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ABSTRACT OF THE DISSERTATION

Privacy-Preserving Algorithms for Machine Learning

by

Shuang Song
Doctor of Philosophy in Computer Science
University of California San Diego, 2018

Professor Kamalika Chaudhuri, Chair

Modern machine learning increasingly involves personal data, such as healthcare, finan-
cial and user behavioral information. However, models trained on such data can reveal detailed
information about the data and cause a serious privacy breach. Consequently, it is important to
design algorithms that can analyze the sensitive data while still preserving privacy.

This thesis advances the state-of-the-art of privacy-preserving machine learning in the
following two major aspects.

First, this thesis addresses the challenges in differentially private large-scale machine
learning. On the one hand, with a large amount of sensitive user data, privacy-preserving

learning algorithms are expected to achieve improved utility. On the other hand, big data imposes
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additional challenges, including performance (a.k.a Volume), data noise (a.k.a Veracity), a large
number of classes and distributed sources (a.k.a Variety). This thesis presents (1) private versions
of the widely used stochastic gradient descent (SGD) algorithm with generalization to data from
multiple sources of different privacy requirements, and (2) an improved version of the Private
Aggregation of Teacher Ensembles (PATE) framework which can scale to learning tasks with a
large number of output classes and uncurated, imbalanced training data.

Second, this thesis considers privacy-preserving data analysis beyond tabular data. Differ-
ential privacy is best suited for tabular data, where each record corresponds to all the information
about an individual and records are independent of each other. However, many real-world
applications involve non-tabular sensitive data, such as epidemic transmission graphs and mea-
surement of the physical activity of a single subject across time. To analyze disease transmission
graphs, or more general, graphs with sensitive information stored in each node, this thesis
considers privacy-preserving continual release of graph statistics, such as the percentages of
highly-active patients over time. The proposed algorithm outperforms the baselines in utility
over a range of parameters. For physical activity measurement, or more generally, data with
correlation, this thesis looks at a recent generalization of differential privacy, called Pufferfish
privacy, that addresses privacy concerns in correlated data. Two mechanisms that work under
different scenarios are proposed, and one of them is evaluated on real and synthetic time-series

data.

XV



Chapter 1

Introduction

Modern machine learning increasingly involves sensitive personal data such as healthcare,
financial and user behavioral information. With models trained on such data, researchers can
gain invaluable insights into real-world problems across various domains. However, these trained
models may unexpectedly reveal details of the sensitive data like an individual user’s health
condition and daily activities, which causes serious moral and legal concerns. To address the
concerns while keeping the positive social impact of machine learning, it is therefore important
to design algorithms that analyze sensitive personal data while protecting individuals’ privacy.

There has been a long line of work on conducting data analysis while preventing identi-
fication of individual participants from the results of the analysis [58, 37, 118} 121} 159} 114] —
this is formally called statistical disclosure control [34] (see [3]] for a survey of the field prior to
1989). Before the era of differential privacy, one of the most commonly used privacy-protection
techniques had been anonymization, where the main idea is to remove personally identifiable
information, such as name, gender, age and geographical information, from a dataset before
releasing it. However, it was proven by previous studies that severe privacy breach can still
happen with anonymized data. In 2006, The New York Times identified and interviewed a user
from an anonymized search log dataset published by AOL [9]. The attack succeeded because
the search logs, though anonymized, contain user-specific queries that reveal one’s age, gender,

address and occupation — enough for the inference of the one’s identity. Another example



proving the failure of anonymization is the Netflix Prize data leak. Using the Internet Movie
Database (IMDb) as a source of background knowledge, researchers were able to identify a
significant number of users from the anonymized movie rating dataset published by Netflix [[103].
There have been extensions of anonymization such as k-anonymity [135]], /-diversity [94] and
t-closeness [I89]]. However, most of them are known to be vunlunarble to attacks with auxiliary
information [63]].

Previous studies have also shown that privacy breach can happen even if we hide the
dataset and release only aggregate statistics. [40] proved theoretically that an adversary can
reconstruct a dataset almost exactly with aggregate statistics. Such privacy breaches happened on
real applications as well. [140] presented an attack on GWAS (genome-wide association study),
a study that aims at finding the associations between single-nucleotide polymorphisms (SNPs)
and diseases. It demonstrated that when given a large number of SNPs statistics and the genomic
data of an individual, an adversary is able to determine if this individual is in the case group and
therefore has the disease. Another example is the model inversion attack presented in [61]. By
making queries to a neural network trained for a face-recognition task, an adversary is able to
recover images of users whose data is included in the training process.

The failures of anonymization and releasing aggregate information motivate the necessity
for a stronger and mathematically rigorous definition of privacy.

Differential privacy [45], a cryptographically-motivated definition of privacy, satisfies
such requirements. It has gained significant attention ever since its proposal and has emerged as
the gold standard in data privacy. Informally, an algorithm satisfies differential privacy if the
probability of any outcome does not change significantly when a single individual’s private data
changes. An adversary is therefore unable to make much inference about an individual given
the algorithm’s output even with auxiliary information about the rest of the dataset or unlimited
computational power. Individuals thus will not incur a significant privacy loss when allowing
their data to be used by a differentially private algorithm. In the formal definition, a parameter e

quantifies the privacy loss of an algorithm, making differential privacy a mathematically rigorous



definition.

The basic techniques for achieving differential privacy in simple queries include the
Laplace mechanism [45]], the Gaussian mechanism [44]] and the exponential mechanism [[100]].
All techniques guarantee differential privacy by injecting randomness in the algorithm. The
amount of randomness is determined by the privacy parameter as well as a property of the query
function called the global sensitivity, which measures the maximum amount of change in the
function value when one individual’s record changes. Based on the these basic techniques,
differentially private algorithms have been designed for numerous machine learning tasks such
as empirical risk minimization [26, [10, 12, 162]], Bayesian inference [38, 142, [152, 160, 165,
recommender system [99]], deep learning [[128, (1], and unsupervised learning tasks such as
dimensionality reduction [18, 28, 52] and clustering [18, 109, [134]. The key challenge in
differentially private algorithm design is the privacy-utility tradeoff. In short, guaranteeing
privacy involves randomizing the algorithms’ output which impacts the performance or utility
of the resulting procedures. For example, in parameter estimation, guaranteeing privacy may
increase the mean-squared error of the estimator.

Differential privacy has also spawned a rich body of research on privacy definitions,
including several variants of differential privacy that capture the privacy concerns in scenarios not
considered by differential privacy. For instance, local differential privacy [77, 42, 43]] considers
the case where there is no trusted data holder who collects and analyzes the sensitive data as in
differential privacy. Instead, individuals’ data is perturbed locally before being transferred to
and analyzed by an untrusted party. Local differential privacy is thus a strictly stronger notion
compared to differential privacy and enables data collection under more restricted conditions.
Another variant, Pufferfish privacy [84], is a generalization of differential privacy customized for
data with correlation. While differential privacy does not adequately address privacy issues in
correlated data, Pufferfish protects individuals’ privacy against adversaries who possess prior
knowledge about the correlation across multiple individuals.

This thesis advances privacy-preserving machine learning in two major aspects.



Differentially private large-scale machine learning

First, the presented thesis addresses the challenges in differentially private large-scale
machine learning. Due to the increasing rate of data collection and generation, just like other
machine learning tasks, privacy-preserving learning is required to be capable of handling a
large amount of data. On the positive side, with a large amount of user data, the privacy-utility
tradeoff is expected to be less intensive as it is easier to hide individuals’ information in the
large crowd. On the other side, however, non-private machine learning algorithms can still
cause privacy breach, and big data imposes additional challenges, including performance (a.k.a
Volume), data noise (a.k.a Veracity), a large number of classes and distributed sources (a.k.a
Variety). It remains unclear how to perform large-scale machine learning with differential privacy.

This thesis presents two methods that tackle these challenges.

e Chapter [3] considers the stochastic gradient descent (SGD) algorithm, which is one of
the most commonly used algorithms in large-scale machine learning for its simplicity,
scalability and convergence guarantee. We derive differentially private versions of the SGD
algorithm and evaluate them on real and synthetic datasets. The experimental results show
that for classification using logistic regression, differentially private single-point SGD
has high variance, but a moderate increase in the batch size can improve the performance
significantly. For low-dimensional problems, the private algorithm’s performance is close

to that of non-private SGD.

Additionally, with a small modification, the differentially private SGD algorithms can
be adapted to the local differential privacy setting, where each individual provides a
perturbed gradient. Specifically, we consider the scenario where private data is collected
from multiple sources with heterogeneous privacy preferences. For example, a drug test
might be performed at different medical institutes which operate under different privacy
regulations and a researcher wants to combine the results to perform a more comprehensive

analysis. In a simplified yet general case where the training data is from two sources,



one more privacy-demanding and one less, we show both theoretically and empirically
that the order in which we should process the two datasets to get good performance
depends on the learning rate of the private SGD algorithm. We also provide a heuristic for
choosing different learning rates for the two datasets and demonstrate empirically that our
algorithm outperforms the naive approaches using a single learning rate or using the less

privacy-demanding data only. These results are presented in Chapter [4]

In Chapter [5] we revisit a machine learning framework called the Private Aggregation of
Teacher Ensembles, or PATE [[111], and develop techniques that improve its scalability
and practical applicability. PATE is a recently proposed framework that offers scalable,
high-utility machine learning with strong privacy-protection guarantees. In the PATE
framework, multiple “teacher” models are trained on disjoint sensitive data (e.g., different
users’ data), and PATE uses the teachers’ aggregated consensus answers in a black-box
fashion to supervise the training of a “student” model. PATE guarantees differential privacy
by adding random noise to the aggregate answers used to train the student and releasing

only the student model.

It is worth emphasizing that the privacy guarantee of PATE is agnostic to the underlying
models used by the teachers and the student. Besides, PATE is, by nature, a distributed
machine learning framework; the sensitive data can be stored in multiple servers where
each server trains a teacher model locally and simultaneously. Thus, communication cost
is only paid for transporting the trained teacher models to an aggregator which uses them
to answer queries from the student. The original PATE, however, was applied to only

simple tasks like MNIST, without any realistic and larger-scale evaluation.

We propose new techniques that improve PATE in terms of its privacy, utility, and scalability.
When evaluated on a character recognition task with 150 output classes, the improved
PATE demonstrates its applicability on uncurated, large-scale data. To this end, we claim

that the improved PATE is a significant step towards large-scale learning with privacy.



Privacy-preserving data analysis on non-tabular data

Differential privacy guarantees that the participation of any individual does make a
significant difference to the outcome of the algorithm. It is therefore best suited for tabular
data where all the information of an individual is stored as one single record and records are
independent of each other. However, in many real-world applications, the sensitive data that
needs to be protected is non-tabular, where each protected entity affects multiple records through
the intrinsic structure or correlation in the data.

Consider, for example, a disease transmission graph that encodes how a disease transmits
among individuals. Analyzing the general statistics on such a graph provides valuable information
for epidemiology research. At the same time, due to the sensitive nature of certain diseases, we
need to make sure that the infection status of any individual is protected. The structure of the
graph can cause additional difficulty, as a highly infectious individual can change the structure of
the graph drastically and it is therefore non-trivial to hide the evidence of the existence of such
an individual while maintaining a reasonable level of utility.

Another type of non-tabular data is data with correlation. Consider, for example, a simple
time-series application — measurement of physical activity of a single subject across time. The
goal here is to release aggregate statistics on the subject’s activities over a long period (say a
week) and the entity to be protected is the activity at any specific instant (say, 10:30am on Jan
4). If the measurements are made at small intervals, then the records form a highly correlated
time-series as human activities change slowly over time. The activities performed before or after
provide strong evidence about what the subject was doing at a given time, introducing additional
challenges in privacy-protection for correlated data. To address privacy challenges in this kind of
data, we need a generalization of differential privacy that can capture the data correlation and

protect the entities under such correlation.

e To tackle the difficulty in the disease transmission graph example, in Chapter[6] we consider

the problem of privacy-preserving continual release of graph statistics on sensitive graphs



where nodes and their associated edges appear over time in an online manner. We consider
HIV transmission data collected from patients in a particular region over multiple years.
By measuring similarities between HIV sequences of different patients, we can build
an HIV transmission network where each node represents one patient and each edge an
occurrence of transmission. Epidemiologists can understand how HIV propagates by
studying properties of the network over time. Since there is a considerable social stigma
associated with HIV, we need to ensure that privacy of the included patients is not violated
when we release statistics of the network. Additionally, analyses may need to happen

intermittently so that properties of the network as it evolves may be studied.

To apply differential privacy in such a scenario, it is essential to determine what a single
individual’s data contribute to the graph. Prior work has looked at two forms of differential
privacy in graphs — edge differential privacy, where an edge corresponds to an individ-
ual’s private value, and node differential privacy, where a single node corresponds to an
individual. In the HIV transmission graph example, a patient corresponds to a node, and
hence node differential privacy is our privacy notion of choice. The main challenge in
the continual privacy-preserving release of graph statistics is maintaining a good privacy-
utility tradeoff, as a node with a huge number of adjacent edges can change the statistics

drastically and hiding the effect of a node can require a significant amount of noise.

In Chapter [6] we show that if there is a publicly known upper bound on the maximum
degree of any node in the entire graph sequence, then we can release private sequences
of simple statistics such as the number of high-degree nodes and subgraph counts with
relatively high accuracy. Experiments on both real and synthetic datasets show that our

algorithm outperforms the baselines in utility over a range of privacy parameters.

To address the privacy concerns in correlated data such as that in the activity tracking
example, in Chapter[7} we consider Pufferfish privacy [84], a generalization of differential

privacy that captures data correlation. The standard differential privacy does not offer



enough protection for data with correlation; whereas group differential privacy, a direct
adoption of differential privacy, adds noise proportional to the number of correlated
records and causes unnecessary utility loss. On the contrary, Pufferfish privacy captures
data correlation with a parameter O representing a class of distributions that plausibly
generate the data. It protects the sensitive information in the data against all adversaries
whose beliefs lie in ©. With this specification, Pufferfish offers both privacy and the hope
for utility when a large number of individuals or entries are correlated, yet the “average

amount” of correlation is low.

The main challenge in using Pufferfish privacy is a lack of suitable mechanism. We there-
fore provide the first mechanism, called the Wasserstein Mechanism, which applies to any
general Pufferfish instantiation. Moreover, we consider the case when the data correlation
can be captured by a Bayesian network and propose a computationally efficient mechanism,
called the Markov Quilt Mechanism. As a case study, we derive a simplified version of
the mechanism for time-series data. We provide privacy and utility guarantees, establish
composition properties, and demonstrate the practical applicability of the mechanism

through experimental evaluations on synthetic as well as real data.

The rest of the thesis is structured as follows. Chapter [2] reviews the definition and
properties of differential privacy, as well as some variants of differential privacy relevant to
this thesis. Chapter [3| presents the differentially private SGD algorithms, with the extension to
local differentially private SGD with data coming from sources of different privacy requirements
presented in Chapter[d] Chapter [5]discusses the improved version of the PATE framework. Next,
Chapter [0] presents the algorithm for continual release of graph statistics under node differential

privacy. Algorithms achieving Pufferfish privacy for correlated data are introduced in Chapter



Chapter 2

Differential Privacy and Its Variants

This chapter reviews the formal definition of differential privacy, some of its properties,
and the commonly used basic algorithms that achieve it. Moreover, this chapter reviews several
variants of differential privacy relevant to this thesis, including Rényi differential privacy, local

differential privacy, and Pufferfish privacy.

2.1 Differential Privacy

Differential privacy considers the setting where a trusted data curator has access to a
sensitive dataset D; an untrusted data analyst send statistical queries about D to the curator, who
then answers the queries with a randomized algorithm M. We can assume that the sensitive
dataset D contains n records from a data universe X’ and each record contains the sensitive
information from a single individual that needs to be protected. Differential privacy guarantees
that each record has little influence on the output of the randomized algorithm M, and an
adversary thus cannot infer much about the presence or absence of any individual in the dataset

from the query results.

2.1.1 The Definition

Before defining differential privacy, we present the definition of the distance between

two datasets.



Definition 2.1.1 (Distance between Datasets). Given datasets D, D’ € X", the distance between
them, denoted by d(D, D’), is the minimum number of records in D that need to be changed to

convert D to D'. If d(D, D") = 1, we call D and D' neighboring datasets.

Differential privacy ensures that the participation of a single individual in a dataset does
not change the probability of any outcome by much, which is captured by requiring an algorithm

to have similar output distributions under any pair of neighboring datasets.

Definition 2.1.2 (e-Differential Privacy). A randomized algorithm M is said to guarantee e-
differential privacy if for any neighboring datasets D and D', and for any w € Range(M), we

have

PM(D)=w) <e - P(M(D') =w),

where the probability is with respect to the randomness in M.

In this definition, € is a parameter often called the privacy budget or the privacy risk. A
larger value of € implies higher privacy risk. It can be shown that any non-trivial algorithm that
guarantees differential privacy needs to be a randomized algorithm.

A relaxed definition — (¢, 0)-differential privacy, is as follows.

Definition 2.1.3 ((¢, §)-Differential Privacy). A randomized algorithm M is said to guarantee
(€, 9)-differential privacy if for any neighboring datasets D and D', and for any S C Range(M),

we have

P(M(D) € S) < e - P(M(D') € 8) +56,

where the probability is with respect to the randomness in M.

Intuitively, € and ¢ together quantify the privacy risk; ¢ is the probability with which e€

fails to bound to ratio between the two probabilities. When § = 0, (e, )-differential privacy re-
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duces to e-differential privacy. Usually, e-differential privacy is referred to as the pure differential

privacy.
2.1.2 Basic Tools

Two basic algorithms that are commonly used for differentially private release of numeri-
cal queries are the Laplace Mechanism [435] and the Gaussian Mechanism [44]. Both algorithms
add random noise to the exact query value, where the noise has standard deviation proportional
to a quantity called the global sensitivity of the query function. Intuitively, the global sensitivity
of a query function f measures the maximum amount of change in the value of f when one

record in the dataset changes.

Definition 2.1.4 (Global Sensitivity). Let f : X" — R? be a query function and ||-|| be a

distance metric. The global sensitivity of f with respect to ||-|| is defined as

GS(fl-) = max [If(D) = f(D)].

d(D,D")=1

The L; and L, norm are the most commonly used distance metric. When f is a scalar
function or the distance metric is clear from the context, we may omit ||-|| in the notation.

Let Lap () be a random variable drawn from the Laplace distribution with mean 0 and
scale parameter 3, i.e., a distribution with probability density function p(z) = ﬁexp (—%)
Given a dataset D, a numerical query function f : X" — R%, and a privacy parameter ¢, the

Laplace Mechanism returns
GS .
F(D)+ (2, ..., Zy4), with Z; drawn i.i.d. from Lap (ﬂ) .
€

It can be shown that the Laplace Mechanism guarantees e-differential privacy [45].
To achieve (¢, §)-differential privacy, one can use the Gaussian Mechanism, which adds

Gaussian noise to the actual query value f(D). Given a dataset D, a numerical query function

11



f: X" — RY, and privacy parameters (¢, §), the Gaussian Mechanism returns

2log(1.25/6)GS .
f(D) + Z, with Z drawn from N (0, 0°1;) where o > 0g(1.25/9)GS (/. | Hz)’
€

and I, is the identity matrix of size d. This mechanism guarantees (¢, ¢)-differential privacy for

any €,0 € (0,1).
2.1.3 Properties of Differential Privacy

We review two important properties of differential privacy that allow us to use the basic
tools as building blocks to construct algorithms for more sophisticated tasks.
First, differential privacy is immune to post-processing [48]], which means any operation

on the output of a differentially private algorithm does not increase the privacy risk.

Theorem 2.1.5 (Post-processing). Let M : X" — ) be an (¢, 0)-differentially private algorithm

and f : Y — Z be an arbitrary function. Then f o M : X™ — Z is (¢, 0)-differentially private.

To build a differentially private algorithm for a sophisticated task, we may consider
composing several subroutines each guaranteeing a certain level of privacy. How do we quantify
the overall privacy loss of such a composition? The composition theorems of differential privacy
offer the answer.

There are two types of composition — parallel and sequential. The former captures the
case where multiple differentially private subroutines run on disjoint subsets of the entire dataset,
whereas the latter captures the case where they run on the same dataset, potentially adaptively.

Now we review the composition properties of differential privacy under these two scenarios.

Theorem 2.1.6 (Parallel Composition). For i € [k, let M; be an ¢;-differentially private
algorithm. Given a dataset D, let {DWY), ... D®)} be k disjoint subsets of D. Let M be defined
as M(D) = (My(D1), Ma(Ds), ..., My(Dy)). Then M is max;cy €;-differentially private.

12



For sequential composition, we say a sequence of mechanisms (M, ..., M) are

chosen adaptively if M, can be chosen based on the outputs of the previous mechanisms

My(D),..., M;_1(D).

Theorem 2.1.7 (Basic Sequential Composition). If a mechanism M consists of a sequence of
adaptive mechanisms My, . .., My, such that for any i € [k|, M, guarantees (¢;, ;)-differential

privacy, then M guarantees (2?21 &, S

(2

1 5i> -differential privacy.

The advanced composition theorem [S1]] provides a tighter bound for sequential compo-

sition of (e, §)-differentially private algorithms.

Theorem 2.1.8 (Advanced Sequential Composition). If a mechanism M consists of a sequence

of adaptive mechanisms My, . .., My, such that for any i € k], M; guarantees (¢, §)-differential

privacy, then M guarantees (\/Qk log(1/0")e + ke(e® —1),6" + k5) -differential privacy for
any 6 > 0.

2.2 Rényi Differential Privacy

Rényi Differential Privacy, or RDP [[101], is a relaxation of the pure differential privacy
defined with the Rényi Divergence. RDP shares important properties like post-processing and
composition with differential privacy. It is strictly stronger than (¢, ¢)-differential privacy and
can be converted to a curve of (¢(d), §)-differential privacy guarantees. RDP allows tighter
analysis for tracking the privacy loss of the composition of differentially private algorithms. In

this section, we review the definition and some properties of RDP.

2.2.1 The Definition

We first define the Rényi Divergence and then RDP.

Definition 2.2.1 (Rényi Divergence). The Rényi divergence of order \ between two probability
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distributions P and () is defined as:

DA(P||lQ) = log E,q | (P(2)/Q(x))| = log B p (P(w)/Q(l“))A*l]-

A—1 A—1

Definition 2.2.2 (Rényi Differential Privacy (RDP)). A randomized mechanism M is said to

guarantee (X, €)-RDP with A > 1 if for any neighboring datasets D and D',

(pany =y <.

RDP generalizes pure differential privacy in the sense that e-differential privacy is

1
A—1

DA(M(D)||IM(D")) = log £ a1(D)

equivalent to (0o, £)-RDP.

2.2.2 Properties of Rényi Differential Privacy

[101] provides the following composition property of RDP and the conversion from RDP

to (e, 9)-differential privacy.

Theorem 2.2.3 (Composition of RDP). If a mechanism M consists of a sequence of adaptive
mechanisms My, ..., My, such that for any i € [k], M, guarantees (\,¢;)-RDP, then M

guarantees </\, Z,’;:l ai) -RDP.

Theorem 2.2.4 (From RDP to DP). If a mechanism M guarantees (X, €)-RDP, then M guaran-

tees (8 + 10)%_11/5, (5) -differential privacy for any ¢ € (0,1).

Furthermore, RDP captures the privacy guarantee of Gaussian noise in a much cleaner

and more accurate manner [101]] compared to (£, ¢)-differential privacy.

Theorem 2.2.5 (RDP Guarantee of the Gaussian Mechanism). Given a dataset D € X" and
a query function f : X" — R with GS (f) = 1, then the Gaussian Mechanism which outputs
f(D) 4+ N (0,0) guarantees (X, 325)-RDP for all A > 1.

Y 20-2
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2.3 Local Differential Privacy

Local differential privacy [144, 42, [//]] is a stronger notion of privacy motivated by
differential privacy [45]]. Unlike differential privacy which assumes the existence of a trusted
curator with direct access to the sensitive dataset, local differential privacy considers the situation
in which individuals do not trust any curator. In this model, an untrusted algorithm is allowed to
access a perturbed version of a sensitive dataset through a sanitization interface, and must use
this perturbed data to perform some estimation. The amount of perturbation is controlled by e,
the privacy risk parameter. The strong guarantee offered by local differential privacy makes it an

attractive choice in many industrial applications [56} (138, 39].

Definition 2.3.1 (Local Differential Privacy). Let D = (X, ..., X,,) be a sensitive dataset where
each X; € D corresponds to data about individual i. A randomized sanitization mechanism
M which outputs a disguised version (Uy, ..., U,) of D is said to provide e-local differential

privacy to individual i, if for all x, 2’ € D and forall S C S,

where the probability is taken over the randomization in the sanitization mechanism.

As is in differential privacy, the parameter ¢ measures the privacy risk and smaller ¢
implies less privacy risk. Local differential privacy allows different e value for different individual
records in the dataset. We can use the Laplace mechanism to guarantee local differential privacy,

where the global sensitivity measures how much U; can change when the value of X; changes.

2.4 Pufferfish Privacy

Pufferfish privacy [84]] is a generalization of differential privacy [43] which captures the

data correlation.
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2.4.1 The Definition

A Pufferfish framework is instantiated by three parameters — a set S of secrets, a set
Q C § x S of secret pairs, and a class of data distributions ©. S is the set of possible facts
about the dataset that we might wish to hide, and could refer to a single individual’s private data
or part thereof. Q is the set of secret pairs that we wish to be indistinguishable. Finally, © is a
set of distributions that can plausibly generate the data, and controls the amount and nature of
correlation. Each 6 € O represents a belief an adversary may hold about the data, and the goal

of the privacy framework is to ensure indistinguishability in the face of these beliefs.

Definition 2.4.1 (Pufferfish Privacy). A privacy mechanism M is said to be e-Pufferfish private
in a framework (S, Q, ©) if for all 0 € © with X drawn from distribution 0, for all secret pairs
(siys5) € Q, and for all w € Range(M ), we have

Puo(M(X) = w|s;, 0)
= Pupo(M(X) = wls;,0)

—€

e (2.2)

IA

when s; and s; are such that P(s;|0) # 0, P(s;|0) # 0.

Unlike differential privacy, the probability in (2.2) is with respect to the randomized
mechanism and the actual data X, which is drawn from a # € O; to emphasize this, we use the
notation X instead of D.

[84] shows that e-differential privacy is a special case of Pufferfish, where S is the set of
all facts of the form s!, = Individual i has value x fori € {1,...,n} and z in a domain [k], Q is
set of all pairs (s%, s°) for x and z in [k] with = # z, and © is the set of all distributions where
each individual is distributed independently. Moreover, we cannot have both privacy and utility
when O is the set of all distributions [84]. Consequently, it is essential to select © wisely; if O is

too restrictive, then we may not have privacy against legitimate adversaries, and if © is too large,

then the resulting privacy mechanisms may have little utility.
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2.4.2 Properties of Pufferfish Privacy

An alternative interpretation of (2.2) is that for X ~ 6, 6 € ©, for all (s;,s;) € Q, and

for all w € Range(M ), we have:

<e ' ———. (2.3)

In other words, the knowledge of M (.X') does not affect the posterior ratio of the likelihood of s;
and s;, compared to the initial belief.

Pufferfish privacy is immune to post-processing. However, it does not always com-
pose [84] as in differential privacy. In Chapter|/|, we will study the composition properties of

Pufferfish under restricted conditions.
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Chapter 3

Differentially Private Stochastic Gradient
Descent

3.1 Overview

In the data-rich setting, at first blush it appears that learning algorithms can enjoy
both low privacy risk and high utility. However, optimization methods for large data sets
must also be scalable. Stochastic gradient descent (SGD) algorithms have received significant
attention recently because they are simple and satisfy the same asymptotic guarantees as more
computationally intensive learning methods [[115,127]]. However, because these guarantees are
asymptotic, to obtain reasonable performance on finite data sets practitioners must take care
in setting parameters such as the learning rate (step size) for the updates. To alleviate some
of this sensitivity and improve the performance of SGD in the finite sample setting, several
works [31}, 36, 137]] have suggested grouping updates into “mini-batches.” This can improve the
robustness of the updating at a moderate expense in terms of computation, but also introduces
the batch size as a free parameter.

In this chapter, we derive differentially private versions of single-point SGD and mini-
batch SGD and evaluate them on real and synthetic data sets. These algorithms work for gradient
descent for general convex objectives — we illustrate the approach using logistic regression for
classification. We demonstrate that differentially private single-point SGD has high variance,

but a moderate increase in the batch size can improve the performance significantly. For low-
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dimensional problems, the private algorithm’s performance is close to non-private SGD. However,
we show that there is a limit to how much the batch size can help, and that the performance is

dependent on the learning rate.

3.1.1 Related Work

The work most connected to the current chapter are those on differentially private
classification [26,|123]]. Duchi et al. proposed an SGD method for local privacy [42]]. Stochastic
gradient methods are on example of online learning methods. Another approach to differentially
private online learning was proposed by Jain et al. [75]; however, their algorithm is more
computationally intensive than ours. The PINQ [98] package uses a noisy sum operation to
compute full noisy gradient steps for logistic regression [146]. There the goal was exchanging
iterations for accuracy. The noisy perceptron method [17] also uses iterative noisy updates to
learn a classifier. We focus here on the effect of step size and batch size for SGD methods, so we

do not compare the performance for these specific classification methods.

3.2 Preliminaries

While the methods we propose work for general optimization methods, we will describe
the problem in terms of a classification problem. There, the data are n labelled examples
(x1,%1), -+ (Tn,yn), where z; € RY, and y; € {—1,1}. We assume that for all i, the norm
||;|| < 1. In linear classification, our goal is to find a hyperplane through the origin that largely
separates the examples labeled 1 from those labeled —1. The most popular method of training
such a linear classifier based on labelled data is by solving a regularized convex optimization
problem:

Ao I
¥ = in — ‘I‘— E s Ly Ys 31
w afﬂgelﬂgl;n2||w|l ”;_1 (w, x4, ys) (3.1)

Here w is the normal vector to the hyperplane separator, and ¢ is a convex loss function. Popular

choices for ¢ in the machine learning literature are the logistic loss £(w, z, y) = log(1+ e v*' %),
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which leads to Logistic Regression, and the hinge loss /(w, x,y) = max(0,1 — yw ' x), which
leads to Support Vector Machines (SVMs).
SGD is an iterative algorithm for solving the regularized convex optimization problem

in SGD begins with an initial point wy, and at step ¢, updates the iterate as:
W1 = wy — Ne(Awy + VE(wy, T4, yy)) (3.2)

Here 7, is a learning rate, and the (sub)gradient V/(wy, z;,v;) is computed based on a single
example (x4, yy ).
In SGD with mini-batch updates, instead of a single example, the update at each step ¢ is

based on a small subset B; of examples of size b. Specifically,

1
Wiyl = W — N )\wt + E Z Vﬁ(wt, X, yz) (33)

(wi,yi)EBt

Both of these methods are approximations of a full gradient update — if the point(s) at
each time ¢ are sampled uniformly from {1,2,...,n} then the expected gradient step at each
iteration is equal to a gradient step on the full objective function in (3.1)). More generally, we
can consider general empirical risk minimization with convex loss functions. We study the

Lo-regularized objective because strong convexity allows favorable theoretical guarantees.

3.3 SGD with Differential Privacy

A differentially-private version of the SGD update can be written as:

W1 = wy — 1y (Awy + VO we, 2, y0) + Zy) (3.4)
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where each Z, is a random noise vector in R? drawn independently from the density:
p(z) o e~ (e/2)lI=ll (3.5)

A differentially-private version of the mini-batch update using a batch B; of examples of

size b can be written as:

1 1
Wiy = wy — N | Awg + 3 Z Vil(wy, zi,y:) + EZt : (3.6)
(zi,y:)E€Bt
where Z; is again drawn from the density in (3.5)).
Theorem [3.3.1] shows that provided the initialization point wy is determined independent
of the sensitive data, the batches B, are disjoint, and the ||V{(w, z,y)|| is bounded for all w,

these updates are e-differentially private.

Theorem 3.3.1 (Privacy of SGD and Mini-Batch Updates). Suppose we run SGD with mini-batch
updates in for T’ batches By, . .., By. If the initialization point wy is chosen independent of
the sensitive data, the batches By are disjoint, and if | V{(w, x,y)||< 1 for all w, and all (x;,y;),

then SGD with mini-batch updates is e-differentially private.

The key idea of the proof is the observation that provided the conditions of the theorem
hold, the global sensitivity of each update is % The proof now follows by combining this
observation with results of Dwork et al. [45]], and using the fact that the privacy guarantee does
not degrade across batches as the samples used in the batches are disjoint.

Because we add noise at each iteration, the SGD procedure guarantees differential privacy
in a “local” sense — each individual 7 may choose an ¢; and this method can guarantee differential
privacy at different levels ¢; for different individuals by adjusting the distribution of Z;. A slightly
different notion of local privacy was also studied by Duchi et al. [42] in the statistical setting:
there the algorithm can sample individuals from a distribution with unknown parameter and the

goal is to estimate the parameter. At each time their algorithm can samples a new individual
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and receives a noisy subgradient estimate. They use mirror descent to guarantee privacy under a

variant of differential privacy based on a mutual information criterion.

3.4 Experiments

3.4.1 Datasets

We consider three classification tasks — one on a synthetic dataset and two on real data.
Our synthetic dataset consists of n = 10,000 samples drawn uniformly from a 5-dimensional
sphere, and is linearly separable with margin 0.001. For our first classification task on real data,
we use the KDDCup99 dataset [[119], an intrusion detection dataset on network connections. We
address the normal vs. malicious classification task, and use a subsample of size 50,000. For our
second task on real data, we address the “1 vs. all” classification task on the MNIST dataset [88]],
which consists of 60,000 training examples and 10,000 test examples of images of handwritten
digits 0 to 9. In both cases, we preprocess the data by normalizing each feature, projecting each
row to the unit ball, and then reducing the data dimension by random projections, which preserve

differential privacy. We use a reduced dimension of d = 9 for KDDCup, and d = 15 for MNIST.

3.4.2 Procedure

We use SGD to train a logistic regression model. For each update, we use the mini-
batch update from (3.6) for batch sizes b € {1, 2,5, 10,20, 50}, with regularization parameter
A = 0.0001 and € = 1. In each case, we make a single pass over the entire training data. To
maintain numerical stability, after each update, we project the iterate w, onto a ball of radius
1/\. For each experiment we investigated a few different schemes for setting the learning rates.
We averaged the objective function values obtained over 20 random permutations of the training
data as well as fresh random samples of the noise Z, for the private algorithm. The error bars are
at a single standard deviation. Since we are interested in the optimization performance, we plot

the objective function value — in future work we will also investigate the classification accuracy.
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Figure 3.1. Objective function value vs. number of iterations for private and non-private
algorithms on the MNIST and KDDCup99 data sets. Horizontal axis is scaled so that the
number of samples is the same.
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Figure 3.2. Objective function value vs. batch size b for private and non-private algorithms on
MNIST and KDDCup99.
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3.4.3 Mini-batching reduces variance

The first question we ask is how SGD would fare with batch size 1, since this is the case
which has been most studied in the literature. The top half of Figure shows the objective
value for the MNIST data set versus the number of samples in the algorithm for learning rate
n; = 1/+/t. For batch size b = 1, differentially private SGD is far from the non-private objective
and furthermore has high variance. That is, the noise added in each iteration prevents the
algorithm from converging. However, a modest batch size b = 10, as shown in the lower half of
the figure, reduces the variance of differentially private SGD to the point of matching non-private
SGD, even for a moderate number of data points.

The other plots in Figure [3.1|show that this behavior also holds for the KDDCup99 data
set. Although the variance of the differentially private algorithm decreases slowly, choosing
b = 5 makes the mini-batch SGD performance nearly identical to that of the non-private mini-
batch SGD. What these two experiments indicate is that in terms of objective value, guaranteeing
differential privacy can come for “free” using SGD with moderate batch size. We emphasize here
that all of these examples are low-dimensional problems, and the privacy parameter € = 1. It is
well-known that differentially private learning algorithms often have a sample complexity that
scales linearly with the data dimension d and inversely with the privacy risk €. Thus a moderate
reduction in € or increase in d may require more data. It would be interesting to see if increasing

the batch size can still make private SGD match non-private SGD in these settings.

3.4.4 Choosing appropriate parameters

Our next experiment is to find the impact of batch size on the performance of these
algorithms. Figure [3.2] shows the objective value as a function of batch size for private SGD,
non-private SGD, and a centralized learning procedure which solves the optimization using all of
the data points. In all cases, increasing the batch size improved the performance of private SGD,

but there is a limit — for step size 1/+/¢, much larger batch sizes actually degrade performance.
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Figure 3.3. Objective function value vs. number of data points for private and non-private
algorithms on synthetic data for batch size b = 5.

Because we choose to make a single pass over the data to limit the noise per iteration, increasing
the batch size decreases the number of iterations, and therefore there is an optimal choice of b for
each problem. With a larger learning rate 10/ /T, the performance for larger batches does not
degrade as much, and the end value of the objective is closer to that of the centralized learning
algorithm.

Many analyses of SGD in the strongly convex case suggest that a learning rate 7, = 1/t
guarantees fast convergence rates [[115]]. In our case A is quite small, meaning the objective is not
very strongly convex. To see the impact of the noise added for differential privacy, we simulated
two learning rates, 1/+/¢ and 1/\¢, on the synthetic data with b = 5. The results in Figure
show that choosing a rapidly decreasing step size dramatically increases the variance of private
SGD. In practice, choosing the step size in stochastic approximation schemes is often a matter of

art, and differentially private noise complicates this choice.

3.5 Conclusions

We investigated how differential privacy affects mini-batched stochastic gradient descent

(SGD). When data is plentiful, privacy is “affordable,” and SGD strategies are more computation-
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ally efficient. We showed that in many cases the performance of differentially private SGD was
close to that of non-private SGD, especially with larger batch sizes. In stochastic optimization,
both the variability of the algorithm and the impact of privacy-preserving noise can be amelio-
rated by processing groups of points together. Our experiments show that privacy affects both
the optimal batch size b and learning rate 7,. Some interesting future directions suggested by this
chapter include: quantifying the impact of the dimension d and privacy parameter ¢, allowing
different ¢;’s for each point, and using multiple passes through the data to trade off iterations,
total privacy loss (via composition results for differential privacy), and error. These modifications
could make differentially private learning more effective in practical settings.

We note that the algorithm presented in this chapter is one of the early works on differen-
tially private SGD. Some related work that appers later on includes [128], [[1] and [147]. [128]
proposed a distributed system that trains neural networks with differentially private SGD. The
proposed algorithm selectively updates the parameters of the neural network and uses the sparse
vector technique to improve the privacy-utility tradeoff. [[1]] proposed a differentially private
SGD algorithm with additive Gaussian noise and evaluated it on neural networks, achieving
comparable utility as non-private SGD. The privacy analysis is improved by keeping track of
the privacy loss with moments accountant, a notion closely related to Rényi differential privacy.
Both algorithms use gradient truncating to control the global sensitivity of the parameters. Addi-
tionally, [[147] proposed an algorithm that injects random noise only at the end of the training

process. The algorithm guarantees differential privacy for convex objective functions.
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Chapter 4

Local Differentially Private SGD with Het-
erogeneous Privacy Requirements

4.1 Overview

Modern large-scale machine learning systems often integrate sensitive data from several
sources. In many cases, these sources provide data of a similar type (i.e. with the same features)
but collected under different privacy requirements. For example, patient records from different
studies of a particular drug may be combined to perform a more comprehensive analysis. These
different studies, each conducted under different privacy regulations, require different levels of
random noise for privacy-protection purposes, resulting in data of varying quality.

In this chapter, we adopt a model in which data is observed through heterogeneous noise,
where the noise level reflects the quality of the data source. We study how to use stochastic
gradient algorithms to learn from data of heterogeneous quality. In full generality, learning from
heterogeneous data is essentially the problem of domain adaptation — a challenge for which
good and complete solutions are difficult to obtain. Instead, we focus on the special case of
heterogeneous noise and show how to use information about the data quality to improve the
performance of learning algorithms which ignore this information.

The motivating example about combining patient records for a drug study can be formu-
lated as locally differentially private learning from multiple sites. Under local differential privacy,

the learner accesses the data via noisy estimates, where the noise guarantees privacy [42, 43]. In
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many applications, we are required to learn from sensitive data collected from individuals with
heterogeneous privacy preferences, or from multiple sites with different privacy requirements;
this results in the heterogeneity of noise added to ensure privacy.

Moreover, our model of heterogeneous data does not merely suit locally differentially
private machine learning; it captures a general scenario where data of different qualities are
combined in a learning task. For example, a collection of images with annotations from experts
as well as non-experts may be combined to learn a predictor — a situation which we call
heterogeneous random classification noise (RCN). Under random classification noise [79], labels
are randomly flipped before being presented to the algorithm. The heterogeneity in the noise
addition comes from combining labels of variable quality — such as labels assigned by domain
experts with those assigned by a crowd.

To our knowledge, [33] was the first to provide a theoretical study of how to learn
classifiers from data of variable quality. In their formulation, like ours, data is observed through
heterogeneous noise. Given data with known noise levels, their study focuses on finding an
optimal ordering of the data and a stopping rule without any constraint on the computational
complexity. We instead shift our attention to studying computationally efficient strategies for
learning classifiers from data of variable quality.

We propose a model for variable data quality which is natural in the context of large-scale
learning using stochastic gradient descent (SGD) and its variants [21, [13]. We assume that the
training data are accessed through an oracle which provides an unbiased but noisy estimate
of the gradient of the objective. The noise comes from two sources: the random sampling of
a data point, and additional noise due to the data quality. Our two motivating applications —
learning with local differential privacy and learning from data of variable quality — can both be
modeled as solving a regularized convex optimization problem using SGD. Learning from data
with heterogeneous noise in this framework thus reduces to running SGD with noisy gradient
estimates, where the magnitude of the added noise varies across iterations.

Main results. We study noisy stochastic gradient methods when learning from multiple
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data sets with different noise levels. For simplicity we consider the case where there are two data
sets, which we call Clean and Noisy. We process these data sets sequentially using SGD with
learning rate O (1/t). We address some basic questions in this setup:

In what order should we process the data? Suppose we use standard SGD on the union
of Clean and Noisy. We show theoretically and empirically that the order in which we should
process the datasets to get good performance depends on the learning rate of the algorithm: in
some cases we should use the order (Clean, Noisy) and in others (Noisy, Clean).

Can we use knowledge of the noise rates? We show that using separate learning rates that
depend on the noise levels for the clean and noisy datasets improves the performance of SGD.
We provide a heuristic for choosing these rates by optimizing an upper bound on the error for
SGD that depends on the ratio of the noise levels. We analytically quantify the performance of
our algorithm in two regimes of interest. For moderate noise levels, we demonstrate empirically
that our algorithm outperforms using a single learning rate and using clean data only.

Does using noisy data always help? The work [33]] suggests that if the noise level of
noisy data is above some threshold, then noisy data will not help. Moreover, when the noise
levels are very high, our heuristic does not always empirically outperform simply using the clean
data. On the other hand, our theoretical results suggest that changing the learning rate can make
noisy data useful. How do we resolve this apparent contradiction?

We perform an empirical study to address this question. Our experiments demonstrate
that very often, there exists a learning rate at which noisy data helps; however, because the actual
noise level may be far from the upper bound used in our algorithm, our optimization may not
choose the best learning rate for every data set. We demonstrate that by adjusting the learning
rate we can still take advantage of noisy data.

For simplicity we, like previous work [33]], assume that the algorithms know the noise
levels exactly. However, our algorithms can still be applied in the presence of approximate
knowledge of the noise levels, and our result on the optimal data order only needs to know which

dataset has more noise.
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4.1.1 Related Work

There has been significant work on the convergence of SGD assuming analytic properties
of the objective function, such as strong convexity and smoothness. When the objective function
is A-strongly convex, the learning rate used for SGD is O (1/At) [106, 4, [115] [7], which leads to
aregret of O (1/A?t) for smooth objectives. For non-smooth objectives, SGD with learning rate
O (1/Xt) followed by some form of averaging of the iterates achieves O (1/At) [107, 105} 126,
148, 141]].

There is also a body of literature on differentially private classification by regularized
convex optimization in the batch [26, [122] [83]] as well as the online [75] setting. In this chapter,
we consider classification with local differential privacy [144,42], a stronger form of privacy
than ordinary differential privacy. [42] proposes learning a classifier with local differential
privacy using SGD. Recent work [10] provides an improved privacy analysis for non-local
privacy. This chapter is an extension of these papers to heterogeneous privacy requirements.

[33]] studied classification when the labels in each data set are corrupted by RCN of
different rates. Assuming the classifier minimizing the empirical 0/1 classification error can
always be found, they propose a general theoretical procedure that processes the datasets in
increasing order of noise, and determines when to stop using more data. In contrast, our noise
model is more general and we provide a polynomial time algorithm for learning. Our results
imply that in some cases the algorithm should process the noisy data first, and finally, our

algorithm uses all the data.

4.2 The Model

Similar as in Chapter [3, we consider linear classification in the presence of noise. We are
given T labelled examples (z1,y1), ..., (x7, yr), where ; € RY, and y; € {—1, 1} and our goal

is to find a hyperplane w that largely separates the examples labeled 1 from those labeled —1. A
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standard solution is via the following regularized convex optimization problem:

T
. : A 1
w* = argmin f(w) := —Hw\|2+f Zé(w,aji,yi). 4.1)
i=1

weW 2

Here { is a convex loss function, and $|jw||? is a regularization term. Popular choices for ¢ include
the logistic loss £(w, z,y) = log(1+e~¥*"*) and the hinge loss {(w, z, y) = max (0,1 —yw" z).
Stochastic Gradient Descent (SGD) is a popular approach to solving (@.1)): starting with

an initial wy, at step ¢, SGD updates w,; using the point (z;,y;) as follows:
wiy1 = Ty (we — ne(Awy + VL wy, 24, y1))) - (4.2)

Here I1 is a projection operator onto the convex feasible set W, typically set to {w : ||w|[2< 1/A}
and 7, is a learning rate (or step size) which specifies how fast w; changes. A common choice

for the learning rate for the case when A > 0 is ¢/t, where ¢ = ©(1/)).

4.2.1 The Heterogeneous Noise Model

We propose an abstract model for heterogeneous noise that can be specialized to two
important scenarios: differentially private learning, and random classification noise. By heteroge-
neous noise we mean that the distribution of the noise can depend on the data points themselves.
More formally, we assume that the learning algorithm may only access the labeled data through
an oracle G which, given a w € RY, draws a fresh independent sample (x, y) from the underlying
data distribution, and returns an unbiased noisy gradient of the objective function V f(w), based

on the example (x,y):
E [G(w)] = M + Vl(w,z,y), E [HQ(w)HZ} < TI?. 4.3)

The precise manner in which G(w) is generated depends on the application. Define the noise

level for the oracle G as the constant I" in (4.3); larger I' means more noisy data. Finally, to
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model finite training datasets, we assume that an oracle G may be called only a limited number
of times.
Observe that in this noise model, we can easily use the noisy gradient returned by G to

perform SGD. The update rule becomes:

w1 = Ty (wt - ntg(wt)) . (4.4)

The SGD estimate is w;1.

In practice, we can implement an oracle such as G based on a finite labelled training set
D as follows. We apply a random permutation on the samples in D, and at each invocation,
compute a noisy gradient based on the next sample in the permutation. The number of calls
to the oracle is limited to |D|. If the samples in D are drawn iid from the underlying data
distribution, and if any extraneous noise added to the gradient at each iteration is unbiased and
drawn independently, then this process will implement the oracle correctly.

To model heterogeneous noise, we assume that we have access to two oracles G; and
G implemented based on datasets D; and D, which can be called at most | D; | and | D5 | times
respectively. For j = 1,2, the noise level of oracle G, is I';, and the values of I'; and I'; are
known to the algorithm. In some practical situations, I'; and I's will not be known exactly;
however, our algorithm in Section [4.4] also applies when approximate noise levels are known,

and our algorithm in Section .3 applies even when only the relative noise levels are known.
4.2.1.1 Local Differential Privacy

Consider learning a linear classifier from a sensitive labeled dataset while ensuring local
privacy (see Chapter [2] for more details) of the participants. This problem can be expressed
in our noise model by setting the sanitization mechanism as the oracle. Given a privacy risk
¢, for w € RY, the oracle GP? draws a random labeled sample (z,y) from the underlying data

distribution, and returns the noisy gradient of the objective function at w computed based on
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(z,9) as
QDP(w) = \w+ Vil (w,x,y) + Z, 4.5)

where Z is independent random noise drawn from the density: p(z) oc e~ (/2)l=ll,

[42] showed that this mechanism provides e-local privacy assuming analytic conditions
on the loss function, bounded data, and that the oracle generates a fresh random sample at each
invocation. The following result shows how to set the parameters to fit in our heterogeneous

noise model. The proof is provided in the supplement.

Theorem 4.2.1. If || V{(w, z,y)||< 1 for all w and (x,y), then GPP(w) is e-local differentially
private. Moreover, for any w such that ||w||< 5, E[GP(w)] = Mw + V E ) [l(w, 2, y)], and

4(d* 4 d)

5 .

BIG7" (w)|Y < 4+ =

In practice, we may wish to learn classifiers from multiple sensitive datasets with different
privacy parameters. For example, suppose we wish to learn a classifier from sensitive patient
records in two different hospitals holding data sets D, and Ds, respectively. The hospitals have
different privacy policies, and thus different privacy parameters €; and €,. This corresponds to a
heterogeneous noise model in which we have two sanitizing oracles — GP* and G*. For j = 1,2,
GP* implements a differentially private oracle with privacy parameter ¢; based on dataset D; and

may be called at most | D;| times.
4.2.1.2 Random Classification Noise

In the random classification noise model of [79], the learning algorithm is presented

with labelled examples (x1,91), . .., (x7, Jr), where each ¢; € {—1, 1} has been obtained by
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independently flipping the true label y; with some probability o. [104] showed that solving
T
argmm —HwH Z W, Ty, Uiy O (4.6)

yields a linear classifier from data with random classification noise, where ¢ is a surrogate loss

function corresponding to a convex loss /:

(1 — O-)€<w7 z, y) B O-€<w7 z, _y>
1—20 ’

g(w,x,y,a) =

and o is the probability that each label is flipped. This problem can be expressed in our noise

gRCN

model using an oracle which on input w draws a fresh labelled example (z, §) and returns

GRN(w) = v + Vi(w, x, 7, 0).

The SGD updates in (@.4)) with respect to GRN minimize (#.6). If ||z||< 1 and || V{(w, z,y)||< 1,
we have Eg, . (w) [=] Mw + VE(w, 2, y) and Ejgren (3 [<] 3+ 1/(1 — 20)?, under the random
classification noise assumption, so the oracle GRCN gatisfies the conditions in #@.3) with 2=
3+1/(1—20)%

In practice, we may wish to learn classifiers from multiple datasets with different amounts
of classification noise [33]]; for example, we may have a small dataset D, labeled by domain
experts, and a larger noisier dataset Dy, labeled via crowdsourcing, with flip probabilities o; and
2. We model this scenario using two oracles — Gi*“N and GF*“N. For j = 1,2, oracle G*°N is

implemented based on D; and flip probability ¢;, and may be called at most | D;| times.

4.3 Data order depends on learning rate

Suppose we have two oracles G¢ (for “clean”) and Gy (for “noisy”) implemented based

on datasets D¢, Dy with noise levels I'c, I'y (where I'c < I'y) respectively. In which order
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should we query the oracle when using SGD? Perhaps surprisingly, it turns out that the answer
depends on the learning rate. Below, we show a specific example of a convex optimization
problem such that with 1, = ¢/t, the optimal ordering is to use Gc first when ¢ € (0,1/)), and
the optimal ordering is to use Gy first when ¢ > 1/\.

Let |Dc|+|Dn|= T and consider the convex optimization problem:
T
Z _— : : 4.
min o flw]~— ;_1 yiw' @, (4.7)

where the points {(x;,y;)} are drawn from the underlying distribution by Gc or Gy. Suppose
G(w) = Mw—yx+ Z where Z is an independent noise vector such that E[Z] = 0, E[|| Z||?] = V&
if G is Gc, and E[|| Z]|?] = Vi3 if G is Gy with V@ > V2.

For our example, we consider the following three variants of SGD: CF and NF for “clean

first” and “noisy first” and AO for an “arbitrary ordering’:

1. CF: For t < |Dc|, query Gc in the SGD update (@.4)). For t > | D¢

, query Gn.

2. NF: For t < |Dyl, query Gy in the SGD update (.4). For ¢t > |Dy|, query Gc.

3. AO: Let S be an arbitrary sequence of length 7" consisting of | Dc| C’s and |Dy| N’s. In
the SGD update (#.4)) in round ¢, if the ¢-th element S, of S is C, then query Gc; else, query

On.

In order to isolate the effect of the noise, we consider two additional oracles G¢ and Gy;
the oracle G¢ (resp. Gy,) is implemented based on the dataset D¢ (resp. Dy), and iterates over
Dc (resp. Dy) in exactly the same order as Gc¢ (resp. Gy); the only difference is that for G¢ (resp.
Gy), no extra noise is added to the gradient (that is, Z = 0). The main result of this section is

stated in Theorem

Theorem 4.3.1. Let {w<F}, {wNF} and {wPC} be the sequences of updates obtained by running

SGD for objective function (4.7) under CF, NF and AO respectively, and let {v<F}, {vNF} and
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{vA9} be the sequences of updates under CF, NF and AO with calls to G¢c and Gy replaced by

calls to G¢ and Gy. Let T = | Dc|+|Dn].

1. If the learning rate 1, = ¢/t where ¢ € (0, %), then Eer _er 2 [<]Ejpa0 0 2 [

T+1~ W41 T+1~ Wri1

2. If the learning rate 1, = ¢/t where ¢ > 1/, then Ejope e 2 <] By w0 |2 []

T+1

This means arbitrary ordering is worse than sequentially processing one dataset after the
other except when ¢ = 1/\. If the learning rate is small, then SGD should use the clean data first
to aggressively proceed towards the optimum. If the learning rate is larger, then SGD should

reserve the clean data for refining the initial estimates given by processing the noisy data.

4.4 Adapting the learning rate to the noise level

We now investigate whether the performance of SGD can be improved by using different
learning rates for oracles with different noise levels. Suppose we have oracles G; and G, with
noise levels I'y and I'; that are implemented based on two datasets DDy and D,. Unlike the
previous section, we do not assume any relation between ['; and I's — we analyze the error for
using oracle G; followed by G, in terms of I'; and I'5 to choose a data order. Let T' = | D1 |+|Ds|.
Let 5, = |D—Tl| and B, = 1 — (; = |D—TQ| be the fraction of the data coming from G; and G,
respectively. We adapt the gradient updates in to heterogeneous noise by choosing the

learning rate 7, as a function of the noise level. Algorithm [l| shows a modified SGD for

heterogeneous learning rates.

Algorithm 1. SGD with varying learning rate

Inputs: Oracles G, G, implemented by data sets Dy, D,. Learning rates ¢; and cs.
Set w1 = 0.
fort =1,2,...,|D¢| do
wyr1 = Iy (wt - %gl(wt))
end for
fort = |D1|+1, |D1|+2, ey |D1|—|—|D2| do
wiyr = Iy (wt - %gz(wt))
end forreturn wp, |1 |p,|+1-

SN
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Consider SGD with learning rate 1, = ¢; /t while querying G; and with 7, = ¢/t while
querying G in the update (4.4). We must choose an order in which to query G; and G, as well as
the constants c¢; and ¢, to get the best performance. We do this by minimizing an upper bound
on the distance between the final iterate w7, and the optimal solution w* to E[f(w)] where f is
defined in (@.T)), and the expectation is with respect to the data distribution and the gradient noise;
the upper bound we choose is based on [[115]. Note that for smooth functions f, a bound on the
distance ||wp,1 — w*|| automatically translates to a bound on the regret f(wyyq) — f(w*).

Theorem [4.4.1] generalizes the results of [115] to our heterogeneous noise setting; the

proof is in the supplement.

Theorem 4.4.1. If 2\c; > 1 and if 2\cy # 1, and if we query G, before Gy with learning rates
c1/t and ¢/t respectively, then the SGD algorithm satisfies

2 2 co—1 9 2 2 co—1\ 2

E —*?] < . 240 —m— ). 438
[HwT—I—l w H ] =T 2/\01 1 T 2/\02 -1 + (Tmln(2,2)\cl)> ( )

Two remarks are in order. First, the first two terms in the right hand side dominate the
other term. Second, our proof techniques for Theorem [4.4.1] adapted from [115], require that
2Ac; > 1in order to get a O(1/T) rate of convergence; without this condition, the dependence

onTis Q(1/T).
4.4.1 Algorithm description

Our algorithm for selecting c; and ¢, 1s motivated by Theorem We propose an
algorithm that selects ¢; and ¢, by minimizing the quantity B(c;, co) which represents the highest

order terms in Theorem 4.4.1k

Argprele | 4ars(1 - AP e

Blewe) = 703 =1 T(2hes — 1)

4.9)
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Given A, I'y, I's and (1, we use ¢ and ¢; to denote the values of ¢; and ¢, that minimize B(cy, ¢3).

2
We can optimize for fixed c; with respect to ¢; by minimizing MSﬁ; this gives ¢; = 1/, and

2
o
2Aci -1

= 1/A2, which is independent of 3; or the noise levels I'; and I'y. Minimizing B(c}, c3)
with respect to ¢, can be now performed numerically to yield ¢; = argmin,, B(c], c2). This
yields optimal values of ¢; and cs.

Now suppose we have two oracles G¢, Gy with noise levels I'c and I'y that are imple-

|Dc|

T and
[Dc|+[Dnl

mented based on datasets D¢ and Dy respectively. Let I'c < I'y, and let Sc =

Bn = |DC‘|["')‘—’T|DI\I‘ be the fraction of the total data in each data set. Define the following functions:

B 4F% g)\c—l 4F2N(1 o 2)\0—1)62

HCN(C) - 22 + 2)\C_C1 ’
4F2N ,%I)\c—l 4F%(1 . '3')\0—1)62
Hnele) = =75 2xc— 1

These represent the constant of the leading term in the upper bound in Theorem for
(G1,G2) = (Gc, Gn) and (G1, Go) = (G, Gc ), respectively.
Algorithm [2]repeats the process of choosing optimal ¢y, ¢, with two orderings of the data — G¢
first and Gy first — and selects the solution which provides the best bounds (according to the

higher order terms of Theorem {4.4.1).

Algorithm 2. Selecting the Learning Rates

1: Inputs: Data sets D¢ and Dy accessed through oracles Gc and Gy with noise levels I'¢ and
I'n.
_ _ IDd] _ _ |Dnl

Let fc = teipey and An = 5oy
Calculate ccy = argmin, Hen(c) and eye = argmin, Hyc(c).
if HCN (CCN) S HNC<CNC) then

Run Algorithmusing oracles (Gc, Gn), learning rates ¢; = % and c» = ccn.
else

Run Algorithmusing oracles (Gn, Gc), learning rates ¢; = i and c» = cnc.
end if
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4.4.2 Regret Bounds

To provide a regret bound on the performance of SGD with two learning rates, we need
to plug the optimal values of ¢; and ¢, into the right hand side of (4.9). Observe that as ¢; = ¢
and ¢y = 0 are feasible inputs to (4.9), our algorithm by construction has a superior regret bound
than using a single learning rate only, or using clean data only.

Unfortunately, the value of ¢, that minimizes (4.9)) does not have a closed form solution,
and as such it is difficult to provide a general simplified regret bound that holds for all 'y, I's
and ;. In this section, we consider two cases of interest, and derive simplified versions of the
regret bound for SGD with two learning rates for these cases.

We consider the two data orders (I'y,I';) = (I'y,I'c) and (I'1,Iy) = (I'c,I'y) in a
scenario where I'y /I'c > 1 and both [y and [¢ are bounded away from 0 and 1. That is, the
noisy data is much noisier. The following two lemmas provide upper and lower bounds on

B(ci, ¢3) in this setting.

Lemma 4.4.2. Suppose (I'1,1's) = (I'n,I'c) and 0 < By < 1. Then for sufficiently large I'y /T'c,

the optimal solution c; to (4.9) satisfies

21log(I'y/T'c) + loglog(1/6n)
log(1/5n)

2050 €1+

. 2loa(Tn/Tc) + log log<1/ﬁN>] |

log(1/Bn)

Moreover, B(c7, c}) satisfies:

4F%(log(£—g) + 3 loglog 5-)

B(cy,¢3) =

- Aleog(%)

AT2 4 4+ 2log() 4+ log log( -
B(ci.c) < x4 Blre) + loslos(z,) )

T log(L)

Observe that the regret bound grows logarithmically with I'y/I'c. Moreover, if we only

used the cleaner data, then the regret bound would be %, which is better, especially for large

I'n/Tc. This means that using two learning rates with the noisy data first gives poor results at
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high noise levels.

Our second bound takes the opposite data order, processing the clean data first.

Lemma 4.4.3. Suppose (I'1,T3) = (I'c,I'y) and 0 < Bc < 1. Let 0 = (I'y/T'c)™2. Then for

sufficiently large I'y /T'c, the optimal solution c; to (4.9) satisfies: 2ci\ € [0, ;—CO':|. Moreover,

B(ct, ¢5) satisfies:

N2BcT ¢
ooy o AT, log(1/6c)
B(ci, ¢3) S)\QB—CCT C (1 to—1— )
If we only used the clean dataset, then the regret bound would be %, so Lemma|4.4.3

yields an improvement by a factor of BéFN/FC)Q (1 + (E—Z) - %). As fc < 1, observe
that this factor is always less than 1, and tends to 1 as I'y/T'c tends to infinity; therefore the
difference between the regret bounds narrows as the noisy data grows noisier. We conclude that
using two learning rates with clean data first gives a better regret bound than using only clean

data or using two learning rates with noisy data first.

4.5 Experiments

We next illustrate our theoretical results through experiments on real data. We consider
the task of training a regularized logistic regression classifier for binary classification under
local differential privacy. For our experiments, we consider two real datasets — MNIST (with the
task 1 vs. Rest) and Covertype (Type 2 vs. Rest). The former consists of 60, 000 samples in
784 dimensions, while the latter consists of 500, 000 samples in 54-dimensions. We reduce the
dimension of the MNIST dataset to 25 via random projections.

To investigate the effect of heterogeneous noise, we divide the training data into subsets
(D¢, Dy) to be accessed through oracles (Gc, Gy) with privacy parameters (ec, ey) respectively.

We pick ec > €, so Gy is noisier than Gc. To simulate typical practical situations where cleaner
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Figure 4.1. Column 1 plots | f(wz41) — f(vr41)| vs. constant ¢ for A = 0.001. Column 2 plots

final objective function value vs. €y for ¢ = 10. Column 3 plots final objective function value

vs. ¢y for ey = 2 (top) and ey = 1 (bottom). Top row shows figures for MNIST and bottom row
for Covertype.

data is rare, we set the size of D¢ to be Sc = 10% of the total data size. We set the regularization
parameter A = 1073, ' and I'y according to Theorem and use SGD with mini-batching
(batch size 50).

Does Data Order Change Performance? Our first task is to investigate the effect of
data order on performance. For this purpose, we compare three methods — CleanFirst, where all
of Dc is used before Dy, NoisyFirst, where all of Dy is used before D¢, and Arbitrary, where
data from Dy U Dc is presented to the algorithm in a random order.

The results are in Figures [d.Ta|and 4. 1dl We use e = 10, ey = 3. For each algorithm,
we plot | f(wry1) — f(vr41)| as a function of the constant ¢ in the learning rate. Here f(wzr.y1)
is the function value obtained after 7" rounds of SGD, and f(vr1) is the function value obtained
after 7' rounds of SGD if we iterate over the data in the same order, but add no extra noise to the
gradient. (See Theorem [4.3.1|for more details.) As predicted by Theorem the results show

that for ¢ < % CleanFirst has the best performance, while for ¢ > % NoisyFirst performs best.
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Arbitrary performs close to NoisyFirst for a range of values of ¢, which we expect as only 10%
of the data belongs to Dc.

Are Two Learning Rates Better than One? We next investigate whether using two
learning rates in SGD can improve performance. We compare five approaches. Optimal is the
gold standard where we access the raw data without any intervening noisy oracle. CleanOnly uses
only D¢ with learning rate with the optimal value of ¢ obtained from Section SameClean
and SameNoisy use a single value of the constant ¢ in the learning rate for Dy U D¢, where c is
obtained by optimizing @[ﬂunder the constraint that ¢; = ¢,. SameClean uses all of D¢ before
using Dy, while SameNoisy uses all of Dy before using Dc. In Algorithm2, we use Algorithm 2]
to set the two learning rates and the data order (D¢ first or Dy first). In each case, we set ec = 10,
vary ey from 1 to 10, and plot the function value obtained at the end of the optimization.

The results are plotted in Figures and Each plotted point is an average of
100 runs. It is clear that Algorithm?2, which uses two learning rates, performs better than both
SameNoisy and SameClean. As expected, the performance difference diminishes as ey increases
(that is, the noisy data gets cleaner). For moderate and high ey, Algorithm2 performs best, while
for low ey (very noisy Dy), CleanOnly has slightly better performance. We therefore conclude
that using two learning rates is better than using a single learning rate with both datasets, and
that Algorithm2 performs best for moderate to low noise levels.

Does Noisy Data Always Help? A natural question to ask is whether using noisy data
always helps performance, or if there is some threshold noise level beyond which we should not
use noisy data. Lemmal4.4.3|shows that in theory, we obtain a better upper bound on performance
when we use noisy data; in contrast, Figures and show that for low ey (high noise),
Algorithm?2 performs worse than CleanOnly. How do we explain this apparent contradiction?

To understand this effect, in Figures and we plot the performance of SGD using
two learning rates (with ¢; = %) against CleanOnly as a function of the second learning rate c.

The figures show that the best performance is attained at a value of ¢, which is different from

Note that we plug in separate noise rates for Gc and Gy in the learning rate calculations.
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the value predicted by Algorithm?2, and this best performance is better than CleanOnly. Thus,
noisy data always improves performance; however, the improvement may not be achieved at the
learning rate predicted by our algorithm.

Why does our algorithm perform suboptimally? We believe this happens because the

values of 'y and ' used by our algorithm are fairly loose upper bounds. For local differential

4(d?+d)
e2b

privacy, an easy lower bound on I' is , where b is the mini-batch size; let co(L) (resp.
c2(U)) be the value of ¢, obtained by plugging in these lower bounds (resp. upper bounds from
Theorem [.2.1)) to Algorithm 1. Our experiments show that the optimal value of ¢, always lies
between ¢y (L) and c2(U), which indicates that the suboptimal performance may be due to the
looseness in the bounds.

We thus find that even in these high noise cases, theoretical analysis often allows us
to identify an interval containing the optimal value of c;. In practice, we recommend running

Algorithm 2 twice — once with upper, and once with lower bounds to obtain an interval containing

9, and then performing a line search to find the optimal c;.

4.6 Conclusion

We propose a model for learning from heterogeneous noise that is appropriate for studying
stochastic gradient approaches to learning. In our model, data from different sites are accessed
through different oracles which provide noisy versions of the gradient. Learning under local
differential privacy and random classification noise are both instances of our model. We show
that for two sites with different noise levels, processing data from one site followed by the other
is better than randomly sampling the data, and the optimal data order depends on the learning
rate. We then provide a method for choosing learning rates that depends on the noise levels
and showed that these choices achieve lower regret than using a common learning rate. We
validate these findings through experiments on two standard data sets and show that our method

for choosing learning rates often yields improvements when the noise levels are moderate. In the
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case where one data set is much noisier than the other, we provide a different heuristic to choose
a learning rate that improves the regret.

There are several different directions towards generalizing the algorithms here. Firstly,
extending the results to multiple sites and multiple noise levels will give more insights as to how
to leverage large numbers of data sources. This leads naturally to cost and budgeting questions:
how much should we pay for additional noisy data? Our results for data order do not depend on
the actual noise levels, but rather their relative level. However, we use the noise levels to tune the
learning rates for different sites. If bounds on the noise levels are available, we can still apply
our heuristic. Adaptive approaches for estimating the noise levels while learning are also an

interesting approach for future study.
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Chapter 5
Scalable Private Learning with PATE

5.1 Overview

Recently, two promising, new model-training approaches have offered the hope that
practical, high-utility machine learning may be compatible with strong privacy-protection guar-
antees for sensitive training data [2]. This chapter revisits one of these approaches, Private
Aggregation of Teacher Ensembles, or PATE [[111], and develops techniques that improve its
scalability and practical applicability. PATE has the advantage of being able to learn from the
aggregated consensus of separate “teacher” models trained on disjoint data, in a manner that
both provides intuitive privacy guarantees and is agnostic to the underlying machine-learning
techniques (cf. the approach of differentially-private stochastic gradient descent [1]]). In the
PATE approach multiple teachers are trained on disjoint sensitive data (e.g., different users’
data), and uses the teachers’ aggregate consensus answers in a black-box fashion to supervise
the training of a “student” model. By publishing only the student model (keeping the teachers
private) and by adding carefully-calibrated Laplace noise to the aggregate answers used to train
the student, the original PATE work showed how to establish rigorous (¢, ¢) differential-privacy
guarantees [111].However, to date, PATE has been applied to only simple tasks, like MNIST,
without any realistic, larger-scale evaluation.

The techniques presented in this chapter allow PATE to be applied on a larger scale

to build more accurate models, in a manner that improves both on PATE’s intuitive privacy-
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Figure 5.1. Our proposed technique, Confident-GNMax, improves on the original PATE
(LNMax) on all measures. Left: Accuracy is higher.Middle: Privacy cost is quartered. Right:
Intuitive privacy is improved. These are results for a character-recognition task.

protection due to the teachers’ independent consensus as well as its differential-privacy guaran-
tees. As shown in our experiments, the result is a gain in privacy, utility, and practicality — an
uncommon joint improvement.

The primary technical contributions of this chapter are new mechanisms for aggregating
teachers’ answers that are more selective and add less noise. On all measures, our techniques
improve on the original PATE mechanism when evaluated on the same tasks using the same
datasets, as described in Section[5.4] Furthermore, we evaluate both variants of PATE on a new,
large-scale character recognition task with 150 output classes, inspired by MNIST. The results
show that PATE can be successfully utilized even to uncurated datasets — with significant class
imbalance as well as erroneous class labels — and that our new aggregation mechanisms improve
both privacy and model accuracy.

To be more selective, our new mechanisms leverage some pleasant synergies between
privacy and utility in PATE aggregation. For example, when teachers disagree, and there is no
real consensus, the privacy cost is much higher; however, since such disagreement also suggest
that the teachers may not give a correct answer, the answer may simply be omitted. Similarly,
teachers may avoid giving an answer where the student already is confidently predicting the
right answer. Additionally, we ensure that these selection steps are themselves done in a private

manner.
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To add less noise, our new PATE aggregation mechanisms sample Gaussian noise, since
the tails of that distribution diminish far more rapidly than those of the Laplace noise used in the
original PATE work. This reduction greatly increases the chance that the noisy aggregation of
teachers’ votes results in the correct consensus answer, which is especially important when PATE
is scaled to learning tasks with large numbers of output classes. However, changing the sampled
noise requires redoing the entire PATE privacy analysis from scratch (see the full paper [[112] for
more details).

Finally, of independent interest are the details of our evaluation extending that of the
original PATE work. In particular, we find that the virtual adversarial training (VAT) technique
of [102] is a good basis for semi-supervised learning on tasks with many classes, outperforming
the improved GANSs by [[124]] used in the original PATE work. Furthermore, we explain how to
tune the PATE approach to achieve very strong privacy (¢ ~ 1.0) along with high utility, for our
real-world character recognition learning task.

This chapter is structured as follows: Section is the related work section; Section
[5.2] gives a background on PATE; Section [5.3]describes our improved aggregation mechanisms;
Section[5.4] details our experimental evaluation; Section [5.5| offers conclusions; and proofs can

be found in the full paper [112].

5.1.1 Related Work

The first learning algorithms adapted to provide differential privacy with respect to
their training data were often linear and convex [[113} 26, 130, (12} 68]]. More recently, success-
ful developments in deep learning called for differentially private stochastic gradient descent
algorithms [1]], some of which have been tailored to learn in federated [96]] settings.

Differentially private selection mechanisms like GNMax (Section[5.3.1)) are commonly
used in hypothesis testing, frequent itemset mining, and as building blocks of more complicated
private mechanisms. The most commonly used differentially private selection mechanisms are

exponential mechanism [[100] and LNMax [14]. Recent works offer lower bounds on sample
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complexity of such problem [133}8].

The Confident and Interactive Aggregator proposed in this chapter (Section [5.3.2] and
Section [5.3.3|resp.) use the intuition that selecting samples under certain constraints could result
in better training than using samples uniformly at random. In machine learning theory, active
learning [30] has been shown to allow learning from fewer labeled examples than the passive
case (see e.g. [69]). Similarly, in model stealing [[139], a goal is to learn a model from limited
access to a teacher network. There is previous work in differential privacy literature [71,120]
where the mechanism first decides whether or not to answer a query, and then privately answers
the queries it chooses to answer using a traditional noise-addition mechanism. In these cases, the
sparse vector technique [49, Chapter 3.6] helps bound the privacy cost in terms of the number
of answered queries. This is in contrast to our work where a constant fraction of queries get
answered and the sparse vector technique does not seem to help reduce the privacy cost. Closer
to our work, [23] considers a setting where the answer to a query of interest is often either very
large or very small. They show that a sparse vector-like analysis applies in this case, where one

pays only for queries that are in the middle.

5.2 Background and Overview

We introduce essential components of our approach towards a generic and flexible

framework for machine learning with provable privacy guarantees for training data.

5.2.1 The PATE Framework

Here, we provide an overview of the PATE framework. To protect the privacy of training
data during learning, PATE transfers knowledge from an ensemble of teacher models trained on
partitions of the data to a student model. Privacy guarantees may be understood intuitively and
expressed rigorously in terms of differential privacy.

IMlustrated in the PATE framework consists of three key parts: (1) an ensemble

of n teacher models, (2) an aggregation mechanism and (3) a student model.
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Figure 5.2. Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets
of the sensitive data, (2) a student model is trained on public data labeled using the ensemble.

Teacher models: Each teacher is a model trained independently on a subset of the data whose
privacy one wishes to protect. The data is partitioned to ensure no pair of teachers will have
trained on overlapping data. Any learning technique suitable for the data can be used for any
teacher. Training each teacher on a partition of the sensitive data produces n different models
solving the same task. At inference, teachers independently predict labels.

Aggregation mechanism: When there is a strong consensus among teachers, the label they
almost all agree on does not depend on the model learned by any given teacher. Hence, this
collective decision is intuitively private with respect to any given training point — because such
a point could have been included only in one of the teachers’ training set. To provide rigorous
guarantees of differential privacy, the aggregation mechanism of the original PATE framework
counts votes assigned to each class, adds carefully calibrated Laplace noise to the resulting vote
histogram, and outputs the class with the most noisy votes as the ensemble’s prediction. This
mechanism is referred to as the max-of-Laplace mechanism, or LNMax, going forward.

For samples = and classes 1,...,m, let f;(z) € [m] denote the j-th teacher model’s
prediction and n; denote the vote count for the i-th class (i.e., n; £ |f;(z) = i|). The output
of the mechanism is A(z) £ argmax; (n;(x) + Lap (1/7)). Through a rigorous analysis of this
mechanism, the PATE framework provides a differentially private API: the privacy cost of each
aggregated prediction made by the teacher ensemble is known.

Student model: PATE’s final step involves the training of a student model by knowledge transfer
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from the teacher ensemble using access to public — but unlabeled — data. To limit the privacy
cost of labeling them, queries are only made to the aggregation mechanism for a subset of public
data to train the student in a semi-supervised way using a fixed number of queries. The authors
note that every additional ensemble prediction increases the privacy cost spent and thus cannot
work with unbounded queries. Fixed queries fixes privacy costs as well as diminishes the value
of attacks analyzing model parameters to recover training data [151]. The student only sees

public data and privacy-preserving labels.

5.2.2 Rényi Differential Privacy

[111] note that the natural approach to bounding PATE’s privacy loss — by bounding the
privacy cost of each label queried and using strong composition [S1]] to derive the total cost —
yields loose privacy guarantees. Instead, their approach uses data-dependent privacy analysis.
This takes advantage of the fact that when the consensus among the teachers is very strong, the
plurality outcome has overwhelming likelihood leading to a very small privacy cost whenever
the consensus occurs. To capture this effect quantitatively, [111] rely on the moments accountant,
introduced by [ 1] and building on previous work [22, 50].

Rényi Differential Privacy or RDP [101]] generalizes pure differential privacy (6 = 0) and
is closely related to the moments accountant. We choose to use RDP as a more natural analysis
framework when dealing with our mechanisms that use Gaussian noise. The definition of RDP
and its composition properties, relation to (e, §)-differential privacy are introduced in Chapter

While both (e, §)-differential privacy and RDP are relaxations of pure e-differential
privacy, the two main advantages of RDP are as follows. First, it composes nicely; second,
it captures the privacy guarantee of Gaussian noise in a much cleaner manner compared to
(g, 6)-differential privacy. This lets us do a careful privacy analysis of the GNMax mechanism as
stated in[Theorem 5.3.1] While the analysis of [111]] leverages the first aspect of such frameworks
with the Laplace noise (LNMax mechanism), our analysis of the GNMax mechanism relies on

both.
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5.2.3 PATE Aggregation Mechanisms

The aggregation step is a crucial component of PATE. It enables knowledge transfer from
the teachers to the student while enforcing privacy. We improve the LNMax mechanism used
by [111] which adds Laplace noise to teacher votes and outputs the class with the highest votes.

First, we add Gaussian noise with an accompanying privacy analysis in the RDP frame-
work. This modification effectively reduces the noise needed to achieve the same privacy cost
per student query.

Second, the aggregation mechanism is now selective: teacher votes are analyzed to decide
which student queries are worth answering. This takes into account both the privacy cost of
each query and its payout in improving the student’s utility. Surprisingly, our analysis shows
that these two metrics are not at odds and in fact align with each other: the privacy cost is the
smallest when teachers agree, and when teachers agree, the label is more likely to be correct thus
being more useful to the student.

Third, we propose and study an interactive mechanism that takes into account not only
teacher votes on a queried example but possible student predictions on that query. Now, queries
worth answering are those where the teachers agree on a class but the student is not confident in
its prediction on that class. This third modification aligns the two metrics discussed above even
further: queries where the student already agrees with the consensus of teachers are not worth
expending our privacy budget on, but queries where the student is less confident are useful and

answered at a small privacy cost.

5.2.4 Data-dependent Privacy in PATE

A direct privacy analysis of the aggregation mechanism, for reasonable values of the
noise parameter, allows answering only few queries before the privacy cost becomes prohibitive.
The original PATE proposal used a data-dependent analysis, exploiting the fact that when the

teachers have large agreement, the privacy cost is usually much smaller than the data-independent
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bound would suggest.

In this chapter, we perform a data-dependent privacy analysis of the aggregation mech-
anism with Gaussian noise. This change of noise distribution turns out be technically much
more challenging than the Laplace noise case. The full analysis can be found in the full ver-
sion [[112].This increased complexity of the analysis however does not make the algorithm any
more complicated and thus allows us to improve the privacy-utility tradeoff.

Sanitizing the privacy cost via smooth sensitivity analysis. An additional challenge
with data-dependent privacy analyses arises from the fact that the privacy cost itself is now a
function of the private data. Further, the data-dependent bound on the privacy cost has large
global sensitivity (a metric used in differential privacy to calibrate the noise injected) and is
therefore difficult to sanitize. To remedy this, we use the smooth sensitivity framework proposed
in [110].

The full paper [112] describes how we add noise to the computed privacy cost using
this framework to publish a sanitized version of the privacy cost. The final analysis shows that
the incremental cost of sanitizing our privacy estimates is modest — less than 50% of the raw
estimates — thus enabling us to use precise data-dependent privacy analysis while taking into

account its privacy implications.

5.3 Improved Aggregation Mechanisms for PATE

The privacy guarantees provided by PATE stem from the design and analysis of the
aggregation step. Here, we detail our improvements to the mechanism used by [111]. As outlined
in Section[5.2.3] we first replace the Laplace noise added to teacher votes with Gaussian noise,
adapting the data-dependent privacy analysis. Next, we describe the Confident and Interactive
Aggregators that select queries worth answering in a privacy-preserving way: the privacy budget
is shared between the query selection and answer computation. The aggregators use different

heuristics to select queries: the former does not take into account student predictions, while the

53



latter does.

5.3.1 The GNMax Aggregator and Its Privacy Guarantee

This section uses the following notation. For a sample x and classes 1 to m, let f;(x) €
[m] denote the j-th teacher model’s prediction on x and n;(x) denote the vote count for the i-th
class (i.e., n;(z) = |{j: f;(x) = i}|). We define a Gaussian NoisyMax (GNMax) aggregation
mechanism as:

Mg (x) £ arglinax {ni(z) + N(0,0%)},

where N'(0, 02) is the Gaussian distribution with mean 0 and variance 0. The aggregator outputs
the class with noisy plurality after adding Gaussian noise to each vote count. In what follow,
plurality more generally refers to the highest number of teacher votes assigned among the classes.

The Gaussian distribution is more concentrated than the Laplace distribution used
by [[111]. This concentration directly improves the aggregation’s utility when the number
of classes m is large. The GNMax mechanism satisfies (A, A\/o?)-RDP, which holds for all
inputs and all A > 1 (precise statements and proofs of claims in this section can be found in the
full paper [112]]. A straightforward application of composition theorems leads to loose privacy
bounds. As an example, the standard advanced composition theorem applied to experiments in
the last two rows of would give us ¢ = 8.42 and ¢ = 10.14 resp. at § = 1078 for the
Glyph dataset.

To refine these, we work out a careful data-dependent analysis that yields values of
¢ smaller than 1 for the same ¢. The following theorem translates data-independent RDP
guarantees for higher orders into a data-dependent RDP guarantee for a smaller order A. We
use it in conjunction with to bound the privacy cost of each query to the GNMax
algorithm as a function of ¢, the probability that the most common answer will not be output by

the mechanism.

Theorem 5.3.1 (informal). Let M be a randomized algorithm with (ji1,€1)-RDP and (112, €2)-
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RDP guarantees and suppose that given a dataset D, there exists a likely outcome * such
that P(M(D) # i*) < q. Then the data-dependent Rényi differential privacy for M of order

A <y, po at D is bounded by a function of q, ju1, €1, 2, €2, which approaches 0 as § — 0.

The new bound improves on the data-independent privacy for \ as long as the distribution
of the algorithm’s output on that input has a strong peak (i.e., ¢ < 1). Values of ¢ close to 1
could result in a looser bound. Therefore, in practice we take the minimum between this bound
and \/c? (the data-independent one). The theorem generalizes Theorem 3 from [111]], where it
was shown for a mechanism satisfying e-differential privacy (i.e., iy = po = 00 and €1 = €5).

The final step in our analysis uses the following lemma to bound the probability ¢ when

1™ corresponds to the class with the true plurality of teacher votes.

Proposition 5.3.2. For any i* € [m], we have P(M,(D) # i*) < 3 > iz erfe ("=, where

erfc is the complementary error function.

In the full paper [[112], we detail how these results translate to privacy bounds. In short,

for each query to the GNMax aggregator, given teacher votes n; and the class ¢* with maximal

support, [Theorem 5.3.2| gives us the value of ¢ to use in[Theorem 5.3.1] We optimize over ji;

and p to get a data-dependent RDP guarantee for any order A. Finally, we use composition
properties of RDP to analyze a sequence of queries, and translate the RDP bound back to an
(¢,6)-DP bound.

Expensive queries. This data-dependent privacy analysis leads us to the concept of an
expensive query in terms of its privacy cost. When teacher votes largely disagree, some n;« — n;
values may be small leading to a large value for ¢: i.e., the lack of consensus amongst teachers
indicates that the aggregator is likely to output a wrong label. Thus expensive queries from a
privacy perspective are often bad for training too. Conversely, queries with strong consensus
enable tight privacy bounds. This synergy motivates the aggregation mechanisms discussed in

the following sections: they evaluate the strength of the consensus before answering a query.
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5.3.2 The Confident-GNMax Aggregator

In this section, we propose a refinement of the GNMax aggregator that enables us to filter
out queries for which teachers do not have a sufficiently strong consensus. This filtering enables
the teachers to avoid answering expensive queries. We also take note to do this selection step
itself in a private manner.

The proposed Confident Aggregator is described in Algorithm [3] To select queries with
overwhelming consensus, the algorithm checks if the plurality vote crosses a threshold 7'. To
enforce privacy in this step, the comparison is done after adding Gaussian noise with variance
o?. Then, for queries that pass this noisy threshold check, the aggregator proceeds with the usual
GNMax mechanism with a smaller variance 3. For queries that do not pass the noisy threshold
check, the aggregator simply returns L and the student discards this example in its training.

In practice, we often choose significantly higher values for ; compared to o5. This is
because we pay the cost of the noisy threshold check always, and without the benefit of knowing
that the consensus is strong. We pick 7" so that queries where the plurality gets less than half the
votes (often very expensive) are unlikely to pass the threshold after adding noise, but we still
have a high enough yield amongst the queries with a strong consensus. This tradeoff leads us to
look for 7”s between 0.6x to 0.8 the number of teachers.

The privacy cost of this aggregator is intuitive: we pay for the threshold check for every
query, and for the GNMax step only for queries that pass the check. In the work of [[111], the
mechanism paid a privacy cost for every query, expensive or otherwise. In comparison, the
Confident Aggregator expends a much smaller privacy cost to check against the threshold, and
by answering a significantly smaller fraction of expensive queries, it expends a lower privacy

cost overall.
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Algorithm 3. — Confident-GNMax Aggregator: given a query, consensus among teachers is
first estimated in a privacy-preserving way to then only reveal confident teacher predictions.

Require: input x, threshold 7', noise parameters o; and o5

1: if max;{n;(z)} + N'(0,0}) > T then > Privately check for consensus
2: return argmax; {n;(z) + N (0,03)} > Run the usual max-of-Gaussian
3: else

4: return |

5: end if

5.3.3 The Interactive-GNMax Aggregator

While the Confident Aggregator excludes expensive queries, it ignores the possibility
that the student might receive labels that contribute little to learning, and in turn to its utility.
By incorporating the student’s current predictions for its public training data, we design an
Interactive Aggregator that discards queries where the student already confidently predicts the
same label as the teachers.

Given a set of queries, the Interactive Aggregator (Algorithm [) selects those answered
by comparing student predictions to teacher votes for each class. Similar to Step 1 in the
Confident Aggregator, queries where the plurality of these noised differences crosses a threshold
are answered with GNMax. This noisy threshold suffices to enforce privacy of the first step
because student predictions can be considered public information (the student is trained in a
differentially private manner).

For queries that fail this check, the mechanism reinforces the predicted student label
if the student is confident enough and does this without looking at teacher votes again. This
limited form of supervision comes at a small privacy cost. Moreover, the order of the checks
ensures that a student falsely confident in its predictions on a query is not accidentally reinforced
if it disagrees with the teacher consensus. The privacy accounting is identical to the Confident
Aggregator except in considering the difference between teachers and the student instead of only
the teachers votes.

In practice, the Confident Aggregator can be used to start training a student when it can
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Algorithm 4. — Interactive-GNMax Aggregator: the protocol first compares student predic-
tions to the teacher votes in a privacy-preserving way to then either (a) reinforce the student
prediction for the given query or (b) provide the student with a new label predicted by the
teachers.

Require: input z, confidence v, threshold 7', noise parameters o; and o9, total number of
teachers M

1: Ask the student to provide prediction scores p(x)

2: if max;{n;(z) — Mp;(x)} + N(0,0%) > T then > Student does not agree with teachers
3: return argmax; {n;(z) + N'(0,03)} > Teachers provide new label
4: else if max{p;(x)} > 7 then > Student agrees with teachers and is confident
5: return arg max; p;(x) > Reinforce student’s prediction
6: else

7: return | > No output given for this label
8: end if

make no meaningful predictions and training can be finished off with the Interactive Aggregator

after the student gains some proficiency.

5.4 Experimental Evaluation

Our goal is first to show that the improved aggregators introduced in Section [5.3enable
the application of PATE to uncurated data, thus departing from previous results on tasks with
balanced and well-separated classes. We experiment with the Glyph dataset described below
to address two aspects left open by [111]: (a) the performance of PATE on a task with a larger
number of classes (the framework was only evaluated on datasets with at most 10 classes) and
(b) the privacy-utility tradeoffs offered by PATE on data that is class imbalanced and partly
mislabeled. In Section [5.4.2] we evaluate the improvements given by the GNMax aggregator
over its Laplace counterpart (LNMax) and demonstrate the necessity of the Gaussian mechanism
for uncurated tasks.

In Section [5.4.3] we then evaluate the performance of PATE with both the Confident
and Interactive Aggregators on all datasets used to benchmark the original PATE framework, in
addition to Glyph. With the right teacher and student training, the two mechanisms from Section

[5.3] achieve high accuracy with very tight privacy bounds. Not answering queries for which
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teacher consensus is too low (Confident-GNMax) or the student’s predictions already agree with
teacher votes (Interactive-GNMax) better aligns utility and privacy: queries are answered at a

significantly reduced cost.

5.4.1 Experimental Setup

MNIST, SVHN, and the UCI Adult databases. We evaluate with two computer vision
tasks (MNIST and Street View House Numbers [[108]]) and census data from the UCI Adult
dataset [85]. This enables a comparative analysis of the utility-privacy tradeoff achieved with
our Confident-GNMax aggregator and the LNMax originally used in PATE. We replicate the
experimental setup and results found in [111] with code and teacher votes made available online.
The source code for the privacy analysis as well as supporting data required to run this analysis
is available on Github/[]

A detailed description of the experimental setup can be found in [[111]; we provide here
only a brief overview. For MNIST and SVHN, teachers are convolutional networks trained on
partitions of the training set. For UCI Adult, each teacher is a random forest. The test set is
split in two halves: the first is used as unlabeled inputs to simulate the student’s public data and
the second is used as a hold out to evaluate test performance. The MNIST and SVHN students
are convolutional networks trained using semi-supervised learning with GANs a la [[124]. The
student for the Adult dataset are fully supervised random forests.

Glyph. This optical character recognition task has an order of magnitude more classes
than all previous applications of PATE. The Glyph dataset also possesses many characteristics
shared by real-world tasks: e.g., it is imbalanced and some inputs are mislabeled. Each input is
a 28 x 28 grayscale image containing a single glyph generated synthetically from a collection
of over 500K computer fontsE] Samples representative of the difficulties raised by the data are

depicted in The task is to classify inputs as one of the 150 Unicode symbols used to

Thttps://github.com/tensorflow/models/tree/master/research/differential_privacy
2Glyph data is not public but similar data is available publicly as part of the notMNIST dataset.
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generate them.

This set of 150 classes results from pre-processing efforts. We discarded additional classes
that had few samples; some classes had at least 50 times fewer inputs than the most popular
classes, and these were almost exclusively incorrectly labeled inputs. We also merged classes that
were too ambiguous for even a human to differentiate them. Nevertheless, a manual inspection of
samples grouped by classes—favorably to the human observer — led to the conservative estimate
that some classes remain 5 times more frequent, and mislabeled inputs represent at least 10% of
the data.

To simulate the availability of private and public data (see Section [5.2.)), we split data
originally marked as the training set (about 65M points) into partitions given to the teachers.
Each teacher is a ResNet [73]] made of 32 leaky ReLU layers. We train on batches of 100 inputs
for 40K steps using SGD with momentum. The learning rate, initially set to 0.1, is decayed after
10K steps to 0.01 and again after 20K steps to 0.001. These parameters were found with a grid
search.

We split holdout data in two subsets of 100K and 400K samples: the first acts as
public data to train the student and the second as its testing data. The student architecture is a
convolutional network learnt in a semi-supervised fashion with virtual adversarial training (VAT)
from [102]. Using unlabeled data, we show how VAT can regularize the student by making
predictions constant in adversariazﬂ directions. Indeed, we found that GANSs did not yield as
much utility for Glyph as for MNIST or SVHN. We train with Adam for 400 epochs and a

learning rate of 6 - 1075,

5.4.2 Comparing the LNMax and GNMax Mechanisms

Section[5.3.T]introduces the GNMax mechanism and the accompanying privacy analysis.

With a Gaussian distribution, whose tail diminishes more rapidly than the Laplace distribution,

3In this context, the adversarial component refers to the phenomenon commonly referred to as adversarial
examples [[15,/136] and not to the adversarial training approach taken in GANSs.
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we expect better utility when using the new mechanism (albeit with a more involved privacy
analysis).

To study the tradeoff between privacy and accuracy with the two mechanisms, we run
experiments training several ensembles of M teachers for M € {100, 500, 1000, 5000} on the
Glyph data. Recall that 65 million training inputs are partitioned and distributed among the M
teachers with each teacher receiving between 650K and 13K inputs for the values of M above.
The test data is used to query the teacher ensemble and the resulting labels (after the LNMax and
GNMax mechanisms) are compared with the ground truth labels provided in the dataset. This
predictive performance of the teachers is essential to good student training with accurate labels
and is a useful proxy for utility.

For each mechanism, we compute (g, §)-differential privacy guarantees. As is common
in literature, for a dataset on the order of 108 samples, we choose § = 10~® and denote the
corresponding ¢ as the privacy cost. The total ¢ is calculated on a subset of 4,000 queries, which
is representative of the number of labels needed by a student for accurate training (see Section
[5.4.3). We visualize in the effect of the noise distribution (left) and the number of
teachers (right) on the tradeoff between privacy costs and label accuracy.

Observations. On the left of we compare our GNMax aggregator to the
LNMax aggregator used by the original PATE proposal, on an ensemble of 1000 teachers and for
varying noise scales o. At fixed test accuracy, the GNMax algorithm consistently outperforms
the LNMax mechanism in terms of privacy cost. To explain this improved performance, recall
notation from Section[5.3.1] For both mechanisms, the data dependent privacy cost scales linearly
with g — the likelihood of an answer other than the true plurality. The value of ¢ falls of as e
for GNMax and e~* for LNMax, where z is the ratio (n;~ — n;)/o. Thus, when n;« — n; is (say)
40, LNMax would have § ~ e~* = 0.018..., whereas GNMax would have § ~ ¢~ 16 ~ 1077,
thereby leading to a much higher likelihood of returning the true plurality. Moreover, this reduced
¢ translates to a smaller privacy cost for a given o leading to a better utility-privacy tradeoff.

As long as each teacher has sufficient data to learn a good-enough model, increasing
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Figure 5.3. Some example inputs from the Glyph dataset along with the class they are labeled
as. Note the ambiguity (between the comma and apostrophe) and the mislabeled input.
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Figure 5.4. Tradeoff between utility and privacy for the LNMax and GNMax aggregators on
Glyph: effect of the noise distribution (left) and size of the teacher ensemble (right).

Table 5.1. Utility and privacy of the students. For MNIST, Adult, and SVHN, we use the labels
of ensembles of 250 teachers published by [T11]] and set § = 10~ (to the exception of SVHN
where § = 107°%). All Glyph results use an ensemble of 5000 teachers and d is set to 107,

Queries | Privacy Accuracy

Dataset | Aggregator answered | bound ¢ | Student | Baseline
LNMax [[111] 100 2.04 98.0%

MNIST | LNMax [111] 1,000 8.03 98.1% | 99.2%
Confident-GNMax (7'=200, 01 =150, 52=40) 286 1.97 98.5%
LNMax [111]] 500 5.04 82.7%

SVHN | LNMax [111] 1,000 8.19 90.7% | 92.8%
Confident-GNMax (7=300, o1 =200, 52=40) 3,098 4.96 91.6%

Adult LNMax [111] 500 2.66 83.0% 85.0%
Confident-GNMax (7'=300, o1=200, 52=40) 524 1.90 83.7%
LNMax 4,000 4.3 72.4%

Glyph | Confident-GNMax (T=1000, 51=500, 02=100) | 10,762 2.03 75.5% 82.2%
Interactive-GNMax, two rounds 4,341 0.837 73.2%
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the number M of teachers improves the tradeoff — as illustrated on the right of with
GNMax. The larger ensembles lower the privacy cost of answering queries by tolerating larger
o’s. Combining the two observations made in this Figure, for a fixed label accuracy, we lower

privacy costs by switching to the GNMax aggregator and training a larger number M of teachers.

5.4.3 Student Training with the GNMax Aggregation Mechanisms

As outlined in Section we train a student on public data labeled by the aggregation
mechanisms. We take advantage of PATE’s flexibility and apply the technique that performs
best on each dataset: semi-supervised learning with Generative Adversarial Networks [[124] for
MNIST and SVHN, Virtual Adversarial Training [[102] for Glyph, and fully-supervised random
forests for UCI Adult. In addition to evaluating the total privacy cost associated with training
the student model, we compare its utility to a non-private baseline obtained by training on the
sensitive data (used to train teachers in PATE): we use the baselines of 99.2%, 92.8%, and 85.0%
reported by [111]] respectively for MNIST, SVHN, and UCI Adult, and we measure a baseline of
82.2% for Glyph. We compute (&, §)-privacy bounds and denote the privacy cost as the ¢ value
at a value of 0 set accordingly to number of training samples.

Confident-GNMax Aggregator. Given a pool of 500 to 12,000 samples to learn from
(depending on the dataset), the student submits queries to the teacher ensemble running the
Confident-GNMax aggregator from Section[5.3.2] A grid search over a range of plausible values
for parameters 7', o1 and o9 yielded the values reported in illustrating the tradeoff
between utility and privacy achieved. We additionally measure the number of queries selected by
the teachers to be answered and compare student utility to a non-private baseline.

The Confident-GNMax aggregator outperforms LNMax for the four datasets considered
in the original PATE proposal: it reduces the privacy cost €, increases student accuracy, or both
simultaneously. On the uncurated Glyph data, despite the imbalance of classes and mislabeled
data (as evidenced by the 82.2% baseline), the Confident Aggregator achieves 73.5% accuracy

with a privacy cost of just ¢ = 1.02. Roughly 1,300 out of 12,000 queries made are not answered,
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indicating that several expensive queries were successfully avoided. This selectivity is analyzed
in more details in Section [5.4.4l

Interactive-GNMax Aggregator. On Glyph, we evaluate the utility and privacy of an
interactive training routine that proceeds in two rounds. Round one runs student training with a
Confident Aggregator. A grid search targeting the best privacy for roughly 3,400 answered queries
(out of 6,000) — sufficient to bootstrap a student — led us to setting (7'=3500, o;=1500, 05,=100)
and a privacy cost of € ~ (.59.

In round two, this student was then trained with 10,000 more queries made with the
Interactive-GNMax Aggregator (7T=3500, 01=2000, 05=200). We computed the resulting (total)
privacy cost and utility at an exemplar data point through another grid search of plausible
parameter values. The result appears in the last row of With just over 10,422 answered
queries in total at a privacy cost of ¢ = (.84, the trained student was able to achieve 73.2%
accuracy. Note that this students required fewer answered queries compared to the Confident
Aggregator. The best overall cost of student training occurred when the privacy costs for the first
and second rounds of training were roughly the same. (The total ¢ is less than 0.59 x 2 = 1.18

due to better composition — via Theorems [2.2.3|and [2.2.4])

Comparison with Baseline. Note that the Glyph student’s accuracy remains seven
percentage points below the non-private model’s accuracy achieved by training on the 65M
sensitive inputs. We hypothesize that this is due to the uncurated nature of the data considered.
Indeed, the class imbalance naturally requires more queries to return labels from the less
represented classes. For instance, a model trained on 200K queries is only 77% accurate on test
data. In addition, the large fraction of mislabeled inputs are likely to have a large privacy cost:
these inputs are sensitive because they are outliers of the distribution, which is reflected by the

weak consensus among teachers on these inputs.
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Figure 5.5. Effects of the noisy threshold checking: # queries answered by LNMax,
Confident-GNMax moderate (7'=3500, 0;=1500), and Confident-GNMax aggressive
(T=5000, 01=1500). The black dots and the right axis show the expected cost of answering a
single query in each bin (via GNMax,02,=100).

5.4.4 Noisy Threshold Checks and Privacy Costs

Sections[5.3.1]and [5.3.2) motivated the need for a noisy threshold checking step before

having the teachers answer queries: it prevents most of the privacy budget being consumed by
few queries that are expensive and also likely to be incorrectly answered. In and
we compare the privacy cost € of answering all queries to only answering confident
queries for a fixed number of queries.

We run additional experiments to support the evaluation from Section With the
votes of 5,000 teachers on the Glyph dataset, we plot in the histogram of the plurality
vote counts (n;+ in the notation of Section [5.3.1)) across 25,000 student queries. We compare
these values to the vote counts of queries that passed the noisy threshold check for two sets
of parameters 7" and oy in Algorithm 3] Smaller values imply weaker teacher agreements and
consequently more expensive queries.

When (T=3500, 01=1500) we capture a significant fraction of queries where teachers
have a strong consensus (roughly > 4000 votes) while managing to filter out many queries with
poor consensus. This moderate check ensures that although many queries with plurality votes

between 2,500 and 3,500 are answered (i.e., only 50-70% of teachers agree on a label) the
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Figure 5.6. Effects of the noisy threshold checking: Privacy cost of answering all (LNMax) vs
only inexpensive queries (GNMax) for a given number of answered queries. The very dark area
under the curve is the cost of selecting queries; the rest is the cost of answering them.

expensive ones are most likely discarded. For (7=5000, 0,=1500), queries with poor consensus
are completely culled out. This selectivity comes at the expense of a noticeable drop for queries
that might have had a strong consensus and little-to-no privacy cost. Thus, this aggressive
check answer fewer queries with very strong privacy guarantees. We reiterate that this threshold
checking step itself is done in a private manner. Empirically, in our Interactive Aggregator
experiments, we expend about a third to a half of our privacy budget on this step, which still

yields a very small cost per query across 6,000 queries.

5.5 Conclusions

The key insight motivating the addition of a noisy thresholding step to the two aggregation
mechanisms proposed in this chapter is that there is a form of synergy between the privacy
and accuracy of labels output by the aggregation: labels that come at a small privacy cost also
happen to be more likely to be correct. As a consequence, we are able to provide more quality
supervision to the student by choosing not to output labels when the consensus among teachers
is too low to provide an aggregated prediction at a small cost in privacy. This observation was

further confirmed in some of our experiments where we observed that if we trained the student
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on either private or non-private labels, the former almost always gave better performance than
the latter — for a fixed number of labels.

Complementary with these aggregation mechanisms is the use of a Gaussian (rather than
Laplace) distribution to perturb teacher votes. In our experiments with Glyph data, these changes
proved essential to preserve the accuracy of the aggregated labels — because of the large number
of classes. The analysis presented in Section |5.3|details the delicate but necessary adaptation of
analogous results for the Laplace NoisyMax.

As was the case for the original PATE proposal, semi-supervised learning was instrumen-
tal to ensure the student achieves strong utility given a limited set of labels from the aggregation
mechanism. However, we found that virtual adversarial training outperforms the approach
from [124] in our experiments with Glyph data. These results establish lower bounds on the
performance that a student can achieve when supervised with our aggregation mechanisms;
future work may continue to investigate virtual adversarial training, semi-supervised generative
adversarial networks and other techniques for learning the student in these particular settings

with restricted supervision.
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Chapter 6

Differentially Private Continual Release of
Graph Statistics

6.1 Overview

Dynamic social networks are ubiquitous models of social and economic phenomena, and
analyzing them over a period of time can allow researchers to understand various aspects of
human behavior. Many social networks, however, include sensitive and personal information
about the people involved. Consequently, we need to design privacy-preserving algorithms that
can summarize properties of dynamic social networks over time while still preserving the privacy
of the participants.

As a concrete motivating example, consider data on HIV transmission collected from
patients in a particular region over multiple years [90, (141} [145]. Advances in sequencing
technology allow scientists to infer putative transmission links by measuring similarities between
HIV sequences obtained from different patients. These links can then be resolved into trans-
mission networks, reflecting the patterns of transmission in that population. Epidemiologists
would like to study properties of these networks as they grow over time to understand how HIV
propagates. Since there is considerable social stigma associated with HIV, these networks are
highly sensitive information, and public release of their properties needs to ensure that privacy of
the included individuals is not violated. Additionally, analyses of these networks need to happen

intermittently — for example, once a year — so that properties of the network as it evolves may be
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studied.

In this chapter, we consider continual privacy-preserving release of graph statistics, such
as degree distributions and subgraph counts, from sensitive networks where nodes and their
associated edges appear over time in an online manner. For our privacy notion, we use differential
privacy [45] — the gold standard in private data analysis. Differential privacy guarantees privacy
by ensuring that the participation of a single person in the dataset does not change the probability
of any outcome by much; this is enforced by adding enough noise to either the input data or
to the output of a function computed on the data so as to obscure the private value of a single
individual. Since in our applications, a node corresponds to a single person, we use node
differential privacy [72]], where the goal is to hide the participation of any single node.

There are two main challenges in continually releasing graph statistics with node differ-
ential privacy. The first is that node differential privacy itself is often very difficult to attain, and
can only be attained in either bounded degree graphs or graphs that can be projected to be degree-
bounded. The second challenge pertains to the online nature of the problem. Prior work has
looked at continual release of statistics based on streaming tabular data [[19} 24, 25, 80, 29, 47];
however, these works rely on the fact that in tabular data, at any time ¢, we only get information
about the ¢-th individual, and not about individuals who already exist in the data. This property
no longer holds in online graphs, as an incoming node may bring in new information about
existing nodes in the form of connecting edges, and therefore these solutions do not directly
apply.

In this work, we show that if there is a publicly known upper bound on the maximum
degree of any node in the entire graph sequence, then, a difference sequence — namely, the
sequence of differences in the statistics computed on subsequent graphs — has low sensitivity.
The assumption of bounded maximum degree holds for many real networks, as many real-world
graphs, such as social interaction networks, collaboration networks, computer networks and
disease transmission networks, that are scale-free with power-law degree distributions have low

maximum degree. Given this assumption holds, we show in particular that the sensitivity of
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the entire difference sequence only depends on the publicly known upper bound, and not on
the length of the sequence. This implies that we can release a private version of the difference
sequence with relatively high accuracy, which can be used to continually release the target
statistic with high privacy-accuracy tradeoff.

It is commonly believed that many real-world networks, such as social interaction
networks, collaboration networks, computer networks and disease transmission networks are
scale-free with degree distributions following a power law; such graphs have low maximum
degrees.

We derive the sensitivity of the difference sequence for a number of common graph
statistics, such as degree distribution, number of high degree nodes, as well as counts of fixed
subgraphs. We then implement our algorithms and evaluate them on three real and two synthetic
datasets against two natural baselines. Our experimental results show that the algorithm outper-

forms these baselines in terms of utility for these datasets over a range of privacy parameters.

6.1.1 Related Work

To apply differential privacy to graph data, it is important to determine what a single
person’s data contributes to the graph. Prior work has looked at two forms of differential privacy
in graphs — edge differential privacy, where an edge corresponds to a person’s private value,
and node differential privacy, where a single node corresponds to a person. In our motivating
application, a patient corresponds to a node, and hence node differential privacy is our privacy
notion of choice.

Prior work on edge differential privacy [109, [72] has looked at how to compute a number
of statistics for static graphs while preserving privacy. For example, [[76] computes subgraph
counts, and [72] degree distributions with edge differential privacy. It is also known how to
successfully calculate more complex graph parameters under this notion; for example, [92]
fits exponential random graph models and [143} 5] computes spectral graph statistics such as

pagerank.
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In contrast, achieving node differential privacy is considerably more challenging. Chang-
ing a single node and its associated edges can alter even simple statistics of a static graph
significantly; this means that any differentially private solution needs to add a considerable
amount of noise to hide the effect of a single node, resulting in low utility. Prior work has
addressed this challenge in two separate ways. The first is to assume that there is a publicly
known upper bound on the maximum degree of any node in the graph [20, 64].

The second is to use a carefully-designed projection from the input graph to a bounded
degree graph, where adding or removing a single node has less effect, and then release statistics
of the projected graph with privacy. To ensure that the entire process is privacy-preserving, the
projection itself is required to be smooth — in the sense that changing a single node should not
change the statistics of the projected graph by much. This approach has been taken by [78],
who releases degree distributions and subgraph counts for static graphs and [[16l], who releases
subgraph counts and local profile queries. [116] releases degree distributions by using a flow-
based projection algorithm. Finally, [35] proposes an improved projection method for releasing
degree distributions, and is the state-of-the-art in this area. In this chapter, we show that when the
graph arrives online, existing projection-based approaches can yield poor utility, and therefore,
we consider bounded degree graphs, where domain knowledge suggests an upper bound on the
maximum degree.

Finally, while we are not aware of any work on differentially private statistics on streaming
graph data, prior work has looked at releasing private statistics on streaming tabular data in
an online manner [19, 24} 25, 180, 29, 47]. In these settings, however, complete information
about a single person (or a group of people) arrives at each time step, which makes the problem
of private release considerably easier than online graph data, where newly arriving nodes may
include information in the form of edges to already existing nodes. Thus, these approaches do

not directly translate to online graphs.
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6.2 Preliminaries
6.2.1 Graphs and Graph Sequences

Formally, we consider a graph G = (V, /), where a node v € V' represents a person and
an edge (u,v) € E arelationship. G may be directed or undirected, depending on the application.
We assume that each node v € V' is associated with a time stamp, denoted by v.time, that records
when v enters the graph.

In our setting, a graph arrives online as more and more of its vertices and some of their
adjacent edges become visible. More specifically, at time ¢, a set of vertices 0V, arrives, along
with a set of edges JF;; each edge in OF; has at least one end-point in JV;, and the other
end-point may be a vertex that arrived earlier. These vertices and edges, along with vertices and
edges that arrived earlier comprise a graph G;. Given a function f that operates on graphs, our
goal is to output (a private approximation to) f(G,;) at each time step ¢.

More formally, the arrival process comprises a graph sequence G = (G, G, . ..), which
is defined as a sequence of graphs with G; = (V;, E;) such that Vo = 0, 0V, = {v : v.time =t} is
the set of all nodes with time stamp ¢ and V;, = V;_1UAQV, fort > 1 is the set of all nodes with time
stamps < t. Additionally, we let Ey = 0, OFE;, = {(u,v)|u € 0V;,v € V,oru € V;,v € 0V;},
and F; = E;_1 U OF;. Given a function f that operates on a graph, we define f applied to the
graph sequence f(G) as the sequence (f(G1), f(Ga),...).

If the graph sequence is G = (G1, Ga,...,Gr), then the error of A(G) is defined as:

ST A(GY) — f(G,)]. Our goal is to design an algorithm A that has as low error as possible.

6.2.2 Node Differential Privacy

Recall that in Chapter 2] we have defined differential privacy and the Laplace mechanism,
which adds Laplace noise with scale parameter GS (f) /e, with GS (f) as the global sensitivity
of a query function f and € as the privacy parameter, to the true value of the query result.

To apply differential privacy to graphs, we need to determine what constitutes a single
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person’s data in a graph. For the kind of graphs that we will study, a node v corresponds to a
single person. This is known as node differential privacy [[72], which ensures that the addition or
removal of a single node along with its adjacent edges does not change the probability of any

outcome by much.

6.2.3 Bounded Degree Graphs

A major challenge with ensuring node differential privacy is that the global sensitivity
GS (f) may be very large even for simple graph functions f, which in turn requires the addition
of a large amount of noise to ensure privacy. For example, if f is the number of nodes with
degree > 1, and we have an empty graph GG on n nodes, then adding a single node connected to
every other node can increase f by as much as n.

Prior work has addressed this challenge in two separate ways. The first is by considering
Bounded Degree Graphs [18, 16, 20], where an a-priori bound on the degree of any node is
known to the user and the algorithm designer. This is the solution that we will consider in this
chapter.

A second line of prior work [[16} (78] 116, 35] presents Graph Projections algorithms
that may be used to project graphs into lower degree graphs such that the resulting projections
have low global sensitivity for some graph functions. In Section we show that natural
extensions of some of these projections may be quite unstable when a graph appears online.

We first define bounded degree graphs. Let deg., (v) denote the degree of node v in an
undirected graph G, out-deg, (v) and in-deg, (v) denote the out-degree and in-degree of v in a

directed graph G.

Definition 6.2.1. An undirected graph G = (V, E) is D-bounded if deg., (v) < D foranyv € V.
A graph sequence G = (G4, G, .. .) is D-bounded if for all t, Gy is D-bounded. In other words,
the degree of all nodes remain bounded by D in the entire graph sequence.

A directed graph G = (V, E) is D,,,-out-bounded if out-deg, (v) < D, for anyv € V.

A graph sequence G = (G1,Gs,...) is D,-out-bounded if for all t, Gy is D,,-out-bounded.
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Similarly, G is D;,-in-bounded if in-deg (v) < Dy, for any v € V. G is D,,-in-bounded if for
all t, G; is D;,-in-bounded.

We say a directed graph or a graph sequence is (D;,, D,,;)-bounded if it is both D;,-in-
bounded and D.,,,;-out-bounded.

In this work, we assume that the domain consists only of degree bounded graphs. This
ensures that the global sensitivity of certain common graph functions, such as degree distribution
and subgraph counts, is low, and allows us to obtain privacy with relatively low noise. Addi-
tionally, many common sensitive graphs, such as the HIV transmission graph and co-authorship
networks, typically have relatively low maximum degree, thus ensuring that the assumption

holds for low or moderate values of D.

6.2.4 Graph Functions

This work will consider two types of functions on graph sequences. The first consists of
functions of the degree distribution. The specific functions we will look at for undirected graphs
are highDeg_ (G), which counts the number of nodes in G with degree > 7 and the degree
histogram hist (G'), which counts the number of nodes with degree d for any d € N, . Similarly,
for directed graph, we consider highOutDeg_ (G, the number of nodes with out-degree > T,
and the out-degree histogram histOut (G), which counts the number of nodes with out-degree d
forany d € N,.

The second class of functions will involve subgraph counts. Given a subgraph S, we will
count the number of occurrences of this subgraph S (G) in the entire graph G. For example,
when S is a triangle, S (G) will count the number of triangles in the graph. When G is directed,

so will be the corresponding subgraphs.

6.2.5 Other Notations

In a directed graph, an edge is denoted by an ordered tuple, i.e., (u,v) represents a

directed edge pointing from node u to v.
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We use (at)?:1 as an abbreviation for vector (ay, as, . .., ar).

For any integer i, we use [i] to denote the set {1,2,...,i}.

A degree histogram h is a mapping from degrees to counts, i.e., given d € N, h(d) is
the number of nodes with degree equal to d. We define the distance between two histograms 5
and 1’ as [|[h(d) — W' (d)|l1= 3_ ey, [(d) — h'(d)]. Given two sequences of histograms (ho)p—,

and (h;)thl, we define the generalized L, distance between them as Zthl |\he(d) — hy(d)]]1-

6.3 Main Algorithm

Recall that we are given as input a D-bounded (or (D;,, Doy )-bounded) graph sequence
G = (G1,Gy,...,Gr) that arrives online, a privacy budget € and a function f. Our goal is
to publish an e-differentially private approximation to the sequence f(G) in an online manner.
Specifically, at time ¢, an incoming vertex set JV; and edges OF; adjacent to it and the existing
vertices arrive, and our goal is to release a private approximation to f(G;) with low additive
L-error.

Baseline Approaches. A naive approach is to calculate f(G;) at each ¢ and add noise
proportional to its global sensitivity over €. Since 0F; may contain information on individuals in
G4 in the form of adjacent edges, this procedure will not provide e-differential privacy.

The correct way to do privacy accounting for this method is by sequential composi-
tion [45]. Suppose the graph sequence has total length 7" and we allocate privacy budget ¢ /T
to each time step; then at time ¢, we calculate f(G;) and add noise proportional to its global
sensitivity divided by ¢/7". If the global sensitivity of f(G;) is O(1), then, we add O(7/¢) noise
to f(G;), which results in a ©(7?/¢) expected L;-error between f(G) and the output of the
algorithm.

A second approach is to calculate f(G;) and add noise proportional to the global sensi-
tivity of the (entire) sequence f(G) divided by e. This preserves e-differential privacy. However,

the global sensitivity of the sequence f(G) typically grows linearly with 7', the length of the
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entire graph sequence, even if the graph sequence itself is degree-bounded. For example, if
f(G) is the number of nodes in G with degree > T, then, a single extra node with degree 7 + 1,
added at time ¢ = 1, can increase f(G;) by 1 for every t, resulting in a global sensitivity of
Q(T). Consequently, the expected L;-error between the true value of f(G) and the output of this
approach is as again large as ©(7?/e).

Our Approach. The main observation in this work is that for a number of popular func-
tions, the difference sequence A = (f(G1), f(G2)— f(G1), f(G3)— f(Ga2), . ..) has considerably
better properties. Observe that unlike certain functions on tabular data [[19, 24, 25, 80, 29, 471,
releasing f(G;) — f(Gy_) after adding noise proportional to its sensitivity over e will still not be
e-differentially private — this is because 0 F; can still include edges adjacent to people in G;_;.

However, the difference sequence A does have considerably less global sensitivity than
f(G). In particular, we show that if the graph sequence G is D-bounded, then, the global
sensitivity GS (A) of the entire difference sequence for a number of popular functions f depends
only on D and not on the sequence length 7". For example, in Section [6.4.1.1] we show that when
G is an undirected graph and f is the number of nodes with degree > T, the global sensitivity of
the entire difference sequence is at most 2D + 1.

This immediately suggests the following algorithm. At time ¢, calculate the difference
Ay = f(Gy) — f(Gy—1), and add Laplace noise proportional to its global sensitivity over € to get
a private perturbed version A. Release the partial sum 22:1 A,, which is an approximation
to f(G,). Since the expected value of A, — A, is independent of 7', the maximum standard
deviation of any partial sum is at most O(v/T'/€), which results in an expected L;-error of
O(T?/?/¢) — better than the O(T?/¢)-error achieved by the two baseline approaches.

The full algorithm, applied to a generic function f, is described in Algorithm [S| We
call it SENSDIFF as it uses the global sensitivity of the difference sequence A. The rest of the
chapter is devoted to analyzing the global sensitivity of the difference sequence for a number of
popular graph functions f. Our analysis exploits specific combinatorial properties of the graph

functions in question, and is carried out for two popular classes of graph functions — functions of
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Algorithm 5. SENSDIFF(Graph sequence G, query f, privacy parameter )

fort=1,...,T do
Receive 0V, and OE}, and construct G;.
Calculate A; = f(Gy) — f(Gy-1).

Let GSp (A) be the global sensitivity of the difference sequence;

Calculate A, = A, + Lap (M> , and the partial sum ZZZI A,.

€

end for

return <Zi:1 AS>

T

t=1

the degree distribution and subgraph counts.

6.4 Functions of Degree Distributions

We begin with functions of the degree distributions of the graph sequence, and consider

both directed and undirected graphs. A summary of the results in this section is provided in

Table
Table 6.1. Summary of degree distribution results.
Undirected graph Directed graph
(out-)degree histogram || 4D? + 2D + 1 (for D-bounded) | 4 Doy Diy + 2Dy + 1 (for (Diy, Dy )-bounded)
high-(out-)degree nodes 2D + 1 (for D-bounded) 2D;, + 1 (for D;,-in-bounded)

6.4.1 Undirected Graphs

For undirected graphs, we will consider two functions applied to graph sequences — first,
the number of nodes with degree greater than or equal to a threshold 7, and second, the degree

histogram.
6.4.1.1 Number of High Degree Nodes

Recall that highDeg_ (G) is the number of nodes in G with degree > 7. We show below,
that for D-bounded graphs, the difference sequence corresponding to highDeg_ (G) has global

sensitivity at most 2D + 1.
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Lemma 6.4.1. Let f(G) = highDeg._(G). For D-bounded graphs, the difference sequence
corresponding to f has global sensitivity at most 2D + 1. In fact, the global sensitivity is 2D + 1

forany T < D.

Notice that 7 < D is needed for the statistic to be meaningful; if 7 > D, there is no
high-degree node.

Projection Yields High Sensitivity in Graph Sequence A common idea in static graph
analysis with node differential privacy is to project the original graph into a bounded-degree
graph. The sensitivity of some common statistics on this projected graph scales with the degree
bound instead of the total number of nodes. The current state-of-the-art projection algorithm is
proposed in [35]. Given a projection threshold D, a graph G = (V, F) and an ordering of the
nodes in V, the algorithm constructs a bounded-degree graph GP as follows. First, it adds all
nodes in V to GP; then it orders all edges in F according to the ordering of V', and for each edge
(u,v), adds it to GP if and only if the addition does not make the degree of either u or v exceed
D.

This algorithm can be easily adapted to the online graph setting. However, it can be
shown that the global sensitivity of the difference sequence is proportional to the total number of

publications.

Lemma 6.4.2. Let f(G) = highDeg_ (GD ) For D-bounded graphs, the corresponding differ-

ence sequence that ends at time T" has global sensitivity at least DT for any D>71>0.

Notice that D > 7 is needed for highDeg (GD ) to be meaningful; otherwise, we would

have highDeg_ (G[)> = |V| for any G.

6.4.1.2 Degree Histogram

Degree histogram is another informative statistic of a graph. However, we can show that
even for bounded graph, the sensitivity can scale quadratically with the degree bound. We use the

generalized L, distance defined in Section [6.2.5]as the distance metric for the global sensitivity.
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Lemma 6.4.3. Let f(G) = hist (G). For D-bounded graphs, the difference sequence corre-

sponding to f has global sensitivity 4D? + 2D + 1.

6.4.2 Directed Graphs

For Directed graphs, we show similar results for the number of nodes with out-degree
greater than or equal to a threshold 7 and the out-degree histogram. Similar results can be

obtained for in-degree.
6.4.2.1 Number of High Out-Degree Nodes

Recall that highOutDeg_(G) denotes the number of nodes in G with degree > 7.
We show below that for Dj,-in-bounded graphs, the difference sequence corresponding to

highOutDeg_ (G) has global sensitivity 2D;, + 1.

Lemma 6.4.4. Let f(G) = highOutDeg._(G). For D;,-in-bounded graphs, the difference

sequence corresponding to f has global sensitivity 2D;, + 1.
6.4.2.2 Out-Degree Histogram

We show that for bounded directed graphs, the sensitivity of the histogram scales quadrat-

ically with the degree bounds as well.

Lemma 6.4.5. Let f(G) = histOut (G). For (D;,, Dy, )-bounded graphs, the difference se-

quence corresponding to f has global sensitivity 4D ,,D;, + 2Dy + 1.

6.5 Functions of Subgraph Counts

In this section, we consider the count of some common directed and undirected subgraphs.
Popular subgraphs In undirected graphs, we consider three subgraphs. 1) an edge,
including two nodes and the edge between them, 2) a triangle, including three nodes with
edges between any two of them and 3) a k-star, including one center node ¢, k£ boundary nodes

{b1,...,bc} and edges {(c,b;) : i € [k]}. Table[6.2] summarizes these subgraphs.

79



In directed graphs, we consider five subgraphs. 1) an edge, including two nodes
and an directed edge between them, 2) triangle I, including nodes {vy, vo,v3} and edges
{(v1,v2), (v2,v3), (v3,v1)}, 3) triangle I, including nodes {v;, v9, v3} and edges {(v1, v2),
(v1,v3), (v2,v3)}, 4) an out-k-star, including one center node ¢, k boundary nodes {by, ..., b;}
and edges {(c,b;) : i € [k]}, 5) an in-k-star, including one center node ¢, k boundary nodes

{b1,...,bx} and edges {(b;, ¢) : i € [k]}. Table[6.3| summarizes these subgraphs.
Table 6.2. Subgraphs in undirected graphs.

Edge | Triangle | k-star
Sk SA Sy

~ | a | T

Table 6.3. Subgraphs in directed graphs.

Edge | Triangle I | Triangle II | Out-k-star | In-k-star

sé | 89, S, s, 54
. s
*>e A él -<_§_>- »5

6.5.1 Undirected Graphs

First, we present a general result that applies to any undirected subgraph S. Recall that

S (G) denotes the total number of copies of .S in graph G.

Lemma 6.5.1. Given any undirected subgraph S, if S(G) changes by at most S, with an
additional node with degree D (and the corresponding edges), then the difference sequence

corresponding to S (-) has global sensitivity S, for any D-bounded graph G.
Now we show the values of S, for the subgraphs listed in Table
Lemma 6.5.2. Given the degree bound D, the value of S for some common subgraphs are:

1. for S}, S+ = D;
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2. for Sk, Sy = (5);
3. for 8%, Sy =D(P7) + (7).

6.5.2 Directed Graphs

Again, we first present a lemma that applies to any subgraph S, and then show the

values of S, the maximum change in the subgraph count caused by an additional node, for the

subgraphs in Table

Lemma 6.5.3. Given any directed subgraph S, if S (G) changes by at most S with an additional
node with D, in-degree and D.,,,, out-degree (and the corresponding edges), then the difference

sequence corresponding to S () has global sensitivity S, for any (Diy, D y,;)-bounded graph G.

Lemma 6.5.4. Given degree bounds D, and D,,,,, the value of S, for some common subgraphs

are.
1. for 8%, Sy = Dy + Dous
2. for S%1, St = DiyDous;
3. for S4,, Sy = (PintPou);
4. for 5k, Si = Din("pe ) + ()

5. fOl" Sdi, S+ - Dout(D‘ 71) + (Din).

in
* k—1 k

6.6 Experiments

We next demonstrate the practical applicability of the proposed algorithm by comparing

it with some natural baselines. In particular, we investigate the following questions:

1. What is the utility offered by SENSDIFF as a function of the privacy parameter ¢ and the

number of releases?
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2. How does its utility compare with existing baselines, such as composition across time

steps, and composition coupled with graph projection?

These questions are considered in the context of five datasets — two synthetic and three real
online graphs. We consider two versions of each dataset — directed and undirected, and two

graph statistics — the number of high-degree nodes and the number of edges.

6.6.1 Methodology
6.6.1.1 Baseline Algorithms

We consider two natural baselines based on sequential differential privacy composition —
COMPOSE-D-BOUNDED and COMPOSE-PROJECTION. COMPOSE-D-BOUNDED considers each
graph G, in the sequence separately, and adds noise to f(G,) that is proportional to its D-bounded
global sensitivity divided by /T Here ¢ is the privacy parameter and 7 is the number of releases.
COMPOSE-PROJECTIONuSses a state-of-the-art projection algorithm — the one proposed in [35]]
— to project each G; into Gy, and releases f (Gt) after adding noise proportional to its global
sensitivity divided by €/7".

There are two other natural approaches. The first is to compute f(G) and add noise
proportional to its D-bounded global sensitivity divided by €; the second is to use the projection
algorithm to obtain a sequence of projected graphs G = (G4, ..., Gr), compute f(G) and add
noise proportional to the its global sensitivity divided by e. However, we can show that the utility
of either of these approaches is guaranteed to be at most that of COMPOSE-D-BOUNDED and

COMPOSE-PROJECTION; details are omitted due to space constraints.
6.6.1.2 Choice of Parameters

SENSDIFF and COMPOSE-D-BOUNDED both require an a-priori bound on the graph
degree. We set this bound to be the actual maximum degree rounded up to the nearest 5-th
integer.

COMPOSE-PROJECTION requires a projection threshold D (or, ﬁin and D:,ut for directed
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graphs). This parameter is chosen by parameter tuning — we pick the parameter value out of a
predetermined list that leads to the lowest error. Note that for the sake of fairness, we do not
allocate any extra privacy budget to parameter tuning, which would be the case in reality; thus
our estimate of the performance of COMPOSE-PROJECTION is optimistic.

The threshold 7 in the high-degree or high-out-degree nodes experiments is set to be the

90-th percentile of the (non-private) degree distribution.

6.6.2 Datasets

We use five datasets — three real and two synthetic. In addition to the standard directed
version of each dataset, we also consider an undirected version that is obtained by ignoring the

edge directions. A brief summary of these datasets is presented in Table [6.4]

Table 6.4. Summary of common properties of the graph datasets. Max degree refers to the
undirected version of the graph while max in-degree and max out-degree refer to the directed

version.
#nodes | # edges | timespan (year) | max degree | max in-degree | max out-degree
HIV transmission 1660 456 21 13 12 8
Patent citation 91614 | 475427 15 247 211 246
Paper citation 9038 5249 24 36 19 36
Synthetic I 1990 665 20 5 1
Synthetic 11 1088 588 20 6 1 5

6.6.2.1 Real Data Sets

HIV transmission graph This is a graph of potential HIV transmissions where a node
represents a patient and an edge connects two patients whose viral sequences have high similarity.
An edge thus represents a plausible transmission; the graph also has spurious edges that may
correspond to a patient transmitting the disease to multiple others within a short period of time.
About two-thirds of the patients have an estimated date of infection (EDI) ranging from 1996 to
2016, which is taken as the time stamp of the corresponding node. For the remaining nodes, EDI

could not be estimated as the patient was admitted long after infection; we set the corresponding
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time stamps as 1995.

Patents citation graph The patents citation graph [67] contains all US patents granted
between 1963 and 1999, and all citations made by patents from 1975 to 1999. A patent ’s citing
patent v naturally yields a directed edge from v to u. We pick all patents under subcategory
Computer Hardware & Software (indexed 22) to form both a directed and an undirected graph,
and publish statistics from years 1985 to 1999.

Paper citation graph This is a graph of articles and their citations from ACL derived
by [87]; each article has a recorded publication date from 1975 to 2013. We select the positive
citations, where an edge from v to v implies that v endorsed the article v, and publish statistics

from 1990 to 2013.
6.6.2.2 Synthetic Data Sets

In addition to the real data sets, we consider two synthetic graphs that are generated from
two separate disease transmission models.

Synthetic disease transmission graph I This is a synthetic graph of disease transmis-
sions based on the Barabasi—Albert preferential attachment model. In the Barabési—Albert model,
there are m, initial nodes, followed by a number of nodes that arrive sequentially. A node on
arrival connects to k existing nodes, with a higher chance of connecting to nodes with higher
degree.

We make three modifications to this model so that the generated graph is a more realistic
disease transmission network. First, we assume there is a total of Y years with n nodes added
per year; each node has a time stamp — its year of arrival — and the initial nodes have time stamp
0. All edges are directed from nodes with lower time stamps to those with higher time stamps.
Second, to model the large number of isolated nodes that exist in real disease transmission
networks, we ensure that each new node is isolated with probability proportional to a parameter
Pioaea- Third, in practice, an infected individual is usually less likely to spread infection

as time passes due to treatment or death. We build this property into the model by adding
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an extra decaying factor to the connection probability, i.e., the probability of a new node’s
connecting to an existing node v is proportional to deg (v) x (current_time —v.time+1)~¢
(or out-deg (v) X (current_time — v.time 4+ 1)~ ¢ in directed graph) where c is the decay
parameter. For our experiments, we generate a graph with parameters Pigaeq = 0.5, k = 1,
my =500,n =70,Y =20and c = 1.

Synthetic disease transmission graph II This is a synthetic disease transmission graph
drawn from the popular SIR model [81] of infection overlaid on an underlying Barabéasi—Albert
social network. In the SIR model, a node or individual as three statuses — susceptible (S),
infectious (I) and recovered (R). The infectious individuals transmit the disease to susceptible
individuals through social links with a transmission probability F,. With probability F,, an
infectious individual can recover; once recovered, an individual will not get infected again.

We generate an undirected social network Giyeraer = (V, E) from the Barabasi—Albert
model, where a node represents a person and an edge a social interaction. We then simulate the
transmission process as follows. Initially, every node is susceptible (S) except for ny randomly
picked infectious (I) nodes. At time step ¢, an infectious node changes status to recovered (R)
with probability P,; then, each node u that is still infectious infects each one of its neighbors in

Glinteract With probability P;/deg.. (u). This gives us a transmission graph where a directed

1nteract
edge is a disease transmission. The time stamp of each node is the time when it is infected. We
note that any node in the social interaction graph that has never been infected will not appear in

the transmission graph. For our experiments, we use the parameters P. = 0.1, P, = 0.18 and a

underlying interaction graph Giyeract Of size 10000 with attachment parameter k& = 2.

6.6.3 Results

We compare SENSDIFF with the baseline algorithms COMPOSE-D-BOUNDED and

COMPOSE-PROJECTION under varying € — the privacy parameter and varying 7' — the number of
releases. We measure utility by the relative L, error 31 | A(G;) — f(Gy)|/f(Gy), where f(G;)

is the non-private statistic and A(G,) is the value estimated by an algorithm.
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Figure 6.1. L, error vs. privacy parameter €. Publish every 1 year. Averaged over 100 runs.

Figure [6.1] shows the privacy-utility tradeoffs of the three algorithms for the number of
high-degree nodes (1st and 2nd columns) and number of edges (3rd and 4th columns) across
all datasets (different rows). There is a clear trend of decreasing error as € increases for all
algorithms; however, SENSDIFF yields smaller error compared to the other two baselines in all
the cases. We point out that these results are overly optimistic for COMPOSE-PROJECTION — as

we do not spend any privacy budget tuning the projection thresholds.



Directed, high-degree Undirected, high-degree =~ Directed, edge Undirected, edge

30 150

~+-senseDiff ~+-senseDiff ~+-senseDiff ~+-senseDiff

~+~compose-projection ~+~compose-projection ~+~compose-projection 30 ~+~compose-projection
compose-D-bounded compose-D-bounded compose-D-bounded compose-D-bounded

n
3
o 9
s 3
@
&

N
S

_.
5
4
4

—
w2
w2
—
25
= 5 51 540 5
A o v v 020
o 2 2 230 2
© & 8 815
< o ) ] )
=10 = 50 = =
=] * 10
5 10 5
> W
— o

~+-senseDiff
~+~compose-projection
compose-D-bounded

o
5

-#-senseDiff - senseDiff -~ senseDiff
~+compose-projection ~+compose-projection ~+compose-projection
compose-D-bounded 8 compose-D-bounded 015 compose-D-bounded

IS

Patent citation
relative err
relative err
relative err
\
relative err

—®

10 12 14 2 4 6

@
8

150

-#-senseDiff -~ senseDiff -~ senseDiff ~#-senseDiff
[t ~+compose-projection ~+compose-projection 20 ~+compose-projection ~+compose-projection
o w compose-D-bounded compose-D-bounded compose-D-bounded compose-D-bounded
B + 100 = =
= 5 51 5.
v @ @ @
— =40 2 2 g
= & s S10 g4
(O € 50 £ £
4
= 20 5
& W 2 W
< =
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
[a W) T T T T
1 15
~senseDift ~senseDiff 4 ~senseDift senseDift
J— ~+compose-projection ~+compose-projection ~—compose-projection 25 ~+—compose-projection
08 compose-D-bounded compose-D-bounded 35 compose-D-bounded compose-D-bounded
Q 3 2
. £ 10 = =
3 Sos 5 5, 5
O $ 2 K 215
8 g & &
= o4 ° o °
E £ £ S15 I
1
02
>~ 05
9p] ¢ 05 W
K _
5 10 15 5 10 15 5 10 15 5 10 15
T T T T
30 40 4
-#-senseDiff -#-senseDiff -#-senseDiff 14 - senseDiff
’_‘“ 25 ~+~compose-projection ~+~compose-projection 35 - compose-projection ~+~compose-projection
compose-D-bounded . compose-D-bounded 3 compose-D-bounded 12 compose-D-bounded
Q
1
o= =20 = = £
25
Pas i 5 3 3
O 2 @ 0 208 4
215 220 Z 2 2
= = s 5 $06
= ] 915 [he /
§ 10 1 04 <
5
05 02f
9] P oODS ST e o ae o M
0
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
T T T T

Figure 6.2. L, error vs. number of publications 7'. ¢ = 5. Averaged over 100 runs.

Figure[6.2] presents the utility of all algorithms across different datasets (different rows)
and statistics (different columns) as a function of the number of releases 7". We fix € to be 5.
We see that the relative error increases as 7' increases for all algorithms, across all datasets and
statistics. Similar to the previous experiment, SENSDIFF achieves lower errors in most cases
for the number of high-degree nodes and significantly lower errors in all cases for the number
of edges. In addition, we observe that the error of SENSDIFF increases at a smaller rate with

increasing number of releases compared to the two baselines. This implies that SENSDIFF
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achieves better utility for large 7', and confirms the theoretical arguments in Section
Reconsidering the two questions proposed in the beginning of the section, we conclude
that SENSDIFF offers better utility under a wide range of € and 7' compared to both baselines.
COMPOSE-D-BOUNDED yields the worst utility across all datasets for both statistics, which is
to be expected as it does not take advantage of either projections or additional properties of the
graph sequence. SENSDIFF outperforms COMPOSE-PROJECTION in most cases, and has a more

significant advantage for large 7.

6.7 Conclusion

In summary, we present a general algorithm for continually releasing statistics of a graph
sequence. Our proposed algorithm exploits the difference sequence of the statistics, which has
lower sensitivity compared to the original sequence, to achieve improved utility. We derive the
global sensitivity of the difference sequences for common statistics including degree statistics
and subgraph counts for bounded-degree graphs. Evaluations on real and synthetic graphs
demonstrate the practical applicability of the proposed algorithm by showing that it outperforms
two natural baselines over a wide range of parameters. In particular, the proposed a