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Abstract

Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging 

modalities including fMRI. Choices about which events to report and how to annotate their full 

natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets 

for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new 

third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools 

(hedtags.org) combines robust event description with details of experiment design and metadata 

in a human-readable as well as machine-actionable form, making event annotation relevant to 

the full range of neuroimaging and other time series data. This paper considers the event design 

and annotation process using as a case study the well-known multi-subject, multimodal dataset 

of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure 

(BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for 

event annotation integrated in a natural way into the BIDS metadata file architecture, examine 

the impact of event design decisions, and provide a working example of organizing events in 

MEEG and other neuroimaging data. We demonstrate how annotations using HED can document 

events occurring during neuroimaging experiments as well as their interrelationships, providing 
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machine-actionable annotation enabling automated within- and across-experiment analysis and 

comparisons. We discuss the evolution of HED software tools and have made available an 

accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and 

Henson dataset (openneuro.org, ds003645).

Keywords

Events; Event annotation; Hierarchical event descriptors; HED; BIDS; EEG; MEG; HED-3G; 
Time series

1. Introduction

EEG (electroencephalographic) and MEG (magnetoencephalographic) neuroimaging, 

collectively known as MEEG, are non-invasive brain imaging technologies for capturing 

neuroelectromagnetic brain dynamic records at millisecond-scale sampling rates. As MEEG 

records brain signals occurring on the time scale of individual thoughts and actions, 

event-related data analysis plays a central role in MEEG and other types of neuroimaging 

experiments. Because of the essential role that event markers and their annotations play in 

linking experimental data to the unfolding of the experiment, incomplete event reporting 

using event annotations that are inaccurate, overly simple, or absent represents a significant 

barrier to analysis of shared neuroimaging data. Thoughtful choices as to how events are 

measured, identified, and annotated can greatly improve the utility of the collected data for 

both immediate and long-term analyses.

Good annotation tools and standards can also incorporate useful information about 

experimental design, participant tasks, data features (for example eyeblinks, movement 

artifact, ictal activity), and other metadata into the collected and later shared data, thereby 

making the data ready for efficient within- and across-study analyses using a variety of 

approaches. Although here we focus on MEEG applications, event annotation standards 

and practices essential for MEEG data analysis can be applied equally well to other types 

of neuroimaging time series data including fMRI. For example, growing appreciation of 

the importance of embodied cognition on mental life (Shapiro, 2019), new lightweight, 

low cost methods of recording details of brain activities and motor behavior of experiment 

participants (Casson, 2019) (Jas et al., 2021) (Vitali and Perkins, 2020), and emergence of 

the practice of recording both brain activity and behavior (as well as psychophysiology) at 

higher resolution in a broader range of tasks and task environments (often termed Mobile 

Brain/Body Imaging or MoBI) (Makeig et al., 2009), make development of a suitable and 

more comprehensive data annotation framework ever more urgent.

Events.

In everyday life, we use the term “event” to describe some experience (or sequence of 

interrelated experiences) unfolding through time that has some significance distinguishing it 

from other preceding, concurrent, and succeeding events. Events in this sense may be brief 

(e.g., the experience of hearing an unexpected click) or may unfold over any time period 
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(e.g., the experience of viewing a movie, or of repeatedly performing a cognitive task during 

a neuroimaging experiment).

Moreover, experiences we may refer to as events may be nested in time. For example we 

may recall, as a meaningful event, our emotional response to viewing the surprising first 

clip of a particular scene in a movie presented to us during a neuroimaging recording 

session. However, we may equally well recall, and think of as an event, our experience of 

viewing that clip, or our experience of viewing the whole scene, or the whole movie – or, 

of participating in the entire recording session. In recounting another experienced event, we 

typically recall and describe its critical transition points (e.g., “game kickoff”, “the final 

movie credits beginning to scroll”, “my feeling the moment after the electrode cap came 

off”). These we might liken to moments of phase transition in a time-limited dynamic 

process.

Event markers.

In neuroimaging time-series recordings, experiment events are typically recorded using 

event markers marking that each mark the time of some phase transition or other point of 

interest in the unfolding event or event process (most often, time of onset). Unfortunately, 

in practice these event markers are typically themselves labelled and referred to as “events”, 

risking conceptual confusion.

Each event marker designates a single time point, typically expressed as a time offset from 

the start of the time series recording. To be useful, the event marker must be associated 

with metadata that includes information about the type of event phase transition it marks, a 

reference to the ongoing event process it marks, as well as a description of the nature of that 

event. The description of the event is most conveniently associated with the event marker 

marking its onset. Event markers of later phase transitions in the event (e.g., its offset) 

need not repeat this description if they include an unequivocal reference to the event. As 

well as marking event onsets and offsets, event markers may mark other meaningful event 

phase transitions – for example the moments at which the trajectories of balls thrown by a 

participant in a juggling experiment reach their apex or a presented sound reaches maximum 

amplitude. Analyses aimed to better understand how brain activity supports skilled juggling 

or speech comprehension may well strongly benefit from identifying and then marking these 

moments in the experiment data record.

Fig. 1 illustrates these concepts schematically. During a task condition in which spatial 

target ‘+’ images are briefly presented at different screen positions, the participant is 

instructed to reach to touch the center of the current or most recently displayed target. 

HED annotations associated with the event markers provide essential linkage between the 

event processes and the measured data. Below, we also show how HED annotation can also 

capture the relation of events to the experiment design.

Event context.

An event occurring within longer-duration events (e.g., the experience of a stimulus 

presentation within a supervening task block in a neuroimaging session), and/or during 

temporally overlapping events, may be said to occur within the context of those events. 
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Since event marker latencies use a common timeline, software tools may automatically 

add context information about other ongoing events (wholly concurrent or temporally 

overlapping) to the event marker metadata at their time of use in data search and analysis. In 

the future, tools dealing with event context might be extended to facilitate desired analyses 

relating recorded brain dynamics to the experienced preceding and/or anticipated succeeding 
events.

Overview.

This paper introduces a practical event design strategy and illustrates a set of best practices 

for event reporting and annotation based on combining the new third-generation formulation 

of the Hierarchical Event Descriptor (HED) annotation framework (Robbins et al., 2021) 

with the MEEG data storage architecture of the Brain Imaging Data Structure (BIDS) group 

(Gorgolewski et al., 2016) (Niso et al., 2018) (Pernet et al., 2019) (Holdgraf et al., 2019). 

The paper is organized around a case study using MEEG data from a publicly-available 

multi-participant, EEG/MEG and fMRI experiment by Daniel Wakeman and Richard 

Henson (Wakeman and Henson, 2015; abbreviated below as W-H) saved in conformity 

with the BIDS guidelines. The HED/BIDS integration of event annotation demonstrated and 

recommended here not only facilitates automatic and informative summarization of data; it 

also establishes a standardized interface for automated pipelines to search for, collect, read, 

preprocess, and perform automated event-related analysis using study-independent tools 

and vocabulary. In particular, the strategy enables analyses to be performed across stored 

datasets, even when these datasets do not have the same experiment design.

W-H.

The W-H experiment was conducted to develop methods for integrating multiple imaging 

modalities into analysis to increase the accuracy of functional and structural connectivity 

analyses. Nineteen participants completed two recording sessions spaced three months apart 

– one session recorded fMRI data (W-H-fMRI) and the other simultaneously recorded 

MEG and EEG data (W-H-MEEG). During each session, participants performed the same 

perceptual task, evaluating the symmetry of presented photographs of famous, unfamiliar, 

and scrambled faces. The participants pressed one of two keyboard keys with left or right 

index fingers, respectively, to indicate a subjective yes or no decision as to the relative 

spatial symmetry of each viewed image. The original, unannotated W-H dataset was made 

available on OpenNeuro (openneuro.org, ds000117). Recently, we have shared a BIDS 

version of the W-H joint EEG/MEG data on OpenNeuro (openneuro.org, ds003645) with the 

more complete event organization and annotation discussed in this paper. Although we here 

focus on the MEEG portion of the W-H data set, the methods we demonstrate are equally 

applicable to annotation of fMRI or other neuroimaging time series data.

Unlike most MEEG experiments, the W-H overt face-symmetry judgment task was not 

itself of interest to the experimenters, who thus made no effort to judge whether participant 

responses had some objective basis in the face images themselves. Rather, the experiment 

was designed to covertly test recognition memory for the three types of face images. To 

this end, each individual face image was presented twice during the session. For half of 

the presented faces, the second presentation immediately followed the first. For the other 
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half, the second presentation occurred after 5–15 intervening face image presentations. 

Famous faces were feature-matched to unfamiliar faces, and half the faces were female. 

Following the neuroimaging sessions, the authors also collected behavioral recognition 

memory performance measures from participants to allow testing for interactions between 

MEEG responses associated with individual image presentations and subsequent recognition 

memory for those images. These behavioral recognition memory data were also provided by 

the data authors for inclusion in our revised MEEG dataset.

Fig. 2 shows a schematic view of a typical event sequence in the W-H experiment. All of 

the session recordings were conducted using the same equipment, with the participant seated 

and facing a computer monitor throughout (top black timeline). The bottom two timelines 

show the introduced sensory events (visual screen image presentations, green timeline) and 

participant actions (left or right index finger key presses, purple timeline).

Some of the participants were instructed to follow each face image presentation onset with 

a left index finger key press to indicate above average facial symmetry and a right index 

finger press to indicate below average facial symmetry. The remaining participants used 

the opposite key assignment. The key assignment was in effect for all of the recordings 

associated with a particular participant (orange timeline). The participants were also 

instructed to fixate on the white cross and asked not to blink while the fixation cross and 

face images were presented (thick gray gaze task timelines).

The fundamental problem addressed here is how to effectively describe events in a 

standardized form that is human-readable, machine-actionable, and analysis-ready – without 

placing undue burden on the annotator. The W-H-MEEG experiment has five regularly 

repeating types of events. We demonstrate how to create locally defined names (show_cross, 

show_face, show_circle, left_press, and right_press) using a standardized vocabulary (HED) 

and to associate these names with event markers, resulting in an analysis-ready annotated 

event stream.

The following section begins with a brief introduction to the HED system and, using 

the W-H MEEG experiment as a concrete example, explains the event annotation process 

including annotations relating event types to the experiment design. Section 3 shows how 

these annotations can be organized within a BIDS dataset to achieve machine-actionable, 

analysis-ready annotation. Using the example developed in Sections 2 and 3, Section 4 

examines the event design process and proposes a set of guidelines for effective design 

and annotation in neuroimaging research. We discuss what events should be reported, how 

the events should be encoded, and sketch planned further work to extend this encoding to 

include the relationship of the encoded events to participant task(s) and intent. Section 4 

also summarizes the importance and potential impact of best-practice annotation strategies 

in making both stored and shared data more reproducible, interpretable and usable, first to 

the annotators themselves, then in any subsequent analysis enabled by effective data storage 

and sharing. We give a brief review and roadmap for future HED development in Section 5.
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2. Machine-actionable event annotation using HED

The HED system is based on a collection of hierarchically organized terms (the base HED 

schema) that can be used to describe experiment events, condition variables, participant 

tasks, metadata, and the recording’s temporal structure. HED was specifically designed to 

encode information in both human- and machine-actionable format to enable validation, 

search, identification, and analysis of events in neuroimaging or other time series datasets 

that include events with known timing.

The original HED implementation (first-generation) focused mainly on a description 

of stimuli and responses (Bigdely-Shamlo et al., 2013). The second-generation HED 

framework (Bigdely-Shamlo et al., 2016) included many vocabulary improvements, plus 

tools for validation, data search, and analysis. HED was accepted in 2019 as an optional 

standard for event annotation in BIDS formated data.

HED has recently undergone an extensive third-generation redesign (HED-3G) to enable 

capture not only of basic event and event marker descriptions, but also of experimental 

conditions, temporal structure, and event context (Robbins et al., 2021). HED-3G provides 

a readily extensible basis for easily interpretable annotation of time series datasets for use 

in analysis, re-analysis, and shared data mega-analysis. HED-3G was officially released 

in August 2021 and is ready for widespread use in data archiving, sharing, analysis, and 

mega-analysis. In this paper, we use the term HED to refer exclusively to HED-3G.

The remainder of Section 2 works through the W-H-MEEG case study step-by-step to 

illustrate the HED annotation process and the major features of HED. The examples are 

organized so that the end result is a fully-annotated BIDS dataset.

2.1. A starting point for HED dataset event annotation

The HED base schema has seven top-level or root nodes as shown by the partially expanded 

schema tree in Fig. 3, left. The very basic HED event annotation shown in the table inset on 

the right is our starting point for development of comprehensive annotation.

To annotate events, users create comma-separated lists of terms selected from the HED base 

schema to describe the main events and concepts. This can be done as a table such as the 

one shown on the right in Fig. 3. Users first select an item from the Event top-level subtree 

to give a basic characterization of the event category (e.g., Sensory-event, Agent-action, 
Data-feature) for each of the main types of event markers. The top-level event categorization 

tag often serves as a primary search key for identifying events of interest. In addition to 

the event category, tags describing the sensory modality for sensory events or the type of 

action for agent actions are included next. In some sense, the annotation process can be 

thought of as using keywords from a structured vocabulary to tag events. The tag group 

(Press, Keyboard-key) in Fig. 3 then resembles a verb phrase, and the (Index-finger, (Press, 
Keyboard-key)) tag group a sentence with a subject and verb clause.

Additional tags should then be added to provide a more detailed description. For follow-on 

analyses, particularly comparisons of MEEG dynamics across experiments, having still more 
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detailed annotation can add significant and enduring value to the data. In this example, 

adding annotations answering questions such as: “Which fingers pressed the keys?”, “How 

large were the cross, face image, and circle?”, “What colors were they?”, “Where were these 

images presented on the screen?”, and “For how long were they shown?”, can add details 

to the annotation that could well prove of interest in further analyses and mega-analyses 

involving the data, even when (as here) the specific hypothesis testing for which the 

experiment was designed did not vary nor evaluate effects associated with answers to these 

questions.

While classical statistical testing assumes rigidly controlled experiments that involve 

controlled variation of at most a few features of interest, new statistical methods including 

machine learning can exploit diversity in labelled data to learn deep structure in the data 

– here, links between MEEG dynamics and human experience and behavior. In the past, 

the value of neuroimaging data for the researchers who created it depended primarily 

on the quality of the scientific paper they published using it. Increasingly, the value of 

neuroimaging data accruing to the data authors will also include the number and quality 

of further analyses that exploit the rich information contained in the dataset to power 

cross-study analysis.

2.2. Short and long form annotation

A critical usability innovation in third-generation HED is the requirement that each term 

in the HED schema must have a unique name (i.e., must only appear in one place in 

the schema). As a result, an annotator can tag using just a single end-node term (e.g., 

Circle in an Item hierarchy), rather than spelling out its full hierarchical schema path 

string (e.g., Item/Object/Geometric-object/2D-shape/Ellipse/Circle). Automated HED tools 

can then map such short-form tags to their complete (long-form) paths whenever the data 

are to be validated or analyzed. See the Tools section of the HED specification for links 

to tools written in Matlab, Python, and JavaScript to perform this mapping (https://hed-

specification.readthedocs.io/en/latest/).

The expanded long-form annotations allow tools collecting related events for analysis to 

find HED strings that belong to more general categories – for example, searching for event 

markers whose HED strings contain the more general term 2D-shape, not only the more 

specific Circle. This type of organization is particularly useful for gathering data epochs 

time locked to a variety of events across datasets that have some feature or features in 

common, and/or have been annotated with different levels of detail.

The HED tag examples in this paper are given in short form for readability, and HED tags 

are always italicized. Supplementary Table 2 has examples of short form to long form tag 

expansion. While HED tags are case insensitive, by convention HED tags start with a capital 

letter and individual words in a tag are hyphenated. This convention makes it easier to pick 

out individual tags in a lengthy string of comma-separated tags. Also, HED tags cannot 

themselves contain blanks. In this paper we display locally-defined terms in fixed point 

type. Terms used in BIDS event files (e.g., show_face or event_type) use underbars as word 

separators to allow tools to directly map identifiers into program variables or structure fields.

Robbins et al. Page 7

Neuroimage. Author manuscript; available in PMC 2022 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hed-specification.readthedocs.io/en/latest/
https://hed-specification.readthedocs.io/en/latest/


2.3. Identifying event concepts using HED definitions

Fig. 3 (above) gives minimal HED annotations for the five most regularly occurring event 

types in the W-H dataset as described schematically in Fig. 2. This level of annotation 

allows analysts to isolate events of different types (e.g., stimulus events vs. participant 

actions), but does not provide sufficient detail to support advanced analysis and cross-study 

comparisons. Further, the annotation treats each event as occurring instantaneously, but the 

image presentation events have distinct onsets, durations, and offsets, all of which are known 

to affect brain dynamics measured by MEEG or fMRI.

HED user event definitions allow annotators to document the structure of the experiment, 

as laid out in Fig. 2, by “defining” or “declaring” experiment event-related concepts using 

names of their choosing and associating them with tag groups. During the annotation 

process, users can then use the defined names in place of the longer tag strings. HED 

definitions allow data authors to use shorthand terms from the colloquial lab jargon that they 

use in everyday lab conversations, while allowing data search and analysis to make use of 

the full HED annotations in analyses. Definitions also make it easier to initially identify 

and then later refine (all within the single definitions) annotations by adding tags to give 

further details. HED definitions thus can improve annotation process organization similar to 

the way first planning and then programming sub-functions can simplify the coding process 

and improve the resulting computer code.

Importantly, HED user definitions also play an integral role in assisting data authors in 

documenting experiment architecture, event temporal extent, and other dataset aspects. 

Consider a simple user definition (Face-image) for the presentation of a face image on a 

black background with a white fixation cross.

Here we embolden defined terms for ease of reading. For simplicity the definition uses 

short-form encoding (e.g., Visual-presentation instead of the full path string Property/
Sensory-property/Sensory-presentation/Visual-presentation). Of course, this definition can 

be made more detailed, at any point in the annotation process. Note, however, that to avoid 

circularities HED definitions cannot be nested.

Once defined, annotators can use Def/Face-image in building annotations in place of the 

more complete but much longer and harder to remember tag string, thus increasing the 

readability of the dataset annotation while allowing the annotator to use (and more easily 

recall) terms that seem most natural to them.

Next, we focus on the use of HED definitions to annotate more of the temporal fine structure 

of the participant experience. The green timeline of Fig. 2 (Section 1) shows the time 

courses of the sensory events in the W-H data. The bright green bar marks the “pre-stimulus 

period” during which a white cross is displayed, while the dark green bar marks the time 

Robbins et al. Page 8

Neuroimage. Author manuscript; available in PMC 2022 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during which the face image is displayed, and the light green bar marks the period during 

which a white circle is displayed.

The boundaries between these displays are marked by the show_cross, show_face, and 

show_circle event markers, respectively. In the W-H experiment, face display ends when 

the circle image is presented. In addition, performance periods for two additional instructed 

eye-control tasks (represented by the thick gray timelines in Fig. 2) coincide with these 

events: 1) participants were asked to maintain eye gaze fixation on the white cross while it 

was displayed, and 2) to inhibit eye blinks during face image presentations.

Table 1 shows an expanded version of the table inset of Fig. 3 using definitions grouped 

with Onset and Offset tags to document temporal relationships between events indicated 

schematically in Fig. 2. (See Supplementary Table 1 for the complete annotation.)

When a defined term such as Face-image is grouped with an Onset tag (e.g., such as Def/
Face-image in the annotation for show_face in Table 1), the annotation represents the Onset 
marker of an event that unfolds over some duration. Face-image is assumed to be in effect 

until the next event in which a Face-image tag appears grouped with an Onset or Offset 
tag (the next show_circle event). In the BIDS event file excerpt of Fig. 2 (Section 1), a 

show_face event onsets at time 23.87 s, while the next show_circle event (whose annotation 

includes a Def/Face-image grouped with an Offset tag) occurs at 24.75 s, Thus, the face 

image event presentation process unfolds over 24.75 – 23.87 = 0.88 s.

Table 1 gives similar encodings for all the task-related sensory and participant action events. 

The Press-left-finger and Press-right-finger definitions of Table 1 do not include Onset or 

Offset tags because here only the time of key release was recorded; thus we only model 

these participant actions as instantaneous events that occur at a single moment in time.

2.4. Event context and temporal events

Effects of both preceding and concurrent event context on event-related MEEG brain 

dynamics have long been reported (Squires et al., 1977) although not frequently studied. 

When the full annotation of an event is assembled at time of data search or analysis, HED 

tools can automatically insert information about ongoing events in an Event-context tag 

group. For example, suppose a participant presses a key while a movie clip is playing. 

After creating a Play-movie definition to describe the movie presentation, the researcher 

can annotate the event marking the start of the movie with (Def/Play-movie, Onset) and the 

event marking the end of the movie with (Def/Play-movie, Offset). HED tools can insert 

information that the movie was playing into the annotations of any concurrently occurring 

events. A future goal is to allow HED context tool annotation to also support studies of 

consequences of recent past events on the behavior and brain dynamics associated with 

current events.

2.5. Annotating experiment design and condition variables

The event marker sequences and the annotations described in the previous section define 

what happens during the experiment, but do not convey the purpose of the experiment or 

the relation of events to the underlying experimental design. A goal of HED is to provide 
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convenient mechanisms for annotating this information in sufficient detail that tools can 

automatically extract and make use of experimental design information during analysis. 

HED supports the first steps in this process. This section introduces the Condition-variable 
tag and combines this tag with concept definitions to encode the W-H experimental design.

The W-H experiment design.—The W-H experiment uses a factorial 3 × 3 matrix 

whose two factors are face type and repetition status, each with three levels. The primary 

author analyses (Henson et al., 2011) (Wakeman and Henson, 2015) (Henson et al., 2019) 

focused on face type analyses (with three levels corresponding to the display of famous, 

unfamiliar, and scrambled faces, respectively). The authors computed across-trial averaged 

event-related potentials (ERPs) and some frequency-based measures for MEEG responses to 

different types of face images with an underlying purpose of improving source localization 

by leveraging participant information obtained from multiple imaging modalities.

Each face (or scrambled face) image was shown twice during a session. The repetition 

status factor (with levels corresponding to the first display of an image, an immediately 

repeated display, and a delayed repeated display) encodes the position in the sequence of 

face image presentations with respect to their matching images. The delayed-repeat level 

indicates that the first presentation of this image occurred 5 to 15 face image presentations 

previously. The repetition status design variable was introduced to support study of the 

effects of image novelty and reinforcement on face recognition in the W-H data, supported 

by a later (behavior-only) face image recognition task session not included in the original 

version of the shared data.

Documenting experiment control events.—In BIDS datasets, information about 

changes in experiment conditions (e.g., in task or stimulus conditions) during a data 

recording session can be entered in one of two ways in the BIDS (…events.tsv) event file: 

either by inserting new columns in the event file table or by inserting new rows (events) in 

the events table.

Additional columns encode some item of information about every recorded event (row). The 

presence or absence of the informative condition is then indicated by the value in the cell of 

that column in every event row of the table (n/a used to indicate its absence or irrelevance). 

When the information is relevant to only a small fraction of the recorded events, this can 

waste space and computation.

The alternative approach is to add new rows (event markers) to encode the information 

as their own events. Tools must then use context search to determine whether or not the 

information is relevant during the occurrence of any particular event. BIDS leaves the choice 

of representation (by row or column) to the user.

Table 2 summarizes the 3 × 3 W-H experimental design matrix and demonstrates how 

the experiment design can be encoded using HED. Here we will encode design factor 
information in columns added to the BIDS …events.tsv event files. The factor names 

(see column 1 in Table 2) correspond to BIDS event-file column headings (face_type and 

rep_status, respectively). The levels (famous_face, unfamiliar_face, scrambled_face) for the 
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face type factor will appear as values in the face_type column of the BIDS event files. 

Similarly, the levels (first_show, immediate_repeat, delayed_repeat) of the repetition status 

factor appear as values in the rep_status column. The complete annotations are given in 

Supplementary Table 1.

The recommended strategy for annotating the factors and their levels using HED (as 

illustrated in Table 2) is to first create, for each level, a convenient HED “event concept” 

definition that includes a Condition-variable tag whose value is the factor name. The name 

of the definition is interpreted programmatically as the variable level for that factor (e.g., 

Definition/Famous-face-cond is a level for condition variable Face-type). These elements 

appear in boldface in Table 2 to emphasize their role in documenting the experiment design. 

Notice that the BIDS event file excerpt in Fig. 2 (Section 1) includes a face_type column 

whose values (such as famous_face) give the factor levels.

The event file excerpt in Fig. 2 also includes a rep_lag column giving the number of trials 

past since the same image was first presented. This column includes numerical values only 

when the rep_status has values immediate_repeat or delayed_repeat, and n/a otherwise. 

Note that these values could be computed from the event table itself, but are included here 

(and in the accompanying W-H dataset submitted to OpenNeuro) to make that computation 

unnecessary.

Column-wise encoding of event (and experiment) design variables makes manual or 

automated extraction of the event design matrix from BIDS task events files straightforward. 

Here, the choice of column encoding for the face type and repetition status factors makes 

sense because the factor levels change with each face image presentation. When a condition 

variable has the same value for most (or all) events in the recording, using the event marker 

(row) encoding method to mark condition changes may be more appropriate.

The W-H experiment used a between-participants response-key assignment variable to 

control for handedness bias. The key assignment factor (with levels left_sym_cond and 

right_sym_cond) encodes the assignment of which index finger key press indicates the 

participant’s decision that the presented face is more symmetric than average. In the 

left_sym_cond condition, participants press a key with the left-index finger to indicate they 

perceived more than average facial symmetry, and press a key with the right index finger to 

indicate less than average facial symmetry. The left-right key assignment is counterbalanced 

across participants. Table 3 shows how to encode this key assignment using experiment 

control events.

Notice that key_assignment does not correspond to a column in the table of Fig. 2, Section 

1. Because the level of this variable is constant for the entire recording, this variable is better 

encoded by inserting an experiment control event at the beginning of the recording to mark 

the Onset of this control-condition assignment. Here we insert an initial experiment control 

event with an event_type value of either setup_left_sym or setup_right_sym to encode the 

initial recording setup and key assignment. The onset time of this experiment control event 

is that of the first data point of the recording (see the first event of the table in Fig. 2, Section 

1).
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Section 3 discusses in more detail how the definitions in Tables 2 and 3 can be used in 

conjunction with BIDS …events.tsv event files to fully document the experimental design 

within the BIDS dataset annotation. HED tools now under development will then be able 

to automatically extract the design matrix and other statistics about the experimental design 

from HED definitions that include the Condition-variable tag and from experiment control 

events associated with these definitions.

3. HED annotation of a BIDS-formated dataset

BIDS recommendations for archival data storage have quickly become a de facto standard 

for sharing raw neuroimaging data. This section demonstrates how HED event annotations 

are actually mapped into machine-actionable annotation of datasets organized according to 

BIDS specifications. A BIDS dataset typically holds data from an experimental study that 

includes a number of brain imaging data files recorded from one or more participants in 

one or more sessions and/or task or other conditions. BIDS specifies a particular dataset 

directory structure, file naming conventions, and permitted image data formats, making it 

easier for users and tool developers to access data without manual or computerized recoding.

In BIDS-formated datasets, much of the metadata is located in .json (JavaScript Object 

Notation) text files called sidecars. File naming and folder architecture conventions associate 

the sidecar metadata with the data files. When the same metadata applies to many data 

files, BIDS allows metadata files to be placed higher in the dataset directory hierarchy. 

The metadata information is then inherited by data files in dataset sub-directories (the 

BIDS Inheritance Principle), thereby avoiding the need to repeat the same metadata within 

multiple files in lower levels of the BIDS folder hierarchy. HED leverages the inheritance 

principle by placing HED annotations in a JSON sidecar ideally at the top level in the 

dataset. HED tools are available to take concept tables such as those of Table 1 and Table 2 

to automatically create a BIDS JSON sidecar for events files.

Table 4 below summarizes different mechanisms for including HED annotations in a 

BIDS dataset. The current case study includes HED information ONLY in the top-level 

…events.json sidecar file contained in the dataset root directory. That information is keyed 

to the column names of the individual …events.tsv files (Fig. 2 and Table 5 below) located at 

the lowest level of the dataset, each containing the list of event markers in the corresponding 

recording.

As summarized in Table 4, it is also possible to incorporate HED annotations in other 

BIDS .tsv files by including an extra column titled HED. These annotations are particular 

to the row of the file and should only contain HED strings (not HED definitions). For 

example, a HED string appearing in the HED column of participants.tsv pertains to the 

participant described in that row. In annotating more complex experiment designs, some 

HED information could be placed most efficiently in any or all of the four BIDS .tsv file 

types listed in Table 4 (if present) as well as in additional …events.json sidecars placed 

at lower levels in the dataset hierarchy, possibilities that for simplicity we do not discuss 

further here.
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It is also possible to annotate individual events, or parameters that vary across individual 

events by recording additional individual-event HED tags in a HED column in the events 

files. Because of the difficulty in reading and editing annotations spread across individual 

events, this type of annotation should be avoided unless needed. However when, for 

example, presented stimuli have randomly varied properties (screen location, pitch, size, 

etc.), these details can be documented in this manner. Separate value columns in the event 

file with HED value annotations in the pertinent JSON sidecar can also be used to encode 

this information.

3.1. BIDS events.tsv files

At the lowest, single scan (data recording or run) level of the dataset folder hierarchy, BIDS 

event files are tab-separated value formated text files with file names ending in …events.tsv. 

The BIDS naming convention associates the column headings in the …events.tsv event files 

with annotations contained in the relevant …events.json sidecar files – always including 

the top (full dataset-level) …events.json file. Here we use …prefixes in the filenames as 

placeholders for information embedded in the filename prefixes concerning data modality, 

task, session, subject, and run. The first line in a BIDS event file is a header line identifying 

each column, and each subsequent line corresponds to an event marker (an identified time 

point of interest within an identified event process) in the data.

Table 5 shows the excerpt of the BIDS event file of Fig. 2, color-coded to indicate the source 

of the expanded event annotations as shown in Table 7 (following, see Section 3.3).

Note that Table 5 differs slightly from the events listed in Fig. 2 in that the second event 

has an event_type called show_face_initial rather than the show_cross of Fig. 2. As is often 

the case, the startup event in a block of trials differs from the internal block trials. The 

first reported event in all W-H recordings corresponded to the first showing of a face image 

rather than the showing of a fixation cross, although ERP analysis of the data suggests 

that this event actually occurred. Thus, the HED tags for show_face_initial includes (Def/
Fixation-task, Onset) and does not include (Def/Cross-only, Offset).

Each row in the task events file table gives information about a single event, typically 

functioning as a marker of the onset of an event process. BIDS requires event files to have 

onset and duration columns giving the onset time (in the data) and duration of each event in 

seconds. Users may add additional columns as needed. All columns in the task events file 

should be documented in one or more accompanying JSON-format sidecar files as described 

in the next section.

BIDS event files have two types of columns: categorical and value. Categorical columns 
allow a small number of distinct defined levels or categories, represented as text or numeric 

values. Other columns are value columns. The …events.tsv file in Table 5 has three 

categorical columns: event_type (blue), face_type (plum), rep_status (green), each with a 

relatively small number of distinct levels that will be annotated individually. Value columns 

in this file include onset, duration, sample, value (all in white), and rep_lag (in mustard). 

The final stim_file column (tan) could be treated either as a categorical or as a value column 

depending on the number of distinct stimulus images. Here we treat stim_file as a value 
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column because of the relatively large number of different face stimulus images used in the 

W-H experiment.

The distinction between categorical and value columns is important mainly because HED 

annotations are encoded differently for the two types of columns, as explained below. 

The column labeled value in the above example corresponds to the trigger values from 

the experimental control program and is retained for informational purposes. The columns 

displayed in white in Table 5 will not be annotated with HED.

3.2. BIDS events.json sidecar files

Many experiments can use a common and relatively simple event design strategy that 

requires building only a single …events.json annotation file at the top level directory of 

the dataset to provide complete machine-actionable event annotation across participants and 

recordings when combined with the values in the individual recording …events.tsv files. 

In general, an organization using a single dataset-level …events.json sidecar is easier to 

annotate, understand, and maintain, so that is the organization we focus on here. The W-H 

annotation case study (Section 2) assumes that all the annotation of dataset events is in a 

single …events.json sidecar file (task-FacePerception_events.json) located in the top level 

dataset directory. Table 6 shows a portion of this sidecar file. See Supplementary Table 1 for 

the complete version.

The …events.json sidecar files are structured as dictionaries. The excerpt shown in Table 6 

has three top-level keys (onset, rep_status, and stim_file) corresponding to column names 

in the …events.tsv file excerpt shown in Table 5. (Here the annotations for the columns 

sample, event_type, face_type, and rep_lag are omitted for readability but are included in 

Supplementary Table 1.) HED tools associate column metadata with particular columns in 

the event file using these column names. BIDS users may use additional top-level keys to 

include additional metadata in the JSON sidecars (e.g., the Levels and Description under 

rep_status in Table 6). We also use additional top-level keys to separate out the HED 

definitions for readability, although definitions may be included in the other annotations.

In Table 6, the metadata dictionaries associated with rep_status and stim_file have HED keys 

and hence include HED annotations. In contrast, the metadata dictionary associated with 

top-level key onset does not include a HED key, so it is considered to be an unannotated 

column and is ignored by the HED tools. If the HED key references a dictionary (as does 

rep_status in Table 6), HED assumes the task events table column is categorical, while if 

the HED key references a string (like stim_file in Table 6), HED tools assume it is a value 

column. In either case, HED tools use the corresponding HED key values to assemble the 

annotation for the event.

Categorical column annotations in …events.json sidecar files include a separate HED 

annotation for each categorical value that appears in the corresponding column of the …

events.tsv file (e.g., the categorical value first_show appearing in column rep_status of Table 

5). Value column annotations (such as the one appearing for the stim_file column) use a 

single HED string with a hash symbol (#) value placeholder to annotate the column. When 
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the complete annotation for an event is assembled, the HED assembler tool replaces the hash 

symbol with the value from the respective row and column of …events.tsv file.

The next section explains how the annotation for an event is assembled by combining event 

information in the …events.tsv files with the HED annotations in the …events.json sidecar 

dictionaries.

3.3. Assembling and using the complete event annotation

HED assembler tools gather the BIDS …events.json sidecars applicable to an …events.tsv 

file and assemble a single HED string representing the annotation for each event marker (as 

represented by a line in the BIDS event file). The assembled HED string annotation for the 

second face display event (show_face) in Table 5 is shown in Table 7. Parts of the HED 

string are color-coded to indicate which column annotation that portion corresponds to. The 

corresponding columns in the …events.tsv file of Table 5 use the same color shadings.

To annotate this show_face event (from the …events.tsv file excerpt of Tables 1 and 5), the 

HED assembler looks up the column annotations defined in the accompanying …events.json 

sidecar. As the onset, duration, sample, and value columns of the …events.tsv file do not 

have HED annotations in the …events.json sidecar file in this example, they are skipped. 

(Note: these columns could have been annotated as value columns). The show_face value 

in column event_type is translated into its HED definition (Table 1), then concatenated 

to the assembled annotation (light blue shading). Next, the annotation for famous_face 

in the face_type column is found in the sidecar and appended (plum shading). Then the 

category immediate_repeat in the rep_status column is looked up, and the corresponding 

HED annotation is included (green shading). Finally, the repetition lag value in the rep_lag 

column and the filename value in the stim_file column are substituted for their respective 

#’s in the corresponding annotations (mustard and tan shadings). The other column values 

are skipped in this process, because they have no HED keys in the …events.json sidecar 

dictionary.

During analysis, the HED tools can expand the definitions so that their values are available 

for searching and filtering. Supplementary Table 2 shows the assembled annotation of Table 

7 in several forms, and demonstrates how the Def-expand tag is used with the substituted 

definitions to accomplish this expansion.

Combining the information in the BIDS …events.tsv files with the appropriate …events.json 

sidecar annotation file(s) enables powerful automated tools to be implemented. Given 

this information, such HED tools could automatically extract and optionally visualize the 

experiment task list, the underlying experimental design, and the temporal structure of a 

recording. Extensive statistics about the number of event markers with different properties 

could also be computed. Data could be separated into event-locked epochs with similar HED 

tags fitting a simple or complex description, and automatically bootstrapped to look for 

differences associated with different experimental parameters. Complex searches could be 

conducted across datasets (including datasets using different tasks and experimental designs) 

without need for manual re-coding.
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The case study developed in Section 2 and 3 illustrates the annotation process. The next 

section extracts “lessons to be learned” from this case study to formulate a set of “best 

practices” for event design and annotation.

4. Best practices in event design and annotation

A myriad of events, overt or covert, planned or unplanned, may unfold during the execution 

of an experiment. How a researcher chooses to organize, report, and annotate events 
can completely change the capacity of a given dataset to support analysis, reuse, 
and reproducibility. It may not be possible to record markers for every conceivable 

recordable event, nor may it be feasible to describe precisely their every detail. Incorporating 

fine details of all known events might indeed prove valuable to future analyses and 

mega-analyses. However, some limit in time and energy available must be accepted. One 

important strategy is to be sure to include the actual stimuli and/or virtual environments 

with the stored/shared data, as included here in the W-H data. Others wanting to exploit 

the analysis value of more detailed annotations of the data could then be in a position 

to add further details to the annotations. For example, the StudyForrest project (https://

www.studyforrest.org/) organized a team to more fully annotate events in the movie Forrest 
Gump that had been shown to participants in several neuroimaging studies.

Event design as used here refers to the process of identifying, organizing, reporting, and 

sufficiently annotating the nature of events to a degree allowing complete interpretation of 

the event-related dynamics recorded during the experiment. The process includes listing the 

recurring types of event markers in the data, giving them easily recalled terms, and then 

defining each term using HED annotation. Ideally, these event markers and descriptions 

should include all that is relevant to both current, planned and future potentially fruitful 

analyses. Event design should be the first step in augmenting a dataset with HED annotation.

Best practice in event design encourages researchers to look beyond the immediate use 

of their data to broader questions. In particular: Which aspects are potentially important 
to future analysis (performed either by the data authors or others)? These analyses are 

likely to include meta-analyses and mega-analyses (Costafreda, 2012) (Boedhoe et al., 2019) 

(Bigdely-Shamlo et al., 2019) across shared datasets that may involve different designs, 

participant tasks, experimental conditions, and event types.

The event design process has two steps: first identifying which events to report or mark and 

then mapping the resulting event markers into usable annotations. The most critical part 
of this process is recording and marking the events, as events not marked in the data 

may not be recoverable. Ideally, the event design process should be performed before 
data collection begins, as the event design process clarifies what is being measured and 

whether those measurements can be used to achieve experimental goals. In any case, most of 

the information required by a good event design process will be required in publications 

reporting the work, so performing a preliminary event design can help to assure that 

important details are not confused or overlooked later. In this section, we discuss the event 

design process and suggest guidelines for it using the W-H dataset as a case study. Even 
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when HED annotation is performed after data collection, beginning the annotation process 

with event design is useful for deciding how to best annotate the data.

4.1. Event design for the W-H experiment

The W-H event design developed in Sections 2 and 3 above is not the one distributed 

with the original shared OpenNeuro dataset ds000117, but was developed based on the 

recommended event design practices with the generous assistance of the data authors 

Wakeman and Henson to make additional event type and timing information available in 

the data. The MEEG data of the redesigned dataset are available as OpenNeuro dataset 

ds003645. The event design of Table 5 marks the onsets and offsets of all the experimental 

stimulus sensory presentations and participant action motor responses using the annotations 

and encoding of the event_type column of Table 1. Further, the 3 × 3 experimental design 

is represented (using information in the face_type and rep_status columns and the encoding 

described in Table 2.)

Table 3 defines a setup_left_sym experiment control meta-event whose time is that of the 

first data sample. This meta-event can also be used to store other annotations applicable to 

the entire recording, such as the visual presentation screen size and participant distance (as 

available). Since the (left = ‘symmetric’) key assignment is in effect for this entire recording, 

it is more efficient and clearer for tools to encode it as an initial meta-event rather than 

giving it its own column in the …events.tsv files requiring the same value to be repeated 

for every motor response event. If we want to use the single JSON events sidecar at the top 

level in the BIDS dataset file hierarchy, every value in the …events.tsv files must have the 

same meaning across the entire BIDS dataset. A setup_right_sym meta-event must also be 

introduced there to apply in the datasets using the (right = ‘symmetric’) key assignment.

The event table also includes a column labeled sample that gives the data sample number 

of the event marker. This column is recommended in the BIDS standard and is good 

practice since the precision of the onset values is left completely open in BIDS and 

accurate event timing is extremely important for MEEG analysis. The value column is 

not necessary, because its information is already encoded in the face_type, rep_status, and 

rep_lag columns, but we have retained it to maintain the connection with the original shared 

dataset, since the value column captures the actual event code triggers produced by the 

experiment control software.

For comparison, Table 8 shows a sample of the event file for the MEEG portion of the 

W-H data, as originally shared. The …events.tsv files only give the onsets of the face 

presentations and contain no markers for other sensory presentation or participant responses, 

limiting the usability of the data for analysis, further analysis, and meta/mega-analysis.

Table 8 is considerably shorter and narrower than Table 5 (our recommended version), but 

it is missing critical information (e.g., rep_status and all the events marking presentations of 

the fixation cross and focusing circle, as well as the key press events). Difficulties introduced 

for downstream analysis by not recording and reporting all possible sensory and participant 

action events are discussed in more detail in Section 4.3 and Section 4.4, respectively.
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Another difficulty in Table 8 is the use of non-orthogonal encoding of the experimental 

design in the event-recording hardware system trigger column, whose 12 distinct values are 

shown in Table 9.

While it is possible to tag each trigger value as in Table 9 to associate it with the factors and 

levels it represents, the non-orthogonal or mixed encoding used to build the trigger codes 

makes downstream analysis much more likely to require manual re-coding, thereby making 

the dataset difficult to include in further analysis. In the recommended design (Table 5) the 

independent factors face_type and the rep_status are represented by independent columns in 

the events file, making it easy for automated processing to detect the 3 × 3 design. Encoding 

of experimental conditions is discussed in more detail in Section 4.5.

4.2. Pitfalls in reporting events by-trial rather than by-event

An overall guideline for reporting events strongly favors expressing each relevant event with 

its own (onset) event marker and corresponding line in the event file. Where relevant, offset 

time information for events representing processes with appreciable duration should also be 

reported. In some cases, event markers for intermediate points of interest in an event process 

may also be important for analysis, for example onsets of individual syllables in spoken 

words or critical points of hand/arm movements in reach trajectories. HED also supports use 

of such markers, though we have not here given an example of their use.

 Guideline 1: Event files should be organized by event. Event files should report one event marker per line. 
Event files should contain markers (lines) for all onsets and offsets of relevant sensory stimuli, motor actions, 
participant tasks and task conditions, condition changes during the recording, time organization, plus setup meta-
event information organized during event design. When computation of response times, delays, or results of other 
computations on the basic event data are stored in a column added to an event table, the event table should still include 
rows representing the onsets and offsets of the actual framing events used to compute these response times or delays to 
avoid the complications of interleaving events.

While this recommended by-event organization may seem logical, currently many shared 

BIDS datasets instead use a by-trial organization or some hybrid organization. By-trial 
organization treats each trial as a single event that is given one row in the event file, and 

expresses all other relevant trial event markers in that row as offsets from the trial latency 

in the data. Such by-trial organization has many disadvantages for event-related and more 

general analysis approaches, most prominently a lack of clarity with respect to the timing of 

other MEEG data-influencing events. As an illustration consider the sample of an event file 

originally shared for the fMRI portion of the W-H experiment shown in Table 10.

When motor response events are reported only as response_time delays, it is not always 

clear whether the time is relative to the trial anchor event or to some other event. Events 

that occur before the anchor event are not always expressed with a negative delay (e.g., 

here cross_duration is positive, although the cross display occurs before the anchor face 

presentation onset event). While it is possible to calculate the onsets and offsets of the visual 

stimuli from the various durations and response times relative to the anchor event, a data 

user would have to do a very careful analysis of the documentation and published papers 

to correctly identify the sensory and motor action event onsets and offsets. Performing this 
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anew for each shared dataset in any future mega-analysis across shared datasets would be 

infeasible – or at best heroic.

By clearly identifying all experimental sensory events in a column named event_type or 

something similar, the design of Table 5 makes processing much easier. To reiterate, 

identifying all event onsets and offsets is increasingly important for many analyses, in 
particular those that use standard or new methods to model the complex, interacting 
effects of events on cognition and MEEG dynamics.

A second issue with by-trial organization of an event table is its lack of extensibility. 

For consistency, each row in by-trial reporting should contain information about the event 

sequence for the trial. Often however, conditions change and other events need to be 

recorded outside the strict by-trial structure, thereby complicating the annotation process. 

When later adding event markers (lines) to the event file to identify additional events in 

the data (such as blinks, alpha spindles, interictal spikes, background noise or outbreaks), 

researchers must decide whether to add additional columns and express the new times 

in terms of trial offsets or to add additional rows and treat the new markers as separate 

non-trial events. The difficulty with the latter approach is that the marked event times are 

likely to cross trial boundaries, thus requiring dataset-specific manual coding and analysis 

to unwind the information about those events. Operations such as regressing out the effects 

of overlapping events or determining effects of ongoing event context cannot be performed 

without first obtaining a distinct, well-ordered record of the dataset event onsets and offsets.

4.3. Documenting sensory presentations

 Guideline 2: All known sensory presentations that are intended to or may affect neural responses should be 
marked and annotated. Sensory presentations (including their onsets and offsets), as well as transitions between 
trial, performance blocks, stimulus or task condition changes, and other known or easily computed significant 
moments) should be given event markers. In addition to the formally designated experiment “stimuli,” dataset sensory 
presentations may include delivery of instructions, feedback, auxiliary stimuli including fixation points, cues, other filler 
images, changes in background, plus any unplanned events noted as having occurred during the recording. The role 
of each sensory presentation within the task and experiment, as well as a description of the sensory presentation and 
modality itself should be documented.

 Event annotation should aim to document all that the participant experiences. At a minimum, thoughtfully detailed 
reporting of participant sensory experience allows analysts to regress out the influences of other sensory presentations 
on dynamics associated with presentations of the primary stimuli; nonlinear modes of analysis may benefit still more 
from this information quite possibly in ways yet undocumented.

As first shared, the shared W-H MEEG dataset noted only face image presentation onsets, 

while the fMRI dataset also included cross duration and key press response times as well 

as indicating which key was pressed (left or right). Papers published by the authors on the 

fMRI dataset also included a somewhat more complete description of the event sequence 

depicted by the timeline of Fig. 2.

We found some ambiguity in the published description of the W-H MEEG experiments. 

When did the first trial begin? Did recording begin at the start of the first trial? If not, was a 

white circle displayed at the beginning of the recording? To avoid such ambiguities, it is best 

practice to write experiment control scripts that automatically output event markers for 
every sensory presentation event as well as the data itself.
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4.4. Documenting participant responses

 Guideline 3: Participant motor responses (and any other recorded participant actions) should be reported. 
Instructed participant responses or actions should be marked as individual events (or event sequences) rather than 
reported only as reaction times and/or by noting the category of the participant response (e.g., for the W-H experiment, 
only noting responses as having indicated a ‘symmetric’ or ‘asymmetric’ judgment). Motor actions themselves, their 
planning, and accompanying and ensuing assessment processes are all supported by brain dynamics that are very likely 
to be reflected (in part) in neuroimaging data features.

 As with sensory presentations, motor responses should be first annotated from the perspective of what the participant 
does, not what it means in terms of the experiment design and task. At a minimum, the annotation should document who 
acts and what action they take. The experiment control program’s handling of correct, incorrect, and omitted response 
actions (if computed by it) should also be articulated if these affect the selection of later stimuli.

 Other types of participant actions, instructed or incidental, should also be documented using appropriate vocabulary 
from the HED base schema. If these actions were not instructed, they are not likely to be part of the initial experiment 
design, so they need to be entered as data features post hoc.

In the W-H experiment, participants were instructed to press one of two keys with their 

respective left or right index fingers to indicate their assessment of the symmetry of the 

presented faces. This symmetry evaluation task was unrelated to the experimenters’ own true 

objective in running the experiment. Perhaps for this reason, the participant responses were 

not fully documented in the W-H data as originally shared, and there was no indication in 

the dataset documentation of what would occur when or if the participant withheld a key 

press entirely.

Thinking more broadly about potential further uses for the data (e.g., when building the 

event design) may hopefully inspire data authors annotating their data to make it fit for a 

broader range of uses and sharing, thereby considering it worthwhile to add all available 

detail about subject performance to the shared dataset to enhance continued dataset usability. 

Here, for example, the W-H face symmetry evaluation task might itself be of some future 

interest, as might be how the pose or gender of a presented face affects brain dynamics 

and motor responses. Such readily recorded variables might also be treated as dependent 

variables to strengthen the statistical reliability of effects of interest in any analysis of the 

data.

4.5. Documenting experimental conditions, controls, and designs

 Guideline 4: Experimental conditions, both fixed and changing, should be identified, whether they are part 
of the experimental design or are put in place to control experimental bias. All experimental conditions should 
be documented, not just the main design variables. Full documentation allows researchers to systematically test for 
statistical differences in data features under various conditions. The explicitly stated experimental design provides the 
obvious factors to be annotated.

 Any aspect of the experiment that was controlled for bias can provide a condition for annotation. Elements that are 
counterbalanced or randomized in a specified range should always be given serious consideration for explicit annotation 
as experimental conditions.

 The span of each condition should also be identified. Was the condition varied by trial, by block, by run, by session, 
or by participant? If so, how and when – precisely?

In addition to the experimental conditions encoded in Tables 2 and 3, the W-H dataset 

has other potential condition variables such as the face image sex (with levels female and 

male ), to encode the perceived sex of the presented faces. There is a large literature on the 

relevance of sex/gender in face recognition (Mishra et al., 2019), and the dataset description 

mentions that 50% of the stimulus faces were female and 50% male. The sex of the study 

participants was recorded; it would also be possible to identify, record, and annotate the sex 
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of the faces in the shared stimulus images. One could then for example ask whether sex of 

the imaged face influenced judgment response time or any MEEG data feature.

4.6. Task specification

 Guideline 5: All explicit as well as implicit participant tasks should be identified. A participant task is an 
organized participant activity performed during (or sometimes before or after) the experiment that may influence 
participant brain dynamics. Explicit tasks usually (though not always) determine and lead to actions that the participant 
performs (or inhibits) intentionally during the experiment – and should always be documented. Implicit tasks, whether 
or not directly reflected in participant actions, should also be documented – particularly if they are part of the 
experimental design. Explicit pre- or post-session tasks external to the recording session (often an aspect of experiments 
on learning or memory, for example) may also be considered for annotation, as they may be intended to produce 
residual or priming effects in the session data.

Explicit tasks.—The W-H experiment has three instructed or explicit tasks: face symmetry 

evaluation, gaze fixation, and blink-inhibition. The face symmetry evaluation task was the 

primary explicit task that the experimental participants were told to focus on. However, in 

the original data evaluation plan, this task was chosen solely to direct participant attention 

to each face and was irrelevant to the actual scientific goals of the experiment. Because 

this explicit task was the central activity the participant was instructed to perform, it should 

be documented as an explicit task (even if, as here, it did not enter into the original data 

evaluation plan).

As is common with many neuroimaging experiments, the W-H experiment instructions also 

included two other explicit tasks: blink inhibition and gaze fixation. Participants were asked 

not to blink when a face was being shown and were also told to fixate their gaze on the cross 

when visible.

Intentional fixation not only reduces the extent of natural eye movements but also may 

impose an additional mental load on participants. Instructed participant actions that may 

affect the recorded brain dynamics including, here, blink inhibition (Shultz et al., 2011) 

(Berman et al., 2012) and fixation (Stacchi et al., 2019), should always be considered 

explicit tasks for annotation. At a minimum, future analyses of the W-H dataset might test 

how successful participants were in inhibiting blinks during the specified period. Failures to 

inhibit might also be linked to variation in the recorded brain dynamics.

The separation of the two eye activity-related tasks into distinct tasks is necessary for the 

W-H dataset because the blink inhibition task applies only while the face image is being 

displayed, while the gaze fixation task is active during both the pre-stimulus interval and 

the face image presentation. Thus, these instructed intentions (affecting action) must be 

documented as separate tasks. While blink inhibition and gaze fixation could be annotated as 

experimental conditions in Table 2, activities performed intentionally by participants should 

usually be annotated as tasks, while elements that correspond to the setting and varying of 

experimental parameters should be annotated as experimental conditions or controls.

The W-H fMRI sessions also included data from a behavioral face-memory test conducted 

after the imaging session was completed. Since the participants did not have foreknowledge 

of the behavioral test, an experimental note to this effect should be included in the 

annotation of those data to inform further analysis. In the post-imaging face-memory test, 
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W-H asked participants to view face images and to record whether they remembered seeing 

the face in the experiment sessions. These responses were not included in the original shared 

W-H dataset. To include them, BIDS conventions expect that they be stored as a third, 

behavior-only modality directory. This behavioral data is included in the new W-H-MEEG 

dataset available on OpenNeuro.

Implicit tasks.—The inclusion of repetition status as a design variable indicates that 

the experimenters were aware that detection of face novelty (or repetition) was very 

likely associated with brain dynamic effects in these data. The repetition status factor 

helps researchers assess the influence of this design factor in the data. The detection of 

face novelty might thus be considered to be an implicit task, that is, an activity that 

the participants were not directly instructed to perform, but rather could be expected to 

perform (either intentionally or near-automatically) during the course of the experiment, 

or at very least, that could affect the recorded brain dynamics in some systematic manner. 

The repetition status design variable could also be associated with another implicit task, 

face recall, as repeated-face recognition and new-face novelty detection are associated 

with distinct brain activity patterns (Debener et al., 2005; Murashko and Shmukler, 2019; 

Courchesne et al., 1975).

The face_type design variable, indicating whether the image is of a famous face, an 

unfamiliar face, or a scrambled face, is also an obvious candidate here for implicit task 

designation. The mixed presentation of these three rather different sets of images can be 

expected to have posed one or more implicit task demands on most or all of the participants. 

Here, possible implicit tasks include nonface recognition, known face recognition, unknown 
face appraisal, and known face identification. Here the scrambled face (nonface) images 

were a (⅓) minority of the presented stimuli and differed markedly from the other face 

stimuli in visual presentation. Neuroimaging responses to novel, outside-expected-category 

stimuli have distinct and long-known features.

Clearly, potentially a large number of implicit tasks could be annotated for analysis of 

these data. The choice of how to identify and annotate implicit tasks depends on what the 

annotator thinks may be of value to explore or test in the data. Very often, implicit tasks are 

associated with experimental control variables for experimental design or bias control. Even 

when an implicit task has no direct indication of whether the user actually performed the 

task, the annotation can be useful for directing downstream users of the data towards aspects 

of the experiment that are or may be associated with effects in the data or when comparing 

differences in effects across experiments.

By annotating such implicit tasks, shared datasets become amenable to future cross-dataset 

meta-analysis (of computed data features) and mega-analysis (of the raw data). We 

anticipate that common best practice norms will develop gradually as researchers see the 

value added to their data by performing the annotation in a style compatible with other 

shared datasets involving different experiment and task designs.
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4.7. Documenting temporal organization and architecture

 Guideline 6: The temporal architecture of each recording should be annotated. The internal temporal 
architecture of each recording should be documented, including timing of performance blocks and rest periods 
between task blocks. If blocks of trials were used to vary or counterbalance some aspect of the experiment, event 
markers for the beginnings and ends of these blocks should also be included. More generally, information that 
remained fixed throughout the recording should be gathered and annotated using a meta-event marker inserted at 
the time of the first data sample.

Many neuroimaging datasets are organized into blocks of continuous or repeated task 

performance interspersed with rest periods. The W-H MEEG recording sessions were 

organized into 6 runs of 7.5 min duration containing between 140 and 150 face stimulus 

presentations (and thus, trial event sequences). Within each run, the W-H MEEG data do not 

have an explicit block structure beyond the trial level, though other experiments may have 

temporal structure within runs imposed to counter-balance various experimental factors.

A review of the W-H MEEG metadata showed that between 3 and 6 min elapsed between 

MEEG session runs. Analysts assume that electrode caps or other sensors were not 

repositioned between runs in the same session. If this was not the case, the information 

should be clearly marked in the data, typically by separating it into separate data sessions 
in which channel locations do not (or are assumed to not) vary. Head movements with 

respect to the MEG dewar and its embedded sensors are a key concern in MEG studies, and 

movement files acquired at 1-second intervals are available for the W-H MEEG dataset.

Although the W-H experiment does not have a particularly complex temporal architecture, 

the authors do use the concept of an experimental trial, so a definition (Definition/Trial, 
(Experimental-trial)) could be included in the annotation to indicate the onset and offset of 

these trials, when this would seem useful for planned analyses. The distributed BIDS task 

event data includes a trial column to make the grouping of the events in each trial more 

clear. Note however our cautions (Section 4.2) about annotating events only in relation to 

trial event groupings.

4.8. The event design process

Event design is usually an iterative process. Below are suggested steps to maximize the 

chances that the design leads to complete and valuable annotation:

 Sketch a rough time-line (as in Fig. 2). Having a good picture in mind of how the experiment unfolds is a helpful 
starting point.

 List the basic event concepts of the experiment and give them concise, easily interpretable names. Relevant 
concepts include sensory presentations, participant tasks and motor and/or verbal responses, experiment design, and bias 
control factors.

 Write a concise but complete text description of each event concept. A good starting point is to create a table of 
component names and descriptions.

 List the needed event marker types (as in Fig. 2), and include Onset and Offset tags.

 Assign a primary HED Event category tag to each marker (as in Fig. 3).

 Determine which additional columns if any should be in the BIDS …events.tsv file.

 Verify that the event concepts (stimuli, responses, factors, levels, tasks) can be associated either with …events.tsv 
event table markers (rows) or with event table columns having HED definitions in the …events.json files.
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 Check and iterate as needed.

In performing event design, annotators should initially not try too hard to complete detailed 

HED tags but should make sure that the relation of the event markers to the experiment 

structure is correctly expressed. Detailed event annotation can be easily added (or edited as 

needed) later in the process by editing the …events.json files.

5. Discussion and roadmap

Good event design and annotation are essential for ensuring the usability and longevity of 

both shared and stored neuroimaging data. Researchers need to think beyond the immediate 

problem to be analyzed and think about how to share data in a manner that allows other 

researchers to rely on the data and benefit their research by its use. Many publishers 

encourage researchers to publish their data in a publication distinct from the primary 

published work. Separate publication increases the visibility of the work and provides 

authors with the opportunity to produce data with high quality documentation.

Current standards and conventions for sharing neuroimaging data including BIDS focus 

on file structure and inclusion of basic metadata but have few requirements with respect 

to annotation of experiment events. In fact, we know of no system other than HED that 

supports annotation of the detailed nature of events in human neuroimaging time series data. 

Many of the BIDS-validated MEEG datasets that we have evaluated on OpenNeuro have 

sparse or missing event annotations (Delorme et al., 2020). For such BIDS datasets, adding 

a single …events.json sidecar file, as illustrated here, or improving an existing one may 

be all that is needed to turn an otherwise impoverished and unusable dataset into a richly 

informative one.

Annotators should begin by simply naming and describing sensory presentations, participant 

response actions, explicit tasks, and task conditions. Even without including very detailed 

HED tags in the definitions of these concepts, their presence in the annotation can allow 

future automated tools to produce detailed informative dataset summaries and structural 

information. For example, the presence of Condition-variable tags allows tools to extract 

information about condition variables even if no other tags are provided. Additional details 

can be added to the …events.json file at any time without modifying the rest of the dataset.

Ideally, a thoughtful approach to event design as defined here should be initiated before 

the experiment begins. The reported event streams should be unwound so that each event 

phase is reported (by-event) in its own row in an …events.tsv file rather than having some 

event phases being reported indirectly as offsets or response times relative to other reported 

events (Section 4.2). The latter (by-trial) approach can result in hopelessly convoluted event 

streams, particularly when additional data-feature or expert-annotation events are added post 
hoc. Such reporting makes analyses as simple as regressing out the effects of overlapping 

temporal events nearly impossible without extensive manual re-coding specific to each 

dataset.
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HED Library Schema.

HED now supports library schema, specialized HED vocabulary trees used when needed 

for an annotation in conjunction with the HED base schema for annotation terms needed 

by specific research user communities and applications. Currently, a SCORE library schema 

for standard labeling of neurophysiological clinical EEG recordings (Beniczky et al., 2017) 

is under development, and work is beginning on a MOVIE library schema for annotating 

experiments involving 4-D (animated) stimulus presentation. A linguistics library schema 

is under consideration by another group. We are ready to assist any interested user 

groups in developing library schemas to make available specialized subfield annotation 

vocabularies available in HED, for example those needed to describe experiments involving 

biomechanics, virtual reality, music, or other research areas.

We also expect to make more progress on difficult remaining annotation issues including 

documenting spatial relationships, body movement frames, and task designs in HED. We 

also plan to work with experiment control program developers to investigate approaches 

for adding HED tags to experimental events and recorded participant actions during data 

acquisition. We look forward to documenting and demonstrating the value of the HED 

context framework, only briefly discussed here (Section 2.4), for performing context-aware 

analysis of neural dynamics.

HED tools for validation and analysis support, some already implemented and others now 

under development, are being written in Python. A HED JavaScript validation tool has 

been incorporated into the official BIDS validator and is being continually improved. 

Online tools are available at https://hedtools.ucsd.edu/hed. The CTagger annotation tool 

available at https://github.com/hed-standard/CTagger provides a simple-to-use interface that 

supports “learning through doing” HED annotation. HED tools for MATLAB have also 

been incorporated into EEGLAB (Delorme and Makeig, 2004) including tools to select 

and process data epochs based on searches through dataset HED annotations. Additional 

HED support for EEGLAB high-performance pipelines is also planned (Martínez-Cancino 

et al., 2020). All HED code and issue forums are available on the HED organization GitHub 

website at https://github.com/hed-standard. The HED specification and list of tools and 

resources is available at https://hed-specification.readthedocs.io/en/latest/index.html. Further 

documentation is available on the HED website at https://www.hedtags.org.

Finally, we should not ignore the suitability for HED annotation to be applied equally well 

and in the same manner to events in other time series data including fMRI. The sensory 

presentations and participant actions, as well as in-data changes in experimental parameters 

and conditions in the many thousands of reported fMRI experiments are as equally well 

suited to HED annotation as are the (typically quite similar) experiment events in many 

MEEG experiments.

We believe that the time has now arrived for widespread recognition and acceptance of 

the need for a common framework for performing event annotation of neuroimaging time 

series data that facilitates replication as well as advanced analysis, either within or across 

experiments and datasets. Third-generation HED and its supporting tools are now in open 

release,. We welcome reader comments, suggestions, and participation.
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Fig. 1. 
Schematic depiction of event processes during an MEEG experiment and their associated 

event markers displayed as dots on the timeline to index the latencies (time points) at which 

event process time boundaries or phase transitions occur in an experiment data recording. 

Below the (top, black) experiment timeline: (orange bar) Onset and Offset markers for 

the reach task condition; (green bars) Onset and Offset markers of the visual presentation 

periods for image 1 and image 2 presentations; (purple bar) time course of a participant 

reach to touch movement. In addition to having Onset and Offset event markers, the reaching 

movement includes an intermediate marker of a recognized arm/hand trajectory course 

correction.
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Fig. 2. 
Schematic diagram of the temporal organization of events in two trials of a W-H MEEG 

recording with an excerpt of the BIDS task events file built using HED-based encoding 

strategies. Upper left: Recording begins. Recording setup includes selection of the key 

assignment for responses in the face symmetry judgment task. The participant was asked 

to fixate on a central cross and to refrain from blinking while face images were presented. 

Lower timelines: Sensory events were visual image presentations; participant action events 

were key presses representing face symmetry task responses. Bottom table: a BIDS task 

events file excerpt corresponding to the first trial in the data. We will use this example 

throughout the paper. (See an expanded version in Table 5, Section 3.1).
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Fig. 3. 
Left: Graphic of a partially expanded top-level HED schema tree (see https://

www.hedtags.org/display_hed.html for a view of the complete schema in an easy-to-search 

expanding format). Right: A table with basic annotations of the five main W-H event 

marker types using HED. The left column of the table has user-defined terms used for 

convenience to refer to these event markers in the BIDS event files. The right column shows 

the underlying mapping of these terms to the common HED vocabulary.
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Table 1

The HED event marker annotations that capture repeating details of the W-H timeline.
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