
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards Empirical and Theoretical Understanding of Natural Language Processing Systems

Permalink
https://escholarship.org/uc/item/6bc584tn

Author
Chauhan, Jatin

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bc584tn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Empirical and Theoretical Understanding of Natural Language Processing Systems

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Jatin Chauhan

2024

© Copyright by

Jatin Chauhan

2024

ABSTRACT OF THE THESIS

Towards Empirical and Theoretical Understanding of Natural Language Processing Systems

by

Jatin Chauhan

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Wei Wang, Chair

Despite the demonstrated empirical efficacy of prompt tuning to adapt a pretrained

language model for a new task, the theoretical underpinnings of the difference between

"tuning parameters before the input" against "the tuning of model weights" are limited. We

thus take one of the first steps to understand the role of soft-prompt tuning for transformer-

based architectures. By considering a general purpose architecture, we analyze prompt tuning

from the lens of both: universal approximation and limitations with finite-depth fixed-weight

pretrained transformers for continuous-valued functions. Our universality result guarantees

the existence of a strong transformer with a prompt to approximate any sequence-to-sequence

function in the set of Lipschitz functions. The limitations of prompt tuning for limited-depth

transformers are first proved by constructing a set of datasets, that cannot be memorized

by a prompt of any length for a given single encoder layer. We also provide a lower bound

on the required number of tunable prompt parameters and compare the result with the

number of parameters required for a low-rank update (based on LoRA) for a single-layer

setting. We finally extend our analysis to multi-layer settings by providing sufficient conditions

under which the transformer can at best learn datasets from invertible functions only. Our

theoretical claims are also corroborated by empirical results.

ii

The thesis of Jatin Chauhan is approved.

Cho-Jui Hsieh

Yizhou Sun

Wei Wang, Committee Chair

University of California, Los Angeles

2024

iii

Contents

Abstract ii

List of Figures v

1 Analysis of Transformers 1

1.1 Introduction . 1

1.2 Related Work . 3

1.3 Transformers and Parameter Efficient Training 4

1.4 Universality of Prompt Tuning . 7

1.5 Limitations of Prompt-Tuning: Single Layer Transformer 10

1.6 Extension to Multi-Layer Setting . 15

1.7 Experiments . 16

1.8 Conclusion and Limitation . 18

Appendices 20

A Further Details 21

A.1 Experimental Details . 21

A.2 Additional Experiments . 21

A.3 Proof of Lemmas and Theorems . 22

iv

List of Figures

1.1 MSE losses at convergence for the 3 constructed datasets (following Theorem

2). We plot the bold curves with increasing prompt length in prompt tuning

and dashed fixed lines in fine-tuning (all three datasets overlapping). 18

1.2 Increasing prompt spectral norm during tuning on SuperGlue RTE dataset. . 18

A.1 Increasing prompt spectral norm during tuning on WMT14 En-Fr translation

dataset. 22

v

Acknowledgements

The primary content of this thesis is a result of the work published in NeurIPS 2023 [30].

I am highly grateful to my co-author Yihan Wang as well as both of our supervisors Cho-Jui

Hsieh and Wei Wang.

vi

Chapter 1

Analysis of Transformers

1.1 Introduction

The surge in the empirical research of large-scale models has led to the emergence of a new

paradigm of prompt-tuning. Current large models consist of billions of parameters [5, 6],

which greatly exacerbate the cost of tuning the entire model weights via gradient-based

optimization. On the other hand, the power of scale in both model size and pretraining dataset

size has demonstrated strong capabilities by achieving reasonable performance through a

learnable prompt appended before the input [17, 16]. Despite this, several questions emanate

around the abilities and limitations of prompt tuning.

In this work, we aim to characterize some natural yet essential questions about prompt

tuning with transformer architectures. Firstly, are prompts universal approximators, i.e.

with a fixed pretrained transformer network, can we find a prompt to approximate any

sequence-to-sequence function in a given space? If yes, can we construct the transformer for

this universality result? Second, can we identify failure modes of prompt-tuning when applied

on potentially non-optimal but non-trivial transformers? Moreover, since prompt-tuning is

usually compared against LoRA[11] in consideration to parameter-efficient tuning, is prompt-

tuning then more/less parameter-efficient than LoRA? Answering these questions can lead
1

to important insights on when and how to perform prompt tuning to adapt a pretrained

transformer network to a given downstream task of interest.

In this work, we seek to answer these questions with appropriate theoretical analysis

and further validate our claims with empirical results. We first characterize the universal

nature of prompt-tuning by constructing a specific transformer network. We show that for

a given approximation error and the space of sequence-to-sequence Lipschitz functions, we

can construct a transformer network, with a suitable number of layers, that can leverage

prompt-tuning to approximate any function in this space. Despite this universality of prompt-

tuning with a carefully constructed pretrained transformer, we then identify some limitations

of prompt-tuning with weaker but non-trivial transformers. We prove this by constructing

sequence-to-sequence datasets with shared input tokens, which are surprisingly simple but

cannot be memorized by prompt-tuning for a given transformer. We also extend our analysis

to more general settings where the shared token is not required. In this setting, we first

prove that prompt-tuning on a single-layer transformer requires Ω(n) trainable parameters to

memorize n training examples, wherein for LoRA, it suffices with O(n) trainable parameters.

We finally extend our analysis to the multi-layer setting and provide sufficient conditions under

which prompt-tuning exhibits extremely limited capacity to at best memorizing datasets

from invertible functions.

Our contributions can be summarized as below:

• We characterize the universal nature of prompt-tuning by explicitly constructing a

transformer network (Theorem 1).

• We provide a construction-based argument for sequence-to-sequence datasets that

cannot be learned by prompt-tuning with a given single-layer transformer (Theorem 2).

• We provide the lower bound on the required number of parameters for prompt-tuning

to memorize any sequence-to-sequence functions (Theorem 3).

• We provide a sufficient condition for multi-layer transformers, under which datasets
2

with shared output tokens cannot be learned with prompt-tuning (Theorem 4).

• We conduct empirical studies, including real-world datasets, to verify our theoretical

claims.

1.2 Related Work

Theoretical Analysis of Transformers Various works have characterized the theoretical

properties of transformers and its primary self-attention component. [34] study the universal

approximation ability of transformers for continuous permutation equivariant sequence-to-

sequence functions with compact support and further examined the role of using positional

encodings to circumvent permutation equivariant condition. [23] show that transformer with

a hard-attention is Turing complete based on their capacity to perform computations and

access the internal dense representations of the data. [31] further show that transformers

can approximate Turing machines with bounded computation time with a new notion of

approximation. [9] provided a negative yet interesting result signifying the limitations of

pure self-attention in terms of rank diminishing of the input. Other works including [15, 7]

derive upper bounds on the Lipschitz constant of respective modifications of the attention

mechanism. The works by [18, 38] documented optimization perspective on transformer

training via SGD.

Fine-tuning and Prompt Tuning Fine-tuning is the standard way to adapt a pretrained

model to downstream tasks. The most standard and popular paradigm is tuning the

model weights via a suitable optimization procedure along with a linear head on the output

representations [24, 8]. Subsequent works studied more parameter-efficient ways of fine-tuning

by updating either a subset of model parameters [3] or restricting the parameter-updates to a

low-dimensional subspace [1, 11, 19]. The work by [11] (their framework referred to as LoRA)

has garnered particular interest in the community and [20] has provided an interpretation
3

of LoRA via the kernel mechanism. In the particular context of LLMs, prompt-tuning has

emerged as the de facto approach where only the prompt is updated while keeping the rest of

the transformer weights and architecture fixed [25, 16, 17].

Analysis of Prompt Tuning [32] studied the link between prompt-tuning and downstream

tasks with an underlying latent variable generative model of text, which is confined to a

Hidden Markov Model. However, they focused on the discrete vocabulary setting contrary to

our results for continuous seq-to-seq functions. More recently [2] characterized an intriguing

property of a specific form of prompting, referred to as in-context learning, where they proved

by construction that transformers can implement learning algorithms for linear models based

on gradient descent and closed-form ridge regression. This work however pursued a different

and specific direction from the prompting results we aim to provide for generic settings.

Memorization Capacity of Neural Networks A series of works have sought to provide

finite sample universal memorization capacity results of neural networks and the understanding

of expressive power of neural networks. [14, 13, 12, 33] analyzed the memorization capacity

of FNNs with sigmoid and other bounded activation functions. [10, 37, 22] provided results

for modern ReLU networks including FNNs and CNNs. For transformer architectures,

1.3 Transformers and Parameter Efficient Training

1.3.1 Preliminaries

We use the following notations throughout the paper. A bold lower case character, eg

x, denotes a vector. A bold upper case character, eg W, denotes a matrix while Wi,j,

Wi,: and W:,j is the (i, j)-th element, i-th row, j-th column, respectively. We use a single

superscript or subscript to denote the index of a matrix, eg Xi,X
i denote the i-th matrix in

a matrices sequence. We use σ and σ̄ for softmax and hardmax operators, respectively. We
4

use ReLU(v) = max(v,0) to denote the ReLU activation function where max(·) function is

applied entry-wise to a vector. We use Cone(a1,a2, ...,am) to denote a convex cone where

Cone(a1,a2, ...,am) = {x : x =
∑m

i=1 aiai, ai > 0}. We also define the minus operation

between a set S and a vector v as S − v = {x− v : x ∈ S}. In Section 1.4, we use [a : b : c]

to define a grid {a, a+ b, a+ 2b, ..., c− b} from a to c, with an interval b.

Transformer networks [27] are a stack of multiple transformer layers, composed subse-

quently. A transformer layer has two key components: an attention layer and a token-wise

MLP layer, with residual connections around both blocks. We consider the input and output

to be sequences of tokens X ∈ Rd×m and Y ∈ Rd×m, where m is the number of tokens in the

sequence and d is the token dimension.

Definition 1 (Attention Layer). We define an h-head attention layer parameterized with

Wq,Wk,Wv,Wo between a single token x and a token sequence X as

Att(x,X) =
h∑

i=1

Wi
oW

i
vX · σ((Wi

kX)⊤Wi
qx). (1.1)

The normalizing factor of 1√
dkq

is subsumed in the weight matrices Wi
k for notational

simplicity.

We can then define the cross attention between two sequences X1 ∈ Rd×m1 and X2 ∈ Rd×m2

(We use x1 = (X1):,1 for simplicity):

Att(X1,X2) = [Att(x1,X2), Att(x2,X2), ..., Att(xm1 ,X2)].

Definition 2 (Standard Transformer Layer). With definition 1, we define a standard trans-
5

former layer τ as

MLP(X) = [W2ReLU(W1X:,1 + b1) + b2 +X:,1, ...,W2ReLU(W1X:,n + b1) + b2 +X:,n]

(1.2)

τ(X) = MLP(Att(X,X) +X). (1.3)

The definition here omits the layer normalization block for simplicity (following [15]).

We denote the set of transformer networks with h heads of size s and r MLP hidden

neurons with T h,s,r. In Section 1.4, we utilize a modified transformer network with hardmax

operation σ̄ instead of softmax σ. We denote this modified version of transformer networks

as T̄ h,s,r.

During fine-tuning, we optimize the matrices Wi
q,W

i
k,W

i
v in the attention layer and

W1,W2,b1,b2 in the MLP layer pertaining to a loss function L. However in prompt-tuning,

the pretrained model weight matrices are fixed and we optimize a tunable sequence prepended

to the input.

Prompt-tuning Given a pretrained transformer network g ∈ T and a downstream training

dataset S = {(X1,Y1), ..., (Xn,Yn)}, prompt tuning seeks to find a prompt P∗ ∈ Rd×mp

with mp tunable tokens under the loss function L:

P∗ = argmin
P

n∑
i=1

L(g([P,Xi]):,mp:,Yi). (1.4)

The tunable prompt P is shared amongst all the inputs in a task. Note that P in prompt-

tuning is a continuously trainable parameter, alternately referred to as soft prompt, which

is different from hard prompt in that the latter operates on a discrete space of predefined

vocabulary. Since the representation power of soft prompts is strictly more than the hard

prompts, the limitations studied in this paper also extend to hard prompts.

In the subsequent sections, we analyze the universality and limitations of prompt-tuning
6

while comparing the latter against fine-tuning and LoRA[11], which is a low-rank version of

model fine-tuning. In Section 1.4, we prove that prompt-tuning can be universal approximators

for seq-to-seq functions, while providing the construction for the same. In Sections 1.5 and 1.6,

we identify the failure modes where prompt-tuning cannot learn with a possibly non-optimal

but non-trivial pretrained transformer network.

1.4 Universality of Prompt Tuning

We define FL as the collection of all continuous sequence-to-sequence L-lipschitz functions over

the input/output sequences of length m. Primarily, we show that there exists a Transformer

network g ∈ T 2,1,4 such that for any f ∈ FL, prompt-tuning on g can approximate this

function upto some error budget ϵ > 0.

Without loss of generality, we assume that the support and range set of all considered

sequence-to-sequence functions f is [0, 1]d×m in this section. Furthermore, given functions

f1, f2, the approximation error under a p-norm (which is entry-wise) is measured as:

dp(f1, f2) = (

∫
∥f1(X)− f2(X)∥ppdX)

1
p . (1.5)

Theorem 1. Let 1 ≤ p < ∞ and ϵ > 0, there exist a transformer network g ∈ T 2,1,4

and prompt length mp, such that for any f ∈ FL we can find a prompt P ∈ Rd×mp with

dp(g([P, ·]):,mp:, f) ≤ ϵ.

The key idea is inspired from [35], which follows the typical construction based proof

mechanism to show universality. Thereby, we can construct a “meta-transformer” for prompt-

tuning to approximate any sequence-to-sequence function with prompt-tuning.

We briefly describe the two steps for the construction of this meta-transformer. We start

by building a meta-function for FL.
7

Building the Meta-Function We denote the length of all inputs as m and the prompt

length as mp. Then we can build a sequence-to-sequence meta-function that accepts inputs

with length m+mp.

Lemma 1. For the sequence-to-sequence function space FL with functions f : [0, 1]d×m →

[0, 1]d×m, we can build a sequence-to-sequence function ḡ : [0, 1]d×(mp+m) → [0, 1]d×(mp+m)

such that for any f ∈ FL, we can find P ∈ Rd×mp, dp(ḡ([P, ·]):,mp:, f) ≤ ϵ/2.

The complete proof is given in Appendix A.3.1. Succinctly, we first quantize the input

and output sequence space of [0, 1]d×m into a grid Gδ,m = {0, δ, 2δ, ..., 1− δ}d×m, thus leading

to C = (1
δd×m)

1

δd×m possible functions mappings from the input to the output, in this discrete

space. By this quantized function space as F̄L = {f̄1, f̄2, ..., f̄C}, we can select δ such that the

approximation error for any function is less than ϵ/2. Then we construct a set of quantized

prompts in Gδ,mp = {0, δ, 2δ, ..., 1 − δ}d×mp to index these C functions and construct a

quantized function ḡ where ḡ([Pi,X]):,mp: = f̄i(X), i = 1, 2, ..., C, for all X ∈ Gδ,m, thereby

concluding the lemma.

Next we can utilize some conclusions in [35] to construct a transformer for ḡ.

Constructing the Meta-Transformer We first introduce a useful lemma which enables

the construction of a transformer for any quantized seq-to-seq function.

Lemma 2. For any given quantized function f̄ : [0, 1]d×m → [0, 1]d×m with quantization at

interval δ, ∃h̄ ∈ T̄ 2,1,1 such that f̄ = h̄ with positional embedding E =

0 1 2 ... m− 1

0 1 2 ... m− 1

...
...

...

0 1 2 ... m− 1

.

The proof mainly follows the discussions in Section C of [35]. To prove this lemma, the

network h̄ can be constructed in the following three steps. We first use a series of MLP layers

to quantize the input to grid [0 : δ : 1− δ]d×m and then a series of attention layers to obtain

a unique contextual mapping for each quantized input. Finally we can use a series of MLP
8

layers to map the unique contextual mapping to the desired outputs. While a transformer

network usually stacks self-attention and MLP layers alternately within a single layer, the

aforementioned construction can be trivially attained via the use of skip connections. The

complete proof of Lemma 2 is deferred to Appendix A.3.2.

Since ḡ is a quantized function in grid Gδ,m+mp , following Lemma 2 we can find a modified

version of transformer h̄ ∈ T̄ 2,1,1 such that ḡ([P,X]) = h̄([P,X])). The modified version of

transformer ḡ with hardmax operators can then be approximated with a standard transformer

g with softmax operators by Lemma 3.

Lemma 3 (Lemma 9 in [35]). For each h̄ ∈ T̄ 2,1,1, ϵ > 0 and 1 ≤ p < ∞, ∃g ∈ T 2,1,4 such

that dp(h̄, g) ≤ ϵ/2.

Since the approximation error can be treated uniformly amongst the Pi, we have that

dp(h̄([Pi, ·]):,mp:, g([Pi, ·]):,mp:) ≤ dp(h̄([Pi, ·]), g([Pi, ·]) ≤ ϵ/2. Therefore, we can build a

transformer g ∈ T 2,1,4, such that for any seq-to-seq f ∈ FL, we can find a quantized version

f̄i ∈ F̄L and the corresponding prompt Pi ∈ Gδ,mp such that

dp(g([Pi,X]):,mp:, f(X)) (1.6)

≤ dp(g([Pi, ·]):,mp:, h̄([Pi, ·])) + dp(h̄([Pi, ·]):,mp:, f̄i) + dp(f̄i, f) ≤ ϵ.

Theorem 1 provides the construction for a large transformer (discussed more in appendix)

that is sufficient for prompt-tuning to exhibit universal approximation over a Lipschitz

function space. However, even this strong transformer also has limitations with prompt-

tuning when the target function f /∈ FL. Is this an essential limitation for prompt-tuning

on any transformer? In the next section, we will theoretically analyze the limitations of

prompt-tuning with transformers and target functions under more general conditions.
9

1.5 Limitations of Prompt-Tuning: Single Layer Trans-

former

To analyse the failure modes and therefore the limitations under the setting where a trans-

former has fixed pretrained weights, we follow the lens of exact memorization in the subsequent

sections.

Definition 3 (Memorization of a Sequence-to-Sequence Dataset). Given a sequence-to-

sequence dataset S = {(X1,Y1), ..., (Xn,Yn)} where Xi,Yi ∈ Rd×m are the input/output

sequences, we consider a function f exactly memorizing dataset S if f(Xi) = Yi. In the

following proofs of this section, we explicitly focus on the last output token, ie: f(Xi):,−1 =

(Yi):,−1.

We start from the analysis on a single layer transformer and extend to multi-layer settings

in Section 1.6.

1.5.1 Failure modes of Prompt-tuning

It is straightforward to note that prompt-tuning has limited expressive power when the

number of trainable parameters is limited. A natural question to then ask is: Does increasing

the number of trainable prompt tokens suffice? While it is known that for MLPs, even with

a single hidden layer, increasing the number of hidden neurons can memorize any training

data [36]. However, as we will prove next, this is not the case for prompt-tuning. This result

highlights an essential limitation of prompt-tuning compared to model fine-tuning.

Before providing the theorem statement, we first outline some straightforward assumptions

on the pretrained transformer and datasets, without which prompt-tuning trivial loses

expressive power.

We consider sequence-to-sequence datasets of the form S = {(X1,Y1), ..., (Xn,Yn)} with

n distinct examples and a single-layer single-head standard transformer defined in Definition
10

2. The results can be directly extended to the single-layer multi-head scenario, which we skip

here to avoid notational clutter.

Assumption 1 (Non-trivial conditions). We assume that all output tokens (Yi):,k are in

the range set of MLP, otherwise the expressivity becomes trivially weak. We assume that

Wq,Wk,Wv are full rank matrices and that Att(Xi,Xi) are distinct for i = 1, 2, ..., n.

Assumption 2 (Assumption for the MLP layer). We assume that d ≥ 2 + dim(MLP−1(y10) ∪

MLP−1(y20)) for the dataset constructed in Theorem 2 and token dimension d. dim(S) measures

the dimension of subspace spanned by vectors in a set S and MLP−1(y) = {x : MLP(x) = y}.

We provide an example for this assumption in Example 1 and a sufficient condition in the

following Lemma 4.

Lemma 4. If ∥W1∥2 × ∥W2∥2 < 1 , where ∥ · ∥2 is the matrix spectral norm, then the MLP

block in Definition 2 is invertible, ie, MLP−1 is a singleton set.

Therefore, if Lemma 4 holds and d ≥ 4, Assumption 2 will also hold.

Proof of Lemma 4 can be found in Appendix A.3.5. The experimental evidence in [9]

shows that for most architectures, the norm of the weight matrices indeed admits small values

and thus the requirement that ∥W1∥2 × ∥W2∥2 < 1 is a mild condition.

With these assumptions, here we introduce our first theorem on the unlearnability of

prompt-tuning.

Theorem 2. For a single layer transformer τ defined above with Assumptions 1 and 2, we

can build a seq-to-seq dataset S = {(X1 = [x1,x0],Y1 = [y11,y10]), (X2 = [x2,x0],Y2 =

[y21,y20]))}, and we cannot find a prompt P ∈ Rd×mp with any mp > 0 such that τ([P,Xi]) =

Yi holds for any i = 1, 2. The vectors x0,x1,x2 are denoted post positional encodings.

An important feature of this dataset is that the same token x0 is shared between the

two examples, and the expressive capability of prompt-tuning is limited by the correlation

of outputs corresponding to this token in different examples. We show a concrete example
11

here to illustrate this theorem (note that Lemma 4 is in fact not required in the following

construction) and defer the formal proof to Appendix A.3.6.

Example 1. We consider a single-head transformer layer τ , where b1 = b2 = 0, W1 = 1r×d,

W2 = 1d×r. Then the token-wise MLP layer is a concatenation of two linear functions:

MLP(x) =

(W2W1 + I)x, (W1x)0 > 0

x , (W1x)0 ≤ 0

(1.7)

Here (W1x)0 denotes the first element of vector W1x.

W2W1+I is a non-singular matrix. Therefore, for any y in MLP(X)’s output set, MLP−1(y)

contains at most two points {y, (W2W1 + I)−1y}. We choose x0,y10 and y20 such that

v1 − x0 ̸∥ v2 − x0 for v1 ∈ MLP−1(y10) and v2 ∈ MLP−1(y20).

As long as d ≥ 6 (from Assumption 2), we can find c1, c2 such that c1, c2 ⊥ y10 −

x0,y20 − x0, (W2W1 + I)−1y10 − x0, (W2W1 + I)−1y20 − x0, c1 ⊥ c2. Then we choose x1

and x2 such that Att(x0,X1) ∥ c1 and Att(x0,X2) ∥ c2 (Lemma 7 in Appendix). Then

Cone(−Att(x0,X1),a− x0) ∩ Cone(−Att(x0,X2),b− x0) = ∅, for any a ∈ {y10, (W2W1 +

I)−1y10} and b ∈ {y20, (W2W1 + I)−1y20}. Here Cone stands for a convex cone as defined in

Section 1.3.1.

If a P exists such that τ([P,Xi]) = Yi holds for both i = 1, 2, then we have

Att(x0, [P,X1]) = λ(X1,x0, [P,X1])Att(x0,X1) + λ(P,x0, [P,X1])Att(x0,P) (1.8)

Att(x0, [P,X2]) = λ(X2,x0, [P,X2])Att(x0,X2) + λ(P,x0, [P,X2])Att(x0,P)

where λ(·, ·, ·) is a positive scalar. We also have

Att(x0, [P,X1]) + x0 ∈ MLP−1(y10)

Att(x0, [P,X2]) + x0 ∈ MLP−1(y20)

12

as MLP(Att(x0, [P,Xi]) + x0) = yi0, i = 1, 2.

Therefore, Att(x0,P) must be in both Cone(a− x0,−Att(x0,X1)) as well as in

Cone(b − x0,−Att(x0,X2)), where a ∈ {y10, (W2W1 + I)−1y10} and b ∈ {y20, (W2W1 +

I)−1y20}, which contradicts the existence of P as

Cone(−Att(x0,X1), a− x0) ∩ Cone(−Att(x0,X2),b− x0) = ∅

Therefore, in this example, even though we allow an arbitrary number of trainable parameters

in prompt P, we cannot find one to exactly memorize the training set with only two training

examples.

This theorem reveals an important difference between prompt-tuning and adjusting the

model weights directly. For any training dataset S with two training examples, identified as

{(X1,Y1), (X2,Y2)}, so long as Att(X1,X1) and Att(X2,X2) are distinct, MLP can easily

map the post-attention features to expected output tokens with finite number of hidden

neurons. As a result, tuning the MLP parameters for this pretrained transformers can

memorize any dataset in the form of Assumption 1. However, prompt-tuning cannot achieve

this even if the number of tunable tokens → infinity, thereby limiting the expressiveness of

prompt-tuning when compared to model fine-tuning.

1.5.2 Comparison with a More General Dataset

In Section 1.5.1, we constructed sequence-to-sequence datasets that cannot be learned by a

given transformer layer with prompt-tuning, by utilizing the shared token between different

training examples. In this section, we compare the expressive power of prompt-tuning and

fine-tuning under a more general dataset construction where the former requirement can be

relaxed.

Since the primary essence of prompt-tuning is to perform parameter-efficient tuning,

wherein we seek to adapt a pretrained large model to a new task with fewer tunable parameters,
13

we compare prompt-tuning with another parameter-efficient version of model-tuning: LoRA

[11]. Succinctly, we compare the required number of parameters to memorize a given dataset.

Again, consider a sequence-to-sequence dataset S = {(X1,Y1), (X2,Y2), ..., (Xn,Yn)}, where

Xi = [xi1,xi2, ...,xim] and Yi = [yi1,yi2, ...,yim]. We again discuss the memorization of the

last output token for simplicity and results can be directly extended.

We first give the required number of parameters of LoRA to memorize dataset S.

Lemma 5 (LoRA). For a standard single-layer transformer τ defined in Definition 2 with

r ≥ n MLP hidden neurons, for any sequence-to-sequence dataset S satisfying Assumptions

1, we can apply a low-rank update to MLP weights with O(nd) parameters to memorize

τ(X):,m = yim.

This lemma is derived based on the memorization capabilities of 1-hidden layer MLPs

[36]. As the post-attention values for different training inputs are different from Assumption

1, we can construct a low rank update with O(nd) parameters on the MLP layer to memorize

S. We defer the complete proof to Appendix A.3.7.

For prompt-tuning, we derive a result in the next theorem which shows that it requires

Ω(nd) tunable parameters to memorize some constructed dataset S with n examples.

Theorem 3 (Lower bound on Tunable Prompt Parameters). For any single layer transformer

τ defined in Definition 2, there exists a sequence-to-sequence dataset {(X1 = [x10,x1], [y10,y11]),

(X2 = [x20,x2], [y20,y21]), ..., (Xn = [xn0,xn], [yn0,yn1])} that satisfies Assumption 1 with

n < d training examples such that we need at least n prompt tokens in P to memorize the

training set, ie, for τ([P,Xi]):,−1 = yi1 to hold for all i = 1, 2, ..., n.

This dataset can be constructed by including n examples that require n linearly indepen-

dent prompts tokens. The complete proof is deferred to Appendix A.3.8.

Note that in Theorem 3, we provide a key lower bound on the required number of prompt

tokens for exact memorization and this can very well more than nd. This partially (but not
14

necessarily) explains the worse empirical performance of prompt-tuning against LoRA under

a comparable number of trainable parameters.

1.6 Extension to Multi-Layer Setting

In this section, we extend our analysis to multi-layer setting and provide a sufficient condition

under which the expressiveness of prompt-tuning is restricted. An immediate consequence of

our result is an interesting connection to the spectral norm of soft prompts surfaces. This

result provides us a partial understanding of the phenomenon that soft prompt P vectors

typically exhibit larger norms compared to the actual input X, after the tuning.

With some further notation adjustments, we denote an H layer pretrained transformer

network as g(∈ T) = τ 1 ◦ τ 2 ◦ ... ◦ τH , the input set as X 1, and the set of possible prompts as

P1. We assume that the following compactness condition is satisfied:

∥[Pl,Xl]∥2 ≤ Dl (1.9)

s.t. [Pl+1,Xl+1] = τ l([Pl,Xl]),∀l = 1, ..., H.

Here [P1,X1] is the input to the first layer τ 1 with P1 ∈ P1, X1 ∈ X 1 and ∥ ·∥2 is the spectral

norm. Similarly, [PH+1,XH+1] denotes the output set.

We start by providing an upper bound to the Lipschitz constant of attention, pertaining

to eq 1.9. This derivation is different from the works of [7, 28] and thus can be of independent

interest.

Lemma 6. Under the compactness condition, the Lipschitz constant of the i-th attention

head in the l-th transformer layer, denoted for simplicity as Atti,l, admits the following bound

w.r.t the entire input sequence of length m:

Lip(Atti,l(·, ·)) ≤ (1 + 8
√
m(Dl)2∥(Wi,l

k)TWi,l
q ∥2)∥Wi,l

v ∥2, (1.10)

15

and the Lipschitz constant of the entire attention block in layer l, denoted as Attl, admits the

bound:

Lip(Attl(·, ·)) ≤

√√√√ h∑
i=1

(∥Wi,l
o ∥2 × Lip(Atti,l))2. (1.11)

It is noteworthy that this upper bound is dependent on Dl, the spectral norm of the input

prepended with the prompt. In conjunction with the following theorem, we obtain a result

on limited expressivity of prompt-tuning by showing that the transformer becomes invertible,

in consideration to functions from P1 ×X 1 → PH+1 ×XH+1 (an extension to functions of

the from X 1 → XH+1 is provided in Appendix Section A.3.11).

Theorem 4. A transformer g ∈ T is invertible, ie ,g−1(Y) = {X : g(X) = Y} is a singleton

set ∀Y in range of g, if:

1. The Lipschitz constant of the attention block in each layer τ l is strictly less than 1

2. The Lipschitz constant of the 2-layer ReLU block in each layer τ l, which is simply

∥Wl
2∥2 × ∥Wl

1∥2, is strictly less than 1.

Proof of Theorem 4 can be found in Appendix A.3.9. Combining Lemma 6 and Theorem

4, we observe that the invertibility is guaranteed if the upper bound for the Lipschitz constant

of the attention, eq 1.11, is strictly less than 1. In this case, we can then construct arbitrarily

many datasets where two different inputs share the same output, and prompt-tuning cannot

learn (more subtly: memorize) these datasets with a restricted prompt norm.

1.7 Experiments

1.7.1 Experimental Settings

In Section 1.7.2, we use a standard single-layer single-head transformer from Definition 2,

to justify the infinite prompt-length limitation. In Section 1.7.3, we justify the increasing
16

prompt norm on the pretrained LLaMA 7B model [26]. For prompt-tuning and LoRA, we

use the Huggingface Peft library [21]. On the dataset front, we utilize the RTE subtask of

SuperGlue dataset [29] and WMT14 En-Fr translation [4]. More details and hyperparameter

settings can be found in Appendix A.1.

1.7.2 Limited expressivity of Infinite Length Prompt

We first construct the dataset following the proof of Theorem 2 and then show that prompt-

tuning cannot memorize this simple dataset even with very large prompt lengths.

We set the token dimension d = 10. We follow the default pytorch weight initialization

and then normalize W1,W2 such that ∥W2∥2 × ∥W1∥2 < 1, following Assumption 2. We

randomly sample x0,y1,y2 in a uniform distribution in [0, 1)d and construct the corresponding

vectors: x1 and x2 following Theorem 2. To compute MLP−1(y), we follow [15] Section 4.1

with 5000 iterations at convergence. We solve Att(x0, [x0,x1]) ∥ c in Lemma 7 with gradient

descent terminating at ∠(Att(x0, [x0,x1]), c) < 0.0001. We repeat this setup to obtain 3

different datasets for distinct x0,y1,y2 and denote these with Si, i = 1, 2, 3.

We perform prompt-tuning and MLP fine-tuning on the constructed datasets for 5 runs

and report the mean and standard deviation of MSE loss at convergence. As shown in Figure

1.1, increasing the number of soft prompt tokens post a certain threshold that does not exhibit

any reduction in MSE. On the contrary, tuning the MLP layer tends to easily memorize the

training set by reducing the training loss to almost zero (all the three fine-tuning curves

overlap and thus not differentiated). Note that we plot the standard deviation, however it is

negligible in the range.

1.7.3 Increasing Prompt Spectral Norm during Tuning

As discussed in Section 1.6, a major constraint on the expressive power of prompt-tuning is

the spectral norm of soft prompts. In Figure 1.2, we plot the curve for spectral norm of soft

prompt as training progresses and the loss reduces on RTE dataset. The curve for WMT14
17

En-Fr dataset can be found in Appendix A.2. This trend clearly highlights that in order to

counter the limit on the capacity, the spectral norm consistently increases till the training

loss saturates.

10 100 1000 5000
Length of Soft Prompt

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

ni
ng

 M
SE

 lo
ss

Prompt Tuning on S1
Fine-tuning on S1
Prompt Tuning on S2
Fine-tuning on S2
Prompt Tuning on S3
Fine-tuning on S3

Figure 1.1: MSE losses at convergence for
the 3 constructed datasets (following The-
orem 2). We plot the bold curves with in-
creasing prompt length in prompt tuning and
dashed fixed lines in fine-tuning (all three
datasets overlapping).

20 40 60 80 100 120 140 160 180 200
Training Steps

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Pr
om

pt
 S

pe
ct

ra
l N

or
m

Prompt Spectral Norm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Va
lid

at
io

n
Lo

ss

Validation Loss

Figure 1.2: Increasing prompt spectral norm
during tuning on SuperGlue RTE dataset.

1.8 Conclusion and Limitation

In this work, we embark on exploring the capabilities of prompt-tuning in the continuous

regime, contrasting it with fine-tuning, as an initial endeavor towards a theoretical com-

prehension. We prove by construction that prompt-tuning admits universal approximation

within the space of Lipschitz functions. Additionally, we identified inherent limitations of

prompt-tuning on single-layer transformers by constructing theoretically difficult datasets for

prompt-tuning. These limitations are then extended to multi-layer setting under a specific

prompt-norm restriction.

While these results provide valuable insights, extending the construction in Theorem 2

to multiple layers and deriving tighter bounds for Lemma 6 are critical steps for a deeper
18

understanding of the limitations of prompt-tuning.

19

Appendices

20

Appendix A

Further Details

A.1 Experimental Details

All the experiments are run on a NVIDIA RTX A6000 GPU. For experiments with Llama

7B model, we use batch size 32 and learning rate 0.001. For experiment on WMT14 En-Fr

translation, we only compute the loss on the first 100 examples for computational efficiency.

We use Adam optimizer and optimal learning rate from grid search at 0.1 for prompt-tuning

and at 0.001 for fine-tuning in Section 1.7.2.

In Section 1.7.3, we use the default loss function in Huggingface implementation for causal

language models. We use prompt length m = 10 and the prompt tokens are initialized as the

first m tokens in the model vocabulary.

A.2 Additional Experiments

As mentioned in Section 1.7.3, the second real world dataset used in our experiment is

WMT14 En-Fr translation in order to illustrate that the spectral norm of soft prompts

increases during training. We show the curve in Figure A.2.
21

5 10 15 20 25 30 35 40 45 50
Training Steps

2.350

2.375

2.400

2.425

2.450

2.475

2.500

2.525

Pr
om

pt
 S

pe
ct

ra
l N

or
m

Prompt Spectral Norm

0.65

0.70

0.75

0.80

0.85

0.90

Va
lid

at
io

n
Lo

ss

Validation Loss

Figure A.1: Increasing prompt spectral norm during tuning on WMT14 En-Fr translation
dataset.

A.3 Proof of Lemmas and Theorems

A.3.1 Proof of Lemma 1

For the sequence-to-sequence function space FL with functions f : [0, 1]d×m → [0, 1]d×m, we

can build a sequence-to-sequence function ḡ : [0, 1]d×(mp+m) → [0, 1]d×(mp+m) such that for

any f ∈ FL, we can find P ∈ Rd×mp , dp(ḡ([P, ·]):,mp:, f) ≤ ϵ/2.

Proof. we first quantize the input and output sequence space of [0, 1]d×m into a grid space

Gδ,m = {0, δ, 2δ, ..., 1− δ}d×m, which leads to C = (1
δd×m)

1

δd×m functions considering all input

and output mappings in this grid. We index these C functions as F̄L = {f̄1, f̄2, ..., f̄C}. For

X /∈ Gδ,m, we let f̄i(X) = f̄i(X
∗) if ki,jδ < Xi,j,X

∗
i,j ≤ (ki,j + 1)δ and X∗ ∈ Gδ,m.

Then for any f ∈ FL, we can find a function f̄ ∈ F̄L such that dp(f̄ , f) = (
∫
∥f̄(X) −

f(X)∥ppdX)1/p ≤ (
∫
LpmdδpdX)1/p = L(md)

1
p δ. We choose δ = δ1 such that L(md)

1
p δ ≤ ϵ/2.

For the prompt part, we choose mp such that 1
δd×mp ≥ C. Then we can build a set of

quantized prompts in Gδ,mp = {0, δ, 2δ, ..., 1− δ}d×mp to index these C functions. We denote

this set of prompts as {P1,P2, ...,PC}. Finally we can create the quantized function ḡ and
22

let ḡ([Pi,X]):,mp: = f̄i(X) and ḡ([Pi,X]):,:mp = 0, ∀X ∈ [0, 1]d×m,P ∈ Gδ,mp . For P /∈ Gδ,mp ,

we set ḡ([P,X]) = ḡ([P∗,X]) if ki,jδ < Pi,j,P
∗
i,j ≤ (ki,j + 1)δ and P∗ ∈ Gδ,mp .

Therefore, with a properly chosen δ = δ1, for any f ∈ FL, we can find P ∈ Rd×mp such

that dP (f, ḡ([P, ·]):,mp:) = dp(f̄ , f) ≤ ϵ/2.

A.3.2 Proof of Lemma 2

For any given quantized function f̄ : [0, 1]d×m → [0, 1]d×m with quantization at interval δ,

∃h̄ ∈ T̄ 2,1,1 such that f̄ = h̄ with positional embedding E =

0 1 2 ... m− 1

0 1 2 ... m− 1

...
...

...

0 1 2 ... m− 1

.

Proof. The proof is given following Section C in

Then with Section C.2 in

Finally we only require O(m(1/δ)dm) layers to map these distinct numbers to expected

outputs.

A.3.3 Proof of Lemma 3

Lemma 3 is alsmost the same as [35] except that we use ϵ/2 instead of ϵ/3.

A.3.4 Extension of Theorem 1 to Next-token Predictors

As an extension of Theorem 1, we consider approximating a set of sequence-to-sequence

functions when we use a transformer layer as a next-token predictor. We consider a set

of sequence-to-sequence functions FL with Lipschitz constant L under norm p. f ∈ FL :

[0, 1]d×m1 → [0, 1]d×m2 accepts an input of length m1 and outputs a sequence of length m2.

For any X,X′ ∈ [0, 1]d×m1 , we have ∥f(X)− f(X′)∥p ≤ L∥X−X′∥p.
23

Next we show that we can construct a transformer τ which can approximate any f ∈ FL

with prompt-tuning when we use it as a next-token predictor.

Theorem 5. For any f ∈ FL, we can construct a transformer τ such that for any f ∈ FL,

1 ≤ p < ∞ and ϵ > 0, we can find a prompt P ∈ [0, 1]d×mp, such that dp(f, h(P)) ≤ ϵ, where

h(P) = τ1([P, ·]):,−1 × τ2([P, ·]):,−1 × ...× τm2([P, ·]):,−1.

τi is the sequence-to-sequence function implemented with the transformer τ when accepting

sequences with length mp +m1 + i.

Proof. Similar to Theorem 1, we quantize the inputs to grid of [0 : δ : 1− δ] with interval

δ and set mp = (δd×m2)δ
d×m1 . δ is chosen such that L(m1d)

1/pδ ≤ m
−1/p
2 ϵ. We index the

C = (δd×m2)δ
d×m1 different fs as f 1, f 2, ..., fC and its sub-function to generate the i-th output

token as f j
i . The C sequence-to-sequence functions can then be indexed by C distinct

prompts. Similar to Lemma 2, we can construct a transformer which can map all possible

input sequences in grids [0 : δ : 1− δ]× ...× [m− 1 : δ : m− δ]d, 0 < m ≤ m1 +m2 +mp − 1

to distinct numbers. A final series of MLP layers then map these distinct numbers to desired

output vectors where inputs in the same grid are mapped to the same output token at each

step. Then for any input x ∈ [0, 1]d×m1 and any f j, we can find a prompt Pj such that

∥τ([Pj,x]):,−1 − f j
0 (x)∥p ≤ m

−1/p
2 ϵ

∥τ([Pj,x, τ([P,x]):,−1]:,−1, f
j
1 ([x, τ([P,x]):,−1])∥p ≤ m

−1/p
2 ϵ

...

Then we have dp(h(Pj), f
j) ≤ ϵ.

24

A.3.5 Proof of Lemma 4

If ∥W1∥2 × ∥W2∥2 < 1 , where ∥ · ∥2 is the matrix spectral norm, then the MLP block in

Definition 2 is invertible, ie, MLP−1 is a singleton set.

Proof. Based on the sufficient conditions for invertibility of a residual block

A.3.6 Proof of Theorem 2

For a single layer transformer τ defined above with Assumptions 1 and 2, we can build a

seq-to-seq dataset {(X1 = [x1,x0],Y1 = [y11,y10]), (X2 = [x2,x0],Y2 = [y21,y20]))}, and we

cannot find a prompt P ∈ Rd×mp with any mp > 0 such that τ([P,Xi]) = Yi holds for any

i = 1, 2. The vectors x0,x1,x2 are denoted post positional encodings.

Proof. Before proving Theorem 2, we first provide a lemma that will be used in proof and

also Theorem 3.

Lemma 7. Given any c ∈ Rd×m, there are x0 almost anywhere for which we can find another

vector x1 ∈ Rd×m such that Att(x0, [x0,x1]) ∥ c with full rank attention weights Wq,Wk,Wv.

Proof. If Wvx0 ∥ c, we can just set x1 = x0, which makes Att(x0, [x0,x1]) ∥ c hold.

If Wvx0 ∦ c, let v = αc−Wvx0 where α ∈ R. As Wv is full-rank, we can find x such

that x = W−1
v v = αW−1

v c− x0. Then we will have

Att(x0, [x0,x1])

=
exp ((Wqx0)

⊤(Wkx0))Wvx0 + exp ((Wqx0)
⊤(Wk(αW

−1
v c− x0)))(αc−Wvx0)

exp ((Wqx0)⊤(Wkx0)) + exp ((Wqx0)⊤(Wk(αW−1
v c− x0)))

Therefore, as long as Wqx0 ̸⊥ Wk(W
−1
v c), we can change α such that Att(x0, [x0,x1]) =

βWvx0+(1−β)(αc−Wvx0) where β = exp ((Wqx0)⊤(Wkx0))

exp ((Wqx0)⊤(Wkx0))+exp ((Wqx0)⊤(Wk(αW
−1
v c−x0)))

. When

α = 0, Att(x0, [x0,x1]) = Wvx0, when α → −∞ or α → ∞, Att(x0, [x0,x1]) → αc −

Wvx0. As Att(x0, [x0,x1]) is continuous w.r.t changing α, there must exist an α such that

Att(x0, [x0,x1]) ∥ c.
25

Pass the two input sequences X1,X2 through the attention layer Att with any prompt P,

we can get the last output token as:

Att(x0, [P,X1]) =λ(X1,x0, [P,X1])Att(x0,X1) + λ(P,x0, [P,X1])Att(x0,P) (A.1)

Att(x0, [P,X2]) =λ(X2,x0, [P,X2])Att(x0,X2) + λ(P,x0, [P,X2])Att(x0,P) (A.2)

Here λ(X1,x2,X3 = [X1,X2]) ∈ (0, 1) is a positive scalar, defined as

λ(X1,x2,X3) =

∑
j exp((Wkx1j)

⊤(Wqx2))∑
j exp((Wkx3j)⊤(Wqx2))

.

xij is the jth token in Xi for notation simplicity.

1. Then from equation A.1, Att(x0,P) must be on Cone(−Att(x0,X1), Att(x0, [P,X1]))

and Cone(−Att(x0,X2), Att(x0, [P,X2])).

2. On the otherhand, as we want to memorize the two examples, we must have Att(x0, [P,X1])+

x0 ∈ MLP−1(y10) and Att(x0, [P,X2]) + x0 ∈ MLP−1(y20).

We construct the dataset S with arbitrary x0,y10 and y20. Then if dim((MLP−1(y10) −

x0) ∪ (MLP−1(y20)− x0)) + 2 ≤ d (Assumption 2), we can find two vectors c1, c2 such that

c1, c2 ⊥ v : v + x0 ∈ MLP−1(y10) or v + x0 ∈ MLP−1(y20) and c1 ⊥ c2. Then we can

choose x1,x2 such that Att(x0,X1) ∥ c1 and Att(x0,X2) ∥ c2 (Lemma 7). Combine this

construction with assumption 1, we have that Cone(−Att(x0,X1), Att(x0, [P,X1])) and

Cone(−Att(x0,X2), Att(x0, [P,X2])) has no intersection, which means that we cannot find a

P to memorize this constructed dataset.

A.3.7 Proof of Lemma 5

For a standard single-layer transformer τ defined in Definition 2 with r ≥ n MLP hidden

neurons, for any sequence-to-sequence dataset S satisfying Assumptions 1, we can apply a

low-rank update to MLP weights with O(nd) parameters to memorize τ(Xi):,m = yim.
26

Proof. We use MLPj(x) to denote the jth output of the MLP layer for an input token x, which

is

MLPj(x) = xj + b2,j +
m∑
k=1

wk,j max(⟨ak,x⟩+ b1,k, 0)

According to our assumption, Att(xim,Xi) are unique vectors for i = 1, 2, ..., n. Then we

only need to use the MLP layer to map each xi = Att(xim,Xi) + xim to yim, where we get a

new token-wise dataset {(x1,y1), (x2,y2), ..., (xn,yn)}

Then we need to find wk, ak and bk such that

MLPj(xi) = xi,j + b2,j +
m∑
k=1

wk,j max(⟨ak,xi⟩+ b1,k, 0) = yi,j, i = 1, 2, ..., n, j = 1, 2, ..., d

(A.3)

, which is equivalent to constructing a standard MLP to memorize a dataset:

n∑
k=1

wk,j max(⟨ak,xi⟩+ b1,k, 0) = yi,j − xi,j −
m∑

k=n+1

wk,j max(⟨ak,xi⟩+ b1,k, 0)− b2,j (A.4)

Follow Thoerem 1 in

A.3.8 Proof of Theorem 3

For any single layer transformer τ defined in Definition 2, there exists a seq-to-seq dataset

{(X1 = [x10,x1], [y10,y11]), (X2 = [x20,x2], [y20,y21]), ..., (Xn = [xn0,xn], [yn0,yn1])} that

satisfies Assumption 1 with n < d training examples such that we need at least n prompt

tokens in P to memorize the training set, ie, for τ([P,Xi]):,−1 = yi1 to hold for all i = 1, 2, ..., n.

Proof. Without loss of generality, we assume W2 has no zero elements, otherwise we can just

ignore this hidden neuron in MLP layer.

Rd has d bases {tj : j = 1, 2, ..., d}, then MLP−1(yi1) must be bounded on either positive
27

or negative part of these d directions, which means there exists B ≥ 0 such that

v⊤tj
∥tj∥

≤ B, ∀v ∈ MLP−1(yi1), j = 1, 2, ..., d

Otherwise ∀B > 0 , ∃tj, we can find a v ∈ MLP−1(yi) that v⊤tj
∥tj∥ ≥ B. Meanwhile we

have MLP(v) = v + b2 +W2ReLU(W1v + b1). As ∥v∥ can be arbitrarily large, if W1v = 0,

∥MLP(v)∥ → ∞ if ∥v∥ → ∞. if W1v ̸= 0, ∥MLP(v)∥ can also be arbitrarily large when

increasing the norm of v due to the non-linearity of ReLU(W1v + b1).

Then we can find a set of n linearly independent vectors {c1, c2, ..., cn} such that {ai :

ai − ci ⊥ ci, ai ∈ MLP−1(yi1)} = ∅ by enlarging the norm of ci. With the n ci vectors, we can

begin to construct our dataset:

We set xi = ci, i = 1, 2, ..., n and find xi0 such that ci ⊥ Att(xi,Xi) (Lemma 7)

and Att(xi,Xi) are distinct for i = 1, 2, ..., n (Assumption 1), which makes {a1 − x1 −

λ(X1,x1, [P,X1])Att(x1,X1), ..., an − xn − λ(Xn,xn, [P,Xn])Att(xn,Xn)} linearly indepen-

dent for any ai ∈ MLP−1(yi1). Here λ(·, ·, ·) is the same as defined in Section A.3.6.

Moreover, we have

Att(xi, [P,Xi]) = λ(Xi,P, [P,Xi])Att(xi,P) + λ(Xi,xi, [P,Xi])Att(xi,Xi) (A.5)

∈ MLP−1(yi1)− xi

Then Att(xi,P), i = 1, 2, ..., n must be n linearly independent vectors, which requires

rank(WvPA) = n, (A.6)

where A ∈ Rmp×n is the attention score matrix between xi and P. P ∈ Rd×mp is the prompt

token sequence and Wv is the attention value weight. Therefore, we must have mp ≥ n.
28

A.3.9 Proof of Theorem 4

A transformer T is invertible if:

1. The Lipschitz constant of the attention block in each layer τ l is strictly less than 1

2. The Lipschitz constant of the 2-layer ReLU block in each layer τ l, which is bounded by

∥Wl
2∥2 × ∥Wl

1∥2, is strictly less than 1

Proof. This proof is based on the proof provided for lemma 4, thus we restrict ourselves to

the sketch:

Based on the sufficient condition for invertibility in

A.3.10 Proof of Lemma 6

Under the compactness condition, the Lipschitz constant of the i-th attention head in the

l-th transformer layer, denoted for simplicity as Atti,l, admits the following bound w.r.t the

entire input sequence of length m:

Lip(Atti,l(·, ·)) ≤ (1 + 8
√
m(Dl)2∥(Wi,l

k)TWi,l
q ∥2)∥Wi,l

v ∥2, (A.7)

and the Lipschitz constant of the entire attention block in layer l, denoted as Attl, admits

the bound:

Lip(Attl(·, ·)) ≤

√√√√ h∑
i=1

(∥Wi,l
o ∥2 × Lip(Atti,l))2. (A.8)

Proof. We drop the superscripts i, l in the proof to avoid notation clutter. Similarly, we

denote the concatenation of the prompt matrix P and the original input matrix X, simply

with X.

29

Derivation for single head eq A.7:

Consider two matrices X1,X2 ∈ X = {X ∈ Rd×m; ∥X∥2 ≤ D} . Denote with A1,A2 the

corresponding attention matrices respectively, which can be defined as:

A1 = σ((WkX1)
⊤WqX1)

A2 = σ((WkX2)
⊤WqX2) (A.9)

The output of the attention head, denoted with Att(·) admits the following:

∥Att(X1)−Att(X2)∥2 = ∥WvX1A1 −WvX2A2∥2 (A.10)
a

≤ ∥X1A1 −X2A2∥2∥Wv∥2 (A.11)

= ∥X1A1 −X2A1 +X2A1 −X2A2∥2∥Wv∥2 (A.12)

≤ (∥A1∥2∥X1 −X2∥2 + ∥X2∥2∥A1 −A2∥2)∥Wv∥2 (A.13)
b

≤ (∥X1 −X2∥2 + ∥A1 −A2∥2D)∥Wv∥2 (A.14)

where (a) holds from the spectral norm properties and in (b) we use the bounded input

spectral norm assumptions.

We now focus on the second term ∥A1 −A2∥2 in eq A.14 . From the bound in lemma 9, we

have:

∥A1 −A2∥2 ≤ 2
√
m∥G∥2 (A.15)

where G is the diagonal matrix with entires described in lemma 8

We can now invoke lemma 10 to obtain the following :

∥A1 −A2∥2 ≤ 2
√
m× 2× 2∥WT

kWq∥2D × ∥X1 −X2∥2 (A.16)

30

Combining the previous inequality with eq A.14, we have the following bound:

∥Att(X1)−Att(X2)∥2 ≤ (1 + 8
√
m∥WT

kWq∥2D2)∥Wv∥2∥X1 −X2∥2 (A.17)

Derivation for the entire block eq 1.11:

The proof follows simply by leveraging the following property:

Property: for a matrix C = [A,B], the spectral norm of C admits the bound:

∥C∥2 ≤
√

∥A∥22 + ∥B∥22

We then simply combine the definition of the attention block and the lipschitz constant bound

in eq A.7 with the above property in order to obtain the desired bound.

Lemma 8 (. For the column stochastic matrix A1 obtained by performing column-wise

softmax of some matrix Z1 (where in our setting Z1 = (WkX1)
⊤WqX1, and another row

stochastic matrix A2 obtained by performing column-wise softmax of some matrix Z2, where

Z2 = Z1 − E (for some E, which need not belong to X), we have the following bound:

A2(I−G) ≤ A1 ≤ A2(I+ 2G) (A.18)

where the inequality is elementwise and G is a diagonal matrix with entries as Gii =

maxj,j′ |δTi E(δTj − δTj′)|. Here δk is a one-hot vector with the entry 1 in the kth dimension.

Lemma 9. Following the notations of lemma 8, we have the following spectral norm bound:

∥A1 −A2∥2 ≤ 2
√
m∥G∥2 (A.19)

31

Proof. We begin by noting the following entry-wise inequality from eq A.18:

A2G ≤ A1 −A2 ≤ 2A2G (A.20)

which ensures that ∥A1 −A2∥F ≤ 2∥A2G∥F .

We also have the following using matrix norm equivalence:

∥A1 −A2∥2 ≤ ∥A1 −A2∥F (A.21)

Invoking the matrix norm equivalence again, we have that

2∥A2G∥F ≤ 2
√

rank(A2G)∥A2G∥2 (A.22)

where rank(·) is the matrix rank.

Combining the inequalities, we attain the bound :

∥A1 −A2∥2 ≤ 2
√
m∥A2∥2∥G∥2 (A.23)

since A2 is column-stochastic , ∥A2∥2 = 1

Lemma 10. The term G in lemma 9 admits the following spectral norm bound:

∥G∥2 ≤ 2D∥WqW
T
k ∥2∥X1 −X2∥2 (A.24)

here D is the previously stated spectral norm bound of the inputs Xl ∈ X l.

Proof. We begin by noting that since G is a square diagonal matrix with non-negative real

values, the singular values of G are the corresponding diagonal elements.

We thus have that ∥G∥max = ∥G∥2 , where ∥ · ∥max is the max norm.
32

Since G admits the form described in lemma 8, it is trivial to note that:

∥G∥max = max
i,j,i′,j′

|Ei,j − Ei′,j′ | (A.25)

≤ 2∥E∥max ≤ 2∥E∥2 (A.26)

where the second inequality follows from the matrix norm equivalence.

Now, we can bound the last term ∥E∥2 by noting that the inputs X belong to a bounded set.

This allows us to provide the following bounds:

∥E∥2 = ∥(WkX1)
⊤WqX1 − (WkX2)

⊤WqX2∥2 (A.27)

= ∥(WkX1)
⊤WqX1 − (WkX1)

⊤WqX2 + (WkX1)
⊤WqX2 − (WkX2)

⊤WqX2∥2

(A.28)

≤ (∥X1∥2∥WT
kWq∥2 + ∥X2∥2∥WT

kWq∥2)∥X1 −X2∥2 (A.29)

≤ 2D∥WT
kWq∥2∥X1 −X2∥2 (A.30)

A.3.11 Extension of Lemma 6

Lemma 6 and theorem 4 operate over functions from P1 × X 1 → PL+1 × X L+1. We can

relax the requirement of the prompt and provide the Lipschitz constant upper bound in

consideration to functions of the form X 1 → X L+1 by using the following assumption:

Assumption 3. Assume for simplicity that ∥Pl
1 − Pl

2∥2 ≤ αl∥Xl
1 −Xl

2∥2;∀l ≥ 1. αl = 0

when l = 1.

Note: A recursive expression for αl in the above assumption can be provided, but the

expression does not admit a simplified form and we thus omit it here.

We will use Dl
X , akin to eq 1.9, to denote the compactness corresponding to the input

33

matrix across the layers.

Based on this assumption, we have the following Lipschitz constant upper bound:

Lemma 11. The Lipschitz constant of the single head Atti,l admits the following bound w.r.t

the input part, X1 of length mX , of the input sequence:

Lip(Atti,l(·, ·)) ≤
(√

1 + (αl)2 + 8
√
mX(D

l
X)

2(1 + (αl)2)∥(Wi,l
k)TWi,l

q ∥2
)
∥Wi,l

v ∥2 (A.31)

For l = 1, αl = 0 in the above bound.

The Lipschitz constant of the entire attention block in layer l follows similarly.

Proof. For some first layer input X1
1 and prompt P, let us denote the direct output of the

attention head in the l-th layer with
−→
X l

1. We have the following update rule for
−→
X l

1:

−→
X l

1 = Wi,l
v [Pl

1,X
l
1] · σ((W

i,l
k [Pl

1,X
l
1])

⊤Wi
qX

l
1) = Wi,l

v [Pl
1,X

l
1] ·Al

1 (A.32)

Here, Pl
1 is the updated prompt matrix w.r.t the input. For two different inputs X1

1 and X1
2

at the first layer, P1
1 = P1

2 = P, since the prompt is same across all inputs. Al
1 is then simply

the corresponding column-stochastic matrix.

With the context clear, we now drop the superscripts i, l, as done previously. For

∥
−→
X1 −

−→
X2∥2, we have:

∥
−→
X1 −

−→
X2∥2 ≤ ∥[P1,X1]A1 − [P2,X2]A2∥2∥Wv∥2

≤
(
∥A1∥2

√
∥P1 −P2∥22 + ∥X1 −X2∥22 +

√
∥P2∥22 + ∥X2∥22∥A1 −A2∥2

)
∥Wv∥2 (A.33)

where the second inequality is attained using the property of spectral norm of concatenated

matrices.

34

We now consider the term ∥A1 −A2∥2. By invoking lemmas 9 and 10, we have that:

∥A1 −A2∥2 ≤ 2
√
mX × 2∥E∥2

where E = (Wk[P1,X1])
⊤WqX1 − (Wk[P2,X2])

⊤WqX2 (A.34)

Invoking assumption 3 , ∥E∥2 can further be bounded as:

∥E∥2 ≤ 2DX

√
1 + α2∥(Wk)

TWq∥2 (A.35)

Finally, by combining the bound for ∥E∥2 and assumption 3 with eq A.33, we obtain:

∥
−→
X1 −

−→
X2∥2 (A.36)

≤
(√

1 + α2 +DX

√
1 + α2 × 8

√
mXDX

√
1 + α2∥(Wk)

TWq∥2
)
∥Wv∥2∥X1 −X2∥2 (A.37)

which provides us the desired bound.

By setting αl = 0, the case when there is no prompt, we obtain a similar bound as lemma

6

35

Bibliography

[1] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality

explains the effectiveness of language model fine-tuning. In Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages

7319–7328, Online, August 2021. Association for Computational Linguistics.

[2] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What

learning algorithm is in-context learning? investigations with linear models. In The

Eleventh International Conference on Learning Representations, 2023.

[3] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-

efficient fine-tuning for transformer-based masked language-models. In Proceedings of

the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers), pages 1–9, Dublin, Ireland, May 2022. Association for Computational

Linguistics.

[4] Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn,

Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu

Soricut, Lucia Specia, and Ales Tamchyna. Findings of the 2014 workshop on statistical

machine translation. In Proceedings of the Ninth Workshop on Statistical Machine

Translation, pages 12–58, Baltimore, Maryland, USA, June 2014. Association for Com-

putational Linguistics.
36

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark

Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language

models are few-shot learners, 2020.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,

Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,

Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker

Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben

Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari,

Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk

Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou,

Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,

Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-

malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon

Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,

Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas

Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with

pathways, 2022.

[7] George Dasoulas, Kevin Scaman, and Aladin Virmaux. Lipschitz normalization for

self-attention layers with application to graph neural networks, 2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computa-
37

tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational

Linguistics.

[9] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you

need: pure attention loses rank doubly exponentially with depth. In Marina Meila

and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine

Learning, volume 139 of Proceedings of Machine Learning Research, pages 2793–2803.

PMLR, 18–24 Jul 2021.

[10] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint

arXiv:1611.04231, 2016.

[11] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,

Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[12] Guang-Bin Huang. Learning capability and storage capacity of two-hidden-layer feedfor-

ward networks. IEEE transactions on neural networks, 14(2):274–281, 2003.

[13] Guang-Bin Huang and Haroon A Babri. Upper bounds on the number of hidden neurons

in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE

transactions on neural networks, 9(1):224–229, 1998.

[14] S-C Huang and Y-F Huang. Bounds on number of hidden neurons of multilayer

perceptrons in classification and recognition. In 1990 IEEE International Symposium on

Circuits and Systems (ISCAS), pages 2500–2503. IEEE, 1990.

[15] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of

self-attention, 2021.

[16] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-

efficient prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods
38

in Natural Language Processing, pages 3045–3059, Online and Punta Cana, Dominican

Republic, November 2021. Association for Computational Linguistics.

[17] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for

generation. In Proceedings of the 59th Annual Meeting of the Association for Compu-

tational Linguistics and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 4582–4597, Online, August 2021. Association

for Computational Linguistics.

[18] Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank Reddi, and Sanjiv Kumar.

Robust training of neural networks using scale invariant architectures. In Kamalika

Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,

editors, Proceedings of the 39th International Conference on Machine Learning, volume

162 of Proceedings of Machine Learning Research, pages 12656–12684. PMLR, 17–23 Jul

2022.

[19] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient

low-rank hypercomplex adapter layers, 2021.

[20] Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A

kernel-based view of language model fine-tuning, 2023.

[21] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Belkada Younes, and Paul Sayak.

Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/

huggingface/peft, 2022.

[22] Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep

cnns. In International conference on machine learning, pages 3730–3739. PMLR, 2018.

[23] Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal

of Machine Learning Research, 22(75):1–35, 2021.
39

https://github.com/huggingface/peft
https://github.com/huggingface/peft

[24] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training. 2018.

[25] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV au2, Eric Wallace, and Sameer Singh.

Autoprompt: Eliciting knowledge from language models with automatically generated

prompts, 2020.

[26] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,

Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien

Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and

efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[28] James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory

of attention, 2020.

[29] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix

Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-

purpose language understanding systems. Advances in neural information processing

systems, 32, 2019.

[30] Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations

of prompt tuning. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and

S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages

75623–75643. Curran Associates, Inc., 2023.

[31] Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a

case study on approximating turing machines with transformers. CoRR, abs/2107.13163,

2021.
40

[32] Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help

in downstream tasks? an analysis of head and prompt tuning, 2022.

[33] Masami Yamasaki. The lower bound of the capacity for a neural network with multiple

hidden layers. In ICANN’93: Proceedings of the International Conference on Artificial

Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3, pages 546–549.

Springer, 1993.

[34] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv

Kumar. Are transformers universal approximators of sequence-to-sequence functions?

In International Conference on Learning Representations, 2020.

[35] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv

Kumar. Are transformers universal approximators of sequence-to-sequence functions?

arXiv preprint arXiv:1912.10077, 2019.

[36] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers:

a tight analysis of memorization capacity. Advances in Neural Information Processing

Systems, 32, 2019.

[37] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning (still) requires rethinking generalization. Communications

of the ACM, 64(3):107–115, 2021.

[38] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J

Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention

models?, 2020.

41

	Abstract
	List of Figures
	Analysis of Transformers
	Introduction
	Related Work
	Transformers and Parameter Efficient Training
	Universality of Prompt Tuning
	Limitations of Prompt-Tuning: Single Layer Transformer
	Extension to Multi-Layer Setting
	Experiments
	Conclusion and Limitation

	Appendices
	Further Details
	Experimental Details
	Additional Experiments
	Proof of Lemmas and Theorems

