
UC Irvine
UC Irvine Previously Published Works

Title
Generalized bathtub model of network trip flows

Permalink
https://escholarship.org/uc/item/5jd3w7cd

Author
Jin, Wen-Long

Publication Date
2020-06-01

DOI
10.1016/j.trb.2020.04.002

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jd3w7cd
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Generalized bathtub model of network trip flows

Wen-Long Jin ∗

September 18, 2019

Abstract

(Vickrey, 1991) proposed a bathtub model for the evolution of trip flows served by privately
operated vehicles inside a road network based on three premises: (i) treatment of the road net-
work as a single bathtub; (ii) the speed-density relation at the network level, also known as
the network fundamental diagram of vehicular traffic, and (iii) the time-independent negative
exponential distribution of trip distances. However, the distributions of trip distances are gen-
erally time-dependent in the real world, and Vickrey’s model leads to unreasonable results for
other types of trip distance distributions. Thus there is a need to develop a bathtub model with
more general trip distance distribution patterns.

In this study, we present a unified framework for modeling network trip flows with general
distributions of trip distances, including negative exponential, constant, and regularly sorting
trip distances studied in the literature. In addition to tracking the number of active trips as
in Vickrey’s model, this model also tracks the evolution of the distribution of active trips’
remaining distances. We derive four equivalent differential formulations from the network
fundamental diagram and the conservation law of trips for the number of active trips with re-
maining distances not smaller than any value. Then we define and discuss the properties of
stationary and gridlock states, derive the integral form of the bathtub model with the charac-
teristic method, obtain equivalent formulations by replacing the time coordinate with the cu-
mulative travel distance, and present two numerical methods to solve the bathtub model based
on the differential and integral forms respectively. We further study equivalent formulations
and solutions for two special types of distributions of trip distances: time-independent negative
exponential or deterministic. In particular, we present six equivalent conditions for Vickrey’s
bathtub model to be applicable. Finally we demonstrate that the fundamental diagram and the
bathtub model can be extended for multi-commodity trip flows with trips served by mobility
service vehicles.

Key words: Privately operated and mobility service vehicles; Vickrey’s bathtub model; Distribu-
tion of trip distances; Network fundamental diagram; Integral bathtub model; Numerical methods.
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1 Introduction
The basic role of a transportation system is to serve trips of persons and goods through privately
operated or mobility service vehicles. With privately operated vehicles, passengers and vehicles
form integrated units. In this case, travel demand usually depends on the total number of trips
and their distribution in both time and space; and supply is restricted to the network size measured
by the total number of lane miles as well as road capacities determined by speed limits, vehicle
characteristics, and road geometry. With mobility service vehicles provided by transit agencies and
transportation network companies, vehicles and passengers are disintegrated. In this case, mobility
service vehicles supply seats to satisfy passengers’ demand in trips, and the transportation system
supplies road capacities for vehicles’ demand in the rights-of-way. The imbalance between such
demands and supplies leads to congestion on roads, at mobility service stations, and inside vehicles
in many metropolitan areas (Downs, 2004; Lam et al., 1999; Schaller, 2018).

There can be two types of flows in a road network: (passenger) trip flows and (vehicular)
traffic flows. For privately operated vehicles, the number of active trips can be converted to the
number of running vehicles with given occupancies, and the trip flows are integrated with the traf-
fic flows. However, when trips are served by mobility service vehicles, the number of vehicles
and the corresponding traffic dynamics are substantially impacted by mobility service providers’
fleet size management strategies, and trip flows and traffic flows are disintegrated. Characterizing
and modeling congestion dynamics of the two types of flows has been a core task of transporta-
tion research. Existing traffic flow models generally describe the evolution of vehicular flows with
privately operated vehicles and, therefore, can be considered trip flow models. Such models can
be categorized into three types depending on how a road network is treated. In the most dominant
approach, a city is divided into zones that serve as origins and destinations of trips, and zones are
connected through a discrete network of roads and intersections (uninterrupted or signalized); then
travel times and traffic dynamics on each road and intersection can be described by the link per-
formance function (e.g Sheffi, 1984), Webster’s delay function (e.g. Roess et al., 2010), kinematic
wave theory (e.g. Jin, 2012), or car-following models (e.g. Hidas, 2005). This approach employs
a detailed representation of a road network and is suitable for design and operational tasks at local
levels. However, due to the limitation in resources for coding road networks, usually only major
roads are included, and many minor streets and ingress and egress points along arterial roads have
to be omitted. In addition, data for time-dependent origin-destination demand patterns are costly
to collect and calibrate. Finally, computational costs are high for trip generation, trip distribution,
mode choice, departure time choice, and route choice in discrete networks, and the dynamic traffic
assignment problem for route choice is still theoretically open and lacks a converging algorithm
(Peeta and Ziliaskopoulos, 2001). In the second type, a discrete road network is treated as a contin-
uum two-dimensional region (Beckmann, 1952; Ho and Wong, 2006). This type of models capture
the approximate spatial distribution of roads and is suitable for describing one-directional flows
of vehicles in a region. Such models are more efficient than the first type in network coding and
computation, but the two-dimensional origin-destination demand data are still costly to obtain. In
addition, these models need to be adjusted for a region with substantially heterogeneous types of
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roads such as signalized streets and freeways. In the third type, a road network is treated as a
single unit with roads of the same traffic conditions; in this sense, a road network with vehicular
traffic flows is similar to a bathtub with water flow (Vickrey, 1991, 1994; Arnott, 2013). In such
bathtub models of network traffic flows, the detailed topology of a network or the spatial distri-
bution of origins, destinations, routes and roads are ignored, and only the lane-miles as well as
the average speed-density relation (i.e., network fundamental diagram) are relevant. In addition,
time-dependent travel demands are characterized by time-dependent rates of entering trips and the
distributions of their distances. Such models are much simpler and directly capture the interactions
of dynamic travel demand and network supply even more efficiently. But they have to be modified
when origin-destination demands and traffic conditions vary with modes, vehicles, and locations.
Note that bathtub models are different from the point queue model with one origin, one destina-
tion, and one bottleneck in (Vickrey, 1969), since there are many origins, destinations, roads, and
bottlenecks in a network, even though they are undifferentiated.

Network fundamental diagram, i.e., the functional relationship between the average speed and
the average per-lane vehicle density in a road network, was proposed and empirically calibrated for
the town center road network in the city of Ipswich, England in (Godfrey, 1969). With the avail-
ability of more data from loop detectors and other sources, more empirical evidences are obtained
recently for other city or freeway networks (e.g. Geroliminis and Daganzo, 2008; Cassidy et al.,
2011; Wang et al., 2015; Ambühl et al., 2017). The network fundamental diagram was developed
and calibrated for multi-modal traffic and passenger flows in (Geroliminis et al., 2014; Chiabaut,
2015). However, empirically, it has been shown that links and traffic conditions have to be homo-
geneous for such a speed-density relation to be well-defined (Buisson and Ladier, 2009; Cassidy
et al., 2011). Theoretically, a trapezoidal flow-density relation exists in a signalized network under
stationary (periodic in both time and space) traffic conditions (Jin and Yu, 2015). Therefore, such a
network-level speed-density relation only captures the static characteristics of traffic flow approx-
imately and should be used with caution when a network contains heterogeneous types of roads,
directional congestion patterns, and highly dynamic traffic conditions. In addition to vehicle den-
sities, the distribution of trips can also impact the average speed of mobility service vehicles due
to the boarding and alighting times and other delays; and existing network fundamental diagrams
usually ignore the impacts of dynamic trip flows. However, it is a good starting point for studying
traffic dynamics at the aggregate level for signalized and freeway networks.

Vickrey (1991, 1994) introduced the first bathtub model for network trip flows served by pri-
vately operated vehicles based on three premises: (i) “a maze of congested streets is treated as an
undifferentiated movement area”; (ii) “movement takes place at a speed which is a function of the
density of cars in the area”; and (iii) the trip distance follows a time-independent negative expo-
nential distribution, or the average remaining distance of active trips is constant. As a result, the
evolution of the number of active trips is described by an ordinary differential equation. Further,
marginal cost pricing was determined based on the instantaneous travel time when a vehicle enters
the network. In (Small and Chu, 2003), Vickrey’s bathtub model1 was used to find the departure

1In (Agnew, 1976), an ordinary differential equation similar to Vickrey’s bathtub model was used to model and
control a congestion-prone system; but neither of the three premises were mentioned. In (Mahmassani and Herman,
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time user equilibrium in a network, but it was pointed out that a trip’s instantaneous travel time at
its entrance is substantially different from its experienced travel time, which depends on the vehicle
densities and travel speeds during the whole trip duration. In (Fosgerau, 2015), a bathtub model
was developed for deterministic distributions of trip distances, and trips are “regularly sorted” such
that shorter trips enter the network later but exit earlier than longer ones (last-in-first-out); then the
departure time user equilibrium was solved with experienced travel times. Yet another bathtub
model was developed in (Arnott et al., 2016; Arnott and Buli, 2018), in which all trips are assumed
to have the same distance, and the dynamics of the number of active trips and the experienced
travel times are described by delay-differential equations, which are solved by an iterative method.

This study is motivated by several factors. Empirically, the distribution of trip distances is
neither time-independent nor exponential (Liu et al., 2012; Thomas and Tutert, 2013). That is,
the assumption of a time-independent exponential distribution of trip distances in Vickrey’s bath-
tub model needs to be relaxed. Theoretically, many studies following (Daganzo, 2007) were not
aware of the third premise of Vickrey’s bathtub model in (Vickrey, 1991) and have attempted to
apply Vickrey’s bathtub model for constant and other distributions of trip distances; but this has
led to physically unreasonable results as information travels too fast (see (Mariotte et al., 2017)
and references therein). On the other hand, it has been argued that Vickrey’s bathtub model is
improper as “the exit rate from downtown traffic (i.e., the arrival rate at work) depends only on
the density of downtown traffic, and hence that the first exit occurs as soon as the first entry” in
(Arnott et al., 2016; Arnott and Buli, 2018). In addition, there seems to be no bathtub model for
trip flows served by mobility service vehicles in the literature; but such a model is essential for
understanding congestion dynamics in a shared mobility system. Thus there is a need to develop
a bathtub model with more general distance distribution patterns of trips served by both privately
operated and mobility service vehicles and better understand the properties of Vickrey’s and other
bathtub models in the literature.

In this study we fill the gap by presenting a generalized bathtub model of network trip flows
and discussing its properties and solutions, especially its relationship with existing bathtub models
in the literature. First we assume that a trip is served by a privately operated vehicles, and we use
trips and vehicles interchangeably in this case. This model generalizes Vickrey’s by relaxing the
third premise of the latter. That is, this model works for any distributions of trip distances. In
Vickrey’s bathtub model, the main state variable is the total number of active trips; in contrast, in
the new model, the main state variable is the number of active trips with remaining distances not
smaller than a value. From the conservation of trips, we derive four equivalent partial differential
equations to track the evolution of variables related to the distribution of remaining distances. Then
we discuss the properties as well as analytical and numerical solutions of the model. In particular,
we show that Vickrey’s bathtub model is a special case when the trip distance follows a time-
independent negative exponential distribution. Finally we extend the bathtub model for trips served

1984), an ordinary differential equation similar to Vickrey’s bathtub model was proposed for traffic flow on a link; but
as pointed in (Newell, 1988), such a model is not applicable for such a single bottleneck. In (Daganzo, 2007), the same
ordinary differential equation as Vickrey’s bathtub model was independently derived based on the first two premises;
but the third one was only implicitly assumed. Therefore, we refer to this model as Vickrey’s bathtub model.
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by mobility service vehicles. For privately operated vehicles, the bathtub model also describes
the dynamics of both trip and traffic flows. However, when trips are served by mobility service
vehicles, the bathtub model only describes the dynamic progression of trips in a road network, and
the vehicular traffic flow dynamics have to be developed separately. Therefore, the bathtub model
is for network trip flows, not necessarily for network traffic flows.

The rest of the article is organized as follows. In Section 2, after defining the number of ac-
tive trips at a time instant, that with a remaining distance not smaller than a value, the cumulative
travel distance, and other variables, we derive four equivalent formulations of the model from the
conservation of trips. In Section 3, we define and discuss the properties of stationary and gridlock
states, derive the integral form of the bathtub model with the characteristic method, obtain equiv-
alent formulations in different coordinates, and present a numerical method and an example. In
Sections 4 and 5, we further studied equivalent formulations and solutions for two special types of
distributions of trip distances: time-independent negative exponential or deterministic. In Section
6, we extend the model for trips served by mobility service vehicles and multi-commodity trip
flows. In Section 7, we conclude the study with discussions.

2 Definitions of variables and derivation of the model
A list of notations is given in Table 1.

2.1 Definitions of variables
For the three examples of road networks in Figure 1(a)-(c), their sizes are measured by the lane-
miles, L. We assume that there are many origins and destinations, the capacity of one location is
shared by many traffic streams, and there can be many bottlenecks in the network. In particular,
the beltway network in Figure 1(c) can be considered a limit case of the beltway considered in
(Daganzo, 1996) but with many on- and off-ramps, or two-way bus or metro lines with many
stations.

We denote the number of active trips on the network at t by λ (t) (unit: number of trips), which
equals the number of running vehicles when each trip is served by one privately operated vehicle.
Then the vehicle density per lane equals ρ(t) (unit: vehicles per lane-mile):

ρ(t) =
λ (t)

L
. (1)

The average travel speed is denoted by v(t) (unit: mph). Here we assume that all roads in
a network have the same average traffic conditions at any moment, and we can treat the whole
network as a single unit, or a bathtub.2 We denote the cumulative travel distance by z(t); i.e.,

2Note that, even when traffic conditions are periodic both in time and space in a signalized network, the traffic con-
ditions, including both densities and speeds, vary with time and location. Thus, the homogeneity in traffic conditions
should be understood at the average sense over a relatively long period of time or at the statistical sense.
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Variables Definitions Variables Definitions
t Time x Trip distance

∆t Time interval ∆x Distance interval
L Total lane-miles of a network v(t) Average travel speed

z(t) Cumulative travel distance τ(z) Cumulative travel time
ϕ̃(t,x) Probability density function of the entering trip distance at t
Φ̃(t,x) Proportion of the entering trips with distances not smaller than x
B̃(t) Average entering trips’ distances at t

ϒ(t,x) Travel time for a trip entering at t with a distance of x
ϒ̄(t) Average travel time for all trips entering at t

θ(t,x) Effective distance of a trip entering at t with a distance of x
F(t) In-flow (entering trip flow) G(t) Out-flow (exiting trip flow)
f (t) In-flux (entering trip rate) g(t) Out-flux (exiting trip rate)
λ (t) Number of active trips at t ρ(t) Per-lane density

ϕ(t,x) Probability density function of the active trips’ remaining distances at t
Φ(t,x) Proportion of the trips with remaining distances not smaller than x
k(t,x) Density of active trips at t with a remaining distance x
K(t,x) Number of active trips at t with a remaining distance not smaller than x
B(t) Average remaining distance of active trips

n Trip n X(t,n) Remaining distance of trip n at t
T (n,x) Time for trip n’s remaining distance is x
N(t,x) Cumulative flows of trips at (t,x)

Table 1: List of notations
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(a) (b)

(c) (d)

destinations remaining trip distances

Figure 1: Illustration of traffic networks with many origins, destinations, and bottlenecks: (a) A
signalized city road network; (b) A freeway/arterial corridor; (c) A beltway or a two-way bus/metro
line; (d) Trips in the x space.

z(t) =
∫ t

0 v(s)ds, or equivalently z(0) = 0, and

ż(t) = v(t). (2)

When vehicles always move with v(t)> 0, we denote the inverse function of z(t) as τ(z),

τ(z(t)) = t, (3)

which is the cumulative travel time. Thus

τ̇(z) =
1

v(z)
, (4)

where v(z) = v(τ(z)).
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During a study period during [0,T ], each trip has an origin, a destination, a path, an entering
time, and an exiting time. In the bathtub model, a trip can be represented by its entering time,
t, and its distance, x. We denote the effective distance of a trip entering at t with a distance of
x by θ(t,x) = x+ z(t), which is the cumulative travel distance when the trip exits the network.
In addition, the exit time for this trip is effectively the same as a trip that is in the network at
t = 0 with a distance of θ(t,x). Since z(t) increases in t with positive speeds, trips with shorter
effective distances exit the network earlier. We refer to this as the shorter-(effective) distance-first-
out principle.

We define the rate of entering trips in the whole network by f (t) (unit: vph), which is also the
in-flux. 3 Then 1

L f (t) is the number of entering trips per unit time and unit lane-mile. 4 We denote
the cumulative in-flow by F(t): F(t) =

∫ t
0 f (s)ds.

We denote the probability density function of entering trips’ total distances, x, at t by ϕ̃(t,x)
(unit: mile−1), which satisfies the following conditions: (i) ϕ̃(t,x) ≥ 0; (ii)

∫
∞

0 ϕ̃(t,x)dx = 1; (iii)
ϕ̃(t,∞) = 0. We denote the proportion of the entering trips with distances not smaller than x by
Φ̃(t,x): Φ̃(t,x) =

∫
∞

x ϕ̃(t,y)dy, and ϕ̃(t,x) = − ∂

∂xΦ̃(t,x). Thus, Φ̃(t,0) = 1, Φ̃(t,∞) = 0, and
Φ̃(t,x) is non-increasing in x. If we denote the average distance of the entering trips at time t by
B̃(t), then

B̃(t) =
∫

∞

0
xϕ̃(t,x)dx =

∫
∞

0
Φ̃(t,x)dx. (5)

Here f (t) and Φ̃(t,x) represent the demand pattern of trips.
For a trip with an entering time of t and a distance of x, we denote its travel time by ϒ(t,x):

ϒ(t,x) = τ(x+ z(t))− t. (6)

We denote the average travel time for entering trips at t by ϒ̄(t). Then we have

ϒ̄(t) =
∫

∞

0
ϒ(t,x)ϕ̃(t,x)dx. (7)

It can be easily shown that

ϒ̄(t) =
∫

∞

0
Φ̃(t,x)

1
v(τ(x+ z(t)))

dx, (8)

3For privately operated vehicles, the in-flux is related to the traffic queueing process in a parking lot, side streets
not included in the road network, or roads outside the network. It is related to the queues of passengers waiting to
board buses or shared cars in a shared mobility system.

4As an example, consider a grid network comprised of β blocks, in which each link’s length is b, and the number
of lanes is l. Then the total lane-miles is L ≈ 2βbl, since each link is shared by two blocks, and the area is A = βb2.
Assume that the number of entering trips is proportional to the area, and the trip generation rate at t is a(t) (unit:
trips/mile2/hr). In this case, the in-flux per lane-mile is 1

L f (t) = Aa(t)
L = 1

2l ba(t), which is independent of the number
of blocks, but increases with the link length, and decreases in the road width. This simple model can be used to study
the impacts of housing and job distributions on the in-flux.
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which can be approximated by

ϒ̄(t) ≈ B̃(t)
v(t)

, (9a)

as in (Vickrey, 1991), or

ϒ̄(t) ≈ B̃(t)
v(τ(z(t)+ B̃(t)))

. (9b)

In (9a), the travel speeds are assumed to be the same as the instantaneous speed when the trips
enter the network. In (9b), the travel speeds are assumed to be the same as the instantaneous speed
when the trip with the average distance exits the network.

A network can be considered as a trip processing machine: trips with a time-dependent trip
distance distribution of ϕ̃(t,x) are added into it dynamically at a rate of f (t), and each trip’s
remaining distance is shredded by v(t) per unit time until it exits the network. At time t, an
active trip in the network has a remaining distance x > 0, and different trips can be represented
by a (dotted) line segment in the x space, as shown in Figure 1(d). We denote the probability
density function of the remaining trip distance, x, at t by ϕ(t,x) (unit: mile−1), which satisfies
the following conditions: (i) ϕ(t,x) ≥ 0; (ii)

∫
∞

0 ϕ(t,x)dx = 1; (iii) ϕ(t,∞) = 0. Furthermore, if
we denote the proportion of the trips with remaining distances not smaller than x by Φ(t,x), then
Φ(t,x) =

∫
∞

x ϕ(t,y)dy, and ϕ(t,x) =− ∂

∂xΦ(t,x). Therefore, Φ(t,0) = 1, Φ(t,∞) = 0, and Φ(t,x)
is non-increasing in x. We denote the average remaining trip distance at t by B(t):

B(t) =
∫

∞

0
xϕ(t,x)dx =

∫
∞

0
Φ(t,x)dx. (10)

The density of active trips with a remaining distance of x is denoted by k(t,x) (unit: vehicles
per mile):

k(t,x) = λ (t)ϕ(t,x), (11a)

which leads to

λ (t) =
∫

∞

0
k(t,x)dx. (11b)

We define the number of trips at t with a remaining distance not smaller than x by K(t,x) (unit:
number of vehicles). In this study this will be the main variable. Note that the variable of K(t,x)
was first defined in (Vickrey, 1991); but its evolution dynamics were not explicitly considered.
Then

K(t,x) = λ (t)Φ(t,x). (12a)

That is, if K(t,x) = K, then the Kth longest active trip has a remaining distance of x at t. Thus
∂

∂xK(t,x) =−k(t,x), K(t,x) =
∫

∞

x k(t,y)dy, and

λ (t) = K(t,0), (12b)
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since trips with negative distances are assumed to have exited the network.
From t to t +∆t for a small time interval ∆t, the number of exiting (completing) trips is g(t)∆t,

which equals those with a remaining distance between 0 and v(t)∆t at time t. 5 That is,

g(t)∆t =
∫ v(t)∆t

0
k(t,x)dx≈ k(t,0)v(t)∆t;

or equivalently, the out-flux (the completion rate of trips) equals

g(t) = k(t,0)v(t) = ϕ(t,0)λ (t)v(t), (13)

which depends on the number of active trips, the travel speed, and the probability density function
of the remaining distance 0. This can be considered a generalized version of the network exit
function introduced in (Gonzales and Daganzo, 2012). The cumulative out-flow is denoted by
G(t) =

∫ t
0 g(s)ds.

2.2 Network fundamental diagram
By the definition of the network fundamental diagram (Godfrey, 1969; Vickrey, 1991), we assume
the following network-level speed-density relation when a trip is served by a privately operated
vehicle:

v(t) = V (ρ(t)) =V
(

λ (t)
L

)
, (14)

which represents the supply of a road network. For freeway networks, we can use the triangular
fundamental diagram (Cassidy et al., 2011):

V (ρ) = min{u,w(κ

ρ
−1)}, (15)

where u is the free-flow speed, w the shock wave speed in congested traffic, and κ the per-lane jam
density. For signalized road networks, we can use the following trapezoidal fundamental diagram
(Jin and Yu, 2015):

V (ρ) = min{u,C
ρ
,w(

κ

ρ
−1)}, (16)

where the additional parameter C is the average capacity. In the literature, the Greenshields funda-
mental diagram is also used:

V (ρ) = u(1− ρ

κ
). (17)

5Here we assume that all trips can exit the network once their remaining distances are non-positive. Note that this
may not be the case when vehicles have to cruise for parking (Shoup, 2006).
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For freeway networks, u and w depend on speed limits and vehicle characteristics; for signalized
networks, u, w, and C also depend on signal settings. From the speed-density relation, a trip
entering the network at a later time could impact an earlier one still in the network as the former
changes the number of active trips.

The corresponding average per-lane flow-density relation can be written as

q = Q(ρ)≡ ρV (ρ). (18)

Generally, the travel speed is non-increasing in the per-lane density; i.e., d
dρ

V (ρ)≤ 0; and the flow-

density relation is concave. 6 The model developed in this study works for very general speed-
density and flow-density relations. For examples, the speed-density relation can be piecewise
constant, and the flow-density relation can be non-concave or discontinuous.

When ρ(t) = κ and λ (t) = Lκ , all roads in the network are jammed with vehicles, and both
the travel speed and the flow-rate are zero. In this case, the network reaches a standstill or gridlock
state (Vickrey, 1969; Daganzo, 2007).

2.3 Three conservation laws and four equivalent differential formulations
of the generalized bathtub model

At t, the trip processing rate is given by

λ (t)v(t) = LQ
(

λ (t)
L

)
. (19)

Therefore the maximum trip processing rate equals LC, where C = maxρ Q(ρ). For a concave
flow-density relation, the trip processing rate decreases with increasing vehicle densities in hyper-
congestion (Small and Chu, 2003). From the conservation of trip-miles we have

λ (0)B(0)+
∫ t

0
f (s)B̃(s)ds−

∫ t

0
λ (s)v(s)ds = λ (t)B(t), (20)

where λ (0)B(0) is the initial trip-miles,
∫ t

0 f (s)B̃(s)ds the added trip-miles till t,
∫ t

0 λ (s)v(s)ds
processed trip-miles till t, and λ (t)B(t) the remaining trip-miles.

In addition, from the conservation of total trips, we can calculate the cumulative out-flow as

G(t) = λ (0)+F(t)−λ (t), (21)

whose differential version is g(t) = f (t)− λ̇ (t), or

λ̇ (t) = f (t)−g(t). (22)

6Sometimes the travel speed can increase in the density as in night traffic (LeVeque, 2001). Non-concave flow-
density relations have also be reported in the literature (e.g. Kerner and Konhäuser, 1993).
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From (13) and (22), we have the following evolution equation for the total number of active trips

λ̇ (t) = f (t)−ϕ(t,0)λ (t)v(t). (23)

Incorporating the network speed-density relation in (14), the evolution of the number of active trips
in the network is governed by the following ordinary differential equation:

λ̇ (t) = f (t)−ϕ(t,0)λ (t)V
(

λ (t)
L

)
. (24)

In this equation, λ (t) is the unknown variable, f (t) and V (·) are given demand and supply. Note
that (24) is an incomplete model, as ϕ(t,0) is also unknown.

We further complete (24) by tracking the probability density function of the remaining trip
distance, including ϕ(t,0). At t+∆t, the number of active trips with a remaining distance between
x and x+∆x is

∫ x+∆x
x λ (t+∆t)ϕ(t+∆t,y)dy= λ (t+∆t)ϕ(t+∆t,x)∆x. Such trips include (i) those

with a remaining distance between x+ v(t)∆t and x+ v(t)∆t +∆x at t, which will be shortened to
be between x and x+∆x at t +∆t, and (ii) those entering the network between t and t +∆t with a
trip distance between x and x+∆x. The number of the first group of trips is λ (t)ϕ(t,x+v(t)∆t)∆x;
and the number of the second group is f (t)∆tϕ̃(t,x)∆x. Therefore we have (with ∆x eliminated
from all terms)

λ (t +∆t)ϕ(t +∆t,x) = λ (t)ϕ(t,x+ v(t)∆t)+ f (t)∆tϕ̃(t,x). (25)

Replacing λ (t +∆t) by λ (t)+ λ̇ (t)∆t and ϕ(t,x+ v(t)∆t) by ϕ(t,x)+ϕx(t,x)v(t)∆t, we obtain
from the above equation

λ (t)[ϕ(t +∆t,x)−ϕ(t,x)− v(t)ϕx(t,x)∆t] = f (t)ϕ̃(t,x)∆t− λ̇ (t)ϕ(t +∆t,x)∆t.

Dividing both sides of the above equation by ∆t and let ∆t→ 0, we obtain the following continuous
version of (25):

ϕt(t,x)− v(t)ϕx(t,x) =
1

λ (t)
[ f (t)ϕ̃(t,x)−ϕ(t,x)λ̇ (t)].

Further by substituting λ̇ (t) in (23) into the above equation, we have

∂

∂ t
ϕ(t,x)− v(t)

∂

∂x
ϕ(t,x) =

f (t)
λ (t)

(ϕ̃(t,x)−ϕ(t,x))+ϕ(t,x)ϕ(t,0)v(t). (26)

Thus (14), (23), and (26) form a complete bathtub model, in which λ (t), v(t), and ϕ(t,x) are the
unknown variables. Hereafter we refer to this model as the ϕ-model.

Integrating both sides of (26) with respect to x from x to ∞, we obtain the following equation
of Φ(t,x):

∂

∂ t
Φ(t,x)− v(t)

∂

∂x
Φ(t,x) =

f (t)
λ (t)

(Φ̃(t,x)−Φ(t,x))+Φ(t,x)ϕ(t,0)v(t), (27)
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which, with (14), (23), and ϕ(t,0) =−Φx(t,x)
∣∣
x=0, forms the Φ-model. In this model, λ (t), v(t),

and Φ(t,x) are the unknown variables. The corresponding discrete Φ-model is

λ (t +∆t)Φ(t +∆t,x) = λ (t)Φ(t,x+ v(t)∆t)+ f (t)∆tΦ̃(t,x). (28)

An equivalent discrete evolution equation of (25) is

k(t +∆t,x) = k(t,x+ v(t)∆t)+ f (t)ϕ̃(t,x)∆t. (29)

Replacing k(t,x+ v(t)∆t) by k(t,x)+ ∂

∂xk(t,x)v(t)∆t in the above equation, we obtain its continu-
ous version as

∂

∂ t
k(t,x)− v(t)

∂

∂x
k(t,x) = f (t)ϕ̃(t,x). (30)

Thus (11b), (14), and (30) yield another formulation of the bathtub model, in which λ (t), v(t),
and k(t,x) are the unknown variables. Plugging (11b) and (14) into (30), we obtain the following
simplified integral-differential equation:

∂

∂ t
k(t,x)−V

(
1
L

∫
∞

0
k(t,y)dy

)
∂

∂x
k(t,x) = f (t)ϕ̃(t,x), (31)

where k(t,x) is the only unknown variable. Hereafter we refer to (31) or, equivalently, (11b), (14),
and (30), as the k-model.

Figure 2: Illustration of the discrete K-model

Integrating both sides of (30) from x to ∞ with respect to x, we obtain

∂

∂ t
K(t,x)− v(t)

∂

∂x
K(t,x) = f (t)Φ̃(t,x), (32)

13



which can also be derived from the following discrete version:

K(t +∆t,x) = K(t,x+ v(t)∆t)+ f (t)Φ̃(t,x)∆t. (33)

An illustration of the derivation process of the above equation is in Figure 2, in which the left and
right sides represent the traffic conditions at t and t +∆t respectively, the solid blue lines represent
the trips in the network at t, the dotted red lines represent the trips entering the network between
t and t +∆t. From the figure, we can see that the number of trips with a remaining distance not
smaller than than x at t +∆t (the left seven solid blue lines and the left two dotted red lines in the
right figure), K(t +∆t,x) in (33), equals the number of trips with a remaining distance not smaller
than than x+ v(t)∆t (the left seven solid blue lines in the left figure), K(t,x+ v(t)∆t) in (33), plus
the number of entering trips with a distance not smaller than x (the left two dotted red lines in the
right figure), f (t)Φ̃(t,x)∆t in (33). From the definitions of Φ(t,x) and K(t,x), we can see that (23)
is a special case of (32) when x = 0. Thus (12b), (14), and (32) yield another formulation of the
model, in which λ (t), v(t), and K(t,x) are the unknown variables. Plugging (12b) and (14) into
(32), we obtain the following simplified partial differential equation:

∂

∂ t
K(t,x)−V

(
K(t,0)

L

)
∂

∂x
K(t,x) = f (t)Φ̃(t,x), (34)

where K(t,x) is the only unknown variable. Hereafter we refer to (34) or, equivalently, (12b), (14),
and (32), as the K-model.

We can see that the generalized bathtub model is derived from the network fundamental dia-
gram and the conservation law for the number of active trips with remaining distances not smaller
than any value. Note that the conservation law for the total number of active trips is a special case
of this one.

3 Properties and solutions
In this section we discuss the properties and solutions of the generalized bathtub model, in partic-
ular, of the K-model.

3.1 Stationary states and their stability
We define a traffic state as stationary if for any x the state variable is time-independent;

∂

∂ t
K(t,x) = 0. (35)

Lemma 3.1 The traffic state is stationary if and only if the number of active trips is constant:
λ (t) = λ ; the travel speed is constant: v(t) =V (λ

L ) = v; the remaining trip distance distribution is
time-independent: Φ(t,x) = Φ(x); and the average remaining trip distance B(t) = B is constant.

14



Proof. Setting x= 0 in (35), we have λ̇ (t) = 0; i.e., the number of active trips is constant: λ (t) = λ .
Hence the travel speed v(t) = V (λ

L ) = v is constant. Further from (35) we have ∂

∂ t Φ(t,x) = 0.
Thus Φ(t,x) = Φ(x) is time-independent. From the definition of B(t), it is also constant. Hence
the necessary conditions are proved. The sufficient conditions are obvious from the definition of
K(t,x). �

Theorem 3.2 In a stationary state of the generalized bathtub model, the in-flux is constant

f (t) = f ≡ LQ
(

λ

L

)
ϕ(0), (36)

and the trip distance distribution is time-independent

Φ̃(t,x) = Φ̃(x)≡ ϕ(x)
ϕ(0)

. (37)

The average trip distance is constant at

B̃(t) = B̃≡ 1
ϕ(0)

, (38)

which may not equal B.

Proof. In a stationary state, (34) can be simplified as

LQ
(

λ

L

)
ϕ(x) = f (t)Φ̃(t,x),

which at x = 0 leads to a constant in-flux: f (t) = f ≡ LQ
(

λ

L

)
ϕ(0), and a time-independent trip

distance distribution Φ̃(t,x) = ϕ(x)
ϕ(0) . Then the average trip distance is constant B̃(t) = B̃≡ 1

ϕ(0) . �

Near a stationary state with K(t,x) = λ0Φ(x) and f (t)Φ̃(t,x) = LQ
(

λ0
L

)
ϕ(x), if a small dis-

turbance ε(t) is applied to the initial state, such that (24) can be written as

ε̇(t) = LQ
(

λ0

L

)
ϕ(0)−LQ

(
λ0 + ε(t)

L

)
ϕ(0)≈−LQ̇

(
λ0

L

)
ϕ(0)ε(t), (39)

which is stable if Q̇
(

λ0
L

)
≥ 0 and unstable if Q̇

(
λ0
L

)
< 0. An unstable system settles down at a

local minimum state of Q(ρ). In particular, for a concave flow-density relation, a stationary state
in hypercongestion is unstable, and the system eventually converges to a gridlock state with a small
disturbance.

If a network reaches a gridlock state at t; i.e., λ (t) = Lκ , then the out-flux g(t) = 0, and (24)
leads to λ̇ (t) = f (t) ≥ 0 and λ (t) ≥ Lκ after t. Such a gridlock state usually occurs under non-
recurrent, abnormal conditions, as people can choose their departure times to avoid gridlock under
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normal conditions. (20) can be used to determine whether gridlock develops in a network. For
example, if both f (t) = f and B̃(t) = B̃ are time-independent, the network becomes gridlocked if

f B̃ > LC. (40)

Here f B̃ represents the demand, which equals the product of the in-flux and the average trip dis-
tance, and LC the supply, which equals the product of the road capacity per-lane and the total
lane-miles of the network. Thus a network becomes gridlocked when the demand is higher than
the supply for a long period of time. Note that (40) is the sufficient condition for gridlock but may
not be necessary, since the initial condition also plays a vital role in the development of gridlock.
A network cannot be brought out of gridlock by reducing the demand alone. In this case, the only
remedy is to divert vehicles away from their intended destinations; i.e., some trips with positive re-
maining distances are forced to exit the network. For example, if all trips with a remaining distance
smaller than x0 > 0 have to exit, then the out-flux in (13) is revised as

g(t)∆t =
∫ x0

0
k(t,x)dx = λ (t)(1−Φ(t,x0)), (41)

which is positive even in the gridlock state.

3.2 Characteristic curve and the integral bathtub model
We define a characteristic curve in the (t,x) space as x = x(t) with ẋ(t) = −v(t). Then a char-
acteristic curve emanated from (0,x0) can be written as x(t) = x0− z(t). For a trip entering the
network at t = 0 with a trip distance x0, its trajectory is also given by x(t) = x0− z(t). Therefore,
the characteristic curves coincide with the trip trajectories.

From (34) we have an ordinary differential equation for K(t,x0− z(t)) along the characteristic
curve:

d
dt

K(t,x0− z(t)) =
∂

∂ t
K(t,x0− z(t))− v(t)

∂

∂x
K(t,x0− z(t)) = f (t)Φ̃(t,x0− z(t)),

from which we can solve K(t,x0− z(t)) as follows:

K(t,x0− z(t)) = K(0,x0)+
∫ t

0
f (s)Φ̃(s,x0− z(s))ds,

where K(0,x0) is given by the initial condition, and
∫ t

0 f (s)Φ̃(s,x0− z(s))ds by the boundary con-
dition. Thus, if z(t) is known, K(t,x) is solved by

K(t,x) = K(0,x+ z(t))+
∫ t

0
f (s)Φ̃(s,x+ z(t)− z(s))ds, (42)

which is the integral form of the K-model and referred to as the integral K-model. Figure 3(a)
explains (42) graphically: since K(t,x) represents the number of trips with a distance not shorter
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than x at t, it includes the initial trips that are not shorter than x+ z(t) and all trips that enter the
network at s ≤ t with a distance not shorter than x+ z(t)− z(s); the number of such initial trips
equals K(0,x+ z(t)), and the number of such entering trips equals

∫ t
0 f (s)Φ̃(s,x+ z(t)− z(s))ds;

and all such trips are in the shaded region in the figure. From (42), we have the following integral
form for the total number of active trips

λ (t) = K(t,0) = K(0,z(t))+
∫ t

0
f (s)Φ̃(s,z(t)− z(s))ds. (43a)

Similarly Figure 3(b) explains (43)(a) graphically. (43)(a) and (2),

ż(t) =V
(

λ (t)
L

)
, (43b)

form a system of differential-integral equations, from which λ (t) and z(t) can be solved. Further-
more, K(t,x) can be solved from (42), and G(t) can be solved from (21). As an example, if the
entering trips’ distances follow a time-dependent exponential distribution, Φ̃(t,x) = e−

x
B̃(t) , (43)

can be simplified as

λ (t) = K(0,z(t))+
∫ t

0
f (s)e−

z(t)−z(s)
B̃(t) ds.

(a) (b)

Figure 3: Illustration of the integral K-model

In particular, for the initial value problem of (34) with f (t) = 0, (34) can be simplified as

∂

∂ t
K(t,x)−V

(
K(t,0)

L

)
∂

∂x
K(t,x) = 0, (44)

which is solved by K(t,x) = K(0,x+ z(t)); i.e., K(t,x) remains constant along the characteristic
curve. In additon, λ (t) = K(0,z(t)). As a special case, if the initial distribution of the trip distance
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is negative exponential with Φ(0,x) = e−
x
B , where B is the average trip distance, we then have

K(0,x) = λ (0)e−
x
B , λ (t) = K(t,0) = λ (0)e−

z(t)
B , and K(t,x) = λ (t)e−

x
B . Therefore, the remaining

trip distance follows the same negative exponential distribution, and the average remaining trip
distance is time-independent and still equals B.

Figure 4 presents the analytical solution of (44), when the speed-density relation is piecewise
constant as shown in Figure 4(a). The concave solid and dashed curves in Figure 4(b) are the char-
acteristic curves. In addition, K(t1,0) = Lk2, K(t2,0) = Lk1, and K(t3,0) = 0; i.e., the completion
times of trips Lk2, Lk1, and 0 are respectively t1, t2, and t3. Therefore, the travel speeds are respec-
tively v3, v2, and v1 during time intervals of [0, t1], (t1, t2], and (t2, t3], as shown in the figure. Along
the characteristic curves, x always decreases in t, since v(t) > 0. As the speed is non-increasing
in the density, the characteristic curves are concave. From the figure, we can also see that K(t,x)
decreases in both t and x. We can see that trips with different distances exit the network at different
times, even though they all start at t = 0. Therefore, the first-in-first-out principle does not apply
in this model, but the shorter-(effective) distance-first-out principle still applies. Note that the vio-
lation of the first-in-first-out principle is not contradictory to other traffic flow models that satisfy
the first-in-first-out principle on the same road, as the trips can have totally different origins and
destinations.

(a) (b)

Figure 4: Analytical solution of the initial value problem for the K-model
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3.3 The bathtub model in the (z,x) coordinates
When v(t)> 0, t strictly increases in z(t). Thus the (t,x) coordinates can be replaced by the (z,x)
coordinates. 7 In the new coordinates, the K-model, (34), can be re-written as

∂

∂ z
K(z,x)− ∂

∂x
K(z,x) =

f (z)Φ̃(z,x)

V
(

K(z,0)
L

) , (45)

where K(z,x) = K(τ(z),x), f (z) = f (τ(z)), and Φ̃(z,x) = Φ̃(τ(z),x). In the new coordinates, the
characteristic curve is given by ẋ(z) =−1. (2), (14), and (43) can be re-written as

λ (z) = K(0,z)+
∫ z

0

f (y)Φ̃(y,z− y)
v(y)

dy, (46a)

v(z) = V
(

λ (z)
L

)
, (46b)

τ(z) =
∫ z

0

1
v(y)

dy, (46c)

where λ (z) = λ (τ(z)), and v(z) = v(τ(z)). (42) can be re-written as

K(z,x) = K(0,x+ z)+
∫ z

0

f (y)Φ̃(y,x+ z− y)
v(y)

dy. (47)

Therefore, the number of trips with effective distances greater than x+ z at z, K(z,x), equals the
number of initial trips with distances larger than x+z, K(0,x+z), plus those entering before z with
effective distances greater than x+ z,

∫ z
0

f (y)Φ̃(y,x+z−y)
v(y) dy.

Then

F(z) = F(τ(z)) =
∫ z

0

f (y)
v(y)

dy,

or equivalently

Ḟ(z) =
f (z)

V
(

λ (z)
L

) , (48)

and

G(z) = λ (0)+F(z)−λ (z) = λ (0)−K(0,z)+
∫ z

0

f (y)
v(y)

(1− Φ̃(y,z− y))dy.

Thus G(z) includes all initial trips whose distances are shorter than z, λ (0)−K(0,z), and all
entering trips whose effective distances are shorter than z,

∫ z
0

f (y)
v(y) (1− Φ̃(y,z− y))dy.

7We can also use (θ ,x) coordinates for the bathtub model.
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In the new coordinates, a trip can be represented by the cumulative travel distance when it
enters the network, z, and its distance x. For such a trip, its effective distance is x+ z, and its travel
time is

ϒ(z,x) = ϒ(τ(z),x) = τ(z+ x)− τ(z).

The average travel time for trips entering at z is

ϒ̄(z) =
∫

∞

0
ϒ(z,x)ϕ̃(z,x)dx =

∫
∞

0
Φ̃(z,x)

1
v(z+ x)

dx,

where ϕ̃(z,x) = ϕ̃(τ(z),x).

3.4 Finite difference methods and a numerical example
The integral form of the bathtub model can be solved numerically. In particular, a difference-
integration method can be developed to solve λ (t) and z(t) from (43), and then K(t,x) and G(t)
from (42) and (21) respectively as follows. We divide the range of trip distances [0,X ] into I
intervals with ∆x = X

I , where X is the maximum trip distance. We discretize the study period [0,T ]
to J time steps with ∆t = T

J . At j∆t ( j = 0,1, · · · ,J), the number of active trips in the network is
λ j, the travel speed by v j, and the cumulative travel distance by z j.

v j = V
(

λ j

L

)
, (49a)

z j+1 = z j + v j
∆t, (49b)

λ
j+1 = K(0,z j+1)+

j

∑
i=0

f (i∆t)Φ̃(i∆t,z j+1− zi)∆t. (49c)

Then for j = 0, · · · ,J and i = 0, · · · , I

K( j∆t, i∆x) = K(0, i∆x+ z j)+
j−1

∑
m=0

f (m∆t)Φ̃(m∆t, i∆x+ z j− zm)∆t,

G( j∆t) = λ
0 +

j−1

∑
m=0

f (m∆t)∆t−λ
j.

A similar method can be developed in the (z,x) coordinates.
Another method is to directly solve K(t,x) from the differential form of the bathtub model,

(34). At jth time step, the time is denoted by t j ( j = 0,1, · · ·), where t0 = 0. At t j, K(t j, i∆x) is
denoted by K j

i (i = 0, · · · , I), and the number of active trips in the network is λ j = K j
0 . Further

the corresponding speed is denoted by v j = V (λ j

L ). If we denote the step-size ∆t j = ∆x
v j , then

t j+1 = t j +∆t j, and z(t j) = j∆x. From (33) we can update K j+1
i (i = 0, · · · , I−1) as follows:

K j+1
i = K j

i+1 + K̃ j
i , (50)
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where K̃ j
i = f (t j)Φ̃(t j, i∆x)∆t j.8 The algorithm stops when the network is gridlocked with v j = 0

or when t j+1 is beyond the study period T .
As an example, we consider a network with L = 10 lane-miles, the speed-density relation is 9

V (ρ) = min{30,
750
ρ

,10(
200
ρ
−1)}.

Initially the network is empty, the in-flux during a peak period is given by the following trapezoidal
function:

f (t) = max{0,min{10000t,4000,10000(1− t)}},

and the trip distance follows a uniform distribution:

Φ̃(t,x) = max{0,1− x
2B̃(t)

},

where B̃(t) is the time-dependent average trip distance at t:

B̃(t) = 2+max{0,min{7.5t,3,7.5(1− t)}}.

Here the maximum remaining trip distance is X = 5 miles, and both the in-flux and the average trip
distance are symmetric and reach their respective maximum values between 0.4 and 0.6 hr. The
initial condition is given by K0

i = 0. We simulate the system until the accumulative travel distance
reaches 30 miles. We first let ∆x = 2−6 mile and I = 320. The evolution of K(t,x) is illustrated
in Figure 5(a), which shows that the number of active trips reaches the maximum value between
0.75 and 1 hr. Thus the network is most congested between 0.75 and 1 hr, even though the demand
pattern peaks between 0.4 and 0.6 hr. In Figure 5(b) we present the solutions of z(t) for different
∆x’s. From this figure we can see that the solutions converge with diminishing ∆x; it suggests that
the numerical solution converges to the theoretical one when ∆x diminishes. By comparing the
times for the cumulative travel distances to reach 30 miles, we obtain an approximate convergence
rate of 1.

4 Special case 1: Vickrey’s bathtub model
Vickrey (1991, 1994) presented a special case of the bathtub model when the entering trips’ dis-
tances and the remaining trip distance follow the same time-independent negative exponential dis-
tribution

Φ(t,x) = Φ̃(t,x) = e−
x
B , (51)

8The finite difference method is effectively implemented in the (z,x) coordinates. A related method is to first solve
λ (z), v(z), and τ(z) by discretizing (46) and then solve (47).

9The network resembles the road network of the Ipswich town center considered in (Godfrey, 1969).
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(a) Solution of K(t,x) with ∆x = 2−6 mile (b) Solutions of z(t) for different ∆x’s

Figure 5: A numerical example of the generalized bathtub model

where B is the average trip distance and the average remaining trip distance.
With the negative exponential distribution of trip distances, the only unknown variable is λ (t),

and the bathtub model is equivalent to the simplified version of (24):

λ̇ (t) = f (t)− 1
B

λ (t)V
(

λ (t)
L

)
. (52)

In this case, the out-flux or the trip completion rate equals (Gonzales and Daganzo, 2012)

g(t) =
1
B

λ (t)v(t) =
L
B

Q(ρ(t)), (53)

which is proportional to the traffic flow rate Q(ρ(t)). We can see that Vickrey’s bathtub model
for trips served by privately operated vehicles is derived based on three premises: (i) the bathtub
treatment of a road network, (ii) the speed-density relation at the network level, and (iii) the time-
independent negative exponential distribution of trip distances. The generalized bathtub model in
(34) relaxes the third premise. In addition, Vickrey’s bathtub model tracks the evolution of the total
number of trips, but the generalized bathtub model tracks the evolution of the number of trips with
a remaining distance over any value.

In (Arnott et al., 2016; Arnott and Buli, 2018), Vickrey’s bathtub model was considered im-
proper as “the exit rate from downtown traffic (i.e., the arrival rate at work) depends only on the
density of downtown traffic, and hence that the first exit occurs as soon as the first entry”. Even
though these phenomena may not occur when the trip distances follow other distributions, they are
physically meaningful: (i) since the remaining trip distance distribution is time-independent, the
out-flux only depends on the density; and (ii) since some trips have zero distances with the negative
exponential distribution, these trips can exit the network in no time.
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4.1 Properties
The properties of the stationary states, including the gridlock state, and their stability properties in
Section 3.1 can be easily extended for Vickrey’s bathtub model. Stability and control of (52) were
discussed in (Agnew, 1976; Daganzo, 2007).

From (43), we have the following integral form of Vickrey’s bathtub model

λ (t) = λ (0)e−
z(t)
B +

∫ t

0
f (s)e−

z(t)−z(s)
B ds, (54)

which and ż(t) =V (λ (t)
L ) can be used to solve λ (t) and z(t), and

G(t) = (1− e−
z(t)
B )λ (0)+

∫ t

0
f (s)(1− e−

z(t)−z(s)
B )ds. (55)

In the (z,x) coordinates, Vickrey’s bathtub model can be written as

λ̇ (z) =
f (z)
v(z)
− 1

B
λ (z), (56)

whose integral form is

λ (z) = e−
z
B [λ (0)+

∫ z

0

f (y)
v(y)

e
y
B dy]. (57)

Thus the cumulative out-flow is

G(z) = (1− e−
z
B )λ (0)+

∫ z

0

f (y)
v(y)

(1− e
y−z
B )dy. (58)

With λ (z) we can calculate τ(z) from (4) and the trip travel times from (8). Under general initial
and boundary conditions, Vickrey’s bathtub model and its integral form in both t and z coordinates
can be numerically solved with, for example, Euler’s forward method. It is easy to show that
(49) is equivalent to Euler’s forward method for (52); i.e., the numerical methods for both the
integral and differential forms are equivalent for Vickrey’s bathtub model. The computational cost
is proportional to 1

∆t .
As shown in Section 3.2, the initial value problem for Vickrey’s bathtub model, (52), with

λ (0)> 0 can be solved by

λ (t) = λ (0)e−
z(t)
B , (59)

and the average travel time for the initial trips is given by

ϒ̄(0) =
∫

∞

0

e−
x
B

V
(

λ (0)
L e−

x
B

)dx. (60)
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In this case, (52) is equivalent to

ż(t) = V
(

λ (0)
L

e−
z(t)
B

)
, (61)

which can be analytically solved with a given speed-density relation.
Next we solve Vickrey’s bathtub model with a constant in-flux on an initially empty road net-

work. That is, f (t) = f , and λ (0) = 0. When the demand level is relatively low; i.e., when (40) is
violated, λ (t) keeps increasing until it reaches a stationary λ such that B f = LQ

(
λ

L

)
. However, if

(40) is satisfied; i.e., if the demand level is too high, the network becomes gridlocked eventually.

4.2 Equivalent conditions for Vickrey’s bathtub model
Theorem 4.1 For a network, which is never gridlocked with v(t) > 0 for any t, the following six
statements are equivalent and lead to Vickrey’s bathtub model:

(i) The entering trips’ distances and the remaining trip distance follow the same time-independent
negative exponential distribution as in (51).

(ii) The remaining trip distance follows a time-independent negative exponential

Φ(t,x) = e−
x
B . (62)

(iii) The distributions of the initial trips’ remaining distances and the entering trips’ total dis-
tances follow the same, time-independent negative exponential distribution:

Φ(0,x) = Φ̃(t,x) = e−
x
B . (63)

(iv) Φ(t,x) = Φ̃(t,x) = Φ(x) are time-independent and continuous.

(v) B(t) = B̃(t) = B is time-independent.

(vi) The out-flux can be written as g(t) = 1
Bλ (t)v(t); i.e., ϕ(t,0) = 1

B is constant.

In particular, the statements are equivalent in the following two special cases: (i) the initial net-
work is empty; i.e., λ (0) = 0; (ii) no trips enter the network at any time; i.e., f (t) = 0.

Proof. Clearly (i)⇒ (ii), (iii), (iv), (v), and (vi). In addition, (iv)⇒ (v) from the definitions of B(t)
and B̃(t).

If Φ(t,x) = e−
x
B , from (34) we have

λ̇ (t)e−
x
B +

λ (t)v(t)
B

e−
x
B = f (t)Φ̃(t,x).
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Letting x = 0, we have

λ̇ (t)+
λ (t)v(t)

B
= f (t).

Comparing the above two equations, we have Φ̃(t,x) = e−
x
B . Therefore, (ii)⇒ (i) and (iii).

We prove that (iii)⇒ (ii) by induction with the discrete Φ-model in (28). First, Φ(0,x) = e−
x
B is

given. Second, we assume that Φ(t,x) = Φ̃(t,x) = e−
x
B at t. We then prove that Φ(t +∆t,x) = e−

x
B

for an arbitrarily small ∆t. From (28) we have

λ (t +∆t)Φ(t +∆t,x) = λ (t)e−
x+v(t)∆t

B + f (t)∆te−
x
B .

Further setting x = 0 in (28), we have

λ (t +∆t) = λ (t)e−
v(t)∆t

B + f (t)∆t.

Comparing the two equations, we can see that Φ(t +∆t,x) = e−
x
B . By induction, we conclude that

Φ(t,x) = e−
x
B at any time t. Hence (iii)⇒ (ii).

Substituting Φ(t +∆t,x) = Φ(t,x) = Φ̃(t,x) = Φ(x) into (28), we have

λ (t +∆t)Φ(x) = λ (t)Φ(x+ v∆t)+ f (t)∆tΦ(x).

Letting x = 0, the above equation yields

λ (t +∆t) = λ (t)Φ(v∆t)+ f (t)∆t.

Comparing the above two equations we have

Φ(x+ v∆t) = Φ(x)Φ(v∆t).

Assuming Φ(1) = e−
1
B , from the above equation we have

Φ(1) = Φ(v∆t)
1

v∆t ,

which leads to Φ(t,v∆t) = e−
v∆t
B or Φ(t,x) = e−

x
B . Therefore (iv)⇒ (ii).

If B(t) = B̃(t) = B, then from the definitions of B(t) and B̃(t) we can see that both Φ(t,x) =
Φ(x) and Φ̃(t,x) = Φ̃(x) are time-independent. From (34) we have

λ̇ (t)Φ(x)− v(t)λ (t)Φ̇(x) = f (t)Φ̃(x).

Integrating both sides of the above equation for x from 0 to ∞, we have

Bλ̇ (t)+ v(t)λ (t) = f (t)B.
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Comparing the above equation with (23), we can see that g(t)= 1
Bλ (t)v(t) or, equivalently, ϕ(t,0)=

1
B . Thus (v)⇒ (vi).

When g(t) = 1
Bλ (t)v(t), (23) can be written as

λ̇ (t)+
1
B

v(t)λ (t) = f (t),

whose integral form is

λ (t) = λ (0)e−
z(t)
B +

∫ t

0
f (s)e−

z(t)−z(s)
B ds.

Comparing the above equation with (43), we can see that Φ(t,x) = Φ̃(t,x) = e−
x
B . Thus (vi)⇒ (i).

Therefore the equivalence among the six statements is proved. �
That (v) implies (ii) was first proved in (Vickrey, 1991) under the condition that the in-flux

f (t) = 0 by observing that K(t,x)dx =−BdK(t,x).
Note that (v) is not equivalent to that B̃(t) = B is time-independent. A counter example is when

all trip distances are equal as discussed in Section 5.2.
Also note that the equivalence among the six statements is independent of the speed-density

relation as long as v(t) is the same for all trips at the same time.

5 Special case 2: Deterministic trip distances
If the distance for trips entering the network at t is deterministic and equals B̃(t), then the propor-
tion of the entering trips with distances not smaller than x is

Φ̃(t,x) = H(B̃(t)− x) =
{

0, x > B̃(t);
1, x≤ B̃(t), (64)

where H(·) is the Heaviside function, and the K-model can be written as

∂

∂ t
K(t,x)−V

(
K(t,0)

L

)
∂

∂x
K(t,x) = f (t)H(B̃(t)− x), (65)

The integral K-model can be written as

K(t,x) = K(0,x+ z(t))+
∫ t

0
f (s)H(B̃(s)+ z(s)− x− z(t))ds, (66)

The integral form of λ (t) is

λ (t) = K(0,z(t))+
∫ t

0
f (s)H(B̃(s)+ z(s)− z(t))ds. (67)

In this case, from (6) and (7) we have ϒ(t,x) = ϒ(t, B̃(t)) = ϒ̄(t).
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In the (z,x) coordinates, the K-model, (34), can be re-written as

∂

∂ z
K(z,x)− ∂

∂x
K(z,x) =

f (z)H(B̃(z)− x)

V
(

K(z,0)
L

) , (68)

where B̃(z) = B̃(τ(z)). The corresponding integral form is given by

K(z,x) = K(0,x+ z)+
∫ z

0

f (y)H(θ(y)− x− z)
v(y)

dy, (69)

where θ(z) = B̃(z)+ z is the effective distance of trips entering at z. Furthermore v(z) is solved by

λ (z) = K(0,z)+
∫ z

0

f (y)H(θ(y)− z)
v(y)

dy, (70a)

v(z) = V
(

λ (z)
L

)
, (70b)

τ(z) =
∫ z

0

1
v(y)

dy. (70c)

In addition, the cumulative out-flow at z is

G(z) = λ (0)−K(0,z)+
∫ z

0

f (y)H(z−θ(y))
v(y)

dy. (71)

5.1 When d
dz

B̃(z)<,=,>−1

When d
dz

B̃(z) =−1, d
dt

B̃(t) =−v(t). In this case, θ(z) = B̃(0), and

λ (z) = K(0,z)+H(B̃(0)− z)
∫ z

0

f (y)
v(y)

dy = K(0,z)+H(B̃(0)− z)F(z). (72a)

In addition, K(z,x) = K(0,x+ z)+H(B̃(0)− x− z)F(z). The cumulative out-flow at z is G(z) =
λ (0)−K(0,z)+H(z− B̃(0))F(z). In this case, all entering trips exit at the same time correspond-
ing to the cumulative travel distance of z = B̃(0).

When d
dz

B̃(z) < −1, d
dt

B̃(t) < −v(t). In this case, d
dz

θ(z) < 0; i.e., the entering trips’ effec-
tive distances decrease with z, and the trips follow the last-in-first-out principle. B̃−1(0) is the
cumulative travel distance when the entering trip’s distance becomes zero. The bathtub model
has the following three types of solutions. (i) When z < B̃−1(0), θ(y) > θ(B̃−1(0)) = B̃−1(0)
for y ∈ [0,z]. Thus, no entering trips exit the network; i.e., G(z) = λ (0)−K(0,z), and λ (z) =
K(0,z)+F(z). (ii) When B̃−1(0) ≤ z ≤ B̃(0), G(z) = λ (0)−K(0,z)+F(B̃−1(0))−F(θ−1(z)),

27



and λ (z) = K(0,z) + F(θ−1(z)). (iii) When z > B̃(0), all entering trips exit the network, and
G(z) = λ (0)−K(0,z)+F(z), and λ (z) = K(0,z). Thus λ (z) is solved by

λ (z) =


K(0,z)+F(z), z < B̃−1(0);
K(0,z)+F(θ−1(z)), B̃−1(0)≤ z≤ B̃(0);
K(0,z), z > B̃(0).

(72b)

When d
dz

B̃(z)>−1, d
dt

B̃(t)>−v(t). In this case, θ̇(z)> 0, and θ(z)≥ θ(0) = B̃(0) for z≥ 0;
i.e., the entering trips’ effective distances increase with z, and the trips follow the first-in-first-out
principle. In this case, there are two types of solutions. (i) When z < B̃(0), θ(y)> z for y ∈ [0,z].
Thus G(z) = λ (0)−K(0,z); i.e., only initial trips exit the network, since entering trips’ effective
distances are greater than z. In addition, λ (z) = K(0,z)+F(z). (ii) When B̃(0) ≤ z ≤ B̃−1(0),
all trips entering before θ−1(z) exit the network. (iii) When B̃−1(0) < ∞ and z > B̃−1(0), λ (z) =
K(0,z). Thus G(z) = λ (0)−K(0,z)+F(θ−1(z)), and λ (z) = K(0,z)+F(z)−F(θ−1(z)). Thus
λ (z) is solved by

λ (z) =


K(0,z)+F(z), z < B̃(0);
K(0,z)+F(z)−F(θ−1(z)), B̃(0)≤ z≤ B̃−1(0);
K(0,z), z > B̃−1(0).

(72c)

(48) and (72) form a deterministic bathtub model in the three cases. With λ (z) we can calculate
τ(z) from (4) and the trip travel times from (8). As a special case, when the entering trips’ distances
are constant B̃(z) = B̃.

The three cases are illustrated in Figure 6, where the dashed lines represent the characteristic
curves in the (z,x)-space, and the solid lines for x = B̃(z). In Figure 6(b) and (c), we also illustrate
θ−1(z). Note that, if we let y = θ−1(z), then z = θ(y), which is the effective distance for the trip
entering at y. From the figures, we can easily verify the solutions in the three cases. Also note that
d
dz

B̃(z)<−1 in the second case corresponds to the regular sorting condition in (Fosgerau, 2015).

5.2 Constant trip distances
In this subsection, we study the generalized bathtub model with constant trip distances B̃(z) = B̃
with initial trips’ distances not greater than B̃. In this case, (65) can be simplified as (x ∈ [0, B̃])

∂

∂ t
K(t,x)−V

(
K(t,0)

L

)
∂

∂x
K(t,x) = f (t), (73)

which cannot be simplified into Vickrey’s bathtub model, (52), since ϕ(t,0) may not equal 1
B̃ at all

times. As an example, for an initially empty network, ϕ(0,0) = 0, and no vehicles can leave the
network at t = 0; but it is not the case in Vickrey’s model, as those trips of zero distances can exit
the network at t = 0.

For x ∈ [0, B̃] and t ≥ 0, we define N(t,x) as the cumulative number of trips passing x by t.
Since d

dt
B̃(t) = 0 >−v(t), trips follow the first-in-first-out principle, N(t,x) equals the number of
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(a) (b) (c)

Figure 6: Illustration of three cases of the bathtub model with deterministic trip distances: (a)
d
dt

B̃(t) =−v(t); (b) d
dt

B̃(t)<−v(t); (c) d
dt

B̃(t)>−v(t).

trips which exit the network before the one passing (t,x). We assume that the initial trips’ distances
are not greater than B̃. Thus

N(t,x) = N(0, B̃)+F(t)−K(t,x), (74)

and (73) is equivalent to

∂

∂ t
N(t,x)−V

(
N(t, B̃)−N(t,0)

L

)
∂

∂x
N(t,x) = 0. (75)

From the definition of N(t,x) we can see that k(t,x) = ∂

∂xN(t,x), and

∂

∂ t
k(t,x)−V

(
1
L

∫ B̃

0
k(t,y)dy

)
∂

∂x
k(t,x) = 0,

which is the simplified version of the k-model, (31). For this model, the initial conditions are
given by k(0,x) or N(0,x), and the boundary conditions are given by k(t, B̃) = f (t)

v(t) or N(t, B̃) =
N(0, B̃) +F(t). If the transportation network is mapped into a virtual road, whose length is B̃
and an average number of lanes of L

B̃ , then k(t,x) is the density of trips at time t and location x,

and 1
L
∫ B̃

0 k(t,y)dy is the average per-lane density on the road. In this sense, (76) is a nonlocal
conservation law, which is a counterpart of the traditional LWR model (Lighthill and Whitham,
1955; Richards, 1956), and (75) is a nonlocal Hamilton-Jacobi equation (Newell, 1993). As the
LWR model, (76) also satisfies the conservation law, but the travel speed is not determined by the
local density as in the LWR model; thus it is a nonlocal model. In addition, the number of lanes
on the virtual road may be inhomogeneous with respect to location and unbounded. But different
from the LWR model, only the average number of lanes is relevant in the bathtub model.
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5.2.1 Other equivalent formulations

We denote the traveling time of a trip entering the system at t by ϒ̄(t). Thus

N(0, B̃)+F(t) = G(t + ϒ̄(t)), (76a)

and ∫ t+ϒ̄(t)

t
v(s)ds = B̃. (76b)

In addition, the number of vehicles in the system at t equals N(0, B̃)+F(t)−G(t) = N(t, B̃)−
N(t,0), and

v(t) = V
(

N(0, B̃)+F(t)−G(t)
L

)
. (76c)

Note that N(0, B̃) and F(t) are given. Thus (76) is a new formulation of the bathtub model with
constant trip distances, in which the unknown variables are G(t), ϒ̄(t), and v(t). It was derived as
the “proper bathtub model” and solved as delay-differential equations in (Arnott and Buli, 2018).

We denote the time for trip n to pass x on the virtual road by T (n,x). Thus T (n,x) = τ(B̃−x+
z(T (n, B̃))), which is also the time for trip n’s remaining distance to be x. In the (n,x) coordinates,
the bathtub model can be written as∫ T (n,x)

T (n,B̃)
V
(

N(0, B̃)+F(s)−G(s)
L

)
ds = B̃− x,

whose differential form is

Tx(n,x) = − 1

V
(

N(0,B̃)+F(T (n,x))−G(T (n,x))
L

) . (77)

In this formulation, T (n,x) is the unknown variable, and G(t) = n if T (n,0) = t.
We denote trip n’s location at t on the virtual road by X(t,n). Thus X(t,n) = B̃− z(t) +

z(T (n, B̃)), which is the remaining distance of trip n at t. In the (t,n) coordinates, the bathtub
model can be written as:

Xt(t,n) = −V
(

N(0, B̃)+F(t)−G(t)
L

)
, (78a)

where Xt(t,n) is the travel speed, and

G(t) = max
n
{n|X(t,n)≤ 0}. (78b)
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An integral formulation of (78a) is∫ t

T (n,B̃)
V
(

N(0, B̃)+F(s)−G(s)
L

)
ds = B̃−X(t,n),

where T (n, B̃) is the time for trip n to enter the virtual road. A special case of the above equation
is ∫ T (n,0)

T (n,B̃)
V
(

N(0, B̃)+F(s)−G(s)
L

)
ds = B̃,

which is equivalent to (76b).

5.2.2 Properties and solutions

In the stationary states, ∂

∂ t K(t,x) = 0. Thus ∂

∂ t k(t,x) = 0. From (76), we find that k(t,x) = k
is constant for non-gridlocked states. Hence the number of active trips λ = B̃k. Further from
(73) we have f (t) = λV (λ

L ). In this case, the active trip’s remaining distance follows a uniform
distribution: ϕ(t,x) = 1

B̃ for x ∈ [0, B̃]. The out-flux is g(t) = 1
B̃λ (t)v(t), which is the same as that

in Vickrey’s bathtub model, (53); thus Vickrey’s bathtub model provides a good approximation “in
steady state, or when the accumulation (number of active trips) varies slowly with slow demand
variations” (Mariotte et al., 2017). This is a special case of those discussed in Theorem 3.2. The
stability property of the stationary states is also discussed in Section 3.1.

For an initially empty network with constant trip distances, (72c) can be simplified as

λ (z) =

{
F(z), z < B̃;
F(z)−F(z− B̃), z≥ B̃. (79)

Then numerically we can solve λ (z), F(z), and τ(z) as follows. First, we divided [0, B̃] into I
intervals with ∆z = B̃

I . We denote λ j = λ ( j∆z), Fj = F( j∆z), f j = f ( j∆z), and τ j = τ( j∆z). Given
the initial condition, λ0 = 0 and F0 = 0, and the boundary condition, f j, we can then calculate
Fj+1, λ j+1, and τ j+1 as follows

∆τ j =
∆z

V (
λ j
L )

, (80a)

τ j+1 = τ j +∆τ j, (80b)
Fj+1 = Fj +∆τ j f j, (80c)

λ j+1 =

{
Fj+1, j < I−1;
Fj+1−Fj+1−I, j ≥ I−1, (80d)

where ∆τ j is the time for the cumulative travel distance to increase from j∆z to ( j+ 1)∆z. From
z(t) and τ(t) we can then calculate ϒ̄(t) = t−τ(z(t)− B̃), and N(t,x) = F(τ(x+ z(t)− B̃)) for any
x ∈ [0, B̃] and t ≥ 0. Similarly we can also calculate X(t,n) and T (n,x). An equivalent numerical
method in the (t,x) coordinates can be simplified from (49) but omitted here.
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6 Extensions for other types of trips
In the preceding sections, the conservation equations of λ (t) and K(t,x) in (23) and (32) respec-
tively, as well as their respective integral forms (43a) and (42), are coupled with the speed-density
or speed-trip relation in (14) to describe the evolution of trips served by privately operated vehi-
cles. We can see that, as long as all trips have the same travel speed, v(t), different formulations of
the generalized bathtub model in (23), (32), (43a), and (42) are still valid. Therefore, the bathtub
model and its properties and solutions can be directly extended when v(t) is exogenously given or
depends on other variables.

6.1 Trips served by mobility service vehicles
In the generalized bathtub model, (34), the vehicles and trips are integrated, and the speed-density
relation in (14) directly determines the speed from the number of active trips. But when trips are
served by mobility service vehicles, the vehicles and trips are disintegrated, and (1) and (14) may
not be true. That is, vehicle density per lane ρ(t) may be independent of the number of active trips
due to varying occupancies of vehicles. Therefore we extend the fundamental diagram of network
trip flows when trips are served by mobility service vehicles as

v(t) = V (ρ(t),λ (t), f (t),g(t)). (81)

Clearly the number of running vehicles on the network could impact the travel speed due to the
vehicle congestion effect. In a dedicated mobility service system, such as a metro system or a bus
rapid transit system, ρ(t) only includes the mobility service vehicles; but in a normal bus network
or a mobility service system with transportation network company vehicles, ρ(t) also includes
other privately operated vehicles. In addition, the number of passengers could also impact the
average travel speed, due to different boarding and alighting times, which can depend on λ (t),
f (t), and g(t).

Hence, (32) and (81) form a bathtub model of network trip flows served by mobility service ve-
hicles. In this model, ρ(t) is exogenously given. The corresponding model in the (z,x) coordinates
can be obtained. Numerically, one can extend the simple difference and integration methods in
(49) to solve λ (t), z(t), and v(t) from the integral bathtub model, (2), (81), and (43a); then K(t,x)
can be solved from (42).

Vickrey’s bathtub model can be extended for mobility service systems when the trip distance
follows a time-independent negative exponential distribution with Φ(t,x) = Φ̃(t,x) = e−

x
B :

λ̇ (t) = f (t)−g(t), (82a)

g(t) =
1
B

λ (t)V (ρ(t),λ (t), f (t),g(t)). (82b)

Then from (81) and (2) we can calculate v(t) and z(t). Note that Theorem 4.1 is valid for any
v(t)> 0. The integral form of the extended Vickrey’s bathtub model is still given by (54), and (55)
can be used to calculate G(t).
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With deterministic trip distances, B̃(t), (32) can be simplified as

∂

∂ t
K(t,x)− v(t)

∂

∂x
K(t,x) = f (t)H(B̃(t)− x), (83)

whose integral form is still (66). The integral form of the conservation equation in λ (t) is (67).

6.2 Multi-commodity trips
In (34), all vehicles travel at the same speed at the same time and make the same contribution to
traffic congestion. But it can be extended for multi-commodity network trip flows, in which trips
are grouped into commodities based on the characteristics of the trips and the serving vehicles:
different commodities of trips can travel at different speeds, served by different types of vehicles,
have different contributions to traffic congestion, have different distances, or share with different
numbers of trips; and different types of vehicles can have different contributions to traffic con-
gestion (such as trucks and lane-changing vehicles), travel at different speeds, and have different
occupancies (such as high-occupancy vehicles and buses).

For commodity m (m = 1, · · · ,M), we denote the number of active trips by λm(t), the number of
active trips with a remaining distance not smaller than x by Km(t,x), the travel speed by vm(t), the
cumulative travel distance by zm(t), the in-flux by fm(t), the proportion of the entering trips with
distances not smaller than x by Φ̃m(t,x), and the probability density function of the active trips’
remaining distances at t by ϕm(t,x). Then the generalized bathtub model can be written as

żm(t) = vm(t), (84a)
∂

∂ t
Km(t,x)− vm(t)

∂

∂x
Km(t,x) = fm(t)Φ̃m(t,x), (84b)

λ̇m(t) = fm(t)−ϕm(t,0)λm(t)vm(t). (84c)

The corresponding integral forms of Km(t,x) and λm(t) are

Km(t,x) = Km(0,x+ zm(t))+
∫ t

0
fm(s)Φ̃m(s,x+ zm(t)− zm(s))ds, (84d)

λm(t,x) = Km(0,zm(t))+
∫ t

0
fm(s)Φ̃m(s,zm(t)− zm(s))ds. (84e)

(49) can be applied to solve these models under general initial and boundary conditions. The model
can be simplified in special cases with time-independent negative exponential and deterministic
distributions of trip distances, and Theorem 4.1 is valid for any commodity.10

The corresponding fundamental diagram of multi-commodity network trip flows can be written
as

vm(t) = Vm(~ρ(t),~λ (t), ~f (t),~g(t)), (85)
10For multi-commodity trip flows, since different commodities can have different travel speeds and cumulative

travel distances, the (zm,x) coordinates may not be synchronized. Thus the corresponding models in such coordinates
may not be useful.
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where ~ρ(t) is the vector of different types of vehicles,~λ (t) the vector of the numbers of all com-
modities’ active trips, ~f (t) the vector of the in-fluxes of all commodities, and~g(t) the vector of the
out-fluxes of all commodities. The fundamental diagram may be different, when different types of
cars have different passenger car equivalent values; the speed-density relations for different modes,
such as metro and privately operated vehicles, could be uncorrelated; when different vehicles have
different occupancies; when there are high-occupancy vehicle lanes or high-occupancy toll lanes;
when there are freight trucks; when there are mobility service vehicles and privately operated ve-
hicles. Such fundamental diagrams of multi-commodity network trip flows have to be derived,
calibrated and validated for different multi-commodity trip flow systems.

7 Conclusion
In this study we first presented a generalized bathtub model of network trip flow served by privately
operated vehicles, in which a road network is treated as a single bathtub, and all vehicles’ speeds
at a time instant are identical and determined by the network fundamental diagram. After defining
the number of active trips at t, λ (t), that with a remaining distance not smaller than x, K(t,x),
the cumulative travel distance, z(t), and other variables, we derived four equivalent differential
formulations of the model from the conservation of trips. Then we defined and discussed the
properties of stationary and gridlock states, derived the integral form of the bathtub model with
the characteristic method, obtained equivalent formulations in the (z,x) coordinates, and presented
two numerical methods and an example. We further studied equivalent formulations and solutions
for two special types of distributions of trip distances: negative exponential or deterministic. In
particular, when the trip distance follows the time-independent negative exponential distribution,
the model becomes Vickrey’s bathtub model; and other equivalent formulations were obtained for
constant trip distances. Finally we extended the fundamental diagram and the bathtub model for
multi-commodity trip flows with trips served by mobility service vehicles.

The bathtub model captures the impacts on traffic congestion (in terms of λ (t)) of the demand,
represented by the in-flux and entering trips’ distances, and the supply, represented by the network
fundamental diagram. For trips served by privately operated vehicles, the bathtub model is similar
to the LWR model as it is also derived from the fundamental diagram and the conservation law
of vehicles; however as a transport equation with a nonlocal speed, the bathtub model admits no
shock or rarefaction waves, since the characteristic curves are much simpler without interactions
among each other. Thus it is much simpler than the network kinematic wave models (Jin, 2012),
which requires detailed network topology as well as origin-destination and route demand data.
The bathtub model is similar to the point queue model for a single bottleneck (Vickrey, 1969),
which captures the impacts on the queue size of the demand represented by the in-flux and the
supply by the capacity; however, the supply in the bathtub model decreases with more vehicles
in the network, but that in the point queue model is usually assumed to be relatively constant
even with capacity drop. Note that the bathtub model is fundamentally different from the network
fundamental diagram or the extended fundamental diagram of network trip flows, since the latter
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describes the stationary relationship between the speed and the number of active trips as well
as the number of running vehicles, but the former combines the latter and the conservation of
trips to describe the dynamics of trip flows. That is, the relationship between the bathtub model
and the network fundamental diagram is similar to that between the LWR model and the link
fundamental diagram. In this sense, (Godfrey, 1969) is a pioneering contribution to network traffic
characteristics as (Greenshields, 1935) is to link traffic characteristics, and (Vickrey, 1991) is a
pioneering contribution to network trip flow dynamics as (Lighthill and Whitham, 1955; Richards,
1956) is to link traffic flow dynamics.

The major contributions of this study are in the following. First, this study presented a unified
framework for modeling network trip flows with general distributions of trip distances, including
negative exponential, constant, and regularly sorting trip distances studied in the literature. Second,
the integral form of the bathtub model was derived with the characteristic method and used to
analytically solve the model under special initial and boundary conditions. Third, the bathtub
model in the z coordinate was derived to simplify the analyses. Fourth, two equivalent numerical
methods were presented to solve the bathtub model: one based on the differential form, and the
other based on the integral form. Fifth, six equivalent conditions for Vickrey’s bathtub model to
be applicable were derived, and it was clarified that Vickrey’s bathtub model does not apply when
all trips’ distances are constant. Finally, the bathtub model was shown to apply when vehicles and
trips are disintegrated and when there are different types of trips.

The bathtub model can be useful for network-level studies as it is based on simplified represen-
tations of the demand and supply. However, this study is only a starting point, and many further
extensions are possible and warranted.

• We will be interested in comparing the bathtub model with more detailed network flow mod-
els, such as the network kinematic wave models. In particular we will be interested in quan-
tifying the differences between these models.

• The bathtub model is probabilistic in nature. In this study we are only concerned with the
expected values of K(t,x). In the future we will be interested in its variations, which can be
useful for understanding the reliability of a transportation network.

• In this study, the fundamental diagram of network trip flows is deterministic. In the fu-
ture, we will be interested in incorporating accidents and stochasticity into the fundamental
diagram. In addition, we will also be interested in developing microscopic version of the
bathtub model, which can be used to obtain the statistical solutions through Monte Carlo
simulations.

• We will be interested in empirically studying the trip distance distribution, the fundamental
diagram of network trip flows, and the trip flow dynamics, which will be important for
determining the applicability of model.

• In this study, the bathtub model is developed for a single transportation network. However,
a transportation system with different facilities (such as roads in different directions, high-
occupancy-vehicle lanes, high-occupancy-toll lanes, parking lots) or different modes (such
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as bikes, cars, buses and subway) may be better treated as multiple interacting bathtubs, and
the bathtub model in this study may need to be extended or modified.

• Such bathtub models of network trip flow can be used to the impacts on congestion of travel-
ers’ choices in trip chaining, ride sharing, departure time, mode, parking, and roads as well
as connected and autonomous vehicles.

• Furthermore, we will be interested in studying congestion pricing and other traffic manage-
ment schemes based on the bathtub model.

• In addition, the model can be used to study the environmental impacts of transportation
networks and the corresponding management and control strategies.
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