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Technical Note

Hybrid Linear and Nonlinear Programming Model for
Hydropower Reservoir Optimization

Mustafa S. Dogan, A.M.ASCE1; Jay R. Lund, Dist.M.ASCE2; and Josue Medellin-Azuara, M.ASCE3

Abstract: Linear and nonlinear optimization models are common in hydropower reservoir modeling to aid system operators and planners.
Different modeling techniques have their advantages and shortcomings. Linear optimization models are faster but less accurate, and nonlinear
models are slower with better system representation. A hybrid linear and nonlinear hydropower energy reservoir optimization (HERO) model
is introduced, where a hybrid optimization model sequentially solves the overall nonlinear hydropower optimization problem first with a
faster-running linear programming (LP) approximation to improve an initial solution for a nonlinear programming (NLP) solution to sig-
nificantly reduce NLP iterations and run time. The hybrid model is applied to six hydropower plants of California, with capacities of 13.5 to
714 MW. LP and NLP decisions are compared, and run time benchmarks of the LP, NLP, and hybrid LP-NLP models with different numbers
of decision variables are presented. The hybrid model reduces the NLP run time by 79% to 88%, depending on model size, but still requires
much more run time than the LP solution. For short-term operations with good inflow and energy price forecasts, where accuracy matters
more and uncertainties are modest, the hybrid LP-NLP model has advantages. For long-term hydropower planning and management with
many more decision variables and greater inflow uncertainty, the LP model, with its greater speed and sensitivity analysis, or stochastic
models, representing some uncertainties, will often be preferred. DOI: 10.1061/(ASCE)WR.1943-5452.0001353. © 2021 American Society
of Civil Engineers.

Author keywords: Hydropower optimization; Reservoir operations; Network flow modeling; Water management.

Introduction

Hydropower reservoirs store energy as higher-elevation water.
Using potential energy difference (water head) between reservoir
intake and tailwater levels, power is generated by vertical movement
of water. Hydropower’s lower operating cost than most other power
sources provides an incentive to maximize hydropower generation
in a power system with mixed generation sources (Hamlet et al.
2002;Madani et al. 2014). Hydropower also can provide operational
flexibility by generating power on short notice (Chatterjee et al.
1998; Côté and Leconte 2016; Karimanzira et al. 2016) and addi-
tional ancillary services, such as peak and frequency regulation and
spinning reserves (Li et al. 2013). Hydropower plants often are clas-
sified as (a) large-storage and low-head plants, (b) low-storage and
high-head or run-of-river plants, or (c) pumped-storage plants
(Pérez-Díaz and Wilhelmi 2010; Madani et al. 2014), with some
plants overlapping these general types. Run-of-river plants run
continuously and usually supply base power load, while plants
with large storage capabilities and pumped-storage plants are more
dispatchable and regulated for peak demands (Pérez-Díaz and
Wilhelmi 2010).

Many hydropower reservoir operation algorithms use linear
programming (LP) (van Do and Howard 1988; Madani and Lund
2009; Vicuña et al. 2011; Rheinheimer et al. 2016; Dogan et al.
2018), nonlinear programming (NLP) (Tejada-Guibert et al. 1990;
Barros et al. 2003; Zhou et al. 2020), and dynamic programming
(DP) (Grygier and Stedinger 1985; Mariño and Loaiciga 1985;
Allen and Bridgeman 1986; Afshar et al. 1990; Zhao et al. 2012;
Li et al. 2013) methods. LP has the advantages of fast evaluation
and finding a globally optimal solution, but often requires problem
simplification to fit an LP formulation, reducing the solution
accuracy for the original nonlinear problem. NLP needs less sim-
plification and nonlinear hydropower operations can be well rep-
resented. However, computing time increases exponentially with
the number of decision variables, expanding with the number of
plants, modeling horizon, and smaller time steps (Dogan 2019a).
Barros et al. (2003) introduced an NLP model for Brazil’s hydro-
power system, called SISOPT, where the successive LP and NLP
models are initialized with an LP model derived from historical
operations. SISOPT uses monthly time steps that can be sufficient
for long-term planning, but too coarse for short-term decisions,
where hourly or quarter-hourly time steps are desired. This paper
presents an open-source hybrid linear programming–nonlinear pro-
gramming (LP-NLP) hydropower optimization model, where an
NLP model is initialized with linearized hydropower benefit curves
for each time step and plant, requiring less system data. The hybrid
hydropower energy reservoir optimization (HERO) model, devel-
oped with Pyomo, is independent from data, so any time step such
as subhourly, hourly, or daily can be selected, depending on reser-
voir inflow and energy price data resolution. The current HERO
model has a general network flow form, and additional linear con-
straints, such as ramping and water delivery constraints, can be
added as needed. The following sections describe the model and
quantify accuracy losses and run time benefits of LP, NLP, and
the hybrid LP-NLP models for deterministic applications.
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Generalized Network Flow Representation

Network flow models use nodes and links to represent the physical
system. Nodes represent point locations such as reservoirs or junc-
tions, while links represent streams or canals [see Bazaraa et al.
(2010) for more discussion]. Hydropower network flow optimiza-
tion requires reservoir inflow and energy price inputs in addition to
plant characteristics. Energy prices are assumed exogenous, largely
unaffected by hydropower operations. Inflows and energy prices
are assumed to be known with certainty in a deterministic model.
Eq. (1) shows total revenue (dollars) from energy generated (Wh)
as a function of density of water ρ (kg=m3), gravitational constant g
(m=s2), plant efficiency η (constant), water head H (m), flow
through turbines Q (m3=s), unit energy price p ($=Wh), and time
difference Δt (h). Storage (S) and flow (Q) are decision variables.
Eq. (1) separates storage and flow variables to dynamically calcu-
late head depending on storage in the NLP model. A single decision
variable (flow) is used in the LP model

Total Revenue ¼
XR
r

XT
t

ρgηrHðSÞr;tQr;tptΔt ð1Þ

where r = plants (or reservoirs); R = total number of plants in the
network; t = time step; and T = total modeling horizon.

A third-degree polynomial relationship, suitable for rectangular
and sloped reservoirs, is used to represent head as a function of
storage for variable-head power plants. Polynomial parameters
α, β, γ, and c are specific for each power plant and fit using ob-
served storage and elevation data [Eq. (2)]

HðSÞ ¼ αS3 þ βS2 þ γSþ c ð2Þ

Because hydropower plants are often connected with streams or
canals and water is allocated among them, multireservoir hydro-
power modeling fits a network flow framework. A typical hydro-
power network contains nodes and links, where nodes denote
power plants and junctions, and links denote streams, canals, or
pipelines. The general representation of a hydropower network flow
representation contains an objective function to be maximized

maxX z ¼
X
i

X
j

fðXijÞ ð3Þ

subject to constraints

Xij ≤ uij; ∀ ði; jÞ ∈ A ð4Þ

Xij ≥ lij; ∀ ði; jÞ ∈ A ð5Þ
X
i

Xji −
X
i

aijXij ¼ 0; ∀ j ∈ N ð6Þ

where ði; jÞ indexes = origin and terminal nodes in time and space;
Xij = flow from node i to node j (decision variable); aij = amplitude
and represents losses, such as evaporation and seepage; fðXÞ can be
a linear or nonlinear objective function; Eqs. (4), (5), and (6) re-
present upper-bound, lower-bound, and mass balance constraints,
respectively; A = matrix of links (arcs); and N = matrix of nodes.

Fig. 1 illustrates a simple hydropower network for two time
steps (t and tþ 1) and two plants (r and rþ 1) in series. Flow in
the network originates from an artificial node called Source and
ultimately leads to a node called Sink, for which Eq. (6) is skipped
because there are only outgoing links from Source and incoming
links to Sink. Adding more physical elements, such as reservoirs

Fig. 1. Generic representation of the model with two time steps (t and tþ 1) and two plants (r and rþ 1) in series.
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and canals, increases the model network horizontally, and adding
more time steps to the network increases the network vertically,
where the physical network is replicated and the only connection
between time steps is reservoir storage [also discussed in Martin
(1983)]. The expanded network flow based formulation is solved
with NLP and LP methods and the hybrid method by sequentially
running LP and NLP.

NLP Model

Hydropower operations are substantially nonlinear, which is mostly
from changing water head and storage. The NLP model dynami-
cally represents water head based on the polynomial relationship
[Eq. (2)] and for deterministic problems does not require further
simplifying the objective function or constraints. To calculate head
from storage, the NLP model separates flow X and storage Y de-
cision variables. Converting Eq. (1) into a network flow framework,
the NLP objective function becomes

maxX;Y z ¼
X
m∈AF

X
n∈AS

ρgηnðαnY3
n þ βnY2

n þ γnYn þ cnÞXmpmΔt

− X
m∈AF

pmXm ð7Þ

subject to constraints

Xm ≤ um; ∀ m ∈ AF ð8Þ

Xn ≤ un; ∀ n ∈ AS ð9Þ

Xm ≥ lm; ∀ m ∈ AF ð10Þ

Xn ≥ ln; ∀ n ∈ AS ð11Þ
hX

i

Xji −
X
i

Yji

i
−
hX

i

aijXij −
X
i

aijYij

i
¼ 0;

∀ j ∈ NF;NS ð12Þ

where m and n = flow and storage links of the physical network;
i and j = origin and terminal nodes in a given link; AF and AS =
sets of flow and storage links; u and l = upper- and lower-bound
constraints, respectively; a = amplitude; and η = overall plant

efficiency. There are two parts in the objective function [Eq. (7)]:
the first part represents nonlinear hydropower revenue; the second
(linear) part penalizes spills. Released water can go through either
turbines and revenue is generated or spillways with penalties to
minimize spills. Eqs. (8)–(11) enforce upper-bound and lower-
bound constraints on flow and storage links, while Eq. (12) enfor-
ces mass balance at every flow (NF) or storage (NS) node j. The
Pyomo modeling platform connects to user-defined solvers. In this
study, the NLP model is solved with IPOPT, an open-source large-
scale nonlinear programming solver.

LP Model

The LP model simplifies the nonlinear objective function by lin-
earizing Eq. (1). Instead of dynamically calculating water head,
power generation, and eventually revenue, the LP model uses pre-
scribed unit benefit values b. These unit benefit values are calcu-
lated by fitting a linear surface [Eq. (13)] to nonlinear hydropower
revenue curve [Eq. (14)] at each plant and time step, where coef-
ficient of determination r2 is maximized (minimizing squared re-
siduals) as shown in Eq. (15). In the equations, fLP and fNLP are
linear and nonlinear two-dimensional hydropower revenue curves
(objective functions) in Fig. 2(a)

fLP ¼ bFX þ bSY ð13Þ

fNLP ¼ ρgηðαY3 þ βY2 þ γY þ cÞXpΔt ð14Þ

r2 ¼ 1 −
P

iðfNLP;i − fLP;iÞ2P
i
ðfNLP;i − 1

N

P
i
fNLP;iÞ2

ð15Þ

where fNLP;i is calculated using Eq. (1); and fLP;i is calculated by
optimizing unit benefits (slopes) of flow and storage, b, to maxi-
mize r2 for all plants and time steps. Keeping one corner at the
origin, this process linearly approximates the nonlinear hydropower
revenue curve with storage and turbine release decision variables.
Linear benefits with optimized parameter b [used in Eq. (16)],
nonlinear benefits, and errors between nonlinear and linear benefits
are shown in Fig. 2. Errors are highest at corner points where stor-
age and releases are maximum (plant capacity). Despite errors in
the LP model, both models try to reach maximum storage and re-
lease, where benefit is the highest. The overall objective functions

(a) (b)

Fig. 2. (a) Linear and nonlinear objective functions; and (b) errors showing residuals between nonlinear and linear curves for one plant and time step.
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[Eqs. (7) and (16)] are a superposition of Fig. 2(a) for all plants and
time steps.

After calculating bij by maximizing Eq. (15), the LP model’s
objective function and constraints can be written as

maxX z ¼
X
i

X
j

bijXij ð16Þ

subject to constraints

Xij ≤ uij; ∀ ði; jÞ ∈ A ð17Þ

Xij ≥ lij; ∀ ði; jÞ ∈ A ð18Þ
X
i

Xji −
X
i

aijXij ¼ 0; ∀ j ∈ N ð19Þ

where i and j = origin and terminal nodes in space and time;
N and A = sets of nodes and links; X = flow (decision variable);
b = unit benefit; u = upper bound; l = lower bound; and a =
amplitude. The objective function [Eq. (16)] is a sum of bene-
fits, and Eqs. (17)–(19) enforce upper-bound, lower-bound, and
mass balance constraints, respectively. Parameter b is positive
for turbine links, where revenue is generated and slightly neg-
ative for spill links to minimize revenue losses. The LP model is
solved with GLPK, an open-source large-scale linear program-
ming solver.

HERO Hybrid LP-NLP Model

The HERO model uses the faster LP model to reduce iterations
needed in the NLP model, with its better system representation
but slower computing time. Both LP and NLP models use the same
network, defined by the number of plants and time steps in the
modeling horizon. Despite the LP model’s accuracy losses and re-
sulting errors discussed subsequently, LP efficiently points toward
an optimal feasible area. In a sequential optimization, the same net-
work problem is solved with a linear approximation [Eq. (15)], and
then LP decision outputs are used to initialize an NLP optimization
problem, sometimes called a warm start for the NLP. Any solution
can help initialize the nonlinear model. Using LP outputs to warm

start the NLP model greatly reduces NLP run time. The current
model represents six hydropower plants of California: Shasta,
Folsom, New Melones, and Pine Flat have large storage capacities,
while Keswick and Nimbus, located downstream of Shasta and
Folsom, respectively, have small storage capacities. Dogan (2019a)
provides details of modeled hydropower plants, such as storage
and turbine release capacities and head–storage relationships.
The model has a rather flexible temporal resolution. Given fine-
resolution (hourly) energy price and reservoir inflow data, users
can choose different time steps, such as hourly, daily, monthly,
or a day-hour scheme.

Comparing LP and NLP Decisions

Both LP and NLP models use the same network structure, similar to
Fig. 1, but with slightly different representation of operations and
equations. The NLP model separates flow and storage decisions
and dynamically calculates head and hydropower revenue. The
LP model has a single decision variable (flow) and uses unit benefit
values b to calculate total benefit. If all nonlinearities of hydro-
power optimization are represented, the NLP model is assumed
to perfectly represent operations. Accuracy losses occur with lin-
earization of the objective function in the LP model. The linear
objective function underestimates hydropower revenue when oper-
ations are at plant capacities (storage and release) and overestimates
it when storage is high but release is low and storage is low but
release is high (Fig. 2).

The LP and NLP models are compared for dry and wet periods.
The dry period, with 3,541 decision variables, is from June 1 to
September 1, 2018, with a daily time step and an average 23 m3=s
reservoir inflow. The wet period, with 3,466 decision variables, is
from January 1 to April 1, 2017, with a daily time step and an
average 310 m3=s reservoir inflow. Initial and ending storage val-
ues are set to half of the storage capacity for modeled reservoirs.
Differences in decision variable outputs are due to residuals
(errors) shown in Fig. 2(b). Despite the same network and proper-
ties, different objective functions drive operations, resulting in out-
put differences.

Fig. 3 compares LP and NLP model outputs (daily flow and
storage in million cubic meters) for the dry and wet periods.

(a) (b)

Fig. 3. LP and NLP model decision variables (daily release and storage) comparison for (a) dry; and (b) wet seasons.
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The lesser operational flexibility in the dry period leads to more
agreement between LP and NLP model decisions. Wet period de-
cisions span a wider range of decision values, and the LP model
underestimates some high-storage decisions. Most large differences
between the LP and NLP models are from only three of six reser-
voirs, under specific conditions. The LP decisions in the wet season
are less reliable in two cases: (a) the largest differences are from
reservoirs with low dead pool and large head variations (New
Melones and Pine Flat), where nonlinearities are higher; and (b) res-
ervoir with large storage capacity (Shasta), where the LP model
mostly underestimates storage [for high-storage decisions, the LP
objective function curve is below NLP, shown in Fig. 2(a)].

Run Time Benchmarks

Model sizes can vary by the number of hydropower plants in the
network, modeling period, and time step. More hydropower plants,
longer time periods, and finer time steps increase the number of
decision variables and model sizes. Each model is run for three
model sizes with an increasing number of decision variables,
502, 1,376, and 3,162, respectively. All model sizes have six hydro-
power plants with different modeling periods. The hybrid LP-NLP
model, which initializes the NLP model with the LP model’s sol-
ution, reduces run time from the NLP model by 79%, 80%, and
88% in small, medium, and large models, respectively (Fig. 4). Ini-
tializing the NLP model with the NLP solution can represent a
lower-bound NLP run time needed to verify that an initial solution
(in this case from the NLP itself) is the optimal solution. Multiple
LP iterations or other warm start techniques could not improve on
this lower bound. Fig. 4 shows there is still some room (between the
lower-bound NLP and the hybrid LP-NLP) to further reduce NLP
iterations and run time if a better initial solution (than LP) is pro-
vided, such as piecewise LP or successive LP, especially for the
large model size, but most computational gains are already realized.

Fig. 5 compares accuracy and solver run times of LP, NLP, and
hybrid LP-NLP models. Accuracy losses in the LP model result
from differences in the objective function and relative to the

NLP model in Eq. (20), where f̂ is the average objective function
(revenue) value. Accuracy losses accumulate with larger LP sizes.
LP run time increases exponentially, and grows much faster for
larger NLP and hybrid LP-NLP models. The hybrid model, where
the NLP model is initialized with LP outputs, significantly reduce
run time of the NLP model without affecting accuracy

Accuracyð%Þ ¼ 100 ×

�
1 − jf̂LP − f̂NLPj

f̂NLP

�
ð20Þ

The initialization with the LP model reduces the number of NLP
iterations, while run time still increases exponentially and can pose
a problem for long-term operations. The NLP model may not con-
verge to an optimal feasible solution with many decision variables.
In addition, price and inflow uncertainties increase as the modeling
horizon increases. So, the LP model’s ability to run for long periods
in a short run time can become more important than the NLP mod-
el’s better system representation of storage-dependent head for
long-term planning decisions. The LP model also returns dual val-
ues for constraints that are useful for sensitivity analysis. These
dual values show economic benefits of expanding existing capacity
or adding new infrastructure to the network (Nover et al. 2019).The
proposed hybrid LP-NLP model is more suitable for short-term op-
erations, while the LP model is adequate for long-term planning
with its better run time and other advantages.

Limitations

Method limitations here include perfect hydrologic foresight, a sin-
gle revenue-maximizing objective, and the assumption of exog-
enous energy prices. For short-term operations, 1–3 days with
hourly time steps, operators often have good hydrologic foresight.
However, for long-term operations or highly variable and uncertain
short-term conditions, perfect hydrologic foresight may suggest
overly optimistic operations, flattening effects of extreme events
such as droughts and floods. Most modeled reservoirs are multipur-
pose, but their short-term objective is often to maximize hydro-
power revenue within water supply release schedules and flood
operation constraints. Finally, a price-taking (or exogenous energy
price) approach is employed, yet energy prices often fluctuate with

Fig. 4. Solver runtimes of LP, NLP, and hybrid LP-NLP models and
lower-bound NLP with different model sizes. Small, medium, and large
models have 502, 1,376, and 3,162 decision variables. Solver runtime
does not include time for model creation and postprocessing.

Fig. 5. Result accuracies and solver runtimes of LP, NLP, and hybrid
LP-NLP models with three model sizes. Solver runtime does not in-
clude time for model creation and postprocessing.
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energy market conditions. Given the relatively small share of en-
ergy generation the selection of hydropower facilities represent,
this assumption is expected to hold for a wide range of generating
conditions and periods of analysis. To improve the model, more
network elements and policy and operating constraints, such as
minimum flow or storage requirements, can be added and explored
from this basic model.

Conclusion

A hybrid sequential linear and nonlinear hydropower reservoir
optimization model was developed. Taking advantage of faster
LP run times and a fuller system representation by an NLP model,
the hybrid model runs the LP and NLP models sequentially, using
LP outputs to initialize the NLP model to reduce its iterations and
run time. This warm start initialization significantly reduces run
time for the NLP model without affecting accuracy of results.
The hybrid LP-NLP run time might be further reduced up to a
lower-bound NLP time needed for an NLP to verify an optimal
solution if a more accurate solution than LP, such as piecewise LP
or successive LP, is provided. The LP and NLP models also can run
separately. Despite this reduction with a warm start, the hybrid LP-
NLP model still requires much more run time than the LP model,
especially for large model sizes. So, for short-term operations,
where good system representation is important, the hybrid LP-
NLP model can be preferred. For long-term operation planning
and management decisions with many more decision variables
and higher hydrologic and energy price uncertainties, the LP model
or other solutions may be preferred.

LP and NLP decisions are similar in the dry season, with less
operational flexibility. Because water availability increases in the
wet season, differences between the LP and NLP models increase.
The LP model is less reliable when water availability is high, head
changes nonlinearly with storage, and storage capacity is large.
Such hybrid modeling also can be applied to other NLP problems.
LP’s advantage of fast run-time calculation makes it a good can-
didate as an initial solution to NLP problems where run time is
important.

Appendix. Example Model Code

The HERO model (Dogan 2019b) was developed with Pyomo, a
high-level optimization modeling language in Python. In the
Python script file main.py, the warmstart = True option connects
LP and NLP models created from HYDROPOWER() Python class
(Fig. 6). When creating a hydropower model (hp_model in Fig. 6),
the file paths of reservoir inflow and energy prices and power plants
must be defined. Class functions are defined in hydropower.py. LP
and NLP also can run separately, without linking two models by
turning warm start option off (warmstart = False). Once a model
run is finished, the postprocess() Python function organizes outputs
and creates time series of reservoir storage, release, hydropower
generation, and revenue. Model runs are grouped in two categories:
(a) short-term operating decisions with an hourly time step over a
few days or a week period; and (b) long-term operation planning
decisions with a daily or monthly time step over years.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository online in accordance with funder
data retention policies (Dogan 2019b).
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