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Abstract 
Experimentation is at the core of research in cognitive 
science, yet observations can be expensive and time-
consuming to acquire. A major interest of researchers is 
designing experiments that lead to maximal accumulation of 
information about the phenomenon under study with the 
fewest possible number of observations. In addressing this 
challenge, statisticians have developed adaptive design 
optimization methods. This paper introduces a hierarchical 
Bayes extension of adaptive design optimization that provides 
a judicious way to exploit two complementary schemes of 
inference (with past and future data) to achieve even greater 
accuracy and efficiency in information gain. We demonstrate 
the method in a simulation experiment in the field of visual 
perception. 

Keywords: optimal experimental design, hierarchical Bayes, 
mutual information, visual spatial processing. 

Introduction 
Experimentation advances cognitive science by providing 
quantified evidence for evaluating and testing theories. 
From the standpoint of information theory (Cover & 
Thomas, 1991), one should design an experiment that across 
trials seeks to gain as much information as possible from the 
cognitive process under study. For example, experiments 
often require choosing levels of an independent variable 
(e.g., stimuli of different sizes or intensities). These choices 
impact the informativeness (or quality) of the resulting data, 
which in turn impacts what can be concluded about the issue 
of interest. 

As a concrete example, consider an experiment in visual 
psychophysics in which one is interested in estimating a 
viewer’s ability to see fine detail. When the sensitivity is 
measured with stimuli that vary not only in their contrast but 
also in their spatial frequency, the measurements form a 
contrast sensitivity function (CSF; Figure 1). A CSF 
characterizes a person’s vision more accurately than 
traditional visual acuity measurements (i.e., using an eye 
chart) and is often useful for detecting visual pathologies 
(Comerford, 1983). However, because the standard 
methodology (e.g., staircase procedure) can require many 
hundreds of trials for accurate estimation of the CSF curve, 
it is a prime candidate for improving information gain, and 
Lesmes, Lu, Baek and Albright (2010) developed such a 
method. In each trial of the experiment, the to-be-presented 
stimulus is chosen such that it maximizes information gain 

by adaptively taking into account what has been learned 
about the participant’s performance from past trials. 

 
 
Figure 1: Examples of stimuli (left) and a typical contrast 
sensitivity function (right). Sinewave gratings with varying 
contrast and spatial frequency are used to measure a 
person’s CSF. 

 
Their procedure was one implementation of algorithm 

technology being developed in the burgeoning field of 
design optimization (Atkitson & Donev, 1992; Amzal, Bois, 
Parent, & Robert, 2006). Called adaptive design 
optimization (ADO; e.g., DiMattina & Zhang, 2008; 
Cavagnaro, Tang, Myung & Pitt, 2009), this method 
capitalizes on the sequential nature of experimentation, 
making each new measurement using the information 
learned from previous measurements of a subject so as to 
achieve maximal information about the cognitive process  
under study. 

As currently used, ADO is tuned to optimizing a 
measurement process at the individual participant level, 
without taking advantage of information available from data 
collected from other individuals or testing sessions. To 
illustrate the situation using the example of CSF estimation, 
consider a space of CSFs in Figure 2, a point in which 
represents an individual’s measured CSF (e.g., the ones 
shown with arrows). Suppose that one has already collected 
CSFs from a group of participants (dots in the ellipse) and 
data are about to be collected from one more (triangle).  
Knowledge of what this person’s CSF function might look 
like can be informed by the group data, and thereby expedite 
and improve data collection. Without the benefit of the 
group-level information, data collection would be more 
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time-consuming because what constitutes a probable CSF 
would be unknown. 

 
 

Figure 2: Illustration of a situation in which contrast 
sensitivity functions of a group of participants are measured 
in an experiment. 

 
The purpose of the present investigation is to develop a 

general design optimization framework that extends the 
existing ADO methodology to incorporate the prior 
knowledge of the population characteristics that are 
available before the experiment to achieve even greater 
information gain. The proposed method, dubbed 
hierarchical adaptive design optimization (HADO; Kim, 
Pitt, Lu, Steyvers, & Myung, under review), is an 
integration of two existing techniques, hierarchical Bayesian 
modeling (HBM) and adaptive design optimization. We 
begin by reviewing these two components briefly, followed 
by a formal description of HADO and an application 
example. 

Adaptive Design Optimization (ADO) 
The literature on optimal experimental design goes back to 
the pioneering work in the 1950s and 1960s in statistics 
(Lindley, 1956; Box & Hill, 1967). The recent surge of 
interest in this field can be attributed largely to the advent of 
statistical computing, which has made it possible to solve 
more complex and a wider range of optimization problems. 
ADO is gaining traction in areas where data are costly to 
collect such as in neuroscience (e.g., DiMattina & Zhang, 
2008) and drug development (e.g., Miller, Dette, & 
Guilbaud, 2007). In psychology and cognitive science, ADO 
is gradually recognized and applied in research such as 
retention memory (Myung, Cavagnaro, & Pitt, 2013), 
decision making (Cavagnaro, Pitt, Gonzalez, & Myung, 
2013), psychophysics (Lesmes, Jeon, Lu, & Dosher, 2006), 
and development of numerical representation (Tang, Young, 
Myung, Pitt, & Opfer, 2010). 

ADO is formulated as a Bayesian sequential optimization 
algorithm that is executed over the course of an experiment. 
The framework of ADO is depicted in the shaded area in 
Figure 3. On each trial of the experiment, on the basis of the 
present state of knowledge (prior) about the phenomenon 
under study, which is represented by a statistical model of 
data, the optimal design with the highest expected 
information gain is identified. The experiment is then 
carried out with the optimal design, and measured outcomes 

are observed and recorded. The observations are 
subsequently used to update the prior to the posterior using 
Bayes' theorem. The posterior in turn is used to identify the 
optimal design for the next trial of the experiment. These 
alternating steps of design optimization, measurement, and 
updating of the individual-level data model are repeated in 
the experiment until a suitable stopping criterion is met. 

 

 
 

Figure 3: The framework of HADO. The shaded area 
represents the conventional ADO framework and the 
peripheral part is the hierarchical extension of ADO. 

Hierarchical Extension of ADO 
ADO optimizes designs using information available only on 
the individual participant level, without taking advantage of 
data collected from previous testing sessions. Hierarchical 
Bayesian modeling (HBM; Good, 1965; Lee, 2006) not only 
provides a flexible framework for incorporating this kind of 
prior information but is also well suited for being integrated 
within the existing Bayesian ADO. The basic idea of HBM 
is to improve the precision of inference (e.g., parameter 
estimation or power of a test) by taking advantage of 
statistical dependencies present in the data-generating 
structure that the individuals can be seen as being sampled 
from. From the Bayesian perspective, HBM can also be 
viewed as a justified way to form an informative prior from 
real, observed data. Thus, on a conceptual level, HADO 
may be best described as a method for integrating the ADO 
technique with previously available information about the 
population structure, in a Bayesian prior distribution, to 
maximize the efficiency of data collection even further.  

This is illustrated in Figure 3, HADO being described by 
adding a loop over the conventional ADO. Being 
standalone, ADO starts with an uninformative prior for each 
individual participant. HADO extends ADO by modeling a 
higher-level structure across all individuals, which can be 
used as an informative prior for the next, new measurement 
session. In the other way around, the parameter estimate of a 
new individual helps update the higher-level structure. 
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Formulation of HADO 
The implementation of conventional ADO, also a 
component of HADO, requires a statistical model defined as 
a parametric family of probability distributions, p(y|θ, d)’s, 
which specifies the probability of observing an experimental 
outcome y given a parameter value θ and a design d. A prior 
for θ is assumed at the beginning of the experiment, and 
after each observation, the prior is updated by Bayes’ 
theorem, and then it serves as the prior for the next 
experimental trial. For each trial, a design with the largest 
value of a pre-defined utility function is selected. The 
information-theoretic choice of a utility function is mutual 
information (Cover & Thomas, 1991), which in the current 
context is given by  

 ܷ(݀௧) = ∬ log ௣൫ఏห௬(భ:೟),ௗ೟൯௣൫ఏห௬(భ:೟షభ)൯ ,ߠ|(௧)ݕ)݌ ݀௧)݌(ݕ|ߠ(ଵ:௧ିଵ))dݕ(௧)d(1)   ,ߠ 

 
where ݕ(ଵ:௧)  is the collection of past measurements made 
from the first to (ݐ − 1)-th trials, denoted by ݕ(ଵ:௧ିଵ), plus 
an outcome, ݕ(௧) , to be observed in the current, t-th trial 
conducted with a candidate design, ݀௧. 

To integrate HBM into ADO, a higher-level model of the 
parameters ݌(ߠଵ:௡|ߟ) is assumed (e.g. a multivariate normal 
density with parameters η) where ߠଵ:௡ = ,ଵߠ) … ,  ௡) is theߠ
collection of model parameters for all n individuals. The 
joint posterior distribution of the hierarchical model given 
all observed data is expressed as  

,ଵ:௡ߠ)݌  (ଵ:௡ݕ|ߟ ∝                                (2)                (ߟ)݌(ߟ|ଵ:௡ߠ)݌(ଵ:௡ߠ|ଵ:௡ݕ)݌
                         ∝ [∏ ௡௜ୀଵ(௜ߠ|௜ݕ)݌   ,(ߟ)݌(ߟ|ଵ:௡ߠ)݌[
 

where (ߟ)݌  is the prior distribution for the higher-level 
model’s parameters ߟ . If all parameters ߠଵ:௡  and ߟ  can be 
represented on a multidimensional grid and satisfy a certain 
condition ( ௜ߠ ’s are conditionally independent given ߟ ), 
values of ߠ)݌ଵ:௡,  ଵ:௡) in Eq. (2) can be easily calculatedݕ|ߟ
by dividing the values on each grid point by the summation 
of all such values (i.e., normalization). Then we can obtain 
the marginal distribution of ߟ  by integrating Eq. (2) over ߠଵ:௡ as 
(ଵ:௡ݕ|ߟ)݌  = ,ଵ:௡ߠ)݌∬  ଵ:௡.                            (3)ߠଵ:௡)dݕ|ߟ

 
The estimates ̂ߟ  can be obtained as the expectation ߟ̂	 =∑ ଵ:௡൯௚ீୀଵݕ|௚ߟ൫݌௚ߟ  where G is the number of the grid points 
of ߟ. As such, an informative prior for a new participant is 
constructed by plugging ̂ߟ  in the higher-level 
model	|ߠ)݌	(ߟ̂, which substitutes the uninformative prior in 
the conventional ADO.1 

                                                           
1 Approximation of the prior in more general cases (e.g., a point 

estimate ̂ߟ is considered too restrictive to represent the prior, or the 
grid size is too large to manage) is discussed in Kim et al. (under 
review). 

For HADO to be adaptive, Bayesian updating for 
posterior distribution is performed recursively on two 
different levels. On the individual level, only the lower-level 
parameters θ are updated after each observation during an 
experiment. On the upper level, the higher-level parameters 
η are updated at the end of each experiment through HBM. 
The estimate of η is used to calculate the prior for the next 
measurement session. 

Simulation Experiments 
The benefits of HADO were demonstrated in simulated 
experiments in the domain of visual perception (an example 
used in the Introduction). Using the conventional ADO 
framework described earlier, Lesmes et al. (2010) 
introduced an adaptive version of the contrast sensitivity test 
called qCSF. Contrast sensitivity, S(f), against spatial 
frequency f, was modeled using the truncated log-parabola 
with four parameters: 

 

ܵ(݂) = ൞ߛ௠௔௫ − ݂	if												ߜ < ݂௠௔௫ − ఉଶ ට ఋ୪୭୥భబଶߛ௠௔௫ − (logଵ଴2) ቀ௙ି௙೘ೌೣఉ/ଶ ቁଶ 		otherwise,          (4) 

 
where the four parameters are  ߛ௠௔௫, the peak sensitivity, ݂௠௔௫, the peak frequency, ߚ, the bandwidth, and δ, the low-
frequency truncation level. 

To demonstrate the benefits of HADO, the simulation 
study considered four conditions in which simulated 
subjects were tested for their CSFs by means of four 
different measurement methods. 

Simulation Design 
The two most interesting conditions were the ones in which 
ADO and HADO were used for stimulus selection. In the 
first, ADO condition, the qCSF method of Lesmes et al. 
(2010) was applied and served as the existing, state-of-the-
art technique against which, in the second, HADO condition, 
its hierarchical counterpart developed in the present study 
was compared. If the prior information captured in the 
higher-level structure of the hierarchical model can improve 
the accuracy and efficiency of model estimation, then 
performance in the HADO condition should be better than 
that in the ADO (qCSF) condition. Also included for 
completeness were two other conditions to better understand 
information gain achieved by each of the two components of 
HADO: hierarchical Bayes modeling (HBM) and ADO. To 
demonstrate the contribution of HBM alone to information 
gain, in the third, HBM condition, prior information was 
conveyed through HBM but no optimal stimulus selection 
was performed during measurement (i.e., no ADO). In the 
fourth, non-adaptive condition, neither prior data nor 
stimulus selection was utilized, so as to provide a baseline 
performance level against which improvements of the other 
methods could be assessed. 

The hierarchical model in the HADO condition comprised 
two layers. On the individual level, each subject's CSF was 
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modeled by the four-parameter, truncated log-parabola 
described above. On the upper level, the generation of a 
subject's CSF parameters was described by a four-variate 
Gaussian distribution, along with the usual, normal-inverse-
Wishart prior. While a more refined structure might be 
plausible (e.g., the population is a mixture of heterogeneous 
groups, or CSFs covary with other observed variables), the 
current hypothesis (i.e., individuals are similar to each other 
in the sense that their CSFs are normally distributed) was 
simple and sufficient to show the benefits of HADO.2 

The ADO (qCSF) condition shared the same individual 
data model as specified in the HADO condition, but the 
variability among individuals was not accounted for by a 
higher-level model. Instead, each individual's parameters 
were given a diffuse, Gaussian prior. The HBM condition 
took the whole hierarchical model from HADO, but the 
measurement for each individual was made with stimuli 
randomly drawn from a prespecified set. Finally, the non-
adaptive method was based on the non-hierarchical model in 
ADO (qCSF) and used random stimuli for measurement. 

To increase the realism of the simulation, we used real 
data collected from 147 adults who underwent CSF 
measurements. The number of measurements obtained from 
each subject was more than adequate to provide highly 
accurate estimates of their CSFs. These estimates were 
taken and assumed to be underlying CSFs in this simulation 
study. 

To compare the four methods, we used a leave-one-out 
paradigm, treating 146 subjects as being previously tested 
and the remaining subject as a new individual to be 
measured subsequently. We further assumed that, in each 
simulated measurement session, artificial data are generated 
from an underlying CSF (taken from the left-out subject) 
with one of the four methods providing stimuli. This 
situation represents a particular state in the recursion of 
measurement sessions shown in Figure 3; that is, the session 
counter is changing from n = 146 to n = 147 to test a new, 
147th subject. Theoretically, the two-stage updating shown 
in Figure 3 may be used from the start of a large-scale 
experiment (i.e., from n = 1). However, because a large 
sample is needed for the higher-level structure to be 
accurately estimated, HADO can be applied with no 
significant loss of its benefit in a situation in which there are 
some previously collected data.3 

                                                           
2  Benefit of using a non-normal, mixture distribution for 

modeling higher-level structure was also investigated with this 
application example. A non-parametric, kernel density estimation 
(KDE; Hastie, Tibshirani, & Friedman, 2009) technique was 
employed to capture a highly non-normal, multimodal distribution 
on the space of CSF parameters in a simulation setup. Results 
suggested that, with a low-dimensional model such as a CSF 
model, the advantage of using such a mixture distribution is not 
significant, producing only slightly higher information gain than 
HADO with a normal distribution used as higher-level structure. 

3  Although not presented due to a space limit, an additional 
simulation was conducted to see how this application of HADO 
performs when there is a small accumulation of data (e.g., n = 4, 
10, 40). The results suggest that the Bayesian estimation of this 

To prevent idiosyncrasies of the simulation’s probabilistic 
nature (due to simulated subjects’ random responses) from 
misleading the interpretation of results, ten replications of 
the 147 leave-one-out experiments were run independently 
and results were averaged over all individual sessions (i.e. 
10×147=1470 experiments were conducted in total). All 
required computations for individual-level design 
optimization and Bayesian updating (i.e., shaded area in 
Figure 3) were performed on a grid in a fully deterministic 
fashion (i.e., no Monte Carlo integration). The posterior 
inference of the higher-level model (i.e., outside the shaded 
region in Figure 3), also involved no sampling-based 
computation. This was possible because the higher-level 
model (i.e., Gaussian distribution) allowed for conditional 
independence between individuals so that the marginal 
posterior distribution in Eq. (3) could be evaluated as 
repeated integrals over individual ߠ௜ 's. 

Results 
Performance of the four methods of measurement was first 
evaluated with respect to information gain. The degree of 
uncertainty about the current, n-th subject's parameters upon 
observing trial ݐ's outcome was measured by the differential 
entropy (extension of the Shannon entropy to the continuous 
case; see Cover & Thomas, 1991). Use of the differential 
entropy, which is not bounded in either direction on the real 
line, is often justified by choosing a baseline state and 
defining the observed information gain as the difference 
between two states' entropies. In the present context, 
information gain is defined as 

,଴߆)௧ܩܫ  (௡߆ = (଴߆)଴ܪ −  (5)                                     (௡߆)௧ܪ
 

where ܪ଴(߆଴) is the entropy of the baseline belief about ߠ 
in a prior distribution so that ܩܫ௧(߆଴,  ௡) may be interpreted߆
as the information gain achieved upon trial t during the test 
of subject n relative to the baseline state of knowledge. For 
all the four methods, we took the entropy of the non-
informative prior as ܪ଴(߆଴). 

Shown in Figure 4 is the cumulative information gain 
observed with the four different methods. Each of the four 
curves corresponds to information gain (y-axis) in each 
simulation condition over 200 trials (x-axis) relative to the 
non-informative, baseline state (0 on the y-axis). The 
information gain measures were averaged over all 1,470 
individual measurement sessions in each condition. 

The results demonstrate that the hierarchical adaptive 
methodology (HADO) achieves higher information gain 
than the conventional adaptive method (ADO). The 
contribution of hierarchical modeling is manifested at the 
start of each session as a considerable amount of 
information (0.4) in the HADO condition (solid curve) than 

                                                                                                   
particular hierarchical model is robust enough to take advantage of 
even a small sample of previously collected data. However, the 
effect of small n may depend on the model employed, suggesting 
that this observation would not generalize to all potential HADO 
applications (Kim et al., under review). 
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no information (zero) in the ADO condition (dashed curve). 
As expected, this is because HADO benefits from the 
mutual informativeness between individual subjects, which 
is captured by the higher-level structure of the hierarchical 
model and makes it possible for the session to begin with 
significantly greater information. As the session continues, 
HADO needs 43 trials on average to reach the baseline 
performance of the non-adaptive method (dotted, horizontal 
line) whereas ADO (qCSF) requires 62 trials. The clear 
advantage diminishes as information accumulates further 
over the trials since the measure would eventually converge 
to a maximum as data accumulate. 

 

 
Figure 4: Comparison of information gain of the four 
experimental design methods for estimation of CSFs. 

 
The HBM condition (dash-dot curve), which employs the 

hierarchical modeling alone and no stimulus selection 
technique, enjoys the prior information provided by the 
hierarchical structure at the start of a session and exhibits 
greater information gain than the ADO method until it 
reaches trial 34. However, due to the lack of stimulus 
optimization, the speed of information gain is considerably 
slower, taking 152 trials to attain baseline performance. The 
non-adaptive approach (dotted curve), with neither prior 
information nor design optimization, shows the lowest level 
of performance. 

Information gain analyzed above may be viewed as a 
summary statistic, useful for evaluating the measurement 
methods under comparison. Not surprisingly, we were able 
to observe the same profile of performance differences in 
estimating the CSF parameters. Figure 5 shows the 
comparison of parameter estimation errors for each of the 
four methods. Error was quantified in terms of root mean 
squared error (RMSE; y-axis) from the known, underlying 
parameter value over 200 trials (x-axis). Because we 
observed the same trend for all parameters, results for the 
first parameter (peak sensitivity) is shown for simplicity. 

As with the case of information gain, HADO benefits 
from the informative prior through the hierarchical model as 
well as the optimal stimuli through design optimization, 

exhibiting the lowest RMSE of all methods' from the start to 
the end of a session. The benefit of the prior information is 
also apparent in the HBM condition, making the estimates 
more accurate than with the uninformed, ADO method for 
the initial 40 trials, but the advantage is eclipsed in further 
trials by the effect of design optimization in ADO. In sum, 
HADO combines the strengths of both ADO and HBM to 
enjoy both the initial boost in performance and faster 
decrease in error throughout the experiment. 

 

 
Figure 5: Accuracy of parameter estimation over 
measurement trials achieved by each of the four 
measurement methods. 

Discussion 
The present study demonstrates how hierarchical Bayes 
modeling (HBM) can be integrated into adaptive design 
optimization (ADO) to improve the efficiency and accuracy 
of measurement. The resulting hierarchical adaptive design 
optimization (HADO) further improves the efficiency of 
experiments by not only achieving maximal information 
gain in each experimental trial, but also borrowing 
information from other experiments. When applied to the 
problem of estimating a contrast sensitivity function (CSF) 
in visual psychophysics, HADO achieved an average 
decrease in parameter estimation error of 38% (from 4.9 dB 
to 3.1 dB; see Lesmes et al., 2010, for the measurement 
scale of errors) over conventional ADO, under the scenario 
that a new session could afford to make only 30 
measurement trials. 

Although the simulation study served the purpose of 
demonstrating the benefit of the hierarchical adaptive 
methodology, the full potential of HADO should be greater 
than that demonstrated in our particular example. The level 
of improvement possible with HADO depends on the 
sophistication of the hierarchical model itself. In our case, 
the model was based on a simple hypothesis that a newly 
tested individual belongs to the population from which all 
other individuals have been drawn. It conveys no further 
specific information about the likely state of a new 
individual (e.g., his or her membership to a sub-population 
is unknown). 
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There are various situations in which hierarchical 
modeling can take better advantage of the data-generating 
structure. For example, although modeled behavioral traits 
vary across individuals, they may covary with other 
variables that can be easily observed, such as demographic 
information (e.g., age, gender, occupation, etc.) or other 
measurement data (e.g., contrast sensitivity correlates with 
measures of visual acuity - eye chart test). In this case, a 
general, multivariate regression or ANOVA model may be 
employed as the upper-level structure to utilize such 
auxiliary information to define a more detailed relationship 
between individuals. This greater detail in the hierarchical 
model should promote efficient measurement by providing 
more precise information about the state of future 
individuals. 

Another situation in which hierarchical modeling would 
be beneficial is when a measurement is made after some 
treatment and it is sensible or even well known that the 
follow-up test has a particular direction of change in its 
outcome (i.e., increase or decrease). Taking this scenario 
one step further, a battery of tests may be assumed to exhibit 
profiles that are characteristic of certain groups of 
individuals. The higher-level structure can also be modeled 
(e.g., by an autoregressive model) to account for such 
transitional variability in terms of the parameters of the 
measurement model. With these kinds of structure built in 
the hierarchical model, HADO can be used to infer quickly 
the state of new individuals. 

Conclusion 
Science and society benefit when data collection is efficient 
with no loss of accuracy. The proposed HADO framework, 
which judiciously integrates the best features of design 
optimization and hierarchical modeling, is an exciting new 
tool that can significantly improve upon the current state of 
the art in experimental design, enhancing both measurement 
and inference. This theoretically well-justified and widely 
applicable experimental tool should help accelerate the pace 
of scientific advancement in behavioral and neural sciences. 
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