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Grazing-incidence small-angle X-ray scattering (GISAXS) is an important

technique in the characterization of samples at the nanometre scale. A key

aspect of GISAXS data analysis is the accurate simulation of samples to match

the measurement. The distorted-wave Born approximation (DWBA) is a widely

used model for the simulation of GISAXS patterns. For certain classes of sample

such as nanostructures embedded in thin films, where the electric field intensity

variation is significant relative to the size of the structures, a multi-slice DWBA

theory is more accurate than the conventional DWBA method. However,

simulating complex structures in the multi-slice setting is challenging and the

algorithms typically used are designed on a case-by-case basis depending on the

structure to be simulated. In this paper, an accurate algorithm for GISAXS

simulations based on the multi-slice DWBA theory is presented. In particular,

fundamental properties of the Fourier transform have been utilized to develop

an algorithm that accurately computes the average refractive index profile as a

function of depth and the Fourier transform of the portion of the sample within

a given slice, which are key quantities required for the multi-slice DWBA

simulation. The results from this method are compared with the traditionally

used approximations, demonstrating that the proposed algorithm can produce

more accurate results. Furthermore, this algorithm is general with respect to the

sample structure, and does not require any sample-specific approximations to

perform the simulations.

1. Introduction

Grazing-incidence small-angle X-ray scattering (GISAXS)

(Levine et al., 1989) is a well established technique for probing

the structure of nanomaterials (Müller-Buschbaum, 2003,

2013; Renaud et al., 2009; Hexemer & Müller-Buschbaum,

2015). Accurate simulations play an important role in the

analysis of experimental GISAXS data. GISAXS simulations

are usually based on the distorted-wave Born approximation

(DWBA) theory (Sinha et al., 1988; Lazzari et al., 2007;

Renaud et al., 2009). However, in the case of nanostructures

embedded in thin films, there can be a significant variation in

the electric field intensity (EFI) within the film (Wang et al.,

1992; Narayanan et al., 2005; Babonneau et al., 2009; Jiang et

al., 2011), resulting in a depth-dependent enhancement or

reduction of the scattering intensity (also referred to as the

waveguide effect). Such cases typically occur when the inci-

dence angle of the X-ray beam is greater than the critical angle

of the film but smaller than that of the substrate. Furthermore,

the EFI is affected by local variations in electron density

within the sample, which can be significant for densely packed

objects (Lazzari et al., 2007). It has been shown that, in such

cases, a more accurate simulation model is one based on the
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‘multi-slice’ DWBA (Babonneau et al., 2009; Jiang et al., 2011).

In the multi-slice simulation method, the sample is first

divided horizontally into multiple slices and an electron-

density profile, based on the average refractive index, is

computed for each slice. In addition, the Fourier transform

(FT) of the structures that intersect with each slice is

computed. The contributions from all slices are then combined

coherently to obtain the overall scattering pattern (Jiang et al.,

2011). Thus, the theory for simulating GISAXS patterns, even

under a varying EFI, is reasonably well established.

A number of software tools have been developed for

simulation of GISAXS patterns based on the DWBA (Lazzari,

2002; Babonneau, 2010; Sarje et al., 2012; Chourou et al., 2013;

Durniak et al., 2015; Jiang, 2015). While some of these

(Lazzari, 2002; Babonneau, 2010; Chourou et al., 2013;

Durniak et al., 2015) allow simulations of multilayered

systems, they do not support cases when the structure size is

large or the structure has arbitrary rotations under the

condition of a significantly varying EFI. In this paper, an

object is defined as a three-dimensional geometric form

composed of a single closed domain. A structure is defined as

a collection of objects arranged in a periodic (or pseudo-

periodic) lattice within a finite region of space (specified by a

finite number of object repetitions). The traditional method of

addressing the challenge of simulating patterns under the

multi-slice DWBA is to approximate the structure within each

slice by a simpler object and then compute the GISAXS

pattern (Lazzari, 2002; Jiang et al., 2011; Chourou et al., 2013).

For example, the simulation of a sphere can be carried out by

approximating it with a stack of discs of varying radii (Jiang et

al., 2011). However, in some cases this approach can lead to

significant discretization errors, while in others it may not be

straightforward to apply such approximations. Furthermore,

using simpler objects to approximate larger structures is not

general enough for the full range of possible objects that a

generic simulation algorithm requires. In summary, current

numerical approaches for GISAXS simulations do not allow

for modeling certain complex structures using the multi-slice

DWBA method.

In this paper, we propose an accurate algorithm, termed

MAGIXS (multi-slice algorithm for grazing-incidence X-ray

scattering simulations), for simulating arbitrary structures

using the multi-slice DWBA theory. We use the properties of

the FT to evaluate the average refractive index of each slice as

well as the FT of the structure that intersects with a given slice.

The key advantage of this approach is that it is agnostic to the

specifics of the structure that intersects with a slice and can be

implemented on the basis of the FT of the overall structure. In

particular, we use the property that the area profile of a three-

dimensional object along a certain axis can be obtained by

computing its FT along that axis with the other components set

to zero. This gives a simple method for computing the

electron-density profile as a function of the slice. In order to

compute the FT of the structure that intersects with a given

slice, we use the convolution property of the FT. In particular,

the FT at a single point in momentum transfer space is

computed via a convolution between the FT of the full

structure and a window function that is computed depending

upon the imaginary part of the momentum transfer vector.

Using the proposed ideas, we can accurately simulate any

sample geometry in the multi-slice DWBA regime.

We note that, while the DWBA is widely used, the method is

still an approximation based on a perturbation theory model

(Renaud et al., 2009). Clearly, a more accurate physical model

will overcome the assumptions made by the multi-slice

DWBA. In this paper, we present a numerically accurate and

general algorithm to simulate structures under the assump-

tions of DWBA physics, which is itself ‘approximate’.

We demonstrate via simulations of certain test objects that

the proposed method is generic and accurate, and that it can

outperform alternative approaches. The organization of the

rest of this paper is as follows. In x2 we review the multi-slice

DWBA approach. In x3 we present the proposed algorithm for

the multi-slice DWBA. In x4 we present our results and in x5

we draw our conclusions.

2. Review of multi-slice DWBA

In this section, we summarize the multi-slice DWBA method

(Jiang et al., 2011). We assume a GISAXS simulation using an

X-ray beam of wavelength �, incident at an angle �i relative to

the sample. We are interested in simulating the scattering

pattern at each output angle (�f, �f), as shown in Fig. 1. The

output points can be converted to momentum transfer (q)

space using the relation

qx

qy

qz

0@ 1A ¼ k0

cosð�fÞ cosð�fÞ � cosð�iÞ

sinð�fÞ cosð�fÞ

sinð�fÞ þ sinð�iÞ

24 35; ð1Þ

where k0 = 2�/�.

If the sample is divided into J slices, then the scattered

intensity at a point q = (qx, qy, qz) can be written as a

summation over all slices as follows:
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Figure 1
Illustration of the setup used for GISAXS experiments. For simulating
this sample, the structure is sliced along the vertical direction and the
contributions from each slice are combined to obtain the overall intensity.



IðqÞ /
PJ

j¼1

P4

m¼1

Dm
j ð�i; �fÞ��jFj qjj; qm

z;j

� ������
�����

2* +
; ð2Þ

where q|| = (qx, qy), Fj is the Fourier transform (FT) of the

structure within the jth slice, ��j = (n2
j;obj � n2

j;film), where nj,obj

is the refractive index of the object and nj,film is that of the film

(Jiang et al., 2011), Dm
j ð�i; �fÞ are the DWBA coefficients for

m 2 {1, 2, 3, 4} and angle brackets h i represent the expected

value, i.e. the mean value averaged over the size, shape and

orientation distributions. For the purposes of this paper, we

assume a local monodisperse approximation (Jiang et al.,

2011) and that we can simulate the expected value via a

stochastic/Monte Carlo sampling using a large number of

‘grains’, as described by Chourou et al. (2013). A grain is the

combination of the structure along with the film and under-

lying substrate. Note that the coefficients Dm
j ð�i; �fÞ are given

by

D1
j ð�i; �fÞ ¼T i

j T
f
j ;

D2
j ð�i; �fÞ ¼T i

j R
f
j ;

D3
j ð�i; �fÞ ¼Ri

jT
f
j ;

D4
j ð�i; �fÞ ¼Ri

jR
f
j ;

ð3Þ

where T and R are the transmitted and reflected wave

amplitudes, respectively, computed using Parratt’s recursion

(Parratt, 1954) and the average refractive index nj of each of

the J slices. The EFI due to the incident beam in the jth slice is

given by jT i
j expð�iki

z;jzjÞ + Ri
j expðiki

z;jzjÞj
2 (Jiang et al., 2011),

where ki
z;j is the z component of the incident wavevector in

slice j and zj is the depth of the jth slice interface. The values of

qm
z;j in equation (2) correspond to the four scattering events

q1
z;j ¼ kf

z;j � ki
z;j;

q2
z;j ¼ � kf

z;j � ki
z;j;

q3
z;j ¼ kf

z;j þ ki
z;j;

q4
z;j ¼ � kf

z;j þ ki
z;j:

ð4Þ

Here kf
z;j = k0½sin2

ð�fÞ + ðn 2
j � 1Þ�1=2 and ki

z;j = �k0½sin2
ð�iÞ +

ðn 2
j � 1Þ�1=2. Note that qm

z;j can be a complex number

(Babonneau et al., 2009).

Typically, equation (2) is implemented by approximating

the structure that intersects with a slice by a simple shape

(Jiang et al., 2011) or by assuming that the structures are small

with respect to the EFI variation (Babonneau et al., 2009),

leading to a simple expression for Fj . The average refractive

index is obtained in an approximate manner or is computed

manually on a case-by-case basis in order to compute the T

and R values for each slice and at each exit angle. While these

methods work well for certain cases, as illustrated by

Babonneau et al. (2009) and Jiang et al. (2011), such approx-

imations do not hold for complex cases in which a structure

intersecting with a given slice cannot be easily approximated

(see, for example, Fig. 2). Next, we present an accurate and

generic algorithm to address these challenges.

3. MAGIXS – a multi-slice algorithm for grazing-
incidence X-ray scattering simulations

In this section, we propose an algorithm to implement equa-

tion (2) using properties of the FT. First, we compute the

average refractive index of a given arbitrary structure as a

function of depth (z axis), which allows us to compute Dm
j . We

assume that the top of the sample is at z = 0 and the sample

extends downwards. It is typical to model the structure by an

indicator function f that is defined to be 1 inside an object and

zero elsewhere (Jiang et al., 2011). If f(x, y, z) is an indicator

function for the structure, then the cross section with respect

to the z axis is

AðzÞ ¼
R R

f ðx; y; zÞ dx dy: ð5Þ

In a typical simulation, explicitly constructing f and evaluating

equation (5) is computationally expensive. Instead, we often

have simple expressions for the FT of the structure (for

example, a collection of spheres in a regular lattice). To
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Figure 2
Illustration of cases that are challenging to simulate in the multi-slice
framework. One approach would be to approximate the object using
simpler structures (like discs) in each slice. However, this will not be
applicable in cases like (b). Hence there is a need to develop an algorithm
to simulate such structures.

Figure 3
Pseudo-code of the MAGIXS algorithm.



compute the area profile efficiently using Fourier transforms,

note that

Fðqx; qy; qzÞ ¼
R R R

f ðx; y; zÞ

� exp �i xqx þ yqy þ zqz

� �� �
dx dy dz;

Fð0; 0; qzÞ ¼
R R R

f ðx; y; zÞ dx dy exp �izqz

� �
dz

¼
R

AðzÞ exp �izqz

� �
dz

and AðzÞ ¼
1

2�

R
Fð0; 0; qzÞ exp iqzz

� �
dqz;

ð6Þ

where F is the FT of f. Hence, the area profile is simply

obtained by a one-dimensional inverse FT of the structure’s

three-dimensional FT evaluated along qx = 0 and qy = 0.

Normalizing A(z) by the area of the grain along the xy plane,

Acoh, gives us the volume fraction of the structure at any given

depth. This can be used to compute the average refractive

index n using the expression

nðzÞ ¼ nobj

AðzÞ

Acoh

þ nfilm 1�
AðzÞ

Acoh

� �
; ð7Þ

where nobj is the refractive index of the object

and nfilm is that of the film. The values of nðzÞ

can then be discretized and used to compute

the Dm
j in equation (2) using Parratt’s recursion

(Parratt, 1954).

The next step is to compute Fj, the Fourier

transform of the structure in the jth slice at a

value ðqjj; qm
z;jÞ, from the full three-dimensional

FT of the structure. In contrast with approx-

imating the intersection of the structure and a

given slice with a ‘simple’ shape (or collection

of shapes), which can be challenging in the

general case, we propose computing this

quantity via a convolution. The intersection of

the structure with the jth slice in real space can

be computed via the multiplication of the

indicator function and a window function, i.e.

fj(x, y, z) = f(x, y, z) wj (x, y, z), where wj is

given by

wjðx; y; zÞ ¼
1 �j�s < z< � ðj� 1Þ�s,

0 otherwise,

	
ð8Þ

and �s is the thickness of each slice. Note that wj is an indi-

cator function that selects the jth slice. This model can easily

be extended to account for non-uniform slice thicknesses.

Using the definition of wj, the Fourier transform of fj at a given

q is

Fj qjj; qz

� �
¼ F � � � bWWj


 �
qjj; qz

� �
; ð9Þ

where bWWjðqjj; qzÞ = �ðqjjÞ�ssincð�sqz=2Þ exp½i ðj� 1
2Þ�sqz� is

the FT of wj, sinc(t) = sin(t)/t and *** denotes three-dimen-

sional convolution. Substituting the FT of wj from equation

(8), we get the FT of the structure in the jth slice as

Fj qjj; qm
z;j

� �
¼ F qjj; :

� �
�Wj

� �
qm

z;j

� �
; ð10Þ

where Wj(qz) = �ssincð�sqz=2Þ exp½�i ðj� 1
2Þ�sqz�. While this

is straightforward to implement via one-dimensional convo-

lutions when qm
z;j is real, it is not so in general when qm

z;j is

complex, as discussed in x2. To address the issue of complex
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Figure 4
Area profiles derived from the Fourier transform at qx = qy = 0 for (a) a sphere of radius 50 nm and (b) a cube of side 10 nm rotated by 45�. Both objects
are embedded inside a film of thickness 100 nm. The convention is that the top of the film is at z = 0 and the bottom is at z = �100 nm.

Figure 5
(b) Comparison of the FT of a box [shown in part (a)] along the real part of qz for fixed q|| =
1 nm�1 and qI

z = �0.1 nm�1 by direct implementation and via Fourier domain convolution.
In the case of a box, the sliced FT can be computed analytically. We compare this analytical
solution with the one obtained by the proposed convolution-based approach. This provides
confirmation of the correctness of the proposed method.



qm
z;j , we simplify the expression and use qm

z;j = qm;R
z;j + iqm;I

z;j to

rewrite the definition of the FT as

Fj qjj; qm
z;j

� �
¼
R R

f rjj; z
� �

wj rjj; z
� �

� exp �i qt
jjrjj þ qm;R

z;j þ iqm;I
z;j

� �
z

� �� 
drjj dz

¼
R R

f rjj; z
� �

wj rjj; z
� �

� exp qm;I
z;j z

� �� �
exp �i qt

jjrjj þ qm;R
z;j z

� �� �
drjj dz

¼
R R

f rjj; z
� �ewwj rjj; z ; qm;I

z;j

� �
� exp �i qt

jjrjj þ qm;R
z;j z

� �� �
drjj dz

¼ F qjj; :
� �

� eWWj : ; qm;I
z;j

� �h i
qm;R

z;j

� �
; ð11Þ

where the superscript t refers to the transpose operator, r|| =

(x, y) is a column vector, the integral with respect to r||

represents a double integral, ewwjðrjj; z ; qm;I
z;j Þ = wjðrjj; zÞ �

expðqm;I
z;j zÞ and eWWj is the one-dimensional FT ofewwj evaluated at

the appropriate frequency. Furthermore, we have used the

convolution property of FTs in the last line of the above

equation. Thus, the new window function in Fourier space, eWWj,

for a given qm
z;j is the FT of a rectangular window modulated by

an exponential function, with the exponent dependent on the

imaginary part of qm
z;j . Using the definition of the FT, for some

a and b, the value of eWWj can be written as

eWWjða ; bÞ ¼
exp �ðj� 1Þ�sða� ibÞ

� �
� exp �j�sða� ibÞ

� �
a� ib

:

ð12Þ

Using the definition of convolution,

Fj qjj; qm
z;j

� �
¼

R1
�1

F qjj; �
� �eWWj qm;R

z;j � � ; qm;I
z;j

� �
d�

’
PL

l¼�L

F qjj; l�
� �eWWj qm;R

z;j � l� ; qm;I
z;j

� �
�; ð13Þ

where � is the integration step size, L is a large number and

we have used a Riemann integration strategy to implement the

convolution at the desired point. Thus, the computation of the

FT at a given complex qm
z;j is simplified to a one-dimensional

convolution that can be implemented numerically.

3.1. Computation

While the above method is exact because it does not

approximate the intersection of a structure with a slice, it

requires significantly more computations than the traditional

approach. The computation of the intensity at each point using

the proposed approach requires the evaluation of integrals,

instead of simple function evaluations. To implement the

simulation efficiently, we utilize graphical processor units

(GPUs) and multi-core central processor units (CPUs). The

FT of the sample, F(q||, l�), is first evaluated over a fine grid

with step size � once for each output point and stored in a

persistent buffer on the GPU. For each slice j and DWBA

component m, this buffer is accessed, the window FT for the

complex qm
z;j , eWWj , is evaluated over the qm;R

z;j � l� grid and the

integration is performed on the GPU. We note that the

numerical integration can be performed more efficiently by

using better quadratures, further reducing the computing time.

research papers

1880 S. V. Venkatakrishnan et al. � Multi-slice simulation algorithm for GISAXS J. Appl. Cryst. (2016). 49, 1876–1884

Figure 6
The simulated electric field intensity (EFI) inside a 100 nm thick film
containing a single sphere of radius 50 nm, plotted as a function of depth
for different incident angles. The average refractive index is computed
using the proposed method. Note that, at certain depths, there are peaks
in the EFI leading to an enhancement of the scattering intensity.

Figure 7
Comparison of simulated GISAXS patterns from the topmost slice of a sphere of radius 50 nm inside a film of thickness 100 nm using J = 20 slices. The
figure shows simulations of a 5 nm thick sliced section from the top, computed using two methods: (a) approximation by a cylinder and (b) the method
proposed in this paper. Note that the approximation by a cylinder at the top is not accurate owing to the high curvature at the top.



Since the computation of each (q|| , qz) is independent, we

compute these in parallel on a multi-core CPU. The final

MAGIXS algorithm is summarized in Fig. 3. In summary, the

user has to specify the detector geometry, the sample structure

via a function to compute its Fourier transform at any point,

the number of slices to use and, optionally, the numerical

accuracy of the convolution [L and � in equation (13)] for a

given simulation.

4. Results

In this section, we present results that illustrate how the

MAGIXS algorithm improves upon the current state of the

art. First, we present results to illustrate the accuracy of the

method of computing the average refractive index profile

(x4.1), as well as the FT of the structure in a slice (x4.2). Next,

we present GISAXS simulations of some illustrative cases to

demonstrate the generality of the proposed algorithm (xx4.3

and 4.4). Where appropriate, we compare the proposed

method with the traditional method based on approximating a

structure by a collection of simpler objects. Unless otherwise

specified, for all simulations we assume a 10 keV X-ray beam

incident at �i = 0.183�. The output is simulated at 512 � 512

points for �f 2 [0�, 4�] and �f 2 [�2�, 2�]. The values of

dispersion (�) and absorption (	), respectively, for the sample

materials are as follows:

(i) Sample (polymer): 2.67 � 10�6

and 3.71 � 10�9.

(ii) Film (polymer): 4.41 � 10�6 and

1.40 � 10�8.

(iii) Substrate (gold): 2.99 � 10�5

and 2.20 � 10�6.

The value of L for the numerical

integration was set so that 2L + 1 = 5122

and � = 0.012 nm�1. All the simulated

GISAXS intensities are displayed on a

log scale.

4.1. Average refractive index

First, we illustrate the method for

obtaining the area profile from the FT

of the structure, as discussed in x3.

Figs. 4(a) and 4(b) show the area profile

as a function of depth for a sphere, and

for a box rotated by 45� with respect to

the x axis inside a film of thickness

100 nm, respectively. We note that, by

using the inverse FT along the appro-

priate q range, we can accurately

compute the area profile and hence the

average refractive index in each slice.

No matter how complex the structure,

this method can extract the desired

refractive index profile of the sample.

4.2. FT via convolution

Next, we numerically verify the

algorithm for computing the FT of the

structure that intersects a given slice at

the desired set of (complex) q values.

We choose the simple case of a large

box inside a film. In this case, the box

can be modeled exactly using a stack of

smaller boxes (see Fig. 5a). Hence the

proposed approach should produce the

same answer as the ‘approximation’

approach. In particular, we simulate the

FT due to a single slice of the box. Let

�s be the size of a slice, and w the width
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Figure 8
Comparison of simulated GISAXS patterns of a sliced sphere of radius 50 nm inside a film of
thickness 100 nm using (a), (c), (e) approximation by discs and (b), (d), ( f ) the method proposed
here, by varying the number of slices J. Visually, the proposed algorithm appears to converge to the
solution faster than the disc approximation.



of the box, H its height and l its length. We consider the jth

slice that is centered at a depth dj. Then the Fourier transform

by the ‘approximation’ method is

Fj qx; qy; qm
z;j

� �
¼ lw�ssinc qx

l

2

� �
sinc qy

w

2


 �
sinc qm

z;j

�s

2

� �
� exp iqm

z;jdj

� �
: ð14Þ

Alternatively, this can be implemented by the convolution

method of equation (13). If qm
z;j = qm;R

z;j + iqm;I
z;j , the FT of the

structure is obtained by computing the convolution between

F qx; qy; qm;R
z;j

� �
¼ lwHsinc qx

l

2

� �
sinc qy

w

2


 �
sinc qm;R

z;j

H

2

� �
� exp iqm;R

z;j

H

2

� �
; ð15Þ

and the modified window that depends on qm;I
z;j . Fig. 5 shows

the absolute value of the FT from the two approaches for a set

of 512 randomly chosen points along qm;R
z;j , for fixed qx, qy and

qm;I
z;j . Note that the two methods result in answers that are

visually indistinguishable. The normalized error between the

two approaches over the 512 points is 1 � 10�5. This verifies

the numerical accuracy of the FT in a single slice obtained via

the convolution approach.

4.3. Simulation: sphere

We illustrate the utility of the MAGIXS algorithm by

simulating an embedded sphere of radius 50 nm in a film of

thickness 100 nm, where there is significant variation in the

EFI along the film depth. The sphere is centered at a depth of

50 nm below the surface of the film. The simulation was

performed using two approaches: by approximating the sphere

with a stack of discs, and using the MAGIXS algorithm. We

also studied the quantitative accuracy of the algorithm by

varying the number of slices. In order to have a reference

ground truth, we set J = 400 and ran the MAGIXS method.

Fig. 6 shows the computed EFI inside the film of this sample

across a range of incidence angles. Fig. 7 shows the output

intensities (log scale) from the topmost slice of the sphere

when J = 20 (each slice is 5 nm). Since the curvature is high at

the top, the approximation using discs is not accurate, while

the MAGIXS method accurately produces the wing-like

patterns associated with this shape. This illustrates the

advantage of MAGIXS in simulating complex structures.

Fig. 8 shows the simulated patterns due to the full sphere

using the two methods by varying the number of slices. Note

that the ground truth is best represented by Fig. 8( f). In

general, the MAGIXS method approaches the reference

solution with fewer slices than the disc approximation tech-

nique. This error is quantified in Fig. 9. Thus, the MAGIXS

method presents a more accurate algorithm for the simulation

compared with the disc approximation approach. However,

we note that the computation resources required for the

MAGIXS method are significantly higher. Therefore, for the

case of simulating simple objects like a sphere, the approx-

imation method with a large number of slices might be good

enough for the purposes of analysis. However, unlike the
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Figure 9
Illustration of the quantitative accuracy of the proposed method for
GISAXS simulation of a sphere, plotted as a function of the number of
slices. In general, the proposed MAGIXS algorithm has a lower relative
error to the ‘ground truth’ (produced by running J = 400) compared with
the disc approximation, illustrating the strength of the method. As the
number of slices increases, the two methods converge to the same
solution. However, the approximation method cannot be used for a
general nanostructure.

Figure 10
The relative error of the log intensity of the simulations using the MAGIXS algorithm plotted with varying incidence angle for three systems of materials:
(a) a polystyrene (PS) sphere embedded in a polymethyl methacrylate (PMMA) matrix on a gold substrate, (b) a PS sphere in air on a gold substrate and
(c) a PMMA sphere in a PS film on an Si substrate. Note that the overall error decreases as the number of slices for simulation increases across the range
of incidence angles, since the sphere is large.



approximation approach, the MAGIXS algorithm is general

because it does not depend on the shape of the object.

The question of when it is appropriate to use a multi-slice

simulation was briefly discussed by Jiang et al. (2011). In this

work, we provide additional numerical experiments illus-

trating the errors that can occur if a slicing technique with a

sufficiently large number of slices is not used. We present

results for a single embedded sphere across a range of inci-

dence angles as well as different sample materials. Fig. 10(a)

shows the log–error plot of the simulated patterns with

increasing numbers of slices for the default materials stated

earlier. It is interesting to note that, despite there being

significant variations in EFI due to the incident beam, the

relative error pattern is similar across various incident angles.

This observation is consistent with the findings of Jiang et al.

(2011). A similar pattern is observed across a collection of

different materials (see Figs. 10b and 10c), suggesting that a

multi-slice simulation can be accurate in a variety of cases.

4.4. Simulation: complicated structures

In this section, we demonstrate a fundamental strength of

the MAGIXS algorithm: the ability to address cases which are

difficult, if not impossible, to simulate using existing approa-

ches. We simulate three sample geometries: a rotated cylinder,

a rotated box and spheres in a rotated cubic lattice. The

objects are rotated around the x direction. The cylinder has a

radius of 25 nm and a height of 25 nm, and is rotated about the

x axis at an angle of 20�. The box has a dimension of 10 nm in

each of the x, y and z directions, and is rotated about the x axis

at an angle of 45�. For the spheres in a rotated simple cubic

lattice, the radii are all 5 nm, and there are 100 spheres in the x

and y directions at a spacing of 15 nm. The lattice is rotated

about the x axis by 5�. Fig. 11 shows the output from the three

cases using the MAGIXS method.

In each case, the MAGIXS algorithm produces an accurate

simulation of the GISAXS patterns. While only three cases are

presented here for illustration, we emphasize that MAGIXS

can accurately simulate GISAXS patterns for any morphology

with rotated objects and rotated lattices, without having to

make any kind of approximation.

5. Conclusions

We have presented an accurate and generic algorithm to

compute GISAXS patterns from arbitrary structures using the

multi-slice DWBA method combined with a local mono-

disperse approximation. The primary innovation in our

approach is to use the properties of the FT to evaluate the

average refractive index (electron-density profile), as well as

the FT of the structure that intersects with a given slice. We

have validated our method using simulations of several

nanostructures embedded in thin films. Our algorithm could

increase the applicability of the multi-slice method and

eventually lead to improved quantitative accuracy of GISAXS

fitting routines. In the future, we plan to investigate automated

selection of the number of slices in order to minimize the time

required for the simulations.
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