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RESEARCH

INTRODUCTION 
Skill learning is at the center of everyday life and results from 

neural plasticity, or changes in brain circuitry. Learning a new skill 
can be characterized by the type of skill, such as physical or abstract, 
and by the length of the learning timescale. A physical skill is one that 
requires practiced, coordinated movement to achieve a set goal. For 
example, learning to swing a tennis racquet is driven by the goal of 
hitting a ball over the net, and as one progresses from uncoordinated 
arm movements to consistently accomplishing this goal, the brain 
adapts in order to learn this physical skill. The same goal-to-skill 
trajectory is present when learning an abstract skill which does not 
require physical movement, such as mastering a new chess strategy or 
learning to categorize songs by genre. These skill learning processes 
have prompted neuroscientists to investigate which brain circuits 
are involved in and changing as a result of physical and abstract skill 
learning.1 

Studies imply that corticostriatal circuits play a major role in 
physical skill learning.2,3,4 Corticostriatal circuits are functional 
connections between areas of the cortex, particularly regions of the 
frontal lobe such the premotor cortex (PMd), primary motor cortex 
(M1), and prefrontal cortex (PFC), and the deeper brain structures 
that make up the striatum, specifically the caudate nucleus (Cd). 
Setting up an experiment to test whether these same circuits are 
critical in abstract skill learning requires a control for predisposition 
to an abstract skill across test subjects. Brain machine interfaces 
(BMIs), one of many methods used to study neural plasticity during 
learning, provide such a control. BMIs involve learning to control 

neuroprosthetic actuators, such as the pitch of a tone or the position 
of a cursor on a screen, with only neural activity; this guarantees 
the learned strategy to be a de novo skill. A closed-loop BMI takes 
in a selected group of neurons as inputs to a decoding algorithm, 
which subsequently calculates and updates actuator movement. 
This movement results in visual or auditory feedback for the 
subject, ultimately enhancing the fine-tuning of the neural inputs 
and enabling abstract skill learning (Figure 1A). The skill is novel 
to the brain because the subject is causing movement of physical 
actuators in the absence of motor execution, a type of skill that is 
impossible to have been exposed to prior to a BMI implant, which 
allows experimenters to study the learning of a skill that is necessarily 
distinct from the subject’s prior skillset. This classic BMI learning 
paradigm has been shown to result in an emergence of a stable 
neuronal ensemble, a group of neurons involved in the same neural 
computation, linked with skill proficiency.5 Analysis of BMI abstract 
skill learning has shed light on many functional changes in the brain. 
In one of the first BMI experiments in non-human primates (NHP), 
neural units in PMd and M1 showed increased predictive power in 
the decoder, or algorithm that translated the neural signals into the 
behavioral output, as the subject learned.6 Predictive power measures 
the correlation between firing from an individual neuron and the 
behavioral task. For example, if a neuron has very low predictive 
power, that implies that the neuron is not very involved in the current 
task since its firing pattern cannot predict what is happening in the 
task. Both direct units, or neurons which the decoder was trained on, 
and indirect units, or the neurons that reside in the motor regions 
but were not used as inputs to the decoder, exhibited changes.7,8 This 
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breadth of accessible knowledge makes the BMI learning paradigm 
a valuable technique for studying abstract skill learning.

In addition to physical or abstract, skill learning can also be 
categorized into short-term and long-term. Long-term learning 
in the context of NHP BMI is the period of time until proficiency, 
defined by a plateau of accuracy in trial completion, is achieved—
usually on the order of days. Thus far, only the long-term emergence 
of functional connectivity, or correlation of activity between regions 
during task execution, in the brain has been studied.9 This raises the 
question of which, if any, connections arise within just one day of 
BMI learning and whether they are incremental adjustments towards 
net long-term changes and whether these connections aid in building 
the long-term connections we see. 

Past studies have investigated which brain regions play a part 
in BMI abstract skill learning. PMd and M1 are regions specific to 
motor planning and execution, so it is expected that neurons in 
these regions would play a part in learning a movement-related BMI 
task. Studies in rodents have examined which brain regions may be 
responsible for causing motor area changes. One study has shown 
increased coherence—an indirect measure of communication—
between M1 and the dorsal striatum, a part of the striatum involved 
in physical skill learning, over the course of BMI learning.1 

PFC has also been implicated to play a part in abstract skill 
learning. The PFC is known to play a major role in goal-directed 
planning, including in operant conditioning wherein the subject 
learns to complete a task in return for a reward.10,11 Correctly guiding 
an actuator to a target in BMI learning is one such form of operant 
conditioning, since the subject is rewarded for accomplishing a goal. 
The lateral prefrontal cortex (LPFC) and Cd have been implicated in 
learning abstract associations, such as those that develop between 
actuator-movement and reward as a result of operant conditioning.12 

Although frontostriatal communication between LPFC and Cd 
during abstract skill learning has been established, the dynamics of 
this communication are still muddled. The timescale of emergence 
of changes throughout associative learning has been shown to vary 
across these two regions: the Cd responds to reward associations 
more rapidly, while the LPFC and the frontal cortex respond more 
slowly.12,13 Based on these previous studies, we hypothesize that a 
more rapid, within-day circuit develops between the Cd and the 
frontal cortex, whether LPFC or M1, and later a slower across-day 
circuit develops within the frontal cortex in addition to strengthening 
of the frontal cortex and Cd connection.

In this paper, we propose a novel method of measuring within-
day abstract learning in an NHP BMI task by comparing predicted 
and actual cursor trajectories. Using cursor trajectory information 
provides more information than the existing fraction correct and 
time to target metrics; while those rely heavily on only successfully 
completed trials, the cursor trajectory can incorporate all initiated 
trials since the reward time is not necessary for its calculation. Using 
our new method, we then compare potential short-term neural 
correlates of within-day behavioral trends with those of longer-
term neural communication emergence. We hypothesize that the 
trajectory ratio will further solidify the presence of within-day 
learning and that neurons in LPFC and Cd will be modulated, or 
have controlling influence, on this learning, as demonstrated by 
increased coherence. 

METHODS 

NHP implant
One adult male rhesus macaque (Macaca mulatta), Y, was used 

in this study. A 124-channel large-scale semi-chronic microdrive 

cursor from the center target (yellow) to the peripheral target (blue). The light gray circles represent other possible peripheral target locations but 
only one appears at a time. An apple juice reward is administered for successful task trials. B) A center-out task where the subject must move 
the cursor (red) from center target (yellow) to one of eight peripheral targets (only one is shown in blue). During manual control, the subject 
is free to move within the 2-D constraints of the Kinarm (dark gray rectangle) while during BMI control, the subject’s arm does not affect the 
movement of the cursor and the neural inputs must adapt to move the cursor. A timeline of the task is also shown.

Figure 1: BMI and task schematics. A) The closed-loop BMI used 
active PMd and M1 units as inputs to the decoder. A Kalman 
filter was used as the decoder, with adding CLDA for two-system 
adaptation. The decoder outputs the next predicted cursor location 
(red circle), resulting in visual feedback as the subject moves the 
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(Gray Matter Research, Bozeman, MT) was implanted in the subject’s 
left hemisphere.  Unlike many traditional recording implants, 
each electrode in the microdrive could be lowered independently, 
permitting simultaneous recording across regions of different depths. 
This feature was especially important for this study as Cd is a deep 
structure whereas the cortical areas are closer to the surface. 

Microelectrodes were successfully lowered into M1; PMd; 
dorsolateral prefrontal cortex (dlPFC), the dorsal subsection of the 
LPFC; Cd; and putamen (Pu) (Figure 2). The electrodes were capable 
of recording both spiking and local field potential (LFP) data. Spiking 
data refers to the action potentials of individual neurons, recorded as 
all-or-nothing signals in a time series. LFP data refers to the electric 
potential changes in the space surrounding an electrode, with likely 
some overlap in signals between neighboring electrodes at the same 
depths. 

All procedures and experiments were conducted in compliance 
with the National Institutes of Health Guide for Care and Use of 
Laboratory Animals and were approved by the University of 
California, Berkeley Institutional Animal Care and Use Committee.

 
BMI
In this study, we used a closed-loop BMI. Spiking data from 

PMd and M1 neurons was used as input to a decoding algorithm 
(“decoder”) that controlled actuator movement. In this task, the 
actuator was a cursor on a screen in front of Y, the experimental 
subject. The movement of the cursor, along with a timed juice 
reward, provided feedback to the subject, driving changes in neural 
circuitry (Figure 1A). This ultimately resulted in neuroprosthetic 
abstract learning. 

A Kalman filter was used as the decoder.  A Kalman filter 
incorporates a history of observations with the current state 
and outputs a prediction of the next state, updating previous 
measurements using Bayes rule and calculating the prediction 
using the law of total probability.14,15 In this application, the decoder 
was fed past and present position, velocity, and motor unit spiking 
information as inputs in order to output the next position of the 
cursor. Upon successfully moving the cursor to complete the task on 

the screen, the subject was rewarded with apple juice. The updated 
actuator position and velocity and motor inputs were then fed back 
into the decoder, resuming the learning circuit. 

Each day, the decoder was seeded with approximately 10 
minutes of manual control data, from either earlier that same day 
or a previous day, in which the subject used physical arm movement 
to complete the task. Then the subject completed trials of the same 
task with BMI control of the cursor. The manual control seeding 
period each day served as a control for the BMI control trials since 
the behavior of the brain during a physical movement task has been 
well-characterized. The subject’s arm was restricted during BMI 
control trials to help mediate a context switch between the manual 
and BMI tasks. Closed-loop decoder adaptation (CLDA) was applied 
for 2 – 10 minutes to the initial decoder in order to make the decoder 
easier to learn, and then the subject worked on BMI control for 2 – 
4 30-minute sessions. With CLDA, not only is the subject’s brain 
adapting to the decoder, but the decoder is also adapting based on 
the direct motor inputs it receives. This strategy allows for more rapid 
learning of effector control via a tag-team effort of the two systems.16

While the subject attempted BMI control for approximately 60 
days, only the days with a substantial number of completed trials (> 
~30), or where the subject’s proficiency was visually apparent to the 
researchers, were analyzed. This resulted in a dataset of 19 days, with 
both consecutive and non consecutive series of days. 

Behavioral task
Y was trained to perform a self-initiated, two-dimensional, 

center-out task (Figure 1B). During the manual iteration of the task, 
the subject’s right arm rested in a Kinarm (BKIN Technologies, 
Kingston, ON) exoskeleton where the shoulder and elbow were 
restricted to movement in the horizontal plane. First a center target 
appeared on the screen, prompting trial initiation. The subject 
needed to hold his on-screen cursor in the center target for a pre-
specified hold time (0.1 – 0.5s) in order to initiate a trial. Upon 
initiation, one of eight peripheral targets, evenly distributed in 
a circle (radius = 6.5cm) around the center target, would appear 
and the subject would move the cursor to the peripheral target and 

Figure 2: Schematic of 124-channel large-scale semi-
chronic microdrive from Gray Matter Research. The inner 
cavity of the microdrive outlines the brain regions that 
we are capable of recording from in Y. Each dark gray 
dot in the center represents one of the 124 electrodes. 
The bottom illustrates 4 32-channel connectors that 
transmit the electrode signals.

FALL 2020 | Berkeley Scientific Journal               55



RESEARCH

complete a hold (0.1 – 0.5s) in order to successfully complete the 
trial. Upon trial completion, the subject received an apple juice 
reward. 

In the months prior to BMI trials, Y was trained to complete this 
task using manual control. Once the subject was proficient in manual 
control, he began to learn to use BMI control. 

Data Analysis
While the BMI decoder used spike data as input, data analysis 

for this study was conducted exclusively on local field potential (LFP) 
data. In all data analyses, all 30-minute BMI sessions post-CLDA 
were concatenated and split into the first, middle, and last third of 
trials. In this analysis, early coherence is defined as the first third of 
trials within a day while late coherence is defined as the last third.  
Analysis was conducted to evaluate behavioral change and coherence 
between brain regions.

A.	 Behavioral: Three measures were used to quantify 
behavioral changes during the task.

1A.	 Fraction correct: Rewarded trials were binned into groups of 
20 and the fraction correct was calculated for each bin by dividing the 
number of rewarded trials by the number of self-initiated trials. Trials 
were considered to be self-initiated if the center hold was successfully 
completed, indicating that trial initiation was intentional. 

2A.	 Time to target: Timestamps of task events were 
used to calculate the average time to reach a peripheral 
target. Self-initiated trials were binned into groups of 20 
trials and the mean time to reach the peripheral target was 
calculated as follows, where timestampentered is the time at 
which the peripheral target was entered and timestampappeared 
is the time at which the peripheral target first appeared:  
 
 

3A.	 Trajectory ratio: This method was designed as a way to 
measure learning in the absence of many successful, rewarded trials. 
For each target, a subset of all available cursor space was defined as 
its region, where cursor movement was still relevant to the trajectory 
for the particular target (Figure 3). The region was defined as an 
eighth of a circle of radius equal to the reach radius (6.5 cm) plus 
twice the target radius (1.5 cm). The trajectory ratio metric is:  
 
 
 
 
Trials were separated by peripheral target and binned into groups of 
10 trials. The mean of the ratio of time was calculated across bins. 
The binned averages were then averaged across all targets since Y 
struggled more with some targets than others. 

Figure 3: Representative data for trajectory ratio metric. The decoder from date (2020, 4, 10) was chosen because it showed results that were 
representative of the mean across days. A) The metric is effective in that it correctly returns a ratio of approximately 1 across manual control 
trials, which is expected as Y is proficient at the task under manual control. In the BMI control trials, there is an upwards trend depicted by the 
BMI trials linear regression. B) Visual representation of how the calculations are made. Note that in the manual control trials practically all of 
the time is spent within the circular and linear bounds. Most of the late BMI trials show noticeable improvement from early BMI. Early BMI 
here is classified as the first third of the trials whereas late BMI is the last third.
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B.	 Coherence: Coherence measures the degree of 
synchronization of oscillatory activity between brain regions. 
Synchronicity is estimated by taking into account consistency 
between amplitude and phase of two waveforms. While existence 
of coherence indicates functional connectivity, changes in the 
value of coherence can indicate strengthening in connectivity over 
time. When studied pairwise between units across regions, such an 
increase can be attributed to novel network connections forming 
over the time of study.17,18 

For each region-to-region relationship examined, early and late 

thirds of the trials were iterated over, with calculations done pairwise 
across electrodes from the two regions. In each trial, calculations 
were taken for two time blocks: 1s before the reward and 1s after the 
go cue. This is because just after the go cue, or when the peripheral 
target appears, is the most likely time period to elicit activity from 
decision-making and planning parts of the brain, dlPFC and caudate, 
while just before and during achievement of the reward is most likely 
to elicit activity from the parts involved in associative learning, such 
as the dlPFC. Pairwise field-field coherence was calculated using the 
same method and parameters as in Koralek et al. 2012:

where x and y represent one channel from each region, Rxx and 
Ryy are their respective power spectra, and Rxy is the cross-spectrum 
between them.1 Pairwise calculations were done over a sliding 
window of width 0.5s and step size 0.05s across the indicated time 
block. For every region-to-region relation calculated over, these trial-
averaged calculations were separated across four frequency bands: 
theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (12 – 30 Hz), and an overlap 
of frequencies that was studied in Koralek et al. 2012 (6 – 14 Hz). 

Once early and late coherence for each day was calculated, 
correlation with behavioral results was evaluated by plotting the 
difference between early and late coherence against the trajectory 
ratio slope for that day. 

RESULTS 

Calculations which were averaged across days used 19 distinct 
days of recording data. 

Within-day Behavior
A linear regression was performed for the fraction correct, 

time to target, and trajectory ratio metrics. The p values that follow 
represent likelihood for the null hypothesis of a linear regression of 
slope = 0 (no change). 

There was no significant increase in mean within-day fraction 
correct, with slope = -4.17e-4 and p = 0.412 (> 0.05) (Figure 4A). 
There was, however, significant change in both the time to target and 
trajectory ratio metrics. There was a significant decrease in mean 
within-day time to target, with slope = -0.705 and p = 9.70e-6 (< 0.05) 
(Figure 4B). There was a significant increase in mean trajectory ratio, 
with slope = 0.0159 and p = 3.12e-3 (< 0.05) (Figure 4C). 

Within-day Coherence
Upon plotting correlation of behavioral values with difference 

between early and late coherence, the regions and frequency bands 
which significantly predicted behavior were: M1/PMd and Cd after 
go cue in the alpha (p = 2.47e-3), beta (p = 4.88e-4), and 6 – 14 Hz (p 
= 1.02e-3) frequency bands (Figure 5). Interestingly, all of these have 
negative slopes, indicating an inverse relationship with trajectory 
ratio slope and thus with within-day learning.

Figure 4: Behavioral analysis results. In all plots, the red range 
represents early within-day learning while the blue range represents 
late within-day learning. A) There was no significant increase in 
mean within-day fraction correct. The linear regression line has slope 
= -4.17e-4 and p-value of 0.412 (> 0.05) for the null hypothesis of a 
0 slope. B) There was a significant decrease in mean within-day time 
to target. The linear regression line has slope = -0.705 and a p-value 
of 9.70e-6 (< 0.05) for the null hypothesis of a 0 slope. C) There was 
a significant increase in mean within-day trajectory ratio. The linear 
regression line has slope = 0.0159 and a p-value of 0.00312 (< 0.05) 
for the null hypothesis of a 0 slope.
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DISCUSSION 
Within-day neuroprosthetic learning is apparent across single-

day decoders. The time to target behavioral metric showed significant 
increase when averaged over the within-day data. The implications 
of the new trajectory ratio metric are even more convincing because 
the metric accounts for all self-initiated trials, even if they were 
not completed. This metric provides much more information in 
early learning when the subject may be initiating trials but unable to 
properly complete them. In contrast, the time to target metric can 
only use self-initiated rewarded trials by design since its calculation 
depends on the timestamp of entering a peripheral target. That the 
trajectory ratio metric showed significant increase in within-day 
BMI control, while capturing a near-perfect result in manual control, 
shows its effectiveness as a novel behavioral measure for short-term 
learning of the task. 

We hypothesized that short-term modulation by Cd or dlPFC 
would be illuminated by changes in coherence. Past studies have 
indicated that both PFC and striatum were influenced by reward 
expectation and that reward information was encoded in increased 
beta band power in LFP.11,19 Furthermore, beta synchrony between 
the two regions has been shown to emerge during reward.20 However, 
dlPFC-Cd behavior-coherence analysis did not show significant 
modulation in the reward block. Other studies have found that 
motor cortex and striatum coherence in the 6 – 14 Hz band has also 
been shown to emerge over the course of long-term neuroprosthetic 
learning when time-locked to reward.1 In this within-day, short-term 
study, this same frequency range did not show significant modulation 
during reward. The lack of modulation in the reward block is 
contrary to what was expected, both from a reward conditioning 
perspective and from the literature in long-term neuroprosthetic 
learning. 

The behavior-coherence analysis results demonstrated M1/
PMd - Cd modulation between alpha, beta, and 6 – 14 Hz frequency 
bands 1s after the go cue, inverse to behavior. The inverse modulation 
may indicate M1/PMd - Cd communication was very high at the 
beginning of each day, since getting reacquainted with the task may 
have required an especially high level of motor control, and then 

lessened as the subject eased back into the behavior. However, given 
the lack of expected results in reward block coherence, considering 
a vast body of past literature on frontostriatal and corticostriatal 
modulation, and given the similar methodology for analyses of both 
the go cue and reward blocks, it is likely that analyses parameters 
must be altered and repeated in both the reward and go cue blocks 
before any claims can be made on either. Particularly, developing a 
filtering metric for determining which LFP channels to include in 
each region’s analyses could establish more specificity in coherence 
measurements. For unknown reasons, some LFP channels exhibited 
lots of noise on select days during recording. Since coherence 
calculation is based on both phase and amplitude, high noise levels in 
several channels could greatly pollute mean coherence calculations 
across regions. Past methods developed for measuring recording 
effectiveness of microelectrodes based on LFP signal-to-noise ratio 
could be adapted to gain clarity in future results.21

Another possibility for the absence of PFC-Cd communication 
increase is that this emergence may occur on a longer timescale than 
predicted. Future studies will be done to measure PFC-Cd emergence 
in long-term, across-day neuroprosthetic learning. Additionally, 
repeating analyses with shorter early and late time periods could 
illuminate more time-specific coherence. 

Once within-day functional connectivity is better established, 
effective connectivity analysis between implicated regions will 
give even more insight. While functional connectivity establishes 
a correlation in signaling between brain regions A and B, effective 
connectivity adds directionality information that functional 
connectivity lacks, determining whether the flow of information is 
from A to B or from B to A.9,17 Granger causality (g-causality) and 
transfer of entropy are two measures that examine the direction of 
flow of information and could be utilized in future analyses.22,23 

Though the preliminary results of functional connectivity 
analysis were inconclusive, the establishment and quantification of 
within-day abstract learning paves the way for further investigation 
of these relationships. With improved and additional metrics, 
identification of involved brain regions will be possible, and the 
effects of their within-region and cross-region communication on 
neuroprosthetic learning will be illuminated.

Figure 5: Behavior-coherence correlation 
results. For each day, Coherence Diff. 
(late coherence — early coherence) was 
plotted against the slope of the trajectory 
ratio for three region-to-region relations 
(direct-Cd, dlPFC-Cd, and direct-
dlPFC), two events (reward and go cue), 
and four frequency bands (see legend). 
The regions and frequency bands which 
significantly predicted behavior were: 
M1/PMd and Cd after go cue in the 
alpha (slope = -0.607, p = 2.47e-3), 
beta (slope = -0.817, p = 4.88e-4), and 
6 – 14 Hz (slope = -0.576, p = 1.02e-3) 
frequency bands. The negative slopes 
imply an inverse relationship with 
learning.
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