaneously. On the uncurated Glyph data, despite the imbalance of classes and mislabeled

data (as evidenced by the 82.2% baseline), the Confident Aggregator achieves 73.5% accuracy

with a privacy cost of just ε = 1.02. Roughly 1,300 out of 12,000 queries made are not answered,
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indicating that several expensive queries were successfully avoided. This selectivity is analyzed

in more details in Section 5.4.4.

Interactive-GNMax Aggregator. On Glyph, we evaluate the utility and privacy of an

interactive training routine that proceeds in two rounds. Round one runs student training with a

Confident Aggregator. A grid search targeting the best privacy for roughly 3,400 answered queries

(out of 6,000) – sufficient to bootstrap a student – led us to setting (T=3500, σ1=1500, σ2=100)

and a privacy cost of ε ≈ 0.59.

In round two, this student was then trained with 10,000 more queries made with the

Interactive-GNMax Aggregator (T=3500, σ1=2000, σ2=200). We computed the resulting (total)

privacy cost and utility at an exemplar data point through another grid search of plausible

parameter values. The result appears in the last row of Table 5.1. With just over 10,422 answered

queries in total at a privacy cost of ε = 0.84, the trained student was able to achieve 73.2%

accuracy. Note that this students required fewer answered queries compared to the Confident

Aggregator. The best overall cost of student training occurred when the privacy costs for the first

and second rounds of training were roughly the same. (The total ε is less than 0.59× 2 = 1.18

due to better composition – via Theorems 2.2.3 and 2.2.4.)

Comparison with Baseline. Note that the Glyph student’s accuracy remains seven

percentage points below the non-private model’s accuracy achieved by training on the 65M

sensitive inputs. We hypothesize that this is due to the uncurated nature of the data considered.

Indeed, the class imbalance naturally requires more queries to return labels from the less

represented classes. For instance, a model trained on 200K queries is only 77% accurate on test

data. In addition, the large fraction of mislabeled inputs are likely to have a large privacy cost:

these inputs are sensitive because they are outliers of the distribution, which is reflected by the

weak consensus among teachers on these inputs.
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Figure 5.5. Effects of the noisy threshold checking: # queries answered by LNMax,
Confident-GNMax moderate (T=3500, σ1=1500), and Confident-GNMax aggressive

(T=5000, σ1=1500). The black dots and the right axis show the expected cost of answering a
single query in each bin (via GNMax,σ2=100).

5.4.4 Noisy Threshold Checks and Privacy Costs

Sections 5.3.1 and 5.3.2 motivated the need for a noisy threshold checking step before

having the teachers answer queries: it prevents most of the privacy budget being consumed by

few queries that are expensive and also likely to be incorrectly answered. In Figure 5.5 and

Figure 5.6, we compare the privacy cost ε of answering all queries to only answering confident

queries for a fixed number of queries.

We run additional experiments to support the evaluation from Section 5.4.3. With the

votes of 5,000 teachers on the Glyph dataset, we plot in Figure 5.5 the histogram of the plurality

vote counts (ni∗ in the notation of Section 5.3.1) across 25,000 student queries. We compare

these values to the vote counts of queries that passed the noisy threshold check for two sets

of parameters T and σ1 in Algorithm 3. Smaller values imply weaker teacher agreements and

consequently more expensive queries.

When (T=3500, σ1=1500) we capture a significant fraction of queries where teachers

have a strong consensus (roughly > 4000 votes) while managing to filter out many queries with

poor consensus. This moderate check ensures that although many queries with plurality votes

between 2,500 and 3,500 are answered (i.e., only 50–70% of teachers agree on a label) the
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expensive ones are most likely discarded. For (T=5000, σ1=1500), queries with poor consensus

are completely culled out. This selectivity comes at the expense of a noticeable drop for queries

that might have had a strong consensus and little-to-no privacy cost. Thus, this aggressive

check answer fewer queries with very strong privacy guarantees. We reiterate that this threshold

checking step itself is done in a private manner. Empirically, in our Interactive Aggregator

experiments, we expend about a third to a half of our privacy budget on this step, which still

yields a very small cost per query across 6,000 queries.

5.5 Conclusions

The key insight motivating the addition of a noisy thresholding step to the two aggregation

mechanisms proposed in this chapter is that there is a form of synergy between the privacy

and accuracy of labels output by the aggregation: labels that come at a small privacy cost also

happen to be more likely to be correct. As a consequence, we are able to provide more quality

supervision to the student by choosing not to output labels when the consensus among teachers

is too low to provide an aggregated prediction at a small cost in privacy. This observation was

further confirmed in some of our experiments where we observed that if we trained the student
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on either private or non-private labels, the former almost always gave better performance than

the latter – for a fixed number of labels.

Complementary with these aggregation mechanisms is the use of a Gaussian (rather than

Laplace) distribution to perturb teacher votes. In our experiments with Glyph data, these changes

proved essential to preserve the accuracy of the aggregated labels – because of the large number

of classes. The analysis presented in Section 5.3 details the delicate but necessary adaptation of

analogous results for the Laplace NoisyMax.

As was the case for the original PATE proposal, semi-supervised learning was instrumen-

tal to ensure the student achieves strong utility given a limited set of labels from the aggregation

mechanism. However, we found that virtual adversarial training outperforms the approach

from [124] in our experiments with Glyph data. These results establish lower bounds on the

performance that a student can achieve when supervised with our aggregation mechanisms;

future work may continue to investigate virtual adversarial training, semi-supervised generative

adversarial networks and other techniques for learning the student in these particular settings

with restricted supervision.
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Chapter 6

Differentially Private Continual Release of
Graph Statistics

6.1 Overview

Dynamic social networks are ubiquitous models of social and economic phenomena, and

analyzing them over a period of time can allow researchers to understand various aspects of

human behavior. Many social networks, however, include sensitive and personal information

about the people involved. Consequently, we need to design privacy-preserving algorithms that

can summarize properties of dynamic social networks over time while still preserving the privacy

of the participants.

As a concrete motivating example, consider data on HIV transmission collected from

patients in a particular region over multiple years [90, 141, 145]. Advances in sequencing

technology allow scientists to infer putative transmission links by measuring similarities between

HIV sequences obtained from different patients. These links can then be resolved into trans-

mission networks, reflecting the patterns of transmission in that population. Epidemiologists

would like to study properties of these networks as they grow over time to understand how HIV

propagates. Since there is considerable social stigma associated with HIV, these networks are

highly sensitive information, and public release of their properties needs to ensure that privacy of

the included individuals is not violated. Additionally, analyses of these networks need to happen

intermittently – for example, once a year – so that properties of the network as it evolves may be
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studied.

In this chapter, we consider continual privacy-preserving release of graph statistics, such

as degree distributions and subgraph counts, from sensitive networks where nodes and their

associated edges appear over time in an online manner. For our privacy notion, we use differential

privacy [45] – the gold standard in private data analysis. Differential privacy guarantees privacy

by ensuring that the participation of a single person in the dataset does not change the probability

of any outcome by much; this is enforced by adding enough noise to either the input data or

to the output of a function computed on the data so as to obscure the private value of a single

individual. Since in our applications, a node corresponds to a single person, we use node

differential privacy [72], where the goal is to hide the participation of any single node.

There are two main challenges in continually releasing graph statistics with node differ-

ential privacy. The first is that node differential privacy itself is often very difficult to attain, and

can only be attained in either bounded degree graphs or graphs that can be projected to be degree-

bounded. The second challenge pertains to the online nature of the problem. Prior work has

looked at continual release of statistics based on streaming tabular data [19, 24, 25, 80, 29, 47];

however, these works rely on the fact that in tabular data, at any time t, we only get information

about the t-th individual, and not about individuals who already exist in the data. This property

no longer holds in online graphs, as an incoming node may bring in new information about

existing nodes in the form of connecting edges, and therefore these solutions do not directly

apply.

In this work, we show that if there is a publicly known upper bound on the maximum

degree of any node in the entire graph sequence, then, a difference sequence – namely, the

sequence of differences in the statistics computed on subsequent graphs – has low sensitivity.

The assumption of bounded maximum degree holds for many real networks, as many real-world

graphs, such as social interaction networks, collaboration networks, computer networks and

disease transmission networks, that are scale-free with power-law degree distributions have low

maximum degree. Given this assumption holds, we show in particular that the sensitivity of
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the entire difference sequence only depends on the publicly known upper bound, and not on

the length of the sequence. This implies that we can release a private version of the difference

sequence with relatively high accuracy, which can be used to continually release the target

statistic with high privacy-accuracy tradeoff.

It is commonly believed that many real-world networks, such as social interaction

networks, collaboration networks, computer networks and disease transmission networks are

scale-free with degree distributions following a power law; such graphs have low maximum

degrees.

We derive the sensitivity of the difference sequence for a number of common graph

statistics, such as degree distribution, number of high degree nodes, as well as counts of fixed

subgraphs. We then implement our algorithms and evaluate them on three real and two synthetic

datasets against two natural baselines. Our experimental results show that the algorithm outper-

forms these baselines in terms of utility for these datasets over a range of privacy parameters.

6.1.1 Related Work

To apply differential privacy to graph data, it is important to determine what a single

person’s data contributes to the graph. Prior work has looked at two forms of differential privacy

in graphs – edge differential privacy, where an edge corresponds to a person’s private value,

and node differential privacy, where a single node corresponds to a person. In our motivating

application, a patient corresponds to a node, and hence node differential privacy is our privacy

notion of choice.

Prior work on edge differential privacy [109, 72] has looked at how to compute a number

of statistics for static graphs while preserving privacy. For example, [76] computes subgraph

counts, and [72] degree distributions with edge differential privacy. It is also known how to

successfully calculate more complex graph parameters under this notion; for example, [92]

fits exponential random graph models and [143, 5] computes spectral graph statistics such as

pagerank.
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In contrast, achieving node differential privacy is considerably more challenging. Chang-

ing a single node and its associated edges can alter even simple statistics of a static graph

significantly; this means that any differentially private solution needs to add a considerable

amount of noise to hide the effect of a single node, resulting in low utility. Prior work has

addressed this challenge in two separate ways. The first is to assume that there is a publicly

known upper bound on the maximum degree of any node in the graph [20, 64].

The second is to use a carefully-designed projection from the input graph to a bounded

degree graph, where adding or removing a single node has less effect, and then release statistics

of the projected graph with privacy. To ensure that the entire process is privacy-preserving, the

projection itself is required to be smooth – in the sense that changing a single node should not

change the statistics of the projected graph by much. This approach has been taken by [78],

who releases degree distributions and subgraph counts for static graphs and [16], who releases

subgraph counts and local profile queries. [116] releases degree distributions by using a flow-

based projection algorithm. Finally, [35] proposes an improved projection method for releasing

degree distributions, and is the state-of-the-art in this area. In this chapter, we show that when the

graph arrives online, existing projection-based approaches can yield poor utility, and therefore,

we consider bounded degree graphs, where domain knowledge suggests an upper bound on the

maximum degree.

Finally, while we are not aware of any work on differentially private statistics on streaming

graph data, prior work has looked at releasing private statistics on streaming tabular data in

an online manner [19, 24, 25, 80, 29, 47]. In these settings, however, complete information

about a single person (or a group of people) arrives at each time step, which makes the problem

of private release considerably easier than online graph data, where newly arriving nodes may

include information in the form of edges to already existing nodes. Thus, these approaches do

not directly translate to online graphs.
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6.2 Preliminaries

6.2.1 Graphs and Graph Sequences

Formally, we consider a graph G = (V,E), where a node v ∈ V represents a person and

an edge (u, v) ∈ E a relationship. Gmay be directed or undirected, depending on the application.

We assume that each node v ∈ V is associated with a time stamp, denoted by v.time, that records

when v enters the graph.

In our setting, a graph arrives online as more and more of its vertices and some of their

adjacent edges become visible. More specifically, at time t, a set of vertices ∂Vt arrives, along

with a set of edges ∂Et; each edge in ∂Et has at least one end-point in ∂Vt, and the other

end-point may be a vertex that arrived earlier. These vertices and edges, along with vertices and

edges that arrived earlier comprise a graph Gt. Given a function f that operates on graphs, our

goal is to output (a private approximation to) f(Gt) at each time step t.

More formally, the arrival process comprises a graph sequence G = (G1, G2, . . .), which

is defined as a sequence of graphs withGt = (Vt, Et) such that V0 = ∅, ∂Vt = {v : v.time = t} is

the set of all nodes with time stamp t and Vt = Vt−1∪∂Vt for t ≥ 1 is the set of all nodes with time

stamps ≤ t. Additionally, we let E0 = ∅, ∂Et = {(u, v)|u ∈ ∂Vt, v ∈ Vt or u ∈ Vt, v ∈ ∂Vt},

and Et = Et−1 ∪ ∂Et. Given a function f that operates on a graph, we define f applied to the

graph sequence f(G) as the sequence (f(G1), f(G2), . . .).

If the graph sequence is G = (G1, G2, . . . , GT ), then the error of A(G) is defined as:∑T
t=1|A(Gt)− f(Gt)|. Our goal is to design an algorithm A that has as low error as possible.

6.2.2 Node Differential Privacy

Recall that in Chapter 2, we have defined differential privacy and the Laplace mechanism,

which adds Laplace noise with scale parameter GS (f)/ε, with GS (f) as the global sensitivity

of a query function f and ε as the privacy parameter, to the true value of the query result.

To apply differential privacy to graphs, we need to determine what constitutes a single
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person’s data in a graph. For the kind of graphs that we will study, a node v corresponds to a

single person. This is known as node differential privacy [72], which ensures that the addition or

removal of a single node along with its adjacent edges does not change the probability of any

outcome by much.

6.2.3 Bounded Degree Graphs

A major challenge with ensuring node differential privacy is that the global sensitivity

GS (f) may be very large even for simple graph functions f , which in turn requires the addition

of a large amount of noise to ensure privacy. For example, if f is the number of nodes with

degree ≥ 1, and we have an empty graph G on n nodes, then adding a single node connected to

every other node can increase f by as much as n.

Prior work has addressed this challenge in two separate ways. The first is by considering

Bounded Degree Graphs [78, 16, 20], where an a-priori bound on the degree of any node is

known to the user and the algorithm designer. This is the solution that we will consider in this

chapter.

A second line of prior work [16, 78, 116, 35] presents Graph Projections algorithms

that may be used to project graphs into lower degree graphs such that the resulting projections

have low global sensitivity for some graph functions. In Section 6.4.1.1, we show that natural

extensions of some of these projections may be quite unstable when a graph appears online.

We first define bounded degree graphs. Let degG (v) denote the degree of node v in an

undirected graph G, out-degG (v) and in-degG (v) denote the out-degree and in-degree of v in a

directed graph G.

Definition 6.2.1. An undirected graphG = (V,E) isD-bounded if degG (v) ≤ D for any v ∈ V .

A graph sequence G = (G1, G2, . . .) is D-bounded if for all t, Gt is D-bounded. In other words,

the degree of all nodes remain bounded by D in the entire graph sequence.

A directed graph G = (V,E) is Dout-out-bounded if out-degG (v) ≤ Dout for any v ∈ V .

A graph sequence G = (G1, G2, . . .) is Dout-out-bounded if for all t, Gt is Dout-out-bounded.
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Similarly, G is Din-in-bounded if in-degG (v) ≤ Din for any v ∈ V . G is Din-in-bounded if for

all t, Gt is Din-in-bounded.

We say a directed graph or a graph sequence is (Din, Dout)-bounded if it is both Din-in-

bounded and Dout-out-bounded.

In this work, we assume that the domain consists only of degree bounded graphs. This

ensures that the global sensitivity of certain common graph functions, such as degree distribution

and subgraph counts, is low, and allows us to obtain privacy with relatively low noise. Addi-

tionally, many common sensitive graphs, such as the HIV transmission graph and co-authorship

networks, typically have relatively low maximum degree, thus ensuring that the assumption

holds for low or moderate values of D.

6.2.4 Graph Functions

This work will consider two types of functions on graph sequences. The first consists of

functions of the degree distribution. The specific functions we will look at for undirected graphs

are highDegτ (G), which counts the number of nodes in G with degree ≥ τ and the degree

histogram hist (G), which counts the number of nodes with degree d for any d ∈ N+. Similarly,

for directed graph, we consider highOutDegτ (G), the number of nodes with out-degree ≥ τ ,

and the out-degree histogram histOut (G), which counts the number of nodes with out-degree d

for any d ∈ N+.

The second class of functions will involve subgraph counts. Given a subgraph S, we will

count the number of occurrences of this subgraph S (G) in the entire graph G. For example,

when S is a triangle, S (G) will count the number of triangles in the graph. When G is directed,

so will be the corresponding subgraphs.

6.2.5 Other Notations

In a directed graph, an edge is denoted by an ordered tuple, i.e., (u, v) represents a

directed edge pointing from node u to v.
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We use (at)
T
t=1 as an abbreviation for vector (a1, a2, . . . , aT ).

For any integer i, we use [i] to denote the set {1, 2, . . . , i}.

A degree histogram h is a mapping from degrees to counts, i.e., given d ∈ N+, h(d) is

the number of nodes with degree equal to d. We define the distance between two histograms h

and h′ as ‖h(d)− h′(d)‖1=
∑

d∈N+
|h(d)− h′(d)|. Given two sequences of histograms (ht)

T
t=1

and (h′t)
T
t=1, we define the generalized L1 distance between them as

∑T
t=1‖ht(d)− h′t(d)‖1.

6.3 Main Algorithm

Recall that we are given as input a D-bounded (or (Din, Dout)-bounded) graph sequence

G = (G1, G2, . . . , GT ) that arrives online, a privacy budget ε and a function f . Our goal is

to publish an ε-differentially private approximation to the sequence f(G) in an online manner.

Specifically, at time t, an incoming vertex set ∂Vt and edges ∂Et adjacent to it and the existing

vertices arrive, and our goal is to release a private approximation to f(Gt) with low additive

L1-error.

Baseline Approaches. A naive approach is to calculate f(Gt) at each t and add noise

proportional to its global sensitivity over ε. Since ∂Et may contain information on individuals in

Gt−1 in the form of adjacent edges, this procedure will not provide ε-differential privacy.

The correct way to do privacy accounting for this method is by sequential composi-

tion [45]. Suppose the graph sequence has total length T and we allocate privacy budget ε/T

to each time step; then at time t, we calculate f(Gt) and add noise proportional to its global

sensitivity divided by ε/T . If the global sensitivity of f(Gt) is O(1), then, we add O(T/ε) noise

to f(Gt), which results in a Θ(T 2/ε) expected L1-error between f(G) and the output of the

algorithm.

A second approach is to calculate f(Gt) and add noise proportional to the global sensi-

tivity of the (entire) sequence f(G) divided by ε. This preserves ε-differential privacy. However,

the global sensitivity of the sequence f(G) typically grows linearly with T , the length of the

75



entire graph sequence, even if the graph sequence itself is degree-bounded. For example, if

f(G) is the number of nodes in G with degree ≥ τ , then, a single extra node with degree τ + 1,

added at time t = 1, can increase f(Gt) by 1 for every t, resulting in a global sensitivity of

Ω(T ). Consequently, the expected L1-error between the true value of f(G) and the output of this

approach is as again large as Θ(T 2/ε).

Our Approach. The main observation in this work is that for a number of popular func-

tions, the difference sequence ∆ = (f(G1), f(G2)−f(G1), f(G3)−f(G2), . . .) has considerably

better properties. Observe that unlike certain functions on tabular data [19, 24, 25, 80, 29, 47],

releasing f(Gt)− f(Gt−1) after adding noise proportional to its sensitivity over ε will still not be

ε-differentially private – this is because ∂Et can still include edges adjacent to people in Gt−1.

However, the difference sequence ∆ does have considerably less global sensitivity than

f(G). In particular, we show that if the graph sequence G is D-bounded, then, the global

sensitivity GS (∆) of the entire difference sequence for a number of popular functions f depends

only on D and not on the sequence length T . For example, in Section 6.4.1.1, we show that when

G is an undirected graph and f is the number of nodes with degree ≥ τ , the global sensitivity of

the entire difference sequence is at most 2D + 1.

This immediately suggests the following algorithm. At time t, calculate the difference

∆t = f(Gt)− f(Gt−1), and add Laplace noise proportional to its global sensitivity over ε to get

a private perturbed version ∆̃t. Release the partial sum
∑t

s=1 ∆̃s, which is an approximation

to f(Gt). Since the expected value of ∆̃t − ∆t is independent of T , the maximum standard

deviation of any partial sum is at most O(
√
T/ε), which results in an expected L1-error of

O(T 3/2/ε) – better than the O(T 2/ε)-error achieved by the two baseline approaches.

The full algorithm, applied to a generic function f , is described in Algorithm 5. We

call it SENSDIFF as it uses the global sensitivity of the difference sequence ∆. The rest of the

chapter is devoted to analyzing the global sensitivity of the difference sequence for a number of

popular graph functions f . Our analysis exploits specific combinatorial properties of the graph

functions in question, and is carried out for two popular classes of graph functions – functions of
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Algorithm 5. SENSDIFF(Graph sequence G, query f , privacy parameter ε)
for t = 1, . . . , T do

Receive ∂Vt and ∂Et, and construct Gt.
Calculate ∆t = f(Gt)− f(Gt−1).
Let GSD (∆) be the global sensitivity of the difference sequence;
Calculate ∆̃t = ∆t + Lap

(
GSD(∆)

ε

)
, and the partial sum

∑t
s=1 ∆̃s.

end for
return

(∑t
s=1 ∆̃s

)T
t=1

the degree distribution and subgraph counts.

6.4 Functions of Degree Distributions

We begin with functions of the degree distributions of the graph sequence, and consider

both directed and undirected graphs. A summary of the results in this section is provided in

Table 6.1.

Table 6.1. Summary of degree distribution results.

Undirected graph Directed graph
(out-)degree histogram 4D2 + 2D + 1 (for D-bounded) 4DoutDin + 2Dout + 1 (for (Din, Dout)-bounded)
high-(out-)degree nodes 2D + 1 (for D-bounded) 2Din + 1 (for Din-in-bounded)

6.4.1 Undirected Graphs

For undirected graphs, we will consider two functions applied to graph sequences – first,

the number of nodes with degree greater than or equal to a threshold τ , and second, the degree

histogram.

6.4.1.1 Number of High Degree Nodes

Recall that highDegτ (G) is the number of nodes in G with degree ≥ τ . We show below,

that for D-bounded graphs, the difference sequence corresponding to highDegτ (G) has global

sensitivity at most 2D + 1.
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Lemma 6.4.1. Let f(G) = highDegτ (G). For D-bounded graphs, the difference sequence

corresponding to f has global sensitivity at most 2D+ 1. In fact, the global sensitivity is 2D+ 1

for any τ < D.

Notice that τ ≤ D is needed for the statistic to be meaningful; if τ > D, there is no

high-degree node.

Projection Yields High Sensitivity in Graph Sequence A common idea in static graph

analysis with node differential privacy is to project the original graph into a bounded-degree

graph. The sensitivity of some common statistics on this projected graph scales with the degree

bound instead of the total number of nodes. The current state-of-the-art projection algorithm is

proposed in [35]. Given a projection threshold D̃, a graph G = (V,E) and an ordering of the

nodes in V , the algorithm constructs a bounded-degree graph GD̃ as follows. First, it adds all

nodes in V to GD̃; then it orders all edges in E according to the ordering of V , and for each edge

(u, v), adds it to GD̃ if and only if the addition does not make the degree of either u or v exceed

D̃.

This algorithm can be easily adapted to the online graph setting. However, it can be

shown that the global sensitivity of the difference sequence is proportional to the total number of

publications.

Lemma 6.4.2. Let f(G) = highDegτ
(
GD̃
)

. For D-bounded graphs, the corresponding differ-

ence sequence that ends at time T has global sensitivity at least D̃T for any D̃ > τ > 0.

Notice that D̃ > τ is needed for highDegτ
(
GD̃
)

to be meaningful; otherwise, we would

have highDegτ
(
GD̃
)

= |V | for any G.

6.4.1.2 Degree Histogram

Degree histogram is another informative statistic of a graph. However, we can show that

even for bounded graph, the sensitivity can scale quadratically with the degree bound. We use the

generalized L1 distance defined in Section 6.2.5 as the distance metric for the global sensitivity.
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Lemma 6.4.3. Let f(G) = hist (G). For D-bounded graphs, the difference sequence corre-

sponding to f has global sensitivity 4D2 + 2D + 1.

6.4.2 Directed Graphs

For Directed graphs, we show similar results for the number of nodes with out-degree

greater than or equal to a threshold τ and the out-degree histogram. Similar results can be

obtained for in-degree.

6.4.2.1 Number of High Out-Degree Nodes

Recall that highOutDegτ (G) denotes the number of nodes in G with degree ≥ τ .

We show below that for Din-in-bounded graphs, the difference sequence corresponding to

highOutDegτ (G) has global sensitivity 2Din + 1.

Lemma 6.4.4. Let f(G) = highOutDegτ (G). For Din-in-bounded graphs, the difference

sequence corresponding to f has global sensitivity 2Din + 1.

6.4.2.2 Out-Degree Histogram

We show that for bounded directed graphs, the sensitivity of the histogram scales quadrat-

ically with the degree bounds as well.

Lemma 6.4.5. Let f(G) = histOut (G). For (Din, Dout)-bounded graphs, the difference se-

quence corresponding to f has global sensitivity 4DoutDin + 2Dout + 1.

6.5 Functions of Subgraph Counts

In this section, we consider the count of some common directed and undirected subgraphs.

Popular subgraphs In undirected graphs, we consider three subgraphs. 1) an edge,

including two nodes and the edge between them, 2) a triangle, including three nodes with

edges between any two of them and 3) a k-star, including one center node c, k boundary nodes

{b1, . . . , bk} and edges {(c, bi) : i ∈ [k]}. Table 6.2 summarizes these subgraphs.
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In directed graphs, we consider five subgraphs. 1) an edge, including two nodes

and an directed edge between them, 2) triangle I, including nodes {v1, v2, v3} and edges

{(v1, v2), (v2, v3), (v3, v1)}, 3) triangle II, including nodes {v1, v2, v3} and edges {(v1, v2),

(v1, v3), (v2, v3)}, 4) an out-k-star, including one center node c, k boundary nodes {b1, . . . , bk}

and edges {(c, bi) : i ∈ [k]}, 5) an in-k-star, including one center node c, k boundary nodes

{b1, . . . , bk} and edges {(bi, c) : i ∈ [k]}. Table 6.3 summarizes these subgraphs.

Table 6.2. Subgraphs in undirected graphs.

Edge Triangle k-star
SuE Su4 Su?

Table 6.3. Subgraphs in directed graphs.

Edge Triangle I Triangle II Out-k-star In-k-star
SdE Sd41 Sd42 Sd?o Sd?i

6.5.1 Undirected Graphs

First, we present a general result that applies to any undirected subgraph S. Recall that

S (G) denotes the total number of copies of S in graph G.

Lemma 6.5.1. Given any undirected subgraph S, if S (G) changes by at most S+ with an

additional node with degree D (and the corresponding edges), then the difference sequence

corresponding to S (·) has global sensitivity S+ for any D-bounded graph G.

Now we show the values of S+ for the subgraphs listed in Table 6.2.

Lemma 6.5.2. Given the degree bound D, the value of S+ for some common subgraphs are:

1. for SuE , S+ = D;
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2. for Su4, S+ =
(
D
2

)
;

3. for Su? , S+ = D
(
D−1
k−1

)
+
(
D
k

)
.

6.5.2 Directed Graphs

Again, we first present a lemma that applies to any subgraph S, and then show the

values of S+, the maximum change in the subgraph count caused by an additional node, for the

subgraphs in Table 6.3.

Lemma 6.5.3. Given any directed subgraph S, if S (G) changes by at most S+ with an additional

node with Din in-degree and Dout out-degree (and the corresponding edges), then the difference

sequence corresponding to S (·) has global sensitivity S+ for any (Din, Dout)-bounded graph G.

Lemma 6.5.4. Given degree bounds Din and Dout, the value of S+ for some common subgraphs

are:

1. for SdE , S+ = Din +Dout;

2. for Sd41 , S+ = DinDout;

3. for Sd42 , S+ =
(
Din+Dout

2

)
;

4. for Sd?o , S+ = Din
(
Dout−1
k−1

)
+
(
Dout
k

)
;

5. for Sd?i , S+ = Dout
(
Din−1
k−1

)
+
(
Din
k

)
.

6.6 Experiments

We next demonstrate the practical applicability of the proposed algorithm by comparing

it with some natural baselines. In particular, we investigate the following questions:

1. What is the utility offered by SENSDIFF as a function of the privacy parameter ε and the

number of releases?
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2. How does its utility compare with existing baselines, such as composition across time

steps, and composition coupled with graph projection?

These questions are considered in the context of five datasets – two synthetic and three real

online graphs. We consider two versions of each dataset – directed and undirected, and two

graph statistics – the number of high-degree nodes and the number of edges.

6.6.1 Methodology

6.6.1.1 Baseline Algorithms

We consider two natural baselines based on sequential differential privacy composition –

COMPOSE-D-BOUNDED and COMPOSE-PROJECTION. COMPOSE-D-BOUNDED considers each

graphGt in the sequence separately, and adds noise to f(Gt) that is proportional to itsD-bounded

global sensitivity divided by ε/T . Here ε is the privacy parameter and T is the number of releases.

COMPOSE-PROJECTIONuses a state-of-the-art projection algorithm – the one proposed in [35]

– to project each Gt into G̃t, and releases f(G̃t) after adding noise proportional to its global

sensitivity divided by ε/T .

There are two other natural approaches. The first is to compute f(G) and add noise

proportional to its D-bounded global sensitivity divided by ε; the second is to use the projection

algorithm to obtain a sequence of projected graphs G̃ = (G̃1, . . . , G̃T ), compute f(G̃) and add

noise proportional to the its global sensitivity divided by ε. However, we can show that the utility

of either of these approaches is guaranteed to be at most that of COMPOSE-D-BOUNDED and

COMPOSE-PROJECTION; details are omitted due to space constraints.

6.6.1.2 Choice of Parameters

SENSDIFF and COMPOSE-D-BOUNDED both require an a-priori bound on the graph

degree. We set this bound to be the actual maximum degree rounded up to the nearest 5-th

integer.

COMPOSE-PROJECTION requires a projection threshold D̃ (or, D̃in and D̃out for directed
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graphs). This parameter is chosen by parameter tuning – we pick the parameter value out of a

predetermined list that leads to the lowest error. Note that for the sake of fairness, we do not

allocate any extra privacy budget to parameter tuning, which would be the case in reality; thus

our estimate of the performance of COMPOSE-PROJECTION is optimistic.

The threshold τ in the high-degree or high-out-degree nodes experiments is set to be the

90-th percentile of the (non-private) degree distribution.

6.6.2 Datasets

We use five datasets – three real and two synthetic. In addition to the standard directed

version of each dataset, we also consider an undirected version that is obtained by ignoring the

edge directions. A brief summary of these datasets is presented in Table 6.4.

Table 6.4. Summary of common properties of the graph datasets. Max degree refers to the
undirected version of the graph while max in-degree and max out-degree refer to the directed

version.

# nodes # edges timespan (year) max degree max in-degree max out-degree
HIV transmission 1660 456 21 13 12 8

Patent citation 91614 475427 15 247 211 246

Paper citation 9038 5249 24 36 19 36

Synthetic I 1990 665 20 5 1 4

Synthetic II 1088 588 20 6 1 5

6.6.2.1 Real Data Sets

HIV transmission graph This is a graph of potential HIV transmissions where a node

represents a patient and an edge connects two patients whose viral sequences have high similarity.

An edge thus represents a plausible transmission; the graph also has spurious edges that may

correspond to a patient transmitting the disease to multiple others within a short period of time.

About two-thirds of the patients have an estimated date of infection (EDI) ranging from 1996 to

2016, which is taken as the time stamp of the corresponding node. For the remaining nodes, EDI

could not be estimated as the patient was admitted long after infection; we set the corresponding
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time stamps as 1995.

Patents citation graph The patents citation graph [67] contains all US patents granted

between 1963 and 1999, and all citations made by patents from 1975 to 1999. A patent u’s citing

patent v naturally yields a directed edge from v to u. We pick all patents under subcategory

Computer Hardware & Software (indexed 22) to form both a directed and an undirected graph,

and publish statistics from years 1985 to 1999.

Paper citation graph This is a graph of articles and their citations from ACL derived

by [87]; each article has a recorded publication date from 1975 to 2013. We select the positive

citations, where an edge from v to u implies that u endorsed the article v, and publish statistics

from 1990 to 2013.

6.6.2.2 Synthetic Data Sets

In addition to the real data sets, we consider two synthetic graphs that are generated from

two separate disease transmission models.

Synthetic disease transmission graph I This is a synthetic graph of disease transmis-

sions based on the Barabási–Albert preferential attachment model. In the Barabási–Albert model,

there are m0 initial nodes, followed by a number of nodes that arrive sequentially. A node on

arrival connects to k existing nodes, with a higher chance of connecting to nodes with higher

degree.

We make three modifications to this model so that the generated graph is a more realistic

disease transmission network. First, we assume there is a total of Y years with n nodes added

per year; each node has a time stamp – its year of arrival – and the initial nodes have time stamp

0. All edges are directed from nodes with lower time stamps to those with higher time stamps.

Second, to model the large number of isolated nodes that exist in real disease transmission

networks, we ensure that each new node is isolated with probability proportional to a parameter

Pisolated. Third, in practice, an infected individual is usually less likely to spread infection

as time passes due to treatment or death. We build this property into the model by adding
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an extra decaying factor to the connection probability, i.e., the probability of a new node’s

connecting to an existing node v is proportional to deg (v)× (current time− v.time + 1)−c

(or out-deg (v) × (current time − v.time + 1)−c in directed graph) where c is the decay

parameter. For our experiments, we generate a graph with parameters Pisolated = 0.5, k = 1,

m0 = 500, n = 70, Y = 20 and c = 1.

Synthetic disease transmission graph II This is a synthetic disease transmission graph

drawn from the popular SIR model [81] of infection overlaid on an underlying Barabási–Albert

social network. In the SIR model, a node or individual as three statuses – susceptible (S),

infectious (I) and recovered (R). The infectious individuals transmit the disease to susceptible

individuals through social links with a transmission probability Pt. With probability Pr, an

infectious individual can recover; once recovered, an individual will not get infected again.

We generate an undirected social network Ginteract = (V,E) from the Barabási–Albert

model, where a node represents a person and an edge a social interaction. We then simulate the

transmission process as follows. Initially, every node is susceptible (S) except for n0 randomly

picked infectious (I) nodes. At time step t, an infectious node changes status to recovered (R)

with probability Pr; then, each node u that is still infectious infects each one of its neighbors in

Ginteract with probability Pi/degGinteract
(u). This gives us a transmission graph where a directed

edge is a disease transmission. The time stamp of each node is the time when it is infected. We

note that any node in the social interaction graph that has never been infected will not appear in

the transmission graph. For our experiments, we use the parameters Pr = 0.1, Pi = 0.18 and a

underlying interaction graph Ginteract of size 10000 with attachment parameter k = 2.

6.6.3 Results

We compare SENSDIFF with the baseline algorithms COMPOSE-D-BOUNDED and

COMPOSE-PROJECTION under varying ε – the privacy parameter and varying T – the number of

releases. We measure utility by the relative L1 error
∑T

t=1|A(Gt)− f(Gt)|/f(Gt), where f(Gt)

is the non-private statistic and A(Gt) is the value estimated by an algorithm.
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Figure 6.1. L1 error vs. privacy parameter ε. Publish every 1 year. Averaged over 100 runs.

Figure 6.1 shows the privacy-utility tradeoffs of the three algorithms for the number of

high-degree nodes (1st and 2nd columns) and number of edges (3rd and 4th columns) across

all datasets (different rows). There is a clear trend of decreasing error as ε increases for all

algorithms; however, SENSDIFF yields smaller error compared to the other two baselines in all

the cases. We point out that these results are overly optimistic for COMPOSE-PROJECTION – as

we do not spend any privacy budget tuning the projection thresholds.
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Figure 6.2. L1 error vs. number of publications T . ε = 5. Averaged over 100 runs.

Figure 6.2 presents the utility of all algorithms across different datasets (different rows)

and statistics (different columns) as a function of the number of releases T . We fix ε to be 5.

We see that the relative error increases as T increases for all algorithms, across all datasets and

statistics. Similar to the previous experiment, SENSDIFF achieves lower errors in most cases

for the number of high-degree nodes and significantly lower errors in all cases for the number

of edges. In addition, we observe that the error of SENSDIFF increases at a smaller rate with

increasing number of releases compared to the two baselines. This implies that SENSDIFF
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achieves better utility for large T , and confirms the theoretical arguments in Section 6.3.

Reconsidering the two questions proposed in the beginning of the section, we conclude

that SENSDIFF offers better utility under a wide range of ε and T compared to both baselines.

COMPOSE-D-BOUNDED yields the worst utility across all datasets for both statistics, which is

to be expected as it does not take advantage of either projections or additional properties of the

graph sequence. SENSDIFF outperforms COMPOSE-PROJECTION in most cases, and has a more

significant advantage for large T .

6.7 Conclusion

In summary, we present a general algorithm for continually releasing statistics of a graph

sequence. Our proposed algorithm exploits the difference sequence of the statistics, which has

lower sensitivity compared to the original sequence, to achieve improved utility. We derive the

global sensitivity of the difference sequences for common statistics including degree statistics

and subgraph counts for bounded-degree graphs. Evaluations on real and synthetic graphs

demonstrate the practical applicability of the proposed algorithm by showing that it outperforms

two natural baselines over a wide range of parameters. In particular, the proposed algorithm is

much less sensitive with respect to the number of releases compared with the baselines.

Our work is thus a step towards privacy-preserving analysis of online graphs, and has the

potential to lead to insights in epidemiology of stigma-inducing diseases such as HIV, while still

preserving the patient privacy.
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Chapter 7

Pufferfish Privacy Mechanisms for Corre-
lated Data

7.1 Overview

Many modern machine learning applications, such as those involving healthcare, power

usage and building management, also increasingly involve a different setting – correlated data –

privacy issues in which are not as well-understood. Consider, for example, a simple time-series

application – measurement of physical activity of a single subject across time. The goal here is to

release aggregate statistics on the subject’s activities over a long period (say a week) while hiding

the evidence of an activity at any specific instant (say, 10:30am on Jan 4). If the measurements

are made at small intervals, then the records form a highly correlated time-series as human

activities change slowly over time.

What is a good notion of privacy for this example? Since the data belongs to a single

subject, differential privacy is not directly applicable; however, a modified version called entry-

privacy [70] applies. Entry-privacy ensures that the inclusion of a single time-series entry does

not affect the probability of any outcome by much. It will add noise with standard deviation ≈ 1

to each bin of the histogram of activities. While this is enough for independent activities, it is

insufficient to hide the evidence of correlated activities that may continue for several time points.

A related notion is group differential privacy [48], which extends the definition to participation

of entire groups of correlated individuals or entries. Here, all entries are correlated, and hence
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group differential privacy will add ≈ O(T ) noise to a histogram over T measurements, thus

destroying all utility. Thus to address privacy challenges in this kind of data, we need a different

privacy notion.

A generalized version of differential privacy called Pufferfish was proposed by [84]. In

Pufferfish, privacy requirements are specified through three components – S, a set of secrets

that represents what may need to be hidden, Q, a set of secret pairs that represents pairs of

secrets that need to be indistinguishable to the adversary and Θ, a class of distributions that

can plausibly generate the data. Privacy is provided by ensuring that the secret pairs in Q are

indistinguishable when data is generated from any θ ∈ Θ. In the time-series example, S is the

set of activities at each time t, and secret pairs are all pairs of the form (Activity a at time t,

Activity b at time t). Assuming that activities transition in a Markovian fashion, Θ is a set of

Markov Chains over activities. Pufferfish captures correlation in such applications effectively in

two ways – first, unlike differential privacy, it can hide private values against correlation across

multiple entries/individuals; second, unlike group privacy, it also allows utility in cases where a

large number of individuals or entries are correlated, yet the “average amount” of correlation is

low.

Because of these properties, we adopt Pufferfish as our privacy definition. To bolster the

case for Pufferfish, we provide a general result showing that even if the adversary’s belief θ̃ lies

outside the class Θ, the resulting loss in privacy is low if θ̃ is close to Θ.

The main challenge in using Pufferfish is a lack of suitable mechanisms. While mech-

anisms are known for specific instantiations [84, 74, 150], there is no mechanism for general

Pufferfish. In this chapter, we provide the first mechanism, called the Wasserstein Mechanism,

that can be adopted to any general Pufferfish instantiation. Since this mechanism may be

computationally inefficient, we consider the case when correlation between variables can be

described by a Bayesian network, and the goal is to hide the private value of each variable. We

provide a second mechanism, called the Markov Quilt Mechanism, that can exploit properties

of the Bayesian network to reduce the computational complexity. As a case study, we derive a
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simplified version of the mechanism for the physical activity measurement example. We provide

privacy and utility guarantees, establish composition properties, and finally demonstrate the

practical applicability of the mechanism through experimental evaluation on synthetic as well as

real data. Specifically, our contributions are as follows:

• We establish that when we guarantee Pufferfish privacy with respect to a distribution class

Θ, but the adversary’s belief θ̃ lies outside Θ, the resulting loss in privacy is small when θ̃

is close to Θ.

• We provide the first mechanism that applies to any Pufferfish instantiation and is a gener-

alization of the Laplace mechanism for differential privacy. We call this the Wasserstein

Mechanism.

• Since the above mechanism may be computationally inefficient, we provide a more

efficient mechanism called the Markov Quilt Mechanism when correlation between entries

is described by a Bayesian Network.

• We show that under certain conditions, applying the Markov Quilt Mechanism multiple

times over the same dataset leads to a gracefully decaying privacy parameter. This makes

the mechanism particularly attractive as Pufferfish privacy does not always compose [84].

• We derive a simplified and computationally efficient version of this mechanism for time

series applications such as physical activity monitoring.

• Finally, we provide an experimental comparison between Markov Quilt Mechanism and

standard baselines as well as some concurrent work [66]; experiments are performed on

simulated data, a moderately-sized real dataset (≈ 10,000 observations per person) on

physical activity, and a large dataset (over 1 million observations) on power consumption.

7.1.1 Related Work

There is a body of work on differentially private mechanisms [109, 97, 26, 27, 46] – see

surveys [125, 48]. As we explain earlier, differential privacy is not the right formalism for the
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kind of applications we consider. A related framework is coupled-worlds privacy [11]; while

it can take data distributions into account through a distribution class Θ, it requires that the

participation of a single individual or entry does not make a difference, and is not suitable for our

applications. We remark that while mechanisms for specific coupled-worlds privacy frameworks

exist, there is also no generic coupled-worlds privacy mechanism.

This chapter instead uses Pufferfish, a recent generalization of differential privacy [84]

(see Chapter 2 for more details). [84, 74] provide some specific instances of Pufferfish frame-

works along with associated privacy mechanisms; they do not provide a mechanism that applies

to any Pufferfish instance, and their examples do not apply to Bayesian networks. [150] uses

a modification of Pufferfish, where instead of a distribution class Θ, they consider a single

generating distribution θ. They consider the specific case where correlations can be modeled

by Gaussian Markov Random Fields, and thus their work also does not apply to our physical

activity monitoring example. [91] designs Pufferfish privacy mechanisms for distribution classes

that include Markov Chains. Their mechanism adds noise proportional to a parameter ρ that

measures correlation between entries. However, they do not specify how to calculate ρ as a

function of the distribution class Θ, and as a result, their mechanism cannot be implemented

when only Θ is known. [149] releases time-varying location trajectories under differential privacy

while accounting for temporal correlations using a Hidden Markov Model with publicly known

parameters. Finally, [82] apply Pufferfish to smart-meter data; instead of directly modeling

correlation through Markov models, they add noise to the wavelet coefficients of the time series

corresponding to different frequencies.

In concurrent work, [66] provide an alternative algorithm for Pufferfish privacy when

data can be written as X = (X1, . . . , Xn) and the goal is to hide the value of each Xi. Their

mechanism is less general than the Wasserstein Mechanism, but applies to a broader class of

models than the Markov Quilt Mechanism. In Section 7.6, we experimentally compare their

method with ours for Markov Chains and show that our method works for a broader range of

distribution classes than theirs.
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Finally, there has also been some previous work on differentially private time-series

release [93, 57, 117]; however, they relate to aggregates over trajectories from a large number of

people, unlike trajectories of single subjects as in our work.

7.2 The Setting

To motivate our privacy framework, we use two applications – physical activity monitor-

ing of a single subject and flu statistics in a social network. We begin by describing them at a

high level, and provide more details in Section 7.2.1.

Example 1: Physical Activity Monitoring. The dataset consists of a time-series X =

{X1, X2, . . . , XT} where record Xt denotes a discrete physical activity (e.g, running, sitting,

etc) of a subject at time t. Our goal is to release (an approximate) histogram of activities over

a period (say, a week), while preventing an adversary from inferring the subject’s activity at a

specific time (say, 10:30am on Jan 4).

Example 2: Flu Status. The dataset consists of a set of records X = {X1, . . . , Xn},

where record Xi, which is 0 or 1, represents person i’s flu status. The goal is to release (an

approximation to)
∑

iXi, the number of infected people, while ensuring privacy against an

adversary who wishes to detect whether a particular person Alice in the dataset has flu. The

dataset includes people who interact socially, and hence the flu statuses are highly correlated.

Additionally, the decision to participate in the dataset is made at a group-level (for example,

workplace-level or school-level), so individuals do not control their participation.

7.2.1 The Privacy Framework

The privacy framework of our choice is Pufferfish [84], an elegant generalization of

differential privacy [45]. A detailed review of Pufferfish privacy framework can be found in

Chapter 2. Recall that a Pufferfish framework consists of three parameters: a set of secrets S, a

set of secret pairs Q, and a set of data distributions Q. An algorithmM guarantees ε-Pufferfish

privacy if the ratio between PM,θ(M(X) = w|si, θ) and PM,θ(M(X) = w|sj, θ) is upper
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bounded by eε for any secret pair (si, sj) ∈ Q, any distribution θ ∈ Θ and any w ∈ Range(M),

where X denotes the dataset drawn from θ.

A related framework is Group Differential Privacy [48], which applies to datasets with

groups of correlated records.

Definition 7.2.1 (Group Differential Privacy). Let D be a dataset with n records, and let

G = {G1, . . . , Gk} be a collection of subsets Gi ⊆ {1, . . . , n}. A privacy mechanismM is said

to be ε-group differentially private with respect to G if for all Gi in G, for all pairs of datasets D

and D′ which differ in the private values of the individuals in Gi, and for all S ⊆ Range(M),

we have:

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S).

In other words, Definition 7.2.1 implies that the participation of each group Gi in the

dataset does not make a substantial difference to the outcome of mechanismM.

7.2.2 Examples

We next illustrate how instantiating these examples in Pufferfish would provide effective

privacy and utility.

Example 1: Physical Activity Measurement. Let A be the set of all activities – for

example, {walking, running, sitting} – and let sta denote the event that activity a occurs at time t

– namely, Xt = a. In the Pufferfish instantiation, we set S as {sta : t = 1, . . . , T, a ∈ A} – so the

activity at each time t is a secret. Q is the set of all pairs (sta, s
t
b) for a, b in A and for all t; in

other words, the adversary cannot distinguish whether the subject is engaging in activity a or b at

any time t for all pairs a and b. Finally, Θ is a set of time series models that capture how people

switch between activities. A plausible modeling decision is to restrict Θ to be a set of Markov

Chains X1 → X2 → . . . → XT where each state Xt is an activity in A. Each such Markov

Chain can be described by an initial distribution q and a transition matrix P . For example, when
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there are three activities, Θ can be the set:

{


1

0

0

 ,


0.1 0.5 0.4

0.4 0.3 0.3

0.3 0.3 0.4



 ,




0

1

0

 ,


0.9 0.1 0.0

0.0 0.9 0.1

0.1 0.0 0.9




}
.

In this example,

• Differential privacy does not directly apply since we have a single person’s data.

• Entry differential privacy [70, 84] and coupled worlds privacy [11] add noise with standard

deviation ≈ 1/ε to each bin of the activity histogram. However, this does not erase the

evidence of an activity at time t. Moreover, an activity record does not have its agency,

and hence its not enough to hide its participation.

• As all entries are correlated, group differential privacy adds noise with standard deviation

≈ T/ε, where T is the length of the chain; this destroys all utility.

In contrast, in Section 7.4 we show an ε-Pufferfish mechanism which will add noise approximately

equal to the mixing time over ε, and thus offer both privacy and utility for rapidly mixing chains.

Example 2: Flu Status over Social Network. Let si0 (resp. si1) denote the event that

person i’s flu status is 0 (resp. 1). In the Pufferfish instantiation, we let S be the set {si0, si1 : i =

1, . . . , n} – so the flu status of each individual is a secret. Q is {(si0, si1) : i = 1, . . . , n} – so the

adversary cannot tell if each person i has flu or not. Θ is a set of models that describe the spread of

flu; a plausible θ ∈ Θ is a tuple (Gθ, pθ) where Gθ = (X,E) is a graph of personal interactions,

and pθ is a probability distributions over the connected components ofGθ. As a concrete example,

Gθ could be an union of cliques C1, . . . , Ck, and pθ could be the following distribution on the

number N of infected people in each clique Ci: P (N = j) = e2j/
∑|Ci|

i=0 e
2i, j = 0, . . . , |Ci|.

Similarly, for the flu status example, we have:

• Both differential privacy and coupled worlds privacy add noise with standard deviation
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≈ 1/ε to the number of infected people. This will hide whether an Alice participates in

the data, but if flu is contagious, then it is not enough to hide evidence of Alice’s flu status.

Note that unlike differential privacy, as the decision to participate is made at group level,

Alice has no agency over whether she participates, and hence we cannot argue it is enough

to hide her participation.

• Group differential privacy will add noise proportional to the size of the largest connected

component; this may result in loss of utility if this component is large, even if the “average

spread” of flu is low.

Again, we can achieve Pufferfish privacy by adding noise proportional to the “average

spread” of flu which may be less noise than group differential privacy. For a concrete numerical

example, see Section 7.3.

7.2.3 Guarantee Against Close Adveraries

A natural question is what happens when we offer Pufferfish privacy with respect to a

distribution class Θ, but the adversary’s belief θ̃ does not lie in Θ. Our first result is to show that

the loss in privacy is not too large if θ̃ is close to Θ conditioned on each secret si ∈ S, provided

closeness is quantified according to a measure called max-divergence.

Definition 7.2.2 (Max-divergence). Let p and q be two distributions with the same support. The

max-divergence D∞(p||q) between them is defined as:

D∞(p||q) = sup
x∈support(p)

log
p(x)

q(x)
.

For example, suppose p and q are distributions over {1, 2, 3} such that p assigns probabil-

ities {1/3, 1/2, 1/6} and q assigns probabilities {1/2, 1/4, 1/4} to 1, 2 and 3 respectively. Then,

D∞(p||q) = log 2. Max-divergence belongs to the family of Renyi-divergences [32], which also

includes the popular Kullback-Leibler divergence.
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Notation. Given a belief distribution θ (which may or may not be in the distribution

class Θ), we use the notation θ|si to denote the conditional distribution of θ given secret si.

Theorem 7.2.3. LetM be a mechanism that is ε-Pufferfish private with respect to parameters

(S,Q,Θ) and suppose that Θ is a closed set. Suppose an adversary has beliefs represented by a

distribution θ̃ /∈ Θ. Then,

e−ε−2∆ ≤ PM,θ(M(X) = w|si, θ)
PM,θ(M(X) = w|sj, θ)

≤ eε+2∆

where

∆ = inf
θ∈Θ

max
si∈S

max
(
D∞(θ̃|si ||θ|si), D∞(θ|si ||θ̃|si)

)
.

The conditional dependence on si cannot be removed unless additional conditions are

met. To see this, suppose θ places probability mass {0.9, 0.05, 0.05} and θ̃ places probabil-

ity mass {0.01, 0.95, 0.04} on datasets D1, D2 and D3 respectively. In this case, we have

max{D∞(θ||θ̃), D∞(θ̃‖θ)} = log 90. Suppose now that conditioning on si tells us that the proba-

bility of occurrence ofD3 is 0, but leaves the relative probabilities ofD1 andD2 unchanged. Then

θ|si places probability mass {0.9474, 0.0526}while θ̃|si places probability mass {0.0104, 0.9896}

on D1 and D2 respectively. In this case, max{D∞(θ|si ||θ̃|si), D∞(θ̃|si‖θ|si)} = log 91.0962

which is larger than max{D∞(θ||θ̃), D∞(θ̃‖θ)}.

7.2.4 Additional Notation

We conclude this section with some additional definitions and notation that we will use

throughout the chapter.

Definition 7.2.4 (Lipschitz). A query F : [k]n → Rk is said to be L-Lipschitz in L1 norm if for

all i and Xi, X
′
i ∈ [k],

‖F (X1, . . . , Xi, . . . , Xn)− F (X1, . . . , X
′
i, . . . , Xn)‖1≤ L.
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This means that changing one record out of n in a dataset changes the L1 norm of the query

output by at most L.

For example, if F (X1, . . . , Xn) is a (vector-valued) histogram over records X1, . . . , Xn,

then F is 2-Lipschitz in the L1 norm, as changing a single Xi can affect the count of at most two

bins.

We use the notation Lap(σ) to denote a Laplace distribution with mean 0 and scale pa-

rameter σ. Recall that this distribution has the density function: h(x) = 1
2σ
e−|x|/σ. Additionally,

we use the notation card(S) to denote the cardinality, or, the number of items in a set S.

7.3 A General Mechanism

While a number of mechanisms for specific Pufferfish instantiations are known [84, 74],

there is no mechanism that applies to any general Pufferfish instantiation. We next provide

the first such mechanism. Given a dataset represented by random variable X , a Pufferfish

instantiation (S,Q,Θ), and a query F that maps X into a scalar, we design mechanismM that

satisfies ε-Pufferfish privacy in this instantiation and approximates F (X).

Our proposed mechanism is inspired by the Laplace mechanism in differential privacy;

the latter adds noise to the result of the query F proportional to the sensitivity, which is the worst

case distance between F (D) and F (D′) where D and D′ are two datasets that differ in the value

of a single individual. In Pufferfish, the quantities analogous to D and D′ are the distributions

P (F (X)|si, θ) and P (F (X)|sj, θ) for a secret pair (si, sj), and therefore, the added noise should

be proportional to the worst case distance between these two distributions according to some

metric.

Wasserstein Distances. It turns out that the relevant metric is the∞-Wasserstein distance

– a modification of the Earthmover’s distance used in information retrieval and computer vision.

Definition 7.3.1 (∞-Wasserstein Distance). Let µ, ν be two probability distributions on R, and

let Γ(µ, ν) be the set of all joint distributions with marginals µ and ν. The ∞-Wasserstein
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distance between µ and ν is defined as:

W∞(µ, ν) = inf
γ∈Γ(µ,ν)

max
(x,y)∈support(γ)

|x− y|. (7.1)

Intuitively, each γ ∈ Γ(µ, ν) is a way to shift probability mass between µ and ν; the cost

of a shift γ is: max(x,y)∈support(γ)|x− y|, and the cost of the min-cost shift is the∞-Wasserstein

distance. It can be interpreted as the maximum “distance” that any probability mass moves

while transforming µ to ν in the most optimal way possible. A pictorial example is shown in

Figure 7.1.

1/3
1/6

1/4
1/3

1/3
1/6

1/6
1/4

1/4 1/12 1/6 1/6 1/6 1/6

µ:

ν:

Figure 7.1. An example of∞-Wasserstein distance. The frequency distributions represent two
measures µ and ν, and the arrows represent the joint distribution γ that minimizes the right hand

side of (7.1). Here, W∞(µ, ν) = 1.

7.3.1 The Wasserstein Mechanism

The main intuition behind our mechanism is based on this interpretation. Suppose for

some (si, sj) and θ, we would like to transform P (F (X)|si, θ) to P (F (X)|sj, θ). Then, the

maximum “distance” that any probability mass moves is

Wi,j,θ = W∞ (P (F (X)|si, θ), P (F (X)|sj, θ)) ,

and adding Laplace noise with scale Wi,j,θ/ε to F will guarantee that the likelihood ratio of the

outputs under si and sj lies in [e−ε, eε]. Iterating over all pairs (si, sj) ∈ Q and all θ ∈ Θ and

taking the maximum over Wi,j,θ leads to a mechanism for the entire instantiation (S,Q,Θ).

The full mechanism is described in Algorithm 6, and its privacy properties in Theo-

rem 7.3.2. Observe that when Pufferfish reduces to differential privacy, then the corresponding
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Wasserstein Mechanism reduces to the Laplace mechanism; it is thus a generalization of the

Laplace mechanism.

Algorithm 6. Wasserstein Mechanism (Dataset D, query F , Pufferfish framework (S,Q,Θ),
privacy parameter ε)

for all (si, sj) ∈ Q and all θ ∈ Θ such that P (si|θ) 6= 0 and P (sj|θ) 6= 0 do
Set µi,θ = P (F (X) = ·|si, θ), µj,θ = P (F (X) = ·|sj, θ). Calculate W∞(µi,θ, µj,θ)

end for
Set W = sup(si,sj)∈Q,θ∈ΘW∞(µi,θ, µj,θ).

return F (D) + Z, where Z ∼ Lap(W
ε

)

Example. Consider a Pufferfish instantiation of the flu status application. Suppose

that the dataset has size 4, and Θ = {(Gθ, pθ)} where Gθ is a clique on 4 nodes, and pθ is the

following symmetric joint distribution on the number N of infected individuals:

i 0 1 2 3 4

P (N = j) 0.1 0.15 0.5 0.15 0.1

From symmetry, this induces the following conditional distributions:

j 0 1 2 3 4

P (N = j|Xi = 0) 0.2 0.225 0.5 0.075 0

P (N = j|Xi = 1) 0 0.075 0.5 0.225 0.2

In this case, the parameter W in Algorithm 6 is 2, and the Wasserstein Mechanism will

add Lap(2/ε) noise to the number of infected individuals. As all the Xi’s are correlated, the

sensitivity mechanism with Group Differential Privacy would add Lap(4/ε) noise, which gives

worse utility.

7.3.2 Performance Guarantees

Theorem 7.3.2 (Wasserstein Privacy). The Wasserstein Mechanism provides ε-Pufferfish privacy

in the framework (S,Q,Θ).
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Utility. Because of the extreme generality of the Pufferfish framework, it is difficult to

make general statements about the utility of the Wasserstein mechanism. However, we show

that the phenomenon illustrated by the flu status example is quite general. When X is written as

X = (X1, . . . , Xn) where Xi is the i-th individual’s private value, and the goal is to keep each

individual’s value private, the Wasserstein Mechanism for Pufferfish never performs worse than

the Laplace mechanism for the corresponding group differential privacy framework. The proof

is in the full paper [132].

Theorem 7.3.3 (Wasserstein Utility). Let (S,Q,Θ) be a Pufferfish framework, and let G be the

corresponding group differential privacy framework (so that G includes a group G for each

set of correlated individuals in Θ). Then, for a L-Lipschitz query F , the parameter W in

the Wasserstein Mechanism is less than or equal to the global sensitivity of F in the G-group

differential privacy framework.

7.4 A Mechanism for Bayesian Networks

The Wasserstein Mechanism, while general, may be computationally expensive. We next

consider a more restricted setting where the dataset X can be written as a collection of variables

X = (X1, . . . , Xn) whose dependence is described by a Bayesian network, and the goal is to

keep the value of each Xi private. This setting is still of practical interest, as it can be applied to

physical activity monitoring and power consumption data.

7.4.1 The Setting

Bayesian Networks. Bayesian networks are a class of probabilistic models that are

commonly used to model dependencies among random variables or vectors, and include popular

models such as Markov Chains and trees. A Bayesian network is described by a set of variables

X = {X1, . . . , Xn} (where each Xi is a scalar or a vector) and a directed acyclic graph

G = (X,E) whose vertices are variables in X . Since G is directed acyclic, its edges E induce a
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parent-child relationship parent among the nodes X . The probabilistic dependence on X induced

by the network can be written as:

P (X1, . . . , Xn) =
∏
i

P (Xi|parent(Xi)).

For example, Figure 7.2 shows a Bayesian Network on 4 variables, whose joint distribution is

described by:

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3).

A node Xi may have more than one parent, and as such these networks can describe complex

probabilistic dependencies.

X1

X4

X2 X3

Figure 7.2. A Bayesian Network on four variables.

The Framework. Specifically, we assume that the dataset X can be written as X =

{X1, . . . , Xn}, where each Xi lies in a bounded domain [k]. Let sia denote the event that Xi

takes value a. The set of secrets is S = {sia : a ∈ [k], i ∈ [n]}, and the set of secret pairs

is Q = {(sia, sib) : a, b ∈ [k], a 6= b, i ∈ [n]}. We also assume that there is an underlying

known Bayesian network G = (X,E) connecting the variables. Each θ ∈ Θ that describes

the distribution of the variables is based on this Bayesian network G, but may have different

parameters.

For example, the Pufferfish instantiation in Example 1 will fall into this framework, with

n = T and G a Markov Chain X1 → X2 → . . . XT .

Notation. We use X with a lowercase subscript, for example, Xi, to denote a single node

in G, and X with an uppercase subscript, for example, XA, to denote a set of nodes in G. For a
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set of nodes XA we use the notation card(XA) to denote the number of nodes in XA.

7.4.2 The Markov Quilt Mechanism

The main insight behind our mechanism is that if nodes Xi and Xj are “far apart” in G,

then, Xj is largely independent of Xi. Thus, to obscure the effect of Xi on the result of a query,

it is sufficient to add noise proportional to the number of nodes that are “local” to Xi plus a

correction term to account for the effect of the distant nodes. The rest of the section will explain

how to calculate this correction term, and how to determine how many nodes are local.

First, we quantify how much changing the value of a variable Xi ∈ X can affect a set

of variables XA ⊂ X , where Xi /∈ XA and the dependence is described by a distribution θ in a

class Θ. To this end, we define the max-influence of a variable Xi on a set of variables XA under

a distribution class Θ as follows.

Definition 7.4.1 (Max-influence). We define the max-influence of a variable Xi on a set of

variables XA under Θ as:

eΘ(XA|Xi) = sup
θ∈Θ

max
a,b∈[k]

max
xA∈[k]card(XA)

log
P (XA = xA|Xi = a, θ)

P (XA = xA|Xi = b, θ)
.

Here [k] is the range of any Xj . The max-influence is thus the maximum max-divergence

between the distributions XA|Xi = a, θ and XA|Xi = b, θ where the maximum is taken over

any pair (a, b) ∈ [k]× [k] and any θ ∈ Θ. If XA and Xi are independent, then the max-influence

of Xi on XA is 0, and a large max-influence means that changing Xi can have a large impact

on the distribution of XA. In a Bayesian network, the max-influence of any Xi and XA can be

calculated given the probabilistic dependence.

Our mechanism will attempt to find large sets XA such that Xi has low max-influence on

XA under Θ. The naive way to do so is through brute force search, which takes time exponential

in the size of G. We next show how structural properties of the Bayesian network G can be

exploited to perform this search more efficiently.
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XN

Xi+1 Xi+2XiXi−2

XBXB

Xi−1

(a) The Markov Blanket of Xi is
XB = {Xi−1, Xi+1}

Xi+1 Xi+2 Xi+3 Xi+4XiXi−1Xi−2Xi−3

XR XR
XQXQ XN

(b) One Markov Quilt of Xi is XQ = {Xi−2, Xi+2} with
corresponding XN = {Xi−1, Xi, Xi+1},

XR = {. . . , Xi−3, Xi+3, . . . }

Figure 7.3. Illustration of Markov Blanket and Markov Quilt

Markov Blankets and Quilts. For this purpose, we provide a second definition that

generalizes the Markov Blanket, a standard notion in probabilistic graphical models [86]. The

Markov Blanket of a node Xu in a Bayesian network consists of its parents, its children and

the other parents of its children, and the rest of the nodes in the network are independent of Xu

conditioned on its Markov Blanket. We define its generalization, the Markov Quilt, as follows.

Definition 7.4.2 (Markov Quilt). A set of nodes XQ, Q ⊂ [n] in a Bayesian network G = (X,E)

is a Markov Quilt for a node Xi if the following conditions hold:

1. Deleting XQ partitions G into parts XN and XR such that X = XN ∪ XQ ∪ XR and

Xi ∈ XN .

2. For all xR ∈ [k]card(XR), all xQ ∈ [k]card(XQ) and for all a ∈ [k], P (XR = xR|XQ =

xQ, Xi = a) = P (XR = xR|XQ = xQ).

Thus, XR is independent of Xi conditioned on XQ.

Intuitively, XR is a set of “remote” nodes that are far from Xi, and XN is the set of

“nearby” nodes; XN and XR are separated by the Markov Quilt XQ. Observe that unlike Markov

Blankets, a node can have many Markov Quilts. Figure 7.3 shows an example. We also allow the

“trivial Markov Quilt” with XQ = ∅, XN = X and XR = ∅.

Suppose we would like to release the result of a L-Lipschitz scalar query F while

protecting a node Xi. If we can find a Markov Quilt (XN , XQ, XR) such that the max-influence

of Xi on XQ under Θ is at most δ, then, it is sufficient to add Laplace noise to F with scale

parameter L · card(XN)/(ε− δ). This motivates the following mechanism, which we call the

Markov Quilt Mechanism. To protect Xi, we search over a set SQ,i of Markov Quilts for Xi and
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pick the one which requires adding the least amount of noise. We then iterate over all Xi and add

to F the maximum amount of noise needed to protect any Xi; this ensures that the private values

of all nodes are protected. Details are presented in Algorithm 7, and Theorem 7.4.3 establishes

its privacy properties.

Algorithm 7. Markov Quilt Mechanism (Dataset D, L-Lipschitz query F , Pufferfish instantia-
tion (S,Q,Θ), privacy parameter ε, Markov Quilts set SQ,i for each Xi)

for all Xi do
for all Markov Quilts XQ (with XN , XR) in SQ,i do

if max-influence eΘ(XQ|Xi) < ε then
σ(XQ) = card(XN )

ε−eΘ(XQ|Xi)
/*score of XQ*/

else
σ(XQ) =∞

end if
end for
σi = minXQ∈SQ,i σ(XQ)

end for
σmax = maxi σi
return F (D) + (L · σmax) · Z, where Z ∼ Lap(1)

Vector-Valued Functions. The mechanism can be easily generalized to vector-valued

functions. If F is L-Lipschitz with respect to L1 norm, then from Proposition 1 of [45], adding

noise drawn from L · σmax · Lap(1) to each coordinate of F guarantees ε-Pufferfish privacy.

Theorem 7.4.3 (Markov Quilt Mechanism Privacy). If F is L-Lipschitz, and if each SQ,i contains

the trivial quilt XQ = ∅ (with XN = X , XR = ∅) , then the Markov Quilt Mechanism preserves

ε-Pufferfish privacy in the instantiation (S,Q,Θ) described in Section 7.4.1.

7.4.3 Case Study: Markov Chains

Algorithm 7 can still be computationally expensive, especially if the underlying Bayesian

network is complex and the set Θ is large and unstructured. In this section, we show that when

the underlying graph is a Markov Chain, the mechanism can be made more efficient.

The Setting. We use the same setting as Example 1 that was described in detail in

Section 7.2.2. We assume that there are k activities so that the state space [k] = [k]. Thus each
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θ ∈ Θ corresponds to a tuple (qθ, Pθ) where qθ is a k × 1 vector that describes the distribution of

the first state and Pθ is a k × k transition matrix.

A Running Example. As a concrete running example in this section, consider a dataset

of T = 100 records represented by a Markov Chain X1 → . . .→ X100 where each state Xi can

take k = 2 values, 0 and 1. Also let:

Θ =

{
θ1 =


1

0

 ,
0.9 0.1

0.4 0.6


 , θ2 =


0.9

0.1

 ,
0.8 0.2

0.3 0.7


}

be the set of distributions. Suppose we set ε = 1.

Sources of Inefficiency. There are three potential sources of computational inefficiency

in the Markov Quilt Mechanism. First, searching over all Markov Quilts in a set is inefficient

if there are a large number of quilts. Second, calculating the max-influence of a fixed quilt is

expensive if the probabilistic dependence between the variables is complex, and finally, searching

over all θ ∈ Θ is inefficient if Θ is large and unstructured.

We show below how to mitigate the computational complexity of all three sources for

Markov Chains. First we show how to exploit structural information to improve the computational

efficiency of the first two. Next we propose an approximation using tools from Markov Chain

theory that will considerably improve the computational efficiency of searching over all θ ∈

Θ. The improvement preserves ε-Pufferfish privacy, but might come at the expense of some

additional loss in accuracy.

7.4.3.1 Exploiting Structural Information

First, we show how to exploit structural information to improve the running time.

Bounding the Number of Markov Quilts. Technically, the number of Markov Quilts for

a node Xi in a Markov Chain of length T is exponential in T . Fortunately however, Lemma 7.4.4

shows that for the purpose of finding the quilt with the lowest score for any Xi, it is sufficient to

search over only O(T 2) quilts. The proof is in the full paper [132].
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Lemma 7.4.4. In the setting of Section 7.4.3, let the set of Markov Quilts SQ,i be as follows:

SQ,i = {{Xi−a, Xi+b}, {Xi−a}, {Xi+b}, ∅|1 ≤ a ≤ i− 1, 1 ≤ b ≤ T − i} (7.2)

Consider any Markov Quilt (XN , XQ, XR) for Xi that may or may not lie in SQi . Then, the

score of this quilt is greater than or equal to the score of some (XN ′ , XQ′ , XR′) in SQ,i.

Calculating the max-influence. Consider the max-influence of a set of variables XQ

on a variable Xi under a fixed θ ∈ Θ. Calculating it may be expensive if the probabilistic

dependency among the variables in XQ and Xi is complex under θ. We show below that for

Markov Chains, this max-influence may be computed relatively efficiently.

Suppose XQ = {Xi−a, Xi+b}, and recall that a state can take values in [k] = {1, . . . , k}.

Then, we can write:

e{θ}(XQ|Xi) = max
x,x′,xi−a,xi+b∈[k]

log
P (Xi−a = xi−a, Xi+b = xi+b|Xi = x, θ)

P (Xi−a = xi−a, Xi+b = xi+b|Xi = x′, θ)

= max
x,x′∈[k]

(
log

P (Xi = x′, θ)

P (Xi = x, θ)
+ max

xi+b∈[k]
log

P (Xi+b = xi+b|Xi = x, θ)

P (Xi+b = xi+b|Xi = x′, θ)

+ max
xi−a∈[k]

log
P (Xi = x|Xi−a = xi−a, θ)

P (Xi = x′|Xi−a = xi−a, θ)

)
. (7.3)

(7.3) allows for efficient computation of the max-influence. Given an initial distribution and a

transition matrix, for each x and x′ pair, the first term in (7.3) can be calculated in O(ik2) time,

and the second and third in O((a + b)k3) time each. Taking the maximum over all x and x′

involves another O(k2) operations, leading to a total running time of O(ik2 + (a+ b)k3). Similar

formulas can be obtained for quilts of the form XQ = {Xi−a} and XQ = {Xi+b}. Note for

the special case of the trivial Markov Quilt, the max-influence is 0, which takes O(1) time to

compute.

Algorithm MQMExact. Thus, using structural properties of Markov Chains gives a

more efficient instantiation of the Markov Quilt Mechanism that we describe in Algorithm 8.
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Algorithm 8. MQMExact(Dataset D, L-Lipschitz query F , Θ, privacy parameter ε, maximum
Markov Quilt size parameter `)

for all θ ∈ Θ do
for all Xi do

SQ,i = {{Xi−a, Xi+b} : i− a > 0, i+ b ≤ T, a+ b < `} ∪ {{Xi−a} : i− a ≥ T − `}
∪ {{Xi+b} : i + b < `} ∪ {∅} /*all quilts with end-points at distance ≤ ` plus the
trivial quilt */

for all Markov Quilts XQ ∈ SQ,i do
Calculate e{θ}(XQ|Xi) from (7.3)
if e{θ}(XQ|Xi) < ε then

σ(XQ) = card(XN )
ε−e{θ}(XQ|Xi)

/*score of XQ*/
else

σ(XQ) =∞
end if

end for
σi = minXQ∈SQ,i σ(XQ)

end for
σθmax = maxi σi

end for
σmax = maxθ∈Θ σ

θ
max

return F (D) + (L · σmax) · Z, where Z ∼ Lap(1)

We remark that to improve efficiency, instead of searching over all O(T 2) Markov Quilts

for a node Xi, we search only over Markov Quilts whose endpoints lie at a distance ≤ ` from Xi.

Since there are O(`2) such Markov Quilts, this reduces the running time if `� T .

Concretely, consider using Algorithm MQMExact on our running example with ` = T .

For θ1, a search over each Xi gives that X8 has the highest score, which is 13.0219, achieved

by Markov Quilt {X3, X13}. For θ2, X6 has the highest score, 10.6402, achieved by the Markov

Quilt {X10}. Thus, the algorithm adds noise Z ∼ Lap(13.0219× L) to the exact query value.

Running Time Analysis. A naive implementation of Algorithm 8 would run in time

O(T`2|Θ|(`k3 + Tk2)). However, we can use the following observations to speed up the

algorithm considerably.

First, observe that for a fixed θ, we can use dynamic programming to compute and store

all the probabilities P (Xi|θ), P (Xi|Xi−a) and P (Xi+b|Xi) together in time O(Tk3). Second,
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note that once these probabilities are stored, the rest is a matter of maximization; for fixed Xi,

Markov Quilt XQ and θ, we can calculate e{θ}(XQ|Xi) from (7.3) in time O(k3); iterating over

all Xi, and all O(`2) Markov Quilts for Xi gives a running time of O(Tk3 + T`2k3). Finally,

iterating over all θ ∈ Θ gives a final running time of O(T`2k3|Θ|) which much improves the

naive implementation.

Additional optimizations may be used to improve the efficiency even further. In the full

paper [132], we show that if Θ includes all possible initial distributions for a set of transition

matrices, then we can avoid iterating over all initial distributions by a direct optimization

procedure. Finally, another important observation is that when the initial distribution under θ is

the stationery distribution of the Markov Chain – as can happen when data consists of samples

drawn from a Markov process in a stable state, such as, household electricity consumption in

a steady state – then for any i ∈ [a, T − b], the max-influence e{θ}({Xi−a, Xi+b}|Xi) depends

only on a and b and is independent of i. This eliminates the need to conduct a separate search for

each i, and further improves efficiency by a factor of T .

7.4.3.2 Approximating the max-influence

Unfortunately, Algorithm 8 may still be computationally inefficient when Θ is large. In

this section, we show how to mitigate this effect by computing an upper bound on the max-

influence under a set of distributions Θ in closed form using tools from Markov Chain theory.

Note that now we can no longer compute an exact score; however, since we use an upper bound

on the score, the resulting mechanism remains ε-Pufferfish private.

Definitions from Markov Chain Theory. We begin with reviewing some definitions

and notation from Markov Chain theory that we will need. For a Markov Chain with transition

matrix Pθ, we use πθ to denote its stationary distribution [6]. We define the time reversal Markov

Chain corresponding to Pθ as follows.

Definition 7.4.5 (time-reversal). Let Pθ be the transition matrix of a Markov Chain θ. If πθ is

the stationery distribution of θ, then, the corresponding time-reversal Markov Chain is defined

110



as the chain with transition matrix P ∗θ where:

P ∗θ (x, y)πθ(x) = Pθ(y, x)πθ(y).

Intuitively, P ∗θ is the transition matrix when we run the Markov process described by Pθ

backwards from XT to X1.

In our running example, for both θ1 and θ2, the time-reversal chain has the same transition

matrix as the original chain, i.e., P ∗θ1 = Pθ1 , P ∗θ2 = Pθ2 .

We next define two more parameters of a set Θ of Markov Chains and show that an upper

bound to the max-influence under Θ can be written as a function of these two parameters. First,

we define πmin
Θ as the minimum probability of any state under the stationary distribution πθ of

any Markov Chain θ ∈ Θ. Specifically,

πmin
Θ = min

x∈[k],θ∈Θ
πθ(x). (7.4)

In our running example, the stationary distribution of the transition matrix for θ1 is [0.8, 0.2]

and thus πmin
{θ1} = 0.2; similarly, θ2 has stationary distribution [0.6, 0.4] and thus πmin

{θ2} = 0.4. We

have πmin
Θ = 0.2.

Additionally, we define gΘ as the minimum eigengap of PθP ∗θ for any θ ∈ Θ. Formally,

gΘ = min
θ∈Θ

min{1− |λ|: PθP ∗θ x = λx, |λ|< 1}. (7.5)

In our running example, the eigengap for both Pθ1P
∗
θ1

and Pθ2P
∗
θ2

is 0.75, and thus we have

gΘ = 0.75.

Algorithm MQMApprox. The following Lemma characterizes an upper bound of the

max-influence of a variable Xi on a XQ under a set Θ of Markov Chains as a function of πmin
Θ

and gΘ.
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Lemma 7.4.6. Suppose the Markov Chains induced by each Pθ ∈ Θ are irreducible and

aperiodic with πΘ > 0 and gΘ > 0. If a, b ≥ 2 log(1/πmin
Θ )

gΘ
, then the max-influence eΘ(XQ|Xi) of

a Markov Quilt XQ = {Xi−a, Xi+b} on a node Xi under Θ is at most:

log

(
πmin

Θ + exp(−gΘb/2)

πmin
Θ − exp(−gΘb/2)

)
+ 2 log

(
πmin

Θ + exp(−gΘa/2)

πmin
Θ − exp(−gΘa/2)

)
.

The proof is in the full paper [132]. Observe that the irreducibility and aperiodicity

conditions may be necessary – without these conditions, the Markov Chain may not mix, and

hence we may not be able to offer privacy.

Results similar to Lemma 7.4.6 can be obtained for Markov Quilts of the form XQ =

{Xi−a} or {Xi+b} as well. Finally, in the special case that the chains are reversible, a tighter

upper bound may be obtained; these are stated in the full paper [132].

Lemma 7.4.6 indicates that when Θ is parametrized by gΘ and πmin
Θ , (an upper bound on)

the score of each XQ may thus be calculated in O(1) time based on Lemma 7.4.6. This gives

rise to Algorithm 9. Like Algorithm 8, we can again improve efficiency by confining our search

to Markov Quilts where the local set XN has size at most `.

Running Time Analysis. A naive analysis shows that Algorithm 9 has a worst case

running time of O(T`2) – T iterations to go over all Xi, O(`2) Markov Quilts per Xi, and O(1)

time to calculate an upper bound on the score of each quilt. However, the following Lemma

shows that this running time can be improved significantly when Θ has some nice properties.

Lemma 7.4.7. Suppose the Markov Chains induced by Θ are aperiodic and irreducible with

gΘ, π
min
Θ > 0. Let a∗ = 2dlog

(exp(ε/6)+1

exp(ε/6)−1
1

πmin
Θ

)
/gΘe. If the length of the chain T is ≥ 8a∗,

then, the optimal Markov Quilt for the middle node XdT/2e of the chain is of the form XQ =

{XdT/2e−a, XdT/2e+b} where a+ b ≤ 4a∗. Additionally, the maximum score σmax = σdT/2e.

Lemma 7.4.7 implies that for long enough chains, it is sufficient to search over Markov

Quilts of length ` = 4a∗, and only over Xi = XdT/2e; this leads to a running time of O((a∗)2),

which is considerably better and independent of the length of the chain.
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Algorithm 9. MQMApprox(Dataset D, L-Lipschitz query F , Θ containing Markov chains of
length T , privacy parameter ε, maximum Markov Quilts length `

for all Xi do
SQ,i = {{Xi−a, Xi+b} : i − a > 0, i + b ≤ T, a + b < `} ∪ {{Xi−a} : i − a ≥ T − `}

∪ {{Xi+b} : i + b < `} ∪ {∅} /*all quilts with end-points at distance ≤ ` plus the
trivial quilt */

for all Markov Quilts XQ in SQ,i do
Calculate eΘ(XQ|Xi) from Lemma 7.4.6
if max-influence eΘ(XQ|Xi) < ε then

σ(XQ) = card(XN )
ε−eΘ(XQ|Xi)

/*score of XQ*/
else

σ(XQ) =∞
end if

end for
σi = minXQ∈SQ,i σ(XQ)

end for
σmax = maxi σi
return F (D) + (L · σmax) · Z, where Z ∼ Lap(1)

Utility. We conclude with an utility analysis of Algorithm 9.

Theorem 7.4.8 (Utility Guarantees). Suppose we apply Algorithm 9 to release an approximation

to a 1-Lipschitz query F of the states in the Pufferfish instantiation in Example 1. If the length T

of the chain satisfies: T ≥ 8dlog
(exp(ε/6)+1

exp(ε/6)−1
1
πΘ

)
/gΘe+ 3, then the Laplace noise added by the

Markov Quilt Mechanism has scale parameter ≤ C/ε for some positive constant C that depends

only on Θ.

The proof is in the full paper [132]. Theorem 7.4.8 implies that the noise added does not

grow with T and the relative accuracy improves with more and more observations. A careful

examination of the proof also shows that the amount of noise added is an upper bound on the

mixing time of the chain. Thus if Θ consists of rapidly mixing chains, then Algorithm 9 provides

both privacy and utility.
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7.5 Composition Properties

Unlike differential privacy which has good composition properties (see Chapter 2 for

more details), general Pufferfish mechanisms do not compose linearly [84]. However, we can

exploit the properties of the specific Pufferfish mechanism – the Markov Quilt Mechanism, and

the properties of data distributions – Markov Chains to obtain parallel and sequential composition

guarantees.

7.5.1 Parallel Composition

Consider the Pufferfish framework (S,Q,Θ) as described in Section 7.4.3. Parallel

composition can be formulated as follows. Suppose there are two subchains of the Markov Chain,

XA = X [T1,T2] and XB = X [T3,T4] where 1 ≤ T1 < T2 < T3 < T4 ≤ T ; and correspondingly,

let SA = S [T1,T2], QA = Q[T1,T2] and SB = S [T3,T4], QB = Q[T3,T4]. Suppose Alice has access to

subchain XA and wants to release Lipchitz query FA while guaranteeing εA-Pufferfish Privacy

under framework (SA, QA,Θ); and Bob has access toXB and wants to release Lipchitz queryFB
while guaranteeing εB-Pufferfish Privacy under framework (SB, QB,Θ). Our goal is to determine

how strong the Pufferfish privacy guarantee we can get for releasing (MA(XA),MB(XB)).

First, we present a general result for Markov Chains.

Theorem 7.5.1. SupposeMA,MB are two mechanisms such thatMA(XA) guarantees εA-

Pufferfish privacy under framework (SA, QA,Θ) andMB(XB) guarantees εB-Pufferfish privacy

under framework (SB, QB,Θ). Then releasing (MA(XA),MB(XB)) guarantees max{min{εA
+εB, εA+eΘ(XT2 |XT3)},min{εB+εA, εB+eΘ(XT3|XT2)}}-Pufferfish Privacy under framework

(SA ∪ SB, QA ∪QB,Θ).

Comparing with parallel composition for differential privacy, here we have the extra

terms eΘ(XT2 |XT3) and eΘ(XT3|XT2) which capture the correlation between XT2 and XT3 – the

end point of the first subchain and the starting point of the second. This is to be expected, since
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there is correlation among states in the Markov Chain. Intuitively, if the two subchains are close

enough, releasing information on one can cause a privacy breach of the other.

Now we present a result on the Markov Quilt Mechanism on Markov Chains.

Let MQM(D,F, ε, (S,Q,Θ)) denote the output of the Markov Quilt Mechanism on

dataset D, query function F , privacy parameter ε and Pufferfish framework (S,Q,Θ). Suppose

Alice and Bob use MQMApprox to publish MQM(XA,FA, εA, (SA, QA,Θ)) and MQM(XB,

FB, εB, (SB, QB,Θ)) respectively.

We first define active Markov Quilt X∗Q,i for a node Xi and then establish a parallel

composition result.

Definition 7.5.2 (Active Markov Quilt). Consider an instance of the Markov Quilt Mechanism

M . We say that a Markov Quilt XQ (with corresponding XN , XR) for a node Xi is active with

respect to θ ∈ Θ if XQ = arg minXQ∈SQ,i σ
θ
i (XQ), and thus σθi (XQ) = σθi .

Theorem 7.5.3. Suppose we run MQMApprox to release (MQM(XA,FA, εA, (SA, QA,Θ)) and

MQM(XB,FB, εB, (SB, QB,Θ))). If the following conditions hold:

1. for any θ ∈ Θ, there exists some Xi ∈ XA and Xj ∈ XB such that the active Markov

Quilts of Xi and Xj with respect to θ are of the form {Xi−a, Xi+b} and {Xj−a′ , Xj+b′}

respectively for some a, b, a′, b′, and

2. T3 − T2 ≥ max{T2 − T1, T4 − T3}, i.e., XA, XB are far from each other compared to

their lengths,

then the release guarantees max(εA, εB)-Pufferfish Privacy under the framework (SA∪SB, QA∪

QB,Θ).

The main intuition is as follows. Note that we require the active Markov Quilt of some

Xi ∈ XA to be of the form {Xi−a, Xi+b}. For any Xi′ ∈ XA, the correction factor added to

account for the effect of the nodes {Xk ∈ XA}k≥i+b also automatically accounts for the effect
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of XB = X [T3,T4], provided that [T3, T4] does not overlap with [i′ − a, i′ + b]. This is ensured by

the second condition in Theorem 7.5.3.

7.5.2 Sequential Composition

First, we show that an arbitrary Pufferfish mechanism does not compose linearly even

when Θ consists of Markov Chains.

Theorem 7.5.4. There exists a Markov Chain X , a function F and mechanisms MA, MB

such that bothMA(X) andMB(X) guarantee ε-Pufferfish privacy under framework (S,Q,Θ),

yet releasing (MA(X),MB(X)) does not guarantee 2ε-Pufferfish privacy under framework

(S,Q,Θ).

Now we show that arbitrary Pufferfish mechanisms compose with a correction factor

that depends on the max-divergence between the joint and product distributions ofMA(X) and

MB(X).

Theorem 7.5.5. SupposeMA,MB are two mechanisms used by Alice and Bob which guarantee

εA and εB-Pufferfish privacy respectively under framework (S,Q,Θ). If there exists E, such that

for all si ∈ S, θ ∈ Θ,

D∞(P (MA(X),MB(X)|si, θ) ‖ P (MA(X)|si, θ)P (MB(X)|si, θ)) ≤ E

D∞(P (MA(X)|si, θ)P (MB(X)|si, θ) ‖ P (MA(X),MB(X)|si, θ)) ≤ E,

then the releasing (MA(X),MB(X)) guarantees (εA + εB + 2E)-Pufferfish Privacy under

framework (S,Q,Θ).

The max-divergence between the joint and product distributions ofMA(X) andMB(X)

measures the amount of dependence between the two releases. The more independent they are,

the smaller the max-divergence would be and the stronger privacy the algorithm guarantees.
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Now we show two sequential composition results of the Markov Quilt Mechanism for

general Bayesian networks and Markov Chains respectively.

Theorem 7.5.6 (Sequential Composition of MQM on General Bayesian Networks). For the

Pufferfish framework (S,Q,Θ) defined in Section 7.4.1, releasing MQM(X,Fk, εk, (S,Q,Θ))

for all k ∈ [K] under fixed Markov Quilt sets {SQ,i}ni=1 for all Xi guarantees Kε-Pufferfish

privacy under (S,Q,Θ).

We note that the condition for the Markov Quilt Mechanism to compose linearly in

general Bayesian networks is that all Mk’s use the same active Markov Quilt. This holds

automatically if the privacy parameter ε and Markov Quilt set SQ,i are the same for allMk. If

different levels of privacy {εk}Kk=1 are required, we can guarantee K · maxk∈[K] εk-Pufferfish

privacy as long as the same SQ,i is used acrossMk.

Next, we show that we can further exploit the properties of the Markov Chains to

provide a tighter composition guarantee. Specifically, we show that when Θ consists of Markov

Chains, even if the two runs of Markov Quilt Mechanism use different Markov Quilts, the

Markov Quilt Mechanism still compose linearly. This result applies to both MQMExact and

MQMApprox.

Theorem 7.5.7 (Sequential Composition of MQM on Markov Chains). For the Pufferfish frame-

work (S,Q,Θ) defined in Section 7.4.3, releasing MQM(X,Fk, εk, (S,Q,Θ)) for all k ∈ [K]

guarantees
∑

k∈[K] εk-Pufferfish privacy under framework (S,Q,Θ).

This result shows that the Markov Quilt Mechanism on Markov Chain achieves the

same composition guarantee as pure differential privacy. Comparing to Theorem 7.5.6,it does

not require the same Markov Quilts to be used in the two runs of Markov Quilt Mechanism.

Moreover, the privacy guarantee is better when εk’s are different –
∑

k εk as opposite to K ·

maxk εk.
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7.6 Experiments

We next demonstrate the practical applicability of the Markov Quilt Mechanism when

the underlying Bayesian network is a discrete time homogeneous Markov chain and the goal is

to hide the private value of a single time entry – in short, the setting of Section 7.4.3. Our goal in

this section is to address the following questions:

1. What is the privacy-utility tradeoff offered by the Markov Quilt Mechanism as a function

of the privacy parameter ε and the distribution class Θ?

2. How does this tradeoff compare against existing baselines, such as [66] and Group-

differential privacy?

3. What is the accuracy-run time tradeoff offered by the MQMApprox algorithm as compared

with MQMExact?

These questions are considered in three different contexts – (a) a small problem involving

a synthetic dataset generated by a two-state Markov Chain, (b) a medium-sized problem involving

real physical activity measurement data and a four-state Markov Chain, and (c) a large problem

involving real data on power consumption in a single household over time and a fifty-one state

Markov Chain.

7.6.1 Methodology

Experimental Setup. Our experiments involve the Pufferfish instantiation of Example 1

described in Section 7.2.2. To ensure that results across different chain lengths are comparable,

we release a private relative frequency histogram over states of the chain which represents

the (approximate) fraction of time spent in each state. This is a vector valued query, and is

2
T

-Lipschitz in its L1-norm.

For our experiments, we consider three values of the privacy parameter ε that are repre-

sentative of three different privacy regimes – 0.2 (high privacy), 1 (moderate privacy), 5 (low

118



0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5
L

1
er

ro
r

GK16
MQM Approx
MQM Exact ÿ

a

(a) Synthetic binary chain.
ε = 0.2.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

L
1
er

ro
r

GK16
MQM Approx
MQM Exact

a
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ε = 5.

Figure 7.4. L1 error of frequency of state 1 vs. α for ε = 0.2, 1, 5 for synthetic data.
Θ = [α, 1− α]. GK16 does not apply left of the black dashed vertical line. GroupDP has error
around 5, 1, 0.2 for ε = 0.5, 1, 5 respectively. Reported values are averaged over 500 random

trials.

privacy). All run-times are reported for a desktop with a 3.00 GHz Intel Core i5-3330 CPU and

8GB memory.

Algorithms. Our experiments involve four mechanisms that guarantee ε-Pufferfish

privacy – GroupDP, GK16, MQMApprox and MQMExact.

GroupDP is a simple baseline that assumes that all entries in a connected chain are

completely correlated, and therefore adds Lap(1/ε) noise to each bin. GK16 is the algorithm

proposed by [66], which defines and computes an “influence matrix” for each θ ∈ Θ. The

algorithm applies only when the spectral norm of this matrix is less than 1, and the standard

deviation of noise added increases as the spectral norm approaches 1. We also use two variants

of the Markov Quilt Mechanism – MQMExact and MQMApprox.

7.6.2 Simulations

We first consider synthetic data generated by a binary Markov Chain of length T = 100

with states {0, 1}; the setup is chosen so that all algorithms are computationally tractable when

run on reasonable classes Θ. The transition matrix of such a chain is completely determined

by two parameters – p0 = P (Xi+1 = 0|Xi = 0) and p1 = P (Xi+1 = 1|Xi = 1), and its

initial distribution by a single parameter q0 = P (X1 = 0). Thus a distribution θ ∈ Θ is
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ε = 1.

Figure 7.5. Exact and private aggregated physical activity relative frequency histograms for
three groups of participants. Reported values are for 20 random trials and ε = 1. Recall GK16

does not apply for this problem.

represented by a tuple (q0, p0, p1), and a distribution class Θ by a set of such tuples. To allow for

effective visualization, we represent the distribution class Θ by an interval [α, β] which means

that Θ includes all transition matrices for which p0, p1 ∈ [α, β] and all initial distribution q in

the 2-dimensional probability simplex. When 0 < p0, p1 < 1, the chain is guaranteed to be

aperiodic, irreducible and reversible, and we can use the approximation in the full paper [132] for

MQMApprox. We use the optimization procedure described in the full paper [132] to improve

the efficiency of MQMExact. Finally, since the histogram has only two bins, it is sufficient to

look at the query F (X) = 1
T

∑T
i=1Xi which is 1

T
-Lipschitz.

To generate synthetic data from a family Θ = [α, β], we pick p0 and p1 uniformly from

[α, β], and an initial state distribution uniformly from the probability simplex. We then generate

a state sequence X1, . . . , XT of length T from the corresponding distribution. For ease of

presentation, we restrict Θ to be intervals where β = 1− α, and vary α from in 0.1 to 0.4. We

vary ε in {0.2, 1, 5}, repeat each experiment 500 times, and report the average error between the

actual F (X) and its reported value. For the run-time experiments, we report the average running

time of the procedure that computes the scale parameter for the Laplace noise in each algorithm;

the average is taken over all θ = (p0, p1) in a grid where p0, p1 vary in {0.1, 0.11, . . . , 0.9}.

Figure 7.4 shows the accuracy results, and Table 7.2 (Column 2) the run-time results for

ε = 1. The values for GroupDP have high variance and are not plotted in the figure; these values
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are around 5, 1, 0.2 respectively. As expected, for a given ε, the errors of GK16, MQMApprox

and MQMExact decrease as α increases, i.e, the distribution class Θ becomes narrower. When α

is to the left of the black dashed line in the figure, GK16 does not apply as the spectral norm of

the influence matrix becomes > 1; the position of this line does not change as a function of ε. In

contrast, MQMApprox and MQMExact still provide privacy and reasonable utility. As expected,

MQMExact is more accurate than MQMApprox, but requires higher running time. Thus, the

Markov Quilt Mechanism applies to a wider range of distribution families than GK16; in the

region where all mechanisms work, MQMApprox and MQMExact perform significantly better

than GK16 for a range of parameter values, and somewhat worse for the remaining range.

7.6.3 Real Data

Table 7.1. L1 error of the relative frequency histograms for individual and aggregate tasks for
physical activity of three participant groups. ε = 1. Reported values are averaged over 20

random trials.

Algorithm
cyclist older woman overweight woman

Agg Indi Agg Indi Agg Indi
DP 0.2918 N/A 0.8746 N/A 0.4763 N/A
GroupDP 0.0834 2.3157 0.1138 1.7860 0.0458 1.1492
GK16 N/A N/A N/A N/A N/A N/A
MQMApprox 0.0107 0.6319 0.0156 0.2790 0.0048 0.1967
MQMExact 0.0074 0.4077 0.0098 0.1742 0.0033 0.1316

Table 7.2. Running time (in seconds) of an optimized algorithm that calculates the scale
parameter of the Laplace noise (averaged over 5 runs). ε = 1.

Algorithm Synthetic cyclist older woman overweight woman electricity power
GK16 6.3589× 10−4 N/A N/A N/A N/A
MQMApprox 1.8458× 10−4 0.0064 0.0060 0.0028 0.0567
MQMExact 7.6794× 10−4 1.5186 1.2786 0.6299 282.2273
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We next apply our algorithm to two real datasets on physical activity measurement and

power consumption. Since these are relatively large problems with large state-spaces, it is

extremely difficult to search over all Markov Chains in a class Θ, and both GK16 as well as

MQMExact become highly computation intensive. To ensure a fair comparison, we pick Θ

to be a singleton set {θ}, where θ = (qθ, Pθ); here Pθ is the transition matrix obtained from

the data, and qθ is its stationary distribution. For MQMApprox, we use ` from Lemma 7.4.7,

while for MQMExact we use as ` the length of the optimal Markov Quilt that was returned by

MQMApprox.

7.6.3.1 Physical Activity Measurement

We use an activity dataset provided by [53, 55, 54], which includes monitoring data from

a study of daily habits of 40 cyclists, 16 older women, and 36 overweight women. The dataset

includes four activities – active, standing still, standing moving and sedentary – for all three

groups of participants,1 and thus the underlying θ is a four-state Markov Chain. Activities are

recorded about every 12 seconds for 7 days when the participants are awake, which gives us

more than 9, 000 observations per person on an average in each group. To address missing values,

we treat gaps of more than 10 minutes as the starting point of a new independent Markov Chain.

Observe that this improves the performance of GroupDP, since the noise added is Lap(M/Tε),

where M is the length of the longest chain. For each group of participants, we calculate a single

empirical transition matrix Pθ based on the entire group; this Pθ is used in the experiments. For

this application, we consider two tasks – aggregate and individual. In the aggregate task, the goal

is to publish a private aggregated relative frequency histogram2 over participants in each group

in order to analyze their comparative activity patterns. While in theory this task can be achieved

with differential privacy, this gives poor utility as the group sizes are small. In the individual

task, we publish the relative frequency histogram for each individual and report the average error

1For cyclists, data also includes cycling, which we merge with active for ease of analysis and presentation.
2Recall that in a relative frequency histogram, we report the number of observations in each bin divided by the

total number of observations.
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across individuals in each group.

Table 7.1 summarizes the L1 errors for the three groups and both tasks for ε = 1. For

the aggregate task, we also report the error of a differentially private release (denoted as DP).

Note that the error of the individual task is the average L1 error of each individual in the group.

Figure 7.5 presents the exact and private aggregated relative frequency histograms for the three

groups. Table 7.2 (Columns 2-4) presents the time taken to calculate the scale parameter of the

Laplce noise for each group of participants; as this running time depends on both the size of the

group as well as the activity patterns, larger groups do not always have higher running times.

The results in Table 7.1 show that the utilities of both MQMApprox and MQMExact are

significantly better than that of GroupDPfor all datasets and tasks, and are significantly better

than DP for the aggregated task. As expected, MQMExact is better than MQMApprox, but has

a higher running time. We also find that GK16 cannot be applied to any of the tasks, since the

spectral norm of the influence matrix is > 1; this holds for all ε as the spectral norm condition

does not depend on the value of ε. Figure 7.5 shows the activity patterns of the different groups:

the active time spent by the cyclist group is significantly longer than the other two groups, and

the sedentary time spent by overweight women group is the longest. These patterns are visible

from the private histograms published by MQMApprox and MQMExact, but not necessarily

from those published by GroupDP.

7.6.3.2 Electricity Consumption

Table 7.3. L1 error of relative frequency histogram for electricity consumption data. Reported
values are averaged over 20 random trials.

Algorithm ε = 0.2 ε = 1 ε = 5

GroupDP 516.1555 102.8868 19.8712
GK16 N/A N/A N/A
MQMApprox 0.3369 0.0614 0.0113
MQMExact 0.1298 0.0188 0.0022
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We use data on electricity consumption of a single household in the greater Vancouver

area provided by [95]. Power consumption (in Watt) is recorded every 1 minute for about

two years. Missing values in the original recording have been filled in before the dataset is

published. We discretize the power values into 51 intervals, each of length 200(W), resulting in a

Markov chain with 51 states of length T ≈ 1, 000, 000. Our goal again is to publish a private

approximation to the relative frequency histogram of power levels.

Table 7.3 reports the L1 errors of the four algorithms on electricity power dataset for

different ε values, and Table 7.2 the times required to calculate the scale parameter. We again find

that GK16 does not apply as the spectral norm condition is not satisfied. The error of GroupDP

is very large, because the data forms a single Markov chain, and the number of states is relatively

large. We find that in spite of the large number of bins, MQMApprox and MQMExact have high

utility; for example, even for ε = 0.2, the per bin error of MQMExact is about 0.25 percent, and

for ε = 1, the per bin error is 0.04 percent. Finally, while the running time of MQMExact is

an order of magnitude higher than MQMApprox, it is still manageable (< 5 minutes) for this

problem.
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7.6.4 Discussion

We now reconsider our initial questions. First, as expected, the experiments show that

the utility of GK16 and both versions of MQM decreases with decreasing ε and increasing size

of Θ. The utility of GroupDP does not change with Θ and is not very high; again this is to be

expected as GroupDP depends only on the worst-case correlation. Overall the utility of both

versions of the Markov Quilt Mechanism improve for longer chains.

Comparing with GK16, we find that for synthetic data, the Markov Quilt Mechanism

applies to a much wider range of distribution families; in the region where all mechanisms work,

MQMApprox and MQMExact perform significantly better than GK16 for a range of parameter

values, and somewhat worse for the remaining range. For the two real datasets we consider,

GK16 does not apply. We suspect this is because the influence matrix in [66] is calculated based

on local transitions between successive time intervals (for example, Xt as a function of Xt−1);

instead, the Markov Quilt Mechanism implicitly takes into account transitions across periods

(for example, how Xt+k as a function of Xt). Our experiments imply that this spectral norm

condition may be quite restrictive in practical applications.

Finally, our experiments show that there is indeed a gap between the performance of

MQMExact and MQMApprox, as well as their running times, although the running time of

MQMExact still remains manageable for relatively large problems. Based on these results, we

recommend using MQMExact for medium-sized problems where the state space is smaller (and

thus computing the max-influence is easier) but less data is available, and MQMApprox for

larger problems where the state space is larger but there is a lot of data to mitigate the effect of

the approximation.

7.7 Conclusion

We present a detailed study of how Pufferfish may be applied to achieve privacy in

correlated data problems. We establish robustness properties of Pufferfish against adversarial
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beliefs, and we provide the first mechanism that applies to any Pufferfish instantiation. We

provide a more computationally efficient mechanism for Bayesian networks, and establish its

composition properties. We derive a version of our mechanism for Markov Chains, and evaluate

it experimentally on a small, medium and a large problem on time series data. Our results

demonstrate that Pufferfish offers a good solution for privacy in these problems.

We believe that our work is a first step towards a comprehensive study of privacy in

correlated data. There are many interesting privacy problems – such as privacy of users connected

into social networks and privacy of spatio-temporal information gathered from sensors. With the

proliferation of sensors and “internet-of-things” devices, these privacy problems will become

increasingly pressing. We believe that an important line of future work is to model these problems

in rigorous privacy frameworks such as Pufferfish and design novel mechanisms for these models.
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