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Highlights:

●	 The	complex	climatic	and	geologic	history	of	the	last	
three	million	years	altered	and	shaped	patterns	of	
population	connectivity	and	gene	flow	as	organisms	
tracked climate and environmental changes.

●	 Landscape	and	genetic	 structure	often	 change	at	
different	 rates	 resulting	 in	 a	disconnect	between	
contemporary genetic patterns and the current 
landscape, emphasizing the importance of both 
current	and	past	processes	 in	 shaping	population	
genetic	patterns,	 and	 in	 examining	 these	 factors	
through	multidisciplinary	research	approaches.

●	 We	present	a	combination	of	analyses	that	quantify	
historic	 and	 contemporary	 factors	 that	 influence	
modern	patterns	of	 genetic	 structure	 in	Triodanis 
perfoliata	across	the	contiguous	United	States.

●	 Our	analyses	highlight	the	importance	of	evaluating	
both landscape and phylogeographic drivers from 
historic	 and	 contemporary	 perspectives	when	
investigating	genetic	structure.

Abstract

The dynamic nature of intrinsic (e.g., reproductive 
system,	hybridization)	and	extrinsic	factors	(e.g.,	physical	
barriers	 to	gene	flow)	across	space	and	time	generate	
complex	biological	processes	that	influence	contemporary	
patterns of genetic diversity, highlighting the need 
for	 interdisciplinary	 studies.	Using	 the	widespread,	
mixed-mating	 annual	Triodanis perfoliata, previous 
work	demonstrated	 the	 important	 roles	of	breeding	
system,	isolation	by	distance,	and	isolation	by	resistance	
in	shaping	patterns	of	population	genetic	diversity.	Here	
we	significantly	build	on	this	first	step	by	incorporating	
paleoclimatic	data,	historical	admixture,	and	estimating	
species divergence times across 18 populations of 
T. perfoliata	 spanning	 the	contiguous	US.	This	current	
study	provides	novel	insights	into	factors	driving	patterns	of	
intraspecific	diversification	that	were	not	explained	using	
only	contemporary	climate	models.	Specifically,	these	new	
analyses	highlight	the	early	Holocene	(11.7	-	8.326	ka)	and	
the	Marine	Isotope	Stage	M2	(ca.	3.3	Ma),	as	important	
time	periods	 for	explaining	patterns	of	 contemporary	
population	genetic	diversity,	the	latter	of	which	appears	
to	be	an	important	time	period	for	intraspecific	divergence	
of T. perfoliata.	 In	addition,	we	explored	the	 influence	
of	historical	 intrinsic	 factors,	 via	admixture	 to	explain	
patterns	of	population	 isolation	and	connectivity.	The	
inclusion	of	an	admixture	analysis	provided	clarity	through	
evidence	of	historical	gene	flow	between	populations	that	
would	have	experienced	suitable	habitat	connectivity	in	
past	 climates.	Our	 study	 illustrates	 the	 importance	of	
incorporating	historic,	as	well	as	contemporary	data,	into	
phylogeographic studies to generate a comprehensive 
understanding	of	patterns	of	population	diversity,	and	the	
processes	important	in	driving	these	patterns.

Keywords: biogeography,	Campanulaceae,	landscape	genetics,	paleoclimate,	population	genetics,	statistical	phylogeography,	
time	lag
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Introduction
Contemporary	patterns	of	intraspecific	biodiversity	

are	influenced	by	a	range	of	factors	both	extrinsically	
(e.g.,	environmental,	geospatial;	Brown	et	al.	2016a,	
Alvarado-Serrano	 et	 al.	 2019)	 and	 intrinsically	
(e.g.,	demography,	breeding	system;	Chan	et	al.	2011,	
Toczydlowski	and	Waller	2019,	Tackett	et	al.	2022).	
These	 factors,	however,	 can	vary	across	 space	and	
time,	 suggesting	 the	potential	 influence	of	historic	
processes	 in	 shaping	population	genetic	patterns.	
For	example,	patterns	of	lineage	diversification	and	
hybridization	are	directly	impacted	by	decreased	or	
increased	population	connectivity,	which	is	spatially	
and	temporally	dynamic	(Chan	et	al.	2011,	Cruzan	and	
Hendrickson	2020,	Hellwig	et	al.	2022).

Traditional	approaches	 to	understanding	 spatial	
patterns	of	genetic	diversity	have	primarily	focused	on	
contemporary environmental and resistance barriers as 
the	cause	of	intraspecific	genetic	structure	(Manel	et	al.	
2003,	Storfer	et	al.	2010,	Wang	2010,	Bohonak	and	
Vandergast	2011,	Manel	and	Holderegger	2013,	Rissler	
2016).	Geospatial	variation	across	the	landscape	may	
either	 facilitate	or	 impede	population	connectivity	
(e.g.,	physical	barriers	to	dispersal,	climate	suitability),	
and	these	factors	have	a	strong	influence	on	patterns	
of	gene	flow	across	populations	(e.g.,	Ricketts	2001,	
Cushman	et	al.	2009,	Tackett	et	al.	2022).	However,	
it is important to also consider historic barriers, both 
physical and environmental, that may have played 
important	roles	in	modern	distributions	and	genetic	
patterns	(Galbreath	et	al.	2009,	Zellmer	and	Knowles	
2009,	Brown	and	Knowles	2012,	Crowl	et	al.	2015).

Historic	climate	dynamism	can	influence	population	
size and dispersal patterns as organisms track 
environmental	changes,	altering	patterns	of	population	
connectivity	 and	 gene	flow	 (Zellmer	 and	Knowles	
2009,	Epps	and	Keyghobadi	2015,	Rissler	2016).	Due	
to	the	spatial	mosaic	of	ecosystems,	these	changes	
occur	at	different	rates	creating	a	potential	disconnect	
between	 present	 day	 genetic	 patterns	 and	 the	
landscape,	referred	to	as	time	lag	(Wu	et	al.	2015).	This	
phenomenon can make it challenging to disentangle 
historic	and	contemporary	 influence	on	population	
genetic	structure.	In	fact,	most	landscapes	are	highly	
dynamic	and	change	more	 rapidly	 than	population	
genetic	patterns	(Epps	and	Keyghobadi	2015,	Wu	et	al.	
2015,	Rissler	2016).

Paleoclimates	profoundly	impacted	the	evolution	
and	distribution	of	 species	on	Earth	 (Rangel	et	 al.	
2018,	Rahbek	et	al.	2019a,	Rahbek	et	al.	2019b),	and	
paleoclimates of the last interglacial cycle have been 
the	traditional	focus	of	biological	investigations,	largely	
because	 they	 correspond	 to	times	of	 temperature	
extremes	 in	 the	northern	 latitudes	 (Hewitt	 2000,	
Carstens	and	Richards	2007,	Knowles	et	al.	 2007).	
Nonetheless,	there	exists	considerable	variation	in	their	
ability	to	explain	the	distribution	of	biological	diversity	
(for	instance	see:	Raxworthy	et	al.	2003,	Thomas	et	al.	
2004a,	Thomas	et	al.	2004b,	Batalha-Filho	et	al.	2013,	
Brown	et	al.	 2014,	 Smith	et	al.	 2014,	Brown	et	al.	
2016a).	Over	the	past	decade,	hundreds	of	studies	have	
combined	data	on	species	occurrences	with	climate	

descriptions	 from	 interpolated	weather-stations	 to	
model	the	distribution	of	animals	and	plants	worldwide	
(Graham	et	al.	2004).	When	projected	into	paleo-	and	
future-climatic	scenarios,	these	models	are	widely	used	
to	investigate	the	historic	and	future	distributions	of	
biodiversity	 (Prates	et	al.	2016,	Brown	et	al.	2016a,	
Brown	et	al.	2016b,	Knowles	and	Alvarado-Serrano	
2010,	He	et	al.	2013).	However,	very	few	studies	access	
paleoperiods	outside	of	the	last	glacial	cycle,	with	most	
studies	focusing	on	the	mid-Holocene	(6	ka),	Last	Glacial	
Maximum	(21	ka)	and	the	Last	 Interglacial	 (130	ka).	
Moreover,	 for	most	 taxa,	 speciation	occurred	well	
before	the	last	interglacial	cycle	(ca.	130	ka	to	modern	
times,	Rull	2008,	Rull	2011)	and	climate	dynamism	
throughout	the	last	0.8	ma	mediated	key	diversification	
and	extinction	processes	in	the	Americas	(Rangel	et	al.	
2018,	Rahbek	et	al.	2019a,	Rahbek	et	al.	2019b).

In	this	study,	we	examine	how	both	contemporary	
and	historic	factors	influence	patterns	of	population	
genetic	structure	in	the	common,	widespread	North-	
and South American annual Triodanis perfoliata 
(Campanulaceae/Campanuloidae).	 The	distribution	
of T. perfoliata encompasses a large geographic range 
and	multiple	climatic	regions	(Gleason	and	Cronquist	
1991,	Weakley	2010)	providing	an	excellent	 study	
system	for	broad	scale	phylogeographic	questions.	This	
species	has	also	been	the	subject	of	numerous	previous	
studies	(Ansaldi	et	al.	2019,	Berg	et	al.	2019,	Berg	et	al.	
in	press),	specifically	as	a	model	to	understand	how	
contemporary	habitat	suitability,	isolation	by	distance,	
habitat	 resistance,	 and	breeding	 system	 influence	
patterns	of	genetic	diversity	 in	Triodanis perfoliata 
across	the	United	States	(Tackett	et	al.	2022).	Building	
significantly	 on	 this	 framework	we	explore	 novel	
research	questions	concerning	the	roles	of	historic	and	
current	climatic	factors,	as	well	as	signatures	of	past	
introgression	in	driving	present-day	genetic	patterns	
of T. perfoliata.	 Including	 spatially	 explicit	 historic	
climate	factors	allows	us	to	more	fully	elucidate	how	
historic	population	connectivity	 influenced	modern	
distributions	and	patterns	of	 gene	flow.	This	 study	
dramatically	expands	the	analyses	of	Tackett	et	al.	2022	
which	focused	on	univariate	models	of	contemporary	
climate	factors	to	explain	landscape	genetic	patterns.	
Further,	 the	phylogenetic	 results	 of	 Tackett	et	 al.	
2022	lacked	estimates	of	divergence	times,	therefore	
could	 not	 provide	 context	 on	 how	 past	 periods	
influenced	the	diversification	of	T. perfoliata.	Last,	the	
population	genomic	analyses	used	by	Tackett	et	al.	
2022,	 failed	 to	account	 for	historical	 introgression.	
Here	we	improve	upon	the	research	of	Tackett	et	al.	
2022	and	address	novel	 research	questions	by	 (1)	
quantifying	 the	timing	of	divergence	of	our	 study	
species, T. perfoliata,	and	describing	patterns	of	past	
hybridization	among	populations.	We	predict	 that	
patterns	of	past	 introgression	will	reveal	previously	
undescribed	patterns	of	gene	flow	among	our	study	
populations.	In	addition,	we	(2)	quantify	the	influence	of	
environmental	factors	(e.g.,	soil	and	fire	frequency)	and	
historical and contemporary climate (e.g., temperature 
and	 rainfall)	 in	 driving	 patterns	 of	 population	
divergence	 and	 structure	 using	mixed	models.	
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We	predict	 that	by	expanding	our	 study	 to	 include	
historic	factors,we	can	more	fully	explain	patterns	of	
population	divergence.	 In	conjunction,	our	analysis	
including both historical and modern processes is a 
powerful	approach	for	addressing	time	lag	patterns,	
providing	more	spatiotemporal	context	to	fundamental	
biological	processes.	Therefore,	we	significantly	expand	
on	the	preliminary	framework	of	Tackett	et	al.	(2022),	
which	only	included	current	climate	data,	and	directly	
address	issues	of	time	lag	by	incorporating	paleoclimate	
data	and	estimating	historic	patterns	of	introgression	
between	populations.	Overall,	we	 (3)	merge	 these	
results	to	better	describe	the	spatial	and	temporally	
explicit	factors	important	in	driving	current	and	past	
patterns	of	population	genetic	diversity	for	T. perfoliata.

Materials & Methods

Study system
Triodanis perfoliata	(L.)	Nieuwl.	(Campanulaceae/

Campanuloideae)	 is	a	common,	weedy,	widespread	
annual	herb,	native	 to	much	of	North-	and	South-	
America	(Weakley	2010).	Historically	found	in	prairies,	
T. perfoliata	is	now	found	in	a	wide	variety	of	habitats,	
including road sides, disturbed areas, rocky outcrops, 
prairies, and across a variety of climates (Gleason and 
Cronquist	1991,	Weakley	2010).	Seeds	of	T. perfoliata are 
very	small	(approx.	Length	=	0.5	mm,	width	=	1.3	mm)	
and	may	be	dispersed	by	ants	(McVaugh	1948,	Shetler	
and	Morin	1986).	This	taxon	exhibits	a	mixed	mating	
system through dimorphic cleistogamy. This breeding 
system	consists	of	open	self-compatible,	chasmogamous,	
purple,	five-petaled	flowers	that	are	~1.5cm	in	diameter	
and	closed,	obligate	selfing,	cleistogamous	flowers	that	
lack	a	corolla	(Trent	1940,	Gara	and	Muenchow	1990,	
Goodwillie	and	Stewart	2013).	The	overall	production	of	
chasmogamous	and	cleistogamous	flowers	varies	widely	
among	populations	of	this	species,	and	is	associated	
with	variation	in	abiotic	conditions	(i.e.,	climate	and	
soil)	as	well	as	pollinator	activity	(Ansaldi	et	al.	2018a,	
Ansaldi	et	al.	2018b,	Tackett	et	al.	2022).	Notably,	greater	
production	of	chasmogamous	flowers	on	average	 is	
associated	with	increased	population	genetic	diversity,	
emphasizing the importance of the breeding system 
in	driving	contemporary	patterns	(Tackett	et	al.	2022).

Description of Source Dataset
This study includes a previously published dataset 

that	represents	an	expanded	Campanuloideae	genetic	
dataset,	 and	 is	 included	here	 in	order	 to	estimate	
divergence	times	using	 available	 fossil	 data.	 This	
dataset	was	 required	because	 the	population-level	
SNP	dataset	from	Tackett	et	al.	(2022)	lacked	species	
directly	 associated	with	 fossil	 data.	 Thus,	we	first	
performed a phylogenetic analysis on a broadly 
sampled	Campanuloideae	dataset	(Crowl	et	al.	2014)	
in order to include fossil data and obtain a divergence 
time	estimate	for	the	most-recent-common	ancestor	of	
T. biflora and T. perfoliata.	The	resulting	age	estimate	
of	this	ancestor	was	subsequently	used	in	our	second	
divergence	time	analysis	using	the	population-level	
SNP	dataset	 from	Tackett	et	 al.	 (2022).	 Sampling	

for	 the	expanded	Campanuloideae	genetic	dataset	
included	the	addition	of	T.	biflora	sequences	generated	
for	a	Crowl	et	al.	 (2014)	 study.	Crowl	et	al.	 (2014)	
amplified	and	sequenced	four	plastid	regions	(matK,	
petD,	rbcL,	and	the	atpB-rbcL	spacer	region)	and	two	
low-copy	nuclear	 loci	 (PPR11	and	PPR70)	 from	 the	
pentatricopeptide	repeat	(PPR)	gene	family.

For	our	landscape	genetic	research,	we	performed	
novel	analyses	using	the	open-source	dataset	 from	
Tackett	(et	al.	2022,	https://doi.org/10.5061/dryad.
sf7m0cg98 and https://doi.org/10.5061/dryad.
wh70rxwr9)	and	build	from	their	framework	of	basic	
population	genetic	and	landscape	genetic	results.	Given	
these	data	are	central	 to	 this	 study,	as	 follows	 is	a	
summary	of	methods	used	by	Tackett	et	al.	(2022).	Leaf	
tissue	was	collected	from	individuals	in	18	populations	
of Triodanis perfoliata	 (range:	 1-6	 individuals	 per	
population;	average:	4.2	individuals	per	populations)	
across	the	contiguous	United	States	(Fig. 1).	A	total	
of	76	samples	were	collected	and	used	 for	genetic	
sequencing	 along	with	 six	 accessions	of	Triodanis 
biflora,	which	was	selected	to	serve	as	an	outgroup	
because of its placement as sister to T. perfoliata 
(Tackett	et	al.	2022;	Table	S1).

RADseq	(Restriction	site	Associated	DNA	sequencing)	
was	performed	by	Floragenex	Inc.	(http://floragenex.
com)	 to	 identify	 genetic	 variation	within	 samples	
(Eaton	2014).	The	restriction	enzyme	Sbf1	was	used	
and	all	 samples	were	 analyzed	on	 the	 same	flow	
cell	with	Illumina	1x91	bp	sequencing.	Sequencing,	
quality	 control,	 sequence	 alignment,	 and	 variant	
calling	were	 conducted	 using	 Bowtie	 (Langmead	
and	Salzburg	2012),	BWA	(Li	2011),	Velvet	(Zerbino	
2010),	 and	 Samtools	 (Li	 et	 al.	 2009)	 respectively.	
The	resulting	final	dataset	consisted	of	variant	calls	
with	a	minimum	sequencing	depth	of	15x,	minimum	
Phred	score	of	20,	and	no	more	than	10%	of	missing	
genotypes;	variant	calling	yielded	4705	SNPs	(single	
nucleotide	 polymorphisms)	 observed	 in	 >90%	of	
sequenced	individuals	of	T. perfoliata	(see	Tackett	et	al.	
2022	for	more	details	about	the	genomics	pipeline).	
The	population-level	SNP	dataset	from	Tackett	et	al.	
(2022)	was	the	primary	genomic	dataset	used	for	all	
genetic	analyses	in	this	study	(see	divergence	analysis	
a	single	exception).

Tackett	 et	 al.	 (2022)	 assigned	 genetic	 clusters	
using	STRUCTURE	 (Pritchard	et	al.	 2000)	and	used	
STRUCTURE	HARVESTER	 v6.0	 (Earl	 and	 vonHoldt	
2012)	to	estimate	the	number	of	genetic	clusters	(K).	
Briefly,	 ten	 independent	 runs	were	performed	 for	
each	genetic	cluster	(K)	and	a	burn	in	value	of	40,000	
were	allowed	before	running	80,000	iterations	per	K.	
Admixture	models	and	correlated	allele	frequencies	
were	used.	The	values	of	ΔK	were	determined	using	
the	 Evanno	 et	 al.	 (2005)	method	 in	 STRUCTURE	
HARVESTER	v6.0	 (Earl	 and	 vonHoldt	 2012).	 These	
analyses	revealed	that	both	K	=	4	and	K	=	17	have	high	
support	(ΔK	=	7.68	and	ΔK	=	6.28,	respectively,	these	
past results are summarized in Figs. 1 and 2).	Tackett	
et.	al	(2022)	also	explored	genetic	clusters	via	sMNF	
(Frichot	et	al.	 2014),	which	 is	 robust	 to	deviations	
from	standard	 statistical	assumptions;	 results	were	
similar	to	STRUCTURE.

https://doi.org/10.5061/dryad.sf7m0cg98
https://doi.org/10.5061/dryad.sf7m0cg98
https://doi.org/10.5061/dryad.wh70rxwr9
https://doi.org/10.5061/dryad.wh70rxwr9
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Divergence Time Estimation
To	provide	 a	time	estimate	 for	 the	divergence	

between	T. perfoliata and T. biflora,	we	 carried	
out	 a	 Bayesian	 fossil-calibrated	 analysis.	 Fossil	
calibration	was	 challenged	 by	 the	 limited	 fossil	
record	for	Campanulaceae,	with	no	available	fossils	
in	 our	 focal	 group.	 Therefore,	we	 ran	 a	 BEAST2	
(v.2.1.2;	Bouckaert	et	al.	2014)	analysis	on	a	broad	
Campanuloideae-wide	dataset	(based	on	Crowl	et	al.	
2014)	that	additionally	included	Triodanis perfoliata 
and Triodanis biflora. As in several previous studies 
(Cellinese	et	al.	2009,	Roquet	et	al.	2009,	Olesen	et	al.	
2012,	Crowl	et	al.	2014,	2015,	2016),	we	used	 the	
only	reliable	Campanulaceae	fossil	identified	as	seeds	
of Campanula paleopyramidalis and dated from the 

Early-Middle	Miocene	 (approximately	 17–16	Ma;	
Lancucka-Srodoniowa	1977,	 1979).	We	 applied	 a	
lognormal	prior	distribution	constraint	 to	 the	node	
representing	 the	most	 recent	 common	ancestor	of	
C.	 pyramidalis	 and	C.	 carpatica,	with	mean	=	5.0,	
stdev	=	1.0,	and	offset	=	16.	An	additional	constraint	
was	placed	at	the	root	of	the	Campanulaceae	clade	as	
a	normal	distribution	with	mean	=	54.0	and	stdev	=	5.0	
based	on	past	studies	(Bell	et	al.	2010,	Crowl	et	al.	
2016).	This	analysis	was	run	under	an	uncorrelated	
lognormal	model	for	50	million	generations,	logging	
parameters	every	1000	generations,	and	assuming	a	
Yule	process.	Tracer	v.1.6	(Rambaut	et	al.	2014)	was	
used	to	verify	effective	sample	sizes	(ESS	values	>200)	
for	estimated	parameters	and	to	determine	burn-in.

Figure 1.	Results	of	mixed	spatial	models	of	landscape	genetic	connectivity	including	the	22	genetic	groups	depicted	by	
colored	dots.	Areas	of	high	population	connectivity	are	represented	with	warm	colors	while	those	with	poor	connectivity	
with	cool	colors.	(A)	The	highest-ranking	composite	model	consisting	of	the	early	Holocene	(11.7	-	8.3	ka)	and	the	Marine	
Isotope	Stage	M2	period	(ca.	3.3	Ma).	Populations	are	colored	to	match	cluster	assignment	from	(B)	STRUCTURE	results	
(K=17)	from	a	genomic	SNP	dataset,	figure	reproduced	from	Tackett	et	al.	2022.	(C)	Plot	of	highest-ranking	mixed	spatial	
model	showing	relationships	between	the	predicted	landscape	friction	and	the	observed	genetic	distance.
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Figure 2.	The	admixture	structure	for	Triodanis perfoliata	populations	(K	=	4	from	STRUCTURE),	with	colors	corresponding	
to	genetic	clusters	consistent	with	Figure	3,	as	well	was	cluster	figures	from	Tackett	et	al.	(2022),	and	an	outgroup,	T. biflora. 
Analyses	with	A)	no	migration	events	and	B)	two	migration	events.	Migration	arrows	are	colored	according	to	their	migration	
weight.	The	scale	bar	 for	the	drift	parameter	shows	ten	times	the	average	standard	error	of	 the	entries	 in	the	sample	
covariance	matrix.	Residual	fit	plotted	in	the	heatmap	are	comparisons	of	the	residual	fit	from	the	maximum	likelihood	
for	each	tree	among	each	input	population.	Residuals	deviating	from	zero	identify	populations	that	are	not	well-modeled	
under	non-migration	and	thus	are	candidates	for	admixture	events.	C)	Map	of	population	distributions	in	the	contiguous	
United	States	(K	=	4).	D)	STRUCTURE	results	(K=4)	from	a	genomic	SNP	dataset,	figure	reproduced	from	Tackett	et	al.	2022.

To	 infer	 the	 timing	 of	 diversification	within	
T. perfoliata,	we	additionally	estimated	divergence	
times	with	MCMCTree	in	PAML	v4.8	(Yang	2007)	using	
our	large	SNP	dataset	with	population-level	sampling	
of T. perfoliata.	Divergence	time	estimation	from	large	
genomic	datasets	can	be	computationally	challenging,	
but	MCMCTree	allowed	us	to	include	all	SNPs	in	our	
dataset and compute the output in a reasonable 

amount	 of	 time.	We	used	 the	ML	 topology	 from	
Tackett	et	al.	(2022)	as	a	reference	given	it	included	
all	 samples.	We	used	 an	 independent	 rates	 clock	
model	for	rate	priors	because	we	expect	our	broad	
intraspecific	 sampling	will	 lead	 to	branch-specific,	
heterogeneous	rates	of	evolution,	violating	the	rate	
homogeneity	assumptions	of	a	strict	molecular	clock	
(Wertheim	et	al.	2010,	Brown	and	Yang	2011).
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We	 first	 ran	 the	MCMCTree	 analysis	without	
sequence	data	to	assess	whether	our	model	parameters	
produced	reasonable	priors	from	our	calibration.	To	
expedite	the	analysis,	we	then	implemented	BASEML	
(also	in	PAML)	to	calculate	approximate	branch	length	
values	prior	 to	 running	MCMCTree,	under	 an	HKY	
substitution	model.	We	selected	the	HKY	model	due	
to	computational	constraints	encountered	when	the	
parameter-rich	GTR	model	was	attempted	and	failed.	
We	ran	MCMCTree	for	2,000,000	burn-in	generations	
and	subsequently,	sampled	every	1,000	generations	
until	we	obtained	20,000	samples	across	a	 total	of	
22,000,000	iterations.	We	input	the	age	prior	of	1.9	mya	
(95%	HPD	=	0.5	–	3.7)	for	the	common	ancestor	of	
T.	perfoliata,	as	estimated	with	our	fossil-calibrated	
BEAST	analysis.	To	assess	convergence,	we	ensured	ESS	
values	for	each	node	were	over	200	using	Tracer	v1.7.1	
(Rambaut	et	al.	2018),	and	ran	our	analysis	twice	from	
two	different	random	starting	seeds	before	confirming	
that	both	converged	to	similar	posterior	estimates.

Species Distribution Modeling
Species	distribution	models	(SDMs)	were	generated	

using	occurrence	records	previously	curated	and	vetted	
in	Tackett	et	al.	(2022).	Spatial	biases	were	addressed	
by	randomly	selecting	points	clustered	within	a	10-km	
radius	using	SDMtoolbox	2.4	(Brown	2014).	The	final	
vetted	dataset	consists	of	1735	occurrence	 records.	
Fourteen	bioclimatic	layers	at	a	30	arc-second	resolution	
downloaded	from	WorldClim	v2.0	(Hijmans	et	al.	2005;	
Bio	1,	Bio	4,	Bio	8-19).	We	tested	 for	collinearity	of	
all	bioclimatic	layers	selecting	variables	with	Pearson	
Correlation	coefficients	below	0.7	(Brown	et	al.	2017),	
which	were	then	used	to	generate	SDMs	in	MaxEnt	3.3.3k	
(Phillips	et	al.	2020).	These	Contemporary	SDMs	were	
projected	into	six	key	paleoclimatic	periods	spanning	eight	
thousand	years	ago	to	three	million	years	ago	at	2.5	arc-
minute	resolution	from	Paleoclim.org	(Brown	et	al.	2018;	
Early-Holocene,	Bolling-Allerod,	Last	Glacial	Maximum,	
Last	 Interglacial,	Marine	 Isotope	 Stage	M19,	 and	
Marine	Isotope	Stage	M2,	see	Table	S2	for	more	details).	

Figure. 3. Triodanis perfoliata	MCMC	time	calibrated	tree	in	millions	of	years	with	T. biflora as an outgroup using SNPs. Colors 
correspond	to	cluster	assignments,	consistent	with	Figure 2,	as	well	as	figures	from	Tackett	et	al.	(2022);	note	that	colored	
genetic	clusters	do	not	indicate	monophyly.	Purple	Error	bars	represent	bounds	of	95%	confidence	intervals	for	each	node,	
and	time	units	are	in	millions	of	years.	Our	results	estimate	that	T. perfoliata diverged from T. biflora	approximately	3.3	mya.	
The	extant	populations	of	T. perfoliata	surveyed	shared	a	common	ancestor	of	approximately	2.4	mya.	After	speciation,	
T. perfoliata	continued	to	diverge,	with	the	core	lineages	(sensu	Tackett	et	al.	2022)	diverging	in	the	early	Pleistocene.
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Five	bioclimatic	 layers	 (Bio	2,	Bio	3,	Bio	5-7)	were	
unavailable	for	several	of	our	paleoclimatic	datasets,	
and	thus	were	not	used	 in	our	 initial,	contemporary	
SDMs.	Due	to	 the	 limited	georeferenced	occurrence	
records	available	 throughout	 the	Neotropics,	as	well	
as	 the	considerable	 taxonomic	uncertainty	of	 these	
individuals,	we	focused	our	models	and	model-based	
analysis	on	the	contiguous	United	States.

SDMs	were	 parameterized	with	 SDMtoolbox	
v2.4	 (Brown	2014)	 to	evaluate	 the	performance	of	
various	combinations	of	five	feature	classes	(linear;	
linear	 and	quadratic;	 hinge;	 linear,	 quadratic	 and	
hinge;	 and	 linear,	 quadratic,	 hinge,	 product	 and	
threshold),	and	five	regularization	multipliers	(0.5,	1,	
2,	3,	4;	Radosavljevic	and	Anderson	2014)	with	the	
threshold	set	to	the	10th	percentile	training	presence.	
SDM	performance	built	under	each	combination	of	
parameters	was	assessed	 through	a	geographically	
structured	k-fold	cross-validation	(i.e.,	the	occurrence	
records	were	partitioned	into	k	equal	geographically	
clustered	 subsamples,	here	k	=	3,	 and	 the	models	
were	 trained	with	 two	 of	 the	 groups	 and	 then	
evaluated	with	 the	excluded	group	until	 all	 group	
combinations	were	 run).	Model	 fit	was	 assessed	
via	 the	omission	 rate,	area	under	 the	curve	 (AUC),	
and	model	 feature	 class	 complexity	 (Brown	2014).	
After	optimum	model	parameters	were	determined	
(those	 leading	to	the	 lowest	omission	rate,	highest	
AUC,	and	lowest	complexity,	in	the	order	listed),	a	final	
SDM	was	built	with	all	occurrence	sites	and	projected	
into	the	current	climate	across	the	contiguous	US.	The	
study	was	confined	to	the	contiguous	US	as	genetic	
sampling	and	available	historic	fire	data	 (LANDFIRE	
2020)	was	restricted	to	this	region.

Spatial Hypothesis of Landscape Connectivity
For	this	study,	we	created	ten	spatial	hypotheses	

for	landscape	connectivity.	The	first	was	the	output	
from	our	best	SDM	model	created	for	T. perfoliata in 
current	time,	which	was	subsequently	projected	into	
six	paleoclimatic	periods,	each	used	here	 (Fig.	 S1).	
Each	SDM	represented	areas	of	high	habitat	suitability	
bound by corresponding climates and, also, the shape 
of the terrestrial bounds of the North American 
landmass.	We	also	generated	three	additional	spatial	
hypotheses:	climate	stability,	historic	fire	frequency,	
and	three-dimensional	topographic	distance	(Fig.	S1).	
Climate	 stability	 through	time	has	been	 shown	 to	
predict	genetic	and	 lineage	diversity	 (Carnaval	and	
Moritz	 2008,	Carnaval	 et	 al.	 2009).	We	estimated	
climatic stability by averaging all the continuous 
paleoclimate	 SDMs	 and	 a	 current	 SDM	 that	was	
projected	in	matching	2.5	arc-minute	climate	data	from	
WorldClim	v2.0	(Hijmans	et	al.	2005;	Bio	1,	Bio	4,	Bio	
8-19).	Fire	history,	which	is	often	an	important	factor	
in	the	distribution	of	North	American	prairie	species	
(Anderson	et	al.	1999,	Anderson	2006,	Wagenius	et	al.	
2020),	was	obtained	by	using	the	Mean	Fire	Return	
Interval	dataset	downloaded	from	LandFire	database	
(LANDFIRE	 2020).	 Three-dimension	 topographic	
distance	was	calculated	in	ArcGIS	(ESRI	2022)	using	
30	 arc-second	 SRTM	dataset	 (downloaded	 from	

Worldclim	2.0)	(Hijmans	et	al.	2005),	this	hypothesis	
serves	as	a	characterization	of	the	null	hypothesis	of	
isolation	by	distance.

Mixed Spatial Models of Landscape Genetic Connectivity
To	model	the	relationships	between	our	observed	

genetic	data	and	 the	environment,	we	used	 linear	
mixed	effect	models	of	the	ten	spatial	hypotheses	of	
landscape	connectivity.	Twenty	 two	 locations	were	
included in this analysis. If individuals from the same 
genetic	cluster	(by	majority	assignment	to	a	specific	
cluster,	K=17;	Tackett	et	al.	2022)	occurred	more	than	
200	km	apart,	then	that	cluster	was	represented	at	
both	locations,	resulting	in	n	=	22	genetic	groups.	Mixed	
effect	models	were	run	in	R	package,	ResistanceGA	
(Peterman	2018)	 for	 every	pair	 of	 the	 ten	 spatial	
hypotheses,	as	well	as,	each	hypothesis	run	as	a	single	
predictor	(totaling	37	unique	modeled	combinations.	
See	Table	S3	for	details).	Mixed	models	with	three	or	
more	predictor	variables	were	not	evaluated	as	model	
groups	to	be	compared	were	too	numerous	and	thus,	
were	not	computationally	feasible.

The	 ten	 spatial	 hypotheses	were	 converted	 to	
resistance	surfaces	for	mixed	effect	modeling	using	
the	R	package,	ResistanceGA	(Peterman	2018).	This	
program	 requires	no	a priori	 assumptions	 related	
to	 environmental	 response	 and	 instead	utilizes	 a	
genetic	algorithm	 to	fit	 surface	 layers	 individually	
to	pairwise	genetic	data	to	find	the	statistically	best	
resistance	 layer(s)	 (Peterman	2018).	ResistanceGA	
optimizes	resistance	surfaces	based	on	pairwise	genetic	
data	and	distances	 calculated	using	CIRCUITSCAPE.	
Since	ResistanceGA	provides	a	 true	unconstrained	
optimization there are no predefined resistance 
surfaces	to	assess,	instead	the	optimization	algorithm	
iteratively	 generates	 resistance	 surfaces	exploring	
eight mathematical transformations and a broad 
array	weighting	 regime	until	 no	 improvement	 in	
predicting	 input	genetic	data	 can	be	made.	This	 is	
coupled	with	maximum	likelihood	population	effect	
(MLPE)	model	performance	criteria	to	best	objectively	
optimize	resistance	surface(s)	(Peterman	et	al.	2019). 
Fit	of	regression	between	the	environmental	variables	
chosen	and	genetic	data	are	used	to	determine	the	
most	 likely	migration	 corridors	 and	 the	 landscape	
features	 that	 are	most	 probable	 in	 facilitating	or	
inhibiting	distribution	 (Van	Strien	et	 al.	 2012). For 
these	reasons	ResistanceGA	has	become	a	popular	
method	in	addressing	fundamental	questions	regarding	
landscape	genetics	and	 landscape	ecology	and	was	
chosen	 for	 this	 study.	Once	all	 resistance	 surfaces	
were	optimized,	ResistanceGA	(Peterman	2018)	was	
run to assess the resistance of each layer individually 
and	in	pairs	resulting	in	37	total	models.	Models	were	
ranked	using	marginal	R2.

Historical Patterns of Population Admixture and Divergence
The	statistical	model	TreeMix	v1.13	(Pickrell	and	

Pritchard	2012)	was	used	 to	 infer	historic	patterns	
of	population	admixture	and	divergence	where	the	
frequency	of	alleles	in	present-day	populations	infers	
the	structure	of	the	maximum	likelihood	(ML)	tree.	

about:blank
about:blank
about:blank
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A SNP dataset for T. perfoliata	was	generated	from	a	
previous	analysis	 in	STRUCTURE	which	yielded	four	
genetic	clusters	(Tackett	et	al.	2022)	and	used	T. biflora 
as	the	outgroup	(See	Table	S1).	A	covariance	matrix	was	
built	to	assess	model	fit	for	population	relationships.	
TreeMix	uses	a	Gaussian	model	to	assess	drift	between	
ancestral	and	contemporary	populations	(Cavalli-Sforza	
and	Edwards	1967).	We	estimated	migration	events	
from	zero	to	three.	For	populations	with	the	largest	
residuals	migration	edges	are	added	and	the	graph	
is	optimized	for	branch	length	and	the	weight	of	the	
migration	edge.	Weight	of	the	migration	edge	indicates	
the	allelic	fraction	of	parental	population	inheritance.	
This	process	is	repeated	until	the	migration	edge	that	
most improves the likelihood is chosen. Then the 
relative	weight	of	 the	migration	edge	 is	estimated,	
as	well	as	its	uncertainty,	across	the	genomic	dataset.	
Residuals	deviating	from	zero	identify	populations	that	
are	not	well-modeled	under	non	migration	scenarios	
and	thus	are	candidates	for	admixture	events	to	best	
explain	the	genetic	data.

Results

Divergence Time Estimation
We	estimated	the	mean	divergence	time	for	the	

node	 corresponding	 to	 the	most-recent-common	
ancestor of Triodanis perfoliata and Triodanis biflora 
to	be	approximately	1.9	mya	(95%	HPD	=	0.5	–	3.7)	
in	the	fossil-calibrated	BEAST	analysis	(Fig.	S2).	This	
age	range	estimate	approximates	well	with	the	age	
recovered	by	our	MCMCTree	results	(mean	of	3.3	MYA	
for the divergence of T. perfoliata from T. biflora and 
mean	of	2.4	MYA	for	the	crown	clade	containing	all	
sampled T. perfoliata	populations;	Fig.	3).	We	estimate	
that	the	crown	age	of	T. perfoliata	populations	surveyed	
in	this	study	is	approximately	2.4	mya	(3.2-1.4).	After	
speciation,	T. perfoliata	 continued	 to	diverge	at	 a	
steady	rate,	with	the	core	lineages	(sensu	Tackett	et	al.	
2022)	diverging	in	the	early	Pleistocene	(2.4-1.5	Ma,	
Fig.	3;	Appendix	S1).

Mixed Spatial Models of Landscape Genetic Connectivity
The	 spatial	model	with	 the	 highest	 support	

(marginal r2=	0.612)	is	a	composite	surface	of	the	early	
Holocene	(11.7	–	8.326	ka)	and	the	Marine	Isotope	
Stage	M2	period	(ca.	3.3	Ma;	Fig. 1).	The	model	with	
the second highest support (marginal r2=	0.597)	was	a	
composite surface of the current period and the Marine 
Isotope	Stage	M2	period.	Spatial	models	based	only	
on contemporary climate (marginal r2=	0.551)	or	only	
isolation-by-distance,	performed	more	poorly	 than	
models	with	paleoclimate	data	(3D	distance	and	2D	
distance: marginal r2=	0.546	and	0.485,	respectively).	
The	assessment	of	2D	distance	is	a	default	test	within	
the	ResistenceGA	program	(see	Table	S3	for	the	results	
of	 all	models	 compared	with	 corresponding	AICc,	
marginal r2,	conditional	r2).

Historical Patterns of Population Admixture and Divergence
Our	 inference	of	historical	patterns	of	population	

admixture	and	divergence	best	supported	a	scenario	with	

a period of moderate introgression from the ancestors of 
T. biflora into the ancestors of T. perfoliata (2.8%	of	alleles	
inherited from T. biflora into	Cluster	4, p	<	0.001,	Fig. 2).	
We	also	recovered	an	instance	of	high	gene	flow	from	
the	Cluster	1	into	Cluster	3	(four	genetic	clusters	in	total;	
38.2%	of	alleles	inherited	from	Cluster	1	to	Cluster	3,	
p	<	0.001).	Cluster	1	is	currently	distributed	in	the	western	
US	and	extends	eastward	 into	Kansas	and	Cluster	3	
is	currently	distributed	 in	New	York.	The	 inclusion	of	
historical	population	admixture	and	divergence	better	
explains	our	observed	genetic	diversity,	with	the	scenario	
of	two	migration	events	resulting	in	the	highest	support	
(see Fig. 2A and B,	Table	S4).

Discussion
Here	we	explore	the	roles	of	paleoclimate,	climate	

stability	 and	 historic	 population	 admixture	 and	
divergence	in	shaping	population	genetic	patterns	in	
a	widespread	annual	plant,	Triodanis perfoliata.	Our	
current	study	significantly	expands	previous	research	
focused	on	the	roles	of	contemporary	climate,	isolation	
by	distance,	and	breeding	system	in	shaping	population	
connectivity	(Tackett	et	al.	2022).	Overall,	this	research	
is	 part	of	 the	 growing	 call	 to	use	 interdisciplinary	
approaches	to	elucidate	drivers	of	population	genetic	
patterns	 (Chan	 et	 al.	 2011,	 Brown	 et	 al.	 2016a,	
Shen	 et	 al.	 2019,	Dolby	 et	 al.	 2022).	 A	 range	 of	
factors,	both	extrinsic	(e.g.,	environmental,	geospatial;	
Brown	et	al.	2016a,	Alvarado-Serrano	et	al.	2019)	and	
intrinsic (e.g., demography, physiological tolerances, 
seed and pollen dispersal, breeding system; Chan et al. 
2011,	Toczydlowski	 and	Waller	2019,	Tackett	et	al.	
2022),	influence	patterns	of	genetic	diversity.	These	
factors are highly dynamic, varying across space and 
time,	 illustrating	 the	potential	 influence	of	historic	
processes	 in	 shaping	patterns	of	 genetic	diversity.	
Combining	these	processes	with	temporally	explicit	
genetic	data	allows	for	a	more	complete	understanding	
of	population	genetics	(Carnaval	et	al.	2009,	Bohonak	
and	Vandergast	2011,	Chan	et	al.	2011,	Shen	et	al.	
2019,	Dolby	et	al.	2022).

Despite	 the	 importance	 of	 paleoclimates	 in	
shaping	population	genetic	patterns,	 (Rangel	et	al.	
2018,	Rahbek	et	al.	2019a,	Rahbek	et	al.	2019b),	very	
few	studies	assess	paleo-periods	outside	of	 the	 last	
interglacial	cycle	(ca.	130	ka	to	contemporary	climates;	
Rull	2008,	Rull	2011).	This	potential	bias	in	studies	has	
been, in part, a result of limited availability of older 
paleoclimatic	 datasets.	 In	 recent	 years,	 however,	
data	 from	additional	 paleo-periods	have	become	
available	(Lima-Ribeiro	et	al.	2015,	Brown	et	al.	2018),	
although	researchers	continue	to	focus	on	relatively	
recent geological times. As such, there remains a 
need for studies that incorporate temporally relevant 
paleoclimatic	data	with	genomic	data	to	understand	
drivers	of	phylogenetics	and	population	genomics	
(however	 see	Evans	et	al.	2009,	Prates	et	al.	2016,	
Rangel	et	al.	 2018,	Guillory	and	Brown	2021).	The	
advantages of including these types of data can be seen 
through	studies	of	several	oak	species	in	the	Mexican	
highlands	in	which	high	genetic	diversity	but	low	genetic	
structure	is	explained	through	historical	processes	such	
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as	range	stability,	elevational	displacement,	and	dynamic	
gene	flow	between	populations	(Peñaloza-Ramírez	et	al.	
2020,	Sánchez-Acevedo	et	al.	2023).	The	dynamic	nature	
of climate, especially over thousands or millions of years, 
alters	 the	 landscape	and	 therefore	 the	connectivity	
of	populations	and	movement	of	 individuals.	These	
changes	can	have	profound	 impacts	on	 the	genetic	
structure	of	affected	populations	(Taylor	et	al.	2006,	
Yannic	et	al.	 2020).	 In	T. perfoliata,	we	 found	 that	
paleoclimatic	periods	both	prior	to	and	during	the	last	
interglacial	to	be	significant	in	characterizing	modern	
patterns	of	genetic	diversity,	highlighting	the	importance	
of	diverse	paleoclimatic	data	in	these	types	of	population	
genetic	analyses.	Our	results	support	an	important	role	
for	late	Pliocene	climates	in	structuring	the	population	
genetic	diversity	of	T. perfoliata	 (Table	S3).	Our	best	
mixed	spatial	model	of	landscape	genetic	connectivity	
had a marginal r2=0.612,	which	is	impressive	given	the	
observed	 introgression,	as	well	as,	 the	complicated	
population	genomic	clustering	results	in	the	center	of	
the	species’	distribution,	where	multiple	cluster	groups	
coexisting	within	many	populations.	Each	of	these	factors	
challenge	the	creation	of	a	single	‘genetic	landscape’,	
as	these	events	likely	occurred	at	multiple	time	periods	
that	spanned	many	climatologies.	Our	genetic	results	
(current	and	past)	suggest	that	T. perfoliata	underwent	
a	complicated	biogeography	history,	extending	beyond	
a	single	expansion,	and	rather,	likely	experience	multiple	
and	repeated	interactions	among	major	lineages	within	
T. perfoliata.

The	late	Pliocene,	a	key	period	in	our	best	mixed	
spatial	model,	also	coincides	with	the	early	divergence	
of T. perfoliata	(2.4	mya	[3.2-1.4]),	suggesting	a	key	role	
of	this	time	period	in	shaping	the	phylogeography	of	
this species (Fig.	3).	It	is	worth	clarifying	that	the	95%	
confidence	intervals	of	the	divergence	estimate	extend	
into	the	early	Pleistocene	(starting	ca.	2.56	mya),	thus,	
these	mixed	spatial	modeling	results	and	divergence	
time	estimates	are	not	perfectly	aligned.	However,	
given	the	fact	that	we	only	have	paleoclimate	data	for	
time	periods	at	3.3	mya	(late	Pliocene)	and	0.0787	mya	
(mid-Pleistocene),	 there	certainly	 remains	many	key	
time	periods	unavailable	that	could	better	characterize	
additional historic periods important to the early 
divergence of T. perfoliata.	However,	these	two	datasets	
do	share	many	climatic	similarities	to	other	temporally	
adjacent	 periods	 and	might	 be	 producing	 causal	
correlations	due	to	simular	climatologies	at	other	time	
periods, something that is most likely to occur in the 
matching	epochs	(e.g.	mid-Pleistocene)	corresponding	
to	all	input	climatologies.	Given	we	do	not	have	a	climate	
dataset	for	the	early	Pleistocene,	we	cannot	compare	
the	relative	influence	of	this	time	period.

Even	in	light	of	challenges	associated	with	temporally	
connecting	spatial	and	genetic	data,	this	study	elucidates	
the importance of including paleoclimates from key 
periods	of	diversification	when	examining	how	climatic	
drivers	impact	population	genetic	patterns.	Distance	
between	contemporary	suitable	habitats,	for	example,	
does	not	necessarily	reflect	past	patterns	of	variability	in	
habitat,	which	have	led	to	modern	patterns	of	genetic	
structure (Elith	et	al.	2006).	For	example,	the	origins	

of	contemporary	genetic	diversity	do	not	necessarily	
match	the	current	species	distribution,	as	such,	past	
periods	and	regions	of	high	gene	flow	might	be	better	
characterized using the methods proposed here. This 
statement is supported by the fact that an analysis 
based	on	isolation-by-distance	had	poorer	performance	
(marginal r2=	0.546	and	0.485)	compared	to	our	highest	
supported (marginal r2=	0.612)	based	on	 the	early	
Holocene	and	the	Marine	Isotope	Stage	M2	period).

Our	 study	highlights	 the	 importance	of	historic	
climate	 in	 shaping	patterns	of	 genetic	diversity	 in	
T. perfoliata.	 By	 gaining	 a	 detailed	 knowledge	of	
geospatial	patterns,	both	historic	and	contemporary,	
we	are	able	to	discern	when	and	where	barriers	to	
gene	flow	may	have	 influenced	overall	 patterns	 in	
population	genetics	(Elith	et	al.	2006).	For	species	with	
limited	dispersal	and	widespread	distributions,	more	
recent climates likely have less impact on the broader 
spatial	genetic	patterns.	Our	highest	performing	mixed	
spatial	model	was	one	that	included	paleoclimates	and	
it outperformed a model based only on contemporary 
climates (marginal r2=	0.612	vs.	marginal	r2=	0.551,	
respectively).	Contemporary	climates,	however,	have	
been	repeatedly	shown	to	effectively	describe	patterns	
of	population	genetic	diversity	at	smaller	spatial	scales	
(e.g.,	 Toczydlowski	 and	Waller	2019,	 Tackett	et	 al.	
2022).	For	 these	 reasons,	 considering	both	historic	
and	present-day	factors	when	discerning	patterns	of	
genetic	diversity	can	provide	novel	insights	into	drivers	
of	population	genetic	diversity.

Our	inference	of	historical	patterns	of	population	
structure	 shed	 light	on	an	enigmatic	cluster	group	
that	 is	currently	 found	 in	New	York	state	 (Cluster	3,	
Fig. 2;	Tackett	et	al.	2022).	Tackett	et	al.	(2022)	placed	
this	population	in	a	separate	cluster	group	from	other	
East	Coast	populations	 (Cluster	4,	Fig. 2),	which	all	
formed	a	cohesive	group.	We	recovered	an	instance	
of	high	gene	flow	between	a	cluster	group	currently	
in	the	Western	and	Midwest	of	the	US	(Cluster	1)	into	
our	New	York	cluster	group	(Cluster	3).	These	results	
suggest	a	historic	connection	between	the	Midwest	
and	Upper	East	Coast	populations,	where	members	
of	Cluster	1	 introgressed	 into	Cluster	3.	Our	mixed	
models	of	landscape	connectivity	also	suggest	a	similar	
Midwestern	corridor	across	 the	Ohio	River	drainage	
(Fig. 1).	Given	the	current	geographic	isolation	of	the	
modern	populations	and	the	inferred	directionality	of	
the	introgression,	from	the	West	into	the	North	East,	it	
is	likely	that	the	ancestral	population	sizes	of	Cluster	3	
were	small	given	the	predominant	genomic	signature	
of	Cluster	1	present	in	Cluster	3	(and	not	vice	versa)	
and	that	this	group	remained	somewhat	isolated	post-
introgression.	These	 results	 corroborate	population	
genetic	structure	observed	by	Tackett	et	al.	 (2022).	
Tackett	et	al.	(2022)	suggested	that	T. perfoliata also 
experienced	a	complex	demographic	and	evolutionary	
history,	where	they	found	breeding	system,	geography,	
and	 present-day	 environmental	 variables	 shape	
patterns	of	population	genetics	of	T. perfoliata. Through 
integrative	genomic	and	spatial	analyses,	we	expand	
upon	these	findings,	verifying	the	importance	of	both	
historic	 and	present-day	 factors	when	discerning	
patterns	of	genetic	diversity.
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Conclusions
In	this	study,	we	take	an	interdisciplinary	approach	

to	comprehensively	understand	factors	driving	patterns	
of	population	genetics	across	geographic	space	and	
through	evolutionary	time	in	the	widespread	annual	
species, Triodanis perfoliata.	Previous	work	examined	
the interplay of a novel, and likely highly inbreeding, 
reproductive system on patterns of population 
connectivity and genetic diversity (Tackett et al. 
2022).	 This	 previous	work	quantified	 the	 roles	of	
isolation	by	distance	and	breeding	system	in	shaping	
the overall population genetic structure of this 
species,	but	also	alluded	towards	the	potential	roles	
of	demographic	history	and	climate	 for	 influencing	
population	 connectivity.	Here,	we	expand	on	 this	
work	by	 specifically	 elucidating	 the	 roles	 of	 past-	
and	current	climate	and	climatic	stability	in	shaping	
population	genetic	patterns	in	these	same	populations.	
We	found	that	past	climatic	periods,	including	those	
prior to the last interglacial, are important factors 
in driving observed patterns of genetic diversity. 
Our	divergence	time	estimation	coincides	with	our	
climate	analyses,	 suggesting	 the	 late	Pliocene	as	a	
key	time	period	in	the	overall	evolutionary	history	of	
T. perfoliata. Understanding demographic history and 
historic climate, provides insights as to the apparent 
genetic	divergence	among	some	populations	that	may	
otherwise	appear	connected	by	contemporary	suitable	
habitat	 (i.e.	NY	population;	Fig. 2A;	 Tackett	et	 al.	
2022).	 Taken	 together,	 our	 research	 in	 this	 study	
system,	including	Tackett	et	al.	(2022)	and	the	present	
work,	emphasizes	the	importance	of	recognizing	the	
impacts of both current and past processes in shaping 
population	genetic	patterns,	and	in	examining	these	
factors	through	multidisciplinary	research	approaches	
(see:	Chan	et	 al.	 2011,	Brown	and	Knowles	2012,	
Crowl	et	al.	2015,	Brown	et	al.	2016a).
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