
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
A Geometric Control Strategy for Unmanned Aerial Systems

Permalink
https://escholarship.org/uc/item/4pt6j38f

Author
Lamb, Zachary

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4pt6j38f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

A GEOMETRIC CONTROL STRATEGY FOR UNMANNED
AERIAL SYSTEMS

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL & COMPUTER ENGINEERING

by

Zachary O. Lamb

June 2023

The thesis of Zachary O. Lamb
is approved:

Ricardo Sanfelice, Chair

Professor Gabriel Elkaim

Professor Dejan Milutinović

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Zachary O. Lamb

2023

Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

Dedication x

Acknowledgments xi

1 Introduction 1

I Developing a Quadrotor Control Platform 6

2 Basics of Quadrotor Flight Control 7

3 ST Drone Platform 14
3.1 Hardware . 15

3.1.1 Accessories . 16
3.1.2 Flight Controller Unit . 18

3.2 Software . 25
3.2.1 Attitude Commands . 26
3.2.2 Attitude Heading Reference System (AHRS) 28
3.2.3 PIV Control . 29
3.2.4 Motor Mixing . 33

3.3 Drawbacks . 35

4 ST Drone Platform Extension 37
4.1 Hardware Accessories . 37

4.1.1 Vibration Damping Gel . 38
4.1.2 Mounted Battery Slot . 38

4.2 Communication Requirements . 39

iii

4.2.1 Low Latency Communication Link 41
4.2.2 Real Time Data Collection . 43
4.2.3 Onboard Data Modification . 45

4.3 Safety Requirements . 46
4.3.1 Mode Control Algorithm . 47

5 Ground Control 51
5.1 Position Control . 52

5.1.1 Verifying Attitude Control Performance 53
5.1.2 PID Position Feedback Control 56
5.1.3 Results . 62

5.2 Xbox Control . 64

II Geometric Estimation & Control 67

6 Theory & Simulation 68
6.1 Quadrotor Model . 70

6.1.1 Translational Dynamics . 75
6.1.2 Rotational Dynamics . 77
6.1.3 Complete Equations of Motion 78
6.1.4 Model Validation . 79

6.2 Closed Loop Quadrotor Position Control 83
6.2.1 Implementation . 84

6.3 Geometric Estimation . 86
6.3.1 Nonlinear Complementary Filtering on SOp3q 87
6.3.2 Implementation and Validation 101

6.4 Geometric Control . 101
6.4.1 Controller Design . 102
6.4.2 Matrix Log Approximation . 106

6.5 Results . 110
6.5.1 Simple Dynamical System Simulation 111
6.5.2 ST Drone Simulation . 114

7 Hardware Implementation 118
7.1 Geometric Estimator . 119
7.2 Geometric Controller . 122

7.2.1 Inertia/Torque Solution . 124
7.2.2 Large Steady State Error Solution 124
7.2.3 Noisy Ωd Solution . 125
7.2.4 Results . 126

8 Conclusion & Future Work 129

iv

Bibliography 132

A Attitude Heading and Reference System Using Quaternions 138

B Attitude Heading and Reference System Using DCM 141

C HC12 Code 143

D Linear Algebra Functions in C 148

v

List of Figures

2.1 Example Quadrotor Dynamics: v represents the current velocity vector
of the drone, Fd represents the drag force, Fg represents the force due to
gravity, F1, F2, F3, F4 represent the four forces generated by each motor
respectively, and τ1, τ2, τ3, τ4 represent the four torques generated ny each
motor respectively. 8

2.2 Motor Mixing Example from ST Drone Website 11
2.3 Standard Quadrotor Control Architecture Example 12

3.1 ST Drone . 15
3.2 ST Drone Hardware Accessories . 16
3.3 ST Drone Motor Spin Configuration . 17
3.4 ST Drone FCU Components - Components which currently exist (shaded

blue), components which are supported but do not exist (shaded grey
with black outline). 19

3.5 BLE Communication Flow . 22
3.6 ST Drone MCU Peripherals . 24
3.7 ST Drone FCU Components Labeled . 25
3.8 ST Drone Software . 26
3.9 PIV Control Architecture . 30
3.10 ST Drone Motor Configuration . 33

4.1 Kyosho Vibration Damping Gel Pad . 39
4.2 Battery Mount Solution . 40
4.3 HC12 Radio Module . 41
4.4 HC12 Connection Diagram . 41
4.5 Bluetooth Write Time . 42
4.6 HC12 Write Time . 43
4.7 Mode Control State Machine . 48

5.1 Attitude Estimate Comparison - MOCAP vs ST AHRS 54
5.2 PID Attitude Command Tracking . 56
5.3 Infrared Markers Attached to ST Drone 57

vi

5.4 Motive Software With Rigid Body Defined 57
5.5 Complete Closed Loop System Description 58
5.6 Closed Loop Position Control . 59
5.7 GCS Position Control . 60
5.8 ST Drone Attitude Control . 61
5.9 Position Point Tracking . 63
5.10 Position Circle Tracking . 64
5.11 XBox Controller Commands . 65

6.1 Quadrotor Forces and Moments . 71
6.2 Experiment 1: Hover State . 80
6.3 Experiment 2: Positive Roll . 81
6.4 Experiment 2: Positive Pitch . 82
6.5 Experiment 4: Positive Yaw . 83
6.6 Closed Loop Position Control . 85
6.7 Position Control Response . 85
6.8 Complementary Filter [23] . 96
6.9 Passive Complementary Filter [23] . 98
6.10 Top: Mahony roll estimate (red) compared to MOCAP truth (blue).

Bottom: Error between Mahony and MOCAP. Mean error = 0.56˝ . . . 102
6.11 Top: Mahony pitch estimate (red) compared to MOCAP truth (blue).

Bottom: Error between Mahony and MOCAP. Mean error = 0.34˝ . . . 103
6.12 Power Series Log Approximation Experiment 109
6.13 Rodriguez Method Experiment . 109
6.14 Geometric Attitude Tracking . 113
6.15 Geometric Attitude Tracking Error . 113
6.16 Closed Loop System with Geometric Control 115
6.17 Geometric Position Control Results . 116
6.18 Geometric Attitude Control Results . 117

7.1 Mahony DCM Hardware Estimation Comparison 121
7.2 Geometric Attitude Control Hardware Roll Results 126
7.3 Position Tracking Performance with Geometric Attitude Controller . . . 127
7.4 Position Tracking Performance with Geometric Attitude Controller . . . 128

vii

List of Tables

3.1 BLE Readable Characteristic UUID’s 22

4.1 BLE IMU Characteristic Data Alignment 44
4.2 BLE Environmental Characteristic Data Alignment 44
4.3 BLE Arming Status Characteristic Data Alignment 45

viii

Abstract

A Geometric Control Strategy for Unmanned Aerial Systems

by

Zachary O. Lamb

Effective attitude control is a key component of any Unmanned Aerial System (UAS).

Typical PID based control operates on the euler angle representation of attitude. This

representation is susceptible to the issue of gimbal lock – a phenomenon in which the

rotation axes of a three-axis system align, causing a loss of one degree of freedom and

potential loss of orientation information. Moreover, PID based attitude control of UAS’s

suffer from the drawbacks associated with typical linear controllers. Namely, an ability

to reliably control the system when not near the point of equilibrium. This thesis will

cover an attitude control implementation directly on the Special Orthogonal group,

SOp3q, where neither of the aforementioned issues exist. This controller is implemented

in both simulation and on hardware.

ix

To my family,

Mark, Susan, et al.,

Who have always had my back and given me the opportunities to succeed.

Without you all, none of this would be possible.

x

Acknowledgments

A special thank you again goes out to my family, but also the professionals I’ve worked

closest with. Each member of this thesis committee has had a profound effect on my

career path, and without the support of Ricardo Sanfelice, Gabriel Elkaim, and Dejan

Milutinović, I would be nowhere close to where I am today. Thank you all for your

efforts over the years.

xi

Chapter 1

Introduction

Linear controllers exhibit drawbacks in controlling rigid body attitudes for

aircraft. For one, they are only effective around some small flight envelope near the

equilibrium point, and two, they often require extensive lookup tables to control a flight

over a wider regime [10] [27] [1]. Many nonlinear control paradigms exist to address

these issues [28] [12]; however, depending on the implementation of the nonlinear con-

troller, these also have drawbacks that come in the form of the attitude representation.

Generally, there are three methods to interpret an attitude – Euler angles, Quaternions,

or as a rotation matrix on the Special Orthogonal group SOp3q. There are inherent

drawbacks with each of these attitude representations – namely, gimbal lock for euler

angles [24], the unwinding phenomena associated with the double cover of quaternions

[26], and the computational cost of linear algebra functions required for an SOp3q rep-

resentation.

This thesis will focus on an SOp3q (or “geometric”) based control design. While

1

an attitude controller designed on SOp3q will have the computational drawback dis-

cussed previously, it is better suited than euler angles because there exist no points

of singularity, and quaternions because it does not face the unwinding phenomena. It

should be noted here that a common solution to the quaternion unwinding phenom-

ena is to include a simple conditional statement in the control logic that decides which

quaternion to wrap to; however, as discussed in [25], this is not robust to sensor noise.

A geometric interpretation addresses both of the aforementioned issues, making it a

desirable choice for attitude control design.

While choosing a geometric attitude representation is preferable for the reasons

stated, there does exist an issue inherent to any subsequent control design - that is, no

continuous time-invariant feedback controller on SOp3q can be globally asymptotically

stable [9]. There will exist points on the rotation group which remain undefined for

geometric control laws. Previous work on a class of rigid body attitude controllers on

SOp3q produced both almost-globally stable and localy stable controllers [2]. These

controllers contain matrix logarithm operations which are undefined at plus or minus

180˝ for any given axis of rotation. Using Hybrid control techniques, it is possible to

seamlessly stitch together a series of controllers on SOp3q which may be robust against

these undefined points, and work together to produce a globally convergent geometric

controller. While a hybrid geometric controller is not the focus of this thesis, future work

may include this concept. Details regarding the natural geometric controller design are

found in Part II of this thesis.

While Part II covers the novel control design, Part I describes the hardware

2

platform necessary for testing. An important stage in developing any new control

algorithm is the transition from theory to hardware. With respect to control tech-

niques intended for aerospace applications, this can undeniably be a tough feat as most

aerospace systems are safety-critical; safety-critical systems are commonly referred to

as any system where failure/malfunction may lead to death or serious injury, damage

to equipment/property, or environmental harm. Fixed wing aircraft need a large flight

space for testing, and as such, unexpected failure may be more likely to result in serious

consequences. Quadrotors, on the other hand, can be tested in a confined lab setting

where barriers separate humans and the vehicle. This yields a much safer test-bed for

novel aerospace-related control designs, and is the platform that this thesis focuses on

developing.

Existing quadrotor platforms such as ROSflight [16], Crazyflie [14], and the

QDrone2 by Quanser provide functionality to facilitate a smooth research experience;

however, these systems have drawbacks. With respect to ROSflight, this system requires

a companion computer capable of running Linux. This essentially demands that the

drone be sufficiently large in order to carry the weight of this computational device.

Quanser drones have a similar issue in that they are inherently built as a physically

large drone platform. The Crazyflie platform is smaller, however, is very expensive. A

requirement imposed on this thesis work is that the drone platform to be used must be

both lightweight and inexpensive. This requirement allows for rapid experimentation

even in the case a drone gets destroyed. ST Microelectronics is semiconductor company

who produces the ST Drone. This drone is a small and lightweight option, with an

3

open-source codebase and CAD model design. This enables the ability to fly the drone

in a smaller lab, as well as quickly rebuild frames and even create new frame designs.

Moreover, the ST Drone is cost-effective, with a single unit being roughly $50. These

reasons led to the choice of the ST Drone for the quadrotor control platform in this

thesis. A few issues exist, however, with the ST Drone; namely, the platform is not well

equipped for autonomous guidance and control experimentation. This is due to a lack

of a stable communication channel, and a lack of safety constraints being imposed on

the drone. These issues and solutions will be addressed in Part I.

This thesis aims to contribute the following: 1) A firmware extension for the ST

Drone quadrotor control platform capable of developing advanced control techniques on,

and 2) An implementation of a geometric attitude control scheme. These contributions

split this work into two parts. Part I involves a discussion on developing the quadrotor

control platform, and Part II describes the novel geometric control design which was

implemented on this quadrotor control platform. Chapter 2 begins with a discussion

on the basics of quadrotor flight control. This includes a brief discussion on quadrotor

dynamics and control. Chapter 3 then described the hardware and software onboard

the ST Drone, as well as current capabilities and drawbacks of the platform. Chapter

4 covers the necessary improvements which were made to the ST Drone platform to

enable the development of more advanced control techniques, and to enable safe/reliable

experiments. With a reliable control platform now configured, Chapter 5 describes the

process into which a position-level feedback controller is designed and implemented.

This includes a discussion on motion capture (MOCAP) systems, PID position control

4

techniques, and a custom control interface using an Xbox controller to streamline the

experimentation process. In Part II, Chapter 6 will cover the process of simulating

quadrotor control. It begins with a simple model derivation and position controller

configuration, and then dives into the geometric observer/control design. This controller

is verified in simulation, and position control is shown to be just as effective under

a geometric attitude control framework. Finally, Chapter 7 presents hardware-based

geometric attitude control results, and Chapter 8 provides a concluding analysis on the

results of this thesis.

5

Part I

Developing a Quadrotor Control

Platform

6

Chapter 2

Basics of Quadrotor Flight Control

Quadrotors have gained significant popularity in recent years due to their ver-

satility and agility. These unmanned aerial systems are capable of performing various

tasks, ranging from aerial photography and videography to search and rescue missions.

The ability to control the flight of a quadrotor is vital for its safe and efficient operation.

This chapter will explore the basics of quadrotor flight control, including key principles

behind stability and maneuverability.

A quadrotor consists of four vertically oriented propellers mounted on a sym-

metrical frame. By adjusting the rotational speeds of these propellers, the quadrotor

can generate the necessary lift and control forces to achieve stable flight. Understanding

the dynamics of a quadrotor is crucial to developing effective flight control strategies.

The primary forces acting on a quadrotor are thrust, weight, and drag. Thrust is gen-

erated by the propellers, countering the weight of the quadrotor, while drag opposes

the forward motion of the quadrotor. Thrust is equal to the summation of the forces

7

generated by each propeller. Weight is equal to the drones mass multiplied by the grav-

ity constant 9.81 m/s2, and points inertially down. Drag is proportional to the drones

velocity, and points opposite the forward velocity. An important feature which enables

stable flight of quadrotors is the configuration of the motor spin directions. Each motor

induces a yaw torque just by the act of rotating. If all motors rotate in the same direc-

tion, the drone will yaw uncontrollably. By integrating motors which spin in opposite

directions, stable flight control is possible. Furthermore, by placing motors which rotate

in the same direction across from eachother, roll, pitch, and yaw are decoupled. This is

an important feature of quadrotors, as without it, controllability would be non-trivial.

These forces and moments acting on the quadrotor is visualized in Figure 2.1.

Figure 2.1: Example Quadrotor Dynamics: v represents the current velocity vec-
tor of the drone, Fd represents the drag force, Fg represents the force due to grav-
ity, F1, F2, F3, F4 represent the four forces generated by each motor respectively, and
τ1, τ2, τ3, τ4 represent the four torques generated ny each motor respectively.

A quadrotor has four control surfaces – the four motors. Actuating these

control surfaces in various ways allows for four degrees of freedom of the quadrotor;

8

that is, by commanding the rate of each motor, one can control all three rotational axes

independently, and translation along the vertical axis. A key feature which leads to

the controllability of a quadrotor is the decoupling of the four controllers responsible

for controlling the four degrees of freedom. Again, this is only possible because of the

motor configuration. In the physical world, there may exist some coupling between the

four degrees of freedom; however, in practice, the quadrotor Attitude Control System

(ACS) is designed under the assumption that roll, pitch, yaw, and thrust are decoupled.

In order to control these four degrees of freedom, a control architecture is re-

quired which utilizes feedback provided by onboard sensors. Typical sensors found on

a quadrotor include an Inertial Measurement Unit (IMU), pressure sensor, and cam-

era. The IMU works to measure angular rates, linear accelerations, and magnetic fields

via the gyroscope, accelerometer, and magnetometer respectively. The pressure sensor

measures pressure which is typically then converted into an estimate of altitude, and

a camera is used to aid in estimating horizontal motion. These sensors feed into algo-

rithms which work to estimate the controllable states. The most important estimation

algorithm running onboard is the Attitude Heading and Reference System (AHRS).

The IMU feeds its measurements into this algorithm which then determines the quadro-

tors current orientation (or attitude). By estimating attitude correctly, the drone may

control it’s own orientation based on user attitude commands. Moreover, by utiliz-

ing altitude and horizontal position estimates from the pressure sensor and camera, a

quadrotor can control its position.

With access to accurate state estimates, a variety of control algorithms may

9

be used to control the quadrotor. The most common form of control found onboard

quadrotors are Proportional, Integral, Derivative (PID) controllers. These controllers

operate by using feedback from the state estimates in order to form error, derivative

of error, and integral of error terms. These error terms are then fed through the PID

controller and multiplied by a series of gains (Kp,Ki,Kdq in order to generate control

signals to actuate the vehicle to track user commands. PID control is discussed in further

detail later on. Onboard a quadrotor, there are typically four PID controllers which

control each degree of freedom - altitude, roll, pitch, and yaw. As stated previously, this

is only possible because the configuration of the motors decouples these four degrees of

freedom.

Utilizing the motor configuration, one more important feature is necessary to

control the drone; namely, the motor mixing algorithm. The motor mixing algorithm

tells the drone how to spin its motors in order to react to commands along the four

degrees of freedom. For instance, if a roll command is produced, the drone needs to

know how to reduce the speed of some motors, and increase the speed of other motors

in order to induce a roll without affecting any of the other degrees of freedom. One

may think that by simply increasing the speed of two motors on one side of the drone,

a roll can easily be induced. An issue with this, however, is that if the two motors

on the opposite side are not decreased by that same amount, then the total thrust has

been effected by a roll command. Figure 2.2 illustrates how each motor must increase

or decrease its angular rate in order to achieve a desired command, but also not effect

any other degree of freedom.

10

Figure 2.2: Motor Mixing Example from ST Drone Website

All of the previously described systems - AHRS, PID control, motor mixing

algorithm - are key components to the successful design of a quadrotor. The AHRS pro-

vides working estimates of the controllable states, the PID controllers use the feedback

of these state estimates in order to output desired torques to track the user’s attitude

commands, and the motor mixing algorithm tells the drone how to spin its motors to

achieve the desired torque commands. A block diagram of all these systems (AHRS,

PID controllers, motor mixer) working together is shown in Figure 2.3.

11

Figure 2.3: Standard Quadrotor Control Architecture Example

In this figure, ϕd, θd, ψd, zd represent desired roll, pitch, yaw, and thrust respec-

tively (ie. the controllable states of the system). The tilde notation represents error;

for example, rϕ “ ϕd ´ ϕ. τx, τy, τz represent the desired torques, which are outputs of

the three attitude PID controllers. T is the desired thrust which is the output of the

height PID controller. Again, these four command signals are passed through the motor

mixing block and get translated directly into PWM signals for each motor. An example

motor mixing algorithm is outlined in red.

In addition to the basic PID control mechanisms described, several advanced

flight control techniques have been developed to enhance the capabilities of quadrotors.

A few of these techniques include model predictive control [18], adaptive control [33]

[19], and nonlinear control [31] methods. Model predictive control employs a predic-

tive model of the quadrotor’s dynamics to optimize control inputs over a future time

12

horizon. Adaptive control algorithms adjust the control parameters based on changes

in the quadrotor’s dynamics or external conditions. Nonlinear control methods handle

the complex interactions between the quadrotor’s dynamics and control inputs more

effectively than linear control approaches. Another advanced flight control strategy is

to employ a so-called “Geometric” attitude control scheme. This sort of controller has

benefits over typical linear PID attitude controller which lay in the nonlinear nature of

the controller, as well as the underlying attitude representation of the controller. The

second part of this thesis will focus on a geometric attitude control design. For a more

detailed discussion on the basics of quadrotor flight control, see [5]

13

Chapter 3

ST Drone Platform

Quadrotors are used in many research labs due to their ease of use in testing

new control strategies. Unlike fixed-wing UAS’s, they can be experimented on in a

controlled environment where proper safety requirements can be met. Many strong

quadrotor platforms exist, however, they are typically built to be large/expensive, non-

configurable/modifiable, or close source. The requirements for the drone platform in

this thesis were previously stated in the Introduction. To reiterate, the drone must

1) be small enough to fly in the lab space provided, 2) be cost-effective to allow for

quick turnaround on experiments in case the drone crashes, and 3) be open-source such

that the firmware can be modified as needed. ST Microelectronics is a semi-conductor

company who manufactures the ST Drone – a lightweight, cost-effective, and open-

source drone option. The ST Drone framework is relatively standard, making it a

platform with lots of opportunity for improvement. The drone is pictured below in

Figure 3.1.

14

Figure 3.1: ST Drone

This chapter of the thesis aims to build an understanding of the standard

(non-modified) ST Drone framework. By the end of the chapter, one should understand

both the hardware and software onboard, as well as what some of the drawbacks of the

system are. Section 3.1 begins with a description of the hardware found onboard a fully

assembled ST Drone. This includes a sensors, communication modules, motors, and

the microcontroller and its various peripherals. Section 3.2 then describes the existing

software/algorithms onboard the ST Drone that enable it to fly. This includes details

regarding the attitude control architecture, state estimation scheme, sensor filtering,

and Bluetooth capabilities. Lastly, Section 3.3 covers some of the drawbacks of the ST

Drone related to experimental controls work, and how these drawbacks are addressed.

3.1 Hardware

A quadrotor needs relatively few hardware components to fly. These hardware

components can be classified under one of two categories. The first category is the

accessories; this includes the motors, propellers, battery, and quadrotor frame. These

items from the ST Drone will be discussed in Subsection 3.1.1. The next category is

15

the Flight Control Unit (FCU) and all hardware components that exist on it. These

components are discussed in detail in Subsection 3.1.2

3.1.1 Accessories

Figure 3.2: ST Drone Hardware Accessories

The ST Drone comes with four DC motors (two CW and two CCW), four

propellors (two CW and two CCW), a 4.2V Lithium Polymer (LiPo) battery, and a

small air frame. These parts are all shown in Figure 3.2. This particular drone is very

lightweight, meaning that there is no real requirement on strong motors or a powerful

battery. A typical battery life for the 4.2V LiPo is around 5 minutes of flight time. Care

should be taken to not allow the battery to dip under 3V, as this is the threshold where

16

these batteries may not be rechargeable anymore.

The four DC motors are all brushed motors. While this means they are not

necessarily as powerful as their brushless counterparts, they work fine for the lightweight

ST Drone. Additionally, there are no onboard Electronic Speed Controllers (ESC’s),

however, one may add them to the design externally in order to get more accurate rate

control out of the motors. Two of the motors spin CW, and two spin CCW. These

motors should connect to their corresponding propellers (which are meant to spin either

CW or CCW). The reason for the varying spin directions is to cancel out the total yaw

torques generated by each motor. This is illustrated well in Figure 3.3 below.

Figure 3.3: ST Drone Motor Spin Configuration

If all four motors spun in the same direction, a net torque along the vertical z-

axis would be induced and cause the drone to keep spinning in circles. By using motors

which spin in both directions and placing them diagonally apart from eachother, this

net torque is canceled out. This means if the same PWM command is sent to each

motor, they will produce a net yaw torque of zero, and a net thrust force causing the

17

drone to lift in the air.

The frame itself is designed for maximal airflow. Notice the holes in the pro-

peller protection rings in Figure 3.1.1. These exist to allow the propellers to rotate with

little resistance/interference from air blowing back into the rotor. The propeller rings

are also designed such that they are parallel to the ground. It is important to have

relatively flat propellers such that the net force is directly upwards.

The last hardware component that allows every other component to work to-

gether is the FCU. This is the brains of the drone, and allows it to fly based on control

agorithms which run on the Microcontroller Unit (MCU).

3.1.2 Flight Controller Unit

The STEVAL-FCU001V1 is the FCU onboard the ST Drone. This is the

system which houses components for communication, sensing of the environment, and

interfacing with the motors. Importantly, it also houses the MCU which handles run-

ning all of the critical control algorithms that make the drone to fly. These algorithms

will be discussed later in Section 3.2, however, the rest of this subsection will dive into

details regarding each of the previously mentioned components; namely, the Bluetooth

communication module, the Inertial Measurement Unit (IMU) used for sensing orien-

tation, the power MOS used for handling power distribution to the motors, and finally

the MCU and its various peripherals. Each of these components can be visualized in

Figure 3.4 below.

18

Figure 3.4: ST Drone FCU Components - Components which currently exist (shaded
blue), components which are supported but do not exist (shaded grey with black out-
line).

3.1.2.1 Sensors

There are four primary sensors onboard the ST Drone - The first two are a

3-axis gyroscope and accelerometer which are housed together as one IMU, the third is

a 3-axis magnetometer, and the fourth is a pressure sensor.

The accelerometer and gyroscope are housed on an IMU chip called the LSM6DSL.

These are Micro-electromechanical system (MEMS) sensors who’s data sensor data is

polled at 800Hz onboard the ST Drone. These sensors together are used in the Atti-

tude Heading Reference System (AHRS) in order to aid in estimating the orientation

of the drone. The magnetometer (LIS2MDL) is also available for use in the AHRS,

however, it is unused by default for the ST Drone. The gyroscope provides angular rate

measurements, and the accelerometer provides acceleration measurements. These raw

measurements are converted into rad
s and m

s2
respectively.

19

The magnetometer being used is the LIS2MDL chip. This is a digital output

sensor with a range of 50 Gauss, however, it is is unused by default on the ST Drone.

One should refer to the datasheet ot he LIS2MDL in order to enable it on the ST Drone.

The final sensor, which is also unused by default, is the pressure sensor. The

chip that provides this functionality is the LPS22HD. This is a MEMS sensor with a

digital output range of 260 - 1260 hPa. Pressure sensors are typically used to estimate

altitude. This pressure sensor has significant noise, and thus requires heavy filtering in

order to use it. The ST Drone codebase does provide an initialization function for this

sensor if the user wishes to use it. Aside from attitude control which is enabled by the

IMU sensors, altitude control is the only other possible form of onboard control which

is enabled by the pressure sensor.

3.1.2.2 Bluetooth Communication

Bluetooth Low Energy (BLE) is a wireless communication technology designed

for short-range connections and power-efficient applications. It operates on the same 2.4

GHz frequency band as traditional Bluetooth but uses a different modulation scheme

and lower power consumption. BLE provides a reliable and energy-efficient means

of transmitting data between devices. The low power consumption enables extended

battery life, making it ideal for a quadrotor which requires long-term operation without

frequent recharging.

The Bluetooth capabilities onboard are provided by a BLE module called the

SPBTLE-RF. This module allows for both transmission and reception of data. For

20

reception, it is used to receive four commands: one thrust command and three attitude

commands. For transmission, it is used to send out three different BLE characterstics

– IMU data, pressure sensor / battery level data, and arming status data.

Bluetooth characteristics are groups of data with a specific length, meant to

be received at the other end of an established bluetooth connection.

In the context of BLE, the messaging protocol revolves around the concept of

”characteristics.” A characteristic is a fundamental unit of data transfer in BLE and rep-

resents a specific piece of information or functionality within a Bluetooth device. Each

characteristic has a unique identifier (UUID) and is associated with a set of properties

that define its behavior.

The messaging protocol in BLE typically involves two roles: the central de-

vice (ie. the quadrotor) and the peripheral device (ie. a smartphone or tablet). The

peripheral device initiates communication by discovering the available services and char-

acteristics offered by the central device. Once a characteristic of interest is identified,

the peripheral device can read its value, write a value to it, or subscribe to receive

notifications or indications when the value changes.

To exchange data, the peripheral device sends requests to the central device

using the Attribute Protocol (ATT) layer, which operates over the Generic Attribute

Profile (GATT). The GATT defines the structure and organization of data within ser-

vices and characteristics. The ATT layer handles read, write, and notification operations

for individual characteristics.

When the peripheral device wants to read or write a characteristic’s value,

21

it sends an appropriate ATT request with the relevant characteristic’s handle and the

desired operation. The central device responds with the requested data or acknowledges

the write operation. Additionally, the central device can notify or indicate the peripheral

device about characteristic value updates, allowing for real-time data streaming or event-

driven communication.

With respect to the ST Drone, an Iphone running the ST Drone app is the pe-

ripheral device, and the ST Drone itself is the central device. The flow of communication

to and from this app is presented in Figure 3.5.

Figure 3.5: BLE Communication Flow

By connecting to the ST Drone BLE module from Matlab, one can list out all

of the available characteristics. The relevant characteristics related to receiving data

from the drone are the following:

Description Service UUID (1st row) / Characteristic UUID (2nd row)

IMU Data ”00000000-0001-11E1-9AB4-0002A5D5C51B”

”00E00000-0001-11E1-AC36-0002A5D5C51B”

Environmental Data ”00000000-0001-11E1-9AB4-0002A5D5C51B”

”001D0000-0001-11E1-AC36-0002A5D5C51B”

Arming Status ”00000000-0001-11E1-9AB4-0002A5D5C51B”

”20000000-0001-11E1-AC36-0002A5D5C51B”

Table 3.1: BLE Readable Characteristic UUID’s

22

These BLE characteristics and their content are described in more detail in

Section 4.2. Because BLE contains much overhead and runs on a packet acknowledgment

protocol, the stability of the communication channel is not always reliable with respect

to transmission rates. For a quadrotor control platform, this is obviously not desirable.

Control platforms need a low latency and consistent mode of communication. This issue

will be addressed in Chapter 4.

3.1.2.3 Microcontroller & Peripherals

The microcontroller found onboard the ST Drone comes from the STM32F4

family. This specific microcontroller, the STM32F401CC, is an ARM M4 cortex MCU.

It provides the interface to every other component previously mentioned. Additionally,

it provides an interface to various onboard peripherals. These peripherals include one

external facing UART port, four external facing PWM input pins to be used with a

seperate radio receiver, four PWM output pins connected to the four motors, one I2C

port, one internally facing SPI port connected to the BLE module, and one USB port.

The physical port locations of these peripherals is shown in Figure 3.6.

Details on some of the most important hardware components were discussed

in this section. Below is a comprehensive list of all the hardware components onboard

the STEVAL-FCU001V1. Figure 3.7 shows the location of each of these components on

the STEVAL-FCU001V1.

1. STM32F401CCU6 - ARM Cortex-M4 MCU with 256 KB of flash memory, 64

KB of RAM.

23

Figure 3.6: ST Drone MCU Peripherals

2. SPBTLE-RF - Bluetooth Low Energy (BLE) module with chip antenna. Run-

ning Bluetooth 4.1.

3. LSM6DSL - 3 axis MEMS accelerometer and gyroscope

4. LIS2MDL - 3 axis MEMS magnetometer

5. LPS22HD - MEMS pressure sensor

6. STL6N3LLH6 - 30V 6A MOSFET for motors

7. STC4054 - 800mA LiPo battery charger from USB

8. LD39015 - Voltage regulator

9. USBULC6-2M6 - Electro-static Discharge (ESD) protection

24

Figure 3.7: ST Drone FCU Components Labeled

3.2 Software

The STEVAL FCU001V1 provides a modest software stack developed to both

fly the drone and communicate with other peripheral devices. Typically, the start of data

flow to/from the drone comes from a smartphone device. Using the ST Drone app, a

user can establish a bluetooth connection with the drone, calibrate and arm it, and then

send flight commands. These flight commands are received onboard, interpreted, and

then fed into a series of feedback controllers. These feedback controllers track desired

commands using sensor measurements from the IMU and an AHRS. These controller

outputs are finally fed into a so-called motor mixing algorithm, and PWM signals are

generated for each of the four motors. This flow of data is visualized in Figure 3.8

This section will dive into individual blocks of this block diagram in an attempt

to explain how the ST Drone is controlled exactly. Most quadrotors fly on the same

25

Figure 3.8: ST Drone Software

principles, so this overview of the ST Drone flight control unit is not only relevant to

the ST Drone.

3.2.1 Attitude Commands

A short description of the BLE communication protocol was provided in the

previous section. The BLE packet which is received onboard the drone consists of four

bytes of data. These bytes are commanded thrust, commanded roll, commanded pitch,

and commanded yaw. Each of these commands are then either scaled up or mapped

back into an expected range. For instance, the thrust command is proportionally scaled,

however, the attitude commands are mapped into a given range. This mapping occurs

in the Target Attitude block, where the function GetTargetEulerAngle() converts an

attitude command byte from the range 0 to 255 to the range -30 to +30 degrees. For

26

an arbitrary angle θ, this mapping is defined as

θ “ pbyte{255q ˚ 60 ´ 30 (3.1)

This angle is then converted to radians and fed into the PID Control block.

GetTargetEulerAngle() performs this mapping for roll, pitch, and yaw. -30 to +30

degrees is the maximum attitude command range allowed onboard; this can be changed

in the macros of the rc.h file. The code related to the GetTargetEulerAngle() function

is provided below for desired roll conversion:

1 void GetTargetEulerAngle(EulerAngleTypeDef *euler_rc , EulerAngleTypeDef

*euler_ahrs)

2 {

3 ...

4
5 t1 = gAIL;

6 if (t1 > RC_FULLSCALE)

7 t1 = RC_FULLSCALE;

8 else if (t1 < -RC_FULLSCALE)

9 t1 = - RC_FULLSCALE;

10 euler_rc ->thy = -t1 * max_roll_rad / RC_FULLSCALE;

11
12 ...

13 }

Source Code 3.1: GetTargetEulerAngle()

The gAIL term is a globally declared variable, and contains the latest pre-

converted roll command. This command is then saturated, and converted to the max

allowable attitude command range, specified by the variable max roll rad. By default,

this is -30 to +30 for roll and pitch.

27

3.2.2 Attitude Heading Reference System (AHRS)

The AHRS block is in charge of fusing IMU sensor data from the gyroscope

and accelerometer in order to estimate the drones current orientation. It accomplishes

this through a quaternion implementation of a nonlinear complementary filter which will

be described later in Section 6.3. This filter takes in gyroscope and accelerometer sensor

measurements as input, and outputs a rigid body attitude estimate. In the current

AHRS scheme, this output is in quaternions. Quaternions are an efficient attitude

representation with respect to computation time, however, designing a quaternion based

controller is more involved than designing a simple euler angle based PID controller.

For this reason, the Euler Angle block exists, wich takes the current attitude estimate

in a quaternion representation and converts it to an euler angle representation. These

euler angle representations (roll, pitch, yaw) are then fed into the PID Control block

in order to close the loop on the control structure. Code for both the AHRS algorithm

is supplied in Appendix B, and the Quaternion to Euler angle conversion is provided

below:

1 void QuaternionToEuler(QuaternionTypeDef *qr, EulerAngleTypeDef *ea)

2 {

3 float q0q0 , q1q1 , q2q2 , q3q3;

4 float dq0 , dq1 , dq2;

5 float dq1q3 , dq0q2 /*, dq1q2*/;

6 float dq0q1 , dq2q3 /*, dq0q3*/;

7
8 q0q0 = qr->q0*qr->q0;

9 q1q1 = qr->q1*qr->q1;

10 q2q2 = qr->q2*qr->q2;

11 q3q3 = qr->q3*qr->q3;

12 dq0 = 2*qr ->q0;

13 dq1 = 2*qr ->q1;

14 dq2 = 2*qr ->q2;

15 // dq1q2 = dq1 * qr ->q2;

16 dq1q3 = dq1 * qr ->q3;

28

17 dq0q2 = dq0 * qr ->q2;

18 // dq0q3 = dq0 * qr ->q3;

19 dq0q1 = dq0 * qr ->q1;

20 dq2q3 = dq2 * qr ->q3;

21
22 ea ->thx = atan2(dq0q1+dq2q3 , q0q0+q3q3 -q1q1 -q2q2);

23 ea ->thy = asin(dq0q2 -dq1q3);

24 }

Source Code 3.2: QuaternionToEuler() - A quaternion, qr, is evaluated and decomposed
into a set of equivalent roll,pitch,yaw rotations. These outputs are passed by reference
into ea

3.2.3 PIV Control

Proportional Integral Derivative (PID) control is a form of Single Input Single

Output (SISO) feedback control which uses a set of gains and error terms to stabilize a

system. Mathematically, a PID controller is defined as

u “ Kpe`Kd 9e`Ki

ż

edt (3.2)

where u is the control output, Kp is a proportional gain, Kd is a derivative gain, and

Ki is an integral gain. Kp typically provides quick responses to the error, Kd can ease

overshoot problems, and Ki aids in decreasing steady state error. With respect to the

ST Drone, this is an attitude level PID control scheme which means that the error term

e is equal to the difference between the commanded attitude and the estimated attitude.

While the exact control structure found onboard the ST Drone does contain

PID controllers, it is actually referred to as a PIV (Proportional Integral Velocity)

controller [4]. This form of controller nests two PID loops together; the outer loop acts

on position and sends velocity commands to the inner loop, and the inner loop acts on

29

velocity and outputs torque commands. By zooming into the PID Control block from

Figure 3.8, the following structure appears.

Figure 3.9: PIV Control Architecture

The PID outer loop implementation is actually a simple proportional controller

operating at 160Hz on the attitude error, and outputs an attitude rate command. The

PID inner loop is a complete PID controller operating at 800Hz on attitude rate, where

the rate estimates are fed in directly from filtered gyroscope measurements. This inner

loop then outputs roll, pitch, and yaw torque commands to be fed into the motor mixing

algorithm which will be described in the next subsection. The PID control code for both

the inner and outer loops are provided below:

1 void FlightControlPID_OuterLoop(EulerAngleTypeDef *euler_rc ,

EulerAngleTypeDef *euler_ahrs , AHRS_State_TypeDef *ahrs ,

P_PI_PIDControlTypeDef *pid)

2 {

3 float error;

4
5 if(gTHR <MIN_THR)

6 {

7 pid_x_integ1 = 0;

8 pid_y_integ1 = 0;

9 pid_z_integ1 = 0;

10 }

11
12 //x-axis pid

13 error = euler_rc ->thx - euler_ahrs ->thx;

14 pid_x_integ1 += error*pid ->ts;

15 if(pid_x_integ1 > pid ->x_i1_limit)

16 pid_x_integ1 = pid ->x_i1_limit;

17 else if(pid_x_integ1 < -pid ->x_i1_limit)

30

18 pid_x_integ1 = -pid ->x_i1_limit;

19 pid ->x_s1 = pid ->x_kp1*error + pid ->x_ki1*pid_x_integ1;

20
21 //y-axis pid

22 error = euler_rc ->thy - euler_ahrs ->thy;

23 pid_y_integ1 += error*pid ->ts;

24 if(pid_y_integ1 > pid ->y_i1_limit)

25 pid_y_integ1 = pid ->y_i1_limit;

26 else if(pid_y_integ1 < -pid ->y_i1_limit)

27 pid_y_integ1 = -pid ->y_i1_limit;

28 pid ->y_s1 = pid ->y_kp1*error + pid ->y_ki1*pid_y_integ1;

29
30 //z-axis pid

31 error = euler_rc ->thz - euler_ahrs ->thz;

32 pid_z_integ1 += error*pid ->ts;

33 if(pid_z_integ1 > pid ->z_i1_limit)

34 pid_z_integ1 = pid ->z_i1_limit;

35 else if(pid_z_integ1 < -pid ->z_i1_limit)

36 pid_z_integ1 = -pid ->z_i1_limit;

37 pid ->z_s1 = pid ->z_kp1*error + pid ->z_ki1*pid_z_integ1;

38 }

Source Code 3.3: FlightControlPID OuterLoop() - Attitude commands are fed in via
the euler rc variable, and current state estimates are fed in via euler ahrs.

In this code, the outerloop PID controllers operate on attitude directly. The

outputs are stored in pidÑx s1, pidÑy s1, pidÑz s1. These are then used as inputs to

the innerloop controller, which is provided below.

1 void FlightControlPID_innerLoop(EulerAngleTypeDef *euler_rc , Gyro_Rad *

gyro_rad , AHRS_State_TypeDef *ahrs , P_PI_PIDControlTypeDef *pid ,

MotorControlTypeDef *motor_pwm)

2 {

3 float error , deriv;

4
5 if(gTHR <MIN_THR)

6 {

7 pid_x_integ2 = 0;

8 pid_y_integ2 = 0;

9 pid_z_integ2 = 0;

10 }

11
12 dt_recip = 1/pid ->ts;

13
14 //X Axis

15 error = pid ->x_s1 - gyro_rad ->gx;

16 pid_x_integ2 += error*pid ->ts;

17 if(pid_x_integ2 > pid ->x_i2_limit)

18 pid_x_integ2 = pid ->x_i2_limit;

19 else if(pid_x_integ2 < -pid ->x_i2_limit)

31

20 pid_x_integ2 = -pid ->x_i2_limit;

21 deriv = (error - pid_x_pre_error2)*dt_recip;

22 pid_x_pre_error2 = error;

23 deriv = pid_x_pre_deriv + (deriv - pid_x_pre_deriv)*D_FILTER_COFF;

24 pid_x_pre_deriv = deriv;

25 pid ->x_s2 = pid ->x_kp2*error + pid ->x_ki2*pid_x_integ2 + pid ->x_kd2*

deriv;

26
27 if(pid ->x_s2 > MAX_ADJ_AMOUNT) pid ->x_s2 = MAX_ADJ_AMOUNT;

28 if(pid ->x_s2 < -MAX_ADJ_AMOUNT) pid ->x_s2 = -MAX_ADJ_AMOUNT;

29
30 //Y Axis

31 error = pid ->y_s1 - gyro_rad ->gy;

32 pid_y_integ2 += error*pid ->ts;

33 if(pid_y_integ2 > pid ->y_i2_limit)

34 pid_y_integ2 = pid ->y_i2_limit;

35 else if(pid_y_integ2 < -pid ->y_i2_limit)

36 pid_y_integ2 = -pid ->y_i2_limit;

37 deriv = (error - pid_y_pre_error2)*dt_recip;

38 pid_y_pre_error2 = error;

39 deriv = pid_y_pre_deriv + (deriv - pid_y_pre_deriv)*D_FILTER_COFF;

40 pid_y_pre_deriv = deriv;

41 pid ->y_s2 = pid ->y_kp2*error + pid ->y_ki2*pid_y_integ2 + pid ->y_kd2*

deriv;

42
43 if(pid ->y_s2 > MAX_ADJ_AMOUNT) pid ->y_s2 = MAX_ADJ_AMOUNT;

44 if(pid ->y_s2 < -MAX_ADJ_AMOUNT) pid ->y_s2 = -MAX_ADJ_AMOUNT;

45
46 //Z Axis

47 error = pid ->z_s1 - gyro_rad ->gz;

48 pid_z_integ2 += error*pid ->ts;

49 if(pid_z_integ2 > pid ->z_i2_limit)

50 pid_z_integ2 = pid ->z_i2_limit;

51 else if(pid_z_integ2 < -pid ->z_i2_limit)

52 pid_z_integ2 = -pid ->z_i2_limit;

53 deriv = (error - pid_z_pre_error2)*dt_recip;

54 pid_z_pre_error2 = error;

55 pid ->z_s2 = pid ->z_kp2*error + pid ->z_ki2*pid_z_integ2 + pid ->z_kd2*

deriv;

56
57 if(pid ->z_s2 > MAX_ADJ_AMOUNT_YAW) pid ->z_s2 = MAX_ADJ_AMOUNT_YAW;

58 if(pid ->z_s2 < -MAX_ADJ_AMOUNT_YAW) pid ->z_s2 = -MAX_ADJ_AMOUNT_YAW;

59
60 ...

61 }

Source Code 3.4: FlightControlPID innerLoop() - Attitude rate commands are fed in
from the outerloop controller, and compared against rate estimates from the gyro rad
variable. Control output is calculated and then saturated before being fed into the
motor mixing algorithm.

32

3.2.4 Motor Mixing

In order for a quadrotor to react to torque commands on all three axes, a

motor mixing algorithm needs to be implemented. This algorithm accounts for the

configuration of the motors, and decides which torque commands are sent into the

PWM input of which motor. The motor configuration defined for the ST Drone is

presented in figure 3.10

Figure 3.10: ST Drone Motor Configuration

As previously stated, two pairs of diagonally seperated motors spin with dif-

ferent rotation directions. Motors M3 and M1 above spin clockwise, whereas motors M4

and M2 spin counter-clockwise. This is due to the induced yaw torque which eat motor

generates simply by spinning. If every motor had the same spin rotation, the quadrotor

would yaw out of control. Because two pairs of motors spin opposite to eachother, these

yaw torques cancel out so long as they all spin at the same rate. To induce a yaw in the

clockwise direction, motors M3 and M1 should speed up by some amount, and motors

M4 and M2 should slow down by that same amount. This will induce a yaw torque

33

while leaving the total thrust the same. This decoupling of the thrust command with

the torque commands is important for the controllability of the drone. The roll and

pitch torques work in a similar fashion. To induce a right roll torque, motors M3 and

M4 would increase by some amount, and motors M1 and M2 would decrease by that

same amount. To pitch forward, M2 and M3 would decrease by an amount, and M1

and M4 would increase by that amount.

The previously mentioned roll,pitch,yaw directions of pitch forward, roll right,

and yaw counter-clockwise follow the North West Up (NWU) coordinate frame. On-

board the ST Drone, a North East Down (NED) coordinate frame is used. This means

that internally, a positive pitch command is interpreted as a commmand to move the

drone in the direction opposite the front direction. Similarly, a positive yaw command

is interpreted as a command to yaw the drone in a clockwise manner. The positive roll

command still means move right.

This relation between thrust and torque commands to physical rotation/mo-

tion of the drone can be simplified into a motor mixing algorithm. This algorithm takes

in one thrust command and three torque commands (roll,pitch,yaw). The motor mixing

algorithm found onboard the ST Drone is the following.

»

—

—

—

—

—

—

—

—

—

—

–

M1

M2

M3

M4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

T ´ τpitch ´ τroll ` τyaw

T ` τpitch ´ τroll ´ τyaw

T ` τpitch ` τroll ` τyaw

T ´ τpitch ` τroll ´ τyaw

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.3)

34

The code which utilizes this motor mixing algorithm is found at the end of the

innerloop controller. This code is provided below:

1 void FlightControlPID_innerLoop(EulerAngleTypeDef *euler_rc , Gyro_Rad *

gyro_rad , AHRS_State_TypeDef *ahrs , P_PI_PIDControlTypeDef *pid ,

MotorControlTypeDef *motor_pwm)

2 {

3 ...

4
5 #ifdef MOTOR_DC

6 motor_thr = ((int16_t) (0.05f*(float)gTHR + 633.333f)); //

Remocon Devo7E >> 630 to 1700

7 #endif

8
9 #ifdef MOTOR_ESC

10 motor_thr = 0.28f*gTHR + 750.0f; //TGY -i6 remocon and

external ESC STEVAL -ESC001V1

11 #endif

12
13 motor_pwm ->motor1_pwm = motor_thr - pid ->x_s2 - pid ->y_s2 + pid ->z_s2

+ MOTOR_OFF1;

14 motor_pwm ->motor2_pwm = motor_thr + pid ->x_s2 - pid ->y_s2 - pid ->z_s2

+ MOTOR_OFF2;

15 motor_pwm ->motor3_pwm = motor_thr + pid ->x_s2 + pid ->y_s2 + pid ->z_s2

+ MOTOR_OFF3;

16 motor_pwm ->motor4_pwm = motor_thr - pid ->x_s2 + pid ->y_s2 - pid ->z_s2

+ MOTOR_OFF4;

17 }

Source Code 3.5: FlightControlPID innerLoop() - Motor Mixer

In this code, a thrust value is calculated based on the originally received gTHR

command, and then fed into the motor mixing algorithm along with the torque com-

mands. This algorithm generates PWM signals (saturated between 0 and 1900) for the

motors to operate on.

3.3 Drawbacks

The ST Drone product is standard in many ways. For instance, the PID at-

titude controller is commonly used across many other drone platforms [16] [14] [13],

35

and the nonlinear complementary filter which governs the AHRS [23] is well-cited and

applied to many other autonomous aerospace systems. A few key drawbacks lay in

the product assembly, communication protocol, and lack of safety constraints for au-

tonomous flight. Work in Chapter 4 will cover an extension of the software stack de-

scribed in this section, such that fully autonomous flight with safety constraints is

possible. The new flight controller will run efficiently on a low latency line of com-

munication, as well as provide an ability to run more advanced control algorithms by

expanding what commands can be sent to the drone. Details regarding this firmware

extension are covered next.

36

Chapter 4

ST Drone Platform Extension

The ST Drone provides a platform aimed at basic quadrotor control via a

smartphone app or other external remote control. This drone was not designed with

autonomous guidance and control in mind. As such, many improvements need to be

made to allow for consistent autonomous flight experimentation. This section will cover

a handful of improvements which are made to allow for repeatability of results among

experiments, reliable low latency communication, and command structures which aren’t

limited to commanding typical PID attitude controllers.

4.1 Hardware Accessories

The ST Drone package is delivered with a frame, four motors, four propellers,

a battery, and an FCU. There are two crucial components missing from this – namely,

a mounting solution for the battery, and a mounting solution for the FCU. Subsection

4.1.1 will describe the mounting solution created for the FCU, and 4.1.2 will describe

37

the mounting solution for the battery.

4.1.1 Vibration Damping Gel

Care must be taken in mounting any flight controller to the rigid body of the

UAS. The primary focus of a mounting solution should be 1) that the mount is rigidly

connected to the center of mass, and 2) that the mount is physically distanced from any

vibrations. This second point is key because every flight controller will host some suite

of sensors. These sensors are always going to be susceptible to process noise. In the case

of a quadrotor, the IMU will be susceptible to noise caused by vibration of the frame

(usually due to the motors). AHRS estimates are directly effected by noise on the IMU;

thus, isolating the IMU from possible frame vibrations is key to a well functioning state

observer.

In order to solve this problem, Kyosho Zeal vibration absorbing pads were

introduced as the mounting solution. These gel pads (pictured in Figure 4.1 absorb

vibrations in the frame, thus isolating the IMU from potential noise.

4.1.2 Mounted Battery Slot

A second hardware based improvement is the mounting solution for the battery.

Often times, drones require a trim condition set from the remote controller. This trim

condition is essentially an offset for roll and pitch commands such that the drone does

not drift when commanded straight upwards. The feedback control at the attitude

level can sometimes trim out the quadrotor on it’s own if the trim isn’t too significant;

38

Figure 4.1: Kyosho Vibration Damping Gel Pad

however, if a significant trim is required to keep the drone level during an upward thrust

command, then the feedback controller may have a difficult time controlling the drone.

The most common reason for a drone requiring additional trimming is because

of a change in the center of mass. On the ST Drone, the battery is one of the heaviest

hardware components; thus, based on the placement of the battery, the drone’s flight

behavior will vary from experiment to experiment. For this reason, a consistent mount-

ing solution is required. This mounting solution will ensure that from experiment to

experiment, flight control issues do not stem from a bad initial trimming of the drone.

Figure 4.2 pictures the mounting solution for designed for the ST Drone. This mounting

solution is 3D printed so is cheap to implement.

4.2 Communication Requirements

The ST Drone is configured by default with a BLE communication module.

Because Bluetooth has a lot of overhead, it often times exhibits spikes in it’s time-to-

39

Figure 4.2: Battery Mount Solution

send, which directly induces instability into the system. Additionally, the BLE reception

characteristic onboard only accepts attitude commands in the form of 1 byte for thrust,

and 3 bytes for attitude. To be able to implement more advanced control strategies, a

more flexible option needs to be incorporated which allows any type of commands to be

sent to the drone. These commands should be able to do anything from commanding a

rotation matrix for a geometric controller, to dynamically tuning PID gains midflight,

to switching between different onboard AHRS solutions. In order achieve these goals, a

new radio module called the HC12 is implemented.

The HC12 (pictured in Figure 4.3) is an all-in-one radio module which operates

on the 433MHz frequency. It utilizes an on-board radio chip (SI4463) and microcon-

troller (STM8S003FS) to make communication easy. The MCU has already been pro-

grammed to handle interacting with the radio chip, and all that’s left to do is interface

with the MCU via UART. Various AT commands can be sent over UART to configure

the radio to operate with different baud rates for instance. Lastly, the HC12 operates

anywhere from 3.2 to 5 volts. This means that the ST Drone’s onboard voltage line

40

supplied by the UART port is enough to power the module. This means, no extra com-

ponents are needed to step up or step down the battery voltage. These reasons make

the HC12 a simple choice to integrate with the ST Drone. Subsections 4.2.1 through

4.2.3 will describe the various ways in which the HC12 is used onboard the ST Drone

to improve performance. A more detailed description of these concepts and the code

written onboard is provided in Appendix C

Figure 4.3: HC12 Radio Module

Figure 4.4: HC12 Connection Diagram

4.2.1 Low Latency Communication Link

Addition of the HC12 to the ST Drone provides functionality that the base-

line BLE implementation does not allow; one important piece of functionality is the

consistent low latency. As previously stated, a consistently fast time-to-send is critical

for the performance of many UAS. Typically, BLE time-to-send is around 16ms to send

four command bytes worth of data (thrust, roll, pitch, yaw). However, often times the

41

time-to-send spikes. This spike can range anywhere from 20ms to 200ms or more. When

this happens in the middle of flight, the drone becomes unstable. An example of a mild

time-to-send spike is shown in Figure 4.5.

Figure 4.5: Bluetooth Write Time

These spikes tend to occur because of the overhead associated with Bluetooth.

Pure radio (without a protocol), however, does not exhibit the same issue. BLE will use

a packet acknowledgement protocol which multiplies the amount of messages needed to

be passed in order to receive a command. With the HC12, only one packet needs to be

sent. The packets the HC12 sends are minimally designed such that only a start/end

byte exist to signal to the drone what sort of packet it is receiving, and the inner bytes

contain the relevant packet information. Figure 4.6 presents that low time to send for

the HC12 operating at a baudrate of 19,200. At this baudrate, data transmission is

roughly 1 byte per millisecond. Because 4 bytes were being sent, it took 4ms.

42

Figure 4.6: HC12 Write Time

4.2.2 Real Time Data Collection

Real time data collection is a necessity for many autonomous control platforms.

For one, during the design phase of novel control algorithms, it allows for verification

of onboard parameters or estimates in real time. This is especially important when

debugging issues. It also allows researchers to replay (in simulation) the events that

occurred onboard the drone during the flight.

The improvement of the HC12 only currently lacks in one area; namely, its

ability to act as a transciever. Switching back and forth between receiver and transmitter

takes a long time, and as such, the HC12 only acts as a receiver for the drone. Future

researchers may be able to improve this. As for now, transmission of data off of the

drone occurs over Bluetooth. Specifically, this data transmission occurs using the IMU

BLE characteristic. The IMU BLE characteristic is designed to send out 20 bytes worth

43

of data. These 20 bytes worth of data translate to 2 bytes for an onboard timestamp,

and 18 bytes for 9 IMU measurements – 3 gyroscope, 3 accelerometer, 3 magnetometer.

By default, this BLE characteristic structure looks like the following:

Bytes 1-2 Bytes 3-4 Bytes 5-6 Bytes 7-8 Bytes 9-10

Timestamp Accel (X-axis) Accel (Y-axis) Accel (Z-axis) Gyro (X-axis)

Bytes 11-12 Bytes 13-14 Bytes 15-16 Bytes 17-18 Bytes 19-20

Gyro (Y-axis) Gyro (Z-axis) Mag (X-axis) Mag (Y-axis) Mag (Z-axis)

Table 4.1: BLE IMU Characteristic Data Alignment

The data inside these slots may be changed to anything the user wants. Care

should be taken when attempting to send floating point values. Because only integers

can be sent over Bluetooth, scaling factors need to multiply the floating points values

in order to preserve information stored after the decimal place. Similarly, at the ground

control level, one needs to know that same scale factor in order to extract the decimal

information and receive the data properly.

In most cases, these 20 bytes are enough for any potential data a researcher

wants to read off of the drone, however, if desired, there are two other smaller-sized

BLE characteristics which may be used as well. These are the characteristics for pres-

sure sensor / battery, as well as for armed/disarmed status. These characteristics are

described in below.

Bytes 1-2 Bytes 3-6 Bytes 7-8 Bytes 9-10 Bytes 11-12

Timestamp Pressure Sensor Battery Level Temperature RSSI

Table 4.2: BLE Environmental Characteristic Data Alignment

Bytes 1-2 Byte 3

Timestamp Arming Status

44

Table 4.3: BLE Arming Status Characteristic Data Alignment

4.2.3 Onboard Data Modification

As discussed previously, many quadrotor’s are designed based on PID architec-

tures. These architectures are limited due to their linear model assumptions. Currently,

only attitude commands can be received, however, what if we want to change gain values

or switch between various controllers in real time? The HC12 is a radio module which

can send any command type we want since we define the structure. There are currently

three types of commands which exist. The first is a PID attitude command, the second

is a geometric control attitude command, and the third is a Data Update Request (DR)

command. These commands have specific packet structures which logic onboard can

detect and determine what the packet is used for. The two command packets are for

two different types of control (PID and geometric). The geometric control structure

will be discussed later on in Part II of this thesis, however, the PID attitude command

structure and DR structure are provided here.

The PID command is structured as 6 bytes. The first and last bytes are signals

to the drone that the data being received is a valid packet. These bytes correspond to a

start byte (SB) of value 245, and end byte (EB) of value 2. The inner four bytes are the

commands themselves. For an attitude command, they are related to the thrust pT q,

roll pϕdq, pitch pθdq, and yaw pψdq. This structure is outline in the table below:

45

Drone Attitude Commands

Command Description

[SB, ψd, T , ϕd, θd, EB] Attitude command

The DR structure is somewhat similar in that a start byte (SB) and end byte

(EB) signal a packet. However, the 2nd and 3rd bytes in this packet indicate that the

packet is a DR packet. The 4th and 5th bytes then indicate what type of data update

request is being made. This, for instance, could be a command to arm the drone,

update onboard gains, or switch onboard controllers. Current functionality for these

data update requests are provided in the table below. Further extensions to this can

easily be made by following the code provided in Appendix C.
Drone Data Update Requests

Command Description

[SB, startByteDR, endByteDR, 1, x, EB] Arm the drone if x=1, disarm if x=0
[SB, startByteDR, endByteDR, 2, x, EB] Calibrate if x=1
[SB, startByteDR, endByteDR, 3, x, EB] Switch onboard control mode to

value of x. AOMC=0, MOMC=1,
EOMC=2.

4.3 Safety Requirements

Bluetooth uses a complex protocol to verify the sending and receiving of pack-

ets, resulting in a relatively inconsistent time-to-send. If this time-to-send consistently

passes some threshold, which may be determined either analytically or empirically, then

the closed loop system will become unstable. A solution was then presented to solve this

issue by utilizing an HC12 radio module to handle receiving command packets. This

module was shown to have much lower latency and be more consistent than the onboard

BLE module; however, while operating autonomous flight controllers, extra measures

should be taken to ensure safety of the vehicle and the vehicles’ operators. By moni-

46

toring the packet count received onboard, it’s possible to flag a loss of stability event

when the amount of packets received falls below some threshold. When this happens,

the drone should subsequently switch to a new on-board controller where the system

delay is more reliable and within the defined safety constraint.

Moreover, if the radio is performing well but the autonomous control algorithm

isn’t, then this loss of stability should also be accounted for to preserve safety. In this

case, it is a common solution to allow a safety pilot to take over the drone and revert

back to manual flight. As the ST Drone is setup by default, this is not possible. Section

4.3.1 will describe the mode control algorithm necessary to switch between three modes

of control – namely, Autonomous Operating Mode Controller (AOMC), Manual Oper-

ating Mode Controller (MOMC), and Emergency Operating Mode Controller (EOMC).

Switching between these mode controllers ensures a safe flight control setup.

4.3.1 Mode Control Algorithm

The mode control algorithm implemented onboard the ST Drone contains three

modes, or equivalently, three states. The first mode is AOMC and is in effect while

autonomous control is being performed. If a flight experiment goes well, this will be

the only mode the drone operates in. In the case that some loss of stability of the

drone occurs due to the outer loop controller, a safety pilot may switch over to MOMC,

the manual mode, in order to directly fly based on attitude commands. In the third

situation, if a significant loss of packets is observed over a period of 1 second, then EOMC

mode is activated, which forces the drone back to level flight and slowly throttles down

47

the thrust. This mode may be triggered when either AOMC or MOMC is active. If the

packets start being received correctly again, the drone will resume back to the previous

mode (either AOMC or MOMC). A depiction of this interaction between modes is

provided in the state machine below.

Figure 4.7: Mode Control State Machine

The mode control state machine presented in Figure 4.7 enables safe flight

experiments which adhere to a strong set of safety constraints. Further work can be

focused on the EOMC mode in this algorithm. Currently, an open-loop controller runs

to reduce the throttle slowly over a set amount of time. A more robust solution may be

to make use of the onboard pressure sensor, and design a closed loop altitude controller

which can hover the drone in place for a few seconds, and then land the drone gracefully.

Code for the AOMC, MOMC, and EOMC modes are provided below:

1 if(fly_ready){

2 ...

3
4 // Check packet count

5 if(HAL_GetTick () - startTime >= 1000){

48

6 // Switch to EOMC if necessary

7 if(packetCount < PACKET_RATE_THRESHOLD){

8 ControlMode = EOMC;

9 } else {

10 ControlMode = AOMC;

11 }

12
13 // Update start time and reset packet count

14 startTime = HAL_GetTick ();

15 packetCountInASecond = packetCount;

16 packetCount = 0;

17 }

18
19 ...

20
21 // Run Control Mode

22 switch(ControlMode){

23 // Manual Operation Mode Control

24 case MOMC :

25 // BSP_LED_On(LED1);

26 // BSP_LED_Off(LED2);

27
28 // Set command values

29 gRUD = (attitudeCmd [0] -128) *(-13);

30 gTHR = attitudeCmd [1]*13;

31 gAIL = (attitudeCmd [2] -128) *(-13);

32 gELE = (attitudeCmd [3] -128) *13;

33 break;

34
35 // Autonomous Operation Mode Control

36 case AOMC :

37 // BSP_LED_Off(LED1);

38 // BSP_LED_Off(LED2);

39
40 // Set command values

41 gRUD = (attitudeCmd [0] -128) *(-13);

42 gTHR = attitudeCmd [1]*13;

43 gAIL = (attitudeCmd [2] -128) *(-13);

44 gELE = (attitudeCmd [3] -128) *13;

45 break;

46
47 // Emergency Operation Mode Control (on-board control)

48 case EOMC :

49 // BSP_LED_On(LED1);

50 // BSP_LED_On(LED2);

51
52 // Set desired attitude to level flight

53 gAIL = 0;

54 gELE = 0;

55 gRUD = 0;

56
57 // Slowly throttle down thrust (open loop for now)

58 if(gTHR > AVG_HOVER_THR_CMD){

49

59 gTHR = AVG_HOVER_THR_CMD; // Average hovering state

60 }

61
62 if(mod % 3 == 0){

63 if(gTHR > 0){

64 gTHR = gTHR - 1;

65 }

66 }

67
68 mod++;

69 break;

70 }

71 }

Source Code 4.1: Mode Control Algorithm

One may notice here that AOMC and MOMC operate in practically the same

manner. This is true, however, the current implementation allows for any further con-

trol/logic to be implemented in case the user is controlling the drone vs autonomous

algorithms controlling the drone. LED’s may also be used to show which mode the

drone is currently flying in. This is useful for debugging purposes. The last thing to

note here is the use of the open-loop controller for EOMC. As stated previously, this is

a naive solution which sometimes results in the drone landing harded than it needs to,

or not reacting fast enough to a drone which may be flying at high velocity towards the

ceiling. Future work should extend EOMC to use the pressure sensor to close the loop

on an onboard altitude controller.

50

Chapter 5

Ground Control

In Chapter 3, the ST Drone platform was presented as a lightweight and cost-

effective quadrotor option to utilize for research. This platform as-is has drawbacks

which make it undesirable as an option for experimentation of autonomous control

algorithms. These drawbacks include an inability to command more than just euler

angles, an inability to operate under consistent and low latency communication, and

an inability to maintain safety constraints related to the stability of the drone. These

drawbacks were addressed in Chapter 4, posturing the platform for autonomous guid-

ance and control. This chapter now covers theory and a hardware implementation for

position control of the quadrotor. Achieving position control is a baseline for most

autonomous quadrotor control platforms, and enables research into higher level flight

control algorithms such as path planning and obstacle avoidance, to name a few.

Position control of a quadrotor relies on positional feedback. In commercial

applications, this feedback may stem from onboard camera systems and/or GPS. In

51

lab settings, this feedback tends to come from motion capture systems. This thesis

implements a position controller based on motion capture feedback being fed into an

external Ground Control Station (GCS). This GCS runs software which applies PID

control techniques to command attitude trajectories for the drone to follow in order

to achieve position tracking. This concept is discussed in detail in Section 5.1. After

position control is achieved, a remote controller configuration is developed to facilitate

subsequent experiments. This controller configuration is discussed in Section 5.2.

5.1 Position Control

Because a quadrotor is an underactuated system, position control is only possi-

ble by controlling a combination of the previously mentioned controllable states - thrust,

roll, pitch, yaw. From Chapter 2, it was shown that altitude feedback control is possible

by commanding the drones thrust. The final two degrees of freedom (horizontal x, y

position), however, are not directly controllable. In order to circumvent this issue, a

clever solution is employed to use roll and pitch commands to track desired horizon-

tal positions x, y. Based on the current yaw orientation of the drone, one can always

determine a set of roll and pitch commands to steer the drone to any point in space.

Now, in the design of an outer loop position controller, x, y, z are controllable states by

commanding ϕ, θ, T respectively. ψ is arbitrary in this setup, so can be commanded to

anything the user wants.

Designing a position controller for autonomous flight requires two things: 1) An

52

effective low level attitude controller, and 2) Position based feedback control. Regarding

the first point, a position controller will only be as effective as the lower level attitude

controller it feeds commands into. The process for tuning and validating the attitude

controller is described in Subsection 5.1.1. Once the lower level controller is validated, a

position controller can be designed and tuned. Any position controller is going to need

position feedback. In this thesis, this feedback comes from a motion capture system

called Optitrack. Optitrack and the PID position controller design are discussed in

Subsection 5.1.2. Finally, position tracking results are provided in Subsection 5.1.3.

5.1.1 Verifying Attitude Control Performance

Just as a position controller will only be as effective as it’s lower level atti-

tude controller, an attitude controller will only be as effective as its attitude estimation

algorithm. To begin validating the attitude controller, validation of the estimation al-

gorithm should take place. As previously stated, the position feedback in this control

design comes from a motion capture system called Optitrack. While this system can

provide position estimates of any object it detects, it can also provide attitude esti-

mates. By utilizing Optitrack, it is possible to store a true attitude throughout a flight

experiment, and compare it against an estimate of attitudes derived from the onboard

AHRS. An experiment was run to rotate the drone plus and minux 90 degrees along both

the roll and pitch axes. The onboard AHRS estimates were then stored and compared

against MOCAP attitude estimates. The results from this experiment are presented in

Figure 5.1.

53

Figure 5.1: Attitude Estimate Comparison - MOCAP vs ST AHRS

The attitude RMSE in this experiment is rϕ “ 0.97˝ and rθ “ 2.66˝. In practice,

these estimates are close enough to the truth and thus are well suited to run attitude

control on. At the 15 and 20 second marks, the pitch estimate of the AHRS seem

to deviate from the truth. This is based on the fact that the AHRS solely depends on

accelerometer inertial direction measurements to maintain the correct frame of reference,

however, while the system accelerates, this inertial measurement becomes useless. To

adjust for this, one can place a weighting on the estimator gains which varies with the

distance the accelerometer deviates from the expected gravity magnitude. This concept

54

is explained in detail in Section 6.3.

After validating the accuracy of the attitude estimates, the PID attitude con-

troller can be tuned. A variety of tuning methods exist for PID controllers, the most

common of which is called Ziegler–Nichols (as described in Chapter 6 of [11]). When

verifying attitude control tracking performance, Optitrack should not be used. Direct

comparisons of the AHRS estimate and onboard received attitude commands should be

used. If one decides to plot attitude command values which were sent from the GCS,

there may be small resolution errors from the true command received onboard due to

byte mapping resolution. With a command size of 1 byte per attitude command, as

well as a mapping range of -30 to +30 degrees, the max resolution that may be received

onboard is roughly 0.24 degrees. Because this resolution is quite small, in these ex-

periments it is acceptable to use the commanded attitude sent from the GCS itself for

plotting purposes. Setting the proportional outerloop constant to Kp “ 3, the inner-

most loop was then tuned using the previously mentioned Ziegler-Nichols PID tuning

method. Figure 5.2 presents final attitude tracking results.

The roll and pitch commands in these results are decently tracked. One thing

to note here is that the difference between MOCAP estimates of attitude and AHRS

estimates of attitude is noticeable. Once again, this is because of the fact that the drone

is accelerating during these roll and pitch maneuvers, causing the AHRS to lose its frame

of reference. However, in practice, the estimates are still close enough to reliably control

the drone along various attitude trajectories, as seen in Figure 5.2. With the attitude

controller tuned and working, a position PID controller can be implemented.

55

Figure 5.2: PID Attitude Command Tracking

5.1.2 PID Position Feedback Control

The position controller described in this subsection is facilitated by a motion

capture system called Optitrack. Optitrack motion capture works by utilizing infrared

cameras capable of picking up infrared markers which are physically attached to the

object we want to track. An example of these markers attached to the drone are provided

in Figure 5.3 below. The corresponding Optitrack software, called Motive, can group

these markers into one rigid body, who’s pose (position and attitude) is broadcasted to

the GCS. This rigid body is presented in Figure 5.4.

56

Figure 5.3: Infrared Markers Attached to ST Drone

Figure 5.4: Motive Software With Rigid Body Defined

The Optitrack system guarantees millimeter-precise estimates of position, and

centidegree precise estimates of attitude. These estimates update at a max update

rate of 100Hz. Importantly, this means the max possible position control loop rate is

100Hz. A common rule in designing cascading PID loops is to make the next loop in

the sequence run 3-5x faster than the previous loop. Onboard the ST Drone, the inner-

most loop operates at 800Hz, and the outer-most loop operates at 160Hz. The position

controller in this thesis operates at 40Hz, which is 4x faster then the loop below it. A

57

flow chart representing the entire feedback loop from MOCAP to attitude control of the

drone is presented in figure 5.5.

Figure 5.5: Complete Closed Loop System Description

Here, Optitrack is the physical camera system which detects infrared markers,

Motive is the software running at the ground control station which runs algorithms to

estimate pose, and Matlab represents the position control script running on the ground

control station. This Matlab position control script outputs desired attitudes which the

ST Drone’s attitude control system attempts to track.

These desired attitude commands are generated via a PID controller operating

on position commands and position feedback. Position commands may come from a

setpoint generator which monitors the drone’s current position, and when it is close to

a setpoint for a pre-defined amount of time, it generates the next setpoint. In Section

5.2, an Xbox controller is introduced which can also be used to command new setpoints.

The PID position block operates at 40Hz and connects with the rest of the closed loop

system as described in Figure 5.6

58

Figure 5.6: Closed Loop Position Control

This block diagram is relatively high level, and simply describes the connec-

tions between each component of the system. To reiterate, the position controller works

by reading in position commands xd, yd, zd (which may come from some higher level path

following loop), comparing those commands to the current position of the system x, y, z

as read by MOCAP, and outputting desired attitudes ϕd, θd, ψd and desired thrust T .

Horizontal position tracking is achieved by commanding ϕ, θ, vertical position tracking

is achieved by commanding T . ψd is arbitrary, and in this implementation is set to

the constant ψd “ 0. These desired attitudes, ϕd, θd, ψd, and thrust T are fed into the

onboard ST Drone control system. PIV control, as described in Section 3.2.3, utilizes

AHRS estimates of attitude and filtered gyro estimates of attitude rate in order to com-

mand three body torques τx, τy, τz to force attitude tracking. These torque commands

are realized through a motor mixing algorithm which commands angular rates for each

motor of the quadrotor. Some of the more detailed components of the entire control

structure were left out to maintain simplicity of the discussion. The next two block

diagrams provided in Figures 5.7 and 5.8 go into greater detail, describing exactly how

59

a set of desired positions is translated into attitude commands and how these attitude

commands are translated into motor PWM signals.

Figure 5.7: GCS Position Control

In Figure 5.7, the control flow which governs the software running on the GCS

is presented. Desired positions, denoted xr, yr, zr are passed into the PID controller

along with MOCAP position feedback. The output of these PID’s are related to desired

position accelerations. These position accelerations are then saturated, and fed into a

function which uses the current yaw orientation of the drone to determine the roll and

pitch commands corresponding to the desired accelerations. This is necessary because if

the drone is turned 180˝, a right roll command to move the drone right is actually going

to be a left roll command, for instance. These desired attitudes are then saturated to

within plus or minus 30˝, and converted to a byte for transmission to the ST Drone.

The byte range is between 0 and 255. With respect to attitude, a byte value of 0

60

represents -30˝, a value of 128 represents 0˝, and a value of 255 represents 30˝. The

thrust command is determined via a PID loop on altitude, and the output of the PID

is such that its range is already between 0 and 255, and it saturates between those two

values. Finally, the desired yaw command is always set to 0˝, which is equivalent to 128

on the byte mapping. These commands (Cϕ, Cθ, Cψ, CT) represent the four byte valued

commands which are sent to the ST Drone. The next figure describes what happens

when these commands are received onboard the ST Drone.

Figure 5.8: ST Drone Attitude Control

In Figure 5.8, the control flow which governs the software running on the ST

Drone is presented. The first thing to note here is the coordinate frame (depicted in

the upper left corner). Due to differing coordinate frames between the GCS and ST

Drone, a rotation of the desired attitude commands is made – In order to translate

the Matlab desired attitude into an ST Drone equivalent desired attitude, the pitch

61

command is inverted. The desired attitudes are then fed into the PIV controller, and

saturated to within another limit. These desired torque outputs are fed into the motor

mixing algorithm, along with desired thrust, to generate PWM signals for the motors.

The motor configuration and motor mixing alogrithm and displayed in the top right

corner. In the next subsection, position tracking results are presented for this exact

control framework.

5.1.3 Results

In this section, two sets of results are provided for position tracking related

experiments. While tuning a position controller, it is important to focus on one axis

of control at a time. One should begin by running experiments to tune the altitude

controller. Once the altitude controller is tuned, one should move onto roll/pitch PID

tuning. Each of these states are independent in terms of the control, but often times

pitch and roll react similarly, so can be tuned at the same time.

In the first experiment, a single setpoint is generated at rx, y, zs “ r0m, 0m, 0.7ms.

The PID controller then begins commanding a series of rolls and pitches in order to at-

tempt tracking that point. The results for a fully tuned PID position controller tracking

a single setpoint is provided in Figure 5.9.

These point tracking experiments are important in showing the steady state

tracking effectiveness of the PID controller. In the next experiment, a circular trajectory

is generated for the drone to track. This will provide results related to the frequency

response of the drone while using the tuned PID controller. In the following results, a

62

Figure 5.9: Position Point Tracking

circular trajectory with angular rate of 0.2 rad/s with an amplitude of 0.5m is generated.

The altitude is again commanded to 0.7m. The tracking results for this experiment are

presented below.

Figure 5.10 shows decent tracking performance with relatively low phase lag.

These tests represent a PID controller tuned well enought to track points with no

steady state error, as well as track time-varying trajectories. During each of these

experiments, the setpoints were hardcoded. In the next section an Xbox controller

interface is presented to better facilitate running these experiments. It will include

features such as setpoint generation, and manual control override.

63

Figure 5.10: Position Circle Tracking

5.2 Xbox Control

In order to maintain better control over the position controller defined in Sec-

tion 5.1, a remote controller is introduced. Specifically, an Xbox controller is used which

allows the user to command various modifiable tasks. The most important reason for

incorporating a remote controller is the ability to manually override the drone in case

of a loss of stability. During any flight experiment, a safety pilot must be using the

Xbox controller. To ensure this, autonomous flight experiments may only begin when

the user has calibrated and armed the drone via the left and right bumpers on the Xbox

controller.

Once the drone is in flight, the user can toggle through a series of predefined

64

position setpoints using the left and right toggles on the D-pad. If the user wishes to, or

in the case of a loss of stability of the autonomous flight controller, manual mode may

be entered by pressing the B button. Once this button is pressed, the user must control

the drone manually using the joysticks. The left joystick commands thrust (vertical

movement) as well as yaw angle (horizontal movement). The right joystick commands

pitch (vertical movement) and roll (horizontal movement). If the user wishes to go back

into autonomous flight control mode, he/she may press B again, and it will automatically

switch. When ready to finish the flight experiment, the user should press the start

button. This will initiate a landing sequence which slowly commands a decrease in

height until the drone has reached the ground. A summary of all of these possible Xbox

controller commands in provided in Figure 5.11.

Figure 5.11: XBox Controller Commands

All of these features combine to provide the user with a very pleasant flight

control experiment. It is a necessary add-on to the project in terms of safety, but

65

also allows for easier use of the system at hand. With the manual control method

implemented, this concludes the end of Part I of the thesis. Throughout this part,

the ST Drone quadrotor platform was presented, and extended for use in autonomous

guidance and control experimentation. A position controller was then developed for the

drone, and results were presented which showed it’s reliability under various scenarios.

In Part II of this thesis, a new form of attitude control is investigated. This attitude

controller is then implemented on hardware, and compared against the PID attitude

controller results presented in this Chapter.

66

Part II

Geometric Estimation & Control

67

Chapter 6

Theory & Simulation

The most common attitude control scheme typically runs some form of PID

control. With respect to the ST Drone, a so called PIV control scheme [4] is employed.

This structure consists of a proportional controller on attitude, which outputs com-

mands to a PID controller on angular velocity. While this scheme is simple to tune,

it maintains drawbacks which were previously discussed in Chapter 1. That is, PID

schemes inherently require an euler angle attitude representation. There may be tricks

possible to operate a PID on quaternions as done in [30], however, by and large PID

attitude schemes use euler angle representations. A problem with this euler angle rep-

resentation is that they are susceptible to gimbal lock, which is a phenomena that leads

to a loss of a degree of freedom, causing a rotation to only be visible in two dimensions.

Geometric control schemes, which operate on the Special Orthogonal rotation

group, SOp3q, avoid gimbal lock. This means there are no singularities, and state

estimation will be valid across the entire state space. For this reason, geometric attitude

68

control is preferred over typical PID euler angle based attitude control. A requirement to

operate a geometric controller is a geometric observer. It is not enough to simply build a

rotation matrix using the euler angle outputs of an euler angle based estimator. This is

because gimbal lock will still occur; it just happens before the generation of the rotation

matrix. A widely used geometric attitude estimation algorithm is derived in [23]. This

algorithm fuses IMU accelerometer, magnetometer, and gyroscope measurements to

accurately estimate a rigid body attitude. It is found in many quadrotor AHRS’s, and is

even used onboard the ST Drone. In [23], the authors derive euler angle, quaternion, and

SOp3q implementations of the filter. The ST Drone uses the quaternion implementation;

this thesis will extend it to the SOp3q implementation. Once a geometric observer is

implemented, the geometric controller can be written. These types of controllers are

nonlinear, and as such, do not suffer from typical linear rigid body controller drawbacks

such as predominantly being effective near the point of linearization. This means a

geometric attitude controller will likely be more effective at commanding the rigid body

along more aggressive desired rotations such as flipping maneuvers. A key drawback of

geometric control, however, is a result which states no globally asymptotically stable

static continuous controller exists on SOp3q [9]. This issue will be addressed in later

sections. Another key issue is the fact that these controllers require computationally

expensive linear algebra functions, which may limit the bandwidth of the low-level

attitude controller. Some geometric controller even require a matrix log operation,

as is the case for the geometric controller used in this thesis. The log operation is a

particularly expensive one, and typically requires a different approach to implement it

69

on hardware; this different approach uses a well known rotation property for matrices on

SOp3q to find an equivalent log representation, which reduces the computational effort

down to simply running some matrix multiplication operations rather than determining

eigenvalues. These approaches and their implementations are discussed in Section 6.4.

In this chapter, theory behind a class of geometric controllers given in [2] is

provided and applied to a simulated quadrotor model. Beginning with Section 6.1, a

model of a quadrotor is derived and validated through simulations in order to test the

geometric controller. After that, Section 6.2 devises a complete position control setup

which follows closely the control architecture that flies the ST Drone from Part I. Mim-

icking the real-world ground control as well as onboard attitude control is an important

step in providing a level of confidence that the transition from simulated geometric con-

trol to hardware geometric control will work. Next, Section 6.3 will cover the attitude

estimation algorithm necessary to estimate the rotation matrix directly on SOp3q. Sec-

tion 6.4 dives into the geometric control theory to be used as a replacement for the ST

Drone’s PIV scheme. Finally, simulated geometric control results are presented and a

discussion on subsequent hardware transition steps is provided.

6.1 Quadrotor Model

A quadrotor is an under-actuated system with respect to its pose. There are

four motors, which generate four forces perpendicular to each respective motor. Com-

binations of these four forces can work together to control 2 rigid body angles (roll and

70

pitch), as well as 1 body-frame axis of motion (aligned with z-axis). Additionally, the

angular speed of each motor sum together to effect yaw. This means the rigid body

attitude is fully-actuated, however, the position is under-actuated. There are a variety

of ways to model a quadrotor’s dynamics; this section will consider a model derivation

following [6]. Figure 6.1 below depicts the aforementioned forces/moments operating

on the vehicle as setup in [6].

Figure 6.1: Quadrotor Forces and Moments

In this diagram, rF1, F2, F3, F4s are the four forces generated by the motors

onboard, rτ1, τ2, τ3, τ4s are the four reaction torques generated by each spinning motor,

and the body frame {b} is defined as NED, where xb points North, yb points East, and

zb points down. Additionally, the global coordinate frame {G} is defined as NED from

the initialized pose of the quadrotor, where xG points North, yG points East, and zG

points down. The roll angle ϕ is defined along xb, pitch angle θ is defined along yb,

71

and yaw angle ψ is defined along zb. Finally, let rp, q, rs represent the roll, pitch, and

yaw rates respectively. Note that these do not directly represent r 9ϕ, 9θ, 9ψs, as these time

derivatives of the attitude are defined in intermediate coordinate frames.

Now, let the full state X P R12 of the quadrotor be represented by its pose

X “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

xG

yG

zG

9xG

9yG

9zG

ϕ

θ

ψ

9ϕ

9θ

9ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.1)

where xG P R, yG P R, zG P R is the position of the quadrotor with respect to the global

coordinate frame and ϕ P R, θ P R, ψ P R is the attitude of the quadrotor with respect

to the body frame. Because transitions from {G} Ñ {b} and vice versa are going to be

necessary, rotation matrices must be used to facilitate these coordinate frame transfor-

72

mations. These rotation matrices are defined as follows

Rpψq “

»

—

—

—

—

—

—

–

cospψq sinpψq 0

´sinpψq cospψq 0

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Rpθq “

»

—

—

—

—

—

—

–

cospθq 0 ´sinpθq

0 1 0

sinpθq 0 cospθq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.2)

, Rpϕq “

»

—

—

—

—

—

—

–

1 0 0

0 cospϕq sinpϕq

0 ´sinpϕq cospϕq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where Rpψq represents an intermediate yaw rotation, Rpθq represents an inter-

mediate pitch rotation, and Rpϕq represents an intermediate roll rotation. Multiplying

these rotations together, one gets RbG “ RpϕqRpθqRpψq, where RbG P R3ˆ3 is a rotation

from the global frame {G} to the body frame {b}. This rotation matrix is commonly

referred to as a so called Direction Cosine Matrix (DCM). The fully multiplied DCM is

evaluated as

RbG “

»

—

—

—

—

—

—

–

cpψqcpθq spψqcpθq ´spθq

cpψqspψqspθq ´ cpϕqspψq spϕqspψqspθq ` cpϕqcpψq cpθqspϕq

cpϕqcpψqspθq ` spϕqspψq cpϕqspψqspθq ´ cpψqspϕq cpϕqcpθq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.3)

73

where cp.q is shorthand for cos(), and sp.q is shorthand for sin(). RbG can rotate any

vector from {G} Ñ {b} using the relation Pb “ RbGP
G, where Pb P R3 is a position

vector in the body frame, and PG P R3 is a position vector in the global frame. The

rotation from {b} Ñ {G} is also possible, and is related by PG “ pRbGqJPb “ RGb Pb,

where

RGb “

»

—

—

—

—

—

—

–

cpψqcpθq cpψqspϕqspθq ´ cpϕqspψq cpϕqcpψqspθq ` spϕqspψq

spψqcpθq spϕqspψqspθq ` cpϕqcpψq cpϕqspψqspθq ´ cpψqspϕq

´spθq cpθqspϕq cpϕqcpθq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.4)

Now that the DCM’s have been defined, a relation between the angular rates

and the time derivatives of the euler angles can be defined. Remember, [6] defines

the euler angles in an intermediate coordinate frame, so a rotation from the body rate

ω “ rp, q, rsJ to r 9ϕ, 9θ, 9ψs is necessary. This relation is defined as

ω “

»

—

—

—

—

—

—

–

p

q

r

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

1 0 ´sinpθq

0 cospϕq sinpϕqcospθq

0 ´sinpϕq cospϕqcospθq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

9ϕ

9θ

9ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.5)

Left multiplying both sides by the transpose of this rotation matrix results in

74

»

—

—

—

—

—

—

–

9ϕ

9θ

9ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

1 sinpϕqtanpθq cospϕqtanpθq

0 cospϕq ´sinpϕq

0 sinpϕq

cospθq

cospϕq

cospθq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

p

q

r

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.6)

At this point, for simplicity sake, this thesis deviates from the derivation in [6].

The model derived hereafter will not consider various electrical effects from the motors,

or even the angular velocity of the motors themselves. Drag forces, centripital effects,

and various aerodynamic rotational disturbances are also not considered. These are

outside of the scope of the thesis, so have been excluded. The remainder of this section

will cover the translational dynamics, rotational dynamics, and finally the complete

equations of motion for the quadrotor.

6.1.1 Translational Dynamics

Beginning from first principles, the summation of the forces acting on the

quadrotor in frame {G} is given by

m :XG “ Fg ´ FGT (6.7)

where m P R defines the mass of the quadrotor, :XG P R3 represents the acceleration

vector r:xG, :yG, :zGsJ in the global frame, FGT P R3 represents the total thrust force

generated by the quadrotor in the global frame, and Fg P R3 is represented by

75

Fg “

»

—

—

—

—

—

—

–

0

0

mg

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.8)

where g “ 9.81 m/s2 is the acceleration due to gravity. FGT from (6.7) can be computed

by rotating the known total thrust force from {b} Ñ {G} via

FGT “ RGb F
b
T (6.9)

where F bT P R3 is defined as

F bT “

»

—

—

—

—

—

—

—

–

0

0

4
ř

i“1
Fi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.10)

and Fi represents the force generated by the ith motor. Now, substituting (6.8) and

(6.9) into the translational dynamics equation (6.7), the acceleration of the quadrotor

is derived to be

:XG “

»

—

—

—

—

—

—

–

:xG

:yG

:zG

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

´ 1
mpcospϕqcospψqsinpθq ` sinpϕqsinpψqq∥F bT ∥

´ 1
mpcospϕqsinpψqsinpθq ` cospψqsinpϕqq∥F bT ∥

´ 1
mpcospϕqcospθqq∥F bT ∥ ` g

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.11)

76

This set of equations describes the motion of the quadrotor with respect to the

total thrust generated by all four motors. This total thrust is to be provided as one of

the four input commands. The next subsection will describe the quadrotors rotational

motion.

6.1.2 Rotational Dynamics

This subsection will describe how a given a set of torque commands on the

drone will rotate it. This strategy of directly injecting real rigid body torque values

is one step removed from what happens onboard a real drone, as well as what is often

setup in other quadrotor model derivations; typically, in simulation, a set of three torque

commands are given (along with the thrust command F bT), which are then fed into a

motor mixing algorithm which outputs motor angular velocities ωmi for i “ 1, 2, 3, 4.

On hardware, PWM signals replace ωi. In this setup, the motor mixing algorithm is

skipped, and the torque commands are injected directly into the system. This design

choice will make geometric control design simpler later on.

Starting with first principles again, the following describes the rotational dy-

namics of the quadrotor

Jb 9ω “ τm ´ pω ˆ Jbωq (6.12)

where τm P R3 are the body torques rτx, τy, τzs
J generated from the motors (or in our

77

case, directly commanded), ω is the angular velocity defined in (6.5), ω ˆ Jbω are the

reaction torques of the system, and Jb P R3ˆ3 is the inertia matrix which is defined as

Jb “

»

—

—

—

—

—

—

–

Jx 0 0

0 Jy 0

0 0 Jz

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.13)

where Jx, Jy, Jz are the inertia values for each body frame axis of the quadrotor. 9ω P R3

from (6.12) is the angular acceleration which is related to the euler angle accelerations

by

9w “

»

—

—

—

—

—

—

–

:ϕ

:θ

:ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pω ˆ Jbωq “

»

—

—

—

—

—

—

–

9θ 9ψpJz ´ Jyq

9ψ 9ϕpJx ´ Jzq

9θ 9ϕpJy ´ Jzq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.14)

Substituting (6.5), (6.13), and (6.14) into (6.12), the following equations of

rotation are derived

»

—

—

—

—

—

—

–

:ϕ

:θ

:ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

1
Jx

ppJy ´ Jzqqr ` τxq

1
Jy

ppJz ´ Jxqpr ` τyq

1
Jz

ppJx ´ Jyqpq ` τzq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.15)

6.1.3 Complete Equations of Motion

Combining the equations of motion from (6.16) and (6.15), the final state space

model used in subsequent simulations of the quadrotor is defined as

78

9X “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

9xG

9yG

9zG

:xG

:yG

:zG

9ϕ

9θ

9ψ

:ϕ

:θ

:ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

9xG

9yG

9zG

´ 1
mpcospϕqcospψqsinpθq ` sinpϕqsinpψqq∥F bT ∥

´ 1
mpcospϕqsinpψqsinpθq ` cospψqsinpϕqq∥F bT ∥

´ 1
mpcospϕqcospθqq∥F bT ∥ ` g

9ϕ

9θ

9ψ

1
Jx

ppJy ´ Jzqqr ` τxq

1
Jy

ppJz ´ Jxqpr ` τyq

1
Jz

ppJx ´ Jyqpq ` τzq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.16)

6.1.4 Model Validation

Now that a state space model of the quadrotor exists, the model needs to

be validated. This subsection will cover a handful of experiments that validate the

quadrotor’s expected behavior for a set of open loop control inputs. Note that the

global NED coordinate frame is used for plotting, so a negative z-axis direction actually

79

points upward in a NWU frame. Also note that the control input given is a vector

rT, τx, τy, τzs where T P R is the net upward force control input (same as ∥F bT ∥ in 6.16),

and τx, τy, τz P R are the three torque control inputs which correspond to an instant

physical torque on the system.

6.1.4.1 Open Loop Experiment 1: Hover

In this first experiment, the quadrotor is simulated with the input rT, τx, τy, τzs “

rmg, 0, 0, 0s. This input corresponds to an upward thrust force vector that is equal to

the downward force of gravity. Given this, the expected behavior for the quadrotor is

for it to hover in place. Figure 6.2 below verifies this expected behavior.

Figure 6.2: Experiment 1: Hover State

80

6.1.4.2 Open Loop Experiment 2: Positive Roll

In the second experiment, the quadrotor is simulated with the input rT, τx, τy, τzs “

r2mg, 0.1, 0, 0s. The force from the thrust input is enough to move the drone upwards,

and the roll torque command is enough to begin rotating the drone. The expected be-

havior for control input like this is for the drone to move upwards (negative z-direction),

and along the positive y-axis (to the right). Because the drone will continue to roll,

it should eventually rotate past 90˝ and start forcing the drone downwards (positive

z-direction). Figure 6.3 below verifies this expected behavior.

Figure 6.3: Experiment 2: Positive Roll

6.1.4.3 Open Loop Experiment 3: Positive Pitch

In the second experiment, the quadrotor is simulated with the input rT, τx, τy, τzs “

r2mg, 0, 0.1, 0s. The force from the thrust input is enough to move the drone upwards,

81

and the pitch torque command is enough to begin rotating the drone. The expected

behavior for this control input is for the drone to move upwards (negative z-direction),

and along the negative x-axis (backwards). Because the drone will continue to pitch,

it should eventually rotate past 90˝ and start forcing the drone downwards (positive

z-direction). Figure 6.4 below verifies this expected behavior.

Figure 6.4: Experiment 2: Positive Pitch

6.1.4.4 Open Loop Experiment 4: Positive Yaw

In the second experiment, the quadrotor is simulated with the input rT, τx, τy, τzs “

r2mg, 0, 0, 0.1s. The force from the thrust input is enough to move the drone upwards,

and the yaw torque command should start spinning the drone along the z-axis. The

expected behavior for this control input is for the drone to move upwards (negative

z-direction) while all other states except for yaw angle remain at 0. Figure 6.5 below

82

verifies this expected behavior.

Figure 6.5: Experiment 4: Positive Yaw

6.2 Closed Loop Quadrotor Position Control

Now that the quadrotor model has been sufficiently tested in open loop input

scenarios, a more realistic control scheme can be developed. Part I of this thesis de-

scribes a control platform setup capable of controlling the position of the physical ST

Drone. This same position control setup is achievable in simulation, and is important

to the hardware development of a currently theoretical geometric controller. This sim-

ulation environment, which relates closely to the hardware, will act as a testbed to run

new control code. It is in this way that novel algorithms can be first tested in a safe

environment before being deployed on a physical drone.

Subsection 6.2.1 provides a recap of the full closed loop position control setup

83

which flies the ST Drone. Many details from the hardware solution will be ported over

to the simulated solution in order to maintain a level of confidence that the results

in simulation will transition to hardware. A complete block diagram of the closed

loop structure is provided, and then results are presented which validate the position

controller.

6.2.1 Implementation

There are three feedback loops which control the ST quadrotor platform from

Part I. Two of these loops govern the attitude control onboard the drone, and one runs

at the position control at the ground control station. The attitude controller contains

an outerloop which runs at 160Hz, and an inner loop running at 800Hz. The outerloop

runs a proportional controller on attitude and outputs angular rate commands. The

inner loop receives these rate commands and tracks them via a PID controller which

outputs torques commands that feed into the motor mixer. While these two loops run

onboard the drone, a postion controller offboard the drone exists to command attitudes

which will help to achieve position tracking. This position level PID controller operates

at roughly 40Hz. The entire closed loop feedback controller is visualized in Figure 6.6.

This exact loop structure has been implemented in Matlab in order to sim-

ulate the system as a whole. With a replica of the hardware implementation running

on Matlab, a geometric controller can easily be validated before moving to hardware.

Simulations which verify the position controller are provided in Figure 6.7.

84

Figure 6.6: Closed Loop Position Control

Figure 6.7: Position Control Response

This position controller is effectively responds to and tracks a step input along

each axis. Attitude response plots show that attitude tracking is working well, with some

lag in the response. As will be shown in sections to come, a geometric attitude controller

here will improve attitude tracking performance, and subsequently improve position

tracking as well. These plots will be compared and analyzed. Before implementing the

geometric controller, a geometric observer is necessary. This observer design follows in

Section 6.3.

85

6.3 Geometric Estimation

An important step in implementing any control scheme developed on SOp3q is

to implement an SOp3q based estimation algorithm. Without a corresponding geometric

estimator the system will still be susceptible to gimbal lock, which was a large reason

for choosing geometric control methods in the first place. For this reason, we need an

estimation algorithm that directly estimates the rotation matrix.

There are a variety of attitude estimation options, however, they usually fall

into one of two categories – Kalman Filter (KF) or Complementary Filter (CF). A

few different examples of Kalman Filters include the nonlinear Extended Kalman Filter

(EKF) and the Unscented Kalman Filter (UKF) [17]. Examples of Complementary

Filters include TRIAD [7], Madgwick [21], and Mahony [23]. Various publications have

analyzed and compared these algorithms with respect to attitude estimation; typically,

KF based algorithms are more computationally expensive than CF algorithms [29].

This imposes limitations on feedback loop update rates, and at the attitude level, this

is a crucial issue because this is often the lowest level of the feedback loop so the

control needs to be reactive to fast dynamics. Another key analysis of these estimation

algorithms acting on a quadrotors IMU data shows that Mahony’s method achieves

the fastest runtime, and outperforms Madgwick and Kalman Filtering in terms of error

convergence [20].

The Mahony algorithm is perfect for aerospace applications, as it fuses IMU

sensor data together to create a remarkably accurate estimate of attitude. It should

86

also be noted that Mahony defines three versions of the same filter – An euler angle

representation, a quaternion representaion, and an SOp3q representation. Subsection

6.3.1 will loosely cover the theory used to derive the SOp3q algorithm, and will present

the final set of equations which estimates the attitude as a rotation matrix. In Subsection

6.3.2, this set of equations is implemented in Matlab, and run against real IMU data

which was measured during a flight experiment of the ST Drone. Mahony attitude

estimates are generated and compared against sub-degree precise Optitrack MOCAP

measurements.

6.3.1 Nonlinear Complementary Filtering on SOp3q

This section summarizes key points in the Mahony derivation [23], beginning

with a formal definition of the 3D rotation group known as SOp3q, the associated Lie

Alegbra group sop3q, and a few properties related to these two groups. Next, mea-

surement models are provided for the IMU, and a pair of solutions using these models

are suggested. A dive into the Lyapunov-based solution illuminates the various filters

that are built off of eachother. A simple filter is designed assuming some unrealistic

assumptions, then a filter based on more realistic assumptions is provided, and finally

a filter suitable for use with an IMU is derived.

6.3.1.1 The SOp3q Rotation Group

The Special Orthogonal group SOp3q is a rotation group under which every

possible 3D orientation exists. This group of rotations contains no singularities, and is

87

thus well suited for a robust attitude representation. These rotations are all centered

about the origin of three dimensional Euclidean space, and are defined as Rpvq P SOp3q :

R3 Ñ R3, where v P R3 is the vector to be rotated. This rotation group preserves four

key properties:

1. Isometry - Rotations are distance-preserving transformations and every rotation

matrix maintains detpRq “ 1. This can also be stated as |Rx⃗| “ |x⃗|.

2. Rotations preserve angles between two vectors: ă Rx⃗,Ry⃗ ą“ă x⃗, y⃗ ą.

3. The columns of R are orthonormal.

4. The columns of RJ (or rows of R) are orthonormal.

5. The inverse of a rotation matrix is equal to its transpose: RJ “ R´1. This yields

the relation RJR “ RRJ “ I.

A critical final point here is that if a 3x3 matrix R satisfies any one of these

properties, the rest of the properties are also satisfied for that same matrix R, and thus

R is a rotation matrix on SOp3q.

Another key concept related to the rotation group SOp3q is its associated Lie

Algebra group sop3q. This group is defined as the tangent space of SOp3q at the identity

matrix I. This group space is important, as it allows for algebraic manipulations such

as addition or multiplication while preserving its own group properties. These sorts of

operations are key in the design of an estimator on SOp3q because SOp3q itself does not

allow for these sorts of operations. Using the associated Lie Algebra, however, one can

88

apply a transformation SOp3q Ñ sop3q, perform algebraic manipulation in sop3q, and

then transform back to SOp3q. This essentially enables the use of filter gains to drive

rotation related errors to zero. sop3q is defined as the set of anti-symmetric matrices

sop3q “ tA P R3ˆ3|A “ ´AJu. (6.17)

A fundamental operation in Lie Algebra is the Lie Bracket, which states any

A,B P R3ˆ3, rA,Bs “ AB´BA. We also have that for any Ω P R3, the skew-symmetric

operation, ˆ, transforms Ω Ñ sop3q via

Ωˆ “

»

—

—

—

—

—

—

–

0 ´Ω3 Ω2

Ω3 0 ´Ω1

´Ω2 Ω1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (6.18)

A noteworthy property of this transformation is its relation to the cross product of

two vectors. Namely, for any v P R3, Ωˆv “ Ω ˆ v. The vex operator, defined as

vexpΩˆq “ Ω P R3, performs a transformation from sop3q Ñ R3.

Another key point regarding the SOp3q rotation group is that the trace of

R P SOp3q, denoted trpRq, is bounded such that

3 ě trpRq ě ´1, (6.19)

where if trpRq “ 3, then R “ I3 is geometrically interpreted as a the euler angle

89

representation of rϕ, θ, ψs “ r0, 0, 0s. If trpRq “ ´1, then either ϕ “ ˘π, θ “ ˘π, or

ψ “ ˘π.

Finally, a common method to denote the “error” between two rotation matrices

on SOp3q is to multiply them as RJ
aRb. When Ra matches Rb, this multiplication

equates to the identity matrix. This concept is used in the subsequent observer design.

6.3.1.2 IMU Measurement Models

Three models related to the gyroscope, accelerometer, and magnetometer on

an IMU are described in [23]. Each of these models accounts for a measurement bias

and measurement noise, and use the following notation for the inertial and body frame

– tAu : Inertial Frame, tBu : Body Frame. Beginning with the model for a gyroscope,

a gyroscope is a measurement device capable of sensing angular rotations in a the body

frame with respect to an inertial frame. The following measurement structure is assumed

Ωy “ Ω ` bg ` µg P R3, (6.20)

where Ω P tBu denotes the true angular rate in the body frame, bg P R3 represents a

constant gyro measurement bias, and µg P R3 represents the measurement noise.

The accelerometer is a measurement device which measures instantaneous lin-

ear accelerations of tBu relative to tAu, expressed in tAu. This linear acceleration is

denoted 9v. An ideal “motionless” accelerometer should measure the acceleration due

to gravity as 9v “ RBAg where g “ r0, 0,´9.81sJ P tAu and RBA : tAu Ñ tBu. However,

90

generally, the following model holds

a “ RBAp 9v ´ gq ` ba ` µa P R3, (6.21)

where ba P R3 again denotes the measurement bias or offset, and µa P R3 denotes

measurement noise. The accelerometer is known as an orienting measurement device.

This means it is capable of reconstructing an accurate attitude on it’s own. Consider the

low frequency case where the accelerometer is almost motionless. Because g is so large

relative to small perturbations along any axis of motion, the directional vector will still

represent a decently accurate representation of the inertial down direction. This can be

used to help determine orientation of the rigid body. Under low frequency acceleration,

the inertial direction can be estimated via

va “
a

|a|
« ´RBAe3, (6.22)

where e3 “ r0, 0, 1sJ, and va P R3 represents the current unit acceleration vector in the

body frame, which at lower frequencies, represents the inertial down direction.

Similarly, the Magnetometer is an orienting measurement device which can

reconstruct true orientation. The model for the magnetometer is given by

m “ RBAAm `Bm ` µb, (6.23)

where Am P R3 is earths magnetic field in the inertial frame, Bm P R3 is the body frame

91

magnetic field disturbances (from closeby electronic devices such as running motors),

and µb P R3 represents measurement noise in the body frame. Sensor noise for these

sensors is typically small, however, disturbances in the Bm term occur often onboard

systems that house many electronic devices. Similar to the accelerometer, only the

unit vector of the magnetic field is considered, and under small disturbances present in

the Bm term, the following magnetometer direction measurement represents the earths

magnetic field at the location of measurement

vm “
m

|m|
. (6.24)

. In the implementation of the subsequent estimation algorithm, the magnetometer

and accelerometer do not necessarily need to be used together, however, having both

present as a method for reconstructing an inertial unit direction is important for the

circumstances where either the system is maneuvering too fast for the accelerometer to

be useful, or where the system is experiencing significant magnetic field disturbances.

6.3.1.3 Estimation Approaches

From the previous sensor models, a few approaches can be taken to solve the

estimation problem. Given the fact that the accelerometer or magnetometer can be

used to reconstruct an attitude under a set of circumstances, it seems obvious to try

92

and use these two sensors directly. In fact, an optimization problem can be setup as

arg min
RPSOp3q

pλ1|e3 ´Rva|2 ` λ2|v˚
m ´Rvm|2q « RAB (6.25)

where λ1, λ2 P R are weights corresponding to confidence levels of the accelerometer

and magnetometer inertial unit vectors respectively, and v˚
m P R3 represents the inertial

magnetic field direction where the system is being operated. By solving this optimization

problem, one can find an accurate rotation matrix RAB. However, issues arrive in the

implementation. For one, optimization problems are costly to solve, and when the

implementation is at the attitude level, fast enough loop rates is necessary. Another

issue is that in the case the accelerometer and/or magnetometer are not operating

close to the inertial vector reconstruction assumptions made for each of them, then the

optimal solution to 6.25 is useless. For these reasons, an alternative solution which

additionally makes use of the gyroscope is desirable.

The approach taken here on out focuses on a Lyapunov-based solution. To

start, a definition of the error criteria needs to be formed. Let pR denote the estimation

of the true rotation R “ RAB. The coordinate frame associated with pR is defined as the

estimator coordinate frame tEu. The associated frame transformation is

pR “ pRAE : tEu Ñ tAu. (6.26)

The goal of the estimation problem is to drive pR Ñ R. The rotation error rR is defined

93

as

rR :“ pRJR, rR “ rRBE : tBu Ñ tEu. (6.27)

Subsequent observer design will be based on a Lyapunov Stability analysis

with the following Lyapunov candidate function

Etr “
1

2
pI3 ´ rRq. (6.28)

.

From previously stated properties, it follows that

Etr “
1

2
pI3 ´ rRq “ p1 ´ cospθqq “ 2sinp

θ

2
q2 (6.29)

where θ is the angle associated with the rotation from tBu Ñ tEu. Now, assuming that

observer update laws can be derived to force 9Etr ă 0, θ is necessarily going to be driven

to 0, or equivalently rR Ñ I3.

The following subsections derive nonlinear filters using this Lyapunov function,

however, each filter is designed under varying levels of accurate assumptions. These

filters build on top of eachother, however, and lead to a filter capable of using direct

IMU sensor measurements to estimate attitude.

94

6.3.1.4 Complementary Filter

In [23], there are four separate filter designs. The first filter, termed Comple-

mentary Filter (CF), is built as a baseline CF with the assumption that the true Rptq

and Ωptq are known. The goal is to derive a dynamical equation for pRptq such that

rR Ñ I3. The true kinematic system model is given as

9R “ RΩˆ “ pRΩqˆR (6.30)

where R P SOp3q is the current rotation from tBu Ñ tAu, and Ω P R3 is the angular

velocity in tBu. The observer kinematics are designed as

9
pR “ pRΩ ` kp pRωqˆ

pR (6.31)

where kp ą 0 is a proportional gain, and ω P R3 is some correct term which is to be

designed. Note that the form given in 6.31 matches closely to that given in 6.30. The

primary difference is that now in the observer design, we add a lumped term which

depends on a proportional gain, the current estimate of R, and an innovation term ω,

in order to adjust our current estimate of R.

The goal is now to design some ω such that subsequent Lyapunov analysis on

6.28 results in rR Ñ I3. From [22], [15], a good choice was found to be

ω :“ vexpPap rRqq “ vexpPap pRJRyq (6.32)

95

Figure 6.8: Complementary Filter [23]

where Ry is the current measurement of R, and

Pap rRq :“
1

2
p rR ´ rRJq (6.33)

This design choice for ω leads to a Lyapunov analysis (not shown here) which

proves asymptotic stability on rR. This filter design has an equivalent block diagram

structure shown in Fig. 6.8

The blocks related to Pap rRq and pRΩqˆ are both operations to move to the

tangent space of SOp3q at the identity. Because algebraic functions are not allowed on

SOp3q directly, it is necessary to move to the tangent space in order to add or multiply

terms. In this case, the gain term k is multiplied by Pap rRq in the tangent space, and then

added to the pRΩqˆ term which resides on sop3q. These then group together to form

some correction matrix A, which aids in updating the current estimate via
9
pR “ A pR.

This approach works well with a known rotation R, however, in practice, R

96

is not known exactly. Instead, an estimate pR or measurement Ry needs to be used.

There are two possible filter designs which [23] lays out using these alternatives – these

are the Direct Complementary Filter, and the Passive Complementary Filter. The next

subsection will focus on the passive filter, as that is what is used to derive the final

Explicit Complementary Filter.

6.3.1.5 Passive Complementary Filter

In the passive complementary filter, the current estimate pR is used in place

of R, and a measured instance of angular velocity Ωy is used in place of the true Ω.

Substituting these terms into equation (6.31) yeilds

9
pR “ p pRΩy ` kp pRωqˆ

pR (6.34)

A key point here is that the Lyapunov analysis which proves stability for (6.31)

is also valid for (6.34). Following details from [23], equation (6.34) can be simplified

further into

9
pR “ pRpΩˆ ` kpPap rRqq (6.35)

under the same choice for ω as in the first complementary filter design. The benefit of

the form in 6.35 is that all operations can now take place in the body frame, and then

get rotated after. This makes for a simpler block diagram as shown in Figure 6.9.

Assuming Ωy can be estimated via the gyroscope model in (6.20), and Ry

can be measured at low acceleration frequencies using the accelerometer model (6.22)

97

Figure 6.9: Passive Complementary Filter [23]

or measured under low magnetic disturbances via the magnetometer model (6.24), the

following approximations are considered,

Ry « R (6.36)

Ωy « Ω ` b (6.37)

where R and Ω are the true rotation matrix and angular velocity respectively, and

b P R3 is a gyroscope bias term which may be estimated. Substituting these assumptions

into the previously stated passive complementary filter (6.35), a new complete set of

equations governing the final passive complementary filter is given as

9
pR “ pRpΩy ´ pb` kpωq (6.38)

9
pb “ ´kIω (6.39)

ω “ vexpPap rRqq (6.40)

where kI ą 0 is an integral term who’s purpose is to aid in estimating the bias term. An

98

analysis on this set of equations proves the filter to be asymptotically stable, however,

the drawback is that the Ry term is still assumed to be measured directly. The next iter-

ation on this the passive filter, coined the Explicit Complementary Filter, addresses this

issue by utilizing accelerometer and magnetometer (inertial direction sensors) readings

to replace the Ry assumption.

6.3.1.6 Explicit Complementary Filter

This final form of the Mahony filter will reformulate the previous versions using

direct measurements from the accelerometer and/or magnetometer. To begin, let a set

of n known inertial directions be represented by v0i P tAu, i “ 1, 2, .., n. Measurements

vi are considered which are equivalent to body frame representations of these inertial

vectors. Namely,

vi “ RJv0i ` µi, vi P tBu (6.41)

where µi P R3 is small process noise. For an accelerometer, this process noise can be

considered the acceleration which is not due to gravity, and for the magnetometer, this

noise can be considered as magnetic field disturbances caused by nearby electronics.

Because only the direction is important, all measurements should be normalized before

being used. It should also be notes here, that typically only two inertial reference

measurements are available (n “ 2) – the accelerometer and magnetometer. Denote pvi

as the estimated inertial direction in the body frame tBu, thus we have

pvi “ pRJv0i (6.42)

99

As an example, if only the accelerometer is being used, this equation is equiv-

alently described as

a⃗

|⃗a|
“ pRJe3 (6.43)

where a⃗ is the acceleration measurement, and e3 “ r0, 0, 1sJ. At zero forced acceleration

(excluding gravity), the body frame acceleration measurement should match the iner-

tial frame direction rotated by the current true rotation matrix. Mahony incorporates

this idea into the passive complementary filter, turning it into the so-called explicit

complementary filter

9
pR “ pRppΩy ´ pbqˆ ` kppωmesqˆq (6.44)

9
pb “ ´kIωmes (6.45)

ωmes :“
n

ÿ

i“1

kipv0i ˆ pviq (6.46)

where ki ą 0 is a confidence term that multiplies the cross product between the true

inertial direction and the body frame representation of the inertial direction. For in-

stance, if ki is small, then the confidence in the usability of the inertial measurement is

low. This makes sense if there are a lot of magnetic disturbances onboard for instance.

This concept is not described well in Mahony’s derivation, however, [32] provides an

analysis on the variety of methods used to reject bad inertial estimates.

To summarize, there are two approaches to rejecting bad inertial measurements

– hard switching, and soft switching. In hard switching, one checks if a threshold has

100

been passed, and if so, sets ki “ 0. Using the accelerometer as an example, if the

maneuvers of the aerial vehicle are too quick, the inertial measurement estimate becomes

unreliable and thus should not be used. In soft switching, this ki term may take on a

spectrum of values, starting closer to zero at higher accelerations, and increasing as the

vehicle’s acceleration becomes dominated by gravity. Model-based compensation of the

for the inertial measurement term is also possible, however, is not considered during

this thesis. The estimator designed for the quadrotor in this thesis implements hard

switching for simplicity.

6.3.2 Implementation and Validation

To validate the observer design for the explicit complementary filter derived in

Subsection 6.3.1.1, real IMU sensor measurements were taken during a flight experiment

of the ST Drone. This data was processed, and piped into Matlab as a simulation of the

real system. Loop delays were estimated at 800Hz as is realistic for the update rate of the

sensor data. Finally, the explicit complementary filter was run against the sensor data,

and the outputted estimates were compared against MOCAP measurements. Figures

6.10 and 6.11 present results for roll and pitch estimates from Mahony compared to

estimates from MOCAP.

6.4 Geometric Control

With a geometric estimator in place, geometric control now makes sense. The

specific controller implemented in this section comes from a class of rigid body controllers

101

Figure 6.10: Top: Mahony roll estimate (red) compared to MOCAP truth (blue). Bot-
tom: Error between Mahony and MOCAP. Mean error = 0.56˝

designed on SOp3q in [2] This section will first provide a brief summary of the attitude

control design from [2], then discuss an approximation assumption being made, and

finally present tracking results under both a simple dynamical model, as well as the full

closed loop system from Section 6.2. These results serve as a basis for the justification

of implementing the controller on hardware. This work is unique in that no other prior

work has implemented this geometric controller on a physical system.

6.4.1 Controller Design

The controller design in [2] begins with a definition of the rigid body dynamics,

9Rptq “ RptqΩˆptq (6.47)

J 9Ωptq “ τptq ´ pΩptq ˆ JΩptqq (6.48)

102

Figure 6.11: Top: Mahony pitch estimate (red) compared to MOCAP truth (blue).
Bottom: Error between Mahony and MOCAP. Mean error = 0.34˝

where R P SOp3q represents the current rigid body attitude, Ω P R3 is the current rigid

body attitude rate, Ωˆ P sop3q is the Lie Algebra representation of the current rigid

body attitude rate, J P R3ˆ3 is the inertia matrix, and τ :“ rτx, τy, τzs
J P R3 are the

torques acting on the rigid body. By designing τ as

τptq “ Ωptq ˆ JΩptq ` Juptq, (6.49)

it is clear that J 9Ωptq “ Juptq, thus

9Ωptq “ uptq (6.50)

From this result, the control design in [2] is now derived assuming the following

103

set of attitude dynamics

9Rptq “ RptqΩˆptq (6.51)

9Ωptq “ uptq (6.52)

as well as the following exogenous system

9Rdptq “ RdptqΩdˆptq (6.53)

9Ωdptq “ udptq (6.54)

In order to force the attitude (R,Ω) to track (Rd,Ωd), a family of Lie Algebra

valued functions, FR, is designed which induce a controller class CR. [2] describes, in

detail, examples of functions in FR as well as the stability properties of the controllers

they induce. The stability analysis is purposefully left out here, however, this thesis

selects the following Lie Algebra valued function and subsequent geometric controller:

f :“ LogpRJ
dRq (6.55)

uˆ :“pRJRdq 9ΩdˆpRJ
dRq ` ppRJRdqΩdˆ ´ ΩˆpRJRdqqΩdˆpRJ

dRq

` pRJRdqΩdˆppRJ
dRqΩˆ ´ ΩdˆpRJ

dRqq ´ pK1f
_q^ ´ pK2

9f_q^

(6.56)

where f_ is equivalent to vexpfq, and the ^ operator is equivalent to a skew symmetric

operation. Ie. pK1f
_q^ : R3 Ñ sop3q. This controller is almost-global. This is because

the function f which induces u contains a matrix log operator that inherently is not

104

defined for every rotation on SOp3q [3]. Explicitly, log(RJ
dR) is not defined when the

trace(RJ
dR) = -1. On SOp3q, the trace equals -1 at the following three points:

1. RJ
dR “diag(-1,-1,1)

2. RJ
dR “diag(-1,1,-1)

3. RJ
dR “diag(1,-1,-1)

These points correspond to the following set of euler angles:

1. rϕ, θ, ψs “ rπ, 0, 0s

2. rϕ, θ, ψs “ r0, π, 0s

3. rϕ, θ, ψs “ r0, 0, πs

This means that when the attitude error defined by RJ
dR reaches π on one

of the axis, the matrix log operator and subsequently the controller break down. This

may be fixed in practice by implementing approximations of the matrix log near these

points. Another issue with the matrix log operator is the computational effort required

to compute it. Often times attitude controllers need to operate at high frequencies. If the

common (yet expensive) approach is taken to calculate the matrix log via eigenvalues,

this high frequency bandwidth becomes an issue. This issue and solutions are discussed

in the next section.

105

6.4.2 Matrix Log Approximation

As previously stated, a globally asymptotically stable geometric controller is

impossible to design [9]. This fact lies in the nature of the definition of the matrix

logarithm. Moreover, the matrix log is typically an expensive operation which involves

calculating eigenvalues amongst other things. As this function will be run every single

time the geometric controller function is called, this imposes a direct limitation on the

loop rate. The current onboard loop rate is 800Hz which is approximately 1.25ms per

loop. If the entire geometric controller takes longer than that, then the system begins to

break. It is for this reason that a computationally efficient approximation of the matrix

log is desirable.

6.4.2.1 Power Series Expansion Approximation

The power series expansion is capable of approximating various types of func-

tions. It turns out that this expansion can also approximate the matrix log. Depending

on the length of the power series, this approximation is more or less accurate. The

theorem stated in [?] provides the following approximation for the matrix log

LogpRq «

N
ÿ

k“1

p´1qk`1 pR ´ Iqk

k
“ pR ´ Iq ´

pR ´ Iq2

2
`

pR ´ Iq3

3
´ ... (6.57)

where N is the length of the power series approximation. If R is sufficiently close to the

identity (ie. ∥R ´ I∥ ă 1) and N Ñ 8, then logpRq equals the right hand side exactly.

Namely, elogpRq “ R.

106

The key factor in this approximation is how close R is to I. From the previously

discussed geometric control design, the matrix log operator is going to be used on an

error rotation term rR. It then suffices to say that so long as the approximated rotation

pR does not stray too far from the true rotation R, and N is sufficiently large, then the

approximation is good. These two assumptions, however, are not always valid. For one,

if the error ever becomes too large, the system will likely become unstable in it’s attempt

to control itself on innacurate log approximations. Secondly, as N becomes larger, the

number of computationally expensive exponent operations becomes larger – this again

inhibits the low level controller from performing at a fast loop rate. The approximation

method provided in the next subsection, however, does not fall short with respect to

these two assumptions.

6.4.2.2 Rodriguez Method

Another widely used matrix logarithm method is known as the Rodriguez

method [8]. This method defines the matrix log as follows:

θ “ acosp
trpRq ´ 1

2
q (6.58)

pu “
1

2sinpθq
pR ´RJq (6.59)

logpRq “ θpu (6.60)

This method is actually exact for the logarithm of matrices in the special

orthogonal group. Moreover, it is well defined except for instances where the matrix

107

log, by definition, is undefined, and at the hover state rϕ, θ, ψs “ r0, 0, 0s. At the hover

state, R “ I3, the trpRq “ 3 causing pu to blow up to infinity. Therefore, at trpRq “ 3,

the matrix log is directly defined as

LogpRq :“

»

—

—

—

—

—

—

–

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, trpRq “ 3 (6.61)

6.4.2.3 Result Comparison

Not only is the Rodriguez method exact for matrices on SOp3q, in practice, it

is much faster than both the power series approximation and the traditional eigenvalue-

based matrix log method. Both the power series approximation and the Rodriguez

method were compared for a realistic set of data. In the following experiments, a

constant current attitude is set as R “ I, corresponding to the euler angles rϕ, θ, ψs “

r0, 0, 0s. The desired roll then shifts from -200 to +200 degrees, in 1 degree increments.

This change in desired euler angle is converted to a rotation matrix Rd, and the error

rotation is computed as rR “ RJRd.

To be concise, a desired rotation matrix Rd is generated for every desired atti-

tude from rϕd, θd, ψds “ r´200, 0, 0s to rϕd, θd, ψds “ r`200, 0, 0s in 1 degree increments.

This desired attitude Rd is multiplied by the transpose of the constant attitude R “ I.

This rR term is then fed into each respective log approximation function, and every

element of the resulting 3x3 matrix is compared against a true matrix log which was

108

computed using Matlab’s built in logm() function. The differences between the true

matrix log element values and the approximated matrix log element values are plotted.

These results are presented below in Figures 6.12 and 6.13.

Figure 6.12: Power Series Log Approximation Experiment

Figure 6.13: Rodriguez Method Experiment

Visually, one can easily tell the Rodriguez method outperforms the Power

Series approximation. Again, this is because the Rodriguez method is exact on SOp3q.

109

The mean across the difference of all elements in the rodriguez approximation is on

the scale of 10e-17. The power series approximation also has a mean on this scale, but

only around the plus or minus 30 degree range. While although the ST Drone has a

max attitude command of plus or minus 30˝, the computational effort required to run

the power series is much more than that of the Rodgriguez method. As such, there is

virtually no reason to go with the power series method.

6.5 Results

Prior to a hardware implementation, simulations must validate the control for

a set of rigid body dynamics. This subsection will describe two experiments – the first

experiment applies the above geometric controller to a simple linear system. The second

experiment incorporates the controller design into the quadrotor position controller from

Section 6.2. Both of these implementations will make use of the previously discussed

Rodriguez method for calculating the matrix logarithm. In Section 6.4 this method was

shown to be both much faster to compute than traditional eigenvalue-based methods,

and even exact for matrices on SOp3q.

110

6.5.1 Simple Dynamical System Simulation

Consider a system with rotational dynamics governed by the linear state space

model

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0

0 0 0

0 0 0

1
Ix

0 0

0 1
Iy

0

0 0 1
Iz

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.62)

, C “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, D =

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where the state x “ rϕ, θ, ψ, 9ϕ, 9θ, 9ψsJ, control input u “ rτx, τy, τzs
J, and inertia matrix

I “ diagpIx, Iy, Izq. This is a very simple state space model for rotational dynamics;

however, it serves its purpose as the foundation for a proof of concept of the geometric

controller. Next, a desired trajectory is generated as the pair Rd,Ωd where the rotation

matrix and rotation rate are computed via

111

Rd “ RzpψdqRypθdqRxpϕdq (6.63)

Pd “ vexplogpRdqq (6.64)

Ωd “
Pd ´ Pdprev

∆T
(6.65)

In the above set of equations, a desired rotation matrix is first generated us-

ing the desired euler angles and corresponding rotation matrices. Following this, a 3x1

vector of desired parameters, Pd, is extracted from Rd. These desired parameters are

related to the desired attitude associated with the rotation matrix. Finally, Ωd is cal-

culated by differentiating the desired parameters for a small time-step ∆T . This pair

pRd,Ωdq is then sent as an attitude command to the geometric controller. There are a

variety of ways to define the pair (Rd,Ωd), this is simply one method.

The attitude controller outputs torque commands which are directly injected

into the dynamical system. The tracking ability of the controller is presented below for

a time-varying desired attitude trajectory rϕd, θd, ψds “ r30π180 sinptq, 10π180 sinptq, 0s, where

t P r0, 3s is measured in seconds.

112

Figure 6.14: Geometric Attitude Tracking

Figure 6.15: Geometric Attitude Tracking Error

113

The controller tracking results presented here are promising. They exhibit

virtually no phase lag, which is common among PID controllers, and they are quick to

converge. With the attitude tracking validated for a simple rotational dynamical model,

the attitude controller can now replace the PID controller in the quadrotor control setup

defined in Section 6.2. This new control design is detailed in the next section.

6.5.2 ST Drone Simulation

In Section 6.1 and 6.2, a model of a quadrotor was derived, and a control archi-

tecture similar the architecture described in Chapter 5 was designed. This architecture

runs a position controller at 40Hz, which outputs attitude commands to a PID loop

running at 160Hz, which finally outputs attitude rate commands to the inner-most PID

loop running at 800Hz. This structure of operating an attitude control loop that feeds

in attitude rate commands is referred to as PIV control. This PIV controller works

by utilizing both attitude and attitude rate feedback. The geometric controller derived

in Section 5.4 also operates on attitude and attitude rate feedback. This necessarily

means that replacing the PID control scheme for the geometric control scheme means

removing both the 160Hz outerloop and the 800Hz innerloop. Only the 800Hz inner

loop is to be replaced by the geometric controller. This is a key difference. Rather than

two loops operating at different rates, we now have one geometric control loop operating

at 800Hz. This loop is effectively doing the job of both the 160Hz and 800Hz PID loops

because it operates on command pairs Rd,Ωd. After changing this structure, the new

closed loop system block diagram is pictured in Figure 6.16.

114

Figure 6.16: Closed Loop System with Geometric Control

With the two inner loop PID controllers removed, the control architecture is

actually much simpler. It is also now possible to increase the rate of the position PID

loop for performance. However, Optitrack limits the rate to 100Hz in this case.

Now that the geometric controller has replaced the inner loop PIV controller,

it can be tested using the same position controller. Because the geometric controller

seems to have faster convergence and no phase lag, one can expect this improvement

to translate to the results of the position controller as well. In the subsequent results,

a simulated experiment was performed in which a position setpoint of rxd, yd, zds “

r2m, 2m, 5ms is tracked. The geometric controller is expected to be more effective at

tracking the desired attitudes produced by the position controller.

These results are similar to the simple rotational dynamical system test from

the previous section. Convergence is fast with little to no phase lag. This is promising,

and is a good starting point for transitioning the controller to hardware. While these

results are strong, there is an inherent issue with the design of the control architecture.

A large reason for implementing the attitude controller on SOp3q was to remove any

115

Figure 6.17: Geometric Position Control Results

issues related to the gimbal lock phenomena. While this controller implementaiton is

a solid step in the right direction, it is not the entire solution. To completely remove

the possibility of gimbal lock from the system, a geometric outerloop position controller

needs to be implemented. As is, the PID position controller still outputs euler angles,

which are then converted to rotation matrices. These euler angles are susceptible to

gimbal lock, and just converting them to a rotation matrix on SOp3q isn’t enough;

this is similar reasoning as to why we couldn’t just use the original euler angle based

AHRS and convert to rotation matrices. A geometric outerloop position controller is

able to run feedback control on position, and directly output commands in SOp3q (ie.

output an Rd term). This thesis does not focus on implementing an outerloop geometric

controller, but leaves it to future researchers taking on this project.

In the hardware implementation to come, a few key differences are found which

are not present in simulation. These differences primarily arise in the requirement to

116

Figure 6.18: Geometric Attitude Control Results

filter the Rd,Ωd pair, as well as the requirement to add an integral-like term into the

control design in order to account for unknown trim conditions. The reason these issues

do not appear in simulation is because this is the ideal case. For one, the exact inertia

matrix is known, and two, the output of the controller is a true torque on the system.

On hardware, the output is a desired torque which is not exactly related to the true

torque. Moreover, the mass distribution of the drone is not consistent or symmetric.

This means the inertia matrix, which appears in the geometric control law, is not well

known. These issues are addressed in detail in the next chapter.

117

Chapter 7

Hardware Implementation

In Chapter 6, theory behind an attitude controller designed on SOp3q was

presented. This form of control is preferable over standard PID control techniques

because of its nonlinear design, as well as ability to avoid gimbal lock issues. The

specific controller used comes from a class of rigid body stabilizing controllers on SOp3q

given in [2]. A prerequisite to using this so-called Geometric controller, is the use of a

Geometric (or SOp3q based) estimator. The estimator chosen in this thesis follows [23]’s

DCM implementation of the explicit complementary filter. This filter and controller

were both tested and validated in simulation in Sections 6.3 and 6.4 respectively. The

controller proved an ability to force fast trajectory tracking convergence for a simple

rigid body kinematic system, as well as for a dynamical model of a quadrotor under

discrete-time control methods similar to what is found onboard the ST Drone. These

results are the foundation for a hardware implementation.

In this chapter, the hardware implementation of this controller, as well as

118

many of the nuances to it’s successful deployment, are presented. Similar to the steps

taken in Chapter 5, this chapter will begin with a description of the implementation

and validation of the estimator in Section 7.1. Once the estimator has been verified,

the geometric controller is implemented and tested in Section 7.2.

7.1 Geometric Estimator

In Section 6.3.2, the DCM version of the filter described in [23] was run against

real IMU data collected during a flight experiment. The estimator performed well,

however, the test results most likely do no represent the optimal performance. This

IMU data was sent from the drone via Bluetooth which inherently limits the rate at

which the measurements can be stored. While the simulated estimator ran on IMU data

with a slower update rate, the hardware implementation will run in real-time. Still, the

offline test was a necessary first step in proving the concept. Now, to implement and

validate the estimator onboard, the following steps need to be taken:

1. Implement and validate a linear algebra library in C in order to write the algorithm

onboard the drone. This library must be capable of performing the following

functions:

‚ Matrix Multiplication & Division: (3x3)*(3x3), (3x3)*(3x1), α*(3x3),

α*(3x1).

‚ Matrix Addition & Subtraction: (3x3), (3x1).

‚ Matrix Transpose: For (3x3) matrices.

119

‚ Skew Symmetric Operation: To take Ω P R3 Ñ sop3q.

‚ Cross Product: For (3x1) vectors.

‚ Vector Norm: For (3x1) vectors.

2. Use the linear algebra library to implement the AHRS algorithm described in

equation (6.44).

3. Verify the outputs of the onboard algorithm match with the outputs of the Matlab

algorithm for the same set of hardcoded IMU measurements.

4. Tune the AHRS gains for good estimation performance.

A detailed discussion of all the linear algebra functions is provided in Appendix

D. A noteworthy point here is that the magnetometer is unused in the current config-

uration. As such, accurate estimates of yaw may not always be available. More often

than not, however, the gyroscope alone is able to estimate yaw over the short duration

(1 minute) of flight experiments in the lab.

After completing the previously described steps, a working geometric estima-

tor was implemented ombaord. The final validation step of comparing the original

quaternion AHRS, our DCM version of the AHRS, and MOCAP proves the outputted

estimates of this new scheme to be just as effective as the quaternion version.

In Figure 7.1, the top row shows attitude estimation for roll, and the bottom

row shows attitude estimation for pitch. The RMSE’s (as compared to true MOCAP

measurements) are the following: rϕ “ 0.97˝ and rθ “ 2.66˝ for ST (quaternion) AHRS

120

Figure 7.1: Mahony DCM Hardware Estimation Comparison

and rϕ “ 0.96˝ and rθ “ 2.64˝ for the DCM AHRS version. Again, the larger error in

both pitch estimates are due to the spikes in acceleration at the 15 and 20 second marks.

The only inertial measurement device being used is the accelerometer, and because of

this, the AHRS loses the inertial frame whenever the quadrotor accelerates too fast.

This issue can be remedied by using a weighting term on the inertial direction which

decreases as the norm of the acceleration measurement moves away from the expected

gravitational constant. This effectively tells the AHRS to trust the inertial direction

measurement less as the drone accelerates. These estimation results are expected to

be similar to the original ST Drone AHRS, as the same filter was implemented, except

using a new attitude representation. To reiterate, this step was necessary so that a

121

geometric controller can run and avoid the issue of gimbal lock. In the next section,

this controller and a few nuances to its successful design are presented.

7.2 Geometric Controller

Again, with a geometric estimator implemented, a geometric controller with

all its benefits can be utilized. There are a few significant differences in the hardware

implementation of this geometric controller vs the theoretical implementation, however.

For one, the controller is no longer directly commanding rigid body torques, nor is it

going to use the exact inertia matrix of the system. Another key difference is that

the physical system is not symmetric and so often times is not trimmed correctly; in

practice, this leads to larges biases in attitude tracking. Raising the proportional and

derivative gains on this geometric controller does not sufficiently reduce the steady state

error, and tends to amplify higher frequency signals before it achieves desirable tracking

behavior. To remedy this, an integral action is appended to the geometric controller.

An issue related to the integral action, however, is that because a large integrator gain is

needed to close down the steady state error quick, it is susceptible to forcing the drone

to drift even when the command to the drone is to hover. Lastly, in the generation

of a desired trajectory pair Rd,Ωd, the Ωd term needs a low pass filter applied to it.

Without one, the numerical derivatives often contain frequency components which are

too high. By tuning the low pass filter, one can effect how gentle or aggressive the

desired trajectories should be.

122

The approach to implement this controller is similar to the approach taken to

implement the estimator. These steps are as follows:

1. Write and validate extra required linear algebra functions. After the implementa-

tion of the AHRS, only one function is left to write, which is the matrix logarithm

using Rodriguez’s method.

2. Use this linear algebra library to implement control law (6.56).

3. Verify the outputs of the onboard controller match the outputs of the Matlab

controller for the same set of inputs Rd,Ωd and gains.

4. Implement Rd,Ωd generation logic at the Matlab level to convert desired euler

angles to a desired rotation matrix.

5. Test and tune the controller for performance.

Again, the linear algebra functions and code are provided in Appendix D.

Additionally, the pair Rd,Ωd are to be generated via equations (6.63, 6.65). Now,

unlike in the previous section, the completion of these items did not result in a working

controller. There are a few nuances which need to be addressed. These nuances were

described earlier in this section; to summarize, here is a list of issues which the hardware

version of this controller faces:

1. Because the controller does not directly output rigid body torques anymore, the

true system inertia matrix J cannot be used as-is (even if it is known). J is

123

proportional to the output of the controller, but since the output of the controller

is not rigid body torques, a different scaling needs to occur.

2. The physical quadrotor is not symmetrical, and is also likely not trimmed correctly.

As such, large tracking biases are observed while running the controller.

3. The numerical derivative used to calculate Ωd results in noisy command signals.

This induces instability into the system.

Solutions to these issues are summarized in Subsections 7.2.1, 7.2.2, and 7.2.3

below. Then, results are presented in Subsection 7.2.4.

7.2.1 Inertia/Torque Solution

Because the output of the controller is no longer a 1:1 mapping for a rigid body

torque, the output needs to be scaled. On the real system, the inertia matrix J contains

elements on the scale of 10e-3. With an inertia matrix this small, this forces the desired

torque output to also be very small. To fix this, we choose an arbitrarily large J matrix

in order to generate torque outputs on a scale that matches up with the original PID

attitude controller. An effective value for the inertia matrix is J “ diagp0.3, 0.3, 0.3q.

7.2.2 Large Steady State Error Solution

The quadrotor not being symmetric nor well trimmed is actually a significant

issue for this controller. In practice, the proportional and derivative gain components

of the controller can only be increased so much before they begin amplifying high fre-

124

quency noise rather than reducing the steady state tracking error. For this reason, an

integrator term is added which acts on the roll,pitch,yaw state errors. Care needs to be

taken here while tuning, as a large integral gain is needed to reduce the steady state

error to zero, however, a large integral gain forces situations where after an aggressive

banking maneuver occurs and one attempts to level the drone out, leftover integration

error causes the system to drift. With this solution implemented, the control law from

equation (geometricControlLaw) now transforms into:

f :“ LogpRJ
dRq (7.1)

uˆ :“ pRJRdq 9ΩdˆpRJ
dRq ` ppRJRdqΩdˆ ´ ΩˆpRJRdqqΩdˆpRJ

dRq

` pRJRdqΩdˆppRJ
dRqΩˆ ´ ΩdˆpRJ

dRqq ´ pK1f
_q^ ´ pK2

9f_q^ ´ pK3

ż

f_q^

(7.2)

where pK3

ş

f_q^ with a slight abuse of notation refers to pK3

ş

pfdtq_q^. This

is the term related to the integral of roll,pitch,yaw errors, and K3 is the integrator gain.

7.2.3 Noisy Ωd Solution

The solution to this problem is elegant in its simplicity, but also in its desirable

effect on the system as a whole. Ωd is noisy in practice because it is obtained via a simple

numerical derivative on parameters of the desired rotation matrix, Rd. An obvious

solution to this is issue is to run a lowpass filter on Ωd. The beauty in this solution,

125

however, is that one may now tune this lowpass filter to effectively decide how gentle or

aggressive of a trajectory the drone should take in achieving the desired orientation Rd.

This gives the user one more tuning parameter to change the effects of the controller.

7.2.4 Results

With these solutions in effect, a series of tests were performed similar to those

done for the PID attitude controller in Section 5.1. These tests show off the ability of

the drone to converge quickly to commanded attitudes. In Figure 7.2, the quadrotor is

shwon reacting to a roll command generated during manual flight.

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-30

-20

-10

0

10

R
o
ll

A
n
g
le

 (
d
e
g
)

Attitude Trajectory Tracking - ROLL

MOCAP

AHRS

Commanded Roll

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-4

-2

0

2

R
o
ll

A
n
g
le

 R
a
te

(d
e
g
/s

)

Commanded Roll Rate

Figure 7.2: Geometric Attitude Control Hardware Roll Results

This geometric controller has a fast rate of convergence to the commanded

signal. With this controller performing as-is, tests can now be performed to evaluate

whether or not position tracking performance improves. Experiments similar to those

run for the PID controller in Section 5.1 are now run for the geometric controller; that

126

is, a point position tracking test and circular trajectory position test are performed with

the geometric attitude controller, using the original PID position controller. Figure 7.3

shows off point tracking results. The drone is placed some distance away from the center

of the room, and is told to converge to the point rx, y, zs “ r0, 0, 0.7s.

0 10 20 30 40 50 60
-2

0

2
Commanded X Position

Command

MOCAP

0 10 20 30 40 50 60
-2

0

2
Commanded Y Position

Command

MOCAP

0 10 20 30 40 50 60
-2

0

2
Commanded Z Position

Command

MOCAP

Figure 7.3: Position Tracking Performance with Geometric Attitude Controller

The drone effectively moves towards this desired position and stays there with

little deviation from the reference. Next, a circular trajectory is generated with ω “ 0.1

rad/s (as done in Section 5.1), and the drone attempts to track the circle. These results

are presented in Figure 7.4 below.

In this test, the drone exhibits an improvement in terms of phase lag over the

PID attitude control scheme. This is expected as the nonlinear controller seemingly

127

0 5 10 15 20 25 30 35 40 45
-2

0

2
Commanded X Position

Command

MOCAP

0 5 10 15 20 25 30 35 40 45
-2

0

2
Commanded Y Position

Command

MOCAP

0 5 10 15 20 25 30 35 40 45
-2

0

2
Commanded Z Position

Command

MOCAP

Figure 7.4: Position Tracking Performance with Geometric Attitude Controller

has faster convergence in simulation as well. With these series of tests complete, the

geometric attitude controller has proven effective in both a simulation environment and

on hardware in a real-world setting.

128

Chapter 8

Conclusion & Future Work

In this thesis, the ST Drone quadrotor platform was discussed in detail. The

standalone version of this drone lacks much functionality required for use in autonomous

guidance and control experimentation. In Part I of this thesis, a firmware extension was

developed to address some of these issues such as no manual override method and an

inconsistent communication channel. Upon completion of extending the platform to

be compatible with autonomous flight controllers, a position controller was developed

and validated through analyzing experimental results. Next, in Part II, an advanced

geometric attitude control scheme was investigated. This control scheme improves upon

standard PID attitude controllers by removing the possibility of gimbal lock, as well as

not being confined to typical drawbacks of linear controllers. The specific geometric

controller which was implemented is almost-globally asymptotically stable, meaning

tracking behavior is theoretically much more effective at any point in the state space,

as opposed to just near the equilibrium (which is where a linear controller should be

129

effective). This controller was tested in both simulation and hardware, and shown to

improve the overall attitude tracking of the ST Drone.

Future work remains on both the hardware side, and theoretical side. As for

hardware, improvements may be made on 1) real-time communication, and 2) utilizing

the pressure sensor and magnetometer. The drone platform currently relies on using

specific BLE characteristics to send data to the GCS. This is a limiting factor, as

there is a pre-defined maximum amount of data which can be transmitted off of the

drone. The HC12’s transceiver properties should be investigated further to draw a

stronger conclusion the feasibility of transmitting data via the HC12 whilst receiving

data over the HC12. With respect to the second point, including the pressure sensor and

magnetometer would help in the following ways: a) The pressure sensor allows for use

of an onboard altitude controller which may replace the open-loop controller when in

EOMC, b) The magnetometer may improve AHRS estimates of the drones orientation.

On the theoretical side, improvements may be made to both the position and

attitude controllers. The position controller is not geometric, which means gimbal lock

is still a problem which the system may face. To truly remove the possibility of gim-

bal lock, a geometric position controller should be implemented to directly command

rotations matrices on SOp3q. Furthermore, the geometric attitude controller imple-

mented onboard is limited in it’s almost-global nature. Because no geometric attitude

controller can provide global stability (as explained in Chapter 6), a hybrid solution

should be investigated. Using hybrid feedback control techniques, it should be possi-

ble to seamlessly stitch together a series of geometric based controllers to create one

130

globally stable geometric attitude controller. This work would be novel, and a working

hardware implementation of it would benefit the fields of hybrid, geometric, nonlinear

controls.

131

Bibliography

[1] Mohamed Abbas-Turki, Gilles Duc, Benoit Clement, and Spilios Theodoulis. Ro-

bust gain scheduled control of a space launcher by introducing lqg/ltr ideas in the

ncf robust stabilisation problem. In 2007 46th IEEE Conference on Decision and

Control, pages 2393–2398, 2007.

[2] Adeel Akhtar and Steven L. Waslander. Controller class for rigid body tracking on

SOp3q. IEEE Transactions on Automatic Control, 66(5):2234–2241, 2021.

[3] Akhtar, Adeel. Nonlinear and Geometric Controllers for Rigid Body Vehicles. PhD

thesis, University of Waterloo, 2018.

[4] Rama Koteswara Rao Ana, Niraj Choudhary, J. S. Lather, and G. L. Pahuja. Piv

and lead compensator design using lambert w function for rotary motions of srv02

plant. In 2014 IEEE 10th International Colloquium on Signal Processing and its

Applications, pages 266–270, 2014.

[5] Randal Beard. Quadrotor dynamics and control rev 0.1. 2008.

[6] Randal W. Beard. Quadrotor dynamics and control. 2008.

132

[7] HAROLD D. BLACK. A passive system for determining the attitude of a satellite.

AIAA Journal, 2(7):1350–1351, 1964.

[8] José Luis Blanco-Claraco. A tutorial on SEp3q transformation parameterizations

and on-manifold optimization, 2022.

[9] Nalin A. Chaturvedi, Amit K. Sanyal, and N. Harris McClamroch. Rigid-body

attitude control. IEEE Control Systems Magazine, 31(3):30–51, 2011.

[10] C.-K. Chu, G.-R. Yu, E.A. Jonckheere, and H.M. Youssef. Gain scheduling for

fly-by-throttle flight control using neural networks. In Proceedings of 35th IEEE

Conference on Decision and Control, volume 2, pages 1557–1562 vol.2, 1996.

[11] George Ellis. Chapter 6 - four types of controllers. In George Ellis, editor, Control

System Design Guide (Fourth Edition), pages 97–119. Butterworth-Heinemann,

Boston, fourth edition edition, 2012.

[12] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential flatness

of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed

trajectories. IEEE Robotics and Automation Letters, 3(2):620–626, 2018.

[13] Wojciech Giernacki, Piotr Kozierski, Jacek Michalski, Marek Retinger, Rafal

Madonski, and Pascual Campoy. Bebop 2 quadrotor as a platform for research

and education in robotics and control engineering. In 2020 International Confer-

ence on Unmanned Aircraft Systems (ICUAS), pages 1733–1741, 2020.

[14] Wojciech Giernacki, Mateusz Skwierczyński, Wojciech Witwicki, Pawe l Wroński,

133

and Piotr Kozierski. Crazyflie 2.0 quadrotor as a platform for research and edu-

cation in robotics and control engineering. In 2017 22nd International Conference

on Methods and Models in Automation and Robotics (MMAR), pages 37–42, 2017.

[15] T. Hamel and R. Mahony. Attitude estimation on so[3] based on direct inertial

measurements. In Proceedings 2006 IEEE International Conference on Robotics

and Automation, 2006. ICRA 2006., pages 2170–2175, 2006.

[16] James Jackson, Daniel Koch, Trey Henrichsen, and Tim McLain. Rosflight: A lean

open-source research autopilot. In 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 1173–1179, 2020.

[17] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering, 82(1):35–45, 03 1960.

[18] Hamid Saeed Khan and Muhammad Bilal Kadri. Attitude and altitude control

of quadrotor by discrete pid control and non-linear model predictive control. In

2015 International Conference on Information and Communication Technologies

(ICICT), pages 1–11, 2015.

[19] Shida Liu, Zhongsheng Hou, and Jian Zheng. Attitude adjustment of quadrotor

aircraft platform via a data-driven model free adaptive control cascaded with in-

telligent pid. In 2016 Chinese Control and Decision Conference (CCDC), pages

4971–4976, 2016.

[20] Simone A. Ludwig and Kaleb D. Burnham. Comparison of euler estimate using

134

extended kalman filter, madgwick and mahony on quadcopter flight data. In 2018

International Conference on Unmanned Aircraft Systems (ICUAS), pages 1236–

1241, 2018.

[21] Sebastian Madgwick. An efficient orientation filter for inertial and inertial / mag-

netic sensor arrays. 2010.

[22] R. Mahony, T. Hamel, and J.-M. Pflimlin. Complementary filter design on the

special orthogonal group so(3). In Proceedings of the 44th IEEE Conference on

Decision and Control, pages 1477–1484, 2005.

[23] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear complementary

filters on the special orthogonal group. IEEE Transactions on Automatic Control,

53(5):1203–1218, 2008.

[24] Vandana Mansur, Srinivasulu Reddy, Sujatha R, and R. Sujatha. Deploying com-

plementary filter to avert gimbal lock in drones using quaternion angles. In 2020

IEEE International Conference on Computing, Power and Communication Tech-

nologies (GUCON), pages 751–756, 2020.

[25] Christopher Mayhew, Ricardo Sanfelice, and Andrew Teel. On quaternion-based

attitude control and the unwinding phenomenon. pages 299 – 304, 08 2011.

[26] Christopher G. Mayhew, Ricardo G. Sanfelice, and Andrew R. Teel. On quaternion-

based attitude control and the unwinding phenomenon. In Proceedings of the 2011

American Control Conference, pages 299–304, 2011.

135

[27] D.R. Mix, J.S. Koenig, K.M. Linda, O. Cifdaloz, V.L. Wells, and A.A. Ro-

driguez. Towards gain-scheduled h/sup /spl infin// control design for a tilt-wing

aircraft. In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE

Cat. No.04CH37601), volume 2, pages 1222–1227 Vol.2, 2004.

[28] Fang Nan, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. Nonlinear mpc

for quadrotor fault-tolerant control. IEEE Robotics and Automation Letters,

7(2):5047–5054, 2022.

[29] Harris Teague. Comparison of attitude estimation techniques for low-cost un-

manned aerial vehicles, 2016.

[30] Qiyu Wang, Jianping Yuan, and Zhanxia Zhu. The application of error quaternion

and pid control method in earth observation satellite’s attitude control system.

In 2006 1st International Symposium on Systems and Control in Aerospace and

Astronautics, pages 4 pp.–131, 2006.

[31] Senlin Wang, Shangqiu Shan, Wei Luo, and Xinhong Yu. Robust adaptive nonlinear

attitude control for a quadrotor uav. In 2017 36th Chinese Control Conference

(CCC), pages 3254–3259, 2017.

[32] Yongjun Wang, Zhi Li, and Xiang Li. External disturbances rejection for vector

field sensors in attitude and heading reference systems. Micromachines, 11:803, 08

2020.

[33] Yong Zeng, Qiang Jiang, Qiang Liu, and Hua Jing. Pid vs. mrac control tech-

136

niques applied to a quadrotor’s attitude. In 2012 Second International Conference

on Instrumentation, Measurement, Computer, Communication and Control, pages

1086–1089, 2012.

137

Appendix A

Attitude Heading and Reference System

Using Quaternions

1 void ahrs_fusion_ag(AxesRaw_TypeDef_Float *acc , AxesRaw_TypeDef_Float *

gyro , AHRS_State_TypeDef *ahrs)

2 {

3 float axf ,ayf ,azf ,gxf ,gyf ,gzf;

4 float norm;

5 float vx , vy , vz;

6 float ex , ey , ez;

7 float q0q0 , q0q1 , q0q2 , /*q0q3 ,*/ q1q1 , /*q1q2 ,*/ q1q3 , q2q2 , q2q3 ,

q3q3;

8 float halfT;

9
10
11 if(gTHR <MIN_THR)

12 {

13 ahrs_kp = AHRS_KP_BIG;

14 }

15 else

16 {

17 ahrs_kp = AHRS_KP_NORM;

18 }

19
20 axf = acc ->AXIS_X;

21 ayf = acc ->AXIS_Y;

22 azf = acc ->AXIS_Z;

23
24 // mdps convert to rad/s

25 gxf = ((float)gyro ->AXIS_X) * ((float)COE_MDPS_TO_RADPS);

26 gyf = ((float)gyro ->AXIS_Y) * ((float)COE_MDPS_TO_RADPS);

138

27 gzf = ((float)gyro ->AXIS_Z) * ((float)COE_MDPS_TO_RADPS);

28
29
30 // auxiliary variables to reduce number of repeated operations

31 q0q0 = q0*q0;

32 q0q1 = q0*q1;

33 q0q2 = q0*q2;

34 //q0q3 = q0*q3;

35 q1q1 = q1*q1;

36 //q1q2 = q1*q2;

37 q1q3 = q1*q3;

38 q2q2 = q2*q2;

39 q2q3 = q2*q3;

40 q3q3 = q3*q3;

41
42 // normalise the accelerometer measurement

43 norm = invSqrt(axf*axf+ayf*ayf+azf*azf);

44
45 axf = axf * norm;

46 ayf = ayf * norm;

47 azf = azf * norm;

48
49 // estimated direction of gravity and flux (v and w)

50 vx = 2*(q1q3 - q0q2);

51 vy = 2*(q0q1 + q2q3);

52 vz = q0q0 - q1q1 - q2q2 + q3q3;

53
54 ex = (ayf*vz - azf*vy);

55 ey = (azf*vx - axf*vz);

56 ez = (axf*vy - ayf*vx);

57
58 // integral error scaled integral gain

59 exInt = exInt + ex*AHRS_KI*SENSOR_SAMPLING_TIME;

60 eyInt = eyInt + ey*AHRS_KI*SENSOR_SAMPLING_TIME;

61 ezInt = ezInt + ez*AHRS_KI*SENSOR_SAMPLING_TIME;

62
63 // adjusted gyroscope measurements

64 gxf = gxf + ahrs_kp*ex + exInt;

65 gyf = gyf + ahrs_kp*ey + eyInt;

66 gzf = gzf + ahrs_kp*ez + ezInt;

67
68 // integrate quaternion rate and normalise

69 halfT = 0.5f*SENSOR_SAMPLING_TIME;

70 q0 = q0 + (-q1*gxf - q2*gyf - q3*gzf)*halfT;

71 q1 = q1 + (q0*gxf + q2*gzf - q3*gyf)*halfT;

72 q2 = q2 + (q0*gyf - q1*gzf + q3*gxf)*halfT;

73 q3 = q3 + (q0*gzf + q1*gyf - q2*gxf)*halfT;

74
75 // normalise quaternion

76 norm = invSqrt(q0q0 + q1q1 + q2q2 + q3q3);

77 q0 *= norm;

78 q1 *= norm;

79 q2 *= norm;

139

80 q3 *= norm;

81
82 ahrs ->q.q0 = q0;

83 ahrs ->q.q1 = q1;

84 ahrs ->q.q2 = q2;

85 ahrs ->q.q3 = q3;

86
87 }

Source Code A.1: ahrs fusion ag() - Filtered accelerometer and gyroscope measurements
are fed into this function. Based on this sensor feedback, a nonlinear complementary
filter [23] is used to estimate the drones current orientation in quaternions.

140

Appendix B

Attitude Heading and Reference System

Using DCM

1
2 void ahrs_fusion_ag_2(AxesRaw_TypeDef_Float *acc , AxesRaw_TypeDef_Float

*gyro , AHRS_State_TypeDef *ahrs){

3 // Get latest acc measurements

4 float accMes [3] = { acc ->AXIS_X , acc ->AXIS_Y , acc ->AXIS_Z };

5 float g[3] = { 0.0, 0.0, 1.0 };

6
7 // Get latest gyro measurement (mdps convert to rad/s)

8 float gyrMes [3] = { ((float)gyro ->AXIS_X) * ((float)COE_MDPS_TO_RADPS

), ((float)gyro ->AXIS_Y) * ((float)COE_MDPS_TO_RADPS), ((float)gyro

->AXIS_Z) * ((float)COE_MDPS_TO_RADPS) };

9
10 // Store norm of acceleration

11 float accNorm = norm3(accMes);

12
13 if (accNorm > 0) {

14 // Get current inertial vector estimate

15 float accInerHat [3] = { 0 }; float Rtrans [3][3] = { 0 };

16 transpose3(ahrs ->R, Rtrans);

17 mult33_31(Rtrans , g, accInerHat);

18
19 // Get inertial vector estimate error

20 float wMes [3] = { 0 }; float x1[3] = { 0 }; float x2[3] = { 0 };

21 scalarMult31(accMes , 1 / accNorm , x1);

22 cross31(x1 , accInerHat , x2);

23 scalarMult31(x2 , kW2 , wMes);

24
25 // Update gyro bias estimate

141

26 float biasDot [3] = { 0 }; float x3[3] = { 0 };

27 scalarMult31(wMes , -AHRS_KI2 , biasDot); // biasDot

28 scalarMult31(biasDot , SENSOR_SAMPLING_TIME , x3);

29 add31(ahrs ->b, x3, ahrs ->b); // bias+

30
31 // Update attitude estimate

32 float RhatDot [3][3] = { 0 }; float x4[3] = { 0 }; float x5 [3][3] =

{ 0 }; float x6 [3][3] = { 0 }; float x7 [3][3] = { 0 }; float x8

[3][3] = { 0 }; float x9 [3][3] = { 0 };

33 sub31(gyrMes , ahrs ->b, x4);

34 skewSym3(x4, x5);

35 skewSym3(wMes , x6);

36 scalarMult33(x6 , AHRS_KP2 , x7);

37 add33(x5, x7, x8);

38 mult33_33(ahrs ->R, x8 , RhatDot); // RhatDot

39 scalarMult33(RhatDot , SENSOR_SAMPLING_TIME , x9);

40 add33(ahrs ->R, x9, ahrs ->R); // Rhat+

41 }

42 }

43
44 void initAHRS(AHRS_State_TypeDef *ahrs)

45 {

46 ahrs ->R[0][0] = 1.0f; ahrs ->R[0][1] = 0.0f; ahrs ->R[0][2] = 0.0f;

47 ahrs ->R[1][0] = 0.0f; ahrs ->R[1][1] = 1.0f; ahrs ->R[1][2] = 0.0f;

48 ahrs ->R[2][0] = 0.0f; ahrs ->R[2][1] = 0.0f; ahrs ->R[2][2] = 1.0f;

49
50 ahrs ->b[0] = 0; ahrs ->b[1] = 0; ahrs ->b[2] = 0;

51
52 ahrs ->Omega [0] = 0.0f; ahrs ->Omega [1] = 0.0f; ahrs ->Omega [2] = 0.0f;

53 }

Source Code B.1: ahrs fusion ag 2() - Filtered accelerometer and gyroscope
measurements are fed into this function. Based on this sensor feedback, a nonlinear
complementary filter [23] is used to estimate the drones current orientation on SOp3q.

142

Appendix C

HC12 Code

The HC12 radio module connects to the STM32F401 via the UART interface.

This module has the capability of running in transceiver mode, however, making it

work has proven difficult; this task is left up to future researchers. The radio is used

in receiver mode onboard the drone. To do this, the DMA UART line must be used.

Without using the DMA, the UART overrun error flag tends to get raised often, which

causes the entire UART to hault. Once haulted, the UART must be restart, which takes

somewhere on the scale of hundreds of milliseconds.

To configure DMA based UART, the following things need to happen: 1)

Initialize DMA, 2) Initialize UART.

1
2 /* DMA2 Init Function */

3 void MX_DMA2_DMA_Init(void)

4 {

5 // DMA2_Stream2_IRQn

6 __HAL_RCC_DMA2_CLK_ENABLE ();

7
8 hdma2_tx.Instance = DMA2_Stream7;

9 hdma2_tx.Init.Channel = DMA_CHANNEL_4;

10 hdma2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;

143

11 hdma2_tx.Init.PeriphInc = DMA_PINC_DISABLE;

12 hdma2_tx.Init.MemInc = DMA_MINC_ENABLE;

13 hdma2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;

14 hdma2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;

15 hdma2_tx.Init.Mode = DMA_NORMAL;

16 hdma2_tx.Init.Priority = DMA_PRIORITY_LOW;

17 hdma2_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;

18 hdma2_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;

19 hdma2_tx.Init.MemBurst = DMA_MBURST_SINGLE;

20 hdma2_tx.Init.PeriphBurst = DMA_PBURST_SINGLE;

21
22 HAL_DMA_Init (& hdma2_tx);

23
24 /* Associate the initialized DMA handle to the the UART handle */

25 __HAL_LINKDMA (&huart1 , hdmatx , hdma2_tx);

26
27
28 // Configure DMA here

29 hdma2.Instance = DMA2_Stream2;

30 hdma2.Init.Channel = DMA_CHANNEL_4;

31 hdma2.Init.Direction = DMA_PERIPH_TO_MEMORY;

32 hdma2.Init.PeriphInc = DMA_PINC_DISABLE; // Stationary

UART FIFO address

33 hdma2.Init.MemInc = DMA_MINC_ENABLE; // Increment

memory

34 hdma2.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; // Check on

this in datasheet ----

35 hdma2.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; // Check on

this in datasheet ---- (MSIZE)

36 hdma2.Init.Mode = DMA_NORMAL;// DMA_CIRCULAR ;//

circ buf

37 hdma2.Init.Priority = DMA_PRIORITY_MEDIUM; // VERY_HIGH

38 hdma2.Init.FIFOMode = DMA_FIFOMODE_DISABLE; // Check

on this in datasheet ---- FIFO threshold ?=> DMA_FIFO_THRESHOLD_FULL

39 hdma2.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;

40 hdma2.Init.MemBurst = DMA_MBURST_SINGLE;

41 hdma2.Init.PeriphBurst = DMA_PBURST_SINGLE;

42
43 HAL_DMA_Init (& hdma2);

44 __HAL_LINKDMA (&huart1 , hdmarx , hdma2);

45
46 // Enabling interrupt for tx

47 HAL_NVIC_SetPriority(DMA2_Stream7_IRQn , 0, 1);

48 HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);

49
50 // Enable TF interrupt for RX

51 HAL_NVIC_SetPriority(DMA2_Stream2_IRQn , 0, 0);

52 HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);

53
54 }

55
56
57 /* USART1 init function */

144

58 void MX_USART1_UART_Init(void)

59 {

60
61 huart1.Instance = USART1;

62 huart1.Init.BaudRate = 38400; //19200, 115200 originally ..

63 huart1.Init.WordLength = UART_WORDLENGTH_8B;

64 huart1.Init.StopBits = UART_STOPBITS_1;

65 huart1.Init.Parity = UART_PARITY_NONE;

66 huart1.Init.Mode = UART_MODE_TX_RX;

67 huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;

68 huart1.Init.OverSampling = UART_OVERSAMPLING_16;

69 huart1.Instance ->CR1 |= USART_CR1_RXNEIE;

70 huart1.Instance ->CR3 |= USART_CR3_EIE;

71 huart1.Instance ->CR3 |= (0x1U << (6U)); // ENABLE DMA (DMAR bit) (TRY

PUTTING AFTER THE HAL_UART_INIT ())

72 HAL_UART_Init (& huart1);

73
74
75 HAL_NVIC_SetPriority(USART1_IRQn , 0, 0);

76 HAL_NVIC_EnableIRQ(USART1_IRQn);

77
78 }

Source Code C.1: DMA UART Init

Once DMA and UART have been initialized to work together in this fashion,

one can start receiving or transmitting. Only the receiving function is used onboard cur-

rently. To receive a packet onboard, we use the following line: HAL UART Receive DMA(&huart1,

circBuf, 6). This will receive the 6 bytes of the packet. In the case that some bytes

are lost in transit from the ground controller to the drone, the drone stores the bytes

received in a circular buffer. This circular buffer is then checked for the latest valid

packet command, and is acted upon appropriately. Circular buffer related code is found

in the HC12.c source file. The function processRadioBuffer() is called every cycle of

the main 160Hz loop, and is able to scan the circular buffer for the latest valid packet

command. This can either be a data update request, or an attitude command. A status

value is returned which signifies the type of packet. This code is found below:

1 char processRadioBuffer(uint8_t *circBuf , uint8_t circBufIndex , uint8_t

145

*cmd)

2 {

3 uint8_t index = circularIndex(circBufIndex , 1);

4
5 int i;

6 for(i=0; i<96; i++){

7 if(circBuf[index] == PACKET_END_BYTE && circBuf[circularIndex(index

, 5)] == PACKET_START_BYTE){

8 // Store the 4 bytes of data

9 cmd [0] = circBuf[circularIndex(index , 4)];

10 cmd [1] = circBuf[circularIndex(index , 3)];

11 cmd [2] = circBuf[circularIndex(index , 2)];

12 cmd [3] = circBuf[circularIndex(index , 1)];

13
14 // Reset the 6 bytes to zeros so as to not read this command from

the buffer again

15 circBuf[index] = 0;

16 circBuf[circularIndex(index , 5)] = 0;

17 circBuf[circularIndex(index , 4)] = 0;

18 circBuf[circularIndex(index , 3)] = 0;

19 circBuf[circularIndex(index , 2)] = 0;

20 circBuf[circularIndex(index , 1)] = 0;

21
22 // Return status

23 if(isDataUpdate(cmd)){

24 return DATA_UPDATE;

25 } else {

26 return ATTITUDE_COMMAND;

27 }

28 }

29
30 index = circularIndex(index , 1);

31 }

32
33 return INVALID_COMMAND;

34 }

Source Code C.2: Process Circular Buffer Code

If the status returned is “ATTITUDE COMMAND”, the 4 bytes of the com-

mand will be used as described in Chapter 4.2. If “DATA UPDATE” is returned, the

command sequence will be handled via the processDataUpdate() function given below:

1 void processDataUpdate(uint8_t *cmd)

2 {

3 uint8_t request = cmd [2]; // request - Data Update Request Num (

associated with the common dictionary)

4 uint8_t value = cmd [3];

5 switch(request){

6 case DR_UPDATE_ARM:

146

7 rc_enable_motor = value;

8 fly_ready = value;

9 armingStatusGlobal = value;

10 break;

11 case DR_UPDATE_CAL:

12 rc_cal_flag = value;

13 break;

14 case DR_UPDATE_CM:

15 ControlMode = value;

16 break;

17 }

18 }

Source Code C.3: Process Data Update Request Code

This function is easily extendable by adding cases to the switch statement,

defining global ’extern’ variables at the top of the source file, and using those to update

any sort of data you may need to update onboard. This could be controller gains or

even a switching flag meant to be used for hybrid control techniques.

147

Appendix D

Linear Algebra Functions in C

The following are a series of linear algebra functions required for implementing

the geometric estimator and controller described in this thesis.

1
2 /* Function Definitions */

3 char logm(float a[3][3] , float result [3][3])

4 {

5 // Rodgriguez Method for approximation matrix log

6 float traceA = a[0][0] + a[1][1] + a[2][2];

7 if(traceA >= 2.99999f){ // >2.99

8 logTrace = traceA;

9 for(int i=0; i<3; i++){

10 for(int j=0; j<3; j++){

11 result[i][j] = 0.0f;

12 }

13 }

14 return 1;

15 }

16 if(traceA < -0.9999f){

17 logTrace = traceA;

18 traceA = -0.9999f;

19
20 return 1;

21 }

22 if(traceA <= 3.0f && traceA >= -1.0f){

23 logTrace = 0.0f;

24 float theta = acos((traceA -1.0f)/2.0f);

148

25 float temp = 1.0f/(2.0f*sin(theta)); // This is a little off but is

basically right

26
27 float A_trans [3][3] = { 0 }; float U[3][3] = { 0 }; float temp2

[3][3] = { 0 };

28 transpose3(a, A_trans);

29 sub33(a,A_trans ,temp2);

30 scalarMult33(temp2 , temp , U);

31 scalarMult33(U, theta , result);

32 return 1;

33 }

34 return 0;

35 }

36
37
38 void transpose3(float a[3][3] , float result [3][3])

39 {

40 result [0][0] = a[0][0]; result [0][1] = a[1][0]; result [0][2] = a

[2][0];

41 result [1][0] = a[0][1]; result [1][1] = a[1][1]; result [1][2] = a

[2][1];

42 result [2][0] = a[0][2]; result [2][1] = a[1][2]; result [2][2] = a

[2][2];

43 }

44
45 void mult33_33(float a[3][3] , float b[3][3] , float result [3][3])

46 {

47 // Create a matrix here , store that results as it goes , then memcpy

to result passed as reference

48 float temp_result [3][3] = { 0 };

49 for (int i = 0; i < 3; ++i) {

50 for (int j = 0; j < 3; ++j) {

51 float sum = 0;

52 for (int k = 0; k < 3; ++k) {

53 sum += a[i][k] * b[k][j];

54 }

55 temp_result[i][j] = sum;

56 }

57 }

58
59 memcpy(result , temp_result , sizeof(temp_result));

60 }

61
62 void scalarMult33(float a[3][3] , float b, float result [3][3])

63 {

64 for (int i = 0; i < 3; i++) {

65 for (int j = 0; j < 3; j++){

66 result[i][j] = a[i][j] * b;

67 }

68 }

69 }

70
71 void scalarMult31(float a[3], float b, float result [3])

149

72 {

73 for (int i = 0; i < 3; i++) {

74 result[i] = a[i] * b;

75 }

76 }

77
78 void skewSym3(float a[3], float result [3][3])

79 {

80 result [0][0] = 0; result [0][1] = -a[2]; result [0][2] = a[1];

81 result [1][0] = a[2]; result [1][1] = 0; result [1][2] = -a[0];

82 result [2][0] = -a[1]; result [2][1] = a[0]; result [2][2] = 0;

83 }

84
85 void vex(float a[3][3] , float result [3])

86 {

87 // May want to check to make sure all diag elements are zero

88 result [0] = a[2][1];

89 result [1] = a[0][2];

90 result [2] = a[1][0];

91 }

92
93 void mult33_31(float a[3][3] , float b[3], float result [3])

94 {

95 for (int i = 0; i < 3; i++) {

96 result[i] = a[i][0] * b[0] + a[i][1] * b[1] + a[i][2] * b[2];

97 }

98 }

99
100 void cross31(float a[3], float b[3], float result [3])

101 {

102 float aCross [3][3] = { 0 };

103 skewSym3(a, aCross);

104 mult33_31(aCross , b, result);

105 }

106
107 void add33(float a[3][3] , float b[3][3] , float result [3][3])

108 {

109 for (int i = 0; i < 3; i++) {

110 for (int j = 0; j < 3; j++) {

111 result[i][j] = a[i][j] + b[i][j];

112 }

113 }

114
115 }

116
117 void sub33(float a[3][3] , float b[3][3] , float result [3][3])

118 {

119 for (int i = 0; i < 3; i++) {

120 for (int j = 0; j < 3; j++) {

121 result[i][j] = a[i][j] - b[i][j];

122 }

123 }

124 }

150

125
126 void add31(float a[3], float b[3], float result [3])

127 {

128 for (int i = 0; i < 3; i++) {

129 result[i] = a[i] + b[i];

130 }

131 }

132
133 void sub31(float a[3], float b[3], float result [3])

134 {

135 for (int i = 0; i < 3; i++) {

136 result[i] = a[i] - b[i];

137 }

138 }

139
140 float norm3(float a[3])

141 {

142 return (float)sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);

143 }

Source Code D.1: Linear Algebra Library - A series of linear algebra functions necessary
for geometric estimation and control.

151

