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Significance

During infectious disease 
outbreaks, uncertainty hinders our 
ability to forecast dynamics and to 
make critical decisions about 
management. Motivated by the 
COVID-19 pandemic, leading 
agencies have initiated efforts to 
prepare for future outbreaks, for 
example, the US Centers for 
Disease Control and Prevention’s 
National Center for Forecasting 
and Outbreak Analytics and the 
WHO’s Hub for Pandemic and 
Epidemic Intelligence were recently 
inaugurated. Critically, such efforts 
need to inform policy as well as 
provide insight into expected 
disease dynamics. We present a 
validated case study from early in 
the pandemic, drawing on 
recommendations to minimize 
cognitive biases and incorporate 
decision theory, to illustrate how a 
policy-focused process could work 
for urgent, important, time-
sensitive outbreak decision making 
in the face of uncertainty.
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POPULATION BIOLOGY

Multiple models for outbreak decision support in the face  
of uncertainty
Katriona Sheaa,b,1,2 , Rebecca K. Borcheringa,b,2 , William J. M. Probertc,2 , Emily Howertona,b,2 , Tiffany L. Bogicha,b,2 , Shou-Li Lid,2 , 
Willem G. van Panhuise,2, Cecile Viboudf,2, Ricardo Aguásc , Artur A. Belovg, Sanjana H. Bhargavah , Sean M. Cavanyi , Joshua C. Changj,k , 
Cynthia Chenl , Jinghui Chenm, Shi Chenn,o , YangQuan Chenp , Lauren M. Childsq , Carson C. Chowr , Isabel Crookers, Sara Y. Del Valles , 
Guido Españai , Geoffrey Fairchilds , Richard C. Gerkint , Timothy C. Germanns , Quanquan Gum , Xiangyang Guanl , Lihong Guou , 
Gregory R. Hartv, Thomas J. Hladishh,w , Nathaniel Hupertx , Daniel Janiesy, Cliff C. Kerrv , Daniel J. Kleinv, Eili Y. Kleinz,aa , Gary Linz,aa , 
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Policymakers must make management decisions despite incomplete knowledge and 
conflicting model projections. Little guidance exists for the rapid, representative, and 
unbiased collection of policy-relevant scientific input from independent modeling 
teams. Integrating approaches from decision analysis, expert judgment, and model 
aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening 
strategies for a mid-sized United States county early in the pandemic. Projections 
from seventeen distinct models were inconsistent in magnitude but highly consistent 
in ranking interventions. The 6-mo-ahead aggregate projections were well in line 
with observed outbreaks in mid-sized US counties. The aggregate results showed 
that up to half the population could be infected with full workplace reopening, while 
workplace restrictions reduced median cumulative infections by 82%. Rankings of 
interventions were consistent across public health objectives, but there was a strong 
trade-off between public health outcomes and duration of workplace closures, and 
no win-win intermediate reopening strategies were identified. Between-model var-
iation was high; the aggregate results thus provide valuable risk quantification for 
decision making. This approach can be applied to the evaluation of management 
interventions in any setting where models are used to inform decision making. This 
case study demonstrated the utility of our approach and was one of several multi-
model efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, 
which has provided multiple rounds of real-time scenario projections for situational 
awareness and decision making to the Centers for Disease Control and Prevention 
since December 2020.

multi-model aggregation | decision theory | cognitive biases

Uncertainty is pervasive during any infectious disease outbreak. There is limited scientific 
understanding about epidemiological processes; public health and economic goals may 
be varied, unclear, conflicting, or not stated at all, and the potential effects of possible 
interventions are uncertain given the novel circumstances. The risks associated with making 
a decision in the face of uncertainty are a central feature of the decision maker’s dilemma. 
As illustrated by recent outbreaks of Ebola and Zika viruses, and the COVID-19 pandemic, 
the complexity of an outbreak and a desire to help motivates quantitative modeling, but 
a profusion of models often produces conflicting forecasts, projections, and intervention 
recommendations (1–9).

We integrated established methods from decision analysis (10), expert elicitation (11–
14), and model aggregation (5, 15, 16) to harness the power of multiple models (2) (see 
SI Appendix, Fig. S1 for an overview of the full process). We convened multiple, independ-
ent modeling teams to evaluate nonessential workplace reopening strategies for a generic 
mid-sized US county of approximately 100,000 people that closed during a COVID-19 
outbreak in April–May 2020. At the time, control of SARS-CoV-2 in such populations 
had received relatively little attention but was relevant to decisions faced by state and local 
officials. We solicited models to project the impact of four reopening interventions over a 
6-mo period for five management objectives related to SARS-CoV-2 morbidity and mor-
tality (see Materials and Methods for details). The four possible interventions mirrored the 
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range of COVID-19 responses observed in April 2020, focusing 
on the conditions for nonessential workplace reopenings, with 
schools remaining closed (Fig. 1A). We requested that each mod-
eling group provide a probability distribution of health outcomes 
and proxies of economic burden for each intervention, from which 
aggregate results were generated. After the first round of projec-
tions, aggregate results and individual results (anonymized to min-
imize cognitive bias) were shared with all groups and a structured 
discussion with an independent facilitator was held to clarify ter-
minology, share insights, and discuss differences (SI Appendix, 
Fig. S1). The discussion was designed to reduce unwanted cogni-
tive biases and linguistic uncertainty (e.g., about the interpretation 
of the problem setting), while characterizing and preserving gen-
uine scientific uncertainty (e.g., about epidemiological processes 
or parameters, or intervention efficacy, given limited data) that is 
relevant to policy development and decision making (2). Following 
the discussion, the groups provided updated projections, from 
which the final results were generated (see Dataset S2 for 
anonymized output data).

Aggregate Results Anticipate Outbreaks  
for Any Level of Reopening

Sixteen modeling groups participated in this study, contributing 
17 distinct models with a variety of structures and assumptions 
(see Materials and Methods and SI Appendix, Supplementary 
Discussion, Figs. S18 and S19, and Tables S1 and S2 for more infor-
mation on the individual models). Most of the models were com-
partmental or agent-based; the majority addressed age structure in 
some way. Models used a wide range of different methods to handle 
different sources and levels of uncertainty, but all participants were 
able to provide 100 quantiles for each objective-intervention com-
bination (i.e., we requested the probability distribution for each 
outcome for each intervention). These independent probabilistic 
submissions were then aggregated to account for uncertainty within 
and between individual projections, using a linear opinion pool 
approach (17) and equal weighting (18). The aggregate projections 
showed a consistent ranking of intervention performance 
(SI Appendix, Figs. S2 and S9 and Movie S1) across the four public 
health outcomes (cumulative infections, cumulative deaths, peak 
hospitalization, and probability of an outbreak), and a strong trade-
off between public health and economic outcomes (number of days 
with nonessential workplaces closed over the 6-mo period, Fig. 1A). 
For all public health-related outcomes, the best intervention was 
to keep nonessential workplaces closed for the duration of the 
period investigated. Reopening when cases dropped to 5% of the 
peak and reopening 2 wk after the peak were ranked second and 
third, respectively. Opening fully and immediately led to the great-
est public health burden. Keeping restrictive measures in place for 
6 mo reduced median cumulative infections by 82%, from 48,100 
(48.1% of the county population) in the open intervention to 
8,527 in the closed intervention; delaying reopening to 5% of the 
peak or 2 wk after the peak reduced the cumulative infections by 
66% and 46%, respectively, relative to the open intervention. The 
reduction in cumulative deaths followed a similar pattern (Fig. 1A). 
Peak hospitalizations ranked the interventions in the same order 
as cumulative cases and deaths, but the largest decrease was achieved 
when going from the open intervention to the 2-wk intervention. 
Any reopening of nonessential businesses triggered a second out-
break; even when workplace restrictions were maintained for 6 mo, 
the probability of an outbreak was high (aggregate median, 71%). 
Our study suggests nonessential workplace closures alone would 
have been insufficient to interrupt transmission of COVID-19 at 
a county level. This corresponds to global observations–only a few 

countries (e.g., New Zealand, Taiwan) succeeded in preempting or 
extinguishing COVID-19 outbreaks in the prevariant and prevac-
cine era, using strong compliance to social distancing and travel 
restrictions.

Our results explicitly demonstrate trade-offs between economic 
and public health outcomes; how much economic activity might 
the decision maker be willing to forgo to gain public health 
improvements of a given magnitude? The number of days of non-
essential workplace closure is a coarse and incomplete measure of 
short-term economic impact, but it highlights an important 
trade-off (see SI Appendix, Supplementary Text: Tradeoff between 
public health and economic objectives for a discussion of further 
considerations for a comprehensive epidemiological-economic 
analysis). The ranking of interventions in relation to projected days 
closed was reversed in comparison to the ranking for each public 
health outcome (Fig. 1A): Under the closed intervention, nones-
sential workplaces were closed for 184 d (May 15 to November 
15); under the 5-percent and 2-wk interventions, nonessential 
workplaces were closed for a median of 129 and 96 d (a reduction 
of 29% and 48%), respectively. We had hypothesized that the 
5-percent intervention might be an attractive alternative relative to 
remaining closed, permitting a reduction in days closed with little 
or no difference in public health outcomes. However, no win-win 
intermediate reopening strategies were identified (Fig. 1A).

Demonstrated Benefits of the Structured 
Multiple Models for Outbreak Decision Support 
(MMODS) Process

The MMODS process is focused on decision outcomes, providing 
aggregate, rapid results to a decision maker. The process allows for 
the interim use of a first round of results if a rapid decision is 
required, but a second round of results, updated after discussion 
with all teams, provides the most benefit. Two rounds of modeling, 
with an intervening discussion (to allow for clarifications and shar-
ing of insights between modeling teams and facilitators), removed 
multiple confusions about interventions and objectives in our study 
(SI Appendix, Supplementary Discussion: Resolution of Linguistic 
Uncertainty). The discussion also motivated the modification of one 
reopening intervention (SI Appendix, Fig. S1 loop A; Materials and 
Methods). The discussion highlighted additional sources of available 
data, shared critical insights with all groups, and encouraged a 
broader expression of scientific uncertainty, all while maintaining 
anonymity of results to avoid sources of cognitive bias (11–14) such 
as groupthink (i.e., conforming to the group without sufficient 
critical evaluation) and dominance effects (i.e., attributing more 
attention to the opinions of figures of authority). As linguistic 
uncertainty was decreased at the same time as modeling groups were 
encouraged to more fully express remaining scientific uncertainty, 
there was no expectation of directionality in the relative magnitude 
of uncertainty expressed by models in the two rounds of projections. 
However, projections of days closed in the two extreme (open and 
closed) interventions were highly variable in round 1, due to differ-
ent misinterpretations of the metric, but were entirely consistent 
across modeling groups in round 2 (Fig. 2), demonstrating the 
importance of removing or reducing linguistic uncertainty that can 
severely confound results.

Individual Models Are Consistent in Ranking  
of Interventions, but Projections Are Variable 
in Magnitude and Uncertainty

The rankings of interventions from the individual models are gen-
erally consistent with each other and with the aggregate results for 
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Fig. 1. Aggregate and 17 individual model results for target objective and intervention scenario pairs. Medians, 50% prediction intervals (PIs, the range of 
values within which we project future outcomes will fall with 50% probability), and 90% PIs are indicated as points, thick lines, and thin lines, respectively. Colors 
denote ranking of each intervention for a single objective, where dark blue signifies the lowest value (best performance) and dark red signifies the highest value 
(worst performance). Ties in ranks are colored as intermediate values. Ties between ranks 1 and 2 and ranks 3 and 4 are shown as an intermediate blue and 
red, respectively; yellow indicates a tie in ranks across all interventions. The five panels show the results for: i) cumulative SARS-CoV-2 infections (rather than 
reported cases) between May 15 and November 15, 2020; ii) cumulative deaths due to COVID-19 over the same period, with an inset displaying the results for a 
smaller range of values, beginning with zero and containing the 50% prediction intervals; iii) the peak number of hospitalizations over the same period, with the 
inset showing a smaller range of values, and the hospital capacity of 200 beds with a vertical dotted line; iv) the probability of an outbreak of greater than 10 new 
cases per day after May 15; and v) the number of days that nonessential workplaces are closed between May 15 and November 15. The interventions include 
“closed”, workplace closure throughout the 6-mo period; “5-percent”, nonessential workplace reopening when cases decline below 5% of the peak caseload; 
“2-wk”, nonessential workplace reopening 2 wk after the peak; and “open”, immediate reopening of all workplaces on May 15. The setting is a generic US county 
of 100,000 people that had experienced 180 reported cases and 6 deaths as of May 15, 2020; all schools are assumed to be closed throughout the projection 
period. (A) Aggregate distributions for each objective and intervention scenario pair. The aggregate distributions were calculated as the unweighted average of the 
individual cumulative distribution functions across the 16 modeling groups. (B) Individual model results for each objective and intervention scenario pair. Results 
are presented here essentially as they were shown to modeling teams during the between-round discussion (except each projection was labeled with a letter that 
was only shared with the team that generated that projection); projections were intentionally presented anonymously to avoid groupthink and authority bias.
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a given objective (Fig. 1B and Movie S1). The consistent ranking 
was unexpected given the uncertainty about intervention efficacy 
at the time [though also seen in Ebola (5)] and stands in distinct 
contrast to the considerable variation in the magnitude and uncer-
tainty of projections displayed by the individual models (Fig. 1B). 
For example, cumulative infections for the full reopening strategy 
ranged widely, despite all models ranking the intervention as 
worst. Reliance on a single model, rather than an ensemble, is 
inherently less reliable for providing insights into the magnitude 
of differences between interventions, even if the ranking of inter-
ventions is relatively robust (SI Appendix, Fig. S2). Where models 
disagree on ranking (e.g., for probability of a second outbreak), 
the aggregate generates a clear ranking that encapsulates the uncer-
tainty. Differences in model structure, parameterization, and 
assumptions that the groups were asked to provide did not imme-
diately explain differences in projections (Materials and 
Methods and SI Appendix, Tables S1 and S2 and Figs. S18 and 
S19); such an evaluation would be impossible with individual 
experts. Disagreements between models, or between models and 
the aggregate, were examined retrospectively, and arise for a range 
of reasons: Genuine scientific disagreement about processes to 
include in the model given the massive uncertainty about SARS-
CoV-2 at the time; stochasticity (especially in the case of very close 
or “tied” results); differences in calibration approaches; residual 
linguistic uncertainty; and inclusion of assumptions groups would 
choose to revise (with benefit of hindsight).

Aggregate Results Provide an Integrated 
Expression of Uncertainty

It is challenging for any individual model alone to fully account 
for uncertainty. The aggregate results provided a more compre-
hensive expression of uncertainty in projected outcomes by inte-
grating over projected outcomes from individual teams with 

varying assumptions about disease dynamics, population behavior, 
public health surveillance, and the effectiveness of interventions. 
Deploying multiple models in parallel also speeds up the process 
of exploring relevant uncertainty. Between-model variation was 
substantial and similar to or greater than variation within any 
single model. Individual models tended to capture less than 50% 
of the uncertainty of the aggregate (as measured by the relative 
interquartile range (IQR): see Materials and Methods and 
SI Appendix, Supplementary Discussion and Fig. S10). Thus, indi-
vidual models were generally more confident than the ensemble, 
echoing findings from studies of expert judgment that individual 
experts tend to be overconfident (19). The ensemble provided 
valuable risk quantification for decision making (20) since all 
models provided projections as probability distributions. For 
example, for a county with 200 hospital beds, although median 
peak hospitalization is comparable for the remain-closed and 2-wk 
interventions, the 2-wk intervention was three times as likely to 
exceed capacity as the remain-closed intervention (34% vs. 11% 
chance of exceedance based on the aggregate results, Fig. 1A). 
These risk estimates allow the administrator to gauge how much 
to prepare for exceedance.

Model Projections Are Comparable with Real-
World Data

We identified 84 mid-sized (90,000 to 110,000 people) US coun-
ties that approximated the profile of the setting presented to the 
modeling groups and that implemented and followed a closed 
intervention (e.g., a stay-at-home order) through November 15, 
2020 (21) (SI Appendix, Supplementary Discussion: Comparison of 
county death and case data with aggregate model results). The distri-
bution of reported deaths due to COVID-19 in the closed coun-
ties (median deaths during the projection period 48; 50% IQR, 
27 to 71; Fig. 3, black) is comparable to the aggregate projection 
of total deaths (median deaths 73; 50% IQR, 12 to 228; Fig. 3, 
blue). The prediction intervals for deaths (and cases) were wider 
than the observed distributions, which is expected as the obser-
vations represent a subset of the possible paths that the outbreak 
might have taken (SI Appendix, Figs. S2, S3, S4, S16, and S17 
and Supplementary Discussion: Comparison of county death and case 
data with aggregate model results).

Discussion

The abundance of uncertainty that accompanies pathogen emer-
gence presents a difficult challenge for public health decision 
making (1, 2, 22). However, we show that aggregate results from 
a multistage, multimodel process ranked interventions consistently 
for the objectives we considered. Unfortunately, while more strin-
gent reopening rules generally performed better, strategies designed 
only around one-time reopening guidelines were inadequate to 
control the COVID-19 epidemic at the county level, as reflected 
in the resurgence of COVID-19 over the summer of 2020 in the 
United States. Our Centers for Disease Control and Prevention 
(CDC) collaborators reported that this “unique collaboration … 
provided strong, timely evidence that control of the COVID-19 
pandemic would require a balance of selected closure policies with 
other mitigation strategies to limit health impacts” (3).

The descriptions of the objectives and interventions for this 
elicitation were motivated by public discussions and guidance 
issued by US federal and state governments in April 2020. 
However, concepts presented in colloquial language can be dif-
ficult to precisely define mathematically. All groups found that 
the initial wording in the guidance provided was difficult to 

50 100 150

Start o
f fo

recast: 1
84 200

Stay at home: 228

State of emergency: 244

Round 1

Round 2

Fig. 2. Resolution of linguistic uncertainty in the discussion following round 
1 of modeling about the number of days nonessential workplaces are closed. 
Direct comparison of round 1 and 2 results for days closed for the fully closed 
intervention. In round 1, groups used a variety of start dates (start of the 
forecast, first day of stay at home orders, or state of emergency declarations) 
and one group implemented a weighting for essential and nonessential 
business closures and associated compliance issues explicitly.
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interpret and model, suggesting that it could invite considerable 
discretion in implementation. Our process identified potential 
ambiguities, and we provided a clear definition of such terms for 
the second round of projections (see Materials and Methods for 
definitions, and SI Appendix, Supplementary Discussion: Resolution 
of Linguistic Uncertainty for discussion). Establishing clear lines 
of communication and open, structured collaboration between 
decision makers and modelers (SI Appendix, Fig. S1, loop A), 
would reduce confusion and permit consistent evaluation of 
management interventions.

The MMODS approach provides valuable lessons for the pro-
cess of eliciting projections from multiple modeling teams to 
inform decision-making. Running the models at least twice, 
with an intervening discussion, is essential. In our between-round 
discussion, we removed different interpretations of terminology 
that would have confounded individual model comparisons and 
the aggregate results. For example, the trade-off between days 
closed and public health outcomes would have been obscured 
by linguistic uncertainty surrounding “closure” (Fig. 2). Initially, 
it might seem that adding a second step would delay decision 
making; in an emergency, results from round 1 could be used 
to inform an interim decision. However, clarification often hap-
pens on an ad hoc basis anyway, as it is fundamentally difficult 
to anticipate everything that groups might interpret differently 
a priori, and uncertainties often arise as models are developed 
and implemented. Our process saves time by avoiding multiple, 
unplanned reassessments and would be particularly valuable 
in situations where the same models are used to make repeated 
decisions. Our case study generated first-round results about a 
month after the start of the multimodel project and produced 
final results about a month later (Materials and Methods). This 
pace can be accelerated with experience; the COVID-19 Scenario 
Modeling Hub conducted 13 rounds in just over a year, with 
repeat emergency Omicron results generated just over 2 wk apart 
(23). Resolution of linguistic uncertainty via facilitated group 
discussions would likely also improve forecasts outside the 
decision-making setting.

Multiple model approaches such as MMODS come with chal-
lenges. Most of these challenges could be addressed via planning 
and preparedness efforts to build a cohesive community of epide-
miological and decision-making experts in anticipation of need 
(24–27). Such coordinated efforts could then provide timely, 

informed support to decision makers at critical junctures, to enable 
effective decision making in the face of uncertainty. This approach 
can then be applied to a wide range of settings or to other critical 
decisions, at any level of governance from the local to the inter-
national. At the local level, nearly every medical system in the 
world faced unprecedented hospital demand during the pandemic, 
and many struggled to cope; our hospital risk analysis has broad 
application to planning for local public health resources every-
where, including in low- and middle-income countries (LMICs). 
At the national level, decisions for which the MMODS approach 
could be used include the following: when to reimpose or relax 
interventions in a sequence; context-dependent state- and 
country-level interventions (including in LMICs where con-
straints such as resource availability may differ markedly on a 
case-by-case basis, e.g., ref. 28); where best to trial and allocate 
improved vaccines and drugs; and how to prioritize testing to 
enable economic reopening earlier in an outbreak. At the national 
and international levels, the MMODS approach can also be used 
to develop guidelines that optimally deploy non-pharmaceutical 
interventions (NPIs) and how to optimize the roll-out of vaccines 
and other interventions. In fact, the MMODS case study pre-
sented here was one of several multimodel efforts that laid the 
groundwork for the US COVID-19 Scenario Modeling Hub (23). 
The Hub has provided multiple rounds of real-time scenario pro-
jections, addressing uncertainty about vaccine coverage, NPI 
compliance, variant characteristics, and waning immunity, to the 
US CDC since December 2020 (e.g., refs. 3 and 29–32).

Nevertheless, significant challenges remain to effectively using 
our approach in formal decision making. Our open study used 
multiple models, instead of multiple individual experts, in a struc-
tured expert elicitation process deliberately designed to reduce cog-
nitive biases that commonly occur in group decision making, and 
addressed real-time disease mitigation decisions (see the MMODS 
overview in Fig. 4). However, our effort focused nearly entirely on 
public health benefits, with little reference to other essential features 
of a full cost-benefit analysis addressing economic costs and possible 
trade-offs between public health and economic objectives 
(SI Appendix, Supplementary Discussion). Additionally, many deci-
sion makers have other (e.g., social) objectives, which may be chal-
lenging to elicit and quantify, especially in time-sensitive situations. 
How do both explicit and unspoken objectives affect the design of 
scenarios and the resultant outputs? While we have drawn from the 
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Fig. 3. Comparison of aggregate reported county death data to modeled deaths for the closed intervention. Boxplot of cumulative reported deaths from 84 
US counties with full or partial stay at home orders in place from May 15 to November 15, 2020 (median deaths: 48; 50% IQR: 27, 71) and model results for 
cumulative deaths from May 15 to November 15, 2020 under the closed intervention (median deaths: 73; 50% IQR: 12, 228). Vertical line shows median value, 
box shows IQR (25th to 75th quantiles), and whiskers extend to the 5th and 95th quantiles. Inset shows overlap of box area for the plots.
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expert judgment literature (12, 33) to design this process, more 
work is needed to streamline the approach (2). For example, does 
an open call for participation or a curated set of established models 
produce better results? How many models are needed to gain suffi-
cient expression of between-model uncertainty and produce stable 
and robust results? In individual expert judgment approaches, 
between 5 and 20 experts are recommended (34); however, it is not 
clear if the same applies for models. Should we consider all model 
outputs equally? Equal weighting is typically robust, and simple 
rules may be favored (18). However, if the MMODS decision pro-
cess were used to guide repeated decisions (SI Appendix, Fig. S1, 
loop C), there is the opportunity to update the weights on individual 
models in the ensemble as we learn about their performance and 
for modeling teams to learn from surveillance and auxiliary data 
and improve their models. Conscious a priori examination of critical 
uncertainties, using value of information analyses, could provide 
the foundation for an adaptive management framework to improve 
understanding and management outcomes over time (2, 35–37). 
What is the best way to aggregate model results for different pur-
poses (17)? Is our result that fewer models were needed to provide 
robust ranking of interventions than were needed to generate reli-
able projections of the magnitude of disease burden (cases, hospi-
talizations, deaths) general? Answering these questions would help 
us increase efficiency in future crises.

Our MMODS study demonstrates clear benefits of a real-time, 
decision-focused, collaborative modeling process that carefully 
handles multiple sources of uncertainty and mitigates cognitive 

biases common in group judgments via purposeful, structured 
communication. The MMODS approach can also be used for 
critical management decisions for endemic diseases, in data-poor 
settings, for elimination and eradication planning, as well as in 
any nonepidemiological setting where models are used to inform 
decision making (e.g., ref. 38). In our case study, multiple con-
tributors from federal agencies and academic institutions collab-
orated to address a common problem. Our approach could be a 
valuable step in a revised long-term strategy for responding to 
recurrent outbreaks and pandemics, with the potential to save lives 
and reduce suffering.

Materials and Methods

We solicited participation from modeling groups via the Models of Infectious 
Disease Agent Study (MIDAS) network and via existing COVID-19 modeling 
collaborations with the US CDC facilitated by the MIDAS Coordination Center 
at the end of May 2020. Information about the collaboration opportunity was 
communicated via conference calls and listservs. This activity was reviewed by 
CDC and was conducted consistent with applicable federal law and CDC policy 
(45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. §552a; 44 U.S.C. 
§3501 et seq).

We presented information for a generic, mid-sized county of approximately 
100,000 people with age structure representative of the US population, that 
preemptively initiated, and adhered to, stringent social distancing guidelines (i.e., 
full stay-at-home orders with workplace and school closures) until May 15, 2020 
(so that the 6-mo prediction period ran from May 15-November 15, 2020). We 
provided the modeling groups with baseline epidemiological and intervention 
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information for the county (see Dataset S1 containing provided data); some 
groups incorporated additional data (SI Appendix, Table S1).

Full information for the elicitation, including the setting, epidemiological 
data, and intervention descriptors was posted at a dedicated website at https://
midasnetwork.us/mmods/ (including daily reported cases, deaths, mobility, and 
testing data, State of Emergency and stay-at-home orders, and age structure). The 
initial conditions for the projections included cumulative cases and deaths within 
the county on a daily basis from January 22, 2020 to May 15, 2020. As of May 15, 
the county had recorded 180 confirmed cases and six deaths due to COVID-19. 
Groups were also permitted to incorporate additional datasets, as they saw fit 
(e.g., national data on hospital, Intensive Care Unit and ventilator availability, 
household size data, and work, school, community, and home mixing data). We 
asked the modeling groups to assume that travel restrictions remained in place 
throughout (so that there was no international importation of cases and domestic 
importations were limited) and that there was no local contact tracing or isolation 
of infected individuals. We did not specify guidelines regarding mask use but 
specified that schools would remain closed through November 15, 2020 (just 
prior to the start of peak flu season). First-round results were due on June 15, 
2020, and the group discussion of preliminary results took place on June 24, 
2020. Second-round model results were due July 12, 2020, and preliminary 
analyses of second-round results were reported to the modeling groups and 
others on July 17, 2020.

The five metrics corresponding to management objectives were 1) cumulative 
number of infected individuals (May 15 to November 15); 2) cumulative number 
of COVID-related deaths over the same period; 3) peak hospitalizations during 
the period May 15 to November 15; 4) probability of a new local outbreak after 
May 15 (more than 10 new reported cases per day); and 5) total number of days 
workplaces closed. The four interventions focused on strategies for reopening 
nonessential workplaces, while assuming that all involved schools remaining 
closed 1) continue with current nonessential workplace closures at least through 
November 15 (“closed intervention”), 2) open nonessential workplaces when the 
number of new daily reported cases is at 5% of peak (“5-percent intervention”), 
3) open nonessential workplaces 2 wk after peak (“2-wk intervention”), and 4) 
immediately relax all current restrictions on nonessential workplaces on May 15 
(“open intervention”).

All objective-intervention combinations were assessed for feasibility in an 
in-house model prior to developing the elicitation. However, intervention 2, 
which was set at 1% in round 1, was identified as too restrictive (i.e., the condi-
tion was never met) by several models during the discussion and was therefore 
changed accordingly (i.e., modeling groups provided feedback on interventions 
as anticipated in SI Appendix, Fig. S1 loop A). In a single-round elicitation, such 
a situation would have effectively reduced the number of interventions exam-
ined overall, as the 1% trigger was essentially congruent with the fully closed 
intervention.

For the 5-percent and 2-wk interventions (interventions 2 and 3), following the 
resolution of linguistic uncertainty in the discussion (SI Appendix, Supplementary 
Text: Resolution of linguistic uncertainty), we asked all groups to use the same 
metric and method for calculating the peak, acknowledging that this is only one of 
several metrics and methods that could be used to determine the peak. We chose 
a definition that could be implemented by a decision maker (as opposed to an 
omniscient approach). For both the 2-wk and 5-percent interventions, all teams 
used the 7-d trailing moving average of the number of new daily reported cases 
(as opposed to all infections, which may or may not result in reported cases); the 
moving average smooths out noise due to reporting and low population size. 
Peak is then defined as the maximum 7-d moving average of daily reported cases. 
The trigger to open for the 2-wk intervention is the first day for which the 7-d 
trailing moving average has been lower than the maximum for at least 14 d and 
has shown a day-to-day decline in smoothed case data for at least 10 of the last 
14 d (or there have been 7 d without any new cases). The trigger to open for the 
5-percent intervention is the first day for which the 7-d trailing moving average 
of the number of new daily reported cases drops below 5% of the peak after May 
15th. Note that the peak that triggers a 2-wk intervention may not be the same 
peak that triggers a 5-percent intervention (e.g., if there is a second peak that is 
larger than the first one).

Each group completed a thorough model description checklist (SI Appendix, 
Table S1) for each round, to document a wide range of information on model 
structure and parameterization, the efficacy of interventions, additional setting 

information, assumptions and the associated uncertainty, as well as other sources 
of stochasticity (SI Appendix, Tables S1 and S2 and Figs. S18–S20). Of the 17 
models contributed by 16 scientific research groups, 10 were compartmental, 
5 individual-based, 3 spatially explicit, 1 neural network, and 1 fractional order 
model. Eleven models included age-structure explicitly for some model com-
ponents. Modeling teams individually handled uncertainty in a variety of ways, 
using different methods and addressing different components (e.g., expert judg-
ment for choice of model structure and parameters, likelihood-based methods 
for parameter estimation, or simulation-based approaches for exploring ranges 
of potential parameter values). As part of the submission checklist, model groups 
were asked to provide an estimate of the number of full-time equivalent (FTE) 
hours allocated to their modeling effort, so we could explicitly specify the human 
resources required to undertake such a multimodel effort where there are 17 
models. Modeling groups allocated an estimated 64 median FTE hours (Q1: 40 
FTE hours, Q3: 100 FTE hours, Max: 1,000 FTE hours). No groups dropped out 
between rounds. One group did not submit a model for round 1 but participated 
in the discussion and submitted to round 2.

We requested 100 quantiles for each model–objective–intervention combi-
nation such that tail probabilities for the 2nd and 98th quantiles were relatively 
stable [i.e., we requested the probability distribution for each outcome for each 
intervention, via the cumulative distribution function (CDF) in 100 quantiles]. 
Requesting quantiles (rather than, for example, epidemiological curves) enables 
all types of different models to participate and allows a better expression of uncer-
tainty for decision making. Collecting 100 quantiles allows the tail probabilities 
to be estimated. We deliberately did not request information on the correlation 
structure between interventions within a model, as not all models were equipped 
to provide results for the same initial conditions or seed values.

Submissions were received by the MIDAS Coordination Center through the 
MMODS website, verified for format compliance, transformed into a consist-
ent format for analysis, and deposited in an internal project GitHub repository. 
Deadlines and submission times were documented, enabling us to explic-
itly specify the time frame within which the two-round process can occur. 
Anonymized model submissions, as well as aggregation, analysis, and figure 
generation code can be found in the public repository: https://github.com/
MMODS-org/Elicitation-1 (39).

Aggregate results were produced by taking a weighted average of the indi-
vidual CDFs (SI Appendix, Fig. S8); this provides critical information about the 
mean as well as higher-order moments. Each group received equal weight in 
the aggregate results. For research groups submitting more than one model, 
the group weight was divided equally among their models (one group submit-
ted two models). Based on the detailed checklist information, we can explicitly 
document the differences between models and the CDFs reflect the full degree 
of uncertainty considered. This model-based approach presents two advantages 
over human experts, who generally provide 3 to 5 quantiles at most and gener-
ally do not document explicit differences in their thought processes that might 
generate different rankings (37). While it is impossible to do a full analysis 
of every difference between all the models, we explored multiple potential 
correlates of model result rankings and magnitudes. Ancillary information 
was examined to assess whether model assumptions (e.g., model structure, 
assumptions about importations, etc.) predicted ranks or magnitudes of pro-
jections, or various other aspects of epidemic dynamics (e.g., projected num-
ber of people who are susceptible on November 15, 2020): nothing obvious 
emerged (SI Appendix, Figs. S18–S20 and Table S1). There also was no obvious 
uncertainty that would reverse the choice of optimal intervention (e.g., a factor 
whose inclusion or exclusion leads to different rankings); had such a factor 
arisen, this would be a top priority for research to improve decision-making 
outcomes. We also document where differences in magnitude between two 
strategies are not large; this is only the case for individual models, but not in 
the aggregate. In such cases, the decision maker may have flexibility of choice 
and may choose to weigh other considerations (such as costs) that have not been 
explicitly included in the models. Magnitude was not our primary interest but 
is important in determining whether the overall benefits of an intervention are 
sufficient to outweigh the overall costs.

Participating modeling groups refocused their efforts on COVID-19 during 
the pandemic and contributed considerable, mostly unfunded, time and effort 
(SI Appendix, Table S1) to participate in this project on a voluntary basis. Not all 
models were initially structured to address the questions or interventions we 
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considered, and the methods for handling uncertainty were new for some of 
the groups. Additionally, we found some trade-offs were necessary. A number of 
the models (e.g., those with substantial simulation time or requiring extensive 
changes to implement new interventions) could not assess the impact of many 
distinct interventions so we limited our study to four workplace-related interven-
tions to encourage participation. However, this need not constrain the number of 
interventions for critical decisions and situations; it is possible to augment com-
putational resources, or different subsets of the contributing models could assess 
different subsets of interventions. The success of future collaborative efforts will 
depend on the sustained availability of financial and logistical support, for both 
the coordination of collaborations, and for the individual modeling groups (26).

Data, Materials, and Software Availability. Anonymized data are available in 
the Dataset S2. Code is available on GitHub: https://github.com/mmods-org/elicita-
tion-1 (39). USGS Disclaimer: Any use of trade, firm, or product names is for descrip-
tive purposes only and does not imply endorsement by the US Government. CDC 
Disclaimer: The findings and conclusions of this report are those of the author(s) and 
do not necessarily represent the official position of the Centers for Disease Control 
and Prevention. NIST Disclaimer: These opinions, recommendations, findings, and 
conclusions do not necessarily reflect the views or policies of the National Institute 
of Standards and Technology or the United States Government. Food and Drug 
Administration Disclaimer: This article reflects the views of the group of authors 
and should not be construed to represent the FDA’s views or policies.
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