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Abstract

In this paper we introduce a multiscale stochastic simulation algorithm (MSSA)
which makes use of Gillespie’s stochastic simulation algorithm (SSA) together with a
new stochastic formulation of the partial equilibrium assumption (PEA). This method
is much more efficient than SSA alone. It works even with a very small population of
fast species. Implementation details are discussed, and an application to the modeling
of the heat shock response of E. Coli is presented which demonstrates the excellent

efficiency and accuracy obtained with the new method.
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1 Introduction

In microscopic systems formed by living cells, the small number of reactant molecules can
result in dynamical behavior that is discrete and stochastic rather than continuous and
deterministic.'™* To study the influence of this stochastic behavior, stochastic simulation of
the chemically reacting system is needed. Gillespie’s stochastic simulation algorithm (SSA)>6
is well known as an essentially exact numerical simulation method for well-stirred chemically
reacting systems and is widely used in the simulation of biochemical systems.

Because the SSA simulates every reaction event, it is inefficient for many realistic prob-
lems. The main reason for the low efficiency of the SSA is related to the multiscale nature
of the underlying problem. Multiscale behavior appears in a wide range of problems. The
multiscale problem in biochemical simulation has two aspects. The first is the timescale.
Some reactions are much faster than others. Often the fast reactions quickly reach a stable
state and the dynamics of the system are driven by the slow reactions. The SSA simulates
every reaction and thus puts a great deal of effort into the more frequently occurring fast
reactions, even though they do not contribute much to the dynamics and stochasticity of the
system. This multiscale problem in time is known in the deterministic regime as stiffness.”
Second, the populations of different species are of widely different magnitude. Some species
are present with a large population while other species have only very few copies in a cell.
Species with a small population should be modeled by a discrete stochastic process, whereas
species with a large population can be efficiently modeled by a deterministic ordinary differ-
ential equation (ODE). SSA treats all of the species as discrete stochastic processes.

In this paper we use a model of the heat shock response (HSR) of E. Coli®?® as an ex-
ample. The HSR system describes the mechanism of how the bacteria E. Coli responds to
a temperature increase. When exposed to temperatures high enough to induce the dena-

turing (unfolding) of its constituent proteins, the E. Coli bacterium derives some measure
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of protection from an elaborate heat shock response mechanism. One of several important
components of this mechanism is the heat shock sigma factor, o3,. Elevated temperatures in
the bacterium cause o3 to be produced through transcription and translation at a very rapid
rate. A free o3y molecule can bind to RNA polymerase (RNAP), and the resultant complex
032:RNAP initiates the transcription of genes that encode a variety of chaperone enzymes.
These chaperones take care of denatured proteins, either by refolding them or else by de-
grading them so that they will not cause problems by aggregating. But a newly produced
032 molecule is usually much more likely to be promptly sequestered by DNAK, one of those
chaperone enzymes, an occurrence that precludes its binding to RNAP. The number of free
032 molecules in the cell at any instant typically fluctuates over small (integer) values, with
a time average that may well be less than one. Both multiscale aspects are present in this
problem: (1) stiffness results from the presence of reactions which operate at vastly different
timescales (030 + DN AK <— 035 :DNAK is very fast, whereas 03o+ RN AP <— 035 :RNAP
is comparatively slow), and (2) there is a need to include in the simulation species that are
present in very small quantities, for example free o3, at typically around one molecule and
bound o3, at around 30-100 molecules, and species that are present with very large popula-
tions such as unfolded protein at more than 10° molecules. The details of the deterministic
model for the HSR system can be found in Ref.® and a stochastic version was discussed
in Ref.? In our stochastic model, 28 species participate in 61 chemical reactions. It takes
90 seconds for a 1.4Ghz Pentium IV Linux workstation to run one SSA simulation, which
means more than 10 days for 10, 000 runs. (Usually we desire to run 10,000 SSA simulations
to obtain a reasonably accurate distribution.) The size of the HSR system is only moderate.

Important progress has been made towards efficient algorithms for discrete stochastic
simulation. The tau-leaping method!'® has been proposed which can take time steps much

larger than the time for a single reaction. By using a Poisson approximation, the tau-leaping



method can ”leap over” many fast reactions and approximate the stochastic behavior of the
system very well. The tau-leaping method makes a natural connection between the SSA in
the discrete stochastic regime, the explicit Euler method for the chemical Langevin equation
in the continuous stochastic regime, and the explicit Euler method for the reaction rate
equation (RRE) in the continuous deterministic regime. The implicit tau leaping method!!
has been proposed to overcome the stability problems of the tau-leaping method when it is
applied to stiff stochastic systems. The leaping methods show a promising direction to solve
the multiscale stochastic problem. But they have a limitation, in that they are based on the
assumption that the propensity function a;(z), defined so that a;(z)dt gives the probability
that reaction R; will fire in the next infinitesimal time interval [t, ¢ + dt), should not change
significantly during each time step.!® This requires the population of the species to be large
relative to one. Thus when the system involves species with populations smaller than around
ten, the leaping methods must be replaced by SSA. To the best of our knowledge, there has
been no justifiable way to apply leaping methods to systems involving species that are present
in very small quantities.

Another possibility is the hybrid methods,'*'3 which have recently been proposed to
simulate multiscale chemically reacting systems. The hybrid methods combine the traditional
deterministic reaction rate equation (RRE), or alternatively the chemical Langevin equation,
with the SSA. The idea is to split the system into two regimes: the continuous regime
and the discrete regime. RRE is used to simulate the fast reactions between species with
large populations. SSA is used for slow reactions or species with small populations. The
conditions'® for the continuous regime are: “the number of instances of each molecular
species in a reaction in the continuous regime must be large relative to one, and the number
of reaction events of each reaction occurring within one time step of the numerical solver

must be large relative to one.” If either condition is not satisfied for a reaction channel, that



reaction channel must be handled in the discrete regime.

The hybrid methods efficiently utilize the multiscale properties of the problem. They
are advantageous over the tau-leaping method when there are species with very small pop-
ulations. But there are still some unsolved problems. One is that these methods do not
have a rigorous theoretical foundation. Another important problem arises in the case when
a reaction is fast but one of the corresponding reactants has a small population. It does not
satisfy the second requirement for the deterministic regime. Thus this reaction will still be

handled by the SSA, resulting in a very slow simulation. A typical such reaction is given by
Sl + SQ — 53, (1)

where S; has a small population but Sy has a large population, and the reactions for both
directions are fast. This situation occurs in the stochastic simulation of the HSR model, in
which the important sigma factor o3y, which plays a crucial role in the heat shock response
of E. Coli, has a small population but is involved in fast reactions. If we must use SSA
to simulate these fast reactions, the simulation will be very slow. Neither the tau-leaping
methods or the hybrid simulation methods can efficiently handle this situation. The difficulty
is that the reaction affects the population of S; significantly. The most extreme case is when
the state of S; changes between zero and one. This actually occurs in the simulation of
the HSR model. The important question is, how can we treat this reaction efficiently but
maintain the stochasticity? Our MSSA method can handle this type of problem.

Quasi steady state and partial equilibrium assumptions have often been used in the
simulation of deterministic kinetics systems.'* !¢ In the deterministic case, the quasi steady
state assumption assumes that on the time scale of interest, the instantaneous rates of change
for some intermediate species are approximately equal to zero. The partial equilibrium
assumption assumes that some fast reactions are always in equilibrium. In many cases these

two assumptions are equivalent. The quasi-steady state assumption focuses on the state



while the partial equilibrium assumption concentrates on the reactions. These assumptions
are often used to reduce the problem size or the stiffness.

The quasi steady state assumption was extended to the discrete stochastic case, and used
together with SSA. The stochastic quasi steady state assumption (SQSSA)!” was shown to
be very useful in simplifying stochastic reaction kinetics. In this paper we will focus on
the partial equilibrium assumption, although the discussion can also be applied to the quasi
steady state assumption.

There is another practical problem with the hybrid methods and with the SQSSA method.
Some molecular species are present in both the discrete and the continuous regimes, one
in integer and one in floating point. In those methods, the floating point values from the
deterministic regime are rounded to integers in the discrete regime. According to our analysis,
this is not the best choice for the ”fast reaction low population” situation. We propose to use
the mean value. This does not lead to a big difference when the population is large. But if
the population is very small, the difference between the floating point value and the integer
value is relatively large and cannot be neglected.

The purpose of this paper is to introduce the main ideas of the stochastic partial equilib-
rium assumption and the MSSA algorithm, and to demonstrate the potential for accuracy
and efficiency with this technique. Rigorous proofs have been omitted here. Interested
readers can see the related paper'® for a more rigorous discussion by probability theory. In
contrast to the present paper, which concentrates on practical issues with regard the use of
MSSA on moderate to large size real-world problems, Ref.!8 provides a theoretical analysis,
focusing on several simple test problems that can be thoroughly understood. Thus the two
papers are complementary.

Similar ideas have been proposed in the literature. A method called adiabatic elimination

of fast variables,'® has been studied in the Markov approximation for the reduced dynamics



in open systems. A theory is presented on the elimination of fast variables to obtain an
effective description in terms of a reduced set of variables. A difference between that approach
and ours is that the theory of adiabatic elimination of fast variables is framed in terms of
continuous Markov processes (described by a Langevin and Fokker-Planck equation), not a
jump Markov process (described by a master equation), which is the case we deal with.

It has been observed that ”it is the average occupancy over the individual microscopic
events which determines the probability of gene expression 713, Our paper presents one way
to deal with those ”average” characteristics, which can also be evaluated using thermody-
namic properties, for example the entropy and Gibbs energy. Ackers et al.2>2! developed
a methodology for approximating statistical thermodynamic binding events, and applied it
to simulation of the A phage. Although the theoretical foundation for that method has not
been carefully studied, in practice this approximation works well in reproducing the impor-
tant properties of gene expression regulation. Our work is related to this approximating
method. By generalizing the partial equilibrium assumption to the statistical thermody-
namic assumption, our work can justify the use of the time-average effect from the formula
of the propensities of the slow reaction channels. We further address this relationship in the
discussion in Section 7.

The outline of this paper is as follows. In Section 2 we briefly review the SSA method. In
Section 3 we introduce the stochastic partial equilibrium assumption (SPEA). In Section 4
we present the theory and the formulae to approximate the propensity functions of the slow
reactions, based on SPEA. In Section 5 we discuss some implementation issues. Finally, in
Section 6 numerical results are presented which demonstrate the accuracy and efficiency of

this method. A conclusion and further discussion are given in Section 7.



2 Background

Suppose the system involves N molecular species {Si, ..., Sy}. The state vector will be
denoted by X (t) = (Xi(¢),..., Xn(t)), where X;(¢) is the number of molecules of species S;
in the system at time ¢. M reaction channels {Ry,..., Ry} are involved in the system. We
assume that the system is well-stirred and in thermal equilibrium. The dynamics of reaction
channel R; is characterized by the propensity function a; and by the state change vector
vj = (1;,...,Vn;): aj(x)dt gives the probability that one R; reaction will occur in the next
infinitesimal time interval [t,t + dt), and v;; gives the change in the S; molecular population
induced by one R; reaction.

The dynamics of the system obeys the chemical master equation (CME):

M
P 120, 10) _ ™o (0 — 1) Pla = v, thao o) — a3(@) Pa tlaosto)], (2)
ot 2

where the function P(x,t|zo,t) denotes the probability that X (¢) will be z, given that
X(tg) = xo. The CME is hard to solve, both theoretically and numerically. An equivalent

simulation method is the SSA.>6 Let

M
ag(z) =) a;(2). (3)

j=1
The time 7 to the next occurring reaction is the exponentially distributed random variable
with mean 1/ag(z). The index j of that reaction is the integer random variable with proba-
bility a;(z)/ag(z). SSA is a Monte Carlo method based on these distributions. In each step,
SSA generates two random numbers 7, and o in U(0, 1), the uniform distribution on the

interval (0,1). The time for the next reaction to occur is given by ¢ + 7, where 7 is given by

1 1
@) log(:™)- (4)

T =

The index j for the next reaction is given by the smallest integer satisfying
J
D " ay(t) > raaq(t). (5)
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The system states are updated by X (¢t + 7) = X (¢) + v;. Then the simulation proceeds to

the next occurring time, until it reaches the final time.

3 Stochastic Partial Equilibrium Assumption

Traditionally the partial equilibrium assumption assumes that some fast reactions are always
in equilibrium. In the deterministic regime, the equilibrium among the fast reactions is
formulated as algebraic constraints. The involved states always satisfy these constraints. In
the stochastic regime, even when the reactions are in equilibrium, the states may not satisfy
the constraints. Instead, the distributions of these states are temporarily steady.

In order to distinguish the fast reaction channels and slow reaction channels, we re-
label them so that R = (Rf ,Rs), where R/ = {R{ ,. . .,Rﬁ/[f} represents the set of fast
reaction channels and R* = {Rj, ..., R}, } represents the set of slow reaction channels, where
My + My = M. We define a fast species to be any species whose population gets changed
by some fast reaction. Otherwise it is called a slow species. We re-label the N species:
S = (87,5%), where ST = {S{,...,S]{,f} is the set of fast species and S* = {S7,...,S}. }
is the set of slow species, where Ny + N; = N. The state vector is similarly subscripted as
X = (X ' 5). Note that the populations of fast species can be altered by slow reactions,
but the populations of slow species cannot be altered by fast reactions. The fast and slow

reaction propensity functions will similarly be denoted as

af(x) = af(xf,xs), j=1,..., My, ©)

ai(z) = aj-(a:f,acs), j=1,..., M,.

The corresponding fast and slow reaction state-change vectors now appear as

P (ff ff) 1M
vi o= (vl . vd j=1,..., My,
J 1_7: 7Nf_7 ) ) b
(7)
v = (V{;, .. .,V]{,ij,l/fj-, .. .,vassj) . Jg=1,...,M,.
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Note that by definition, yfjf = 0. We have dropped those zero components from 7.

Fast reactions occur much more frequently than slow reactions. To simplify the analysis
we will first focus on the influence of fast reactions. We construct a virtual system V with
only fast reactions R and fast species S/. The populations of the fast species in the virtual
system are represented by the virtual state variable X/ (¢). By definition, X7 (t) is composed
of the same fast state variables as X/(¢) but it evolves under the influence of only the
reactions R’; in other words, X/(t) is X/(t) with all the slow reaction channels turned off.
X7(t) is a more tractable process than X (£) because it has fewer species and fewer reaction
channels.

The reactions in the virtual system occur very fast. We assume that the stochastic partial
equilibrium is quickly reached in the virtual system. This assumption involves two aspects.
First, the virtual system has a stochastic partial equilibrium state. Note that the terminology
stochastic partial equilibrium differs somewhat in meaning from partial equilibrium in the
deterministic regime. On the one hand, it is stochastic. The virtual state variable X/ (t)
keeps changing. But the distribution of X/(¢) remains unchanged. On the other hand, it
is a partial equilibrium for the original system. Although the distributions of X/ (t) remain
unchanged by the fast reactions, they can be changed by the occurrence of slow reactions.
The reason is that slow variables are considered as parameters in the virtual system. Upon
the occurence of a slow reaction event, slow variables get changed. The equilibrium state of
X/ (t) is also disturbed. After that, the stochastic partial equilibrium is quickly resumed at a
new level. We use X/ (00) to represent the fast variables which have unchanged distributions
at the stochastic partial equilibrium state of the virtual system.

Second, compared with the occurrence time of the slow reactions, the transient time 7,4,
(called the relaxation period) for the virtual system V' to reach equilibrium is negligible. 744

is an important characteristic of the virtual system. In the virtual system, when the fast

10



reactions reach stochastic partial equilibrium, an important stochastic property is that after
a relaxation period Trejaz, X/ (t) and X! (t+ Tretaz) can be considered as independent random
variables with the same distribution as X/ (00). If Tperqq is negligible compared with the
timescale of the slow reactions, the virtual system V' can be considered to always remain at
the stochastic equilibrium state. We then treat X/(t) at different times ¢ as independent
random variables with the same distribution as X/(c0).

To illustrate the idea of stochastic partial equilibrium, Example 3.1 shows a simple virtual

system and the corresponding stochastic equilibrium behavior.
Example 3.1 A typical biochemical reaction has the form

51 + SQ — Sg, (8)

with the corresponding propensity functions a1(X) = kix1xa, ao(X) = k_1x3, where X;(t) is
the state variable for the population of species S;. We choose the coefficients ky =1, k_; = 10
and initial conditions z1(0) = 10, z2(0) = 23(0) = 100. Suppose these two reaction channels
are fast reactions. When a1(X) = as(X), the system is at the stochastic partial equilibrium
state. Figure 1 shows the plot of X1(t) from time 0 to time 8 in one SSA simulation. The
state keeps changing with time. Figure 2 shows the histogram of X at time T = 1 (plot with
'0’) and T = 2 (plot with ’+’) from an ensemble of 10,000 SSA simulations. The distribution
of the state remains the same at different times, which is also the distribution of X, (c0).
Moreover, Figure 2 also shows the distribution of X;(t;) with t; = 0.01xi fori=0,...,10000

(plot with **’). It has the same distribution as X;(c0).
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4 Multiscale Stochastic Simulation Algorithm

Utilizing the stochastic partial equilibrium assumption, we can avoid detailed simulation
of the fast reactions. Two methods can be applied. One is to find the distribution at the
partial equilibrium and generate random numbers according to that distribution. For some
simple systems, this method is rigorous and efficient.'® But in the general case, finding the
distribution for the partial equilibrium state is not easy. In this section we will show that,
with the stochastic partial equilibrium assumption, only the mean value of the propensity
functions are needed for the slow reaction channels.

Our purpose is to perform stochastic simulation on the slow reactions without an expen-
sive simulation of the fast reactions. The critical step is to calculate the propensity functions
for the slow reactions. If a slow reaction involves only slow species, the propensity function
is calculated exactly the same as for the original SSA. But when a fast species is involved,
how can we use the stochastic partial equilibrium assumption to calculate the corresponding
propensity function? To solve this problem, we begin with a new formula for the propensity
function for slow reaction channels when at least one of the reactants is a fast species.

Define P§(r|z/, 2% t) = the probability that, given X (t) = (z/,z°), no slow reaction

Ms s
j=1%

channel fires during [¢, + 7), and a}(X) = ) (X). During the time interval [t,t 4 7)
many fast reactions fire, which alters the fast variable X/. We will not simulate the fast
reactions. Instead we take X/ at time 7 as a random variable. (Since no slow reaction fires
during this period, X7(¢) is the same as X7/ (t).) According to the definition of af, under
the condition that X/ (7) = 2/ ' the probability that one slow reaction will occur in the next

infinitesimal time interval [7,7 + dr) is af(2/',2°)dr. Thus the total probability that one

slow reaction will occur in the next infinitesimal time interval [7, T + d7) is given by

!

E(ay(X7,2%)a,2%)dr =Y P(XI (1) = 2T |a!,2%)aj (o7

zf!

%) dr, 9)
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where E(-|zf,2*) and P(-|z/,2°) are the conditional mean and probability, under the con-
dition that X (¢) = (2, 2°). Let the time d7 be so small that in the next infinitesimal time

interval [7, 7 + d7), at most one slow reaction can fire. Then we have
Py(r +dr|al 2 t) = Pi(r|a! 2%, t)(1 — E (a3(X/ (1), 2%)|2!, 2°)dT) . (10)
Solving (10), we obtain

Pi(rla!, 2 t) = exp (— /tHTE (ag(X7 (u),2%)|z!, %) d,u) . (11)

We define the next slow reaction density function p'(t,j|z/, x%,t). p/'(r,jlzl,x° t)dr is the
probability that, given X (t) = (z/, 2°®), the next slow reaction will occur in the infinitesimal

time interval [t + 7, + 7 + d7) and will be an Rj reaction. Then (11) leads to

p'(r,jlzl,2%t) = E (aj(Xf(T),xs)\xf,xs) exp <—/t TE (ag(Xf(T),ms)\xf,xs)) . (12)

Next we apply the stochastic partial equilibrium assumption. Assuming that the virtual

system is at partial equilibrium and 7,¢q, is small compared to 7, X/ (1) can be taken as

X/ (c0). Thus (12) becomes
p'(T,j|xf, %, 1) = E(aj(Xf(oo), xs)|3:f, x°) exp (—TE(CLS(Xf(OO), xs)\:rf, xs)) ) (13)

Remark 4.1 (12) is a general formula, which does not depend on the stochastic partial
equilibrium assumption. It shows that the firing probability of the slow reactions is related
to the mean value of the fast species, which can be approximated by a deterministic system
if the corresponding fast species are present with a large population. Thus (12) provides
a theoretical foundation for the hybrid methods.’®1% (13) is the simplified formula after
applying the stochastic partial equilibrium assumption. It is valid when T,eq. of the fast
reactions is small compared to 7. When T is close t0 Treiaz, (13) is biased. The magnitude

of the bias is related to the variance of the fast species. The important point concerning (13)
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is that for a small population, we can use this method by taking the proper mean value. This

allows us to generalize the work!®13

on hybrid methods to models where some species present
with a small population are involved in fast reactions, which is exactly the case for the HSR
model.

The multiscale stochastic simulation algorithm (MSSA) is based on (13). Let a}(2®) =
E (aj(Xf(oo),xsﬂxf, 3:3), as(x*) = 32 @(x*). Then (11) can be rewritten as

J=1"3
Py(r|zf 2% 1) = exp(—ag(x®)7). (14)

Thus the time 7 that the next slow reaction will occur, starting at X (t) = (z/, z%), follows
an exponential distribution with probability density function @§(z*) exp(—ag(z*)7). We note
that this is very similar to Gillespie’s SSA method except that ay(z) is replaced by aj(z®).
Once we obtain the value of @j, we can use the same Monte Carlo method to generate the

random variable 7. For a uniform random number r, 7 is given by

T:%mg<1>. (15)

,
The corresponding index j for the slow reaction channel which occurs at time ¢ + 7 is

generated according to the distribution

. a/.
p,(jleaxé’at) = (7157 (16)

Thus the MSSA is given as follows. We will discuss the details of each step in the next

section.

Multiscale Stochastic Simulation Algorithm
Given initial time ¢, initial state zy and final simulation time 7',
Step 1: Compute the partial equilibrium state for the virtual system V. Update the fast

variables X/ = X7 (c0).

14



Step 2: For j =1,..., M, calculate a}(z°) and ag(z*).
Step 3: Generate two random numbers r; and 7, in U(0,1). The time for the next slow

reaction to fire is given by ¢ + 7, where 7 is given by

=g () 1

The index j of the next slow reaction is given by the smallest integer satisfying

Z as (z°) > raag(z?). (18)

Step 4: If t +7 > T, stop. Otherwise update the time ¢ = ¢ + 7 and states ¢ = z + v;. Go

to Step 1.

5 Implementation of the MSSA method

5.1 Estimating a}(z")

Estimating the a3(z°) is the most difficult task in MSSA. Only for a very simple system can
we derive an analytic solution for the distribution of X/ (t).'® In the general case, we have

to use an approximation. There are five possible functional forms for a}(z°):

If a}(x) is independent of zf,  then a;(z*) = aj(v). (19)
If aj(z) = cjx{, then a;(z°) = c; <le> . (20)

If aj(z) = cszfacf,, then @j(z°) = cjx; Azf> . (21)

If a3 (z) = %;xzf(xzf —1), then a(z%)= 02_]< ¢/ (X - 1)>. (22)

If aj(z) = cjx{:vi,, then aj(z°) = cj < AzfXZJ,c> : (23)

Here we use the notation
(F&N) = B (F(X ()’ a*) =D f(a! )P (X (00) =22l 2") . (24)
zf’

15



Note that <X I (t)> is defined under the conditional probability of X (¢) = (x/,z°). Since
the (z/,2%) is stochastic, (X7 (t)) also has a distribution. But when X (¢) = (z/, 2*) is fixed,
<X ! (t)> is a deterministic variable.

From all the possible forms, it is apparent that we need only the first two moments of
X/ (00). But since the second moment is hard to calculate, if possible we will use only the
mean value. For (19)-(21), we can directly use the mean for the virtual fast variable <X ! >
For (22) and (23), an approximation is needed. We will use the mean value for the virtual
fast variable. For (22), we use

o\ 2
aj(a") ~ 2 <Xif > . (25)
This is for the reaction type S/ +5/ — S; (dimerization reaction). Note that we use <Xf >2
instead of <le > (<Xf > —1). When the population of the fast variable S is large, this is
a good approximation. Special attention must be paid when the population of Sif is very
small. In particular the mean value can be less than one. Thus <Xf > (<Xf > — 1) can be
negative. There is no general way to efficiently compute a@;(z*) in this case. In many practical
problems, we can assume a Poisson distribution for X;. Then <[Xzf]2> = <Xif>2 + <ij‘>

We have

ai@) = (R -0) = S (&) (26)

Thus we can use (25) to replace (22). Interestingly, this is the function that is used in
the deterministic case. The resulting system is then very like the one given by the hybrid
methods. But this Possion distribution assumption may not be always true. Further study

is needed in that case. For (23), we use
as(e*) ~ e (X)) (X1 (27)

This approximation is valid when at least one of the reactants has a large population. In

the case where both reactants are fast species with small population and they are strongly
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correlated, this approximation can lead to some error. So far we do not have an efficient
way to deal with that case. Fortunately, this seems unlikely to occur, which has so far been
bourne out in our experience with practical problems.

With (22) and (23) replaced by (25) and (27), we need only to estimate <Xf> Alge-
braic equations are derived for <X f > according to the equilibrium law and conservation law.
The equilibrium law requires the fast reactions to reach equilibrium. The conservation law
applies to the virtual system. These two laws are usually obvious and are widely used in
many applications. Note that now the equations are very similar to the equations in the de-
terministic regime. But the probability interpretation is different. The variables here are the
means of X/ (00), not the concentrations for the state variables. Also, they are applied only
to the virtual system, which usually has only mono-stable distributions'. Moreover, special
attention should be paid if the fast reactions involve dimerization reactions. S;+.S; «— So,
where the propensity functions are given by a;(z) = Sz1(21 — 1) and ay(z) = cpzo. The

equilibrium law given by the deterministic equations is

ﬁx% = C229, (28)
2
while the MSSA method requires
c
51.%1(%1 - ].) = C9T3. (29)

When z; is large, (28) is not much different from (29). But when z; is small, (28) is no
longer valid. We will see such an example in Section 6.
Many other technical details are also involved in the implementation of the MSSA

method. In the following we will briefly discuss some important issues. We will use the

1 This is a consequence of the assumption that T,..iq, is small. For a bistable system, the relaxation time

Trelaz Will be large.
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example from the stochastic simulation of the HSR model described earlier to illustrate the

main points.

5.2  Solving the Partial Equilibrium Equations

5.2.1 Identifying the Fast Reaction Channels

How should we determine which are the fast reaction channels? In general, this remains
an open question. For a biologist, those channels can be identified from experiments or
experience. In the general case, the magnitude of the propensity function a can be used.
But, for example, when one of the fast species switches between one and zero very rapidly,
the corresponding propensity alternates between a large number and zero. When it is at zero,
that reaction channel could be put into the group of slow reaction channels. Our practical
approach is to run the full SSA simulation once or a few times and record the number of
times that each reaction channel occurs. The most frequently occurring channels are the fast
reaction channels. Determining how many fast reaction channels we should pick to guarantee
the validity of the partial equilibrium assumption is a topic for future research.

There are 61 reaction channels and 28 species in the HSR model?>. We ran the SSA once
and recorded the number of times each reaction channel fired. 6 reaction channels were
determined to be fast reactions. These 6 reaction channels fired 5.9 x 107 times, while the
total number of firings for all the reaction channels was 6.2 x 107. The next most frequent

reaction fired 7.7 x 10° times. Thus the 6 most frequently firing reaction channels take 94.4%

2We obtained the reaction channels and the corresponding parameters for this model from H. Kurata.®

Many of the parameters were obtained from experiments, and are not known with a great deal of certainty.
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of the total number of reaction firings. These 6 reactions are:

2+ HsLvu <+— 02 : HsLvu, (30)
02+ DNAK +— 0% :DNAK, (31)
RNAP+D <— RNAP:D, (32)

where 032 and RN AP have small populations.

5.2.2 The Stochastic Partial Equilibrium Approximation

Once the fast reaction channels have been determined, the algebraic equations are given by
the equilibrium law and the conservation law.
For the HSR model, eight species are involved in the six (three pairs) fast reaction

channels. There are three equations which arise from the equilibrium law.

(03?) - (HsLvu) ~ Ki{0**: HsLvu),
(63) - (DNAK) ~ K,(c®:DNAK), (33)
(RNAP)-(D) ~ K3{(RNAP:D),
where K are the ratios of the reaction rates (the backward reaction rates over the forward
reaction rates) for the reactions (30-32). We have five equations from the conservation laws

of the six reaction channels.

(03%) + (0% : HsLvu) + (0** : DNAK) = (4,

(HsLvu) + (0% : HsLvu) = Cb,
(DNAK) + (6% : DNAK) = Cs, (34)

(RNAP) + (RNAP : D) = C,,

(D) + (RNAP : D) = Cs,

where C;,7 = 1,...,5 are constants for the virtual system. They could be changed by the

19



slow reactions. The conservation law is valid only for the virtual system of the 6 fast reaction
channels.

Equations (33) and (34) can be solved by Newton iteration. Because the virtual system
is solved at almost every MSSA step, it is important to make the system size as small as
possible. Since the conservation law yields linear equations, it is often used to reduce the

size of the system. We chose (DNAK), (0*?) and (RN AP) as free variables. Then

(632 : DNAK) = C3— (DNAK),
(0% : HsLvu) = Oy —Cs+ (DNAK) — (%),
(HsLvu) = Cy—Cy+ Cs— (DNAK) + (032, (35)
(RNAP:D) = C,— (RNAP),

(D) = C5—Cy+(RNAP).

Substituting (35) into (33), we obtained three nonlinear equations with three variables.
Newton’s method was then applied to this system. In the general case, the equations above

can be automatically generated by symbolic computation.

5.2.3 Michaelis-Menten Approximation

If we have further knowledge of the system we may be able to simulate it more efficiently.
As introduced in Section 1, the populations of the species have a multiscale nature. Based
on a knowledge of the scales of the species populations, we can reduce the cost for solving
the partial equilibrium equations. For example, for (RNAP) - (D) = K3 (RNAP : D), since
we know that the population of D is several orders of magnitude larger than the free RNAP,
we may treat (D) as a constant temporarily. Then from (RNAP)+ (RNAP : D) = C, and

(RNAP) - (D) = K3 (RNAP : D), we have

(RNAP) = Kgfigw)c‘*' (36)

20



22,23 approximation. Then we can directly solve

This is also known as the Michaelis-Menten
for (RN AP) without Newton iteration.

We note that this procedure requires prior knowledge about the scales of the system, so

we will present numerical results both for using this approximation and not.

5.3 The Stochasticity of the Fast Species

In the MSSA method, after solving the algebraic equations of the virtual system we obtain
<X f > instead of X7 (¢) itself for the fast species. As mentioned before, <X f > is affected by
the slow reactions. For an ensemble of many MSSA simulations, <X ! > will have a stochastic
distribution. At this point, the distribution will not be accurate because it does not reflect
the randomness of the fast reaction channels. But for the full SSA model, the stochasticity
of the fast species is mostly affected by the slow reactions. Since the MSSA method captures
the stochasticity of the slow reactions very well, for the fast species the distribution obtained
from the MSSA method will be close to the distribution obtained from the SSA method. In
most cases we are concerned only with the distributions of some slow species. The value we
have for <X' ! > is good enough for that purpose. If in some special situations we need an
accurate distribution of the fast species, we can use the Down Shifting method, which was
proposed in Ref.!! In the down shifting method, we use the MSSA method until the time
is close to the output time. Then we change to the full SSA method for a short period of
time (about twice the relaxation time 7,¢y4,) just prior to the output time. This procedure
regenerates the distribution for the fast species. The fact that the underlying kinetics is

Markovian or “past-forgetting” is important in being able to apply such a procedure.
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6 Numerical Examples

Numerical results for two examples are presented here to demonstrate the efficiency and
accuracy of the MSSA method. The simulations were performed on a 1.4Ghz Pentium IV

Linux workstation.

Example 6.1 Heat Shock Response Model As described in Section 5, we took 6 reaction
channels as the fast reactions for the HSR model. These 6 most frequently occurring reaction
channels account for 94.4% of the total number of reaction firings. With 7" = 500 as the
final time, the original SSA simulation takes 90 seconds per run (9.00 x 10° seconds, or
about 10 days for 10,000 runs). Assuming the 6 reaction channels to be in stochastic partial
equilibrium, we applied the MSSA method. We used Newton’s method to solve the nonlinear
equations, as described in Section 5.2.2. The average simulation time was 6.70 seconds for
one MSSA simulation, yielding 6.70 x 10* seconds, or about 18 hours for 10,000 runs. After
further simplification using the Michaelis-Menton approximation, the time was 5.25 seconds
for one MSSA simulation. We will present the accuracy comparison in the case of 12 fast
reactions described below.

To obtain an even more efficient simulation of the HSR model, in the next series of
numerical results we chose 12 reaction channels as the fast reactions. These 12 reactions fire
6.14 x 107 times, which is 99% of the total number of times for all reaction channels. Thus
we can expect to reduce the simulation time to about 1% of the original simulation time.
Conservation laws and equilibrium laws were used to construct the algebraic equations. The
Michaelis-Menton approximation was also applied, based on our knowledge of the scales of
the species. The MSSA method takes about 1 second per run (10,000 runs of the MSSA
take about 3 hours). Note here that the time is very close to 1% of the original time. The

overhead from solving the nonlinear algebraic equation is minimized by the Michaelis-Menton
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approximation. In a further experiment, in order to obtain an accurate distribution for the
fast species we applied the down shifting method. To do this, we used MSSA until ¢ = 499
and then changed to the original SSA from ¢t = 499 to 500. The MSSA method with down
shifting takes 1.4 seconds per run (10,000 runs take about 4 hours).

The time comparison shows that the MSSA method is much more efficient than the
original SSA method. To verify the accuracy of the MSSA method, we generated a histogram
plot of 10,000 runs for each method. We used 12 fast reactions for the MSSA method in
the following comparison. For the slow species, MSSA always generates a histogram very
close to the original SSA. For the fast species, MSSA without downshifting generates a close
distribution but some difference is observed. With the down shifting method, this difference
is no longer observed. Figure 3 shows the histogram for a slow species mnRNA(DNAK) and
a fast species DNAK with 10,000 runs of the original SSA and the MSSA methods with
and without down shifting. The distribution of the fast species is totally restored with the

down shifting method.

Example 6.2 Slow dimerization reaction of a fast species with a small population

We consider
Sl — SQ,
(37)
Sl + Sl — 53,
where the propensity functions are given by a; = 200z1, a 1 = 79 and ay = z1(z; — 1),
z1(0) = 0, 22(0) = 100, z3(0) = 0. Here the first two reversible reactions are the fast
channels. The final time is 7" = 20. The algebraic equations for this simple system are given

by

200 (X1) = (Xa), (X1) + (X2) =100 — 2.X3(¢). (38)

Note that X3(¢) is treated as a constant in the virtual system but its value changes with

100—2X3(t)

501 < 1. Since ay =

every occurrence of the slow reaction. Solving (38) gives (X7) =
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X;(X71 — 1), if we use the mean value of X; we can obtain a negative propensity. Assuming
a Poisson distribution for X;, we have (a3) = (X;)”. Figure 4 shows the distribution of X
computed by the SSA method and the MSSA method with stochastic partial equilibrium
assumption. They match very well. Figure 5 shows the distributions of Xy generated by the
original SSA and the hybrid SSA method with or without the down shifting method. We

can see that with the down shifting method, the distribution of X5 has been totally restored.

Example 6.3 Fust dimerization: a case where the deterministic equation fails

Consider
A — Sl,
S48 > S, (39)
52 — Sg,

where A represents a species with constant population, the propensity functions for the
reactions are given by a; = 1, ap = 100x1(z; — 1), a9 = 10z5 and a3 = x9, 21(0) = 0,
x9(0) = 0, 23(0) = 0. Here the reversible dimerizations S; + S; «— Ss are the fast channels.

The final time is 7" = 20. The equilibrium law given by the deterministic equation is
Ty = 1027, (40)

while the MSSA requires

xo = 10z (z1 — 1). (41)

Equation (40) gives an incorrect value for 25 when x; is small. The final distribution for S3
is then wrong. As shown in Figure 6, (41) generates the correct distribution for S3 while
(40) doesnot. This example indicates that we have to be very careful when applying the

deterministic equations to the low population case.
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7 Conclusion and Further Discussion

In this paper we have introduced the MSSA method with the stochastic partial equilibrium
assumption. This extends the hybrid methods'?!? to the case where the population of the
fast species may be small. Implementation details have been briefly discussed. The MSSA is
a promising method for efficient and accurate simulation of stochastic biochemical systems.

In the current setup of this paper, to solve the stochastic partial equilibrium states we
need a full list of fast reaction channels. But in many practical problems such a detailed list is
not always available a priori. We note that the stochastic partial equilibrium assumption does
not actually depend on the knowledge of a detailed list of fast reactions. When the possible
states of the virtual system is finite, there is an alternative way to calculate the distribution
of equilibrium states which applies the thermodynamic theory and uses a thermodynamic
potential, such as the entropy or the Gibbs energy (see Ackers et al.?%?!). Since the Gibbs
energy may be determined through experiments, this can be a practical way to apply the
stochastic partial equilibrium assuption. Our analysis provides a theoretical foundation for

applying the thermodynamic method.
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Figure 1: X, (¢) for model (8) from time 0 to time T = 3 in one SSA simulation.
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Figure 2: The histogram of X; for model (8) at time 7" =1 (plot with '0’) and T = 2 (plot
with '+7) for 10,000 SSA simulations. The plot with *’ is the distribution of X (¢;) with

t; = 0.01%i for i =0,...,10000.
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Figure 3: The histogram (10,000 samples) of a slow species mRNA(DNAK) (left) and a
fast species DNAK with (right) and without down shifting method (middle) solved by the
original SSA method (solid line with ’0’) and the MSSA method (dashed line with ’+’) for

the HSR model.
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Figure 4: The histogram (10,000 samples) of X3 solved by the SSA method (solid line) and

the MSSA method (dashed line) for Example 2.
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Figure 5: The histogram (10,000 samples) of X solved by the SSA method (solid line) and

the MSSA method with (right) and without (left) down shifting method for Example 2.
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Figure 6: The histogram (10,000 samples) of Sy solved by the SSA method (solid line),
the formula (40) given by the deterministic equation (dashed line with +’) and the MSSA

formula (41) (dotted line with ’0’) for Example 3.
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