
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Quantum Computing for Software Engineering: Code Clone Detection and Beyond

Permalink
https://escholarship.org/uc/item/4kq183hk

Author
Jhaveri, Samyak Neerav

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kq183hk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Quantum Computing for Software Engineering: Code Clone Detection and Beyond

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Samyak Jhaveri

Thesis Committee:
Professor Cristina Lopes, Chair
Lecturer Alberto Krone-Martins

Professor Sandy Irani
Assistant Professor Joshua Garcia

2023

© 2023 Samyak Jhaveri

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1
1.1 Foundations . 3

1.1.1 Quantum Computing Terms and Definitions 3
1.1.2 Code Clone Detection Terms . 8
1.1.3 Code Clone Types . 8

1.2 Motivation . 10
1.3 Thesis . 12
1.4 Contributions . 14

2 Background and Related Work 15
2.1 An Overview of Quantum Annealing Computers 16
2.2 Conceptual Framework for Quantum Annealing 20

2.2.1 Underlying Quantum Physics of Quantum Annealing 20
2.2.2 Mathematical Models of Quantum Annealing 22
2.2.3 Submitting Programs to a Quantum Annealer 29

2.3 Graph and Subgraph Isomorphism . 31
2.3.1 Graph Isomorphism . 31
2.3.2 Subgraph Isomorphism . 33

3 Software Code Clone Detection as an Optimization Problem 36
3.1 Graph Isomorphism as QUBO . 38
3.2 Graph Isomorphism as QUDO . 40
3.3 Subgraph Isomorphism for Code Clone Detection 43
3.4 Node Types . 44

3.4.1 Complete Algorithm . 44
3.5 Experiment Design . 48

ii

4 Results and Analysis 50
4.1 Energy: Similarity Detection . 50
4.2 Time: Performance and Scalability . 56

5 Conclusion and Future Work 61
5.1 Threats to Validity . 62

Bibliography 64

Appendix A 73

iii

LIST OF FIGURES

Page

2.1 BQP Complexity Class in P Space. 18
2.2 Quantum Annealing, Visualized. 19
2.3 Energy diagram changes over time as the quantum annealing process runs and

a bias is applied. 21
2.4 Energy Diagram showing the best answer a 2-qubit entangled system. 22
2.5 Graph Isomorphism Example, G1 (left) and G2 (right). 32
2.6 Bijective Mapping between G1 (left) and G2 (right). 32
2.7 Subgraph Isomorphism Example, G1 (left) and G2 (right). 34
2.8 Injective Mapping between G1 (left) and G2 (right). 35

3.1 Code listing for implementing Node-Mapping Penalty (top), and for imple-
menting Edge-Mapping Penalty (bottom) . 41

4.1 Normalized Average Minimum Energy, without node type constraints (top)
and with node type constraints (bottom). 51

4.2 ASTs of s1 (entire tree) vs. s 1 t3 v2 (purple nodes only). 53
4.3 ASTs for s6 (top) vs. s6 t3 v1 (bottom). 54
4.4 Average annealing times, in milliseconds, for the DQM with node-type com-

parisons (top), Average Annealing Times Matrix, in milliseconds, without
node-type comparisons (bottom). 57

4.5 Histogram of average annealing times, in milliseconds, for the DQM with
node-type comparisons. 58

iv

LIST OF TABLES

Page

3.1 Original Code Fragments. 47

v

ACKNOWLEDGMENTS

There are many people whom I am deeply grateful to for their unfailing support and encour-
agement over the years. In particular, I would like to thank my advisor, the advancement
committee, the faculties at USC ISI, my friends, and my family.

My Advisor. I am deeply grateful to my Ph.D. advisor, Professor Cristina Lopes, to have
introduced me to graduate-level research from when I was in my undergraduate program,
and encouraged me to pursue a research-focused graduate program. She has always been
available and open to brainstorming new ideas and deliberating atypical solutions. I am
eager to continue learning from her throughout this academic program.

Faculty at USC ISI. I also want to thank Professor Srivatsan Ravi and Professor Federico
Spedalieri at the University of Southern California’s Information Sciences Institute in Marina
del Ray, for their mentoring and granting us access to the state-of-the-art D-Wave Leap
Quantum Computing Cloud Service. Access to the latest iteration of the D-Wave Quantum
Annealer processor and hybrid solvers made it possible to develop and test the algorithms
presented in this paper.

The Dissertation Committee members. Besides my advisor and the faculty at USC
ISI, I am grateful to the committee members, Dr. Alberto Krone-Martins, Professor Sandy
Irani, and Assistant Joshua Garcia for their critical remarks and constructive feedback on
the thesis. I want to thank Dr. Alberto Krone-Martins, the astrophysicist who helped us
start out on this quantum path, and provided me the initial insight into building intuition
for quantum computing research. He has also been a guiding light on the emphasizing the
importance of attention to detail as well as on strategies on how to turn a high-level intuition
into a tangible research plan.

My friends and family. My family has been the greatest source of strength in the most
testing times and also the anchor that has been instrumental in keeping me centered and
focused on what matters. I am profoundly thankful to my mother for all the different ways
she expresses her love for me, even from thousands of miles away, be it with her encouraging
words, the vivid narration of stories of our memories, or the care packages she sends with
delicacies that remind me of home. I am grateful to have my father be my most rigorous
teacher, the strictest critic, and yet the most compassionate and caring best friend whom I
can rely on and confide in. Living by his wisdom and life lessons has made it possible for
me to have a fulfilling life spiritually, emotionally, socially and professionally. I also want
to thank my sister, who has helped raise me into the person I am. I am inspired by her
never-ending enthusiasm for her craft, and the passion with which she grows and nurtures
the bonds she shares with the people she loves. She means the world to me. Lastly, I would
like to acknowledge and thank the incredible friends I have made along the way, spending
time with whom, almost miraculously, makes everything feel right. The trips and excursions
we have been on have always added a dash of adventure and kept the spirits high.

vi

ABSTRACT OF THE THESIS

Quantum Computing for Software Engineering: Code Clone Detection and Beyond

By

Samyak Jhaveri

Master of Science in Software Engineering

University of California, Irvine, 2023

Professor Cristina Lopes, Chair

Quantum computers are becoming a reality. They have the potential to accelerate many

computationally complex processes, and also to find better results in complex solution land-

scapes. However, the kinds of problems which these computers are currently a good fit for,

and the ways to express those problems, are substantially different from the kinds of prob-

lems and expressions used in classical computing. Quantum annealers, in particular, are an

interesting kind of quantum computers to considering how they are promising in solving spe-

cific types of problems efficiently in the near term. However, they are also the most foreign

compared to classical programs, as they require a different kind of computational thinking.

In my work, I have created a novel formulation of the well known software engineering prob-

lem of code clone detection by expressing it as an optimization problem in the framework of

quantum annealing, a type of quantum computing. It also serves as an example of how soft-

ware engineering problems can be formulated to be solved using quantum annealing. This

thesis elaborates on how I rendered the code clone detection problem as a subgraph isomor-

phism problem and formulated it as a quadratic optimization. The formulation compares

the Abstract Syntax Tree (AST) representations of two given code fragments and reports an

energy value indicative of their similarity. It is then implemented on a quantum annealer.

The motivation behind this research goes well beyond code duplicate detection: this novel

vii

approach to thinking about software engineering problems as optimization problems paves

the way into expressing them as problems that an be solved using optimization architectures

like quantum annealing.

viii

Chapter 1

Introduction

The material in this thesis is based on our work in the following paper, and is included here

with the permission from ACM.

• S. Jhaveri, A. Krone-Martins, C. V. Lopes, “Cloning and Beyond: A Quantum So-

lution to Duplicate Code”, Onward! 2023: Proceedings of the 2023 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections on Program-

ming and Software in Cascais, Portugal, 32 - 49, Oct 2023.

https://doi.org/10.1145/3622758.3622889.

The presence and detection of code clones in software systems has been widely studied and

is acknowledged as a significant problem in software engineering [3, 57, 59, 98]. Over the

years, a myriad of code clone detection techniques and tools have been proposed and im-

plemented, differing from each other in its goals and granularity of detection. This paper

explores one familiar software engineering problem in the context of quantum computers,

specifically - quantum annealers [39, 91, 94]. The possibility of using quantum mechanics to

either significantly speed-up calculations or to enable otherwise classically intractable prob-

lems to be solved has been the main motivation for the development of quantum computers.

1

Present-day quantum computers are becoming sufficiently large to undertake computational

problems that may be infeasible using classical computing [22, 43, 79]. Currently, two major

families of machines are being developed that exploit quantum mechanic principles to solve

computational problems: quantum gate-based computers and quantum annealers [75, 76].

Both use state of superposition and entanglement of quantum bits (qubits) to represent data

and operations and, albeit not yet proven, they both hold the potential to solve problems

that are hard to solve otherwise, including in software engineering [97, 111]. As quantum

computers become more powerful, it is important to start getting acquainted with their

different ways of solving computational problems. By expressing a well-known software en-

gineering problem as an optimization problem that can be solved using a quantum annealer,

this research claims to help build bridges between what we are used to and what comes next.

2

1.1 Foundations

To help understand how a quantum computer is used to solve the code clone detection

problem as an optimization problem, it is useful to know some terms related to the research

area of code clone detection and quantum computing technology. In this section, I elaborate

the following well-accepted terms and definitions that are essential in my dissertation.

1.1.1 Quantum Computing Terms and Definitions

Quantum Information Science: The study of how information is or can be encoded in

a quantum system, including the associated statistics, limitations, and unique properties of

quantum mechanics.

Qubit: A qubit (short for quantum bit) is the basic unit of information in quantum com-

puting and the quantum counterpart to the bit (binary digit) in classical computing. Its

value can be either 0 or 1 or a quantum superposition of 0 and 1.

Superposition: The quantum mechanical phenomenon exhibited by quantum particles,

like qubits, where it exists in a combination of multiple states at the same time.

Entanglement: Quantum entanglement is a special phenomenon whereby a group of quan-

tum particles become intrinsically interconnected, enabling them to interact and influence

the quantum states of one another, even when separated by vast distances. Einstein called

this “spooky action at a distance”. This phenomenon is pivotal to quantum computers as

entangled qubits are imbued with information to perform complex calculations. The state

of such entangled qubits becomes correlated, the fundamental idea that underpins the re-

markable parallelism of quantum computers, distinguishing them from classical computers.

Measurement: The act of observing the quantum state of a qubit. This measurement

3

could be any desired interaction with the qubit, usually to detect the resultant solution.

When a qubit’s quantum state is measured, it’s superposition collapses into a classical state

of either 0 or 1 following the probability defined by its quantum state.

Collapse: The phenomenon that occurs upon measurement of a quantum system where

the system reverts to a single observable state. In other words, after a qubit is put into a

superposition, upon measurement it collapses to either 1 or 0.

Noise: Unwanted fluctuations in a physical system which impacts a qubit and leads to error

and unwanted results. Noise can be electromagnetic charges, gravity or temperature fluctu-

ations, mechanical vibrations, voltage changes, scattered photons, etc. As noise accumulates

in a quantum system, it increases the likelihood of errors, corrupts information stored in

and between physical qubits, and disrupts the quantum state in which qubits must exist

to run calculations. This phenomenon is called decoherence. Because of the precise nature

of qubits, they must be isolated from the environment around them. Since noise is nearly

impossible to prevent, it requires substantial error-correction (to correct for the noise) in

order to allow the qubits to perform desired calculations. With too much noise, a quantum

computer is no longer useful.

Coherence/Decoherence: Coherence is the ability of a qubit to maintain its state over

time. Decoherence generally occurs when the quantum system is interrupted by noise. Coher-

ence time is the length of time a quantum superposition state can survive. Longer coherence

times generally enable more computations and therefore more computational power.

NISQ: Noisy Intermediate-Scale Quantum, coined by John Preskill in 2018 [85], refers to

the current phase of quantum computers that are not error-corrected but are stable enough

to effectively carry-out a computation before the system loses coherence. A NISQ computer

can be digital or analog. All commercial quantum computers operating today are considered

NISQ-era machines.

4

Quantum Error Correction: Quantum error correction is the process of correcting errors

that arise in quantum computers while running circuits. Many schemes have been proposed

to do this, usually referred to as “quantum correction codes”. Most quantum correction

codes assemble multiple physical qubits into a single “logical qubit”. Without quantum

error correction, small decoherence errors can snowball over the course of a long circuit,

resulting in random results.

Quantum Supremacy: Demonstrating that a programmable quantum device can solve

any problem that no classical computing device can solve in a feasible amount of time,

irrespective of the usefulness of the problem.

Quantum Advantage: Refers to the demonstrated and measured success in processing a

real-world problem faster on a quantum computer than on a classical computer.

Quantum Speedup: The improvement in speed for a problem solved by a quantum algo-

rithm compared to running the same problem through a conventional algorithm on conven-

tional hardware.

Quantum Algorithm: A quantum algorithm is a set of calculations that follows the laws

of quantum mechanics, including the properties of superposition, entanglement, and inter-

ference.

Spin: Spin is a quantum property that can take on discrete values, often denoted as either

“spin up” (↑) or “spin down” (↓) to indicate the quantum state of the qubits. A qubit, when

in the state of superposition, can be both “spin up” and “spin down”.

Hamiltonian: A mathematical representation of the energy landscape of a physical system.

In quantum mechanics, a Hamiltonian takes the form of a linear algebraic operator. The

ground state (the lowest energy state) can encode the solution arrangement of variables to

a computational optimization problem.

5

Ising model: The Ising model is a mathematical equation that represents the energy of a

collection of molecules in a magnetic material, each of which has a spin which can align or

anti-align with an applied magnetic field, and interact with each other through a pairwise

term. The variables either representing “spin up” (↑) or “spin down” (↓) states that can

correspond to +1 and -1 values [19]. The Ising model provides a convenient way of expressing

the Hamiltonians of a quantum system as it makes it simple and mathematically tractable

to describe the interaction between the qubits. The objective function of a computational

optimization is expressed in a quantum variation of the Ising model known as the Quadratic

Unconstrained Binary Optimization (QUBO), which I shall elaborate further in this thesis.

Adiabatic Quantum Computing: Adiabatic quantum computers harness the natural

evolution of quantum states of the qubits. They are realized by quantum annealers to ex-

plore a large solution spaces by using quantum properties like superposition, entanglement

and quantum tunneling. Annealing is used to harden iron, where the temperature is raised

so the molecular speed increases and strong bonds are formed. The iron is then slowly cooled

which reinforces these new bonds, a process called “annealing” in metallurgy. Quantum an-

nealing works in a similar way, where the temperature is replaced by energy and the lowest

energy state, the global minimum of a system, is found via annealing. Quantum annealing is

a quantum computing method used to find the optimal solution of problems involving many

solutions, by taking advantage of properties intrinsic to quantum physics. Since there are

no “gates”, the mechanics of annealing are less daunting than gate-based quantum comput-

ing. It uses the quantum adiabatic theorem to solve optimization problems [4]. Quantum

annealers realize adiabatic quantum computing by harnessing the properties of the adia-

batic quantum theorem of evolving the natural quantum states of the qubits to find a good

solution in the solution space. The system of qubits is initialized to a state of quantum su-

perposition, represented by an initial Hamiltonian, and then slowly “annealed”, to its final

low-energy state that represents the solution of the optimization, represented by the final

Hamiltonian. This evolution from the initial Hamiltonian to the ground state of the final

6

Hamiltonian is done adiabatically, which means it occurs slowly enough that the system

remains in its ground state throughout the process. This evolution cannot be faster than an

inverse polynomial in the spectral gap of the current Hamiltonian. Spectral gap is the differ-

ence in energy between the lowest energy state and the next highest energy state, making it

a critical factor in determining how slowly the quantum annealing can be executed. During

the annealing process, the system avoids being stuck in local minima by using the property

of quantum tunneling, and “tunneling” through the potential energy barrier - closer to the

global minimum energy state which represents the best or a good-enough solution.

7

1.1.2 Code Clone Detection Terms

Code Fragment or Block: A continuous segment of source code.

Clone Pair: A pair of code fragments that are similar.

Abstract Syntax Tree (AST): A graph representation of the tokens of a code fragment

in the form of a tree data-structure, arranged such that the nodes and edges represent the

semantic structure of the code fragment for the compiler to understand.

1.1.3 Code Clone Types

Code clones are classified into two prevalent categories – syntactic and semantic code clones.

Syntactic clones are comparable based on their textual structure [2, 92]. Conversely, semantic

clones are functionally similar [42], but syntactically different. The code clone detection

literature identifies four types of code clones [14], wherein the first three types pertain to

syntactic clones and the fourth type pertains to semantic clones:

(i) Exact Clones (Type 1): These are identical code fragments, except for variations

in comments, layouts, and whitespaces.

(ii) Renamed Clones (Type 2): These are code fragments that are syntactically or

structurally similar, except for comments, identifier names, and literal names.

(iii) Near Miss Clones (Type 3): These are code fragments that are essentially Type 2

clones and, additionally, have undergone modifications such as the addition or removal

or reorder of statements. Despite these modifications, their outcomes are similar, if

not the same.

(iv) Semantic Clones (Type 4): These are code segments that are functionally similar

but implemented using different syntax. There may be more than one code segment

8

that fits this description [3].

9

1.2 Motivation

The detection and removal of code clones have been widely studied and is acknowledged as

a significant software engineering research problem, as it can be detrimental to the quality,

maintainability, and evolution of software systems [3, 57, 91, 93, 95, 98]. Type 3 clones are of

particular interest in situations such as code theft, where the source code remains essentially

preserved but subjected to the aforementioned transformations. Detecting Type 3 clones,

however, is computationally very intensive. Consequently, several approaches and heuris-

tics have been proposed in the literature to mitigate its computational costs [50, 69, 100].

Abstract Syntax Tree (AST) representations of source code has been used for subtree com-

parisons [11, 105, 109]. In AST-based techniques, code clones are detected by measuring the

similarity between corresponding ASTs or their subtrees. In previous research on comparing

the ASTs of two code fragments to detect if they are code clones, a distance value that

quantifies the similarity between the two code fragments is generated and presented [52, 55].

Code clone detection has also been solved using Program Dependency Graphs (PDGs) [49].

Both AST- and PDG-based approaches are equivalent to the subgraph isomorphism prob-

lem. While using ASTs or PDGs as a basis for code comparison is beneficial in terms of

precision/recall, those approaches result in clone detection tools that are too slow, requiring

aggressive heuristics to make them feasible in practice [50, 101].

One way of speeding up clone detection is to forego graphs altogether and use tokens as

the basis of comparison, but those approaches typically suffer from false positive and false

negative errors.

This is where the idea of leveraging quantum computing for solving a formulation of code

clone detection comes in. The ability of quantum computers to harness the principles of

quantum mechanics, such as superposition and quantum entanglement, in novel and inter-

esting ways, forms the basis of an immensely powerful form of computation, provided a

10

system is built that can be easily manipulated and measured. While Richard Feynman [40]

is often credited with the conception of using quantum computers for simulating nature,

there were several researchers who anticipated the idea. This possibility has been meticu-

lously studied since the first early works and proposals by eminent physicists and computer

science pioneers such as Richard Feynman [40], Paul Benioff [15], Yuri Manin [71], David

Deutsch [34], among others.

A quantum annealer can solve a computational problem if it can be formulated as an opti-

mization problem and mapped into a physical adiabatic quantum system of qubits [96]. In

the realms of software engineering and computer science, several problems can be mathe-

matically cast as some form of optimization suitable to map onto quantum annealers.

Quantum annealing changes the solution space for Type 3 clone detection. Rather than

foregoing graphs or using aggressive heuristics to make them practical, we can formulate the

problem as an optimization problem, and then use a quantum annealer to find the optimal

solution. Since several demonstrations have established the efficacy of quantum annealers

in solving hard problems related to large graphs like graph community detection [90], graph

isomorphism [112], minimum vertex cover problems [84], I formulated the code clone de-

tection problem as an optimization problem that can be solved using a quantum annealer.

Additionally, my approach can be applied to many more graph-based software problems as

mentioned earlier in the thesis, not just clone detection.

The earlier findings I mentioned about the promising potential of quantum annealers to

solve hard graph problems, combined with the intuition I cultivated through an in-depth

exploration of the intricacies involved in implementing quantum annealing algorithms, and

the voracity to substantiate the utility of quantum annealing as a means of addressing

software problems, especially in the context of code clone detection, make it desirable to

pursue this research.

11

1.3 Thesis

In my work, I have created a novel formulation to solve the code clone detection problem

by expressing it as an optimization problem in the framework of quantum annealing. This

thesis elaborates on how the formulation has been crafted and the empirical evaluation

of its effectiveness by implementing it using a quantum annealer. I formulated the code

clone detection problem within the Quadratic Unconstrained Discrete Optimization (QUDO)

framework as a graph/subgraph isomorphism problem and solved it on actual quantum

annealer hardware.

I state my thesis as follows:

It is possible to formulate the software code clone detection problem as an optimization prob-

lem, that can be solved on quantum annealing computers. Furthermore, this approach is

computationally scalable with the size of the input code fragments being compared.

This thesis statement is claimed for problem instances that can fit onto the Quantum Pro-

cessing Unit (QPU).

Additionally, I believe that my approach can be applied to many software engineering

problems. In software engineering literature, several heuristic optimization formulations

such as resource allocation, feature selection, and optimal product feature selection prob-

lems [27, 48, 51, 53] are, in many cases, formulated as search-based problems solved via

optimization [28, 46]. For instance, code module optimization is another important area of

software engineering research: by representing each module or any part of the code as a bi-

nary variable, one can optimize a code base by choosing the minimal combination of modules

that satisfy a certain set of requirements and constraints. Similarly, one can also represent

alternative formulations of a code and/or choice of software optimization and compilation

techniques as binary variables and cast an objective function that attains a minimum value

for maximum overall code performance while minimizing resource consumption.

12

Beyond the aforementioned optimization and constraint satisfaction, there are several other

examples of software engineering problems that can be mapped to knapsack [12, 65, 67], set

partitioning [82], max clique [26], max cut [72], graph coloring [104], SAT [86] problems,

which can all be easily mapped and solved on quantum annealers.

13

1.4 Contributions

The contributions of my work are as follows:

1. Building on a prior formulation of graph isomorphism as a Quadratic Unconstrained

Binary Optimization (QUBO) by Zick et. al. [112] and QUDO, I show how to formu-

late the subgraph isomorphism problem as a Quadratic Unconstrained Discrete Opti-

mization (QUDO) such that it is amenable to an adiabatic Quantum Processing Unit

(QPU).

2. I introduced a method to incorporate additional node type-based constraints into the

problem formulation, a critical element of most software graphs.

3. Empirically validated the scalability of using quantum annealing for code clone detec-

tion for small code fragments.

4. I show how optimization algorithms formulated for quantum annealing can be improved

for graph-based problems by adding bespoke constraints tailored to the problem at

hand to guide the annealing process towards desired results at a scale suitable for

solving practically big enough problems in the future.

14

Chapter 2

Background and Related Work

This thesis centers on the formulation of software code clone detection as an optimization

problem and then solving it using a quantum annealer. It assumes the reader has a foun-

dational understanding of code clones. This includes their genesis, the issues arising from

unintentional clones in systems, the utility of clone detection techniques and tools, and the

metrics used for evaluating these techniques. If not, much information can be found in

[3, 13, 14, 78, 88, 91]

15

2.1 An Overview of Quantum Annealing Computers

While there are debates among researchers about the advantages offered by currently avail-

able Noisy Intermediate-Scale Quantum (NISQ) computers, the prospect of harnessing quan-

tum technology to solve real-world problems by developing quantum algorithms is an area

of vigorous research [85].

The family of quantum computation devices commonly called gate-based quantum computers

relies on quantum mechanics for the implementation of quantum logic gates [10, 80]. These

gates are the quantum analogue of Boolean logic gates used in classical computing. The

distinguishing factor for quantum logic gates, from their classical counterparts, is the fact

that they employ quantum properties such as superposition and entanglement for conducting

computation. Quantum gates can be arranged in a quantum circuit to manipulate qubits

to solve complex computations similarly to how one would program a classical computer by

combining Boolean logic gates [37].

Currently, machines such as the IBM Q [54] are only available with a small number of qubits,

and they are still heavily affected by noise [85]. Quantum computers are fundamentally noisy

in nature and incur errors with each operation. To remedy noise and make the computer

run as desired, one option could be quantum error correcting codes. In spite of significant

advances in quantum technologies over the last decade, this type of error correction is cur-

rently out of reach. As such, huge efforts have been devoted to finding out whether current

noisy quantum technologies could provide a practical advantage over classical computers

without error correction [103]. The emphasis here is on practicality, since expectation values

in shallow quantum circuits can formally be computed in polynomial time on a classical

computer [21, 108]. This limits their current adoption to small toy problems, experiments,

and algorithmic prototyping [1].

16

Adiabatic quantum computing is another type of quantum computing realized by a quantum

annealer. Quantum annealing was proposed in [41] and [58] as a method to optimize discrete

energy functions. It harnesses the natural evolution of quantum states. This is unlike gate-

based quantum computers as they are designed to manipulate the quantum state to arrive

at a solution, which could be more delicate to work with, but can be used to solve a broader

range of problems. Quantum annealers employ qubits to explore and optimize complex

solution spaces by exploiting their quantum properties like superposition, entanglement, and

other quantum phenomena such as quantum tunneling and the quantum adiabatic theorem

of quantum mechanics [75] [see Figure 2.2]. Quantum superposition of the qubits allows

quantum annealers to explore multiple solutions at once, while quantum tunneling allows

qubits to escape from local minima (suboptimal solutions) and reach global minima (optimal

solutions). These quantum machines solve optimization problems [4] by evolving a physical

system towards its ground state or minimum energy state, finding the low-energy states of a

problem and therefore the optimal or near-optimal combination of elements [107, 7, 23, 36,

38, 81]. Optimization challenges encompass mathematical problems that involve finding the

best solution from a set of possible solutions. Note that, like gate-based quantum computers,

quantum annealers are also affected by noise and require error correction to provide reliable

solutions. Nevertheless, despite the presence of noise in quantum annealing computers, and

the fact that many combinatorial optimization problems are typically NP-hard, or close,

some quantum algorithms developed for quantum annealing computers have demonstrated

promise for some combinatorial optimization problems, like graph isomorphism [9, 47, 77, 89]

or job shop scheduling [25].

BQP is a complexity class of decision problems that can be efficiently solved by a quantum

computer using a polynomial amount of computational resources and with a bounded prob-

ability of error [8, 36, 61] [see Figure 2.1]. The exact power of BQP is still an open question

in quantum complexity theory. However, BQP is widely believed to capture the power of

quantum computing, meaning that any problem that can be efficiently solved by a quantum

17

Figure 2.1: BQP Complexity Class in P Space.

computer can also be solved by a quantum computer in BQP [16].

Programming quantum annealers, however, requires casting the required computation as a

specific form of mathematical optimization problem, which are typically binary or discrete

combinatorial problems [17, 68, 87].

D-Wave Systems, Inc. has been at the forefront of commercial quantum annealing computers,

creating several iterations of quantum annealers that realize this specialized variant of the

Quantum Adiabatic Algorithm (QAA) [20], proposed by Farhi et al. [38].

Quantum annealing commences with a system of a group of qubits in a superposition state,

meaning they are in a combination of all possible states simultaneously. The system under-

goes a gradual and slow process of “annealing”, ultimately evolving into a low-energy state

that represents the optimal solution to the problem. The annealing process is controlled by

a parameter known as the annealing time, which determines how slowly the system evolves

from an initial state to a final state.

Typically, optimization problems are encapsulated mathematically by an objective function

that needs to be minimized or maximized. When expressed as a quadratic mathematical

model of the energy of the system, the optimization problem can be embedded onto the

18

Figure 2.2: Quantum Annealing, Visualized.

qubits of the Quantum Adiabatic Annealer. These qubits, encoded with the model are

then subjected to the annealing process where they are evolved from an initial state of

superposition to a final state that is apossible optimum configuration of the states of the

qubits that represents the best or good enough solution to the problem. This result, ideally,

is found at the global minimum energy state of the system of qubits.

19

2.2 Conceptual Framework for Quantum Annealing

To effectively understand the approach of formulating optimization problems for quantum

annealers, one must consider a conceptual framework that encompasses three essential com-

ponents governing the practical implementation of quantum annealing - the fundamental

quantum physics at the qubit level that underpins quantum annealing, the mathematical

models that articulate the objective function of the optimization problem, and the soft-

ware and hardware environment of the annealer that orchestrates computation, submitted

as problems, on its quantum and classical computing components across different levels of

the software stack. Developing a sense of these interconnected components helps build in-

tuition for effectively leveraging the capabilities of quantum annealers in solving complex

optimization problems.

2.2.1 Underlying Quantum Physics of Quantum Annealing

This subsection sheds light on the quantum physics principles that governs the quantum

annealing process in a D-Wave quantum annealer at the qubit level.

Qubits in a Quantum Processing Unit (QPU) are synthesized by supercooling a thin metal

wire to make it superconducting loops. These superconducting wires have a circulating

current and a corresponding magnetic field which stimulates it to exhibit quantum properties.

Unlike classical bits that are distinctly either 0 or 1, a qubit can be in a superposition of 0

state and the 1 state at the same time. At the end of the quantum annealing process, each

qubit collapses from superposition state into either a 0 or 1 (classical) state.

Visualizing the quantum annealing process is facilitated by an energy landscape that evolves

dynamically over time. This is depicted in (a), (b), and (c) in Figure 2.3 where the stages

represent the different phases of the annealing process.

20

Figure 2.3: Energy diagram changes over time as the quantum annealing process runs and
a bias is applied.

Initially, the energy landscape presents a single valley (a), indicative of a single minimum

energy state. As the quantum annealing progresses, the energy barrier is raised, thus trans-

forming the landscape into a double-well potential (b). Here, the low point of the left valley

corresponds to the 0 state, and the low point of the right valley corresponds to the 1 state.

In this situation, the probability of the qubit falling into the 0 or the 1 state is equal (50%).

The probability of the qubit falling into either states at the end of the anneal is a tunable

parameter controlled by the application of an external magnetic field (c). This field tilts the

double-well potential either towards 0 or 1, increasing the probability of the qubit ending

up in the lower well. The programmable quantity that controls the external magnetic field

is called the bias.

However, the bias term alone is not useful. The real power of qubits as a computational unit

is exercised when they are entangled so they can influence each other. This is done with a

device called a coupler which can make two qubits tend to align either in identical states or

opposite states. Like a qubit bias, the coupling strength is also programmable, allowing for

customized correlation weights between coupled qubits.

Considering a pair of entangled qubits, we can represent them as a combined entity with

four possible states - each corresponding to a different combination of the qubits: (0, 0), (0,

1), (1, 0), (1, 1) [see Figure 2.4]. The relative energy of each state are tailored by the biases

of qubits and the coupling between them. In Figure 2.4, during the anneal, the qubit states

21

Figure 2.4: Energy Diagram showing the best answer a 2-qubit entangled system.

are potentially delocalized in this landscape before finally settling into (1,1) at the end of

the anneal. The programmable biases and couplings define an energy landscape, and the

quantum annealer is guided to settle into the lowest energy configuration at the minimum

energy of that landscape.

2.2.2 Mathematical Models of Quantum Annealing

The Hamiltonian

A Hamiltonian is a mathematical description of the total energies of a physical system,

encapsulating the state of the energy of a system whether comprised of a singular element or

a composition of many elements, and yields the energy of the system for any given state. For

most non-convex Hamiltonians, finding the minimum energy state is an NP-hard problem.

For a quantum system, a Hamiltonian is a transformative function that maps certain energy

states, called eigenstates, to discrete energies. Only when the system is in an eigenstate of

the Hamiltonian is its energy well-defined and called eigenenergy. When the system is in any

other state, its energy is uncertain. The collection of eigenstates with defined eigenenergies

make up the eigenspectrum [35].

22

The Hamiltonian characterizing a quantum annealing process is given as:

Hising = −
A(s)

2

(∑
i

σ̂(i)
x

)
︸ ︷︷ ︸

Initial Hamiltonian

+
B(s)

2

(∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂(j)

z

)
︸ ︷︷ ︸

Final Hamiltonian

(2.1)

In this equation, σ̂
(i)
x,z represent the Pauli matrices operating on the state of the qubit qi, and

hi and Ji,j represent the qubit biases and coupling strengths, respectively.

The Hamiltonian is the sum of two distinct terms:

• Initial Hamiltonian (first term), or the tunneling Hamiltonian, establishes the ground

state where all the qubits exist in a superposition state of 0 and 1.

• Final Hamiltonian (second term), known as the problem Hamiltonian defines the

ground state which is the solution to the optimization problem at hand. The final

state is a classical state, and includes the qubit biases and the couplings between

qubits.

During quantum annealing, the system starts in the lowest-energy ground eigenstate of

the initial Hamiltonian. It then undergoes an evolution where the problem Hamiltonian,

which contains the biases and coupling strengths, is gradually introduced into the system.

Slowly enough, the problem Hamiltonian supersedes the initial Hamiltonian and reduces

its influence. This transiting, when performed without external perturbations and at a

suitably slow pace, is called an adiabatic process, giving rise to the term “adiabatic quantum

computation”. Upon completion of the annealing cycle, the system is expected to be in

an eigenstate of the problem Hamiltonian, ideally, residing in the minimum energy state

throughout the quantum annealing process thereby presenting a solution to the optimization

problems. By the end of the anneal, each qubit is a classical object. Because no real-world

computation can run in perfect isolation, quantum annealing may be thought of as the

23

real-world counterpart to adiabatic quantum computing, a theoretical ideal.

Each optimization problem necessitates a unique Hamiltonian construction, leading to a

distinctive eigenspectrum to be explored for solutions.

The Ising Model

The Ising model is a mathematical model of ferromagnetism that represents the energy

of a collection of elements, usually molecules, using discrete variables to denote magnetic

dipole moments of spin states of the elements. These elements can either align or anti-align

with an externally applied magnetic field, engaging in interactions with each other that

are characterized by a pairwise term. The variables either represent “spin up (↑) or “spin

down” (↓) states denoted by +1 and -1 values [19], respectively. The Ising model provides

a convenient way of expressing the Hamiltonians of a quantum system as it makes it simple

and mathematically tractable to describe the interaction between the qubits.

For solving optimization problems using quantum annealing computers, the objective func-

tion must be formulated as a Hamiltonian of the Ising model. The objective function ex-

pressed as an Ising model is as follows [110], with hi representing the linear coefficients

corresponding to qubit biases, and Ji,j representing the quadratic coefficients corresponding

to coupling strengths. Here, the binary variables si and sj may take values from {−1,+1}.:

Hising(s) =
N∑
i=1

hisi +
N∑
i=1

N∑
j=i+1

Ji,jsisj (2.2)

24

QUBO

Quadratic Unconstrained Binary Optimization (QUBO) is a mathematical framework for

solving combinatorial optimization problems that involve binary variables (variables that

can take on only two possible values, typically 0 or 1) [19]. QUBO models can embrace

an exceptional variety of important combinatorial optimization problems found in industry,

science and government, as documented in studies such as [5] and [63]. In QUBO, the

optimization problem is formulated as a quadratic equation, where the variables represent

the binary decision variables and the coefficients of the quadratic terms represent the costs

or penalties associated with particular combinations of variable values.

Quantum annealers are designed to solve Ising and QUBO models. Through special refor-

mulation techniques that are easy to apply, quantum annealers can be used to efficiently

solve many important problems once they are put into the QUBO framework [44]. The goal

is to find the configuration of qubits that minimizes the energy of these models.

The following describes the QUBO Model [32, 63, 64], where the binary variables xi and xj

may take values from {0, 1}.

f = min
x

(
n∑

i=1

pixi +
∑
i

∑
j>i

qi,jxixj + c

)

The coefficients pi and qi,j are constant real numbers that define our problem, as is the

constant c. The binary variables xi and xj are the values that we are looking for to solve

our problem. The best solutions for these variables is the value for each xi and xj that

produces the smallest value for the overall expression. The QUBO equation has three main

components:

25

1. Linear Term - The first summation,
∑n

i=1 pixi, with each component having just one

variable.

2. Quadratic Term - The second summation,
∑

i

∑
j>i qi,jxixj, with each component in

the summation containing a product of two variables.

3. Constant c - This constant makes no difference in the results.

The Ising and QUBO models are mathematically equivalent – one can be translated into

the other with a simple substitution. To transform an Ising model to QUBO, the following

substitution is used:

si 7→ 2xi − 1 (2.3)

And to transform a QUBO model to an Ising model, the following substitution is used:

xi 7→
si + 1

2
(2.4)

QUBO is binary, because the variables take only two possible values; it is quadratic in the

sense that it represents an optimization problem that involves pairwise interactions between

the variables of the problem.

The goal of a QUBO model is to find the assignment of variable values (x1, x2, x3, ..., xn)

that minimizes the overall cost or penalty of the quadratic equation. Constraints are the

rules that determine which solutions are acceptable. The cost function or penalty function

is typically a sum of the quadratic terms, where the coefficients (pi and qi,j) of the terms

represent the costs or penalties associated with particular combinations of variable values.

In graph problems, for example, the binary variables can represent the existence (1) or

absence (0) of edges, or the existence/absence of a node-to-node correspondence between

26

two graphs, or a number of other binary properties.

An optimization problem expressed as a QUBO, or QUDO, can be solved on a quantum

annealer if the variables are binary (0 or 1) or discrete, the optimization objective function

is quadratic, and/or the constraints can be effectively expressed as linear or quadratic terms

in the objective function [107]. Solutions to this objective function are found by sampling it

on the QC hardware, which can either be purely quantum, purely classical, or a hybrid of

both classical and quantum working in tandem.

QUDO

QUBO formulations are encoded in to the quantum annealer as a Binary Quadratic Model

(BQM). BQMs are too low-level for many problems as they can only yield results as binary

variables. However, in some cases it may be more practical to use a higher-level formulation

where the results can be discrete variables. A Quadratic Unconstrained Discrete Optimiza-

tion (QUDO) (note: not Binary, but Discrete Optimization) can be formulated that can be

defined over discrete values such as Paris, Rome, Madrid, Athens} or {1, 2, 3, 4}. A QUDO

can be encoded in a quantum annealer as a Discrete Quadratic Model (DQM). The possible

values that these discrete variables can take are called the variable’s cases. DQMs build on

top of BQMs by substituting each discrete variable with a vector of binary variables using

one-hot encoding. 1

QUDO models are a well-suited for graph problems. For instance, an edge in a graph can be

depicted as a connection between two nodes, xi and xj, with the coefficient qi,j representing

the interaction strength of the coupling between the qubits that are encoded as the member

nodes of that edge.

Researchers have successfully reformulated various problems as QUBO or QUDO equations

1https://docs.ocean.dwavesys.com/en/stable/concepts/dqm.html#discrete-quadratic-models

27

https://docs.ocean.dwavesys.com/en/stable/concepts/dqm.html#discrete-quadratic-models

for quantum annealers to solve for both research and commercial applications [18, 56, 83].

The most significant contribution of this research thesis is the novel approach to solving the

code clone detection problem by translating it into an optimization problem and formulating

a discrete quadratic model that is solved on an actual D-Wave quantum annealer.

For this reason, this work uses QUDO models, which are then automatically translated into

QUBOs [74].

28

2.2.3 Submitting Programs to a Quantum Annealer

The D-Wave Advantage system4.1 system employed in this study comprises a QPU with

over 5,000 qubits and at least 35,000 couplers. This configuration results in a high coupler-

to-qubit ratio of 15, as reported in [30]. Interaction with the D-Wave QPU and hybrid

solvers is streamlined through the D-Wave Leap Cloud Quantum Computing service and the

accompanying open-source Ocean software development kit [30, 31].

The D-Wave processor minimizes a set of input coefficients in the formulated QUBO or Ising

model and returns a set of qubit values representing a potential optimal solution, which is

referred to as a “sample.” Typical queries generate a 100 samples, although some cases may

demand up to a 1,000 samples for a single problem submitted. The Ocean SDK translates

Ising and QUBO models into matrices and vectors for embedding onto the QPU chip. It

also provides the annealing results and relays metadata about the annealing process for that

particular formulation back to the client. Within this framework, a “solver” is a resource

that executes a problem, whereas “samplers” are processes that run multiple iterations of

a problem to obtain a collection of samples, each of which is a potential solution to the

problem. For convenience, this thesis refers to both solvers and samplers under the umbrella

term “Ocean’s solvers” [31].

The increase in the number of code lines in input fragments proportionately increases the size

of their abstract syntax trees (ASTs), resulting in larger input graphs. This increase in the

number of nodes and edges of the input graphs necessitates additional comparisons between

the two code fragment graphs, in turn escalating the number of variables in the corresponding

Ising or QUBO Hamiltonian. To address this issue of scaling, D-Wave Leap offers a Hybrid

Solver Service (HSS) that combines the power of CPUs, GPUs, and QPUs, that operate in

tandem in portfolios depending on the type of input they get and the size of the problem

they need to solve. This service dynamically adapts the distribution of tasks to obtain a

29

solution to a problem amongst the three processing units. It harnesses the QPU’s exceptional

ability to quickly identify solutions, extending this feature to a wider range of inputs than

what is typically feasible with just the QPU. Users can submit problems as Binary Quadratic

Model (BQM), Discrete Quadratic Model (DQM) or a Constrained Quadratic Model (CQM),

depending on the kind of inputs the problem requires. In this implementation, I found the

Discrete Quadratic Model to be most suitable for the application of graph isomorphism

as it facilitates the formulation and execution of QUDOs in the D-Wave Hybrid Solvers.

The hybrid discrete quadratic model version1 solver of the Ocean SDK’s DQM suite adeptly

handles discrete problems, allowing for QUDO variables to have any integer value instead of

being restricted to binary values (0 or 1) as is the case for QUBOs using the BQM.

The HSS is particularly valuable for tackling combinatorial optimization problems that are

too large to fit onto current-generation QPUs. From a performance perspective, using hy-

brid workflows combining the best features of classical and quantum computation can often

produce better results than either approach used alone. There are also fast and effective post-

processing utilities in place in these QPU systems, such as Majority Voting (MV) among

other heuristic methods, to boost the quality of raw QPU results by repairing broken chains

in the output solutions. The MV post-processing, which is the simplest one and is thus

invoked by default in some QPU-based Ocean solvers, assigns a value to each logical node

based on a “vote” of the qubits in its corresponding chain (breaking ties at random). Thus,

the MV post-processor converts all broken solutions into intact solutions, typically in just a

few milliseconds of additional computation time [30].

Additionally, the HSS includes software that manages the low-level operational parameters

of the annealing process, eliminating the need for specialized knowledge of QPU control

fine-tuning. The cloud-based platform allows simultaneous operation of multiple portfolio

solvers, ensuring that the optimal solution is selected from a collective pool of results [74].

30

2.3 Graph and Subgraph Isomorphism

2.3.1 Graph Isomorphism

In simple terms, Graph Isomorphism (GI) is a computational problem that involves deter-

mining whether two given graphs, denoted as G1 and G2, are structurally identical, such that

the adjacency matrices can be identical with a relabeling of the vertices. The solution to be

expected upon solving an instance of graph isomorphism for a pair of graphs, is a mapping

that matches the vertices and edges of one graph with the other. Although this task might

appear straightforward, the computational complexity escalates with the graphs’ size, i.e.

the number of vertices in the graphs, making it far from trivial. The GI problem shares

a computational complexity profile with the integer factoring problem, the first and most

famous problem for which a quantum algorithm has demonstrated an exponential speed-up

over the best classical algorithm [99]. Notably, while the integer factoring problem can be

solved in polynomial time using Shor’s algorithm [99], a similar feat is rarely seen for the

GI problem. Like factoring, the common belief is that the GI problem is unlikely to be

NP-complete [47].

Graph isomorphism by itself an interesting problem to solve. It is of practical interest as it

is encountered repeatedly in many applications in like verifying circuit equivalence in very

large-scale integrated circuit design [66], in biology, bio-informatics and drug discovery where

a graph representing a molecular compound is compared with a entire database of molecule

graphs for search [77], and also in mathematics, supply chain, computer vision and pattern

matching, among many others [112]. It is repeatedly studied because of its broad range of

applications [62].

Now, delving into the details of the graph isomorphism problem, it entails determining

whether two given graphs, G1 = (V1, E1) and G2 = (V2, E2), each having n vertices, are

31

Figure 2.5: Graph Isomorphism Example, G1 (left) and G2 (right).

Figure 2.6: Bijective Mapping between G1 (left) and G2 (right).

isomorphic or not. The set of edges E consists of unordered pairs of the finite non-empty

set of vertices V such that u, v ∈ V . The adjacency matrix A of a graph G with n vertices is

an N ×N matrix based on vertex labels, where Aij = 1 if an edge connects vertices i and j,

and zero otherwise. The vertices are labelled as V = {vi|0 ≤ i < n}, and edges are denoted

by e = uv or e = {u, v}, with graph’s size denoted by the number of edges, m.

A minor embedding of a graph G1 = (V1, E1) onto a graph G2 = (V2, E2) is a function

f : V1 → V2 that satisfies the following three conditions:

1. The sets of vertices f(u) and f(v) are disjoint whenever u ̸= v.

2. For all vertex v ∈ V1, there is a subset of edges E ′ ⊆ E2 such that G′ = (f(v), E ′) is

connected.

3. If {u, v} ∈ E1, then there exist u′, v′ ∈ V2 such that u′ ∈ f(u), v′ ∈ f(v) and {u′, v′} is

an edge in E2.

32

For the minor embedding f defined above, G1 is referred to as the guest graph while G2 is

called the host graph [24].

For two given graphs G1 and G2 to be isomorphic, they would have to be of the same

order and the same size, i.e., they would have to have same number of vertices and edges,

respectively. If the graphs are isomorphic, the output is a bijective edge-invariant vertex

mapping f : V1 → V2 (which is calculated); edge-invariant means that for every pair of

vertices {u, v}, we have uv ∈ E1 if and only if f(u)f(v) ∈ E2.

Formally, the graph isomorphism problem can be described as follows:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2| and |E1| = |E2|.

Question: Determine whether there exists a bijective edge-invariant vertex mapping (iso-

morphism) f : V1 → V2.

The required mapping f is a permutation of vertices in V1. To represent any of the n!

permutations as a ranked index we need min{k|2k ≥ n!} = ⌈lg(n!)⌉ bits, which is about

n lg n bits. Formulating a QUBO with this theoretical lower bound remains a significant

challenge [24].

2.3.2 Subgraph Isomorphism

The Subgraph Isomorphism problem (SGI) essentially involves determining whether the

smaller graph, from a pair of given graphs G1 and G2 of different sizes, is a subgraph of the

larger graph, such that it can be mapped onto the topology of the larger graph. The solution

to be expected upon solving an instance of subgraph isomorphism for a pair of graphs is also

a mapping, like for the GI problem. However, this mapping is from the vertices and edges

of the smaller graph to those of the larger graph; and this mapping must include all the

vertices and edges of the smaller graph while it may or may not include all the vertices and

33

Figure 2.7: Subgraph Isomorphism Example, G1 (left) and G2 (right).

edges of the larger graph.

The SGI problem is an important problem to solve since it has many applications in chem-

istry, drug-discovery, biology and many other. However, most cases of subgraph isomorphism

are considered to be NP-Hard [24] which makes it difficult to find an exact solution for large

instances of the problem. Consequently, researchers have to rely on heuristics and approxima-

tion algorithms to find good solutions. Furthermore, the difficulty of finding good solutions

with heuristics increase with increase in the size of the problem space which corresponds to

the increase in the number of nodes in the graphs being compared. Quantum annealing has

the potential to provide better solutions since it can explore large solution spaces parallelly

and avoid getting stuck in local minima. Additionally, quantum annealing can take advan-

tage of quantum tunneling to overcome energy barriers and find lower-energy solutions that

may be missed by classical heuristics. However, the effectiveness of quantum annealing for

solving subgraph isomorphism problems depends on the specific problem instance and the

quality of the QUBO formulation used.

Briefly, the SGI problem involves finding out the mapping of the vertices and edges of a

smaller graph, here in this thesis referred to as G2 = (V2, E2), to the vertices and edges of

a larger graph, G1 = (V1, E1). If a mapping is found, then the smaller graph is said to be a

subgraph isomorph of the larger graph.

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with n1 = |V1| ≤ |V2| = n2 and

34

Figure 2.8: Injective Mapping between G1 (left) and G2 (right).

|E1| ≤ |E2|.

Question: Find an edge-preserving injective function f : V1 → V2.

Note that for this problem the function f is not necessarily edge-invariant: it has only to be

“edge-preserving”, that is, for every uv ∈ E1 we have f(u)f(v) ∈ E2 [24].

The non-induced subgraph isomorphism problem seeks to establish an injective mapping from

the vertices of a smaller given graph, G2, to the vertices of a designated target graph, G1,

which preserves adjacency. In contrast, the induced subgraph isomorphism variant demands

that the mapping upholds non-adjacency, thereby precluding the existence of “extra edges”

in the pattern replica. Subgraph isomorphism finds practical applications in a diversity of

fields such as computer vision [33], biochemistry [6], and pattern recognition [29, 73].

More specifically, a non-induced subgraph isomorphism entails an injective mapping i from

V (G2) to V (G1) that preserves adjacency. For all adjacent vertices v and w in V (G2),

the vertices i(v) and i(w) must be adjacent in G2. Furthermore, an induced subgraph

isomorphism retains non-adjacency, meaning that if v and w are not adjacent in G2, then

i(v) and i(w) cannot be adjacent in G1. Non-induced subgraph isomorphism is denoted as

i : G2 7−→ G1, whereas induced subgraph isomorphism is denoted as i : G2 ↪→ G1 [73].

35

Chapter 3

Software Code Clone Detection as an

Optimization Problem

In this thesis, I conceptualize code clone detection as an optimization problem. At a very

high-level, the objective is to map one program onto another while minimizing the energy of

that mapping. The lower the energy, the greater the similarity between the two programs.

The challenge is, then, in specifying mapping and establishing the penalties to be applied to

the problem Hamiltonian for incorrect mappings.

There can potentially be many ways of formulating this problem. In essence, this involves

solving the subgraph isomorphism problem and formulating it as a QUDO model. The main

idea for solving subgraph isomorphism with a QUDO model is penalizing the node-to-node

mappings from G2 to G1 that have non-equivalent edges, which will be explained next.

But this alone is not enough: the nodes of these graphs are of different types – conditionals,

assignments, function calls, etc. If we ignore node types, we may end up with topologically

perfect subgraph mappings that do not represent the syntactic structure of the programs.

As such, a critical second step is to include penalties for mappings between nodes of different

36

types.

In the following subsections, I delve into a detailed description of how I developed and imple-

mented these ideas. I start by explaining the basic approach of expressing graph isomorphism

as a QUBO model, followed by its adaptation into a QUDO model. Subsequently, I explain

how I express AST similarity within the framework of a QUDO model.

37

3.1 Graph Isomorphism as QUBO

Zick et. al. [112] were the first to convert Lucas’ [70] Graph Isomorphism Ising Hamiltonian

into a QUBO (note: not QUDO) formulation and experimentally evaluate it on a D-Wave

device. This QUBO formulation detects whether two given input graphs are isomorphic or

not. The applied penalties are designed such that the ground state energy becomes zero if

and only if the input graphs G1 and G2, are isomorphic.

In this QUBO formulation, there are N × N binary variables xu,i ∈ {0, 1}, one for every

possible mapping of a node u in G2 to a node i in G1; in a solution, the variable is 1 if u is

mapped to i, and 0 otherwise.

Their QUBO formulation penalizes certain node-to-node and edge-to-edge mappings between

two graphs, target graph G1 and query graph G2, by increasing the energy of the QUBO by

a fixed value each time a mapping violates the rules of graph isomorphism. Two types of

penalties are applied to the variables and interactions between variables. The first penalty,

denoted as C1, penalizes non-bijective node mappings. For example, as seen in Figure 2.5, if

both node 1 and node 2 of G2 are mapped to node A of G1, this mapping would violate the

bijectivity constraint, resulting in a fixed penalty being added to the QUBO, increasing the

QUBO model’s energy. Note that if at least one of the two variables resolves to 0, the energy

of the coupling is zero. The second penalty, denoted as C2, applies to edge inconsistencies.

An edge inconsistency occurs when nodes u and v of G2 are mapped to nodes i and j of G1,

respectively, and an edge uv exists in G2, but there is no corresponding edge ij in G1. For

example, in Figure 2.5, this situation occurs if node 1 of G2 is mapped to node A of G1 and

node 2 of G2 is mapped to node E of G1.

The penalties have a fixed value, and every time a node-to-node mapping violates a constraint

and activates a penalty, the energy of the QUBO is increased by that fixed penalty value.

Thus, the energy of the solution to the QUBO is directly proportional to the number of

38

incorrect node-to-node mappings. Additional details on the QUBO formulation for graph

isomorphism can be found in Lucas et. al. [70].

When the QUBO is solved on a D-Wave Quantum Annealer, a dictionary with G2 nodes as

keys and the corresponding G1 nodes as values is returned, accompanied by the respective

minimum ground state energy of the QUBO solution. This resulting global minimum energy

can be used to quantify the similarity between the two graphs; a value of 0.0 indicates that

the two graphs are identical, while a non-zero positive value indicates that the two graphs

are not identical. The number of unmatched or mismatched nodes between the two graphs

is directly proportional to the energy of the QUBO solved with those two graphs.

39

3.2 Graph Isomorphism as QUDO

At the time of Zick’s paper [112], using binary variables was the only way to formulate a

QUBO and one could only use either the classical simulated annealing solver or the smaller

2000 qubit QPU, separately. D-Wave’s open source GitHub repository of examples [see

https://github.com/dwave-examples/circuit-equivalence] includes an alternative im-

plementation of Zick’s graph isomorphism. This alternative implementation solves the Cir-

cuit Equivalence problem by developing a Discrete Quadratic Model (DQM) formulation of

graph isomorphism. A DQM is instantiated and solved on D-Wave Leap’s hybrid solvers.

In this formulation, instead of using N ×N binary variables like in the QUBO formulation,

N discrete variables are used, taking advantage of the discrete quadratic model, where

N denotes the number of nodes in one of the graphs (must be the same as the other).

Each discrete variable has N cases that represent the nodes on the other graph. Lucas’

Ising formulation [70] for graph isomorphism, the objective function on which this discrete

quadratic model is based, has two components - HA and HB. The first component, HA, is

used to enforce the constraint that each node in each of the two graphs is selected exactly

once. The second component, HB, uses interaction terms to penalize mappings that select

an edge in the first graph that is not present in the second graph, or vice versa.

Below is the Python code from the circuit-equivalence repository that establishes the penal-

ties for node-to-node mappings [see top code listing in Figure 3.1]. It starts by initializing

the DQM object. The first for loop adds all the nodes of G1 as discrete variables that has

n (the number of nodes of G2) as cases, the second for loop establishes the first component,

HA, as set of penalties.

The interaction coefficients associated withHB are defined in the code using two double-loops

[see bottom code listing in Figure 3.1]. Each double-loop includes an outer loop over the

edges of one of the two graphs, along with an inner loop over all possible node combinations,

40

https://github.com/dwave-examples/circuit-equivalence

1 # n is the number of nodes in the graphs

2 dqm = dimod.DiscreteQuadraticModel()

3 for node in G1.nodes:

4 # Discrete variable for node i in graph G1,

5 # with cases representing the nodes in G2

6 dqm.add_variable(n, node)

7

8 # Set up the coefficients associated with the

9 # constraints such that each node in G2 is

10 # chosen once. Penalize by 2.0 otherwise. This

11 # represents the H_A component of the energy function.

12 for node in G1.nodes:

13 dqm.set_linear(node, np.repeat(-1.0, n))

14 for itarget in range(n):

15 for ivar,node1 in enumerate(G1_nodes):

16 for node2 in G1_nodes[ivar+1:]:

17 dqm.set_quadratic_case(node1, itarget, node2, itarget, 2.0)

1 # The penalty coefficient B

2 # controls the weight of H_B relative to H_A

3 # in the energy function. (same here)

4 B = 2.0

5

6 # For all edges in G1, penalizes mappings

7 # to edges not in G2

8 for e1 in G1.edges:

9 for e2_indices in itertools.combinations(range(n), 2):

10 e2 = (G2_nodes[e2_indices[0]], G2_nodes[e2_indices[1]])

11 if e2 in G2.edges:

12 continue

13 # In the DQM, the discrete variables

14 # represent nodes in the first graph and are

15 # named according to the node names. The

16 # cases for each discrete variable represent

17 # nodes in the second graph and are indices from 0..n-1

18 dqm.set_quadratic_case(e1[0], e2_indices[0], e1[1], e2_indices[1], B)

19 dqm.set_quadratic_case(e1[0], e2_indices[1], e1[1], e2_indices[0], B)

20

21 # For all edges in G2, penalizes mappings to edges

22 # not in G1

23 for e2 in G2.edges:

24 e2_indices = (G2_nodes.index(e2[0]), G2_nodes.index(e2[1]))

25 for e1 in itertools.combinations(G1.nodes, 2):

26 if e1 in G1.edges:

27 continue

28 dqm.set_quadratic_case(e1[0], e2_indices[0], e1[1], e2_indices[1], B)

29 dqm.set_quadratic_case(e1[0], e2_indices[1], e1[1], e2_indices[0], B)

Figure 3.1: Code listing for implementing Node-Mapping Penalty (top), and for implement-
ing Edge-Mapping Penalty (bottom) 41

so that penalties can be added for all invalid combinations:

In this code above, set quadratic case() is a built-in function of the Discrete Quadratic Model

package of D-Wave’s Ocean SDK that sets the penalties associated with the interaction

between the two cases of nodes. Recalling Figure 2.5 from earlier as context for understanding

how the set quadratic case() function operates: An instance of this function that penalizes

non-bijective mappings of nodes 1 and 2 of Graph G2 to node A of Graph G1 would look

like set quadratic case(node1, nodeA, node2, nodeA, p), where nodes 1 and 2 of G2 are the

discrete variables and node A of G1 is the case, and p is the fixed penalty value. Simply put,

this function penalizes mappings of nodes from Graph G2 to Graph G1 when the mapping

violates the bijectivity rule of graph isomorphism which states that one node of one graph

can only be mapped to one node of another graph.

The discrete quadratic model is then solved using the LeapHybridDQMSampler(). If the two

graphs are isomorphic, then the ground state energy is zero.

42

3.3 Subgraph Isomorphism for Code Clone Detection

Graph isomorphism assumes that the graphs being compared have an identical number

of nodes and edges. Clearly, that does not work for code clone detection as the graphs

representing the different programs may vary in size, or one program could be a a snippet

of a larger program, resulting in graphs with different number of nodes and edges. This

necessitates the use of subgraph isomorphism.

My design of the subgraph isomorphism algorithm builds upon Zick’s [112] implementation

of the QUBO for Graph Isomorphism, but, more directly, on D-Wave’s example of circuit

equivalence using a DQM solver. The fundamental idea of my formulation is a QUDO model,

when encoded into the quantum annealer with the help the DQM, that converges into the

global minimum energy state when a smaller graph G2 is mapped perfectly onto a larger

graph G1. Such a perfect mapping indicates that the smaller graph G2 is a subgraph of of

the larger graph G1. My formulation also has the two types of penalties:

The Node-mapping Penalty - Given that the Target Graph G1 has n1 nodes and the Query

Graph G2 has n2 nodes, with n1 > n2, the Node-mapping Penalty ensures that every node of

G2 must be mapped to only one node of G1. All the possibilities where two different nodes

of G2 are mapped to the same node of G1 are penalized. However, since not every node of

G1 has to correspond to a node of G2 this penalty only penalizes the mappings from the set

of nodes of G2 to the set of nodes of G1. This penalty is crucial because it ensures injectivity,

instead of bijectivity which was the case for graph isomorphism.

The Edge-mapping Penalty - The Edge-mapping Penalty constraint ensures that the edges

present between a pair of nodes in G2 are only mapped to edges present between a pair of

nodes in G1. Any other mapping is penalized. The mapping from G2 to G1 is therefore

edge-preserving.

43

3.4 Node Types

The initial design of my subgraph isomorphism algorithm focused primarily on the topolog-

ical mapping of one graph on top another, without considering the types of the nodes in the

AST graphs. This approach, while effective for certain scenarios, proved insufficient for the

specific requirements of code clone detection.

To address this issue, I add an additional component that incorporates node type compar-

isons. In this enhanced model, when a node from the smaller graph G2 is mapped onto a

node in the larger graph G1, their node types are compared. If the node types are the same,

no penalty is applied to the mapping and the energy of the QUDO model is not increased.

But if the node types don’t match, a fixed penalty is applied to the mapping. This further

ensures that the mappings generated are accurate and produce reliable results.

This type of conditional penalties can be applied for special cases as well. For instance, a

smaller fixed value (e.g. 0.2, instead of the larger 2.0) can be applied to the DQM if the

program driver detects that the two given code fragments have two different types of loops

executing the same functionality. An example of this can be seen in s6 and s6 t3 v1 [see

code fragments in Table A.3 in the Appendix] where the former has a for loop and the latter

has a while loop. This can be used to detect Type 3 code clones that are functionally similar

but have a different type of code component executing that functionality.

3.4.1 Complete Algorithm

Finally, the complete algorithm used to generate the results for this thesis can be seen in

Algorithm 1. The algorithm starts by initializing the DQM object and setting its offset value

to n2. The offset property of the DQM object is a constant value that is added to the energy

of the lowest-energy state of the model. This adjustment is essential as it effectively shifts

44

Algorithm 1: Subgraph Isomorphism Algorithm, with node-type constraint
added

Input : Target Graph G1, Query Graph G2

Precondition: G1 is larger than G2

Output : DQM with updated Quadratic Penalties, and added Node-Type comparison
Linear Penalty

1 Set DQM Offset as n2

2 for each node2 ∈ G2 do
3 Add node2 as a Discrete Variable to the Discrete Quadratic Model with n1 as the Number

of Cases node2 can be mapped to
4 end
5 for each node2 ∈ G2 do
6 Set Linear Coefficient of node2 as −1.0 in the QUBO
7 end
8 for itarget ← 0 to n1 do
9 for ivar ← 0 to n2 and each node1 ∈ G2 nodes do

10 for each node2 ∈ G2 nodes at index position from ivar + 1 to n2 do
11 Penalize mapping of node1 → G1 node at index itarget, node2 → G1 node at index

itarget
12 end

13 end

14 end
15 for edge2 ∈ G2 do
16 for e1 ∈ {all pair-wise combinations of G1 nodes} do
17 node1 indices← indices of a pair e1 ∈ G1 nodes
18 if e1 ∈ G1.edges then
19 continue
20 end
21 Penalize mapping of first node of edge2 → first node of node1 indices, second node of

edge2 → second node of node1 indices
22 Penalize mapping of first node of edge2 → second node of node1 indices, second node of

edge2 → first node of node1 indices
23 end

24 end
25 for each node2 ∈ G2.nodes do
26 for each node1 ∈ G1.nodes do
27 if node1 type == node2 type then
28 continue
29 end
30 Penalize mapping node2 → node1
31 end

32 end

45

the energy levels of all the states. The offset is usually set to a value that is larger than

the minimum energy of the model, to ensure that the minimum energy state always has a

non-negative energy value. This is because the quantum annealing optimization algorithm

typically aims to minimize the energy of a model, so setting the offset to a value that is larger

than the minimum energy ensures that the algorithm does not converge to an non-physical

state, with negative energy.

In my algorithm, the offset value is set to n2, which is the number of nodes in the Query

Graph G2, to ensure that the minimum energy state of the model has an energy value of at

least n2. This setting is particularly useful in scenarios where a code clone is a snippet of

the original code fragment with one or more lines removed from it, meaning that the AST of

the code clone would be a perfect subgraph of the AST of the original code fragment. The

code clone’s graph G2 would map perfectly onto the nodes and edges of the original code

fragment’s graph G1. The resulting global minimum energy of comparing these two graphs

using the subgraph isomorphism algorithm should be 0.0.

In lines 2–4, the nodes of G2 are added as discrete variables to the DQM with n1 nodes as the

cases. This implies that the nodes of G2 act as variables of the QUDO that can be assigned

any discrete value, called a case, which is the index of a list of nodes of G1. Therefore, the

QUDO contains n2 discrete variables, each with n1 cases.

Lines 5–14 of Algorithm 1 implement the constraint of mapping each node in G2 to exactly

one node in G2. The lines 5–8 set up the linear coefficients with the constraint that each

node in G2 is chosen once. More specifically, this constraint is expressed in terms of penalties

that are added to the model when a node in G2 maps to more than one node in G1.

The second component (lines 15–24) uses interaction terms to penalize settings that select an

edge in the G2 graph that is not in the G1 graph. The interaction coefficients associated with

the second component are defined in the code using a double-loop. The double-loop includes

46

Table 3.1: Original Code Fragments.

s1.py s2.py
1 import cmath

2 num = 1+2j

3 num_sqrt = cmath.sqrt(num)

4 print('The square root of {0} is

{1:0.3f}+{2:0.3f}j'.format(num

,num_sqrt.real,num_sqrt.imag))

↪→
↪→

1 s = "quantum"

2 reverse = s[::-1]

3 print("Reverse of", s, "is", reverse)

s3.py s4.py

1 import cmath

2 a = 1

3 b = 5

4 c = 6

5 d = (b**2) - (4*a*c)

6 sol1 = (-b-cmath.sqrt(d))/(2*a)

7 sol2 = (-b+cmath.sqrt(d))/(2*a)

8 print('The solution are {0} and {1}'.format(sol1,

sol2))↪→

1 lower = 100

2 upper = 2000

3 for num in range(lower, upper + 1):

4 order = len(str(num))

5 s = 0

6 temp = num

7 while temp > 0:

8 digit = temp % 10

9 s += digit ** order

10 temp //= 10

11 if num == s:

12 print(num)

s5.py s6.py

1 def sequence(start, stop):

2 builder = []

3 i = start

4 while (i < stop):

5 if (i > start):

6 builder.append(',')

7 builder.append(i)

8 i += 1

9 return ''.join(builder)

1 num = 7

2 factorial = 1

3 if num < 0:

4 print("Sorry, factorial does not exist for

negative numbers")↪→
5 elif num == 0:

6 print("The factorial of 0 is 1")

7 else:

8 for i in range(1,num + 1):

9 factorial = factorial*i

10 print("The factorial of",num,"is",factorial)

an outer loop over the edges of G2, along with an inner loop over all possible node-node pair

combinations of G1 nodes, so that penalties can be added for all invalid combinations.

The final component (lines 25–32) introduces the penalties for mapping nodes of different

types. Although not explicitly detailed here for the sake of simplicity, the algorithm also

includes a special case handling for different loop types (for/while) in the code implementa-

tion.

47

3.5 Experiment Design

In order to empirically validate my proposed formulation, I created a dataset of six small

Python programs and their corresponding clones, resulting in a total of 25 distinct programs.

The clones were carefully created to represent Type 2 and Type 3 code clones, adhering to

the specific transformation criteria associated with each type. I created this custom dataset

because with this I was able to be in complete control of the size range of the programs being

input and also the particular transformations necessary to demarcate boundaries between

the clone types. This allowed us to have a reliable ground truth about which code fragments

were what type of code clones of the original ones, so we could verify the results from the

quantum annealer. Table A.1 lists the original code fragments and Tables A.2, A.3, and A.4

(in Appendix) show the corresponding Type 2 and Type 3 clones.

The experiment in this study compared each of these 25 code fragments with every other

code fragment to create a symmetric result matrix for which I only fill the lower triangular

part. There are a total of 325 unique comparisons, for which the ground truth is established

and known.

I conducted two sets of experiments,

1. DQM for Simple Subgraph Isomorphism: This experiment did not include node type

constraints.

2. DQM for Subgraph Isomorphism with Node Type Constraints: This variant incorpo-

rated additional constraints based on node types.

To ensure reliable results, each pairwise graph comparison was performed 10 times, for a

total of 6,500 measurements (325 pairs without node types, 325 pairs with node types, each

repeated 10 times). Note that a single pairwise graph comparison is one quantum machine

48

query performed in the QPU that, by default, has a 100 reads/annealing cycles, which means

every quantum machine query in the QPU executes the DQM model for that instance of the

two input graphs a 100 times. At the end of the quantum machine query, the results of these

100 annealing cycles are put through a post-processing schemes, such as Majority Voting

(MV) as discussed earlier in this thesis, to mitigate the effects of errors during the annealing

processes There have been many advancements to post-processing methods in the D-Wave

Advantage machines, some even using heuristics to mitigate the effects of errors and noise

on the solutions. I repeated each pairwise comparison 10 times as a redundancy measure to

reinforce the validity of the solutions I obtained, even when the D-Wave solver I used took

care of mitigating errors with its post-processing schemes [106].

To reiterate, the D-Wave Advantage Quantum System used for this study has over 5,000

qubits, with over 35,000 couplers, based on the Pegasus Graph Topology of arranging qubits

on the chip.

For this implementation, I used the hybrid discrete quadratic model version1 solver of the

Hybrid Solver Service (HSS). The HSS provided by D-Wave is a collection of both classical

and quantum solvers that can efficiently read and solve large optimization problems [74].

Each hybrid solver contains an implementation of a classical heuristic that explores the

discrete solution space defined by the input, together with a quantum module (QM) that

formulates some number of quantum queries that are sent to an Advantage QPU. The

D-Wave Advantage Quantum System was accessed via the D-Wave Leap Quantum Cloud

Computing Service.

49

Chapter 4

Results and Analysis

4.1 Energy: Similarity Detection

The normalized average energy values for both configurations are shown in Figure 4.1. Each

value in these tables is an average of 10 measurements, normalized by the number of nodes

in the smaller graph G1, so that we can compare them. The values range from 0.00 (green,

indicating exact clones) to 2.02 (white, indicating no similarity). The interpretation of these

values is as follows.

The fixed penalty of 2.00 is applied for every incorrect node mapping from G2 to G1, in-

creasing the overall energy of the model by 2.00 points. This number was selected by trial

and error. The minimum energies normalized by the number of nodes in the smaller AST of

the two code fragments indicates how many incorrect mappings were made for every node

in G2, on average. For instance, in the comparison between s3 t3 v1 and s5 t3 v1 as seen

in Figure 4.1 (bottom), the value of 2.02 means that all the nodes of the ASTs of the two

graphs are incorrectly mapped, which is expected since both of these code fragments are

very different. Conversely, a value of 0.00 means that all the nodes and edges in the smaller

50

Figure 4.1: Normalized Average Minimum Energy, without node type constraints (top) and
with node type constraints (bottom).

51

AST were mapped correctly to the nodes and edges in the larger AST.

The first observation to make is that the normalized energy values in the top table of Fig-

ure 4.1 are much smaller than the values in bottom table. This means that the first DQM

(pure subgraph isomorphism, without node type constraints) is able to find mappings more

often than the second one (with node type constraints). This follows my expectations: the

first DQM has fewer constraints. However, this also means that there is a much larger num-

ber of false positive clones in the top table. For example, the comparison between s6 t3 v2

and s2 t3 v1 [see Tables A.3 and A.4 in the Appendix for code fragments] has a normalized

energy of 0.16, which is a relatively small value. Topologically, the smaller of these two

programs can be nicely mapped to the larger one, but the two programs are considerably

different, and are not clones: s6 t3 v2 includes a for loop and a print statement that have

no equivalent in s6 t3 v2.

A second observation about the top table of Figure 4.1 is that there are a few false negatives,

too (i.e. true clones that are not classified as such). Specifically, I expected the energy values

in the diagonal to always be 0.00, but in some cases they are greater than 0.00, with one case

being as high as 0.16. This may be because the solver converged to a local minimum instead

of the global minimum, and moreover, we are calculating the mean of several samples which

are likely distorted by some outliers resulting in slightly higher values.

The numbers in the bottom table of Figure 4.1 reflect the ground truth much more accurately

than those in the top table. For starters, the diagonal is consistently 0.00. Then, the clusters

of clones of each sample program can be seen as the blocks of darker green over the diagonal,

and the energy values tend to be lower for Type 2 clones (more similar) than for Type 3

(less similar). There is a 3 times higher contrast in the resultant energy levels when using

the formulation with the node-type constraints. This is evident upon observation of the

energy levels and is most distinctly noticed when comparing the highest minimum energy

levels obtained for both the formulations – 0.64 in the table for the formulation without

52

Figure 4.2: ASTs of s1 (entire tree) vs. s 1 t3 v2 (purple nodes only).

53

Figure 4.3: ASTs for s6 (top) vs. s6 t3 v1 (bottom).

node-type constraints, Figure 4.1 (top), and 2.02 in the table for the formulation with node-

type constraints, Figure 4.1 (bottom). This indicates that the formulation with node-type

constraints added better at distinguishing different types of code clones.

Moreover, pairs of programs that are very different end up having high energy values, typi-

cally above 1.00. With node type constraints, it is possible to establish a threshold, around

0.90, above which the similarities are very weak; that threshold is unclear in the simpler

DQM.

For instance, code fragments s2 t3 v1 and s3 are distinctly different, and yet the structure

of their ASTs is similar, making s2 t3 v1 a very weak Type 3 code clone of s3. In the simple

DQM [see top table of Figure 4.1], their energy is 0.14, a relatively small value, which would

suggest strong similarities; in the DQM with node type constraints [see bottom table of

Figure 4.1], their energy is 1.05, signaling weak similarities. In reality, they are topologically

similar, but the node types are different. This demonstrates the accuracy of the second

DQM.

54

Given that the second DQM is much more accurate than the first, I focus on a few pairs of

code fragments and their corresponding energy values given by the second model:

• In the bottom table of Figure 4.1, it can be seen that comparing s1 with s1 t3 v2

yields a value of 0.00, even though the two programs are not exactly the same. This

is because the nodes of the AST of s1 t3 v2, including their types, map perfectly onto

those of the AST of s1 [see Figure 4.2]. Indeed, s1 t3 v2 is a syntactic subgraph of

s1. In general, positions other than the diagonal containing 0.00 values indicate the

normalized minimum energy from comparing code fragments where the AST of the

query code fragment is a subgraph of the AST of the target subgraph, resulting in a

perfect match. This is consistent with the actual pairs of code fragments, not just for

s1 vs. s1 t3 v2.

• Another interesting pair is s3 t3 v1 and s5 t3 v1, which has the highest normalized

energy value of 2.02. These code fragments are significantly different, as shown in

Table A.3 (in Appendix). s3 t3 v1 lacks a function call, a for loop, an if condition,

and a return statement present in s5 t3 v1.

• As can be seen in Tables A.1 and A.3, s6 has if conditions and a for loop while s6 t3 v1

has a while loop. Typically, such code pairs can be classified as Type 3 code clones.

Their ASTs can be see in the Figure 4.3. Comparing them yields an energy value of

0.88, which is below the threshold, and therefore can be classified as Type 3 clones.

55

4.2 Time: Performance and Scalability

The main advantage of quantum annealing is the use of superposition and entanglement of

qubits that allows representing and searching very large state spaces. Whats more, one may

recall that quantum annealing enables converging the problem Hamiltonian to the global

minima faster by evading being stuck in the local minima. Even though the code fragments

in my dataset are small, I wanted to experimentally verify whether there was any effect of the

size of the graphs on the time the solver takes to converge to a solution. The computation

times of the hybrid solver are shown in Figure 4.4, in milliseconds. The computation times

observed in the results in Figure 4.4 indicate they are bound and relatively independent of

the size and complexity of the input graphs under comparison.

Based on the values presented in Figure 4.4 and Figure 4.5, we can make the following

observations:

• Mean: The mean timing values for comparisons range from 133ms to about 155ms.

These values suggest that the algorithm’s performance is relatively consistent across

different code fragments.

• Standard Deviation: The variation in timing is relatively low for most code fragments,

indicating consistent performance. However, there are some with higher standard

deviations, such as s3 t2 v1, which might suggest that the comparison time varies

more significantly for this code fragment, potentially due to its complexity or size [see

the code fragment in Table A.2 in the Appendix].

• The time values vary between 109ms and 190ms. This corresponds to a ≈75% increase

between the low end and the high end of the range.

• Even for very large differences in the size of the code fragments being compared, we

see that the histogramin Figure 4.5 does not vary a lot and there is a well-defined peak

56

Figure 4.4: Average annealing times, in milliseconds, for the DQM with node-type compar-
isons (top), Average Annealing Times Matrix, in milliseconds, without node-type compar-
isons (bottom).

57

Figure 4.5: Histogram of average annealing times, in milliseconds, for the DQM with node-
type comparisons.

at around 135ms.

• The correlation coefficient between the timing values and the number of nodes of the

first code fragment in each pair (# Nodes) is approximately 0.055. The correlation

coefficient between the timing values and the number of nodes of the second code

fragment in each pair (Comparison Nodes) is approximately 0.150. These correlation

coefficients are relatively low, suggesting that there is a weak positive relationship

between the size of the code fragments (in terms of the number of nodes) and the time

taken to compare them. In other words, while there is some indication that larger code

fragments may take longer to compare, the number of nodes is not a strong predictor

of the comparison time.

• The number of nodes in the code fragments varies between 14 and 68. This means that

the state space of possible mappings in my experiments varies between 14× 14 = 196

58

(s2 t3 v1 compared to itself) and 68× 68 = 4, 624 (s4 t3 v1 compared to itself). This

corresponds to a ≈2,259% increase between the simplest and most complex problems

in my dataset.

• Given the two growth rates mentioned above, it is clear that the time increase is

much smaller than the complexity increase. In other words, if the two variables are

correlated, the time to solve a given problem is not proportional to the complexity of

the problem. This is likely due to a technical limitation of the quantum annealer, and

is not a reflection of the computational or algorithmic complexity of the formulation.

• There is a noticeable block of high time values towards the middle of the table, corre-

sponding to comparisons of code fragments with the highest number of nodes, between

61 and 68 nodes. However, there is also another block of high time values towards the

top-left of the table where the code fragments are smaller. There doesn’t seem to exist

a correlation between the size of the problem and the time to solve it.

• In general, the highest times are found along, and close to, the diagonal, which is also

where the most similar fragments are found (with lowest energies). This suggests some

correlation between the time to solve the problem and the similarity of the fragments

under comparison, where fragments that are more similar take longer to solve.

The D-Wave quantum annealer is sufficiently large for us to be able to run experiments with

small, but real programs with a few lines of code. Real-world software problems would require

computers with a much larger amount of available qubits, and my experiments will need to

be replicated with larger examples before I can draw definite conclusions. Nevertheless,

these empirical results are very encouraging: by treating clone detection as an optimization

problem to be solved by quantum annealers, we may be able to compare and search large

code bases in great detail without having to resort to heuristics. Moreover, my formulation

is also amenable to alternative optimization architectures, such as Simulated Bifurcation

59

Machines [45, 60, 102] and other classical solvers. Using my formulation of the code clone

problem, the energy values accurately reflect the level of code similarity, as shown in this

section, and using quantum computing I am able to naturally address the scalability issue,

as also shown here.

60

Chapter 5

Conclusion and Future Work

In this research, I present a novel approach to detecting software code clones using quantum

annealers. It is the first time the software code clone detection problem has been formulated

as an optimization of the subgraph isomorphism problem in the framework of a QUDO

model, or any other variant of the QUBO model. It is also the first time the code clone

detection problem has been successfully solved using quantum annealing. This method

involves formulating the code clone detection problem as a Quadratic Unconstrained Discrete

Optimization (QUDO) problem, and solving it on a D-Wave Quantum Computer. Building

upon existing work in expressing graph isomorphism as QUBO and QUDO problems, my

approach introduces and integrates never-done-before novel constraints that seem critical for

code clone detection using subgraph isomorphism, as well as for other graph-based software

engineering problems. Specifically, in software code clone detection we are not looking for

graph isomorphism, but only subgraph isomorphism, which carry the core of the programs’

syntax and semantics, and need to be expressed as optimization constraints. This is also an

innovation in how QUDO or QUDO formulations for subgraph isomorphism can be tailored to

specific problems by adding bespoke constraints to guide the annealing process into delivering

desired results.

61

The Discrete Quadratic Model (DQM) developed for this implementation is discussed in

detail, along with the experimental setup pipeline employed. The results of my experiments

affirm the significance and credibility of node type constraints for the accuracy of clone

detection. The model demonstrates proficiency in accurately classifying both Type 2 and

Type 3 code clones based on the resultant energy of the annealing process. The time required

to solve these optimizations seems to be bounded and largely independent of the complexity

of the graphs under comparison.

While this study is exploratory in nature, its results are promising. Larger programs will

need to be compared in order to draw stronger conclusions about accuracy and scalability. In

the future, I plan on comparing the performance of my approach with pre-existing classical

Python code clone detection tools to see where it stands relative to classical approaches.

Nevertheless, the empirical results of this study are encouraging to explore a broader range

of problems in software engineering that can be expressed as binary or discrete quadratic

optimization problems. Quantum computers are already a reality, and rapid progress in

their development is expected in the next decade. The 5,000 qubit D-Wave computer used

in these experiments will soon be outdated by a larger model with more qubits. As quantum

computers become more powerful, it is important to start getting acquainted with their

different ways of solving computational problems. By expressing a well-known software

engineering problem, clone detection, as a quantum annealing process, I hope to help build

the bridges between what we are used to and what comes next.

5.1 Threats to Validity

• Dataset and Annealer configuration: The dataset used for this research is rather

small and may even be limited in the variety of programs and the code clones it

includes. We used the hybrid DQM Solver for this research. Since it abstracts away

62

the low-level parameter controls at the qubit-level and tunes them automatically for

depending on the DQM model it receives, it may be difficult to change the parameters

like number of annealing cycles per quantum query or the annealing time to see how

those parameters could affect the solutions. Biases in dataset selection or selecting

inappropriate annealer parameters could skew the results.

• Interpretation of results data of Similarity in Code Clones: The normalized

average resultant minimum energy threshold for identifying different clone types from

on another is set heuristically. This same threshold value, for instance 0.9 for Type 3

code clones, may not be valid in other cases like for different datasets.

• Consistency across trials: Quantum computers are heavily affected by noise and

errors. To mitigate the effects of noise and error, the experiments were conducted 10

times. This number was again selected heuristically, and was limited by the by the

monthly quota for the number of quantum queries that could be made to the D-Wave

quantum annealer through the Leap Cloud Quantum Computing Service.

63

Bibliography

[1] A. Adedoyin, J. Ambrosiano, P. Anisimov, W. Casper, G. Chennupati, C. Coffrin,
H. Djidjev, D. Gunter, S. Karra, N. Lemons, et al. Quantum algorithm implementa-
tions for beginners. arXiv preprint arXiv:1804.03719, 2018.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools,
volume 2. Addison-Wesley Reading, 2007.

[3] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool. A systematic review
on code clone detection. IEEE Access, 7:86121–86144, 2019.

[4] M. H. Amin. Consistency of the adiabatic theorem. Physical Review Letters,
102(22):220401, 2009.

[5] M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of non-
linear binary optimization problems. Mathematical Programming, 162:115–144, 2017.

[6] A. Aparo, V. Bonnici, G. Micale, A. Ferro, D. Shasha, A. Pulvirenti, and R. Giugno.
Fast subgraph matching strategies based on pattern-only heuristics. Interdisciplinary
Sciences: Computational Life Sciences, 11:21–32, 2019.

[7] B. Apolloni, C. Carvalho, and D. De Falco. Quantum stochastic optimization. Stochas-
tic Processes and their Applications, 33(2):233–244, 1989.

[8] R. Au-Yeung, N. Chancellor, and P. Halffmann. Np-hard but no longer hard to
solve? using quantum computing to tackle optimization problems. arXiv preprint
arXiv:2212.10990, 2022.

[9] L. Babai and E. M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.

[10] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum com-
putation. Physical Review A, 52(5):3457, 1995.

[11] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In Proceedings. International Conference on Software Mainte-
nance (Cat. No. 98CB36272), pages 368–377. IEEE, 1998.

64

[12] C. Bazgan, H. Hugot, and D. Vanderpooten. Solving efficiently the 0–1 multi-objective
knapsack problem. Computers & Operations Research, 36(1):260–279, 2009.

[13] S. Bellon. Vergleich von techniken zur erkennung duplizierten quellcodes [master’s
thesis]. Institut fur Softwaretechnologie, Universitat Stuttgart, Stuttgart, Germany,
2002.

[14] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evalua-
tion of clone detection tools. IEEE Transactions on Software Engineering, 33(9):577–
591, 2007.

[15] P. Benioff. The computer as a physical system: A microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines. Journal of
Statistical Physics, 22(5):563–591, May 1980.

[16] E. Bernstein and U. Vazirani. Quantum complexity theory. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 11–20, 1993.

[17] Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready, and A. Roy. Discrete
optimization using quantum annealing on sparse Ising models. Frontiers in Physics,
2, 2014.

[18] Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, and S. Varotti. Solving
sat (and maxsat) with a quantum annealer: Foundations, encodings, and preliminary
results. Information and Computation, 275:104609, 2020.

[19] Z. Bian, F. Chudak, W. G. Macready, and G. Rose. The Ising model: teaching an old
problem new tricks. D-Wave Systems, 2:1–32, 2010.

[20] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis,
and M. Troyer. Quantum annealing with more than one hundred qubits. arXiv preprint
arXiv:1304.4595, 2013.

[21] S. Bravyi, D. Gosset, and R. Movassagh. Classical algorithms for quantum mean
values. Nature Physics, 17(3):337–341, 2021.

[22] M. J. Bremner, A. Montanaro, and D. J. Shepherd. Achieving quantum supremacy
with sparse and noisy commuting quantum computations. Quantum, 1:8, 2017.

[23] J. Brooke, D. Bitko, Rosenbaum, and G. Aeppli. Quantum annealing of a disordered
magnet. Science, 284(5415):779–781, 1999.

[24] C. S. Calude, M. J. Dinneen, and R. Hua. QUBO formulations for the graph iso-
morphism problem and related problems. Theoretical Computer Science, 701:54–69,
2017.

[25] C. Carugno, M. Ferrari Dacrema, and P. Cremonesi. Evaluating the job shop scheduling
problem on a D-Wave quantum annealer. Scientific Reports, 12(1):6539, 2022.

65

[26] G. Chapuis, H. Djidjev, G. Hahn, and G. Rizk. Finding maximum cliques on the
D-Wave quantum annealer. Journal of Signal Processing Systems, 91:363–377, 2019.

[27] T. Chen and M. Li. Multi-objectivizing software configuration tuning. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 453–465, 2021.

[28] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,
S. Mancoridis, K. Rees, M. Roper, et al. Reformulating software engineering as a
search problem. IEE Proceedings-Software, 150(3):161–175, 2003.

[29] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(10):1367–1372, 2004.

[30] D-Wave Systems Inc. D-Wave White Paper: D-Wave Advantage Processor Overview.
https://web.archive.org/web/20220703165806/https://www.dwavesys.com/
media/s3qbjp3s/14-1049a-a the d-wave advantage system an overview.pdf.

[31] D-Wave Systems Inc. D-Wave White Paper: Ocean Programs for Beginners.
https://web.archive.org/web/20220808194536/https://www.dwavesys.com/media/
fmtj2fw3/20210920 ofbguide.pdf.

[32] D-Wave Systems Inc. D-Wave White Paper: Problem Formulation Guide. 2022.
https://web.archive.org/web/20220703165755/https://www.dwavesys.com/media/
bu0lh5ee/problem-formulation-guide-2022-01-10.pdf.

[33] C. De La Higuera, J.-C. Janodet, É. Samuel, G. Damiand, and C. Solnon. Polynomial
algorithms for open plane graph and subgraph isomorphisms. Theoretical Computer
Science, 498:76–99, 2013.

[34] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum
computer. Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences, 400(1818):97–117, 1985.

[35] N. G. Dickson, M. Johnson, M. Amin, R. Harris, F. Altomare, A. Berkley, P. Bunyk,
J. Cai, E. Chapple, P. Chavez, et al. Thermally assisted quantum annealing of a
16-qubit problem. Nature Communications, 4(1):1903, 2013.

[36] H. N. Djidjev, G. Chapuis, G. Hahn, and G. Rizk. Efficient combinatorial optimization
using quantum annealing. arXiv preprint arXiv:1801.08653, 2018.

[37] A. Ekert, P. Hayden, and H. Inamori. Basic concepts in quantum computation. In
Coherent atomic matter waves: 27 July–27 August 1999, pages 661–701. Springer,
2001.

[38] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quantum
adiabatic evolution algorithm applied to random instances of an NP-Complete problem.
Science, 292(5516):472–475, 2001.

66

[39] F. Farmahinifarahani, V. Saini, D. Yang, H. Sajnani, and C. V. Lopes. On precision of
code clone detection tools. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 84–94. IEEE, 2019.

[40] R. P. Feynman et al. Simulating physics with computers. International Journal of
Theororetical Physics, 21(6/7), 2018.

[41] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll. Quantum an-
nealing: A new method for minimizing multidimensional functions. Chemical Physics
Letters, 219(5-6):343–348, 1994.

[42] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In Proceedings
of the 30th International Conference on Software Engineering, pages 321–330, 2008.

[43] X. Gao, S.-T. Wang, and L.-M. Duan. Quantum supremacy for simulating a
translation-invariant Ising spin model. Physical Review Letters, 118(4):040502, 2017.

[44] F. Glover, G. Kochenberger, R. Hennig, and Y. Du. Quantum bridge analytics I:
a tutorial on formulating and using QUBO models. Annals of Operations Research,
314(1):141–183, 2022.

[45] H. Goto, K. Tatsumura, and A. R. Dixon. Combinatorial optimization by simu-
lating adiabatic bifurcations in nonlinear Hamiltonian systems. Science Advances,
5(4):eaav2372, 2019.

[46] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering: Trends,
techniques and applications. ACM Computing Surveys (CSUR), 45(1):1–61, 2012.

[47] I. Hen and A. Young. Solving the graph-isomorphism problem with a quantum an-
nealer. Physical Review A, 86(4):042310, 2012.

[48] R. M. Hierons, M. Li, X. Liu, S. Segura, and W. Zheng. Sip: Optimal product
selection from feature models using many-objective evolutionary optimization. ACM
Transactions on Software Engineering and Methodology (TOSEM), 25(2):1–39, 2016.

[49] Y. Higo and S. Kusumoto. Enhancing quality of code clone detection with Program
Dependency Graph. In 2009 16th Working Conference on Reverse Engineering, pages
315–316. IEEE, 2009.

[50] Y. Higo and S. Kusumoto. Code clone detection on specialized PDGs with heuristics.
In 2011 15th European Conference on Software Maintenance and Reengineering, pages
75–84, 2011.

[51] Y. Hou, D. Ouyang, X. Tian, and L. Zhang. Evolutionary many-objective satisfiability
solver for configuring software product lines. Applied Intelligence, pages 1–24, 2022.

[52] W. Hua, Y. Sui, Y. Wan, G. Liu, and G. Xu. Fcca: Hybrid code representation for
functional clone detection using attention networks. IEEE Transactions on Reliability,
70(1):304–318, 2020.

67

[53] A. Ibias, L. Llana, and M. Núñez. Using ant colony optimisation to select features
having associated costs. In IFIP International Conference on Testing Software and
Systems, pages 106–122. Springer, 2021.

[54] IBM. IBM Quantum, 2021. https://quantum-computing.ibm.com/.

[55] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In 29th International Conference on Software Engi-
neering (ICSE’07), pages 96–105. IEEE, 2007.

[56] J. Job, A. Mott, J.-R. Vlimant, D. Lidar, and M. Spiropulu. Solving a Higgs detection
optimization problem with quantum annealing for machine learning. In APS March
Meeting Abstracts, volume 2018, pages S28–008, 2018.

[57] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones matter?
In 2009 IEEE 31st International Conference on Software Engineering, pages 485–495.
IEEE, 2009.

[58] T. Kadowaki and H. Nishimori. Quantum annealing in the transverse Ising model.
Physical Review E, 58(5):5355, 1998.

[59] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based
code clone detection system for large scale source code. IEEE transactions on software
engineering, 28(7):654–670, 2002.

[60] T. Kanao and H. Goto. Simulated bifurcation assisted by thermal fluctuation. Com-
munications Physics, 5(1):153, 2022.

[61] K. Karimi, N. G. Dickson, F. Hamze, M. H. Amin, M. Drew-Brook, F. A. Chudak, P. I.
Bunyk, W. G. Macready, and G. Rose. Investigating the performance of an adiabatic
quantum optimization processor. Quantum Information Processing, 11:77–88, 2012.

[62] J. Kobler, U. Schöning, and J. Torán. The graph isomorphism problem: its structural
complexity. Springer Science & Business Media, 2012.

[63] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang. The
unconstrained binary quadratic programming problem: a survey. Journal of Combi-
natorial Optimization, 28:58–81, 2014.

[64] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego. A unified modeling and
solution framework for combinatorial optimization problems. OR Spectrum, 26(2):237–
250, 2004.

[65] R. Kumar and P. K. Singh. Assessing solution quality of biobjective 0-1 knapsack prob-
lem using evolutionary and heuristic algorithms. Applied Soft Computing, 10(3):711–
718, 2010.

[66] Y. Kumar and P. Gupta. External memory layout vs. schematic. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 14(2):1–20, 2009.

68

[67] S. C. Leung, D. Zhang, C. Zhou, and T. Wu. A hybrid simulated annealing meta-
heuristic algorithm for the two-dimensional knapsack packing problem. Computers &
Operations Research, 39(1):64–73, 2012.

[68] M. Lewis and F. Glover. Quadratic unconstrained binary optimization problem pre-
processing: Theory and empirical analysis. Networks, 70(2):79–97, 2017.

[69] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large scale code clone analysis
and visualization of open source programs using distributed CCFinder: D-CCFinder.
In 29th International Conference on Software Engineering (ICSE’07), pages 106–115,
2007.

[70] A. Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2:5, 2014.

[71] Y. Manin. Computable and Uncomputable. Sovetskoye Radio, Moscow, 1980.

[72] F. McAndrew. Adiabatic quantum computing to solve the maxcut graph problem.
University of Melbourne School of Mathematics, 2020.

[73] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble. When subgraph isomorphism is
really hard, and why this matters for graph databases. Journal of Artificial Intelligence
Research, 61:723–759, 2018.

[74] C. McGeoch and P. Farré. D-Wave White Pa-
per: Hybrid solver for discrete quadratic models, 2020.
https://web.archive.org/web/20221007195917/https://www.dwavesys.com/media/
ssidd1x3/14-1050a-a hybrid solver for discrete quadratic models.pdf.

[75] C. C. McGeoch. Adiabatic quantum computation and quantum annealing: Theory
and practice. Synthesis Lectures on Quantum Computing, 5(2):1–93, 2014.

[76] C. C. McGeoch, R. Harris, S. P. Reinhardt, and P. I. Bunyk. Practical annealing-based
quantum computing. Computer, 52(6):38–46, 2019.

[77] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic
Computation, 60:94–112, 2014.

[78] M. Mondal, M. S. Rahman, R. K. Saha, C. K. Roy, J. Krinke, and K. A. Schneider. An
empirical study of the impacts of clones in software maintenance. In 2011 IEEE 19th
International Conference on Program Comprehension, pages 242–245. IEEE, 2011.

[79] T. Morimae, K. Fujii, and J. F. Fitzsimons. Hardness of classically simulating the
one-clean-qubit model. Physical Review Letters, 112(13):130502, 2014.

[80] M. A. Nielsen and I. L. Chuang. Programmable quantum gate arrays. Physical Review
Letters, 79(2):321, 1997.

[81] M. Ohzeki and H. Nishimori. Quantum annealing: An introduction and new develop-
ments. Journal of Computational and Theoretical Nanoscience, 8(6):963–971, 2011.

69

[82] K.-M. Osei-Bryson and A. Joseph. Applications of sequential set partitioning: a set of
technical information systems problems. Omega, 34(5):492–500, 2006.

[83] D. O’Malley, V. V. Vesselinov, B. S. Alexandrov, and L. B. Alexandrov. Non-
negative/binary matrix factorization with a D-Wave quantum annealer. PloS one,
13(12):e0206653, 2018.

[84] E. Pelofske, G. Hahn, and H. N. Djidjev. Solving large minimum vertex cover problems
on a quantum annealer. Proceedings of the 16th ACM International Conference on
Computing Frontiers, 2019.

[85] J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.

[86] K. L. Pudenz, G. S. Tallant, T. R. Belote, and S. H. Adachi. Quantum annealing and
the satisfiability problem. New Frontiers in High Performance Computing and Big
Data, 30:253, 2017.

[87] A. P. Punnen. The quadratic unconstrained binary optimization problem. Springer,
2022.

[88] D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A systematic review.
Information and Software Technology, 55(7):1165–1199, 2013.

[89] E. E. Reiter and C. M. Johnson. Limits of computation: an introduction to the unde-
cidable and the intractable. CRC Press, 2012.

[90] H. Reittu, V. Kotovirta, L. Leskelä, H. Rummukainen, and T. D. Räty. Towards
analyzing large graphs with quantum annealing. 2019 IEEE International Conference
on Big Data (Big Data), pages 2457–2464, 2019.

[91] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Queen’s
School of Computing TR, 541(115):64–68, 2007.

[92] C. K. Roy and J. R. Cordy. A mutation/injection-based automatic framework for
evaluating code clone detection tools. In 2009 International Conference on Software
Testing, Verification, and Validation Workshops, pages 157–166. IEEE, 2009.

[93] C. K. Roy and J. R. Cordy. Benchmarks for software clone detection: A ten-year retro-
spective. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 26–37. IEEE, 2018.

[94] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer Pro-
gramming, 74(7):470–495, 2009.

[95] C. K. Roy, M. F. Zibran, and R. Koschke. The vision of software clone manage-
ment: Past, present, and future (keynote paper). In 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pages 18–33. IEEE, 2014.

70

[96] G. E. Santoro and E. Tosatti. Optimization using quantum mechanics: quantum an-
nealing through adiabatic evolution. Journal of Physics A: Mathematical and General,
39(36):R393, 2006.

[97] M. A. Serrano, R. Pérez-Castillo, and M. Piattini. Quantum Software Engineering.
Springer International Publishing, 2022.

[98] A. Sheneamer and J. Kalita. A survey of software clone detection techniques. Inter-
national Journal of Computer Applications, 137(10):1–21, 2016.

[99] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
124–134. Ieee, 1994.

[100] J. Svajlenko, I. Keivanloo, and C. K. Roy. Scaling classical clone detection tools for
ultra-large datasets: An exploratory study. In 2013 7th International Workshop on
Software Clones (IWSC), pages 16–22, 2013.

[101] J. Svajlenko, I. Keivanloo, and C. K. Roy. Scaling classical clone detection tools for
ultra-large datasets: An exploratory study. In 2013 7th International Workshop on
Software Clones (IWSC), pages 16–22. IEEE, 2013.

[102] K. Tatsumura, A. R. Dixon, and H. Goto. FPGA-based simulated bifurcation machine.
In 2019 29th International Conference on Field Programmable Logic and Applications
(FPL), pages 59–66, 2019.

[103] J. Tindall, M. Fishman, M. Stoudenmire, and D. Sels. Efficient tensor network simu-
lation of IBM’s Eagle kicked Ising experiment. arXiv preprint arXiv:2306.14887, 2023.

[104] O. Titiloye and A. Crispin. Quantum annealing of the graph coloring problem. Discrete
Optimization, 8(2):376–384, 2011.

[105] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone detection in source code by
frequent itemset techniques. In Source Code Analysis and Manipulation, Fourth IEEE
International Workshop on, pages 128–135. IEEE, 2004.

[106] D. Wave Systems Inc. Error correction features.
https://docs.dwavesys.com/docs/latest/c qpu error correction.html?highlight=error

[107] D. Wave Systems Inc. Choosing good problems for quantum annealing, 2020.
https://www.dwavesys.com/media/s10ohrq5/dwavedoc annealing guide.pdf.

[108] D. S. Wild and Á. M. Alhambra. Classical simulation of short-time quantum dynamics.
PRX Quantum, 4(2):020340, 2023.

[109] W. Yang. Identifying syntactic differences between two programs. Software: Practice
and Experience, 21(7):739–755, 1991.

71

[110] S. Zbinden, A. Bärtschi, H. Djidjev, and S. Eidenbenz. Embedding algorithms for
quantum annealers with Chimera and Pegasus connection topologies. In High Per-
formance Computing: 35th International Conference, ISC High Performance 2020,
Frankfurt/Main, Germany, June 22–25, 2020, Proceedings, pages 187–206. Springer,
2020.

[111] J. Zhao. Quantum software engineering: Landscapes and horizons. arXiv preprint
arXiv:2007.07047, 2020.

[112] K. M. Zick, O. Shehab, and M. French. Experimental quantum annealing: case study
involving the graph isomorphism problem. Scientific Reports, 5(1):1–11, 2015.

72

Appendix A

A.1 Complete Code Clone Dataset

Tables of the Original Code Clones and their Type 2 and Type 3 code clones.

73

Table A.1: Original Code Fragments.

s1.py s2.py
1 import cmath

2 num = 1+2j

3 num_sqrt = cmath.sqrt(num)

4 print('The square root of {0} is

{1:0.3f}+{2:0.3f}j'.format(num

,num_sqrt.real,num_sqrt.imag))

↪→
↪→

1 s = "quantum"

2 reverse = s[::-1]

3 print("Reverse of", s, "is", reverse)

s3.py s4.py

1 import cmath

2 a = 1

3 b = 5

4 c = 6

5 d = (b**2) - (4*a*c)

6 sol1 = (-b-cmath.sqrt(d))/(2*a)

7 sol2 = (-b+cmath.sqrt(d))/(2*a)

8 print('The solution are {0} and {1}'.format(sol1,

sol2))↪→

1 lower = 100

2 upper = 2000

3 for num in range(lower, upper + 1):

4 order = len(str(num))

5 s = 0

6 temp = num

7 while temp > 0:

8 digit = temp % 10

9 s += digit ** order

10 temp //= 10

11 if num == s:

12 print(num)

s5.py s6.py

1 def sequence(start, stop):

2 builder = []

3 i = start

4 while (i < stop):

5 if (i > start):

6 builder.append(',')

7 builder.append(i)

8 i += 1

9 return ''.join(builder)

1 num = 7

2 factorial = 1

3 if num < 0:

4 print("Sorry, factorial does not exist for

negative numbers")↪→
5 elif num == 0:

6 print("The factorial of 0 is 1")

7 else:

8 for i in range(1,num + 1):

9 factorial = factorial*i

10 print("The factorial of",num,"is",factorial)

74

Table A.2: Type 2 Code Clone Fragments.

s1 t2 v1.py s2 t2 v1.py
1 import cmath

2 n = -4+5j

3 n_sqrt = cmath.sqrt(n)

4 print('The square root of {0} is

{1:0.3f}+{2:0.3f}j'.format(n, n_sqrt.real,

n_sqrt.imag))

↪→
↪→

1 text = "python"

2 rev = text[::-1]

3 print("Reverse of", text, "is", rev)

s3 t2 v1.py s4 t2 v1.py

1 import cmath

2 a = 1

3 b = 4

4 c = 4

5 d = (b**2) - (4*a*c)

6 sol1 = (-b-cmath.sqrt(d))/(2*a)

7 sol2 = (-b+cmath.sqrt(d))/(2*a)

8 print('The solution are {0} and {1}'.format(sol1,

sol2))↪→

1 l = 100

2 u = 2000

3 for num in range(l, u + 1):

4 order = len(str(num))

5 s = 0

6 temp = num

7 while temp > 0:

8 d = temp % 10

9 s += d ** order

10 temp //= 10

11 if num == s:

12 print(num)

s5 t2 v1.py s6 t2 v1.py

1 def generate_sequence(start, stop):

2 sequence_list = []

3 i = start

4 while (i < stop):

5 if (i > start):

6 sequence_list.append(',')

7 sequence_list.append(i)

8 i += 1

9 return ''.join(sequence_list)

1 n = 7

2 factorial = 1

3 if n < 0:

4 print("Sorry, factorial does not exist for

negative numbers")↪→
5 elif n == 0:

6 print("The factorial of 0 is 1")

7 else:

8 for i in range(1, n + 1):

9 factorial = factorial*i

10 print("The factorial of",n,"is",factorial)

75

Table A.3: Type 3 Version 1 Code Clone Fragments.

s1 t3 v1.py s2 t3 v1.py
1 import cmath

2 num = complex(3, 4)

3 num_sqrt = cmath.sqrt(num)

4 print('The square root of {0} is

{1:0.3f}+{2:0.3f}j'.format(num

,num_sqrt.real,num_sqrt.imag))

↪→
↪→

1 s = "quantum"

2 reverse = s[::-1]

s3 t3 v1.py s4 t3 v1.py

1 a = 1

2 b = 5

3 c = 6

4 d = b**2 - 4*a*c

5 sol1 = (-b-d**(1/2))/(2*a)

6 sol2 = (-b+d**(1/2))/(2*a)

7 print(f"The solutions are {sol1} and {sol2}")

1 lower = 100

2 upper = 2000

3 for num in range(lower, upper + 1):

4 order = len(str(num))

5 s = 0

6 temp = num

7 while temp > 0:

8 digit = temp % 10

9 s += digit ** order

10 temp //= 10

11 if num == s and num % 2 == 0:

12 print(num)

s5 t3 v1.py s6 t3 v1.py
1 def sequence(start, stop):

2 builder = []

3 for i in range(start, stop):

4 if (i > start):

5 builder.append(',')

6 builder.append(i)

7 return ''.join(builder)

1 num = 7

2 factorial = 1

3 i = 1

4 while i <= num:

5 factorial *= i

6 i += 1

7 print("The factorial of", num, "is", factorial)

Table A.4: Type 3 Version 2 Code Clone Fragments.

s1 t3 v2.py s2 t3 v2.py
1 import cmath

2 num = 1+2j

3 num_sqrt = cmath.sqrt(num)

1 s = input("Enter a string: ")

2 reverse = s[::-1]

3 print("Reverse of", s, "is", reverse)

s3 t3 v2.py s4 t3 v2.py

1 a, b, c = 1, 5, 6

2 d = b * b - 4 * a * c

3 sol1 = (-b - (d ** 0.5)) / (2 + a)

4 sol2 = (-b + (d ** 0.5)) / (2 + a)

5 print("The solutions are {0} and {1}".format(sol1,

sol2))↪→

1 lower = 100

2 upper = 2000

3 for num in range(lower, upper + 1):

4 order = len(str(num))

5 s = 0

6 temp = num

7 while temp > 0:

8 digit = temp % 10

9 s += digit ** order

10 temp //= 10

s5 t3 v2.py s6 t3 v2.py
1 def sequence(start, stop):

2 builder = []

3 i = start

4 while (i < stop):

5 if (i > start):

6 builder.append('|')

7 builder.append(i)

8 i += 1

1 num = 7

2 factorial = 1

3 for i in range(2, num + 1):

4 factorial *= i

5 print("The factorial of", num, "is", factorial)

76

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Foundations
	Quantum Computing Terms and Definitions
	Code Clone Detection Terms
	Code Clone Types

	Motivation
	Thesis
	Contributions

	Background and Related Work
	An Overview of Quantum Annealing Computers
	Conceptual Framework for Quantum Annealing
	Underlying Quantum Physics of Quantum Annealing
	Mathematical Models of Quantum Annealing
	Submitting Programs to a Quantum Annealer

	Graph and Subgraph Isomorphism
	Graph Isomorphism
	Subgraph Isomorphism

	Software Code Clone Detection as an Optimization Problem
	Graph Isomorphism as QUBO
	Graph Isomorphism as QUDO
	Subgraph Isomorphism for Code Clone Detection
	Node Types
	Complete Algorithm

	Experiment Design

	Results and Analysis
	Energy: Similarity Detection
	Time: Performance and Scalability

	Conclusion and Future Work
	Threats to Validity

	Bibliography
	Appendix
	Complete Code Clone Dataset

