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Abstract
In many sensing applications, including environmental
monitoring, measurement systems must cover a large
space with only limited sensing resources. One approach
to achieve required sensing coverage is to use robots to
convey sensors within this space.Planning the motion of
these robots – coordinating their paths in order to maxi-
mize the amount of information collected while placing
bounds on their resources (e.g., path length or energy ca-
pacity) – is a NP-hard problem. In this paper, we present
an efficient path planning algorithm that coordinates mul-
tiple robots, each having a resource constraint, to maxi-
mize the “informativeness” of their visited locations. In
particular, we use a Gaussian Process to model the un-
derlying phenomenon, and use the mutual information
between the visited locations and remainder of the space
to characterize the amount of information collected. We
provide strong theoretical approximation guarantees for
our algorithm by exploiting the submodularity property
of mutual information. In addition, we improve the effi-
ciency of our approach by extending the algorithm using
branch and bound and a region-based decomposition of
the space. We provide an extensive empirical analysis
of our algorithm, comparing with existing heuristics on
datasets from several real world sensing applications.

1 Introduction
Mobile robots carrying sensors can enable a large number
of real-world, large-scale sensing applications. Consider, for
example, the monitoring of algae biomass in a lake. High
levels of pollutants, such as nitrates, can lead to the develop-
ment of algal blooms. These nuisance algal blooms impair
the beneficial use of aquatic systems, by blocking sunlight
to underwater vegetation, consuming oxygen in the water,
and producing surface scum and odors. Precise sensing of
quantities, such as pollutants, nutrients, and oxygen levels,
can provide biologists with a fundamental characterization
of the state of such a lake. Unfortunately, such sensors are
a high cost resource, and it is thus impractical to sufficiently
cover the lake with these devices.In this setting, a set of
robotic boats have been used to move such sensors to various
locations in the lake [Dhariwal et al., 2006].

When monitoring algae biomass, or in many other real-
world sensing tasks, planning the motion of such robots –
coordinating their paths in order to maximize the amount of
information collected – is a fundamental task. Often however,
such robots have resource constraints, such as storage battery

energy, that limit the distance they can travel, or the number
of measurements they can acquire.We thus seek to find infor-
mative paths for a collection of robots, placing a bound on
the cost incurred by each robot, e.g., on the battery capacity.

To optimize the path of these robots, we must first charac-
terize the notion of informativeness. Since we are addressing
a spatial phenomena, a common approach in spatial statistics
is to use a rich class of probabilistic models called Gaussian
Processes (GPs) (c.f., Rasmussen and Williams 2006). Using
such models, informativeness can be viewed in terms of the
uncertainty about our prediction of the phenomena, given the
measurements made by the mobile robots. In particular, we
use the mutual information (MI) criterion of Guestrin et al.
[2005] to quantify the reduction in uncertainty provided by
the measurements made along the selected robot paths. Like
many other notions of informativeness, mutual information
is a submodular function [Guestrin et al., 2005], i.e., it
satisfies an important diminishing returns property: More
the locations that are already sensed, lesser will be the
information gained by sensing a new location.

In this paper, we present the first efficient path planning al-
gorithm (eMIP) that coordinates multiple robots, each having
a resource constraint, in order to obtain highly informative
paths, i.e., paths that maximize some given submodular
function, such as mutual information. By exploiting the
submodularity, we provide strong theoretical approximation
guarantees for our algorithm.

The problem of optimizing the path of a single robot to
maximize a submodular function of the visited locations has
been studied by Chekuri and Pal [2005], who provide an
algorithm with strong guarantees. We first provide an ap-
proach, sequential-allocation, for extending any single robot
algorithm, such as that of Chekuri et al., to the multi-robot
setting, with minimal effect on the approximation guarantee.

Unfortunately, the running time of the approach of Chekuri
et al. is quasi-polynomial, i.e., exponential in log2 M , for M
possible sensing locations, and is thus impractical. Using a
spatial decomposition and branch and bound techniques, we
develop a practical approach for the single robot case, with
theoretical guarantees. Using sequential-allocation, we then
extend our approach to the multi-robot case. Furthermore,
we provide extensive experimental analysis of our algorithm
on several real world sensor network data sets, including data
collected by the robotic boats in a lake.
2 Problem Statement
Let us now define the Multi-robot Informative Path Plan-
ning (MIPP) problem: We assume that the domain of
the phenomenon is discretized into finitely many sensing



locations V . We associate with each location v ∈ V a
sensing cost C(v) > 0. When traveling between two
locations, u and v, a robot incurs a (not necessarily sym-
metric) traveling cost C(u, v) > 0. A robot will traverse
a path in this space: an s–t-path P is a sequence of l
locations starting at node s, and ending at t. The cost
C(P) of path P = (s = v1, v2, . . . , vl = t) is the sum
of sensing costs and traveling costs along the path, i.e.,
C(P) =

∑l
i=1 C(vi) +

∑l
i=2 C(vi−1, vi). For a collection

of k paths P = {P1, . . . ,Pk}, one for each robot, let
I(P) = I(P1 ∪ · · ·∪Pk) be the sensing quality, which quan-
tifies the amount of information collected by the k paths. The
MIPP problem desires to find a collection P of k paths, with
specified starting and ending nodes si and ti, such that each
path has bounded cost C(Pi) ≤ B for some specified budget
B, and that the paths are the most informative, i.e., I(P) is as
large as possible. Formally, the problem can be defined as:

max
Pi⊆V

I(P); subject to C(Pi) ≤ B,∀ i ≤ k. (1)

In our lake monitoring example, the single-robot problem
instance is depicted in Fig. 1a, top. We try to find the most
informative path P1 (in terms of predicting the algal content).
The experiment cost C(vi) would correspond to the energy
required for making a biomass measurement, whereas the
travel cost C(vi−1, vi) would correspond to the energy
consumption when traveling from location vi−1 to vi.
Quantifying informativeness. How can we quantify the
sensing quality I? To model spatial phenomena, a common
approach in spatial statistics is to use a rich class of prob-
abilistic models called Gaussian Processes (GPs, c.f., Ras-
mussen and Williams 2006). Such models associate a ran-
dom variable Xv with each location v ∈ V . The joint dis-
tribution P (XV) can then be used to quantify uncertainty in
the prediction of unobserved locations, after acquiring some
measurements. To quantify this uncertainty, we use the mu-
tual information (MI) criterion of Guestrin et al. [2005]. For
a set of locations P , the MI criterion is defined as:

MI(P) ≡ H(XV\P)−H(XV\P | XP), (2)

where H(XV\P) is the entropy of the unobserved locations
V \ P , and H(XV\P | XP) is the conditional entropy of lo-
cations V \ P after sensing at locations P . Hence mutual
information measures the reduction in uncertainty at the un-
observed locations. Hence, in our lake monitoring example,
we would like to select the locations that most reduce the un-
certainty in the algal content prediction for the entire lake.

Even if we do not consider the constraints in the length
of the paths of the robots, the problem of selecting locations
that maximize mutual information is NP-hard [Guestrin et al.,
2005]. Fortunately, mutual information satisfies the following
diminishing returns property of Guestrin et al. [2005]: The
more locations that are already sensed, lesser will be the in-
formation gained by sensing a new location. This intuition
is formalized by the concept of submodularity: A function f
is submodular if ∀A ⊆ B ⊆ V and s ∈ V \ B, f(A ∪ s) −
f(A) ≥ f(B ∪ s) − f(B). Another intuitive requirement is
that the function f is monotonic, which means that f(A) ≤
f(B) for all A ⊆ B ⊆ V . Hence, more the sensing locations
that are selected, higher will be the collected information.

Thus, we define our MIPP problem as one of optimizing
paths of length at most B for k robots, such that the selected
sensing locations maximize a monotonic submodular func-
tion I(·). Note that this definition of the MIPP problem al-
lows our approach to be applied to any monotonic submodu-
lar objective function, not just mutual information. Guestrin
et al. [2005] address the sensor placement problem, where
a subset A ⊆ V of locations are selected in order to maxi-
mize the mutual information, without considering path costs.
By exploiting the submodularity property of MI, they show
that if the discretization V is fine enough and the GP satis-
fies mild regularity conditions, greedily selecting locations
based on this criterion is near optimal. More specifically, the
greedy algorithm (which we call GreedySubset in the follow-
ing), after selecting the first k locations Ak, picks the loca-
tion vk+1 = argmaxv I(Ak ∪{v})− I(Ak) and sets Ak+1 =
Ak ∪ {vk+1}. GreedySubset hence iteratively adds locations
which increment mutual information the most. Guestrin et al.
[2005] showed that GreedySubset selects sets which achieve
mutual information of at least (1−1/e) OPT−ε, where OPT
is the optimal mutual information among all sets of the same
size, and ε is a small error incurred due to the discretization.
This result however only holds true in the unconstrained set-
ting, where k arbitrary locations can be picked, and does not
generalize to the MIPP problem. In this paper, we provide an
efficient algorithm with strong approximation guarantees for
the more difficult MIPP problem.

3 Approximation Algorithm for MIPP
The problem of optimizing the path of a single robot (i.e., k =
1) to maximize a submodular function of the visited locations
has been studied by Chekuri and Pal [2005]. They proposed
a recursive-greedy algorithm, which provides a O(log |P∗|)
approximation guarantee, where |P∗| is the number of nodes
visited in the optimal path P∗, which is no larger than the
number of possible locations |V|. That is, their algorithm will
provide a path of length no more than B that visits locations
yielding a submodular value of at least O(OPT / log |P∗|),
where OPT is the submodular value collected by the optimal
path. Their algorithm provides the best approximation
guarantee known for the single robot MIPP problem.

The recursive-greedy algorithm works by iterating over
the possible middle nodes of the path, splitting the path
into a left subpath and a right subpath. For each possible
middle point, the algorithm is applied recursively on the
left subpath. Then, their approach commits to the selected
locations on the left side, and recurses on the right subpath,
given these selected locations. This algorithm is ”greedy”
in that it commits to the nodes selected in the first subpath
when optimizing the second subpath.

In the case of multiple robots, to our knowledge, no
sub-exponential approximation algorithm has been proposed
previously. In this paper, we first present an algorithm for the
multiple robot setting that exploits any approximation algo-
rithm for the single robot case, such as the recursive-greedy
algorithm, and (almost) preserves the approximation guaran-
tee. Our algorithm, sequential-allocation, works by succes-
sively applying the single robot path planning algorithm k
times to get the paths for k robots. At stage i, in order not to
double-count information from locations already visited in



 

 

(a) Spatial decomposition of the phenomenon

  




 












(b) Cell paths and travel within cells



(c) Cell paths and path smoothing

Figure 1: Illustration of eMIP. The sensing domain ((a), top) is decomposed into a grid of cells ((a), bottom). eMIP jointly optimizes over
cell-paths ((b), top) and allocations of experiments in the cells ((b), bottom). Within the cells, nodes are connected to cell center. eMIP
concatenates the between-cell and within cell paths ((c), top) and finally applies heuristics to smooth the path ((c), bottom).

earlier stages, we supply a modified sensing quality function
to the single robot procedure: Let Ai−1 be the nodes already
visited by pathsP1, . . . ,Pi−1. Then the residual information,
IAi−1 is defined as IAi−1(P) = I(Ai−1∪P)− I(Ai−1). This
residual information effectively commits to the nodes already
visited by the algorithm until stage i − 1, before deciding
the nodes to visit at that stage. The sequential allocation
procedure is implemented in Line a1 of Algorithm 1.

Surprisingly, this straight-forward sequential application
of the single robot path planning algorithm results in the
following approximation guarantee:
Theorem 1. Let η be the approximation guarantee for the
single path instance of the informative path planning prob-
lem. Then our sequential-allocation algorithm achieves an
approximation guarantee of (1 + η) for the MIPP prob-
lem. In the special case, where all robots have the same
starting locations (si = sj ,∀i, j) and finishing locations
(ti = tj ,∀i, j), the approximation guarantee improves to
1/(1− exp (−1/η)) ≤ 1 + η.
All proofs can be found in the longer version of this paper
[Singh et al., 2006]. When using the recursive greedy
algorithm from Chekuri and Pal [2005], the approximation
guarantee η is O(log |P∗|) as discussed above. This result
extends the analysis of Blum et al. [2003], who considered
additive functions, to our submodular setting.

4 Efficient Algorithm for MIPP
Unfortunately, the running time of the recursive-greedy
algorithm is quasi-polynomial. More specifically, the run-
ning time of the algorithm is O((MB)O(log M)), where B
is the budget constraint and M = |V| is the total number
of nodes in the graph. So, even for a small problem with
M = 64 nodes, the exponent will be 6, resulting in a very
large computation time, making the algorithm impractical
for real world sensing applications. In this section, we
propose an efficient algorithm for MIPP, eMIP, which is
based on and has similar approximation guarantees as the
recursive-greedy algorithm, but is practical for real-world
sensing tasks. Exploiting submodularity and using several
branch and bound heuristics, we reduce the computation
effort to within tractable limits. Our eMIP algorithm assumes
that the traveling cost between arbitrary locations is given
by their Euclidean distance. We discuss the algorithm only
for the single robot instance of the problem, since it can be

easily extended for multiple robots using Theorem 1.
4.1 Spatial Decomposition
Krause et al. [2006] empirically show, that in addition to
submodularity, the mutual information criterion exhibits
the following locality property: Two sets A and B of
sensing locations which are sufficiently far apart are roughly
independent. Hence, in order to obtain a large amount of
information, a robot will have to visit several locations that
are far from each other, rather than staying in one small
area. We can thus think about planning informative paths
as deciding which regions to explore, and then deciding
which locations to sense in these regions. This motivates the
decomposition of the sensing domain into cells, representing
clusters of the sensing locations, and then run the recursive
greedy algorithm on these cells instead of actual sensing
locations. Fig. 1 presents an illustration of our approach.
Overview. Informally, our strategy will be the following:

1. We decompose the sensing region (c.f., Fig. 1a,
top) into a collection of non-overlapping cells Ṽ =
{C1, C2, . . . , CN} (c.f., Fig. 1a, bottom). The distance
between two cells is defined as the distance between the
centroids of these cells. All nodes v ∈ V , representing
sensing locations, are assigned to the cell Ci in which
they are contained.

2. We define a new optimization problem, the spatially
decomposed MIPP problem, or SD-MIPP problem on
Ṽ . In SD-MIPP, we jointly optimize over cell-paths in Ṽ
(c.f., Fig. 1b, top), and over the allocation of measure-
ments to the cells visited by the paths. When allocating
measurements to a cell, we ignore the traveling cost
within the cell (c.f., Fig. 1b, bottom). Since the cells are
not excessively large, this simplification only leads to
a small additional cost when the SD-MIPP solution is
transformed back to original MIPP problem.

3. We transfer the (approximate) SD-MIPP solution, con-
sisting of a cell-path and an allocation of measurements
to cells (c.f., Fig. 1c, top), back to the original MIPP
problem. We then smooth the path using tour-opt
heuristics (c.f., Fig. 1c, bottom). The resulting solution
will have an approximation guarantee which depends
on the diameter of the chosen cells.

More formally, the SD-MIPP problem is the following:
Suppose, the budget B̃ is split into a budget Bt for traveling



between the cells, and a budget Be for making experiments
at sensing locations within the visited cells. We want to find
a path P∗ = (Cs = Ci1 , . . . , Cil = Ct) with a travel cost of at
most Bt. This travel budget is measured in terms of distances
between centers of visited cells, and the cost of traveling
within cells is defined as 0. In addition, for each visited cell
Cij in P∗, we want to select a set of sensing locations Aj ,
such that the total cost C(A1 ∪ · · · ∪ Al) ≤ Be, and that
the information I(A1 ∪ · · · ∪Al) is as large as possible. The
optimal SD-MIPP solution P∗ uses the optimal split of the
budget B̃ into Bt and Be. To simplify the presentation, we
rescale the costs such that the cells form a uniform grid of
quadratic cells with width L, and assume that the sensing cost
Cexp is constant over all locations. These assumptions can
easily be relaxed, but they allow us to relate the path costs to
the number of cells traversed, to simplify the discussion.

Algorithm for SD-MIPP. We now present our algorithm
for solving the optimization problem on Ṽ . In Section 4.2,
we will discuss several details of efficient implemen-
tation. The complete algorithm works as follows: An
outer loop (c.f., Line b1 in Algorithm 1) iterates through
Bt ∈ {20, 21, 22, . . . , B̃}, where B̃ is the budget given to
the SD-MIPP problem, allocating budget Bt out of the total
budget B̃ for traveling between the cells, and Be = B̃ − Bt

for making experiments within the visited cells. Stepping
through the travel budget Bt in powers of 2 results in faster
performance (log2 B̃ instead of B̃ iterations), and increases
the required budget B̃ by at most a factor of 2. The inner loop
is formed by a recursive procedure, shown in Algorithm 2,
which selects cells to visit, and allocates experiments to cells.

More specifically, this recursive-eMIP procedure takes as
input a starting cell Cs, a finishing cell Ct, an experimental
budget Be, a residual X indicating the locations visited thus
far (initially empty), and a maximum recursion depth, iter,
which is initialized to log2 Bt. We then:

1. Iterate through all possible choices of middle cells Cm,
and budget splits B′ ∈ B̃e to spend for making exper-
iments on the path from Cs to Cm (c.f., Fig. 1b). The
budget splits B̃e can either be linearly (more accurate)
or exponentially (faster) spaced, as described below.

2. Recursively find a path P1 from Cs to Cm, subtracting
1 from the maximum recursion depth, iter. This maxi-
mum recursion depth controls the maximum number of
cells visited by P1. At the top level of the recursion, P1

will visit a maximum of Bt/2 cells, in the next level,
the limit will be Bt/4 cells, and so on. When reaching
a maximum recursion depth of 0, we use the Greedy-
Subset algorithm (c.f., Section 2) to select the sensing
locations Ai based on the residual information function
IX constrained by budget B′. Hereby, the residual X
is a parameter of the recursion, and contains all nodes
visited before considering the current cell. As an illus-
tration, consider the black nodes selected in the middle
cell Cm in Fig. 1b, bottom. These have been selected by
the GreedySubset algorithm with budget B′ = 4, since
they provide the maximum improvement in mutual in-
formation measured against the path P1 of Fig. 1b, top.

Algorithm: eMIP
Input: B, k, starting / finishing nodes s1, . . . , sk, t1, . . . , tk

Output: A collection of informative paths P1, . . . ,Pk.
begin

Perform spatial decomposition into cells;
Find starting and ending cells Csi and Cti ;
X ← ∅;

a1 for i = 1 to k do
b1 for iter = 0 to #log2 B$ do

Be ← B − 2iter;
P ′

iter ←recursive-eMIP(Csi , Cti ,Be,X ,iter);
Smooth P ′

iter using tour-opt heuristics;
Pi ← argmaxiter I(P ′

iter);
X ← X ∪ Pi;

return P1, . . . ,Pk;
end

Algorithm 1: eMIP algorithm for informative multiple path
planning, realizing the sequential allocation described in Sec-
tion 3 (c.f., Line a1). The path for the i-th robot is found us-
ing the spatial decomposition approach described in Section 4,
which calls the recursive procedure (c.f., Algorithm 2).

3. Commit to the nodes visited in P1, and recursively
find a path P2 from Cm to Ct, with experimental bud-
get Be−B′. This path will also visit at most Bt/2 cells.
We again greedily select the sensing locations at maxi-
mum recursion depth of 0, but now based on the residual
information IX∪P1 , since we have committed to P1.

4. Concatenate the nodes obtained in P1 and P2 to output
the best path from the algorithm (c.f., Fig. 1c, top).

The recursive-eMIP procedure is based on the recursive
greedy algorithm of Chekuri and Pal [2005], but exploits our
spatial decomposition.

Linear vs. exponential budget splits. Step 1 considers dif-
ferent budget splits B′ ∈ B̃e to the left and right subpaths.
Similar to the recursive greedy algorithm, one can choose
B̃e = {0, 1, 2, 3, . . . , Be−1, Be} to be linearly spaced. Since
the branching factor is proportional to the number of consid-
ered splits, linear budget splits lead to a large amount of com-
putation. An alternative is to consider only exponential splits:
B̃e = {0, 1, 2, 4, . . . , Be}∪{Be, Be−1, Be−2, Be−4, . . . , 0}.
Here the branching factor is only logarithmic in the experi-
mental budget. Even though we are not guaranteed to find
the same solutions as with linear budget splits, we can both
theoretically and empirically show that the performance only
gets slightly worse in this case, compared to a dramatic im-
provement in running time. In addition to these two ways
of splitting the budget, we also considered one-sided expo-
nential budget splits (i.e., B̃e = {0, 1, 2, 4, . . . , Be}), which
halves the branching factor compared to the exponential splits
defined above. Although we do not provide theoretical guar-
antees for this third possibility, we experimentally found it to
perform very well (c.f., Section 5).

Solving the MIPP problem. Now we need to transfer the
approximately optimal solution obtained for SD-MIPP back
to MIPP. This is done by connecting all nodes selected in cell
Ci to the cell’s center, (as indicated in Fig. 1b bottom), then
connecting all selected centers to a path (Fig. 1c top), and
finally expanding the resulting tree into a tour by traversing
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Figure 2: Illustration of our branch & bound approach. (a) shows the sum-max tree representing the search space. Each max node selects a
middle cell and a budget allocation, and each sum node combines two subpaths. (b) shows how upper bounds at sum nodes are used to prune
branches. (c) shows how lower bounds at max nodes are tightened to allow even more pruning.

Algorithm: recursive-eMIP
Input: Cs, Ct, Be, X, iter
Output: An informative path P from Cs to Ct.
begin

if (d(Cs, Ct) > 2iterL) then return Infeasible;
a2 P ← GreedySubsetBe(vi : vi ∈ Cs ∪ Ct);

if (iter = 0) then return P;
reward ← IX(P);

b2 foreach Cm ∈ C do
c2 for B′ ∈ fBe do

P1 ← recursive-eMIP(Cs, Cm, B′, X, iter− 1);
P2 ← recursive-
eMIP(Cm, Ct, Be −B′, X ∪ P1, iter − 1);
if (IX(P1.P2) > reward) then

P ← P1.P2;
reward ← IX(P);

return P;
end

Algorithm 2: recursive-eMIP procedure for path planning.

the tree twice. This traversal results in a tour which is at most
twice as long as the shortest tour connecting the selected
vertices. (Of course, an even better solution can be obtained
by applying an improved approximation algorithm for TSP,
such as Christofide’s algorithm [1976].) The following
Theorem completes the analysis of our algorithm:

Theorem 2. Let P∗ be the optimal solution for the MIPP
problem with a budget of B. Then, our eMIP algorithm
will find a solution P̂ achieving an information value of at
least I(P̂) ≥ 1−1/e

1+log2 N I(P∗), whose cost is no more than

2(2
√

2B +4L)(1+L
√

2
Cexp

) in the case of linear budget splits

(for B̃e) and no more than 2(2
√

2B+4L)(1+L
√

2
Cexp

)N log2
3
2

in the case of exponential budget splits (for B̃e).

Running time analysis of eMIP is straightforward. The
algorithm calls the routine recursive-eMIP log2 B times. If
TI is the time to evaluate the mutual information I, then time
for computing greedy subset Tgs (Line a2) is O(N2

C TI),
where NC is the maximum number of nodes per cell. At each
recursion step we try all the cells that can be reached with
the available traveling budget (Line b2). For the possible ex-
perimental budget split, we try all (linearly or exponentially

spaced) splits of Be ∈ B̃e among the two paths P1 and P2

(Line c2). The recursion depth would be log2(min(N, B̃)).
The following proposition states the running time for eMIP.

Proposition 3. The worst case running time of eMIP
for linearly spaced splits of the experimental budget
is O

(
Tgs log2 B(NB)log2 N

)
, while for the exponen-

tially spaced splits of the experimental budget it is
O

(
Tgs log2 B(2N log2 B)log2 N

)

Comparing this running time to that of the original
Chekuri et al. algorithm (O((MB)O(log2 M))), we note
a reduction of B to log2 B in the base, and log of the
number of nodes (log2 M ) to log of the number of cells
(log2 N ) in the exponent. These two improvements turned
the impractical recursive-greedy approach into a much more
viable algorithm.
4.2 Branch and Bound
The spatial decomposition technique effectively enables a
trade-off between running time complexity and achieved
approximation guarantee. However, the eMIP algorithm
still has to solve a super-polynomial, albeit sub-exponential,
search problem.

The problem structure can be represented by a sum-max
tree as shown in Fig. 2a. The sum nodes correspond to
combining the two paths P1 and P2 on either side of the
middle cell Cmi . The max nodes correspond to selecting the
best possible path for all possible experimental budget split
in B̃e and all possible middle cells Cmi . Thus, each sum node
will have two children, each one a max node, representing the
best possible solution from paths P1 and P2 respectively. The
root of the tree will be a max node selecting the best possible
solution at the highest level. The depth of the tree, iter,
depends on the traveling budget Bt, iter = *log2 Bt+. As an
initial pruning step, we note that since the middle cells have
to lie on a path, we only need to consider those which are at
most distance Bt/2 · L from the starting and finishing cell.

In order to avoid exploring the entire sum-max tree and
waste computation considering possibly bad solutions, we
follow a branch and bound approach. At each max node we
derive upper bounds for all the child sum nodes. We can then
prune all the sum node children with upper bounds lower
than the current best solution. If any of the child sum nodes
provides a solution better than the current best solution, then
the current best solution for the parent max node is updated



with the improved solution. Fig. 2b presents an illustration
of this concept: After completely exploring branch Sum1,
the current best solution, 20, is thus a lower bound for Max1.
The upper bound for branch Sum2 is 18, which is lower
than the current best solution of 20, and hence we can prune
this branch and need not explore it further. Nodes such as
Sum3 however, which have higher upper bounds (24) than
the current best solution (20), need to be explored further.
In order to improve the current best solution faster, at each
max node we explore the sum nodes in the decreasing order
of their upper bounds. (An additional heuristic that is very
effective in practice is to explore only the top K sum nodes.)
Upper bound on the sum nodes. One approach for acquir-
ing upper bounds on the sum nodes is to relax the path con-
straints, and then find the optimal set of reachable nodes for
each path (P1 and P2). In order to compute upper bounds
for P1 (P2) and their corresponding max nodes, we hence
need to compute the best set of observations within all reach-
able nodes. Since this problem itself is NP-hard, we approx-
imate it using the GreedySubset algorithm: For an allocation
of k experiments to P1 (P2), we run the GreedySubset algo-
rithm to select k nodes reachable (w.r.t. the remaining trav-
eling budget) within this path. Since this algorithm guaran-
tees a constant factor (1 − 1/e) approximation [Nemhauser
et al., 1978], multiplying the resulting information value by
(1 − 1/e)−1 provides an upper bound on the information
achievable by the path (and hence the corresponding max
node). In Fig. 2c for example, we use the greedy algorithm to
get upper bounds 13 for Max6 and 11 for Max7, resulting in
an upper bound of 13+11 = 24 for Sum3. We can even com-
pute tighter online bounds for maximizing monotonic sub-
modular functions, as discussed by Nemhauser et al. [1978].
Lower bound on the max nodes. In order to perform
pruning on lower levels of the sum-max tree, we need lower
bounds for the max nodes. Instead of having to explore one
branch completely as described above, we have two ways for
acquiring such lower bounds: Based on a heuristic algorithm,
and based on the current best solution of the grandparent max
node. We use the larger of two different lower bounds.

The first lower bound is based on a heuristic proposed for
the (modular) orienteering problem in [Chao et al., 1996].
The solution obtained by the heuristic immediately provides a
lower bound at each max node. The heuristic is applied to the
actual sensing locations V , instead of the cells. Starting node
and finishing node for the heuristic are selected greedily from
the starting cell and the finishing cell respectively. The cur-
rent traveling budget is added to the available experimental
budget to calculate the budget constraint for the heuristic.

A second pruning bound for the max nodes is given by the
difference between the lower bound (the current best solu-
tion) of the grandparent max node, and the upper bound on
the other path originating from the parent sum node. This is
illustrated in Fig. 2c: For the node Max6 and Max7, a lower
bound of 7 and 5 respectively is calculated using the heuris-
tic. The current lower bound at the grandparent max node
(Max1) is 20. The parent sum node is explored further since
the sum (24) of the upper bounds from each of the child max
nodes (13 and 11 for P1 (Max6) and P2 (Max7) respectively)
is greater than the current best solution (20) of the parent max

node. A potentially tighter pruning bound is calculated by
subtracting the upper bound ofP2 (Max7 ≤ 11) from the cur-
rent best solution of the grandparent max node (Max1 ≥ 20).
This bound potentially allows to prune branches since, given
the upper bound on the second path, improving on the current
solution of the grandparent requires exceeding this pruning
bound. In our example, this pruning bound (9) is tighter than
the lower bound provided by the heuristic (7), and hence
enabled pruning of branch Sum4 (with upper bound 8). This
pruning would not have been possible when only using the
lower bound calculated using the heuristic (7).

Before exploring the second path P2, the exact reward
collected by the first path P1 can be used for calculating this
additional lower bound. When exploring P1 however, the ex-
act reward for P2 is not known, hence only the upper bound
calculated using the greedy algorithm as described above can
be used. In order to ensure that this lower bound is as tight
as possible, we first explore the child of the sum node having
more budget in the current budget split instead of always
exploring P1, the path from starting cell to middle cell first.
Sub-approximation. Lower and upper bounds can be
quite loose. We can address this issue, and further trade
off collected information with improved execution time,
by introducing a sub-approximation heuristic: instead of
comparing the lower bound of a max node directly with the
upper bound from the children’s sum nodes when deciding
which subproblems to prune, we scale up the lower bound by
a factor of α > 1. This scaling often allows us to prune many
branches that would not be pruned otherwise. Unfortunately,
this optimistic pruning can also cause use to prune branches
that should not be pruned, and decrease the information
collected by the algorithm. Fortunately, we can prove that
this approach will not decrease the quality of the solution
by more than 1/α. Furthermore, in practice, for sufficiently
small α values, this procedure can speed up the algorithm sig-
nificantly, without much effect on the quality of the solution.

5 Experiments and Results
5.1 Data Sets
In order to evaluate the performance of our algorithm, we
tested it on three real world datasets. Our main set of exper-
iments are on measurements of the biomass content in Lake
Fulmor, James Reserve [Dhariwal et al., 2006]. We used data
collected by a boat carrying a temperature sensor around the
lake, of width around 50 meters and length around 250 me-
ters. Temperature was previously found to be strongly corre-
lated with the algal bloom in the lake. The average speed of
the boat was approximately 0.4 m/s. Half of the total mea-
surements (218 different sensing locations) were used to learn
a nonstationary Gaussian Process model by maximizing the
marginal likelihood [Rasmussen and Williams, 2006], and the
rest of the measurements were used for experimentation. We
divided the lake into 22 cells, with distance between adjacent
cell approximately 21 meters. Based on the average speed,
and motivated by a typical measurement duration of roughly
25 seconds, we set the experiment cost to be 10.5 meters.

As our second dataset, we used the existing deployment of
52 wireless sensor motes to learn the amount of temperature
variability at Intel Research Berkeley. We divided the
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Figure 3: Single robot experiments on three real-world data sets. Note the logarithmic scale on the running time plots (Figures 3b and 3d).

complete region into a uniform grid containing 20 equal
sized cells, and determined the experimental cost to be 9m
(distance to travel between adjacent cells). We learned a GP
model as discussed by Krause et al. [2006].

Thirdly, we explored the performance of our algorithm on
a precipitation dataset collected from 167 regions during the
years 1949-1994. We followed the preprocessing and model
learning described by Guestrin et al. [2005].
5.2 Single Robot Experiments
We first analyze the performance improvement of our
eMIP algorithm compared to the recursive-greedy proce-
dure [Chekuri and Pal, 2005]. Fig. 3a presents trade-off
curves comparing path costs and collected reward, for
different budget values B on a subset of temperature data set
containing only 23 nodes as recursive-greedy was intractable
on larger datasets. Fig. 3b presents the corresponding running
times. We can see that the eMIP algorithm achieves (almost)
the same amount of mutual information as recursive-greedy,
but at several orders of magnitude lower running time. Since
the recursive greedy algorithm is essentially a search proce-
dure with greedily restricted search space, this result also in-
dicates that an exhaustive search over all paths is intractable.

We then compare the impact of restricting ourselves to
the exponentially spaced experimental budget allocation.
Figures 3c and 3d present the results on the lake data set.
As expected, linear variation achieves very slightly larger
collected mutual information than the exponential variation.
However, the computation times for exponential variation are
several orders of magnitude smaller than for linear variation.

Our next experiment considers the effect of varying the
coarseness of spatial decomposition. Fig. 3e shows the results
of this experiment on the lake data, indicating that the mu-
tual information is largely insensitive to the coarseness of the
cells. On the other hand, the computational complexity de-
creases drastically as fewer cells are used (c.f., Proposition 3).

We performed the same experiments on both the tempera-
ture and precipitation data. Detailed results are omitted here
due to space limitations, but they confirm the above insights.
In order to analyze the impact of several branch and bound

heuristics, we plotted trade-off curves for varying budgets,
for the lake (Fig. 3f), temperature (Fig. 3g) and precipitation
data (Fig. 3h). We find that the mutual information collected
is rather insensitive to sub-approximation (up to 20%), as
well as to the restriction to 20 best sub-problems (exploring
only the 20 best sum nodes per branch). We also compared
eMIP to a heuristic search algorithm [Chao et al., 1996].
This heuristic had been empirically found to be one of the
best heuristics for the similar problem with fixed reward on
each node [Liang et al., 2002], so we would expect it to also
perform well in the submodular case. We can see that, while
for the smaller temperature data set, the heuristic achieves
comparable performance, for both larger data sets (lake and
precipitation), eMIP strongly outperforms the heuristic.

5.3 Multiple Robot Experiments
Fig. 4a shows the comparison of collected reward when mul-
tiple robots are available to move the sensors around. As the
number of robots are increased, the collected reward exhibits
the expected diminishing return, due to the submodularity
of mutual information. Fig. 4b presents the same analysis
when the robots can start at different locations. Here, four
locations, at four corners of the lake, were pre-selected as
possible starting locations. The three robots greedily selected
the starting location leading to the largest increase in mutual
information.

73

1
33

Robot-3

Robot-2

Robot-1

Start 2

Start 1

Start 3 Boundary Cells

Figure 5: Paths on the lake for different starting cells.
As expected, the first two robots choose starting locations

on opposite ends of the lake and collect roughly independent
information. With addition of the third robot, the diminish-
ing returns in collected reward can again be observed. Fig-
ures 4c and 4d show the predictive RMS error for this exper-
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Figure 4: Experiments using multiple robots on the lake dataset.

iment. Analogously to the information value, the RMS error
decreases more quickly if the three robots start at different lo-
cations, and the biggest improvement as as expected is in the
step from one to two robots. Fig. 5 shows the chosen paths for
the case of three robots, each starting from different locations.

6 Related Work
A related problem to MIPP is one where each node has a
fixed reward, and the goal is to find a path that maximizes
the sum of these rewards (Traveling Salesman Problem with
Profits (TSPP) [Feillet et al., 05]). Such sum is a modular
function, rather than the submodular function addressed in
this paper. A subcategory of TSPP, the Orienteering Problem
(OP) is defined to maximize the collected reward while
keeping the associated cost is defined less than given budget
B [Laporte and Martello, 1990]. Multi-robot version of OP
is studied in literature as the Team Orienteering Problem [I-
Ming et al., 1996]. For the case of unrooted version of OP
(when no starting location is specified), the approximation
guarantees known for Prize Collecting TSP and k-TSP can
be easily extended [Johnson et al., 2000]. Blum et al. [2003]
gave the first constant factor approximation for the rooted
OP in general undirected graphs. They also extended their
algorithm for Multi-path OP. For OP with submodular reward
fuction, the approach of Chekuri and Pal [2005], discussed
in Section 3, provides the best approximation guarantee, but
has a quasi-polynomial running time. In the robotics com-
munity, similar work has been developed in the context of
simultaneous localization and mapping (SLAM). Stachniss
et al. [2005] develop a greedy algorithm, without approx-
imation guarantees, for selecting the next location to visit
to maximize information gain about the map. In contrast,
Sim and Roy [2005] attempt to optimize the entire trajectory,
not just the next step, but their algorithm introduces some
approximation steps without theoretical bounds. We also
expect our approach to be useful in the SLAM setting.

7 Conclusions
In this paper, we presented the first efficient path planning
algorithm that coordinates multiple robots, each having a
resource constraint, in order to obtain highly informative
paths, i.e., paths that maximize some given submodular
function, such as mutual information. We first described
sequential-allocation, an approach for extending any single
robot algorithm to the multi-robot setting, with minimal
effect on the approximation guarantee. Then, building on
the, impractical, single robot approach of Chekuri and Pal
[2005], we developed eMIP, a practical algorithm for ob-
taining an informative path for a single robot with theoretical
guarantees, that exploits spatial decomposition and branch

and bound techniques. Using sequential-allocation, we then
extended our approach to the multi-robot case. Furthermore,
we provided extensive experimental analysis of our algorithm
on several real world sensor network data sets, including
data collected by robotic boats in a lake, demonstrating the
effectiveness and practicality of our methods.
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