
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
An Optimized Video-on-Demand System: Theory, Design and Implementation

Permalink
https://escholarship.org/uc/item/74k0723z

Author
Zhang, Hao

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/74k0723z
https://escholarship.org
http://www.cdlib.org/

An Optimized Video-on-Demand System: Theory, Design and Implementation

by

Hao Zhang

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences
and the Designated Emphasis

in
Communication, Computation and Statistics

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Kannan Ramchandran, Chair

Professor Abhay Parekh
Professor Avideh Zakhor
Professor John Chuang

Fall 2012

An Optimized Video-on-Demand System: Theory, Design and Implementation

Copyright 2012
by

Hao Zhang

1

Abstract

An Optimized Video-on-Demand System: Theory, Design and Implementation

by

Hao Zhang
Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

and the Designated Emphasis
in

Communication, Computation and Statistics

University of California, Berkeley

Professor Kannan Ramchandran, Chair

Internet on-demand video traffic has seen explosive growth in recent years. This brings a number of
challenges in deploying video-on-demand services at large scale. The first challenge has to do with
the enormity of the video catalog size. Traditionally, content providers replicate the entire video
library in different locations, but this is wasteful and non-scalable as the video catalog size expands.
The second challenge comes with the increase in video quality, which calls for efficient utilization
of the scarce network bandwidth resources that continue to be economically expensive to expand.
The emergence of different device modalities, including smart-phones, high-definition and 3D TV,
tablets and etc poses another challenge in designing efficient systems and algorithms that cater to
all device characteristics and user needs.

In this dissertation, we aim to present a general approach to designing, optimizing and
architecting a video-on-demand system. Our approach considers the practical constraints of disk
space, network link bandwidth, and node connection degree bound. In general, the joint optimiza-
tion problem is combinatorially difficult. To tackle this, we first design a simple fractional storage
architecture, which uses a class of regeneration codes that fluidifies the content, thereby enabling
a distributed content placement and link rate allocation algorithm. We show that by storing only a
fractional of the entire catalog everywhere, the system is able to fully support user demand at large
scale. Second, we develop a Markov approximation technique to solve the problem of topology se-
lection under node degree bound using a simple distributed algorithm. We prove that our algorithm
achieves close-to-optimal solution, which we verify using extensive realworld trace simulations.

On the system side, we show extensive results to test the algorithm’s scalability and ro-
bustness to changes in user dynamics and demand patterns. We show that our solution achieves high
utilization of cache nodes storage and bandwidth resources, and automatically learns and caches the
video according to the demand patterns. We observe that there exists a complex interplay between
disk space, network bandwidth and node degree bound. We also present guidelines to important
practical design choices including caching update intervals, demand prediction and provisioning.
We also demonstrate the feasibility and efficiency of our design choice by building and experiment-
ing a prototype system at Berkeley.

i

I dedicate this dissertation to my family, particularly to my parents Liyan Zhang and Wenhua Ye
who believe in diligence, science, art, and the pursuit of academic excellence; to my wife Jian

Wang for continuously supporting our family and giving me tremendous care and encouragement;
and to our newborn son Lucas Zhang, who brings endless joy to our lives. I must also thank my

in-laws who have helped so much with taking care of Lucas and have given me their fullest
support.

ii

Contents

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 System Model . 2
1.3 Contributions . 3

2 Background 5
2.1 Problem Formulation . 5

2.1.1 A Simple Toy Example . 5
2.1.2 A General Formulation . 7

2.2 Related Work . 9
2.2.1 Video Content Placement . 9
2.2.2 Optimal Bandwidth Utilization . 10
2.2.3 Topology Graph Selection . 10
2.2.4 System Design and Performance Measurements 11

3 Content Placement 12
3.1 Convex Relaxation . 12
3.2 Fractional Storage . 13
3.3 Role of Codes . 13
3.4 Distributed Solution . 15

3.4.1 Algorithm Optimality . 15
3.4.2 Algorithm Illustration . 19

3.5 Convergence Behavior . 20

4 Topology Graph Selection 21
4.1 Heuristic Graph Selection Algorithm . 21
4.2 Problem Formulation . 22

4.2.1 Utility Maximization . 22
4.2.2 Entropy Approximation . 22

4.3 Algorithm Design . 25
4.3.1 Solution Seed . 26

iii

4.3.2 Perturbed Markov Chain . 28
4.3.3 Exact Markov Chain with Extended States 29
4.3.4 Impacts of Perturbation Errors . 32
4.3.5 Soft Worst Neighbor Choking . 33

4.4 Constant Countdown Time . 34

5 Performance Analysis 38
5.1 Performance Guarantee . 38
5.2 Convergence Time . 41
5.3 Experimental Results . 42

6 System Design 43
6.1 Video Storage Design . 43

6.1.1 Uniform Storage . 43
6.1.2 Desirable Code Properties . 44
6.1.3 DRESS Code Design . 45
6.1.4 Experimental Results . 48

6.2 Practical Considerations . 48
6.2.1 Time Varying Demand . 48
6.2.2 Placement Update Frequency . 48
6.2.3 Neighbor Set Selection . 48
6.2.4 Link Price Update . 49

6.3 System Architecture . 49
6.3.1 Central Server . 49
6.3.2 Scheduler . 50
6.3.3 Cache Protocol . 50
6.3.4 User Protocol . 50

7 Experimentation 53
7.1 Simulation Results . 53

7.1.1 Setup . 53
7.1.2 Performance . 54
7.1.3 Interplay between Storage, Bandwidth and Node Degree 56
7.1.4 Scalability and Robustness . 58
7.1.5 Content Placement Frequency . 59
7.1.6 Demand Prediction . 60

7.2 Experimental Results of Prototype System . 61

8 Conclusions 64
8.1 Summary of Results . 64
8.2 Future Work . 64

Bibliography 66

iv

List of Figures

1.1 The three-tier architecture of the VoD system. The top tier is an oracle server cloud
which serves as a vault for a potentially massive catalog of video content of demand
to a large user base having an unknown demand distribution (bottom tier). The scal-
ability requirement is addressed through a critical middle tier of distributed caches
that sits in between the server cloud and the users, and helps distribute the content. 2

2.1 A simple example of VoD caching problem. The system has two videos of size 1 GB
and rate 1 Mbps and there are 2 users requesting each video. The system employs
3 cache nodes with constraints on storage, bandwidth and out-degree as shown in
(a). The problem is to decide, for each cache, which videos to store, which users to
connect to, and how much bandwidth to allocate for each user. These questions are
coupled. The connections between the cache nodes and users in (b) form a “bad”
topology, and the content placement is non-optimal. In (b), one user is in deficit of
an entire video from the cache network and another user is in deficit of half of video,
both of which need to be filled in by the oracle server. The content placement in (c)
is a “good” strategy, where one user is in deficit of one video from the cache cloud.
In (d), the topology is a “good” one, and with the same content placement strategy
in (c), one user is in deficit of only half of a video. In general, finding the “best”
storage, bandwidth and topology combination is a combinatorially-hard problem. . 6

2.2 Caches and users connected by a physical network. The link capacity constraints
can exist arbitrarily anywhere in the network. 7

3.1 A simple example demonstrating the usefulness of fractional storage. The system
has the same setup as that in Figure 2.1. In (a), the videos are stored in their entirety.
Even with the optimal topology, the oracle server still needs to fill in the gap of half
of a video. In (b), videos A and B are broken into halves (A1, A2) and (B1, B2)
and are stored on the caches. In this case, the users are fully satisfied and cache 1
has filled only half of its storage. In (c), the fluid limit version of (b) is given, where
the video packets are replaced by video “drops”, and it is enough that users obtain
enough number of “drops” to meet their streaming requirements. In general, the
caches can store a fraction (between [0, 1]) of a video, as is indicated in (d). 14

3.2 An illustrative example of the content placement and link rate allocation algorithm. 19

v

3.3 Demonstration of the convergence behavior of the content placement and link rate
allocation problem. (a) non-cache traffic versus time. We will show in the next
section that with topology graph selection the non-cache traffic can eventually reach
zero. (b) Total storage amount of each video in the cache network. The algorithm
stabilizes in approximately 200 steps. 20

4.1 An illustrative example of the worst-neighbor-choking topology graph selection al-
gorithm. 22

4.2 Illustration of an Markov chain with state space the topology graphs G. The value
Φg of each state g is the optimal value of the content placement and link rate alloca-
tion scheme. As the Markov chain transits in between states according to designed
transition rates qg,g′ , the Markov chain in its stationary status will achieve an aver-
age value of (4.3). 25

4.3 Illustration of an Markov chain design. At state g, a single node v adds a link g̃ \ g,
and the topology graph transits to an intermediate state g̃. The same node v then
immediately drops the link g̃ \ g′. Only such transitions have non-zero rates. All
other transitions where multiple nodes drop multiple links have zero transition rates. 26

4.4 An example of the original two-state exact Markov chain and the extended state
Markov chain. In the original exact Markov chain, the transition rates are assigned
according to (4.6). Extended state Markov chain is obtained by adding one inter-
mediate state g̃ = g ∪ g′ , two extended states ḡ, ḡ′ and four bidirectional links
g
 ḡ, ḡ
 g̃, g̃
 ḡ′, ḡ′
 g′ among them. The transition rates are assigned
according to (4.14)-(4.21). 30

5.1 (a) compares no choking and soft-worst-neighbor choking; (b) shows convergence
time for various µ’s and number of nodes in the system. 42

6.1 A cache node’s storage of a video. The video has a size of 2GB and a rate of
512kbps. It is chopped into 4096 chunks, each having k = 64 packets of size
w = 8KB. When the stored fraction is W = 0.25, the cache node is able to serve at
a rate of 512× 0.25 = 128 kbps to any user watching this video. 44

6.2 The tradeoff between the expected number E(X) of cache nodes accessed by a
user to recover the file and the expected number E(Y) of cache nodes accessed by
a cache node for the decentralized growth, parameterized by the rate of the code
r = k/n. The DRESS code with k = 20 and α = 5 is used in this example. 47

6.3 Architecture of the VoD system that we have built at Berkeley. 50

7.1 Performance comparison of our scheme with LRU, LFU and MIP. The figure shows
the non-cache traffic of different schemes and the total demand for a period of 3 days. 54

7.2 (Utility efficiency for different videos. The utility efficiency for video m on each

cache node h is defined as
∑
u∈Um,h

xhm

Whmγm|Um,h| , which represents how useful any stored
fraction of a video is averaged among the cache nodes. 55

7.3 Total storage of videos in the cache nodes and the actual demand distributions shown
in log scale. 56

7.4 CDF of cache bandwidth utilization. 57

vi

7.5 Interplay between storage, bandwidth and node degree bound. (a) Total storage is
fixed at 3.5 video’s catalog. The figure shows the average server load versus total
bandwidth supply for different degree bound. (b) Degree bound is fixed at 6. Server
load versus total bandwidth supply is shown for different average storage capacity. 58

7.6 Contour plots of optimality gaps with different degree bound and average storage
capacity. Total bandwidth supply is equal to the total demand in each point in the
curves. 59

7.7 Average non-cache traffic during peak hours between 6pm and 8pm versus (a) vary-
ing catalog size; and (b) varying user dynamics. 60

7.8 System’s responsiveness to change of demand patterns. (a) Demand is changed
abruptly to a uniform distribution in the middle of the simulation. (b) Demand is
flipped in the middle of the simulation. (c) New popular videos are added unpopular
movies are removed everyday. 60

7.9 System performance with pre-allocation of content placement according a knowing
demand a priori. 61

7.10 Comparing results of prototype system and those from simulations. 62
7.11 QoS of the VoD system. (a) Distribution of the start-up delays. (b) Cumulative

distribution of the available video content in the buffer in seconds. 63

vii

List of Tables

2.1 Key Notation . 8

6.1 The table shows the average performance for both user requests and decentralized
growth, given a DRESS code that uses Reed-Solomon code as an outer code with
parameters k = 20, n = 40, α = 5. 46

6.2 A qualitative summary of how each coding parameter will affect the design properties. 47
6.3 Percentage of non-cache traffic of different coding schemes compared to the optimal

fluid limit. 48

7.1 Update period and total traffic . 59

viii

Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.
It is difficult to overstate my gratitude to my Ph.D. supervisor, Dr. Kannan Ramchandran.

With his enthusiasm, his inspiration, and his great patience to explain things clearly and simply, he
helped to make graduate study fun for me. Throughout the years, he not only provided lots of good
ideas but also supported me with great personal encouragement and care. I feel greatly thankful to
his company.

I also thank my co-advisor Professor Abhay Parekh for providing me with insightful ideas
and guide to designing and building our prototype system. I am also grateful for others who have
helped with my dissertation including Professor Avideh Zakhor, Professor Jean Walrand and Pro-
fessor John Chuang, for their kind assistance with writing letters, giving wise advice, helping with
my qual-exam, and so on.

I want to thank Professor Minghua Chen from the Chinese University of Hong Kong
(CUHK) for sharing with me many interesting ideas, many of which helped build the very founda-
tion of this thesis. I want to thank Ziyu Shao from CUHK for generously sharing his meticulous
research and insights that supported and expanded my own work. I am thankful to Kangwook Lee
from UC Berkeley for his implementation of the automated system simulator, and his hard work is
also a great inspiration for me.

I am indebted to my many colleagues for providing a stimulating and fun environment in
which to learn and grow. I am especially grateful to Salim El Rouayheb, Longbo Huang, Sameer
Pawar, Nebojsa Milosavljevic, Kangwook Lee and Giulia Fanti from UC Berkeley. I am also thank-
ful to Ermin Kozica who was a research visitor from KTH Royal Institute of Technology. I really
enjoyed the discussions with them of both research and life, which have helped make my graduate
study full of colors and joy.

I am grateful to the secretaries and assistants in the graduation division of the EECS
department of UC Berkeley for helping the departments to run smoothly. I give my special thanks
to Ruth Gjerde for assisting me in many different ways throughout my years at Berkeley.

Lastly, and most importantly, I wish to thank my family for all the sacrifices they made
to make whom I am today. They supported me, cared me, and loved me. To them I dedicate this
thesis.

1

Chapter 1

Introduction

1.1 Motivation

There is no doubt that Internet video traffic is dominating our network highway. The
global IP traffic has increased eightfold over the past 5 years, expecting to cross the annual zettabyte
(1 zettabyte = 1021 bytes) line by year 2015 [3]. Among these, more than 60% is Internet video
traffic, equaling to 3 trillion minutes (6 million years) of video content crossing the Internet each
month in 2015. The explosive growth motivates the design and optimization of a scalable and robust
video delivery system.

While video traffic takes a number of different formats, e.g., on-demand video, live
streaming, video surveillance, video conferencing and video gaming etc., it is dominated by on-
demand videos that accounts for 70% of the total video traffic. These systems provide users with a
large catalog of videos to choose from, and allow them to watch any videos at any time at any place.

There are a number of challenges to deploy VoD services at a large scale. First, the popu-
larity of videos exhibits long-tail properties, i.e., a large number of videos are requested infrequently.
For example, while the number of videos on YouTube has reached 1 trillion, only a few thousand
videos are “hot-hits”. Traditionally, VoD providers replicate the entire video library in different
locations to circumvent problems such as unknown content popularity and system overload due to
flash crowds. However, this is truly wasteful and avoidable. Despite the reduction in the cost of
disk space, the rate of creation of content and the increasing demand for higher quality content will
eventually outpace the ability of providers to scalably and economically add storage and replicate
the entire catalog everywhere. This challenge motivates us to design optimization strategies that
minimize the video storage while satisfying user demand.

The second challenge is to provide the best video quality to users located at different end-
points with different bandwidth capacities and network conditions. Currently, HD video-on-demand
has already surpassed standard definition (SD) at the end of 2011. By 2015, HD Internet videos,
which typically stream at 3 − 10Mpbs, will comprise 77% of the entire VoD traffic. However, the
network capacities across different regions vary significantly, and the median worldwide download
speed merely passes 600Kbps. It then becomes crucial to design algorithms that are “bandwidth-
agnostic”, and that optimize streaming quality given arbitrary capacities of the underlay network.

The third dimension of growth (the first two being the number of videos and the quality
of videos) is the number of modalities of video delivery. This is a new challenge not seen before

2

Tier I:

server cloud

Tier II:

 distributed cache

network

Tier III:

users

Figure 1.1: The three-tier architecture of the VoD system. The top tier is an oracle server cloud
which serves as a vault for a potentially massive catalog of video content of demand to a large user
base having an unknown demand distribution (bottom tier). The scalability requirement is addressed
through a critical middle tier of distributed caches that sits in between the server cloud and the users,
and helps distribute the content.

the recent blossom of video to mobile devices. While PC-originated traffic will grow at a rate of
33%, TVs, tablets, smart phones, and machine-to-machine traffic will have growth rates of 101%,
216%, 144% and 258%. To meet the demand at large scale, distributed approaches emerge, and it
becomes crucial to operate within the resource capacities of individual video servers while optimiz-
ing delivery at a global scale. This brings new challenges and opportunities to different aspects of
VoD systems design including video storage, video coding, traffic provisioning and load balancing.

1.2 System Model

To design a scalable and robust VoD content delivery solution that optimizes for storage
usage, network bandwidth utilization and , we propose and design in this dissertation a VoD system
based on distributed caching, which we have architected and built at Berkeley. The three-tiered
system model is shown in Figure 1.1. The top tier is an oracle server cloud which serves as a vault
for a potentially massive catalog of video content of demand to a large user base having an unknown
demand distribution (bottom tier). The scalability requirement is addressed through a critical middle
tier of distributed caches that sits in between the server cloud and the users, and helps distribute the
content in a highly scalable and adaptive manner.

There are three major advantages of the above design abstraction.

1. The architecture is very general and it captures the essence of many concurrent systems. For
example, in a content-distribution network (CDN), the cache layer represents the edge-servers

3

that are deployed close to the end-users. In a peer-to-peer system, the cache nodes are peers
who have free system resources and are willing to share. In a wireless scenario, users can
come from various modalities including smart phones, tablets and PCs. The cache nodes can
take forms of base towers, femtocells and Wi-Fi access points.

2. The model allows us to model any arbitrary physical network that sits in between the cache
nodes and the users. While the caches and users are often connected via a complete (or
fully connected) graph in the Internet application layer, the underlying physical layer can be
arbitrary and unknown. This model allows us to capture the physical network layer constraints
between the caches and the users. The details are described in Chapter 3 and Chapter 4.

3. The architecture also eases the mathematical modeling of the problem. In practice, the phys-
ical incarnation of the top server tier nodes can take various forms, e.g. it can be a single
backup server or a server farm (distributed archive servers). The existence of the top server
tier ensures that the video streaming requirement be met to the users. The modeling details
are presented in Chapter 3.

1.3 Contributions

Our approach to the design of the above VoD system is to first model it as an optimization
problem and then propose distributed algorithms. We corroborate our theoretical analysis with the
implementation of a realworld prototype system, which bridges the gap between theory and practice
that is present in many existing works. Our modeling considers three practical constraints of storage
capacity, network link capacity and node degree capacity, the joint optimization of which is missing
in the literature. Specifically, the modeling is aimed to capture the three aforementioned challenges.

• First, we assume no single cache node can store more than a tiny fraction of the catalog
content, as is motivated by the size of the catalog.

• Second, no single cache node has the bandwidth to satisfy the streaming demands of more
than a small subset of all users. The physical network may have arbitrary and unknown link
capacities, and the link rate allocation algorithm should be adaptable to any such constraints.

• Third, motivated by the increasing number of users and devices that may access the video
delivery network, we assume each cache node has only a limited (the degree bound of) number
of connections they can open up to the users. Conversely, each user is able to connect to only
a limited number of cache nodes to retrieve his content. This is motivated by the fact that
a single server/cache node can accept up to only a certain number of incoming requests at a
time due to limits in its disk read/write speed, CPU capacity and network I/O bound.

Given the system architecture and the above modeling constraints, our system goal is to
effectively use the collective resources of the cache network in minimizing the load on the top tier
server, which has to bear the burden of covering the deficit between the supply (by the collective
cache network) and the demand (by the users). We would like to emphasize that minimizing load
on the oracle server is only a modeling choice that enables easy mathematical formulations. In
practice, the objective can vary depending on the usage scenario.

4

Concretely, our problem is to minimize the server load while satisfying the users’ stream-
ing demands for their respective content by optimizing (a) what content should be stored on each
cache node (while respecting the storage constraints)? (b) which users should each cache connect to
(while respecting the connection degree bounds)? and (c) how should each cache node allocate its
bandwidth among the users it connects to (while respecting the link rate capacity constraints in the
physical network)? Further, in order to scale efficiently and have practical impact, we would like to
solve this optimization problem in a distributed manner.

The distributed optimization problem has two difficulties, which we tackle one by one.
The first difficulty is the content placement problem of deciding which movies should each cache
node store to be of optimal system help. This problem is of a combinatorially explosive nature when
there are a lot of choices of movies and cache nodes. We resolve this challenge by proposing a frac-
tional storage architecture and the use of appropriately designed network codes. This helps convert
this combinatorial non-multicast VoD problem into a tractable one, and enable a fully distributed
algorithm that jointly optimizes the cache content placement and link rate allocation problem. This
algorithm efficiently utilizes network resources and automatically learns the video demand distribu-
tion. The details are given in Chapter 3.

The second difficulty is the graph topology selection problem of deciding which users
each cache should connect to (while satisfying the connection degree bound constraints). The graph
topology selection problem is also a combinatorially difficult problem. To tackle this, we apply
a Markov approximation technique by converting the topology selection problem into a Markov
chain design problem, which allows us to design a simple algorithm that achieves close-to-optimal
performance. In Chapter 4 we present the algorithm and provide its performance analysis. The
topology selection results are of general interest and can be applied to other network system design
problems of combinatorial nature.

At a high level, the joint design of appropriate network codes, together with topology
selection, content placement and link rate allocation strategies, allows not only for a tractable so-
lution to a hard combinatorial problem, but even admits a fully distributed algorithmic solution
with provably close-to-optimal performance. In Chapter 5, we give theoretical proof that our solu-
tion achieves close-to-optimal solution and that the optimality gap diminishes when the number of
users becomes large. We close the gap between theory and practice by building a prototype system
at Berkeley, which we illustrate in Chapter 6. We describe in detail the system architecture, the
selection of network codes, the system implementation and its experiments design.

While our theoretical analysis is based on a “static” setting where the demand and supply
resources are fixed, we also show in our large-scale simulations that our algorithm works well even
for the more interesting “dynamic” cases. We use realworld traces and show that the the system is
scalable in the number of caches, users and the video catalog size, and that it is robust to different
dynamic situations including user fluctuation and demand distribution changes. We observe via
simulations the the complex interplay between disk space, network bandwidth and node degree
bound, whose further theoretical study is of profound interest. We also give experimental results
given by our prototype system to prove the feasibility of our architecture and algorithms, and present
guidelines to practical design choices including caching update intervals, demand prediction and
provisioning. The detailed experiment results are presented in Chapter 7.

We conclude in Chapter 8 and give concrete examples to discuss applications, extensions
and future research directions to the work presented in this dissertation.

5

Chapter 2

Background

This chapter presents the problem formulation and discusses its challenges through a sim-
ple example. It then explores related work of the optimization and design of VoD systems.

2.1 Problem Formulation

The design of our VoD system begins with formulating it as a server load minimization
problem by jointly optimizing over content placement, network link rate allocation and topology
graph selection, which we present here through a simple example illustrated in Figure 2.1(a).

2.1.1 A Simple Toy Example

In this example, the system has two videos, A and B, each of size 1 GB, and a streaming
rate of 1 Mbps. There are 4 users in the system, two requesting videoA and the other two requesting
video B. The cache cloud consists of 3 nodes. The network between the cache nodes and the
user nodes form a fully connected graph. However, the node degree bound on each cache node
allows them to connect to only a limited number of users simultaneously. For simplicity, we assume
each cache has limited upload bandwidth resources1 and limited storage capacities. The resource
constraints for each cache node are listed below them. For example, cache node 1 has an upload
bandwidth of 1Mbps, a storage capacity of 1GB and a degree bound of 2.

For each cache node, we have to decide which video it should store, which users it should
connect to, and how it should allocate its upload bandwidth among these users. Figure 2.1 shows that
these problems are interdependent. If we choose a “bad” topology and a “bad” content placement
strategy such as the one in Figure 2.1(b), one user is missing an entire video and another use is
missing half of a video (which needs to be filled in by the oracle server, as is indicated in the user
circle). In Figure 2.1(c), a “good” content placement strategy is chosen, and only one video needs
to be filled in by the server tier. In Figure 2.1(d), a “good” content placement strategy and a “good”
topology is chosen, and only half of a video is missing from the cache network.

In summary, we have the following problems in the design of VoD systems:
1In general, the network constraints can exist arbitrarily in any links in the network. We discuss this in the subsec-

tion 2.1.2

6

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

(a)

A

1

B A

1 0

0 0

0 0.5 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

(b)

B

1

B A

0 0

0 1

1 0 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

(c)

B B A

1 0 0.5

1

0 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0

(d)

Figure 2.1: A simple example of VoD caching problem. The system has two videos of size 1 GB
and rate 1 Mbps and there are 2 users requesting each video. The system employs 3 cache nodes
with constraints on storage, bandwidth and out-degree as shown in (a). The problem is to decide, for
each cache, which videos to store, which users to connect to, and how much bandwidth to allocate
for each user. These questions are coupled. The connections between the cache nodes and users in
(b) form a “bad” topology, and the content placement is non-optimal. In (b), one user is in deficit of
an entire video from the cache network and another user is in deficit of half of video, both of which
need to be filled in by the oracle server. The content placement in (c) is a “good” strategy, where
one user is in deficit of one video from the cache cloud. In (d), the topology is a “good” one, and
with the same content placement strategy in (c), one user is in deficit of only half of a video. In
general, finding the “best” storage, bandwidth and topology combination is a combinatorially-hard
problem.

7

…

physical
network

user

cache

overlay
route

cache’s limited
neighbor set Nh

… capacity cl

storage cap sh

degree
bound Bh

Figure 2.2: Caches and users connected by a physical network. The link capacity constraints can
exist arbitrarily anywhere in the network.

(Q1) Content placement and link rate allocation: Which videos should each cache store, while
respecting the storage constraint? Which videos and to which users should each cache node
serve its content, while respecting the link rate constraints?

(Q2) Topology: Which users among its neighbors should each cache connect to, while respecting
the node-degree constraint?

One can imagine that as the number of videos, number of caches and number of users increase, Q1
and Q2 will each involve an exponential number of choices. Moreover, these questions cannot be
solved independently, as hinted by the example in Figure 2.1. The result is a hard combinatorial
problem that is in general intractable.

In this dissertation, we tackle the first challenge by designing a class of network codes,
called DRESS codes, to convert the combinatorial problem of content placement into a tractable
one, and we tackle the second challenge by using a Markov approximation technique.

2.1.2 A General Formulation

We mathematically formulate the problems of Q1 and Q2 in a general setting in the fol-
lowing. Let us begin by introducing some notation listed in Table 2.1.

Denote by H the set of all cache nodes and by U the set of all users. There are M videos,
each video m having a constant streaming rate γm and size (MB) of βm, and being watched by a
subset of users Um ⊆ U .

To model arbitrary network link capacity constraints, suppose we have a set of overlay
links R that connect the users and caches together, and a set of underlay links L that form the
physical network. For each overlay link r ∈ R, it involves a set of underlay links, which is a subset
of L, denoted by Lr. Each underlay link l may be used by several overlay links, and vice versa.
Accordingly, we write l ∈ r if l ∈ Lr. An overlay link r = (h, u) enables node h to send data to

8

Table 2.1: Key Notation
Parameters Definition
H set of caches in tier II
U set of users in tier III
M number of videos
Um users watching video m
γm, βm video m’s streaming rate and size
R set of overlay routes
L set of underlay links. l ∈ r if link l belongs to route r
cl link capacity of l
Alr routing matrix. Alr = 1 if l ∈ r
sh storage capacity of cache h
Qv connectable neighborhood of v
Ng
v connected neighborhood of v under topology g

Bv maximum size of connected neighborhood of v
G set of all possible topology graphs
Auxiliary Variables Definition
θl shadow price of link l
qr qr =

∑
l∈r θl is the shadow price of route r

λr popularity index of route r
ωh storage price of cache h
Decision Variables Definition
xr route rate of r
Whm storage of video m on cache h
pg probability of each topology graph g

node u in the overlay graph by setting up TCP/UDP connections. Figure 2.2 shows an overlay route
can pass through multiple underlay links, and vice versa.

Let link l in the physical network L have a capacity cl, and let xr be the rate of overlay
link r. Introduce the overlay link rates column vector x := (xr, r ∈ R), the link capacity column
vector c := (cl, l ∈ L), and the routing matrix A := (Alr, l ∈ L), where Alr = 1 if l ∈ r and 0
otherwise. The physical link capacity constraint can then be formulated as Ax ≤ c.

To model the storage constraints, let sh be the storage capacity of cache node h and denote
by s := (sh, h ∈ H) the column vector of the storage capacities. Let W := (Whm, h ∈ H,m ∈
M) be the storage matrix where Whm ∈ {0, 1} represents if video m is stored on cache node h
(Whm = 1) or not (Whm = 0). Denote by β := (βm,m ∈M) the vector of the sizes (in MB) of all
videos. The storage constraints can then be expressed by Wβ ≤ s.

To model the node degree bound constraints, assume each cache node h (user node u) can
only see a subset Qh ⊆ U (Qu ⊆ H) of users nodes (cache nodes), and can only simultaneously
connect to a bounded number Bh (Bu) of users (caches). Denote by g a certain topology graph, by
Ng
h ⊆ Qh (Ng

u ⊆ Qu) the set of connected users of cache node h (user node u) under topology
graph g.

Our interest is to minimize the load on the oracle server by jointly optimizing over the
cache storage allocated to each video, the overlay link rates and the topology graph selection. Let

9

zu =
∑

r=(h,u):h∈Ng
u
xr be the total received rate by user u. We formulate this as the following

optimization problem:

max
x≥0,W,g

∑
u∈U

V (zu) (2.1)

s.t. xr:=(h,u) ≤Whmγm ∀h ∈ H,u ∈ Um ∩Ng
h , (2.2)

Ax ≤ c, (2.3)

Wβ ≤ s, (2.4)

W ∈ {0, 1}|H|×M , (2.5)

Ng
v ⊆ Qv, |Ng

v | ≤ Bv ∀v ∈ H ∪ U, (2.6)

where V (z) = max γm, zu is user u’s utility function, which says any aggregate received rate that
exceeds the required streaming rate yields little usefulness. Maximizing such utility is equal to
minimizing the sever load. In general, the V (z) can take any non-decreasing concave functions. We
choose this particular function in this dissertation only for easiness of discussions.

2.2 Related Work

The optimization of VoD systems has received wide attention. However, to the best of
our knowledge, none of the prior works consider the joint optimization of topology graph selection,
content placement and link rate allocation and give provably optimal results. We list the respectively
the related works that address each subfield.

2.2.1 Video Content Placement

There are a number of works on content placement [6, 12, 62, 34, 59, 56, 9]. Almeida
et al. [6] studied the delivery cost minimization problem under a fixed topology by optimizing
over content replication and routing. Boufkhad et al. [12] investigated problem of maximizing the
number of videos that can be simultaneously served by a collection of peers. Zhou et al. [62] focused
on minimizing the load imbalance of video servers while maximizing the system throughput.

Almeida et al. [6] addressed the problem of replica placement, client request routing,
and multicast stream routing in media content distribution systems employing scalable streaming
protocols. The authors formulated a simple optimization models for a variety of scalable protocols
including hierarchical merging, patching, periodic broadcasts, and scheduled broadcasts. With the
aid of additional constraints that must hold in the scalable delivery system solution, they showed that
a variety of realistic scenarios can be solved exactly using available optimization software. They
also showed that using the optimal conventional unicast content distribution system for scalable
delivery results in network costs. However, their setup is different because they consider server
placement rather than distributed caching. They also use a replication based storage scheme. In our
scheme, we use coding and show that the performance is much better. We also consider topology
selection in our system which they assume is fixed.

Recently, Tan and Massoulie [56] studied the problem of optimal content placement in
P2P networks. Their goal is to maximize the utilization of peers’ uplink bandwidth resources.
Optimal content placement strategies are identified in a particular scenario of limited content catalog

10

under the framework of loss networks. Their work assumes that the peers’ storage capacity grows
unboundedly with system size. In contrast, our work does not make any assumption on the storage
capacities. We also take into account the combinatorial aspect of the node degree constraints that
was not studied in [56].

Applegate and et al. [9] formulated the problem of content placement into a mixed integer
program that takes into account constraints such as disk space and link bandwidth. However, they
assume the knowledge of the content popularity and a fixed topology is given. The content place-
ment problem is solved approximately given the constraint that a video is either stored in its entity or
not stored at all. In our work, we use a class of network codes that enables fractional storage, which
helps convert an NP-hard problem to a convex problem that can be solved exactly in a distributed
manner. We also do not assume the topology is fixed, and instead also optimize over the topology
selections. Our scheme does not require any prior knowledge of the video demand distribution.

2.2.2 Optimal Bandwidth Utilization

With regard to network resource utilization, Borst et al. [11] solved a link bandwidth uti-
lization problem assuming a tree structure with limited depth. An LP is formulated and under the
assumption of symmetric link bandwidth, demand, and cache size, a simple local greedy algorithm
is designed to find a close-to-optimal solution. Valancius et al. [57] propose an LP-based heuristic
to calculate the number of video copies placed at customer home gateways. Both works assume a
tree network structure. In contrast, the network topology in our work is not constrained to be a tree,
and the video request patterns can be arbitrary in different network areas. Zhou and Xu [61] aimed
to minimize the load imbalance among servers subject to disk space and network bandwidth con-
straints. However, they only consider egress link capacity from servers. In contrast, our formulation
allows the link capacity constraints that may exist anywhere in the network.

Kulkarni et al. [32] proposes a heuristic algorithm for VoD systems that reduces the band-
width requirement. Ho et al. [23] proposed a transmission policy for peer-to-peer systems to effi-
ciently deliver video data by exploiting the multicast capability of the network. To avoid the dis-
ruption of services, the fault tolerance and recovery mechanism is also developed. They proposed
a mathematical model to evaluate the performance of their policies. However, the only consider
upload bandwidth bottleneck. Our algorithm assumes arbitrary link capacity constraints in the net-
work, and provide theoretical guarantee of optimality.

2.2.3 Topology Graph Selection

Topology building is also an important design dimension and has been studied in vari-
ous works [42, 33, 4]. While most works focus on enforcing locality-awareness and/or improving
ISP-friendliness, they make the simple assumption that the graph is fully connected, i.e., no node-
degree-bound is taken into consideration. Zhang et al. solve the problem of optimal P2P stream-
ing under node degree constraints [60]. However their topology selection algorithm depends on a
global statistics which is only easily accessible under a live-streaming scenario. In VoD, different
users have individual demand on different videos. Directly applying their technique requires global
statistics of all users’ utility functions, which can create enormous overhead. Our work proposes
a simple distributed algorithm that requires knowledge of only local information. We also give
bounds on the algorithm performance and provide mixing time results.

11

There also exist a number works of topology graph selection using differential-equation
based macroscopic analysis [50, 44, 40, 20, 45]. In [50], a refined fluid model of BitTorrent is pro-
posed and the high efficiency of BitTorrent is shown. However, this model assumes node selection
based on global knowledge of all nodes in the session, as well as uniform distribution of pieces.
In contrast, our work does not assume global knowledge and each node has only a limited local
view of networks. In [44], a coupon replication model is proposed by considering nodes with only
limited upload. It is argued that overall system performance does not depend critically on either
altruistic node behavior or the rarest-first piece selection strategy. In [40], an extend coupon repli-
cation model is proposed by considering nodes with limited upload and download capacity. With
the same access link bottleneck assumption, in [20], a model is proposed to capture the trade-off
between performance and fairness. In contrast, our model assume that the bottleneck link can be
anywhere, which is more realistic. In [45], an improved piece selection strategy is proposed and an-
alyzed. In contrast, in our work, we can characterize system trade-offs by both analytical modeling
and simulation. Further, our results access properties which are hard to analyze before.

Another line of work is based on game-theoretic analysis [50, 21, 30, 48, 46, 38]. These
works follow an economic flavor, including Tit-for-Tat (TFT) strategy analysis, feasibility of selfish
behavior (free-riding), incentive compatibility, and auction analysis. Major parts of these studies
are characterizing the existence, uniqueness, stability and other key properties of Nash equilibria.
Our work is orthogonal to these studies.

Other approaches focus on real measurements [28, 10, 7, 49, 37, 36]. These measure-
ments usually lasted for several months, either collecting tracker logs obtained from the trackers or
collecting event logs by joining an ongoing torrent with a modified client. The track logs enable
us to have the global view of BitTorrent performance whereas event logs enable us to observe the
individual behavior of peers. Observations based on real measurements indeed give us some ad-hoc
design heuristics. In contrast, our work enables us to have a systematic design, whose feasibility we
prove by building a realworld prototype.

2.2.4 System Design and Performance Measurements

There are also a number of works on practical VoD system design. Huang et al. stud-
ied [27] the challenges and the architectural design issues of a large-scale VoD system based on the
experiences of a real system deployed by PPLive [1]. Such challenges include coordinating content
storage distribution, content discovery, and peer scheduling. Wang et al. studied the ISP-friendliness
aspect of VoD systems, and proposed a solution to minimize the weighted sum of server load and
non-ISP-friendly traffic [58] under the single video scenario. Liu et al. presented the design of
the first production deployment of random network coding in VoD systems, and showed in-depth
trace-driven analysis based on the collected 200 Gigabytes worth of real-world traces throughout
the 17-day 2008 Olympic Games [43]. There are also a number measurement studies of practical
VoD systems [22, 26].

Annapureddy et al. proposed a VoD system called Redcarpet [8]. The authors proposed
an efficient video block dissemination algorithm in a mesh-based VoD system, and showed that pre-
fetching and network coding techniques can greatly improve system performance. While we use a
coding based framework to tackle the combinatorics of content placement, our problem formulation
and scope is very different, and we are further able to provide theoretically provable performance
guarantees.

12

Chapter 3

Content Placement

Solving the two combinatorial problems in (2.1) in bundle is a challenging task. In this
Chapter, we first fix the topology and study how to achieve optimal content placement under arbi-
trary network link capacity constraints. The content placement problem is in general NP-hard. We
tackle this difficulty by introducing a fractional storage idea. We show that with appropriate choice
of network storage codes, fractional coding not only reduces the problem into a convex problem,
but also has the potential of reducing the server load even further by allowing more flexibility in
the system. We then show that the converted convex problem has an easy-to-implement distributed
solution, whose convergence is verified using simulation results.

3.1 Convex Relaxation

By removing constraints (2.6), we have the following optimization problem:

max
x≥0,W

∑
u∈U

V (zu) (3.1)

s.t. xr:=(h,u) ≤Whmγm ∀h ∈ H,u ∈ Um ∩Ng
h , (3.2)

Ax ≤ c, (3.3)

Wβ ≤ s, (3.4)

W ∈ {0, 1}|H|×M , (3.5)

The above optimization problem is still NP-hard in general, as the storage matrix W can
only take binary values, which makes the problem difficult to solve. To mitigate this, consider
relaxing constraint (3.5) W ∈ {0, 1}|H|×M to 0 ≤W ≤ 1 with piecewise inequality as follows.

max
x≥0,W

∑
u∈U

V (zu) (3.6)

s.t. xr:=(h,u) ≤Whmγm ∀h ∈ H,u ∈ Um ∩Ng
h , (3.7)

Ax ≤ c, (3.8)

Wβ ≤ s, (3.9)

0 ≤W ≤ 1, (3.10)

13

which becomes a convex problem. However, the following questions arise.

• How to achieve fractional 0 ≤W ≤ 1 storage of videos? What does it mean in practice?

• Constraint (3.8) with fractional storage 0 ≤ W ≤ 1 adds an additional requirement that the
fractional storage of the same video by different caches be “orthogonal” to the users. In other
words, users requesting video packets from different caches should be able to decode the
video as long as they enough number of the full set of video packets regardless of the actual
instances of the packets. This is a difficult problem because we need to carefully allocate
packets to guarantee that none of the packets received by the users have duplicates. This
problem does not exist if W contains only binary values of 0 and 1, because each cache has
either does not have the video or has the full copy of the video, in which case the problem of
duplicates can always be avoided with sufficient communication between the nodes.

3.2 Fractional Storage

To resolve the above problems, let us revisit our simple example in Figure 2.1(c) shown
again in Figure 3.1(a). In Figure 3.1(b), we fix the same topology but adopt a fractional storage
mechanism. In particular, videos A and B are broken into halves (A1, A2) and (B1, B2). Interest-
ingly in this case, all users are fully satisfied, and cache 1 has to use only half of his storage capacity.

This example illustrates the interesting fact that relaxing the constraint that a cache node
stores only full (or none) copies of the videos improves rather than hurts the system performance,
provided that the allocation of the packets are carefully chosen.

3.3 Role of Codes

However, although fractional storage may yield superior solutions, it does not make the
problem convex yet. The problem is still combinatorial because one needs now to answer the even
more difficult question of “which parts of which video” to store on each cache instead of simply
“which video” to store on each cache.

In fact, the problem as formulated above remains hard even if we restrict it to the special
case of multicast demands, i.e., when all the users want to watch the same movie. However, it is
known that the multicast problem is tractable and the key idea for solving it is to use codes. In this
case, each cache stores coded packets of videos. The intuition for the multicast case, as explained
in the Fountain coding [14] and network coding literature [5, 25, 29], is that codes transform the
content into a fluid where coded packets can be thought of as “drops”. A user has to collect enough
drops (per time unit), and does not need to keep track of the identity of the packets, to be able to
decode and play the content. Therefore, solving the problem reduces to ensuring that the network
can sustain a flow equal to the movie rate to each user1.

The details of the code design to approximate the fluid-limit constraint in (3.10) are given
in Chapter 6. Here, we present a high-level illustration of what happens when we design a perfect
code. In Figure 3.1(c), we replace the packets, i.e., (A1, A2) and (B1, B2), of videos A and B by

1Practical codes can come close to this fluid abstraction.

14

B B A

1 0 0.5

1

0 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0

(a)

1 0.5

0.5 0.5

0.5 0.5

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

A1

B1 B2

A1

A2

(b)

1 0.5

0.5 0.5

0.5 0.5

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0.5A

0.5B 0.5B

0.5A

0.5A

(c)

1 0.5

0.5 0.5

0.5 0.5

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

W1A

W1B

W2A

W2B

W3A

W3B

(d)

Figure 3.1: A simple example demonstrating the usefulness of fractional storage. The system has
the same setup as that in Figure 2.1. In (a), the videos are stored in their entirety. Even with the
optimal topology, the oracle server still needs to fill in the gap of half of a video. In (b), videos A
and B are broken into halves (A1, A2) and (B1, B2) and are stored on the caches. In this case, the
users are fully satisfied and cache 1 has filled only half of its storage. In (c), the fluid limit version
of (b) is given, where the video packets are replaced by video “drops”, and it is enough that users
obtain enough number of “drops” to meet their streaming requirements. In general, the caches can
store a fraction (between [0, 1]) of a video, as is indicated in (d).

15

video “drops”, represented by 0.5A and 0.5B. The users only need to receive enough amount of
“drops” to meet their streaming requirements instead of worrying about the identity of the packets.
While we will discuss how to design a code to satisfy such requirements in Chapter 6, for the time
being to easy discussions, let us assume that we have designed a perfect code such that this is true
unless stated otherwise. Therefore, by using the fractional storage concept, and by the appropriate
design of codes, we can make valid of the fluid-limit constraint in (3.10), i.e., we allow caches to
store a fraction between [0, 1] of a video, as is indicated in Figure 3.1(d).

As a final note, it is worth noting that although we also use codes to tackle the combina-
torial difficulty of the content placement problem, the problem we address is more general than the
problem of classic multicast over a known network. The differences are three-fold. First, we do not
have a fixed network, rather we have to find the optimal topology within the design constraints of
maximum connectivity degree. Secondly, we have a content-placement problem of deciding what
content to place where in the cache cloud. Thirdly, we have a non-multicast setup where different
users demand different content.

3.4 Distributed Solution

3.4.1 Algorithm Optimality

Now that the problem becomes convex, we can solve it using a primal-dual algorithm,
which we state in the following theorem.

Theorem 1. The problem (3.6) can be solved by the following three-stage primal-dual algorithm
that converges to the optimal solution.

1) Step 1: update the upload rate.

ẋr = [δr(Vxr(zu)− λr − qr)]+xr (3.11)

where Vxr(zu) is the derivative of function V (zu) with respect to xr. qr =
∑

l:l∈r θl is the aggregate
route price, where θl is the single link price on link l and is updated by:

θ̇l = [ηl(
∑
r:l∈r

xr − cl)]+θl . (3.12)

where δr, ηl > 0 are adaptation parameters. λr is explained in the following.
2) Step 2: Update the demand index. The parameter λr is updated via:

λ̇r = [κr(xr −Whmγm)]+λr (3.13)

where step size κr is a positive constant, and m is the index of the video watched by user u. This
parameter captures the relative demand, i.e., absolute demand minus supply, of the video delivered
on route r, hence its name demand index.

3) Step 3: Update cache storage{
Ẇhm = [ιhm(Λhm − βmωh)]

[0,1]
Whm

ω̇h = [νh(
∑

m∈M Whmβm − sh)]+ωh
(3.14)

where the Lagrangian variable ωh is interpreted as the storage price for the storage constraint, and
Λhm = γm · (

∑
r=(h,u):u∈Um,h∈Ng

u
λr) is the aggregate demand index and βm the size of video m.

16

Proof. Given a topology graph g, the problem in (3.6) has concave objective functions and lin-
ear constraints, therefore the Slater constraint qualification conditions are satisfied [13] and strong
duality holds. Relaxing the first set of constraints in (3.7), we obtain its partial Lagrangian:

L(x,W, λ) =
∑
u∈U

V (zu)+∑
m∈M,u∈Um

∑
r=(h,u):h∈Ng

u

λr(Whmγm − xr),

where λ := (λr, r ∈ R) is the column vector of Lagrange multipliers of constraints (3.7). Then we
can solve an equivalent dual problem:

min
λ≥0

max
x≥0,0≤W≤1

L(x,W, λ)

s.t (3.8)− (3.10).

Given λ, we have two separated subproblems. One subproblem is cache storage allocation
for each cache node h ∈ H:

max
Wh

∑
m∈M

ΛhmWhm

s.t.
∑
m∈M

Whmβm ≤ sh,

0 ≤Whm ≤ 1 ∀m ∈M,

where Λhm = γm ·(
∑

r=(h,u):u∈Um,h∈Ng
u
λr). This is a linear programming problem that maximizes

the weighted summation of Whm subject to box constraints, which can be solved by a primal dual
algorithm: {

Ẇhm = [ιhm(Λhm − βmωh)]
[0,1]
Whm

ω̇h = [νh(
∑

m∈M Whmβm − sh)]+ωh

The remaining subproblem is link rate allocation:

max
x≥0

∑
m∈M,u∈Um

V (zu)−
∑

r=(h,u):h∈Ng
u

λr · xr


s.t. Ax ≤ c.

Assign Lagrangian multipliers θl to the capacity constraint for link l. This multiplier can be thought
of as the shadow price of the underlay link [55, 41], which summarizes the link congestion informa-
tion. Let qr :=

∑
l∈r θl be the overlay link r price aggregate over all the underlay links that connect

the overlay link.
Introduce the underlay link price column vector θ := (θl, l ∈ L) and the overlay price

column vector q := (qr, r ∈ R). Then we have q = AT θ. A primal dual algorithm can then be used
to solve the link rate allocation as follows. The route rate can be adjusted by:

ẋr = [δr(Vxr(zu)− λr − qr)]+xr ,

17

where Vxr(zu) is the derivative of function V (zu) with regard to xr. The link shadow prices can be
updated via:

θ̇l = [ηl(
∑
r:l∈r

xr − cl)]+θl ,

where δr, ηl > 0 are adaptation parameters.
After solving the above two subproblems, we obtain x and W . Then we update Lagrange

multipliers λ by the following sub-gradient method:

λ̇r = [κr(xr −Whmγm)]+λr

where step size κr are positive constants.
Overall, the solution is given by the following set of update equations.

ẋr = [δr(Vxr(zu)− λr − qr)]+xr
θ̇l = [ηl(

∑
r:l∈r xr − cl)]

+
θl

λ̇r = [κr(xr −Whmγm)]+λr
Ẇhm = [ιhm(Λhm − βmωh)]

[0,1]
Whm

ω̇h = [νh(
∑

m∈M Whmβm − sh)]+ωh

To prove its optimality, we observe that at optimal, the following KKT conditions [13] of the overall
Lagrangian should hold: 

[Vxr(z
∗
u)− λ∗r − q∗r]+x∗r = 0

θ∗l (
∑

r:l∈r x
∗
r − cl) = 0

λ∗r(x
∗
r −W ∗hmγm) = 0

(Λ∗hm − βmω∗h)
[0,1]
W ∗hm

= 0

ω∗h(
∑

m∈M W ∗hmβm − sh) = 0

where Λ∗hm = γm · (
∑

r=(h,u):u∈Um,h∈Ng
u
λ∗r), and ∗ denotes the optimal value of the corresponding

variables. Let x∗ and W ∗ be the primal optimal, and θ∗, ω∗ and λ∗ are the dual optimal. Denote
by y = (x,W, θ, ω, λ) and by y∗ = (x∗,W ∗, θ∗, ω∗, λ∗). To prove that y → y∗, we propose the
following generalized energy function:

E(y) =
1

2δ
‖x− x∗‖2 +

1

2ι
‖W −W ∗‖2 +

1

2η
‖θ − θ∗‖2

+
1

2κ
‖λ− λ∗‖2 +

1

2ν
‖ω − ω∗‖2,

and show that (a) E(y) > 0 ∀y 6= y∗ and V (y∗) = 0; (b) Ė(y) ≤ 0 ∀y and Ė(y∗) = 0.
(a) is obvious since E(y) is summation of quadratic terms centered at y∗. To show (b),

18

we derive Ė(y):

Ė(y) =
∑

(xr − x∗r)(Vxr(zu)− (qr + λr))
+
xr

+
∑

(Whm −W ∗hm)(Λhm − βmωh)
[0,1]
Whm

+
∑

(θl − θ∗l)(
∑
r:l∈r

xr − cl)+
θl

+
∑

(λr − λ∗r)(xr −Whmγm)+
λr

+
∑

(ωh − ω∗h)(
∑
m∈M

Whmβm − sh)+
ωh

by applying partial derivatives and plugging in the dynamic system equations. For simplicity, we
have omitted the sets over which the terms are summed up. It is easy to see that Ė(y∗) = 0. Now
we can upper-bound Ė(y) as follows:

Ė(y) ≤
∑

(xr − x∗r)(Vxr(zu)− (qr + λr))

+
∑

(Whm −W ∗hm)(Λhm − βmωh)

+
∑

(θl − θ∗l)(
∑
r:l∈r

xr − cl)

+
∑

(λr − λ∗r)(xr −Whmγm)

+
∑

(ωh − ω∗h)(
∑
m∈M

Whmβm − sh)

=
∑

(xr − x∗r)(Vxr(zu)− Vxr(z∗u))

+
∑

(xr − x∗r)(Vxr(z∗u)− (q∗r + λ∗r))

+
∑

(Whm −W ∗hm)(Λ∗hm − βmω∗h)

+
∑

(θl − θ∗l)(
∑

x∗r − cl)

+
∑

(λr − λ∗r)(x∗r −W ∗hmγm)

+
∑

(ωh − ω∗h)(
∑

W ∗hmβm − sh)

≤
∑

(xr − x∗r)(Vxr(zu)− Vxr(z∗u))

+0 + 0 + 0 + 0 + 0 ≤ 0

where the first inequality is obtained by dropping the [a,b]
x terms, the second equality is obtained by

canceling opposite terms, and the third inequality is obtained by applying the set of KKT conditions.
The last set inequality holds due to the concavity [13] of the function min (

∑
r:l∈r xr, γm) over xr.

Using (a) and (b), it follows from Krasovskii-LaSalle principle [35] that y converges to the
set {y|Ė(y) = 0}, and that such a set contains no trajectories other than {y = y∗}. This concludes
the proof.

The update equations are intuitive, which we illustrate by an example in the next subsec-
tion. The upload rate increases linearly with the marginal utility function and decreases linearly

19

1 2 3 4

1 2 3

1 0

0.5 0.5

0 0

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0A

0B 0.5B

0.5A

0.5A

0.5 0.5 0.5
1 2 3 4

1 2 3

1 0.1

0.5 0.5

0.2 0.2

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0.1A

0.2B 0.5B

0.5A

0.5A

0.3 0.4 0.3
1 2 3 4

1 2 3

1 0.5

0.5 0.5

0.5 0.5

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0.5A

0.5B 0.5B

0.5A

0.5A

Figure 3.2: An illustrative example of the content placement and link rate allocation algorithm.

with the demand index and link shadow price. The demand index increases if the desired link rate
exceeds what the stored video can offer, and vice versa. Cache node h increases storage of video m
if there is more demand than supply, i.e., when the popularity index is larger than the storage price,
and vice versa.

3.4.2 Algorithm Illustration

The above algorithms can be implemented in a fully distributed way. Figure 3.2 shows
an example of the three update steps described above. Consider cache node 3 in this example.
At the beginning, all the parameters x3u, u ∈ {2, 3, 4}, W3m,m ∈ {A,B} and the Lagrangian
multipliers are set to zero. The first step is to update the desired link rate. Take user 3 for example.
Since user 1 only receives 50% of the required streaming rate, the derivative of its utility function
is one. By step 1, ∆x33 = δ3[1 − 0 − 0]+0 . Take δ3 = 0.1, we have the overall update equation
x33 ← x33 + 0.1 = 0.1. Similarly, x32 ← 0.1 and x34 ← 0.1. Since

∑
u x3u = 0.3 < 1.5, the

route price q3 remains zero.
The second step is to update the demand index. Since W3m = 0, ∀m ∈ {A,B}, by step 2

we know that ∆λ33 = [κ3(0.1−0)]+0 . Set κ3 = 1 for example, and we have λ33 ← λ33+0.1 = 0.1.
Similarly, λ32 ← 0.1 and λ34 ← 0.1.

The third step is to update the storage. Since Λ33 = λ33 = 0.1, by the equations in step
3 we have W3A ← W3A + 0.1 = 0.1 when we set ι33 = 1. Similarly, W3B ← W3B + 0.2 = 0.2.
Therefore, cache node 3 now stores 10% of video A and 20% of video B. The above result is
illustrated in the second sub-figure of Figure 3.2. The iteration process then repeats, until either the
storage or the bandwidth saturates, as is illustrated in the third sub-figure in Figure 3.2.

20

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Time (iterations)

N
o
n
−

c
a
c
h
e
 t
ra

ff
ic

 (
%

)

Non−cache traffic vs Time

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

Time (iterations)

A
g
g
re

g
a
te

 s
to

ra
g
e
 (

#
 o

f
d
u
p
lic

a
ti
o
n
s
)	

Aggregate storage vs Time

2

4

6

8

10

12

14

16

18

20

(b)

Figure 3.3: Demonstration of the convergence behavior of the content placement and link rate
allocation problem. (a) non-cache traffic versus time. We will show in the next section that with
topology graph selection the non-cache traffic can eventually reach zero. (b) Total storage amount
of each video in the cache network. The algorithm stabilizes in approximately 200 steps.

3.5 Convergence Behavior

We verify the convergence behavior of the algorithms via a simple experiment. This
example is a mini-P2P scenario with 20 videos, 200 users and 100 caches2. The videos have a
flat streaming rate of 2Mbps. Users select videos according to Zipf’s law, i.e, they choose video
m with probability proportionally to 1/ms. We choose s = 0.8 in this case. Each cache can
store only up to one video. Caches’ bandwidth capacity is modeled by a mixtures of two Gaussian
distributions N(2, 0.3) and N(6, 0.3) of equal weight. Note that the average bandwidth resources
is just enough to satisfy all users demand. A fixed initial topology is given where each cache node
randomly connects to 6 user nodes. Figure 3.3(a) shows the traffic (in percentage) from non-cache
servers. Figure 3.3(b) shows the aggregate storage for each video among all caches, where each
color represents a different video. We can see that the algorithm stabilizes in a few hundred steps.
We show in the next section that a fixed random topology is not able to achieve zero non-cache
traffic, which can be achieved using our topology graph selection algorithm.

2One can think of this as 50% of the peer users are willing to share their storage and bandwidth resources

21

Chapter 4

Topology Graph Selection

In this chapter, we move forward to solve for the problem of topology graph selection
under node degree bound. In general, this problem itself is NP-hard. We apply a Markov approx-
imation technique that solves the problem in a distributed manner and achieves close-to-optimal
solution.

4.1 Heuristic Graph Selection Algorithm

Let us motivate the algorithm design by a simple toy example in Figure 4.1. In this
example, we will use the following heuristic topology selection algorithm: each cache node waits
for some time T , chokes his worst uplink neighbor1, and randomly connects to another neighbor.
For simplicity in the toy example, assume T is large enough such that the content placement and
link rate allocation algorithm has fully converged before the next choking happens2. Since each
node chokes his worst neighbor, we call this the worst-neighbor-choking algorithm.

Figure 4.1 shows two iteration steps of this algorithm. At the beginning, the cache nodes
collectively still cannot support user 3’s 50% of his streaming rate. After some time T , cache node
1, 2 and 3 respectively chokes their worst neighbor user, and connects to a new neighbor user. For
example, cache node 1 chokes user 1 and connects to user 3. The new topology graph is shown in
the middle sub-figure. For clear illustration purpose, we use a different color to show the changes in
the topology links and link rates for each cache node. In the second step, all cache nodes also choke
their worst neighbor and every user is fully satisfied.

The worst-neighbor-choking algorithm makes intuitive sense: each node keeps getting rid
of worst neighbors and exploiting new neighbors. The algorithm is also fully distributed and easy
to implement. Fortunately as we will show in the following, by implementing a slight variation
of the of it, which we call the soft-worst-neighbor-choking algorithm, one can show it achieves a
provably close-to-optimal solution. By soft choking, it means that each node chokes their neighbors
according to a certain probability distribution with the highest probability landing on the worst
neighbor. We will start the algorithm design by formulating the topology selection algorithm first.

1If there are multiple worst uplinks, choke one randomly.
2We will discuss a more general case without such an assumption later in the paper.

22

0 0.5

0

1

0.5

0.5 0.5

0.5A

0.5A

0.5A

0.5B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

users

demands

caches

A B A B

0.5B

1 2 3 4

1 2 3

1 2 3 4

1 2 3

0.5

0.5A

0.5A

0.5A

0.5B 0.5B

1 0.5

0

0

0.5

0.5

0

0.5 0.5
1 2 3 4

1 2 3

1 0.5

0.5 0.5

0.5 0.5

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0.5A

0.5B 0.5B

0.5A

0.5A

0.5 0.5

Figure 4.1: An illustrative example of the worst-neighbor-choking topology graph selection
algorithm.

4.2 Problem Formulation

4.2.1 Utility Maximization

Let Φg be the optimal solution to (3.6) under a fixed graph g, which we can solve using the
algorithms shown in Chapter 3. For simplicity of discussion, we assume here that Φg has converged
to its optimal value under topology graph g. However, similar results will still hold even if it is not
the case, as we will show in the performance analysis in Chapter 5.

To model the node degree bound constraints, assume each cache node h (user node u) can
only see a subset Qh ⊆ U (Qu ⊆ H) of users nodes (cache nodes), and can only simultaneously
connect to a bounded number Bh (Bu) of users (caches). Denote by g a certain topology graph, by
Ng
h ⊆ Qh (Ng

u ⊆ Qu) the set of connected users of cache node h (user node u) under topology
graph g. Our goal is to maximize the overall system utility while satisfying all the degree bound
constraints on all the nodes:

max
g

Φg

s.t. Ng
v ⊆ Qv, |Ng

v | ≤ Bv ∀v ∈ H ∪ U. (4.1)

Directly solving for (4.1) is a challenging task because the problem is non-convex and
there exists combinatorial number of choices. Even for the small toy example in Figure 2.1(a),
the total number of topology graphs is 6 × 6 × 4 = 144. To convert the problem into a solvable
(convex) one with distributed solutions, we design a Markov approximation technique introduced
in [16]. Details follow.

4.2.2 Entropy Approximation

First, we rewrite the above formulation with some minor tweak. Denote by G the set of
all possible topology graphs that satisfy all the node degree constraints. The topology building (TB)

23

problem can then be re-written in the following way:

TB : max
p≥0

∑
g∈G

pgΦg,

s.t.
∑
g∈G

pg = 1, (4.2)

where pg is the probability associated with topology graph g ∈ G. Its optimal solution is maxg∈G Φg,
and is obtained by setting the probability corresponding to one of the “best” topology graphs to be
1 and the rest probabilities to be 0.

To mitigate the problem of exponential number of graphs, consider using

1

µ
log(

∑
g∈G

exp(µΦg)) (4.3)

to approximate maxg∈G Φg. The reason is that while solving for maxg∈G is difficult, solving
for (4.3) can be made much easier as we will explain later on. We present the following theorem
adapted from [16].

Theorem 2. (4.3) is the optimal value to the following convex optimization problem:

max
p≥0

∑
g∈G

pgΦg −
1

µ

∑
g∈G

pg log pg, (4.4)

s.t.
∑
g∈G

pg = 1, (4.5)

where µ is a positive constant. The optimal solution is given by:

p∗g =
exp(µΦg)∑

g′∈G exp(µΦg′)
, ∀g ∈ G. (4.6)

Moreover, the gap between its optimal value (4.3) and the optimal value of the original problem
in (4.2) is given by:

0 ≤ 1

µ
log(

∑
g∈G

exp(µΦg))−max
g∈G

Φg ≤
1

µ
log |G|, (4.7)

where |G| is the size of G.

Note that
∑

g∈G pg log pg is also the entropy H(p) of the distribution p := (pg, g ∈
G), and we call this is an “entropy-approximated” formulation. The only difference between the
objective function in (4.4) and that in (4.2) is the addition of the weighted entropy term. As µ →
+∞, p∗g∗ → 1 where g∗ = arg maxg∈G Φg and p∗g → 0 otherwise. Therefore, the optimal value
in the entropy-approximated formulation approaches to that of the original problem as µ becomes
large. The proof is given as follows.

24

Proof. The Lagrangian of the problem (4.4) is given by:

L(pg, νg, ρ) =
∑

g∈G pgΦg − 1
µ

∑
g∈G pg log pg

+
∑

g∈G νgpg + ρ(1−
∑

g∈G pg),

where νg and ρ are the Lagrangian variables. At optimal, the following KKT conditions [13] should
hold:

Φg −
1

µ
(log p∗g + 1) + ν∗g − ρ∗ = 0, ∀g ∈ G,

Writing p∗ as a function of ν∗g and ρ∗ and applying the constraint
∑

g∈G pg = 1, we obtain:

ρ∗ =
1

µ
log (

∑
g∈G

exp (µ(Φg + ν∗g)− 1)).

Plugging ρ∗ back into p∗g, we get:

p∗g =
exp (µ(Φg + ν∗g)− 1)

exp (µρ∗)

=
exp (µΦg)∑
g∈G exp (µΦg)

, ∀g ∈ G.

which is the optimal solution. Plugging it into the optimization problem, we have the optimal value
equal to 1

µ log(
∑

g∈G exp(µΦg)).
Since p∗g is the optimal solution, the corresponding optimal value should be greater than or

equal to that with any distribution pg, e.g, pg = 1 when g = arg maxg∈G Φg and pg = 0 otherwise.
The objective function with such a pg is equal to maxg∈G Φg, and therefore:

1

µ
log(

∑
g∈G

exp(µΦg)) ≥ max
g∈G

Φg

On the other hand, we know that
∑

g∈G pgΦg ≤ maxg∈G Φg for any distribution pg, and that
H(pg) = − 1

µ

∑
g∈G pg log pg ≤ 1

|µ| logG for any distribution pg because of the properties of
entropy. Therefore, we also have

max
p≥0

∑
g∈G

pgΦg −
1

µ

∑
g∈G

pg log pg ≤ max
g∈G

Φg +
1

|µ|
logG

by piecewise inequality, which gives:

1

µ
log(

∑
g∈G

exp(µΦg)) ≤ max
g∈G

Φg +
1

|µ|
logG

Combining the two results above, we have:

0 ≤ 1

µ
log(

∑
g∈G

exp(µΦg))−max
g∈G

Φg ≤
1

µ
log |G|.

25

𝑔 𝑔′

Φ𝑔

𝑞𝑔,𝑔′

𝑞𝑔′,𝑔

… …

value

stationary distribution

𝜋𝑔

Figure 4.2: Illustration of an Markov chain with state space the topology graphs G. The value Φg

of each state g is the optimal value of the content placement and link rate allocation scheme. As
the Markov chain transits in between states according to designed transition rates qg,g′ , the Markov
chain in its stationary status will achieve an average value of (4.3).

Intuitively, one can see that 1
µ log(

∑
g∈G exp(µΦg)) is a good approximation of maxg∈G Φg

when µ is large. This is because the term exp(µΦg∗) will dominate the sum of exponentials∑
g∈G exp(µΦg). When this happens, we have:

1

µ
log(

∑
g∈G

exp(µΦg))→
1

µ
log(exp(µΦg∗)) = Φg∗ (4.8)

4.3 Algorithm Design

Recall that our goal is to solve for problem (4.2), and we know that one approximation is
given by (4.4), but why is this approximation useful? Given the vast number of possibilities, how
would we design a distributed algorithm to achieve the optimal topology graph?

The key idea is to construct a Markov chain (MC) on the topology graphs, and design its
transition rates such that when the MC is in its stationary status, the topology graphs g ∈ G are
time-shared according to the distribution p∗g in (4.5). As µ becomes large, the system spends most
of the time in the optimal topology graph and the gap between the approximated solution and the
optimal solution approaches to zero. If the transition rates can be implemented in a distributed way,
we will have effectively solved the entropy-approximated version of the topology graph selection
algorithm distributively. Figure 4.2 gives an illustration of this process.

It was shown in [16, 60] that it is possible to design such Markov chain to guide distributed
algorithm designs in various domains, including wireless scheduling, channel assignment and etc.
However, in our problem, directly applying these known design options in [16, 60] does not result
in Markov chains that are distributively implementable. In this section, we aim to design algorithms
that can be easily implemented in a distributed way.

Equation (4.5) is of a product form, and can be the stationary distribution of some time-
reversible MC with state space the set of all the topology graphs G. To design the Markov chain for
our topology selection, we focus on the design of transition rates qg,g′ between states g and g′. With
slight abuse of notation, let us think of each topology graph g as a set of directed overlay routes
that connect the cache nodes and user nodes, i.e., g := (r = (h, u), r ∈ R). In other words, each

26

𝑔 𝑔′ 𝑔 …

add link 𝑔 \𝑔 drop link 𝑔 \𝑔′

…

𝑞𝑔,𝑔′ effective transition

Figure 4.3: Illustration of an Markov chain design. At state g, a single node v adds a link g̃ \ g, and
the topology graph transits to an intermediate state g̃. The same node v then immediately drops the
link g̃ \ g′. Only such transitions have non-zero rates. All other transitions where multiple nodes
drop multiple links have zero transition rates.

topology graph g can be represented uniquely by the set of directed overlay routes, and vice versa.
Therefore, we use g and the set of the corresponding directed routes R interchangeably.

To simplify the design, we allow non-zero transition rates from topology graph g to graph
g′ if and only if they satisfy the following set of conditions, which we name as the “direct-transition
condition”. Specifically for any topology graphs (or set of overlay routes) g and g′, qg,g′ is non-zero
if and only if for the union of their routes g̃ = g ∪ g′:

• |g̃ \ g| = 1 and |g̃ \ g′| = 1;

• the only overlay route in g̃ \ g and that in g̃ \ g′ should originate from the same node denoted
by v(g, g′).

In other words, we allow transitions to happen only when a single node adds a not-in-use
neighbor and then drops one active neighbor. Figure 4.3 illustrates this idea. g̃ = g∪g′ is a transient
state where a node has just added a new neighbor before choking one of the old neighbors3.

4.3.1 Solution Seed

We begin by constructing a Markov chain that solves (4.4) exactly. This Markov chain
does not lead to a fully distributed solution, but serves as a seed to our distributed algorithm to be
discussed in later subsections. Recall that with the previous design of direct transition condition,
we now need to only design the transition rates.

Proposition 3. The following transition rates ensures the MC over the topology graph to reach the
stationary distribution in (4.6).

qg,g′ = τ−1 ·
exp(µ(Φg′ − Φg̃))

1 +
∑

g′′∈Av(g,g′),g̃
exp(µ(Φg′′ − Φg̃))

, (4.9)

3The node can temporarily violate the node degree bound, but the process happens instantaneously and the transient
state is almost non-existent. We use it only to simplify our theoretical discussions.

27

if g and g′ satisfy the direct-transition condition, and qg,g′ = 0 otherwise, where g̃ = g ∪ g′ is the
transient state just after the node adds a new link and before the node drops one of the old links,
τ > 0 is a constant, Av,g̃ is the set of topology graphs derived by node v dropping one of its active
links under graph g̃, i.e.,

Av,g̃ =
{
ĝ ∈ G | ĝ = g̃\ {(v, u)} ,∀u ∈ N g̃

v

}
, (4.10)

where (v, u) is a directed link from node v to node u, and v(g, g′) is the node defined in direct-
transition condition.

Proof. It is clear that all topology graphs can reach each other within a finite number of transitions,
and therefore the constructed Markov chain is irreducible. Further, it is a finite state ergodic Markov
chain with a unique stationary distribution. Based on the transition rate specified in (4.9), we see
that

p∗gqg,g′ = p∗g′qg′,g, ∀g, g′ ∈ G,

i.e., the detailed balance equations hold. Thus the constructed Markov chain is time-reversible and
its stationary distribution is indeed (4.6) according to Theorem 1.3 and Theorem 1.14 in [31].

We call this MC an exact MC because it solves the entropy approximated problem (4.4)
exactly. To implement it, let us first define some terms. For each node v ∈ U ∪H , we add a virtual
neighbor vNull and a directed virtual link from v to vNull. Virtual node vNull is not counted as a
node degree for node v.

The introduction of virtual nodes and virtual links are needed because when a node v
intends to add a neighbor w, it is possible that node w has already reached his degree bound. In this
case, node v will not drop any of its active neighbors. To facilitate the discussions though, we say
that in this case it is as if node v drops a virtual neighbor. The implementation is given below.

• The following procedure runs on each individual node independently. We focus on a particu-
lar node v ∈ U ∪H .

• Initialization: Node v randomly selects Bv neighbors from its neighbor list Qv and builds
connections with these selected neighbors.

• Step 1: Denote by g the current topology graph. Node v independently generates an expo-
nentially distributed random number with mean τ/(|Qv| − |Ng

v |) and counts down to zero
from this number.

• Step 2: When the count-down expires, node v random uniformly chooses a new inactive
neighbor w from Qv \ Ng

v . If adding w does not violate the node degree bound of w or v,
then node v builds a connection with w. otherwise, node v does not add any neighbor. The
system transits to a temporary topology graph g̃.

• Step 3: Node v collects global information Φg′ −Φg̃ for every “neighboring” topology graph
g′ ∈ Av,g̃. Then node v drops an active neighbor u (including the virtual neighbor) with
probability

exp(µ(Φg′ − Φg̃))

1 +
∑

g′′∈Av(g,g′),g̃
exp(µ(Φg′′ − Φg̃))

, (4.11)

28

where g′ = g̃\{(v, u)}. Node v then repeats Step 1.

In Step 3, with probability 1
1+

∑
g′′∈Av(g,g′),g̃

exp(β(Φg′′−Φg̃)) node v will not drop any one of its active

neighbors, equivalently to saying that node v drops its virtual neighbor vNull or node v chokes its
virtual link v → vNull.

We know that for any direct transition from g to g′, there exists a temporary state g̃ =
g ∪ g′, a node v adding a not-in-use neighbor (or its virtual neighbor) and then dropping one active
neighbor (or its virtual neighbor). Since the count-down rate for node v in g is (|Qv| − |Ng

v |)/τ , the
probability for node v to choose an inactive neighbor w is 1/(|Qv| − |Ng

v |), and the probability for
node v to choke u is

exp
(
µ
(
Φg′ − Φg̃

))
1 +

∑
g′′∈Av,g̃

exp
(
µ
(
Φg′′ − Φg̃

)) , (4.12)

it follows that the transition rate from g to g′ is

qg,g′ = τ−1(|Qv| − |Ng
v |) ·

1

|Qv| − |Ng
v |

·
exp

(
µ
(
Φg′ − Φg̃

))
1 +

∑
g′′∈Av,g̃

exp
(
µ
(
Φg′′ − Φg̃

))
= τ−1 ·

exp
(
µ
(
Φg′ − Φg̃

))
1 +

∑
g′′∈Av,g̃

exp
(
µ
(
Φg′′ − Φg̃

)) (4.13)

Although the above algorithm can achieve the optimal solution of the entropy-approximated
problem, it requires every node v to know global statistics Φg′ − Φg̃ for all g′ ∈ Av,g̃. Recall that
Φg′ =

∑
u∈U V

∗(zu) is the optimal solution of the content placement and link rate allocation prob-
lem in (3.6), which is the aggregate optimal utility of all users. However, node v will not be able
to know this information for all g′ ∈ Av,g̃ before dropping the corresponding links. Even when it
needs to estimate the values of Φg′ for all g′ ∈ Av,g̃, it still needs every node in the system to send
their utility to some central server, and then let the central server forward it to node v. This is im-
practical because sending such information back and forth burdens the system with huge overhead.
There are also potential issues with the timing and accuracy of each utility reported by each user.

In the following, we design a distributed algorithm to overcome these issues. The key idea
is to approximate each Φg′ − Φg̃ with a local statistics. We will call the resulted MC the perturbed
MC.

4.3.2 Perturbed Markov Chain

Recall that when V (zu) = min (γm, zu), Φg is equal to the sum of all (converged) utilities
from users. In this case, when the overlay link in g̃\g′ is dropped, the performance difference
Φg′ − Φg̃ lies in

[
−x̄g̃\g′ , 0

]
, where −x̄g̃\g′ is the overlay link rate before it is dropped. If the

cache node that drops the link g̃\g′ cannot re-utilize the capacity resource freed up g̃\g′, then the

29

performance difference Φg − Φg̃ = −x̄g̃\g′ , and this is the worst case that can happen. In the case
that the system can fully re-utilize the released capacity resource, Φg − Φg̃ = 0.

In general, the differences are not zero and follow some distribution, in which case the
stationary distribution will be different from that of exact Markov chain. However, we will show that
under some minor assumptions, the system will operate within a small gap to the global optimum
even when the differences are not zero.

For any direct transition from g to g′, define the perturbation error as ωg,g′ = [Φg′−Φg̃]−
(−1

2xg̃\g′) where g̃ = g ∪ g′. Recall that −xg̃\g′ ≤ Φg′ − Φg̃ ≤ 0, therefore −1
2xg̃\g′ ≤ ωg,g′ ≤

1
2xg̃\g′ .

Proposed in [2], the quantization error model can be applied to characterize the impacts
of one-dimension perturbation errors, where perturbation error ωg is only dependent on g for any
topology graph g ∈ G. However, in this case, perturbation errors are two-dimensional, i.e., pertur-
bation error ωg,g′ depends on both topologies g and g′. Therefore, we cannot apply the quantization
error model directly.

Therefore, prior to study the stationary behavior of the perturbed MC, let us first transform
the exact MC to a new extended-state MC model. The new extended MC can then easily handle
the original two-dimension perturbation errors by effectively transforming them into one-dimension
perturbation errors.

4.3.3 Exact Markov Chain with Extended States

To construct the extended-state MC, given an exact Markov chain, for any two different
topology graphs g, g′ ∈ G with direct transition rates qg,g′ 6= 0, we remove the links g
 g′

in state diagram, add an intermediate state g̃ = g ∪ g′ ∈ G̃, two extended states ḡ, ḡ′ and four
bidirectional links g
 ḡ, ḡ
 g̃, g̃
 ḡ′, ḡ′
 g′. The system utility of the extended states ḡ and
ḡ′ are defined as Φḡ = Φg − Φg̃ and Φg′ − Φg̃ respectively. In this way, any perturbation errors
incurred by estimating the utility difference Φg−Φg̃ can be regarded as perturbation errors incurred
by estimating the utility Φḡ of state ḡ. An extended-state Markov chain is illustrated in Figure 4.4.

We denote the set of all extended states as Ḡ. The new non-zero direct transition rates on
extended state space are shown as follows:

qg,ḡ = 1 (4.14)

qḡ,g = ᾱ · exp(µΦḡ) (4.15)

qḡ,g̃ = 1 (4.16)

qg̃,ḡ = α̃
1

1 +
∑

g′′∈Av(g,g′),g̃
exp

(
µ
(
Φḡ′′

)) (4.17)

qg̃,g′ = α̃
1

1 +
∑

g′′∈Av(g,g′),g̃
exp

(
µ
(
Φḡ′′

)) (4.18)

qḡ′,g̃ = 1 (4.19)

qḡ′,g′ = ᾱ · exp(µΦḡ′) (4.20)

qg′,ḡ = 1 (4.21)

30

𝑔 𝑔′

𝑞𝑔,𝑔′

𝑞𝑔′,𝑔

𝑔 𝑔

𝑞𝑔 ,𝑔

𝑞𝑔 ,𝑔
𝑔 ’ 𝑔′

𝑞𝑔 ′,𝑔′

𝑞𝑔′,𝑔 ′
𝑔

𝑞𝑔,𝑔

𝑞𝑔 ,𝑔

𝑞𝑔 ,𝑔 ′

𝑞𝑔 ′,𝑔

original exact Markov chain

extended-state Markov chain

Figure 4.4: An example of the original two-state exact Markov chain and the extended state Markov
chain. In the original exact Markov chain, the transition rates are assigned according to (4.6).
Extended state Markov chain is obtained by adding one intermediate state g̃ = g∪g′ , two extended
states ḡ, ḡ′ and four bidirectional links g
 ḡ, ḡ
 g̃, g̃
 ḡ′, ḡ′
 g′ among them. The transition
rates are assigned according to (4.14)-(4.21).

where ᾱ, α̃ are positive constants.
Denote this extend-state Markov chain by M e and its state space by C. We have the

following result:

Proposition 4. The extend-state Markov chain M e is time-reversible with a unique stationary dis-
tribution {peg, g ∈ C}. When both ᾱ and α̃ approach infinity, the state space C degenerates into G
and extend-state Markov chainM e degenerates into the original exact Markov chain with stationary
distribution (4.6).

Proof. First, given extended-state Markov chain M e, let the stationary distribution of state j be
denoted by πj . For any two states j, j′ satisfying detailed balance equation, we have πjqj,j′ =
πj′qj′,j . Let ρj,j′ = qj,j′/qj′,j for any qj′,j 6= 0, and then πj′ = πjρj,j′ .

Second, for the state-transition diagram of extended state Markov chain M e, we map it to
an undirected graph Gm=(V m, Em), where the node set V m = C is the set of states and any edge
e(i, j) ∈ Em, i, j ∈ V m represents the state-pair (i, j) with qi,j 6= 0.

It can be shown that Gm is a connected graph. Therefore, we can always find a spanning
tree to connect all nodes in Gm and there exists only one path between any pair of nodes. Suppose
we have constructed a spanning tree on Gm, denoted by Tm. Denote the root state by state 0, and
the nodes in V m by states 1, 2, . . . , |V m| − 1, according to the breadth-first search order on the
spanning tree. Let path(0, i) be the path between state 0 and state i (1 ≤ i ≤ |V m| − 1), passing
mi + 1 number of states (including states 0 and i). We order the nodes on path(0,i) according to
their distances from state 0, and denoted them by vj0,i(0 ≤ j ≤ mi).

31

According to detailed balanced equations along the path(0, i), we have the following:

πi = π0 ·
mi−1∏
j=0

ρ
vj0,i,v

j+1
0,i
, 1 ≤ i ≤ |V m| − 1 (4.22)

π0 +

|Vm|−1∑
i=1

πi = 1 (4.23)

Then we get the distribution

π0 =
1

1 +
|V |−1∑
k=1

mk−1∏
j=0

ρ
vj0,k,v

j+1
0,k

(4.24)

πi =

∏mi−1
j=0 ρ

vj0,i,v
j+1
0,i

1 +
|V |−1∑
k=1

mk−1∏
j=0

ρ
vj0,k,v

j+1
0,k

, 1 ≤ i ≤ |V | − 1 (4.25)

We now verify the distribution computed based on the spanning tree, i.e., (4.24)-(4.25), is
the correct stationary distribution, by testing the detailed balance equations between any two states
j, j′ ∈ V .

1. If qj,j′ = 0, then the detailed balance equation trivially holds.

2. If qj,j′ 6= 0 and the edge e(j, j′) belongs to the spanning tree, then by (4.25), we know that
πj′ = πjρj,j′ , i.e., the detailed balance equation holds.

3. If qj,j′ 6= 0 and the edge e(j, j′) does not belong to the spanning tree, then we focus on the
cycle consisting of path(j’,j) and e(j, j′). Starting from node j′ = v0

j′,j , we can visit nodes

vkj′,j , 1 ≤ k ≤ mj′,j − 1 and node j = v
mj′,j
j′,j in sequence along the path(j’,j). Thus we have

ρj′,j =

mj′,j−1∏
k=0

ρvk
j′,j ,v

k+1
j′,j

(4.26)

By (4.25) and (4.26) we have

πj
πj′

=

mj′,j−1∏
k=0

ρvk
j′,j ,v

k+1
j′,j

= ρj′,j (4.27)

Therefore, the detailed balance equation between j and j’ holds.

Combining the above scenarios, we know that the detailed balance equations between any
two states j, j′ ∈ V m hold. By [31] we know that the distribution shown in (4.24)-(4.25) is indeed
the stationary distribution and extended state Markov chain M e is time-reversible.

When both ᾱ and α̃ approach infinity, by (4.14)-(4.21), we know that the rates leaving
intermediate states and extended states are also approaching infinity, making these states transient.
In this way, the state space C degenerates into G and extend-state Markov chain M e degenerates
into the original exact Markov chain with stationary distribution in (4.5).

32

4.3.4 Impacts of Perturbation Errors

Now we proceed to study the stationary distribution given the perturbation errors ωg,g′ by
utilizing the extended-state MC. For perturbation of Markov chain M e, given any state g ∈ C, there
is only one dimension perturbation error ωg depending on state g only. Note that two-dimension
perturbation errors ωg,g′ in original exact Markov chain is mapped to one-dimension perturbation
error ωḡ in Markov chain M e. Therefore, we can apply quantization error model proposed in [2] to
time-reversible Markov chain M e.

Given the utility function V (zu) = min (γm,
∑
xr), u ∈ Um, we know that the per-

turbation error satisfies −1
2xg̃\g′ ≤ ωg,g′ ≤ 1

2xg̃\g′ . However we know that −x̄g̃\g′ ≤ cmax

for any g, g′, where cmax is the maximum link rate over all physical links. There fore, we can
assume ωg, ∀g ∈ C is bounded in the region [− cmax

2 , cmax2]. We quantize such error ωg into
2ng + 1 values [− cmax

2 , . . . , 0, cmax2ng
, cmaxng

, . . . , cmax2], and assume that ωg = kcmax
2ng

with probability
ξf,k, k = −ng, . . . , ng and

∑ng
k=−ng ξf,k = 1. Then we have the following lemma:

Lemma 5. (a) The stationary distribution of perturbed extend-state Markov chain is given by:

p̄eg =
σg exp (µΦg)∑

g′∈C σg′ exp
(
µΦg′

) (4.28)

where σg =
∑ng

k=−ng ξg,k exp
(
µkcmax2ng

)
, ∀g ∈ C.

(b) When both ᾱ and α̃ approach infinity, the state space C degenerates into G and perturbed
extend-state Markov chain degenerates into perturbed Markov chain. The stationary distribution of
perturbed Markov chain is given by

p̄g =
σg exp (µΦg)∑

g′∈G σg′ exp
(
µΦg′

) ,∀g ∈ G (4.29)

where

σg =

ng∑
k=−ng

ξg,k exp

(
µ
kcmax

2ng

)
, ∀g ∈ G. (4.30)

Proof. Consider a modified MC as follows: expand each state g of the extended MC M e to 2ng + 1
states gk, k = −ng, . . . , 0, 1, . . . , ng with the following transition rates:

q̄gk,g′k′
=

ξg′
k′

exp
(
κ
(

Φg − Φg̃ + kcmax
2ng

)) , (4.31)

where ξg′
k′
, k = −ng′ , . . . , 0, 1, . . . , ng′ , is the probability measure on expanded states and

∑ng′

k′=−ng′
ξg′
k′

=

1. Note that g0 refers to state g with zero error. Using equation (4.31) and detailed balance equations
pgk q̄gk,g′k′

= pg′
k′
q̄g′
k′ ,gk

, we have ∀g0, g
′
k′ :

pg0
ξg0 exp (κΦg)

=
pg′
k′

ξg′
k′

exp
(
κ
(

Φg′ +
k′cmax
ng′

)) = const. (4.32)

33

Using
∑

g∈G
∑ng

k=−ng pgk = 1, we obtain:

pgk =
ξgk exp

(
κ
(

Φg + kcmax
ng

))
∑

g′∈G
∑ng′

k′=−ng′
ξg′
k′

exp
(
κ
(

Φg′ +
k′cmax
ng′

)) . (4.33)

Denote by σg =
∑ng

k=−ng ξgk exp
(
κkcmax

ng

)
and we have:

p̄eg =

ng∑
k=−ng

pgk =
σg exp (κΦg)∑

g′∈G σg′ exp
(
κΦg′

) . (4.34)

Part (b) follow the same proof concepts used in Proposition 4, which we omit here.

4.3.5 Soft Worst Neighbor Choking

Now that we have fully understood the perturbed MC, the soft-worst-neighbor-choking
topology graph selection algorithm is straightforward. Let g denote the current topology graph.
Each cache node v ∈ H (and similarly for user node u ∈ U) implements the algorithm as follows.

• Initialization: It randomly selects and builds connections with Bv (which is its maximum
degree) number of neighbors from its neighbor list Qv. Denote by Ng

v the connected neigh-
bors.

• Step 1: It counts down to zero from an exponential timer with mean T = τ/(|Qv| − |Ng
v |),

where τ > 0 is a constant4.

• Step 2: When the count-down expires, it randomly chooses a new inactive neighbor w from
Qv \ Ng

v , and requests to connect to it. If the node degree bound of neither node w nor v is
violated, the connection is established; otherwise, no new connection is made. The system
transits to a temporary topology graph g̃.

• Step 3: Node v measures the overlay link rate x̄(v,u) from every neighbor u ∈ N g̃
v (including

the newly added neighbor w if there is any), and then chokes an in-use neighbor u with
probability

exp(−1
2µx̄g̃\g′)

1 +
∑

g′′∈Av,g̃
exp(−1

2µx̄g̃\g′′)
, g′ = g̃\ {(v, u)} . (4.35)

Afterwards, node v repeats Step 1.

The above algorithm is fully distributed – each node uses the overlay link rates from his
neighbors as the only metric to perform the topology selection. Recall that in the worst-neighbor-
choking algorithm in the toy example in Figure 4.1, the worst link is always choked. The only
difference here is that the worst link is dropped with high probability, hence the term “soft-worst”
choking.

4It is a tuning parameter which affects the count-down time and the algorithm’s mixing time. Details will be given in
the subsequent section.

34

Proposition 6. The soft-worst-neighbor-choking algorithm induces the following transition rates
for the perturbed Markov chain: for any two topology graphs g, g′ ∈ G satisfying direct-transition
condition:

qg,g′ = τ−1 ·
exp(−1

2µx̄g̃\g′)

1 +
∑

g′′∈Av(g,g′),g̃
exp(−1

2µx̄g̃\g′′)
, (4.36)

where x̄g̃\g′ is the rate of the only overlay link in g̃\g′ under topology graph g̃; and qg,g′ = 0
otherwise.

The proof will be similar to that for the solution seed, which we will omit in this case.
Comparing (4.36) with (4.9), we can see that the global quantity Φg′−Φg̃, which is the overall utility
difference between after and before the node drops the overlay link g̃\g′, is replaced by −1

2 x̄g̃\g′
which is a locally measurable quantity, thanks to our intuition from the worst-neighbor-choking
algorithm derived from the toy example. Fortunately, we can show that under some reasonable
assumptions, the perturbed MC can still achieve close-to-optimal system performance, as we show
in Chapter 5.

4.4 Constant Countdown Time

In the previous section, we have a Markov chain based topology graph selection algorithm
in which each node needs to count down following an exponential distribution. We observe in this
section an insensitivity property of the algorithm: the stationary distribution of each topology graph
depends on node’s count-down time distribution only through its mean, i.e., as long as the mean
values of the countdown time in the neighbor choking algorithm are kept, the stationary distribution
of the MC holds regardless of the underlying distribution of the countdown time. As a special case,
the countdown time can be a constant which is very easy to implement. In fact, BitTorrent’s tit-for-
tat algorithm uses exactly a constant countdown time in its tit-for-tat neighbor selection algorithm.

In the following, we present the insensitivity result of the countdown time distribution.

Proposition 7. In implementations of exact Markov chain based topology selection algorithm, for
each node v with current topology graph g, if we change the distribution of its count-down time
from exponential distribution to general distribution and keep the same mean of countdown time
τ/(|Qv| − |Ng

v |), then the stationary distribution of any topology g ∈ G is still p∗g in (4.6).

Proof. Suppose that within any topology g ∈ G, the count-down time for each node v ∈ U ∪ H
are independent with probability density function lv,g and mean τ/(|Qv| − |Ng

v |). Previously we
model the node neighboring state as node topology g ∈ G. This model is complete under the
exponential count-down time assumption memoryless property of the exponential distribution. In
general, for each topology g ∈ G, we define an extended state extended state Yg = (g, {Rv(g), v ∈
U ∪H}), where Rv(g) ∈ [0,+∞),∀v ∈ U ∪H is the residual count-down time. Rv(g) decreases
continuously and its rate of decrease is dRv(g)

dt = −1. Since there are infinite possible values for
state space is infinite. Therefore Y = {Yg, g ∈ G} is a continuous-state Markov process and we
denote y = (g, {rv(g), v ∈ U ∪H}) as one realization.

35

Let pY (t, y) be the state probability density at time t. Its derivative with respect to t is

dpY (t, y)

dt
= lim
4t→0

pY (t+4t, y)− pY (t, y)

4t
(4.37)

At the time interval from t to t + 4t, the state changes as a result of node finishing
counter-down and node continuing counter-down. There is only one type of jump events that cause
a discontinuity in the evolution of y: a node finishing count-down. For small values of4t, multiple
jump events occur with probability in order o(4t) and can be disregarded. Between the jump events,
nodes are continue counting down, in which case y changes continuously without g being changed.
For a particular realization y, we have

pY (t+4t, y) = A+B + o(4t), (4.38)

where A is the contribution due to count-down-to-zero jump events, and B is the contribution due
to ordinary counting down without any jump events, and lim4t→0

o(4t)
4t = 0.

(a) Let y = (g, {rv(g)}v∈U∪H) be the state at t+4t. Then we have

A =
∑

v∈U∪H
pY (t, RCv0+(y))lv,g(rv(g))4t (4.39)

where RCv0+(y) is the operation that sets rv(g) in g to be 0+ (i.e, just before the counter-down of
node v completes), and lv,g(rv(g)) is the probability density of a newly generated count-down time
for node v.

(b) Let y = (g, {rv(g)}v∈U∪H) be the state at t +4t and suppose that no count-down-
to-zero events occur during the interval from t to t +4t. Then the state at time t must have been
y = (g, {rv(g) + 4t}v∈U∪H , for the rv(g) decrease at rate −1. Therefore,the contribution is
B = pY (t, (g, {rv(g) +4t}v∈U∪H . By expanding in a Taylor series about each rv(g), we have

B = pY (t, (g, {rv(g) +4t}v∈U∪H (4.40)

= pY (t, y) +
∑

v∈U∪H

∂pY (t, y)

∂rv(g)
4t+ o(4t). (4.41)

Putting (4.39) and (4.41) into (4.38), and applying the definition of derivative in (4.37),
we have

dpY (t, y)

dt
=

∑
v∈U∪H

[
pY (t, RCv0+(y))lv,g(rv(g)) +

∂pY (t, y)

∂rv(g)

]
. (4.42)

In stationarity, the derivative with respect to time t cancel, so that dpY (t,y)
dt = 0 and we

have the following balance equation∑
v∈U∪H

[
pY (RCv0+(y))lv,g(rv(g)) +

∂pY (y)

∂rv(g)

]
= 0 (4.43)

Next, we will show that the stationary probability density of Y is:

pY (y) = p∗g
∏

v∈U∪H

(1−
∫ rv(g)

0 lv,g(t)dt)
τ

(|Qv |−|Ng
v |)

(4.44)

36

where p∗g is given by (4.6).
In other words, we will show that the stationary probability density in (4.44) satisfies the

balance equation (4.43). In fact, we will show that[
pY (RCv0+(y))lv,g(rv(g)) +

∂pY (y)

∂rv(g)

]
= 0,∀v ∈ U ∪H. (4.45)

Under (4.44), ∀v ∈ U ∪H ,

− ∂pY (y)

∂rv(g)

= −
d

(
1−
∫ rv(g)
0 lv,g(t)dt

)
τ

(|Qv |−|N
g
v |)

drv(g)
· p∗g ·

∏
v′∈U∪H−{v}

(1−
∫ rv′ (g)

0 lv′,g(t)dt)
τ

(|Qv |−|Ng
v |)

(4.46)

=
lv,g(rv(g))

τ
(|Qv |−|Ng

v |)
· p∗g ·

∏
v′∈U∪H−{v}

(1−
∫ rv′ (g)

0 lv′,g(t)dt)
τ

(|Qv |−|Ng
v |)

. (4.47)

On the other hand, in state y, ∀v ∈ U ∪ H , it is not hard to see the probability density

function of residual count-down time rv(g) is (1−
∫ rv(g)
0 lv,g(t)dt)

1

τ(|Qv |−|N
g
v |)

[39, 53]. Then we have

pY (RCv0+(y))lv,g(rv(g))

= lv,g(rv(g)) ·
(1−

∫ 0+

0 lv,g(t)dt)
1

τ(|Qv |−|Ng
v |)

· p∗g

·
∏

v′∈U∪H−{v}

(1−
∫ rv′ (g)

0 lv′,g(t)dt)
1

τ(|Qv |−|Ng
v |)

(4.48)

=
lv,g(rv(g))

1
τ(|Qv |−|Ng

v |)
· p∗g ·

∏
v′∈U∪H−{v}

(1−
∫ rv′ (g)

0 lv′,g(t)dt)
1

τ(|Qv |−|Ng
v |)

. (4.49)

Thus by comparing (4.47) and (4.49), we know that

−∂pY (y)

∂rv(g)
= pY (RCv0+(y))lv,g(rv(g)),∀v ∈ U ∪H. (4.50)

Therefore, the stationary probability density in (4.44) satisfies the balance equation (4.43).
By integrating pY (y) in (4.44) overall all possible values of rv(g),∀v ∈ U ∪H , we see

that the stationary distribution for any topology graph g ∈ G is p∗g in (4.5). This means the sta-
tionary distribution of topology graph g is insensitive to the distribution of count-down times. This
concludes the proof. In the same way, similar insensitivity results can be obtained for implementa-
tions of perturbed Markov chain based topology graph hopping algorithm.

Since the countdown time is insensitive to its distribution as long as its mean is preserved,
it offers great simplicity when implemented in practice. As a special case, each node can use a

37

constant countdown time. In fact, in BitTorrent’s tit-for-tat neighbor selection algorithm, a constant
thirty-second countdown time is used. The connections between our neighbor selection algorithm
and that of BitTorrent’s can be found in [54].

In summary, the soft-worst-neighbor-choking algorithm is very easy to implement in prac-
tice despite the heavy discussions, and it is analogous to the heuristic worst-neighbor-choking al-
gorithm proposed at the beginning of this Chapter which has intuitive explanations. In the next
Chapter, we show that the soft-worst-neighbor-choking algorithm achieves within a small gap of
the performance achieved by the algorithm that induces the exact Markov chain, and that gap goes
to zero when the number of users |U | becomes large.

38

Chapter 5

Performance Analysis

In earlier chapters we have described the content placement, link rate allocation and topol-
ogy graph selection algorithms. Despite their simpleness, they have provably performance guaran-
tee. This chapter proves that the proposed algorithms achieve close-to-optimal solutions, which
we verify via simulation results. We also briefly discuss the convergence time by providing theo-
retical bounds on the mixing time of the topology graph selection algorithm, and corroborate the
algorithm’s practicality via simulation results that show quick convergence.

5.1 Performance Guarantee

We have the following theorem of the performance guarantee of our algorithms.

Theorem 8. Denote by ΦO = maxg∈G Φg the optimal system utility, ΦE =
∑

g∈G p
∗
g · Φg the

expected system utility of the exact Markov chain, and ΦP =
∑

g∈G p
′
g · Φg the expected sys-

tem utility of perturbed Markov chain, where p∗g and p
′
g are the stationary distributions of the

exact and perturbed MC respectively. Let Φ̄O = 1
|U |Φ

O, Φ̄E = 1
|U |Φ

E and Φ̄P = 1
|U |Φ

P be
the corresponding system utilities averaged among the users. When the users’ utility function
V (zu) = min (γm,

∑
xr), u ∈ Um, the optimality gaps with and without perturbation errors are

shown as follows:

0 ≤ Φ̄O − Φ̄E ≤ 1
µBmax logNmax (5.1)

0 ≤ Φ̄O − Φ̄P ≤ 1
µBmax logNmax + 1

2|U |cmax (5.2)

where Bmax is the maximum degree bound over all users, Nmax is the max neighbor size over all
users, cmax is the maximum underlay link capacity, and |U | is the total number of users.

Proof. Let gmax ∈ arg maxg∈G Φg and consider the dirac distribution:

p̂g =

{
1 if g = gmax

0 otherwise
(5.3)

39

We know that p∗g in (4.6) is the optimal distribution for entropy-approximated problem (4.4). There-
fore, ∑

g∈G
p∗gΦg −

1

µ

∑
g∈G

p∗g log p∗g ≥
∑
g∈G

p̂gΦg −
1

µ

∑
g∈G

p̂g log p̂g (5.4)

= ΦO. (5.5)

With Jensen’s inequality [13] we know that

−
∑
g∈G

p∗g log p∗g =
∑
g∈G

p∗g log
1

p∗g
(5.6)

≤ log(
∑
g∈G

p∗g ·
1

p∗g
) = log |G|. (5.7)

Combining (5.5) and (5.7), we have

ΦE =
∑
g∈G

p∗g · Φg ≤
∑
g∈G

p∗g · ΦO = ΦO (5.8)

≤ ΦE − 1

µ

∑
g∈G

p∗g log p∗g ≤ ΦE +
1

µ
log |G|. (5.9)

Therefore,

0 ≤ ΦO − ΦE ≤ log |G|
µ

. (5.10)

Next we show the bounds on optimality gap for perturbed Markov chain. By (4.29), prob-
ability distribution p̄ can be regarded as the optimal solution to entropy-approximated problem (4.4)
by changing the utility function Φg in (4.4) to Φ′g = Φg +

log σg
µ . Following the inequality in (5.1),

we have

max
g′∈G

Φg′ −
∑
g′∈G

p̄g′Φg′ ≤
log |G|
µ

. (5.11)

Putting in the values of Φg′ , we have

max
g∈G

[Φg +
log σg
µ

]−
∑
g∈G

p̄g[Φg +
log σg
µ

] ≤ log |G|
µ

. (5.12)

By (4.30) it is not hard to see that:

exp (−µcmax

2
) ≤ σg ≤ exp (µ

cmax

2
),∀g ∈ G. (5.13)

Thus

−cmax

2
≤ log σg

µ
≤ cmax

2
,∀g ∈ G. (5.14)

40

Combining (5.12) and (5.14), we have

ΦO = max
g∈G

Φg ≤ max
g∈G

[Φg +
log σg
µ

] (5.15)

≤
∑
g∈G

p̄g[Φg +
log σg
µ

] +
log |G|
µ

(5.16)

≤
∑
g∈G

p̄gΦg +
cmax

2
+

log |G|
µ

. (5.17)

It follows that

ΦP =
∑
g∈G

p̄g · Φg ≤
∑
g∈G

p̄g · ΦO = ΦO (5.18)

≤ ΦP +
log |G|
µ

+
cmax

2
. (5.19)

Therefore

0 ≤ ΦO − ΦP ≤ log |G|
µ

+
cmax

2
(5.20)

Since each user has at most
(
Nmax

Bmax

)
number of neighboring topology graphs, where Nmax is the

maximum number of neighbors the user can see, and Bmax is the maximum degree bound over all

users, the number of topology graphs can be bounded above by |G| ≤
(
Nmax

Bmax

)|U | ≤ NBmax|U |
max .

Plugging in this inequality and dividing both sides of (5.10) and (5.20) by |U | we have:

0 ≤ Φ̄O − Φ̄E ≤ 1
µBmax logNmax (5.21)

0 ≤ Φ̄O − Φ̄P ≤ 1
µBmax logNmax + 1

2|U |cmax (5.22)

We make the following observations:

• The upper bound on optimality gap of the perturbed Markov chain is cmax
2|U | away from that of

the exact Markov chain, which we call “the price of local perturbation”. However, this error
is very small compared to the average utility of users.

• When both the number of users |U | and µ approach infinity, the average system performance
in both cases approaches to the optimal value of ΦO.

• When we formulated the topology selection algorithm, we made the assumption that the un-
derlying content placement and link rate allocation algorithms have fully converged. When
this is not the case however, we obtain inaccurate values of the link rates xuv and therefore
Φg, g ∈ G. We can treat this inaccuracy as a one-dimension perturbation error to exact system
utilities Φg, g ∈ G. Following the same method to the proof of Theorem 8, we can still obtain
bounds on utility gap similar to those in (5.1)-(5.2).

• While larger µ reduces the optimality gap, it may also increase the mixing time of the Markov
chain. We will present bounds on the mixing time in the next subsection. In practice, however,
as we show in the experimental results, the algorithm is able to achieve very close to the lower
bound in an extensive emulation of cases in reasonably short time.

41

5.2 Convergence Time

In general, as we will also show in the simulations, the convergence time is the combined
content placement, link rate allocation and topology graph selection algorithms will be bottlenecked
by the mixing time of the topology graph selection algorithm, which we focus in this section. We
derive our analysis on the mixing time of the exact Markov chain, while noting that the analysis to
perturbed Markov chain is a straightforward extension. First, we define mixing time of the exact
Markov chain as follows:

tmix(ε) , inf

{
t ≥ 0 : max

g∈G
dTV (Ht(g),p∗) ≤ ε

}
(5.23)

where p∗ in (4.6) is the stationary distribution of the exact Markov chain, Ht(g) is the probability
distribution of the MC states at time t given that the initial state is g, and dTV stands for the total
variational distance [17] between two probability distributions:

dTV (p,p′) ,
1

2

∑
g∈G
|pg − p′g| (5.24)

Without loss of generality, we assume that the nodes v ∈ U ∪H have a uniform neighbor
set size |Nv| = N and node degree bound Bv = B. We have the following results.

Theorem 9. The mixing time tmix(ε) of the exact Markov chain has the following bounds:
(a) for general µ ∈ (0,∞), we have

tmix(ε) ≥
exp

(
−µ
(
ΦO − Φmin

))
2nτ−1 · (N −B + 1)

ln
1

2ε
(5.25)

tmix(ε) ≤ 2n · (B + 1)2(N −B + 1)

τ−1

(
N

B

)2n

exp(5µ(ΦO − Φmin))

· [ln 1

2ε
+
n

2
ln

(
N

B

)
+

1

2
µ(ΦO − Φmin)] (5.26)

where ΦO = maxg∈G Φg, Φmin = ming∈G Φg and n = |U ∪H| denotes the total number of user
and cache nodes in system.
(b) When

0 < µ <
1

ΦO − Φmin
ln[(1 +

1

B
)(1 +

1

N −B − 1
)], (5.27)

we have a tighter upper bound:

tmix(ε) ≤
1

τ−1(N−B)
· ln nB

ε

1− (1− 1
N−B) · (B

B+1 exp(µ(ΦO − Φmin)))
(5.28)

We will omit the heavy proof of this theory for conciseness, and will instead use simu-
lation results to verify the fast convergence of the proposed algorithm. Interested readers can refer
to /citeshao11tech for details.

We can see following trade-off between the optimality gap (Theorem 8) and mixing time
(Theorem 9).

42

0 200 400 600 800 1000
0

20

40

60

80

100

Time (sec)

N
o

n
-c

a
c
h

e
 t

ra
ff

ic
 (

%
)

Non-cache traffic vs Time

with topology

w/o topology

(a) performance

0 2 4 6 8 10
100

200

300

400

500



co
n

v
er

g
en

ce
 s

te
p

s

|U| = 100

|U| = 1000

|U| = 2000

(b) convergence time

Figure 5.1: (a) compares no choking and soft-worst-neighbor choking; (b) shows convergence time
for various µ’s and number of nodes in the system.

• As µ → ∞, the optimality gap approaches to zero while the upper bound of mixing time
scales with exp(Ω(n)) (slow mixing).

• As µ→ 0, the optimality gap approaches infinity while the upper bound of mixing time scales
with O(log(n)) (fast-mixing).

• The mixing time undergoes a transition around the threshold µth = 1
ΦO−Φmin ln[(1 + 1

B)(1 +
1

N−B−1)]. When µ ≤ µth, the system is fast mixing; otherwise it is slow mixing.

5.3 Experimental Results

We use some simple experiments to show the convergence behavior of the combined
algorithms, and show that while the analysis on the mixing time presents certain bounds on the
performance, in practice the algorithm converges fast in most cases. The same parameters as those in
Figure 3.3 are used for comparison, and the only addition is the topology selection part. In Figure 5.1
(a), we compare our results of soft-worst-neighbor-choking and no choking. The proposed soft-
worst-neighbor-choking outperforms other methods and is able to achieve the theoretical lower
bound of server load. In Figure 5.1(b), we compare the convergence time at different µ and |U | (total
number of users in the system). We can also see that in practice, the convergence time increases
almost linearly with µ, and sublinear in the network size |U |. From Figure 5.1(a), we see that
the algorithm approaches to very close to optimal value when µ = 10, and even in this case, the
convergence time is about a few hundred steps.

43

Chapter 6

System Design

In this chapter, we discuss the practical aspects of the system design. While earlier chap-
ters build the theoretical foundations of the system, this chapter focuses on the actual system design
and implementation. We first revisit our fractional storage concept and propose how to achieve the
fluid limit in practice. Specifically, we propose the storage architecture and discuss in detail how to
design network codes to achieve good performance. We also list other practical considerations in-
cluding content placement update intervals, node neighbor set selection, and time-varying demand.
While the theoretical framework cannot capture every detail, we give constructive solutions to deal
with these considerations in practice. Finally, we summarize the system prototyping implementa-
tion, and present the algorithms of each system module. Based on the theoretical framework and
practical guidelines, we have built a system prototype at Berkeley, which we implemented using
Python and C++. We will present the simulation and experimental results in the next chapter.

6.1 Video Storage Design

In previous chapters, we assume that the constraint (3.7) xr:=(h,u) ≤Whmγm still applies
in the case of fractional storage, but how to achieve it in practice? We design the following video
storage architecture and choose appropriate network codes to answer this question.

6.1.1 Uniform Storage

In VoD services, a video can be requested by any user watching at any arbitrary time
points of that video. Therefore, we first break each video into non-overlapping chunks of k packets
of equal size w. To enable fractional storage while making constraint (3.7) valid, we make the
following design choice: a cache node h storing a fraction Whm of video m store Whmk packets of
each chunk of that video. An example is illustrated in Figure 6.1, where a video with size β = 2GB
and rate γ = 512kbps is chopped into 4096 chunks, each having k = 64 packets of size 8KB each.
A chunk contains 8 seconds of video stream on average. When a cache node h stores W = 0.25 of
the video, it stores Wk = 16 packets of each chunk. Using this structure, the cache node is able to
provide any user streaming any chunk of the video at a maximum rate of 128KB per 8 seconds, i.e,
128kbps, which is 25% of the streaming rate. Similarly, a cache node h can delivery up to a rate of
Whmγm to a user watching video m if it stores Whm fraction of video m.

44

…

k = 64, encoded to

n = 256 packets

one download unit of 4096 packets

that equals to 32MB

one packet = 8KB

…

4096 chunks = 2GB

streaming rate = 512kbps

… … …

store ¼ fraction

 of the chunk

8 seconds

Figure 6.1: A cache node’s storage of a video. The video has a size of 2GB and a rate of 512kbps.
It is chopped into 4096 chunks, each having k = 64 packets of size w = 8KB. When the stored
fraction is W = 0.25, the cache node is able to serve at a rate of 512× 0.25 = 128 kbps to any user
watching this video.

However, if the original packets are sprinkled among caches as is, the equality in con-
straint (3.7) may still be far from achievable. This is because there exists many duplicated packets
in the network. A user who accesses k packets from a randomly chosen set of caches may not be
able to obtain k unique packets. To ensure the equality in constraint (3.7) is achievable, the stored
packets should ideally allow a user to recover a video chunk formed of k packets by downloading
any k packets from caches.

In the next sections, we will elaborate on the choice of the practical codes for our VoD
system. As we mentioned earlier, the codes play a central role in our problem formulation, and
helps convert a combinatorially difficult problem to a convex one with a fluid model. We start by
describing the general properties that such codes should satisfy and then propose a solution based
on a family of codes called DRESS (Distributed Replication-based Simple Storage) codes [47, 19]
that offer desirable tradeoffs among these properties.

6.1.2 Desirable Code Properties

We identify the following properties that codes should satisfy when used in our VoD
systems:
1) MDS or Quasi-MDS property to approximate the fluid model. As we mentioned earlier, the
code should ideally allow a user to recover a video chunk formed of k packets by downloading
any k packets from caches1. This property is needed to make the fluid assumption valid. This
corresponds to encoding the chunk using a Maximum Distance Separable (MDS) code, such as a
Reed-Solomon (RS) code [52] or Quasi-MDS codes like Fountain codes [14].
2) Decentralized growth property. Our problem formulation in (2.1) precluded cache-to-cache

1The users may have to pay a little overhead, i.e., it may need to download a little more then k packets depending on
the design parameters of the code.

45

communication. Since the formulation assumes a static scenario where users’ demands do not
change over time and cache nodes never leave the system, the cost of populating content to the
caches from the backup server can be neglected. However, in the following scenarios, it may be
more beneficial for the system that a cache downloads its content from other caches instead of
downloading from the server:

1. Cache nodes have free resources to share with neighboring cache nodes. In this case, down-
loading from cache nodes is more cost-effective from downloading from the backup server.

2. The network conditions favor cache-to-cache download instead of the backup server pushing
to the cache cloud. In this case, downloading from neighboring cache nodes is more efficient.

3. The upload bandwidth of the backup server is limited, and the number of its allowed connec-
tions is restrictive. In this case, the caches have no options but to download from other cache
nodes.

We call such cache-to-cache communication “decentralized growth”, i.e., the cache cloud needs to
grow to a larger size in a decentralized manner. We would like to design codes such that decentral-
ized growth is also efficient.
3) Security property to protect the system from malicious nodes. When a cache node or a user
downloads a packet from the cache network, it needs to verify its integrity and detect any malicious
nodes in order to prevent it from polluting the entire network. If new coded packets are generated
at the caches, verifying their integrity pose severe security challenges to the system. Therefore, we
require that all packets be created at centrally, e.g., at the backup server.
4) Small block length property to ensure a small start-up delay. The streaming nature of the VoD
problem imposes stringent restrictions on the number of packets k that can be coded together. With
a fixed packet size, the video player will not be able to decode and play the video after all k packets
are downloaded. For example, for a video of rate 1Mbps with packet size equal to 10KB and 10
seconds start-up delay, the choice of k is equal to 128 packets.

6.1.3 DRESS Code Design

Different codes in the literature, such as random linear network codes [24], Fountain
codes [14] or Regenerating codes [18, 51] provide different tradeoffs of the code properties dis-
cussed in this subsection. A class of distributed replication based simple storage (DRESS) codes
were introduced in [47, 19] in the context of a distributed storage application, which we choose to
use in our VoD system. For each chunk, DRESS code encodes the k data packets into n packets
using an outer (n, k) (n to be chosen later) Reed-Solomon code at the backup server. We now ad-
dress the question of how to choose the design parameters n, k and w with regard to the properties
discussed above.

MDS versus Decentralized Growth

For the DRESS codes to satisfy the MDS or Quasi-MDS property, we need n → ∞.
When n approaches infinity, every packet of each video chunk is unique in the cache network, and
it is enough for any user to download any k packets from the cache nodes. When n is finite however,
a user may have to contact more nodes to retrieve all the unique packets due to packet duplicates.

46

Table 6.1 shows the average number of caches a user needs to contact to retrieve k unique packets
under certain parameters. In this example, we assume each cache node stores exactly α packets of
a chunk.

user
No. of storage units accessed 4 5 6 7 8 9 10
average % of missing packets 20.5 7.2 1.2 0.1 0.007 0.0003 0

cache
No. of storage units accessed 10 15 20 25 30 35 40
average % of missing packets 28.2 15.0 8.0 4.2 2.2 1.2 0.6

Table 6.1: The table shows the average performance for both user requests and decentralized growth,
given a DRESS code that uses Reed-Solomon code as an outer code with parameters k = 20, n =
40, α = 5.

As we can see, when n = 40 and every cache node stores α = 5 packets, almost all
the users can retrieve k = 20 unique packets (thus are able to decode the file) by accessing 6 to
7 caches, instead of 4 as implied by the fluid model. In this case, there is performance loss in the
storage efficiency, i.e., the cache node might be able to deliver only much less than Whmγm even if
he stores Whm. As n goes to infinity, the number of caches a user needs to contact should approach
to 4, and the fluid limit (and therefore constraint (3.7)) will be fully satisfied.

On the other hand, a larger n will hurt the performance of decentralized growth. Consider
the following cache-to-cache communication strategy. When a cache node needs to download α
packets from a chunk, it randomly chooses (without replacement) these α packets out of n packets.
It then randomly contacts a number of other cache nodes, and requests the corresponding packets
from them. This procedure amounts to the backup server providing the coded packets in the form
of sets of uniformly random α packets, thus resulting in a seamless decentralized growth. Table 6.1
shows the average number of cache nodes it downloads from versus the percentage of packets miss-
ing. We can see that even with n equal to 40, a cache node already needs to contact 35 nodes to
ensure more than 98% of the desired packets can be retrieved. This will become even worse when
α becomes larger.

Using the coupon collection argument, one can compute the expected number of cache
nodes X that a user has to contact to get k distinct coded packets:

E(X) ≤ k

αr
log

1

1− r
(6.1)

where r = k/n is the rate of the outer MDS code.
Similarly, a cache node that attempts to download α new unique packets using the decen-

tralized growth mechanism has to contact a random number Y of other caches, and the expected
value of Y can be computed as:

E(Y) =
1

α

[
n

α
+

n

α− 1
+ · · ·+ n

1

]
<

k

rα

[
logα+

1

2α
+ 0.58

]
(6.2)

where we have used
∑m

n=1 1/n < logm+ 0.58 + 1/2m from Harmonic series approximation.

47

4 5 6 7 8 9 10 11
10

12

14

16

18

20

22

24

26

28

30

32

34

Average User performance: E(K)

A
v

e
ra

g
e
 g

ro
w

th
 p

e
rf

o
rm

a
n

c
e
:

E
(Y

)

Figure 6.2: The tradeoff between the expected number E(X) of cache nodes accessed by a user
to recover the file and the expected number E(Y) of cache nodes accessed by a cache node for
the decentralized growth, parameterized by the rate of the code r = k/n. The DRESS code with
k = 20 and α = 5 is used in this example.

The details of the characterization can be found in [47]. From equations (6.1) and (6.2),
we see that for any fixed value of k and α, there is a tradeoff, parameterized by r = k/n, between the
users performance and the decentralized growth performance of a DRESS code. This is illustrated
in Figure 6.2.

It is worth noting that by using DRESS code, all of the coded packets are generated at
the oracle server and can be easily authenticated using cryptographic hashes. Therefore the security
property can be easily satisfied.

Small Block Length

Since the packets of a chunk are coded, the users will have to wait for all of the packets
to be downloaded in order to play the corresponding stream. Therefore, the start-up delay increases
as the chunk size increases. We choose kw/γm to be less than 10 seconds, which is a reasonable
start-up delay. Table 6.2 shows a qualitative summary of how each parameter of n, k and w can
affect the design properties.

parameter decrease increase
n worse fluid-limit approx. less efficient growth; coding complexity increases; more server storage
k worse fluid-limit approx. coding complexity increases; start-up delay increases
w overhead increases start-up delay increases

Table 6.2: A qualitative summary of how each coding parameter will affect the design properties.

48

6.1.4 Experimental Results

We now conduct some experiments to (1) demonstrate that the proposed coding scheme
outperforms traditional non-coding schemes (which are often implemented in the literature and
practical systems) and converges closely to the solution of the fluid-level optimization problem (2.1);
and (2) guide the choice of a set of coding parameters (n, k, w). The same simulation setting in
Chapter 5 is used. However, we replace the fluid drops with actual packets and require that each
user receives enough unique packets instead of just enough drops to play the video.

Table 6.3 shows the percentage of non-cache traffic using different coding schemes. We
can see that the traditional non-coding scheme (or replication scheme) is far from optimal. When
k = 20 as we increase n from 40 to 80, the system performance improves and approaches to the fluid
limit. Referring to Figure 6.2 which shows the cache-to-cache communication, it proves reasonable
to choose n between 40 and 80 and k = 20 in our system design.

Fluid (n, k) = (80, 20) (n, k) = (40, 20) (n, k) = (20, 20)

non-cache traffic % 7.15% 8.17% 9.89% 17.83%

Table 6.3: Percentage of non-cache traffic of different coding schemes compared to the optimal fluid
limit.

6.2 Practical Considerations

6.2.1 Time Varying Demand

We observe that the aggregate video demand and its distribution can be time-varying due
to many reasons. First, the total number of users in the system may be quite different during different
times of a day and during different days of a week. In many VoD systems, the number of users peak
during weekends and in the evenings. Second, users’ statistical demand distribution can also change
over time. For example, the popularity of a number of videos can take a peak for a number of days
during its debut and gradually declines as time goes by. While the theory for these situations can be
quite challenging, we evaluate the performance of our proposed algorithms in Chapter 7.

6.2.2 Placement Update Frequency

Another consideration is the frequency of performing the content placement algorithm.
While updating content placement more frequently allows the system to adapt to varying demands
more gracefully, each update incurs both computational and content migrating overhead. We let
the storage update only every D seconds, and evaluate the trade-off between the choice of D and
system performance in Chapter 7.

6.2.3 Neighbor Set Selection

We have made the assumption that a cache or user node v is limited to connecting a fixed
neighbor set Qv. The choice of such a neighbor set often depends on many system considerations.
One way is to base on geographical proximity, which is used in many CDN scenarios. Another

49

example is to choose a neighbor set whose video supply matches the demand the most2. Other
choices can depend on load balancing or ISP-friendliness considerations. In addition, the list can
be periodically updated as more information is obtained. The analysis of how to choose such a
neighbor set is beyond the scope of our discussions. In this paper, we simply assume that a certain
strategy is used to obtain Qv. However, any more sophisticated mechanisms would only boost our
system performance.

6.2.4 Link Price Update

The parameters xr, λr, Whm and ωh in solution (3.11)-(3.14) can be maintained and
updated locally at each cache. However, the variables cl (link capacity) and link congestion price
θl may not be readily available at the cache node level. We make an important observation that the
update equation θ̇l = [ηl(

∑
r:l∈r xr − cl)]

+
θl

has a physical interpretation. Integrating both sides of
the equation over time, we have:

θl(t) =

∫
[ηl(

∑
r:l∈r

xr − cl)]+θldt

The right hand side of the equation is the aggregate difference between demand and supply, which
is proportional to the link queue length. In practice, the queue length is approximately proportional
to the transmission delay. Therefore qr(t) =

∑
l:l∈r θl(t) can be treated as the aggregate route

transmission delay at time t, which can be measured by the round trip time from the cache node to
the user node.

6.3 System Architecture

Based on the above findings, we have architected and built a prototype VoD system at
Berkeley and CUHK. The DRESS code part is written in C++ and the rest of the system is written
in Python. The system consists of a backup server, a scheduler, a set of distributed caches and
users interconnected via a LAN network. The system is illustrated in Figure 6.3. The users perform
packets decoding and video playing in realtime. All the packets are transmitted through the network
using TCP. Each user has a GUI to select videos to watch. A monitoring system is implemented to
demonstrate the system performance in real time.

Based on our theoretical design and analysis, we summarize the packet-level algorithms
of each unit as follows.

6.3.1 Central Server

A central server contains all the video content, and is connected to every cache node and
user node. The server is responsible for the following tasks:

• It stores all the available videos using the DRESS code design: it breaks a video into a number
of chunks each having k packets that are encoded into n packets. These n packets will become
the only packets of that chunk which are circulated in the network. No new packets are

2For example, the system can keep track of which caches store which videos to make such decisions

50

LAN
network

users

caches

server + scheduler

monitoring and logging

…

…

user GUI

Figure 6.3: Architecture of the VoD system that we have built at Berkeley.

generated from the caches or users. We choose n = 80 and k = 20. The size w of each
packet is chosen such that the length of an encoded chunk is roughly kw/γ = 10 seconds.

• The server operates in a “pull mode”, i.e., it uploads packets to a user or a cache node when-
ever it is requested to do so, acting as the “life-line” to supplement any streaming deficit
between the cache clouds and the users.

• It uploads videos to the cache nodes when they cannot get them from each other.

6.3.2 Scheduler

A scheduler (tracker) is implemented that keeps track of all the participating nodes in-
cluding the backup server, the users and the caches. When a new node joins the system, it first
communicates with the scheduler to register its identity, e.g., IP address, and obtains a list of neigh-
bors.

6.3.3 Cache Protocol

The cache nodes store the videos in a similar way as the backup server, except that they
only store up to k packets out of a total of n packets. The cache nodes update their storage and
bandwidth allocation according to the previously proposed algorithm. The detailed protocol of
cache h is given in Algorithm 1.

6.3.4 User Protocol

Once a user finds his neighborhood from the tracker, it initiates connections to the max-
imum allowed number of cache neighbors randomly chosen from the neighbor list, and starts to

51

Algorithm 1 Cache Protocol
1: Set t1 = 30 and t2 = D iterate:
2: Retrieve from each user node u their marginal utility Vxr(zu) and measure the round-trip delay
qr for each route r.

3: Update the rate xr for each route using ∆xr = [δr(Vxr(zu)− λr − qr)]+xr .
4: Update the availability price for each route r by ∆λr = [κr(xr −Whmγm)]+λr .
5: if t2 = 0 then
6: Change the storage fraction Whm for each video by ∆Whm = [ιhm(Λhm − βmωh)]

[0,1]
Whm

.
If ∆Whm is negative, it removes video m by Whm amount; otherwise, it chooses randomly
bnWhmc number of packets exclusive of what it already has of every chunk of video m, and
requests to download from neighboring caches (or from the backup server if not successful).
Finally, update the storage price by ∆ωh = [νh(

∑
m∈M Whmβm − sh)]+ωh . Reset t2 = D.

7: end if
8: For each neighbor user u, allocate number of packets proportional to xhu.
9: if t1 = 0 then

10: Randomly choose and connect to a new neighbor from the neighbor list. Then drop a con-

nected user u with probability
exp(− 1

2
µx̄g̃\g′)

1+
∑

g′′∈Ah,g̃

exp(− 1
2
µx̄g̃\g′′)

. Reset t = 30.

11: end if
12: t1 ← t1 − 1, t2 ← t2 − 1.

Algorithm 2 User Protocol
1: Set t = 30 and iterate:
2: Compute the average received rate from each connected cache node since the last update. Derive

its marginal utility value and send it to each connected cache node.
3: if buffer length is less than an emergency threshold then
4: Download from the server all the missing packets to fill up the buffer.
5: end if
6: if has received k packets of the next chunk then
7: Decode the chunk and flush the data to the media player.
8: end if
9: if t = 0 then

10: Randomly choose and connect to a new neighbor from the neighbor list. Then drop a con-

nected cache node h with probability
exp(− 1

2
µx̄g̃\g′)

1+
∑

g′′∈Ah,g̃

exp(− 1
2
µx̄g̃\g′′)

. Reset t = 30.

11: end if
12: t← t− 1.

52

request video packets of some video at his choice. To maintain smooth playback, it maintains a
buffer of, e.g., 30 seconds.

A user requests packets from his connected cache neighbors by sending to each of them
his marginal utility value, and then waits for the packets to arrive. The number of packets he
receives during a certain time window is determined by the rate allocation algorithm which the
cache nodes run. The user decodes a chunk whenever he receives any k unique packets out of n
coded packets of that chunk. When a user’s playback buffer is running out before he can obtain all
the packets needed to decode, it requests to download from the backup server to fill up the buffer
pipe immediately. The users also implement a “soft-worst-neighbor-choking” algorithm to perform
topology graph updates. The detailed user protocol is given in Algorithm 2.

The deployment of such a practical system is quite simple. The users and caches are
“plug-and-play”, i.e., they run distributed algorithms that only require local statistics.

53

Chapter 7

Experimentation

This chapter explores extensive simulations to verify the feasibility and efficiency of our
system design. In early chapters, we have seen the convergence result of the content placement and
link rate allocation scheme, and that of the topology selection algorithm. We have also shown that
with appropriate choice of codes, the system result approaches that of the fluid model.

In this chapter, we we use realworld traces and show that the the system works in real-
world dynamic cases. We demonstrate that the algorithms implicitly learn the video demand, and
yield high bandwidth utilization. We show extensive results to test the algorithm’s scalability and
robustness to changes in user dynamics and demand patterns. We show that our solution high uti-
lization of cache nodes storage and bandwidth resources, and automatically learns and caches the
video according to the demand patterns. We observe that there exists a complex interplay between
disk space, network bandwidth and node degree bound. We also present guidelines to important
practical design choices including caching update intervals, demand prediction and provisioning.
We compare the simulation results with those from the actual prototype system we built at Berkeley
to verify the practicality of our simulation results.

7.1 Simulation Results

In this section, we evaluate the overall system performance using realworld traces crawled
from YouTube [15]. We compare the performance of our scheme with least recently used (LRU) and
least frequently used (LFU) alternatives which are commonly used in practice. We also compare
with the MIP approach introduced in [9] because their problem definition and setup is the closest to
that of ours.

7.1.1 Setup

We crawled 2000 videos from YouTube with 3 days of traffic. The lengths of the videos
vary from 5 mins to 20 mins. For simplicity, we map these videos to have 10 mins each with a
streaming rate of 2Mbps. In the simulations, 50 cache nodes are scattered randomly in all locations
of the network. We focus on the scenario where the cache nodes have equal storage capacities
and node degree bound, but also present results where resources are heterogeneous. We model the

54

0 24 48 72
0

20

40

60

80

100

Time (Hours)

N
o
n
-c

a
c
h
e
 t
ra

ff
ic

 (
%

)

Non-cache traffic vs Time

Our scheme

MIP

LRU

LFU

Top videos (local)

Top videos (global)

Figure 7.1: Performance comparison of our scheme with LRU, LFU and MIP. The figure shows the
non-cache traffic of different schemes and the total demand for a period of 3 days.

network link capacities to follow a bi-module distribution. The actual values of all the parameters
are varied to understand the trade-off between storage capacity, link bandwidth and node degree.

In most of our experiments, we perform caching updates in (3.13) and (3.14) everyday for
only two hours during peak time between 6pm to 8pm unless stated otherwise. To make comparisons
fair, the same update intervals are also used for the comparing schemes. We compare the fraction
of the total non-cache traffic for the different schemes, assuming the traffic requests that cannot be
satisfied from the cache nodes are delivered by an Oracle database that stores all videos and has
infinite degree bound and bandwidth.

7.1.2 Performance

In this experiment, we compare our results with LRU, LFU, top videos (local), top videos
(global) and MIP using the trace we crawled. In the peak hours starting from 6pm everyday, the
maximum number users is 40000. The following parameters are chosen: the total storage for caches
is 25% of the entire catalog size; the total bandwidth are randomly distributed among the caches
and the total bandwidth can just cover the total demand of streaming rates. The node degree bound
on each cache is 12000. The methods and parameters used in the comparing schemes are:

• MIP: our algorithm is first run, and then on each cache the entire video with the largest con-
verged fraction of storage is stored, followed by the video with the second largest converged
value, and so on and so forth, until the storage capacity is reached.

• LRU: at the beginning of each day, every cache collects information from user demands for
a short period of one hour of the most three popular videos. The cache then replaces their
locally least recently used videos by the most three popular videos.

• LFU: at the beginning of each day, every cache collects information from user demands for
a short period of one hour of the most three popular videos. The cache then replaces their
locally least frequently used videos by the most three popular videos.

55

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

video index

A
v
e

ra
g

e
 u

ti
lit

y
 e

ff
ic

ie
n

c
y

Average utility efficiency

Figure 7.2: (Utility efficiency for different videos. The utility efficiency for video m on each cache

node h is defined as
∑
u∈Um,h

xhm

Whmγm|Um,h| , which represents how useful any stored fraction of a video is

averaged among the cache nodes.

• Top videos (local): at the beginning of each day, every cache stores the most globally popular
5 videos of that day.

• Top videos (global): at the beginning of each day, every cache stores the most locally popular
5 videos of that day as measured by its connected user neighbors.

Figure 7.1 shows the non-cache traffic for each method and the total demand versus time.
We observe that for the same amount of system resources, our scheme allows the maximum support
of the caches, thanks to our theoretical guarantee of optimal performance. Specifically during peak
hours at 7pm, the corresponding non-cache traffic for our scheme was 24.1% while it is 44.0%,
50.2%, 50.0%, 50.9% and 56.4% for MIP, LRU, LFU, top videos (local) and top videos (global)
. Storing the globally popular videos, as is done in most practical cases, performs the worst. This
is because video demand distribution is so heavily tailed that providing caching service of the vast
number of unpopular videos becomes unavoidable. MIP performs the most closely to our scheme
but is still far from optimal. This corroborates our previous observations in the toy examples that
fractional storage provides much flexibility to the caching service. The simulations show strong
evidence that fractional storage performs much better in practice.

To understand better the performance of our algorithm, we show in Figure 7.2 the average
resource utility efficiency for each video. The utility efficiency for video m on each cache node h
is defined as ∑

u∈Um,h xhm

Whmγm|Um,h|
which is the ratio between the total upload rate to users watching videom and the total available rate
given the storage of video m. It shows how much useful any stored fraction of a video is on each
cache. The efficiency factor for each video is averaged across all the caches which store that video.

56

0 20 40 60 80 100
0

20

40

60

80

100

120

140

video index

N
u
m

b
e
r

o
f

v
ie

w
s
 /

A
g
g
re

g
a
te

 s
to

ra
g
e
 (

#
 o

f
d
u
p
lic

a
ti
o
n
s
)

Number of views and Aggregate storage

Aggregate storage

Number of views

Figure 7.3: Total storage of videos in the cache nodes and the actual demand distributions shown in
log scale.

Figure 7.2 shows that most of the efficiency factors are greater than 80%, and the efficiency factors
are quite uniform across the videos. This says that most video storage allocations are efficient.

In Figure 7.3, we break up the total storage by the videos and compare it with the demand
distribution. We can see that although running distributively, the algorithm is able to implicitly
learn the demand distribution and store the amount of videos in a distribution similar to the demand
patterns. This is a useful property of the algorithm, because separately estimating the demand
in practice can induce large overhead. Our scheme is demand-agnostic, i.e., it does not require
any prior knowledge of the demand to perform optimally by automatically learning the demand
distribution automatically in a distributed way.

We also check how the load is balanced across the caches. Because of sufficient resources,
caches do not have to fully utilize the resources but have to just satisfy the demand. In this case, how
the load is distributed? Are only few powerful caches chosen or all caches are equally used? The
bandwidth utilization (sum of upload rates divided by upload capacity) is measured for each cache
and empirical cumulative distribution function is plotted with the legend ’all caches’ in Figure 7.4.
The CDF shows that about 70% of caches are utilizing more than 90% of upload bandwidth and half
of them are utilizing bandwidth almost fully, which indicates the algorithm evenly distributes the
supply to users. In addition to the CDF across all caches, we check two CDFs which are separately
attained from ’high bandwidth cache group’ and ’low bandwidth cache group’. Interestingly, caches
with lower bandwidth are more utilized than higher bandwidth which is counter-intuitive at first
glance. However, it can be interpreted as following: under same storage, caches with lower upload
bandwidth can more easily find the optimal resource allocation.

7.1.3 Interplay between Storage, Bandwidth and Node Degree

To understand further the tradeoff between various resources including storage, bandwidth
and degree bound, we compare the percentage of average non-cache traffic at peak hours from 6pm
to 8pm by fixing one dimension of the resources and vary the other two dimensions. In Figure 7.5(a),

57

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Cache BW utilization

F
(X

)

CDF of Cache BW utilization

All caches

High BW caches

Low BW caches

Figure 7.4: CDF of cache bandwidth utilization.

we fix the total storage of all the cache nodes to be 3.5 times of the size of the entire video catalog,
and vary the average node degree bound. The figure shows the performance versus total average
bandwidth for each degree bound. We can see that when the degree bound resource is too scarce,
e.g., less than or equal to 5, the non-cache traffic is non-negligible regardless of the bandwidth
sources given. When degree resource is greater than 5 however, two difference cases occur: (1)
when the system is in either extreme bandwidth deficit or extreme bandwidth surplus mode, the
non-cache traffic easily achieve the genie lower bound regardless of the storage capacities; and (2)
when the bandwidth resource is in between the two extremes, the non-cache traffic consistently
drops with the increase of the degree bound. Although we do not have any theoretical proofs, we
believe this should suggest that there exists some an intrinsic minimal degree bound for the system
to perform optimally.

In Figure 7.5(b), similar results are shown when the degree is fixed to be 6, and the non-
cache traffic versus bandwidth curves are shown for different the storage capacities. When the total
storage of all the cache nodes is 5 times of the size of the catalog, the non-cache traffic easily
achieves the genie lower bound but if the total storage is 2.5 times of the size of the catalog, the
non-cache traffic is high with sufficient bandwidth resources.

To see the interplay among all three resources, we show a contour plot in Figure 7.6. The
x-axis represents the degree bound and the y-axis presents the total storage capacities as a fraction
of the catalog size. For each contour, we set the total bandwidth supply equal to the total required
streaming rates. On the contours shows the non-cache traffic in percentage, e.g, 10%, 20% and 40%
etc. One can see that there appears to be a feasibility area near the diagonal line. Outside that area,
one needs exponentially increasing resources of one kind to compensate a small decrease of that of
another to achieve the same performance. This helps understand the fundamental minimal resources
needed to deploy satisfy users’ need when designing a VoD system.

58

2 2.5 3 3.5 4 4.5

x 10
4

0

5e3

10e3

total bandwidth supply (Mbps)

s
e

r
v
e

r
 l
o

a
d

 (
M

b
p

s
)

genie bound

Degree = 4

Degree = 5

Degree = 6

Degree = 7

Degree = 8

(a)

2 2.5 3 3.5 4 4.5

x 10
4

0

2e3

4e3

6e3

total bandwidth supply (Mbps)

s
e

r
v
e

r
 l
o

a
d

 (
M

b
p

s
)

Genie lower bound

Storage = 5x

Storage = 3.5x

Storage = 2.5x

(b)

Figure 7.5: Interplay between storage, bandwidth and node degree bound. (a) Total storage is fixed
at 3.5 video’s catalog. The figure shows the average server load versus total bandwidth supply for
different degree bound. (b) Degree bound is fixed at 6. Server load versus total bandwidth supply is
shown for different average storage capacity.

7.1.4 Scalability and Robustness

In this experiment, we keep the user arrival patterns but vary the video catalog size and
investigate how the system responds. We maintain the popularity pattern of the trace, which exhibits
a Zipf’s distribution, but scale the distribution such that the total popularity probability is one. In
Figure 7.7(a), we plot the average non-cache traffic during peak hours from 6pm to 8pm for different
catalog sizes. It can be seen that although the catalog sizes vary from 2000 to 10000, the non-cache
traffic only increases slightly. The resource allocation algorithm automatically adjusts the caching
strategies to maximize the contribution of the caches. The robustness of the performance to the
changes in the catalog size is especially useful when a sudden flash crowd of new videos appear and
the system does not have ample time to call for more resources. Over time when the catalog size
keeps increasing, we project that one needs to increase the total storage on the cache only slightly
in order to keep the same amount of non-cache traffic.

To study how the system handles different user dynamics, we vary the user arrival rates
and observe how the system behaves. To keep the average number of requests roughly the same,
we apply Little’s law by tweaking the video length and the arrival rate such that their product is
kept constant. Storage of each cache is also adjusted to keep the system’s storage constant with the
consideration of the change of movie size. Figure 7.7(b) shows the system handles different user
dynamics very well. The average non-cache traffic during peak hours only increased slightly when
the user arrival rate increases.

We also change the video demand patterns and investigate how the system adapts. In
Figure 7.8(a) and (b), we change the demand distribution in the middle of the peak hours and study
how the system adapts to it. In Figure 7.8(a), the demand is changed to a uniform distribution at
the 1000th step. In Figure 7.8(b), the change is more dramatic, i.e., the entire distribution is flipped
where the most popular video becomes the least popular video and vice versa. In Figure 7.8(c), a

59

1
0

1
0

10

10
10

2
0

20

20
20

30

30

40
50

degree bound

n
u

m
b

e
r

o
f
v
id

e
o

s
 s

to
re

d

4 6 8
0.5

1

1.5

2

2.5

0

10

20

30

40

50

60

Figure 7.6: Contour plots of optimality gaps with different degree bound and average storage ca-
pacity. Total bandwidth supply is equal to the total demand in each point in the curves.

more realistic demand change is simulated, i.e., new popular movies are constantly added and un-
popular movies are fading slowly. In order to simulate this demand change pattern, we inject 10% of
new most popular movies and remove 10% of least popular movies. Other 90% old movies become
slightly less popular than before. In all of three cases, the server load experiences a negligible jump
at the time of the change, but quickly goes back to normal. In practice, we expect that the changes
in demand to be much slower and that the system can easily adapt to such changes.

7.1.5 Content Placement Frequency

Running the content placement algorithm often allows us to handle demand changes
gracefully. However, each iteration incurs migration overheads. To update the content on the cache
network, the content needs to be downloaded to the cache from either neighboring cache nodes or
an Oracle database. We experimented with different content placement frequencies to see how they
affect performance. Specifically, we make the running interval to be 1 day, 2 days, 3 days and 6
days. Table 7.1 shows both the server load and the migration overheads averaged over a week. It
can be seen that running the content placement algorithm too often can also hurt the total system
performance. Note that updating every 2 days does not increase non-cache traffic but slightly re-
duces migration traffic. However, finding the optimal update period with different settings can be
easily found by similar argument with different parameters. We are developing a theory which try
to capture the effect of update period.

Table 7.1: Update period and total traffic
Update period (days) 1 2 3 6
Non-cache traffic (%) 14.9 14.9 34.6 50.2
Migration traffic (%) 5.7 5.3 2.0 0.9

Overall traffic (%) 20.6 20.2 36.6 51.1

60

2000 4000 6000 8000 10000
0

5

10

15

20

Total catalog size (# of videos)

N
o

n
-c

a
c
h

e
 t
ra

ff
ic

 (
%

)

Non-cache traffic vs Total catalog size

(a)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

User arrival rate (# / sec)

N
o

n
-c

a
c
h

e
 t
ra

ff
ic

 (
%

)

Non-cache traffic vs User arrival rate

(b)

Figure 7.7: Average non-cache traffic during peak hours between 6pm and 8pm versus (a) varying
catalog size; and (b) varying user dynamics.

0 5000 10000
0

20

40

60

80

100

Time (simulation steps)

N
o
n
-c

a
c
h
e
 t
ra

ff
ic

 (
%

)

Non-cache traffic vs Time

(a)

0 5000 10000
0

20

40

60

80

100

Time (simulation steps)

N
o
n
-c

a
c
h
e
 t
ra

ff
ic

 (
%

)

Non-cache traffic vs Time

(b)

0 5000 10000
0

20

40

60

80

100

Time (simulation steps)

N
o
n
-c

a
c
h
e
 t
ra

ff
ic

 (
%

)

Non-cache traffic vs Time

(c)

Figure 7.8: System’s responsiveness to change of demand patterns. (a) Demand is changed abruptly
to a uniform distribution in the middle of the simulation. (b) Demand is flipped in the middle of the
simulation. (c) New popular videos are added unpopular movies are removed everyday.

7.1.6 Demand Prediction

We investigate what the system does if it knows the demand distribution a priori. Specif-
ically, we run a pre-allocation step, by scattering virtual users into the system that follow the video
demand distribution, run our algorithms of content placement, link rate allocation and topology se-
lection until they converge. During the pre-allocation period, all users are fixed, i.e., they do not
leave the system during this period. We then fix the converged video storage at the cache nodes,
feed the system with the actual users from realworld traces and start the simulation. Only the link
rate allocation and topology selection algorithms are running since then.

Figure 7.9 shows how system performs versus simulation time. It is seen that the server
load (or non-cache traffic) remains low at all times. This indicates that the pre-allocation of content
is very efficient and that the link rate allocation and topology selection algorithms converge fast
in this case. This provides a useful practice when building realworld systems. In this case, if the
VoD service has a certain level of prediction of the demand, it can deploy a pre-allocation scheme
by running a shadow version of the algorithm to determine the storage amount of the caches, and

61

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2
x 10

4

Simulation time

k
b
p
s

total demand

server load

Figure 7.9: System performance with pre-allocation of content placement according a knowing
demand a priori.

then fix the storage allocation. This will help avoid the necessity of running the content placement
algorithm while the demand is happening to reduce the hit paid by the convergence period.

7.2 Experimental Results of Prototype System

To corroborate the design choice and the simulation results, we have built a system pro-
totype at Berkeley, described in the last section of Chapter 6. The system consists of 200 users and
100 caches (mimic of a P2P scenario). The video catalog consists of 20 videos with a flat streaming
rate of 256kbps and a flat duration of 40 minutes. The video demand is Zipf’s distributed, i.e, they
choose videomwith probability proportionally to 1/ms with s = 0.8. Each cache can store a single
video, resulting 5 times of video catalog’s worth in total. The bandwidth capacity follows a uniform
distribution of 256kbps, 512kbps and 768kbps. Although it is a relatively small-scale system, it
implements the full cycle of our algorithms plus video coding and video playing. A user GUI is
implemented to monitor the performance of each user and cache node, tracking their bandwidth
utilization, connected neighbor set and storage allocations. We collected realtime trace results from
testing the system, and compared them with the simulation results under the same setting. Fig-
ure 7.10 shows the server load of the simulator versus time. It converges quickly to a low value, and
shows comparable performance with the simulations.

During the entire experiments, we also closely monitor the video streaming experience of
all 200 users. In Figure 7.11(a), we show the distribution of start-up delays of the users. All the
users have a start-up delay of less than 6 seconds, and most of them are less than 3 seconds. This
shows the practicality of the network codes and the content delivery algorithm. Although each PC
is running 20 instances of users, the network codes decoding and video decoding did not take a hit
on the performance. In fact, most of the decoding was done in less than a seconds as we observe
empirically. From Figure 7.11(b), we see that all the users have constant available buffer content of
more than 10 seconds, which means 0% of users experienced any jittering and the video playback is

62

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

Simulation time

s
e
rv

e
r

lo
a

d

experimental result

simulation result

Figure 7.10: Comparing results of prototype system and those from simulations.

smooth during the entire video session. The results demonstrate the practical feasibility of the joint
design of network codes, fractional storage and algorithm design.

63

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

start-up delays (seconds)

histogram of start-up delays

(a)

10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9
1

available buffer length (seconds)

c
d
f

cdf of available buffer length

(b)

Figure 7.11: QoS of the VoD system. (a) Distribution of the start-up delays. (b) Cumulative distri-
bution of the available video content in the buffer in seconds.

64

Chapter 8

Conclusions

8.1 Summary of Results

In this dissertation, we propose the design and architecture of an optimized video-on-
demand system. We formulate the design problem by jointly optimizing over practical constraints
of storage capacity, network link capacity and node degree bound. While the overall optimization
problem is NP-hard, we break it into two parts, i.e., a content placement and link rate allocation
problem and a topology graph selection problem.

To tackle the difficulty in content placement problem, we design a fractional storage
scheme and use appropriate network codes to transform the problem into a tractable and convex
one. We observe the interesting fact that the fractional storage scheme outperforms the holistic
storage scheme, and it yields a fully distributed algorithm which is easy to implement in practice.
The proposed algorithm implicitly learns the video demand distribution, and yields high utilization
efficiency of network resources. To tackle the difficulty of topology selection problem, we use an
entropy approximation scheme, which transforms the problem into a Markov chain design problem.
We develop an easy distributed algorithm that we show achieve close to optimal solution.

To corroborate our theoretical results, we present detailed discussions on practical system
design, which takes into consideration of video storage, algorithm implementation and other prac-
tical issues including storage update intervals, user dynamics and etc. We also build a prototype
system at Berkeley to demonstrate the feasibility and efficiency of our design choice. We presented
detailed simulation results that cover a wide range of situations to test the system’s responsiveness
to user dynamics, demand changes and video catalog size. We show that our proposed scheme max-
imizes the video traffic supported by cache nodes, which efficiently utilize their system resources
to support large-scale demand. We observe the the complex interplay between disk space, network
bandwidth and node degree bound, whose further theoretical study is of profound interest. We also
present guidelines to critical practical design choices including caching update intervals, demand
prediction and provisioning.

8.2 Future Work

The work in this dissertation suggests several avenues of further study. We itemize some
of the directions as follows.

65

• One possible future direction is to alter the proposed framework to study the problem of
resource provisioning of video-on-demand services. For example, one question is how much
storage and bandwidth resources is needed to deliver a certain video catalog?

• Another dimension is to extend the theoretical framework into other video applications in-
cluding realtime streaming, video conferencing, video gaming and etc. Many of the proposed
ideas may be extendible such as the link rate allocation algorithm, the topology selection
algorithm and the network coding schemes.

• Another possible future work is to study the benefits of demand predictions. The theoretical
framework proposed in this paper is prediction-agnostic. However, it is unclear how demand
predictions, which are often in practice accessible to some certain extent, will help system
performance including convergence time, better load balancing and etc. The prediction may
also help the system handle better of flash crowd, which comes and goes quickly and is
difficult to be captured by a static model.

• On the system side, it is worth pursuing system development at a larger scale. For example,
Amazon S3 servers can be used to deploy the video-on-demand service. The benefit of exper-
imenting large-scale tests of the prototype system is that it can capture many practical aspects
not included in the prototype system, including real network effects such as bandwidth fluc-
tuation and transmission delay, real cache server performance characteristics such as disk
read/write speed and system failure, and other issues including control plane overhead, error
handling and etc. On the other hand, different scenarios can also be tested including wireless
video streaming, peer-to-peer video streaming and etc. A full scale test of the system helps
understand both the potential and limitations of the theoretical model and design schemes.

66

Bibliography

[1] http://www.pptv.com/.

[2] Anonymize to align with the double-blind policy.

[3] Cisco Visual Networking Index: Forecast and Methodology, 2010-2015. http:
//www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/white_paper_c11-481360.pdf.

[4] V. Aggarwal, O. Akonjang, and A. Feldmann. Improving user and isp experience through
isp-aided p2p locality. In proc.of IEEE INFOCOM, 2008.

[5] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. Information Theory,
IEEE Transactions on, 46(4):1204–1216, 2000.

[6] J. Almeida, D. Eager, M. Vernon, and S. Wright. Minimizing delivery cost in scalable stream-
ing content distribution systems. IEEE Transactions on Multimedia, 6(2):356–365, 2004.

[7] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu. Influences on cooperation in
bittorrent communities. In Proc. of ACM SIGCOMM workshop on Economics of peer-to-peer
systems, 2005.

[8] S. Annapureddy, C. Gkantsidis, P. Rodriguez, and L. Massoulie. Providing video-on-demand
using peer-to-peer networks. In Proc. of IPTV workshop, 2006.

[9] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. Ramakrishnan. Optimal content
placement for a large-scale vod system. In Proceedings of the 6th International COnference,
page 4. ACM, 2010.

[10] A. Bellissimo, B. Levine, and P. Shenoy. Exploring the use of bittorrent as the basis for a large
trace repository. University of Massachusetts Technical Report, pages 04–41, 2004.

[11] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for content distribution
networks. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[12] Y. Boufkhad, F. Mathieu, F. de Montgolfier, D. Perino, and L. Viennot. Achievable catalog
size in peer-to-peer video-on-demand systems. In Proc. of IPTPS, 2008.

[13] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

http://www.pptv.com/
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

67

[14] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable
distribution of bulk data. In ACM SIGCOMM Computer Communication Review, volume 28,
pages 56–67. ACM, 1998.

[15] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video system. In Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, pages 1–14. ACM, 2007.

[16] M. Chen, S. Liew, Z. Shao, and C. Kai. Markov approximation for combinatorial network
optimization. In Proc. of IEEE INFOCOM, 2010.

[17] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. The Annals
of Applied Probability, 1(1):36–61, 1991.

[18] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, and K. Ramchandran. Network coding for
distributed storage systems. IEEE Trans. Inform. Theory, 56(9):4539–4551, Sep. 2010.

[19] S. El Rouayheb and K. Ramchandran. Fractional repetition codes for repair in distributed
storage systems. In Communication, Control, and Computing (Allerton), 2010 48th Annual
Allerton Conference on, pages 1510–1517. IEEE, 2010.

[20] B. Fan, D. Chiu, and J. Lui. The delicate tradeoffs in bittorrent-like file sharing protocol
design. In Proc. of IEEE ICNP, 2006.

[21] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for peer-to-peer
networks. In Proc. of ACM EC, 2004.

[22] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. A measurement study of a large-scale p2p
iptv system. IEEE Transactions on Multimedia, 9(8):1672–1687, 2007.

[23] K. Ho, W. Poon, and K. Lo. Video-on-demand systems with cooperative clients in multicast
environment. Circuits and Systems for Video Technology, IEEE Transactions on, 19(3):361–
373, 2009.

[24] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger. A random linear network
coding approach to multicast. IEEE Transactions on Information Theory, 52(10):4413–4430,
October 2006.

[25] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong. A random linear net-
work coding approach to multicast. Information Theory, IEEE Transactions on, 52(10):4413–
4430, 2006.

[26] C. Huang, J. Li, and K. Ross. Can Internet Video-on-Demand be Profitable? In Proc. of ACM
SIGCOMM, 2007.

[27] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. Challenges, design and analysis of a large-
scale p2p-vod system. In Proc. of ACM SIGCOMM, 2008.

68

[28] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garces-Erice. Dissecting
bittorrent: Five months in a torrent’s lifetime. Passive and Active Network Measurement, pages
1–11, 2004.

[29] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen. Polynomial time
algorithms for multicast network code construction. Information Theory, IEEE Transactions
on, 51(6):1973–1982, 2005.

[30] S. Jun and M. Ahamad. Incentives in bittorrent induce free riding. In Proc. of ACM SIGCOMM
workshop on Economics of peer-to-peer systems, 2005.

[31] F. Kelly. Reversibility and Stochastic Networks. Wiley,Chichester, 1979.

[32] S. Kulkarni. Bandwidth efficient video-on-demand algorithm (beva). In Telecommunications,
2003. ICT 2003. 10th International Conference on, volume 2, pages 1335–1342. IEEE, 2003.

[33] N. Laoutaris, D. Carra, and P. Michiardi. Uplink allocation beyond choke/unchoke. In Proc.
of ACM CoNEXT, 2008.

[34] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. On the optimization of storage capacity
allocation for content distribution. Computer Networks, 47(3):409–428, 2005.

[35] J. LaSalle. Some extensions of Liapunov’s second method. IRE Transactions on Circuit
Theory, 7(4), 1960.

[36] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering and sharing incentives in bittorrent
systems. In Proc. of ACM SIGMETRICS, 2007.

[37] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first and choke algorithms are enough.
In Proc. of ACM IMC, 2006.

[38] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. Bittorrent is an auction: analyzing and
improving bittorrent’s incentives. In Proc. of ACM SIGCOMM, 2008.

[39] S. Liew, C. Kai, H. Leung, and P. Wong. Back-of-the-envelope computation of throughput
distributions in CSMA wireless networks. IEEE Transactions on Mobile Computing, 9:1319–
1331, 2010.

[40] M. Lin, B. Fan, J. Lui, and D. Chiu. Stochastic analysis of file-swarming systems. Performance
Evaluation, 64(9-12):856–875, 2007.

[41] X. Lin and N. Shroff. Utility maximization for communication networks with multipath rout-
ing. IEEE Transactions on Automatic Control, 51(5):766–781, 2006.

[42] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang. Location-aware topology matching in p2p
systems. In proc. of IEEE INFOCOM, 2004.

[43] Z. Liu, C. Wu, B. Li, and S. Zhao. UUSee: Large-Scale Operational On-Demand Streaming
with Random Network Coding.

69

[44] L. Massoulie and M. Vojnovic. Coupon replication systems. IEEE/ACM Transactions on
Networking, 16(3):603–616, 2008.

[45] P. Michiardi, K. Ramachandran, and B. Sikdar. Modeling seed scheduling strategies in bittor-
rent. NETWORKING 2007. Ad Hoc and Sensor Networks, Wireless Networks, Next Generation
Internet, pages 606–616, 2007.

[46] G. Neglia, G. Presti, H. Zhang, and D. Towsley. A network formation game approach to study
bittorrent tit-for-tat. Network Control and Optimization, pages 13–22, 2007.

[47] S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran. Dress codes for the storage
cloud: Simple randomized constructions. In Information Theory Proceedings (ISIT), 2011
IEEE International Symposium on, pages 2338–2342. IEEE, 2011.

[48] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani. Do incentives
build robustness in bittorrent. In Proc. of NSDI, 2007.

[49] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The bittorrent p2p file-sharing system:
Measurements and analysis. In Proc. of IPTPS, 2005.

[50] D. Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like peer-to-peer
networks. In Proc. of ACM SIGCOMM, 2004.

[51] K. Rashmi, N. Shah, and P. Kumar. Enabling node repair in any erasure code for distributed
storage. In Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on,
pages 1235–1239. IEEE, 2011.

[52] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[53] B. Sevastyanov. An ergodic theorem for Markov processes and its application to telephone
systems with refusals. Theory of probability and its applications, 2:104, 1957.

[54] Z. Shao, H. Zhang, M. Chen, and K. Ramchandran. Reverse-Engineering BitTorrent. Techni-
cal Report, 2011. Available at http://personal.ie.cuhk.edu.hk/∼zyshao/bt.pdf.

[55] R. Srikant. The mathematics of Internet congestion control. Birkhauser, 2004.

[56] B. Tan and L. Massoulié. Brief announcement: adaptive content placement for peer-to-peer
video-on-demand systems. In Proc. of ACM PODC, 2010.

[57] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez. Greening the internet with
nano data centers. In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, pages 37–48. ACM, 2009.

[58] J. Wang, C. Huang, and J. Li. On isp-friendly rate allocation for peer-assisted vod. In Proc. of
ACM Multimedia, 2008.

[59] J. Wu and B. Li. Keep cache replacement simple in peer-assisted vod systems. In Proc. of
IEEE INFOCOM, 2009.

70

[60] S. Zhang, Z. Shao, and M. Chen. Optimal distributed p2p streaming under node degree bounds.
In Network Protocols (ICNP), 2010 18th IEEE International Conference on, pages 253–262.
IEEE, 2010.

[61] X. Zhou and C. Xu. Optimal video replication and placement on a cluster of video-on-demand
servers. In Parallel Processing, 2002. Proceedings. International Conference on, pages 547–
555. IEEE, 2002.

[62] X. Zhou and C. Xu. Efficient algorithms of video replication and placement on a cluster of
streaming servers. Journal of Network and Computer Applications, 30(2):515–540, 2007.

	List of Figures
	List of Tables
	Introduction
	Motivation
	System Model
	Contributions

	Background
	Problem Formulation
	A Simple Toy Example
	A General Formulation

	Related Work
	Video Content Placement
	Optimal Bandwidth Utilization
	Topology Graph Selection
	System Design and Performance Measurements

	Content Placement
	Convex Relaxation
	Fractional Storage
	Role of Codes
	Distributed Solution
	Algorithm Optimality
	Algorithm Illustration

	Convergence Behavior

	Topology Graph Selection
	Heuristic Graph Selection Algorithm
	Problem Formulation
	Utility Maximization
	Entropy Approximation

	Algorithm Design
	Solution Seed
	Perturbed Markov Chain
	Exact Markov Chain with Extended States
	Impacts of Perturbation Errors
	Soft Worst Neighbor Choking

	Constant Countdown Time

	Performance Analysis
	Performance Guarantee
	Convergence Time
	Experimental Results

	System Design
	Video Storage Design
	Uniform Storage
	Desirable Code Properties
	DRESS Code Design
	Experimental Results

	Practical Considerations
	Time Varying Demand
	Placement Update Frequency
	Neighbor Set Selection
	Link Price Update

	System Architecture
	Central Server
	Scheduler
	Cache Protocol
	User Protocol

	Experimentation
	Simulation Results
	Setup
	Performance
	Interplay between Storage, Bandwidth and Node Degree
	Scalability and Robustness
	Content Placement Frequency
	Demand Prediction

	Experimental Results of Prototype System

	Conclusions
	Summary of Results
	Future Work

	Bibliography

