UCLA

Posters

Title Do Sensor Failures Matter

Permalink

https://escholarship.org/uc/item/4h22v4nj

Authors

Schoellhammer, Tom Ramanathan, Nithya Hansen, Mark <u>et al.</u>

Publication Date

2007-10-10

Peer reviewed

Center for Embedded Networked Sensing

Scientist's

Responsibilities

System Health

Monitoring

Do Sensor Failures Matter?

Tom Schoellhammer¹, Nithya Ramanathan¹, Mark Hansen², Deborah Estrin¹

¹CSL – http://research.cens.ucla.edu

²UCLA Department of Statistics – http://www.stat.ucla.edu/~cocteau

Sensor Failures are Inevitable!

The State of Sensor System Health Monitoring

- System health tools ensure that data is delivered properly – Data can go "missing" due to node and sensor failure
- System health tools make *implicit assumptions* about the system
 - Networking is done using wireless ad hoc routing
 - System health tools see failures as all the same
 - System health tools do not take into account the science
 - Currently, system health monitoring tools do not quantify the impact of missing data on the science

Appropriate Corrective Action Depends on the Science Application

Fixing Faults may not be Possible

- Fixing a broken soil sensor may require perturbing the soil
- Fixing a broken soil sensor may require damaging roots
- Remote deployments may not be accessible when faults
 occur
- Improved System Health Monitoring
- Understand the impact of missing data on the science application

Scientific Interpretation

Scientific Model

Cleaning / Integrity

Raw Data

- Whether missing data can be predicted accurately enough
- Estimate the lifetime of the prediction model

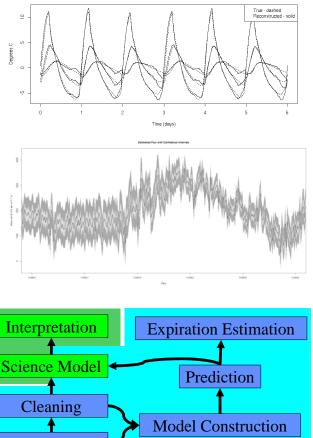
Application-Aware Sensor System Health Monitoring

Avoid Data Stream Interruptions using Predictions

- Correlations between sensing modalities can be used to produce reliable predictions
- An important component is to *assess uncertainty* in predictions when data does go missing

Quantify the Impact of Input Uncertainty

- Several plausible values of missing data can be generated
- Knowledge of the scientific model allows automatic analysis of the impact on confidence intervals


Model Expiration Estimation

- Look at full data sets from previous years during the same time of year
- Build the same model on all sensors that do have complete data
- Project forward, and find where each model breaks
- The set of expiration times can be used as a distribution for expiration
- This can be used to help schedule maintenance conservatively

Model Expiration Determination

- Model quality can be judged using a *complete* data set
- Build the same model on neighboring sensors that do have complete data
- In realtime, check if neighboring models are predicting properly
- This provides a notification when the model begins to go astray

Raw Data