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ABSTRACT OF THE THESIS

cudaCR: An In-kernel Application-level Checkpoint/Restart
Scheme for CUDA Applications

By
Behnam Pourghassemi
Master of Science in Computer Engineering
University of California, Irvine, 2017

Assistant Professor Aparna Chandramowlishwaran, Chair

Fault-tolerance is becoming increasingly important as we enter the era of exascale com-
puting. Increasing the number of cores results in a smaller mean time between failures,
and consequently, higher probability of errors. Among the different software fault tolerance
techniques, checkpoint/restart is the most commonly used method in supercomputers, the
de-facto standard for large-scale systems. Although there exist several checkpoint/restart
implementations for CPUs, only a handful have been proposed for GPUs even though more

than 60 supercomputers in the TOP 500 list are heterogeneous CPU-GPU systems.

In this work, we propose a scalable application-level checkpoint/restart scheme, called
cudaCR for long-running kernels on NVIDIA GPUs. Our proposed scheme is able to capture
GPU state inside the kernel and roll back to the previous state within the same kernel,
unlike state-of-the-art approaches. This thesis presents cudaCR implementation in detail
and evaluate the first version of that on application benchmarks with different characteristics
such as dense matrix multiply, stencil computation, and k-means clustering on a Tesla K40
GPU. We observe that cudaCR can fully restore state with low overheads in both time
(less than 10% in best case) and memory requirements after applying a number of different

optimizations (storage gain: 54% for dense matrix multiply, 31% for k-means, and 4% for

vil



stencil computation). Looking forward, we identify new optimizations to further reduce the

overhead to make cudaCR highly scalable.
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Chapter 1

Introduction

High-performance computing (HPC) deploys supercomputers with millions of cores for run-
ning massive-scale computationally intensive applications. As the demand for performance
increases, the number of nodes in the next generation of supercomputers is also expected
to increase. On one hand, moving from petascale towards exascale opens new opportunities
but on the other hand, it brings new challenges in the reliability of machines. Even if there
are no errors in software, there always exist failures in hardware. The Mean Time Between
Failure (MTBF) for a single node with power4 IBM processor is estimated to be between 10
to 1000 years [9]. Assuming MTBF of a single node with newer and more reliable processor
to be optimistically one century, the MTBF of a machine with hundred thousand nodes
drops to 9 hours and for next generation of large-scale machines with million nodes, it will
drop to less than an hour. [1, 12, 5]. Therefore, investing in a fault-tolerant system for
large-scale long-running applications is inevitable. Errors in systems can be broadly classi-
fied into two categories — (a) hard errors which might be permanent like chip malfunction
that requires hardware replacement and (b) soft errors which are transient like bit flips that
can be recovered by rewriting correct data from another location. Checkpoint /restart is one

of the most commonly used methods for fault-tolerance in supercomputers that can recover



transient errors. The key idea is to periodically save the state of a system into a secondary
storage. In the event of a failure, the system is recovered by restarting the execution from

the last clean state from the secondary storage.

Today, Graphical Processing Units (GPUs) are popular as they offer both higher peak per-
formance and higher bandwidth compared to traditional CPU processors. Additionally,
shifting trends in parallel computing have resulted in supercomputers with more number of
GPU nodes. Titan, the 3rd fastest supercomputer in the Top 500 list has 18, 688 compute
nodes and the same number of Tesla K20 GPUs!. With an increasing number of GPUs in
large-scale systems, reliable GPU computing is now as important as reliable CPU computing.
Moreover, GPUs exhibit more vulnerability to hardware failures compared to CPUs. The top
of Figure 1.1 shows the breakdown of failures by category distilled from the failure history
of TSUBAME2.52 during the period from October 1, 2015, to October 1, 2016. There was a
total of 613 failures and a staggering ~ 40% are GPU failures. In the bottom of Figure 1.1,
GPU errors are categorized based on its reason. As we can see, ECC errors (which includes
single-bit and double-bit soft errors) are a significant fraction of the total GPU errors. This
clearly demonstrates the high failure rate of GPUs and is the motivating factor in designing

an efficient checkpoint /restart scheme for GPUs similar in spirit to CPUs.

thttps:/ /www.olcf.ornl.gov /titan
Zhttp://mon.g.gsic.titech.ac.jp/trouble-list /index.htm
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Figure 1.1: Break-down of failures in TSUBAME 2.5 from October 1, 2015 to October 1,
2016. Top: Failure distribution based on their source. Bottom: Break-down of GPU failures
based on their reason.



Checkpoint/Restart (CR) schemes for CPUs are typically implemented at three levels —

kernel, library, and application levels.

e Kernel-level — The operating system does checkpoint/restart using appropriate system
calls and as a result, the application remains transparent to the system. In this scenario,

there is no application-level modification required to ensure fault tolerance.

e Library-level (also known as user-level) — The application is linked with an user-library
that is in charge of saving/restoring information. In this level, there is still no modification

required in the application but it has to link with the CR library.

e Application-level — Checkpoint/rollback is done by the application and it has to be

re-compiled.

GPU is an external device that is handled by drivers rather than an operating system. Ad-
ditionally, there is no available API to access internal computation state at the library level,
so the first two approaches discussed above are infeasible on current GPUs [7]. Although
there exist few schemes known as kernel-level GPU checkpointing [21, 10], they are in fact
implemented on top of previous CPU checkpointing and save computational states after
GPU completes the kernel execution. So, they are essentially out-kernel checkpoint /restart
schemes. In other words, there is no checkpointing of in-kernel data and no rollback inside

the GPU kernel.

This thesis proposes an application-level in-kernel checkpoint/restart scheme for GPUs. To
ensure compatibility of our proposed scheme on a vast majority of applications, we determine
and set necessary conditions. Our implemented scheme makes relevant changes in both host
and device source codes at compile time and adds checkpointing modules that are invoked

at runtime. This thesis makes the following contributions.

e We design and implement a new scheme for in-kernel checkpointing of GPUs called cu-

4



daCR, where the user is only responsible for determining checkpoint locations. A trans-
former automatically translates both CPU and GPU codes to new codes that are capable

of checkpointing and restoring the correct state (Section 3).

We discuss novel algorithms and data structures for collecting computation states asyn-
chronously from different GPU memories and present optimizations for significantly re-

ducing the storage of secondary data and overhead from checkpointing (Section 3).

We evaluate cudaCR on application benchmarks that exhibit different data access patterns
such as dense matrix multiply, stencil computation, and k-means clustering on a Tesla K40
GPU to test both the effectiveness and efficiency of the proposed scheme. We observe that

cudaCR can fully restore state with overheads less than 10% in the best case (Section 4).



Chapter 2

Background

2.1 GPU and CUDA Programming Model

GPUs were originally designed for rendering images and graphics pipelines but they soon
became a compelling platform for scientific and high-performance computing due to its high
peak performance and memory bandwidth. Subsequently, applications started using graphics
API such as OpenGL [16] and DirectX [14] for parallel processing. In 2007, NVIDIA released
CUDA (Compute Unified Device Architecture) as a new programming model to program
NVIDIA GPUs in a much easier way [4]. The CUDA platform is built on top of C/C++

language and has two sets of APIs — driver and runtime.

In the CUDA programming model, GPU is referred to as device since it is an external
component connected to the CPU which is called the host. CUDA programs are typically
divided into two parts — (1) the serial computation in the mainstream is executed by the CPU
process (host) and (2) the data parallel computation is executed on the GPU cores (device).
The NVIDIA C compiler (nvcc) separates host and device code during the compilation

process. For C/C++ programs, the host code is further compiled with host’s standard
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Figure 2.1: Block diagram of GPU architecture and programming model.

C/C++ compilers. The device code is written in an ANSI C extension with keywords for

labeling data-parallel functions, called kernels, and then compiled using nvcc [4].

CUDA organizes device code using abstractions of threads, blocks, and grids. Kernels,
functions on device side, are executed by threads. Groups of threads are organized into
blocks and threads within a block can synchronize with one another. CUDA assigns each
block to one GPU computing box a.k.a. Streaming Multiprocessor (SM). Blocks cannot
synchronize among one another and form a grid that denotes application scope. There
is also a hierarchy of memories in GPU with different access policies. Global memory is
accessible by the entire grid (all blocks and threads within a block), shared memory is local

to each thread block (only visible to threads inside the particular block), and registers are



thread-local where each thread has a limited number of them. Local memory is an extension
of registers that resides in global memory. GPUs also have other types of memories known
as texture and constant that have the same access policy as the global memory but they are

read-only.

A typical CUDA program consists of four steps. Firstly, data is copied from host memory
to GPU memory which is most likely the global memory. Secondly, the CPU code launches
a kernel on the GPU. Thirdly, GPU threads execute the kernel in parallel on SMs. Finally,
the computed results are copied back from GPU global memory to host memory. The GPU
architecture and data movement between host and device along with the different memory

hierarchies are illustrated in Figure 2.1.

2.2 Checkpoint/Restart

The most popular fault-tolerance technique for long-running applications is checkpoint /restart
(CR). CR applications periodically take a snapshot of the system and save it into secondary
storage (checkpointing phase). In the event of failure or migration, the current state is
replaced with the previously stored state and execution resumes from the last checkpoint
(restoration phase). Several CR mechanisms at different levels have been developed for
CPUs. In CR mechanisms such as Cornell Checkpoint (pre) Compiler (C3) [13], the pro-
grammer or pre-compiler injects CR code into application source code. In this approach,
the programmer is required to have a good understanding of the program. However, they
are usually efficient in terms of both checkpointing time and storage as the programmer is
knowledgeable as to when and what information should be checkpointed [6]. Library-level
mechanisms [11] reduce the burden of checkpointing on developers. They are compiled and
linked to source code as a separate library. Kernel-level CR mechanisms [8] [24] periodically

save process information via the operating system or hardware. Since they don’t modify the
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source code, applications remain transparent to the system.

Currently, all of the above-discussed mechanisms are not feasible on the GPUs due to the
absence of particular operating system and relevant system calls. Also, we could not im-
plement library-level mechanisms because NVIDIA’s driver and runtime APIs do not sup-
port all the necessary functions to extract computation states inside the kernel. In spite
of these limitations, researchers have developed a handful of GPU CR schemes in recent
years. CheCuda [21] was the first GPU CR scheme implemented in 2009. It uses Berkeley
Lab Checkpoint/Restart (BLCR) library [8] for checkpointing system state. But, because
this library does not support CUDA contexts, it backups and destroys CUDA contexts be-
fore checkpointing, then runs BLCR checkpointing and finally reallocates all destroyed GPU
contexts. In 2011, Nukada et al. developed a new CUDA CR library (NVCR) [10] that

9



is transparent to applications. NVCR did not make changes in CUDA context’s addresses
after reallocation so, it is not necessary to recompile applications. CheCL [20] is another
application that follows CheCuda’s approach but it was designed specifically for OpenCL

applications.

In the event of failure, all of the above-discussed CR techniques reload GPU state and re-
launch kernels from the beginning. In other words, they are not able to reload thread’s
computing state inside the kernel. We refer to these approaches as out-kernel CR schemes.

Figure 2.2 distinguishes the two CR methodologies — in-kernel CR and out-kernel CR.

2.3 In-kernel Checkpoint/Restart

Although newer NVIDIA GPUs are equipped with Single-bit Error Correction - Double-
bit Error Detection (SEC-DED) ECC, a recently published paper showed that this is not
well suited for modern DRAM subsystems and there still exists a noticeable amount of
undetected errors in large-scale systems [17]. Additionally, D.Tiwari et al. observed that
SEC-DED causes non-negligible Silent Data Corruption (SDC) in GPU clusters because
it cannot protect all GPU memories such as queues, scheduler, flip-flops, etc, [23]. Their
recent measurement from epoch 2012 to August 2014 on Titan supercomputer reports more
than 6 million single-bit errors. However, nearly 98% of these errors were confined to 10
cards. Even removing these faulty cards results in a high single-bit error rate of almost

! Hopefully, ECC can recover these errors, but there are some real-

once per 6 minutes
world applications such as molecular dynamics that prefer not to enable ECC because it
has side effects on performance, storage, and power [2]. In-kernel checkpoint/restart would

be essential for applications whose kernel execution time is longer than SBE mean-time.

Another fact is that GPU SEC-DED cannot correct multiple bit errors. Recently published

LGTC’15 Session S5566 GPU Errors on HPC Systems
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experience report on the Titan supercomputer provides very useful information about GPU
faults’ types, frequency, and their locations [22]. The report shows that MTBF of double-
bit errors is about 160 hours but assuming next generation of supercomputers with more
number of nodes, this time is expected to drop by orders of magnitude. In that case, long-
running applications, specifically non-iterative ones like CCSD in NWCHEM 2 will benefit

significantly from an in-kernel recovery system.

HKC [15] is a hybrid CPU/GPU checkpoint /restart which was proposed as an in-kernel GPU
checkpointing scheme. While HKC claims that it can recover GPU state at system-level,
they use debugging API which adds additional time overhead to the system and check-
point /restart is handled by CPU rather than GPU. They also ignore halfCTA -Cooperative
Thread Array that contains running threads on SM- due to lack of corresponding APIs.
Jiang et al. [7] present a data structure and mechanism to save/restore computation state
that is located in different GPU memories. Their contribution was a stepping stone in cu-
daCR development. However, their application-level implementation seems to be restricted
to iterative applications. Once a failure is detected inside the kernel, it breaks the kernel
and restoration phase happens in the next iteration of that kernel. In the next iteration, this
scheme does redundant computation from the beginning of the kernel up to the faulty check-
point. Moreover, they used kernel break as a way to synchronize blocks at checkpointing

time.

In the next section, we describe our fully in-kernel CR scheme, cudaCR, that addresses the
above deficiencies. We shift checkpoint/restart from CPU to GPU. Our application-level
scheme is able to save computation state, which is distributed over the entire GPU memory
hierarchy, anywhere inside the kernel efficiently. In event of failure, it can restore in-kernel
state and resume the execution from the last checkpoint somewhere inside the GPU kernel.

Also, by defining a new algorithm and data structure, we make cudaCR asynchronous with

2http:/ /www.nwchem-sw.org/index.php/Benchmarks
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Figure 2.3: Illustration of different CR schemes with 3 GPU nodes — (a) out-kernel CR, (b)
in-kernel checkpoint without in-kernel restoration, and (c) full in-kernel CR.

2.4 Multi-GPU In-kernel Checkpoint /Restart

In typical multi-GPU programming, we divide the application’s computations into smaller
segments (grids) and distribute them among active GPU nodes. Each GPU executes the
kernel on its segment of data and once they’re all done, they communicate and update
shared data. This is followed by the next iteration in the case of an iterative application or a
new kernel launch. Figure 2.3 illustrates different CR schemes in the context of multi-GPU
programming given three GPU nodes. Here, we assume that kernels run long enough that
some GPUs are likely to encounter errors within the kernels execution (or the number of
GPUs is large enough that MTBF of nodes becomes comparable with the kernel lifetime).
Figure 2.3 (a) shows the execution timeline of an out-kernel CR scheme where the node that
successfully finished its kernel execution (node 1) has to wait for faulty nodes (node 2 and 3)

to re-execute its kernel. Figures 2.3 (b) and (¢) demonstrates two variants of in-kernel CR.

12



The former includes in-kernel checkpointing but lacks in-kernel restoration. This is similar
to current state-of-the-art in-kernel CR implementations. For synchronization among GPUs,
faultless nodes (node 1) must wait for faulty nodes (node 2 and 38) to restart their kernel
from the beginning. Although in this mechanism, we expect less waiting time, faulty nodes
compute clean sections of the code redundantly. The latter is an example of full in-kernel
CR where faultless nodes (node 1) are held in wait state only when faulty nodes (node 2 and
3) re-execute corrupted computations between two checkpoints. This results in the least

wait time among the three schemes.

It’s evident that full in-kernel CR will have (a) less resource consumption and (b) less synchro-
nization time. As a result, embedding in-kernel CR into long-running applications with com-
munications will decrease the application’s total run-time unless checkpointing and restoring
adds significant overheads. However, implementing full in-kernel CR for GPUs is not an
easy task because the grid assigned to each GPU node is split into blocks and threads which
cannot synchronize at checkpointing time. Moreover, CUDA APIs are not comprehensive
enough to obtain critical information such as thread’s program counter, data distribution,
and thread’s execution stream so we have to implement the above as separate modules.
Finally, in order to ensure applications compatibility with in-kernel CR, certain conditions

have to be satisfied by target applications which are discussed in the next section in detail.
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Chapter 3

Implementation

In this section, we describe the algorithm and implementation details of cudaCR. Specifically,
we discuss the transformer that injects checkpointing code and optimizations to reduce the

overhead of checkpointing.

3.1 Necessary and Sufficient Conditions

To ensure that full in-kernel CR works correctly, all threads have to synchronize at check-
points and during recovery, they have to jump to the previous checkpoint simultaneously.
We will show by example what might happen if there is no synchronization among threads.
Code 3.1 shows a part of device code with two checkpoints. If no error is detected at either
of two checkpoints, shared variable s will finally have a value of 6. As threads do not execute
simultaneously and there is no guarantee on their execution’s order in CUDA, it is possible
that thread 0 meets the second checkpoint earlier than thread 1. Assuming no error,
thread 0 does checkpointing and continues execution. Now, suppose an error occurs in the

system. Say, for instance, bit-flips in variable s due to background radiation or any other

14



__shared s;
if ( threadIdx.x == 0 )
s = 3;
__syncthreads () ;
checkpoint () ; //first checkpoint
if ( threadIdx.x == 0 )
s = s + 1;
__syncthreads () ;
if ( threadIdx.x == 1 )
s = s + 2;
checkpoint () ; //second checkpoint

Code 3.1: synchronization problem in restoration phase

hardware /software error. Then, thread 1 detects an error as part of its checkpointing and
jumps to the first checkpoint and reloads s with value 3 and continues execution. In the
absence of thread 0, since thread 0 has already finished its computation, final value of s
would be 5. If this situation is reversed, i.e. thread 1 meets the second checkpoint before
thread 0, the final value would be 4. This example illustrates the possibility of a wrong
output when there is no synchronization between threads of a block during CR. Further
extending this example from threads of a block to threads of different blocks in a grid and
replacing shared value s with a variable g in global memory, we can infer that a similar

problem might occur if there is no synchronization among all thread blocks.

Since CUDA supports synchronization between threads within a block, we can use __syncthreads()
before checkpoint modules but it’s mandatory for all threads in that block to participate in

checkpointing/restoration. So our first condition is as follows.

1. Checkpoints must be seen by all participating threads.

In other words, the user is not allowed to insert checkpoints in a conditional statement or

code fragments unreachable by all threads.

15



Unfortunately, we cannot expand the same idea for all threads (threads in different blocks)
for two reasons. First, CUDA does not support synchronization among blocks, and second,
all blocks cannot jump to a checkpoint together on recovery since all the blocks are not
active during the entire execution time. This is due to the fact that the number of SMs is
typically smaller than the total number of blocks in a GPU program. Therefore, our second

constraint is defined as follows.

2. Threads of a block are not allowed to modify a global memory location that has been

accessed by another block.

This condition simply states that applications cannot have block interference in write trans-
actions. By implicitly separating blocks, we can achieve asynchronous checkpointing /restora-
tion. Asynchronous blocks’ checkpoint /restart also has an advantage — in the event of a fault
in the global environment, it’s not required for all blocks to redo their computations, only
the block that has modified that location. Consequently, determining which part of global
memory belongs to which block is a difficult task that has to be handled in the algorithm

design. We discuss our methodology and implementation in detail in the next sections.

One might wonder if these conditions enforce restrictions on the user and applications but
we strongly believe that our scheme is applicable to a large majority of GPU applications.
We claim that following standard GPU coding practices will result in a higher likelihood of
compatibility. The first condition allows the programmer to insert checkpoints anywhere in
the code except inside conditional statements. Since typical and “good” GPU programs do
not use many conditional statements to avoid thread divergence, programmer should be able
to find many locations for inserting checkpoints. Moreover, in many GPU applications, it’s
not uncommon to see device code inside an if-statement (typically to prevent memory modi-

fication by threads outside of the grid’s margin). The user can still insert checkpoints inside

16



the if-statement in these applications without violating the first condition because escaped
threads do not take part in computations at all and that is why we use the terminology
“participating threads” in our condition. Regarding the second condition, since CUDA
does not provide any guarantees on the order in which the blocks execute, programmers
have to write GPU code in such a way that requires no modification of global variables by
different blocks to ensure the correct output (even without checkpointing). Therefore, we
do not add any further restriction on the programmer and application than what is already

imposed by the CUDA programming model.

3.2 Checkpointing Storage

For in-kernel CR, we have to store sufficient information about the kernel to make a full re-
covery possible. This information is distributed across the different GPU memories, precisely,
in three domains — thread’s private memory (this includes registers and local memory), block
shared memory, and off-chip global memory. It is essential to allocate sufficient temporary
storage to backup the data across these three memory domains. If the system demands more
memory or the data is not modified for a sufficiently long time, the backup data might shift
to hard disk as permanent storage. CPU main memory and GPU global memory are two
alternatives for temporary checkpoint storage. We chose GPU global memory in our first im-
plementation because, in the restoration phase and checkpointing phase, threads don’t have
to deal with low throughput PCle for data movement between CPU and GPU. Also, this
design choice makes implementation simpler and more consistent in single-CPU multi-GPU

nodes with relatively small CPU DRAM size.
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3.3 Transformer

Once checkpoint storage and essential information for backup are determined, the user has
to insert checkpoints based on the first condition outlined in Section 3.1. This is the only
task the user has to perform to enable cudaCR. After that, a transformer injects code
and makes changes to both host and device original source code as part of application-
level checkpoint /restart procedure. Flowchart 3.1 demonstrates cudaCR code injection spots
within CUDA-application compilation flow. At the beginning of compilation, Nvidia CUDA
compiler (NVCC) separates host code from CUDA-application and passes it to the CPU
compiler (e.g. GCC). The device code is then optimized and compiled to a low-level virtual
machine and ISA by Nvidia PTX code generator. Nvidia assembler (PTXAS) gets cross-
platform PTX ISA and generates architecture-specific machine code which can be represented

by shader assembly language (SASS). The final device binary is a fat-file that may contain
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one or more device-specific binary image. Later, it links with host object file and is embedded
inside the host executable. Compiling with cudaCR causes its transformer to modify both

host and device codes. These modifications are indicated by red boxes in the flowchart.

The required changes on the host side are minimal. It is essentially allocating memory
for backup and instantiating data structure for CR. These modifications are all applied to
the high-level source code before compilation. We classify these transformations into three

categories based on the data.

e Initialize and allocate memory for cudaCR handler.

e For global data, once it is allocated in device memory, transformer allocates the same
amount of memory as a backup and saves its pointer and its size into a list (CR_gList).

The CR_gList is passed to device threads along with other kernel arguments.

e Since shared and private data are defined inside the kernel, we could allocate their
backup on the device side. Using cudaMalloc() to allocate backup memory on the
device side is time-consuming; so we transfer shared and private memory allocations
from device to host. For shared memory, cudaCR transformer allocates memory of size
number_of blocks X maximum shared memory_per blocks. It creates a structure out of
private data and allocates number_of threads X sizeof (struct). Threads and blocks

are linearly indexed so they know which part of backup memories belong to them.

Since CUDA allows programmers to allocate shared memory dynamically, we could not
statically allocate all expected backup memory at compile-time unless transformer reserves
maximum anticipated shared memory in advance. Subsequently, by shifting memory allo-
cation from device to host, it is likely that some parts of shared backup memory remain
unused. Dynamic memory allocation after kernel launch (on device side) could prevent un-
used storage but unfortunately, we experienced long allocation time. Therefore, we favored

host static allocation to device dynamic allocation.
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On the device side, transformer invokes a setup function immediately after launching the
kernel. This function includes threads/blocks flattening according to their situation in the
grid. This indexing requires accessing a number of special registers at PTX level but we
do inline them in high-level source code. Transformer also synchronizes the threads and
runs error-detection module at user specified locations. Based on error checking outcome,
threads invoke either of the checkpoint or restart modules of cudaCR. Other important parts
of device code modification are tracking and registers’ transfer which are essentially handled

at low-level SASS code. We will discuss them in the next section.

Code 3.2: Host code before transformation

int main(){
dtype*x d_A;
cudaMalloc((void**)&dA, A_size);
cudaMemcpy(d_A, h_A, A_size, cudaMemcpyHTD) ;
foo<<<grid,block>>>(d_A, local_var);
cudaMemcpy(h_A, d_A, A_size, cudaMemcpyDTH) ;

return O;

Code 3.3: Device code before transformation

__global_
{

_ void foo(dtype* d_A,dtype local_var)
//some computation

cudaCR(); //user injects CR

//some computation
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After transformer applied all required changes in both host and device code, the new codes
are linked with our checkpoint/restart library. At run-time, when execution stream meets a
checkpoint, it synchronizes threads in all blocks and checks for faults. If only one thread de-
tects an error, the entire block goes to restoration phase. Otherwise, it goes to checkpointing

phase.

1. In restoration phase, all threads perform a synchronous jump to the previous checkpoint
label. Then, each thread invokes a module in the checkpoint/restart library to copy
thread’s private information from its backup to its original locations. Shared memory is
also reloaded from its backup located in device memory. To parallelize shared memory
copy, data movement is split among threads in a block. For global memory restoration,
only those global locations that belong to the faulty block are reloaded. Finally, the faulty

block resumes its execution.

2. In checkpointing phase, we perform all the data movements discussed above but in the
reverse direction. Thread’s private memory, block’s shared memory, and the associated
global information are checkpointed into their temporary backup. After checkpointing,

execution resumes with no branch.
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Code 3.4: Host code after transformation

int main(){

dtypex d_A;
cudaMalloc((void**)&dA, A_size) ;
cudaMemcpy(d_A, h_A, A_size, cudaMemcpyHTD) ;
//define global memory backup handler
GlobalList CR_gList;
CR_gList.gPtr[0] = d_A;
//allocate global memory backup
dtypex CR_d_A;
cudaMalloc(&CR_d_A, A_size);
//registering backup
CR_gList.gCRPtr [0] = CR_d_A;
//copy original to backup
cudaMemcpy(CR_d_A, d_A, A_size, cudaMemcpyDTD) ;
// allocate backup mem for local vars with size of
// number of threads * sizeof(Vals)
Valsx*x CR_vals;
cudaMalloc((void**x)&CR_vals, ... );
// allocate backup mem for shared with size of
// number of blocks * SHARED_SIZE
void* CR_shared;
cudaMalloc((void**)&CR_shared, ... );
//launch kernel with CR arguments
foo<<<grid,block>>>(d_A, local_var,

CR_gList, CR_vals, CR_shared);
cudaMemcpy(h_A, d_A, A_size, cudaMemcpyDTH) ;

return O;
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Code 3.5: Device code after transformation

__global__ void foo(dtypex* d_A, dtype local_var,
GloballList CR_gList,Vals CR_vals,void* CR_shared){

int CR_BIndex

// block number in grid

int CR_TBIndex // thread number in block

int CR_TIndex

// thread number in grid
__shared__ int CR_flag; // error detection flag
sharedList CR_shList; // shared memory handler
globalAddress CR_gAddr; //used for tracking
CR_flag = 0;

//reset of code in setup function

__syncthreads () ;

//some computation

error_detection(&CR_flag, CR_gAddr);

__syncthreads () ;

if (CR_flag){ //restoration
restore_local(local_var, CR_vals[CR_TIndex]);
restore_shared(CR_shList, CR_BIndex, ...);
restore_global (CR_gAddr , CR_gList, CR_TIndex) ;
CR_flag = 0;
__syncthreads();
goto previous_CR;}

else{ //storing
save_local(local_var, CR_vals[CR_TIndex]);
save_shared(CR_shList ,CR_BIndex ,CR_TBIndex,...);
save_global (CR_gAddr, CR_gList, CR_TIndex);

__syncthreads() ;}

//some computation
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3.4 Incremental Checkpointing

When application’s execution meets checkpoints, it has to save or restore information. The
best-case scenario is to save/restore only those sections that have been modified since the
previous checkpoint. This method, also known as incremental checkpointing, reduces CR
time significantly but requires cudaCR to continuously keep track of thread’s memory foot-
print. In our first version of scheme, we applied tracking and registering to the high-level
source code. By registering, we mean recording what variables are created and where they
are located (initialization). However, all registered data need not be copied during check-
points so we need another function called tracking. Tracking here means determining which
data has been modified since the previous checkpoint. It is similar in spirit to the idea of

dirty bits in caches.

For private data registration, transformer scans through device code and finds all local
data initializations (including variables, pointers, arrays, structs and so on) and creates a
structure out of them for checkpointing. To determine which data are shared between threads
in a block, the transformer scans device code for __shared__ directive. We checkpoint all
private and shared memory regardless of incremental checkpointing. The reason why we
remove incremental checkpointing from this part is that incremental checkpointing requires
constant monitoring of thread’s accesses to these locations. This tracking likely takes more
time if we checkpoint all of them because threads access to these memories many times in
typical applications. Besides, they usually comprise a small portion of application’s data.
For example, to understand which registers have been modified since the previous checkpoint,
recording register writes is obviously time-consuming especially when we have a loop that
updates one register (loop counter) numerous times. So, we prefer to copy all live registers
at checkpointing time. Shared memory also is accessed more often and has a smaller size in
comparison with global data. To further improve data-movement overhead, we make shared

memory bounded via two registers namely, min_address and max_address which contain
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the beginning and final addresses of used shared memory respectively. Once transformer
finds shared variables declaration or shared array declarations, it checks their beginning
and final addresses; if they were beyond min_address and max_address, the transformer
updates these registers to completely envelop declared shared data. Consequently, instead

of the entire available shared memory, cudaCR only copies portions of that.

For global data, registering phase takes place on the host side implicitly. All global arrays
and their backups are registered in a list (CR_gList) and passed as arguments to kernels.
This structure contains the beginning address of original and backup arrays plus their size.
In the device code, transformer finds every global write transaction. This information is
recorded into a data structure called CR_gAddr. Every thread has one instantiation of the
CR_gAddr. The size of CR_gAddr depends on the number of global transactions each thread
performs. During checkpointing phase, each thread scans its CR_gAddr. By using these data
structures, each thread is able to find the backup location of its accesses. Then it copies
data from the original location to the relative backup location. The same procedure happens
during restoration phase but with the data movement in the reverse direction. Pseudocode
segments in Code 3.2 and 3.3 demonstrate some of the above transformations on an example

code in Code 3.4 and 3.5.

We experience tracking memory footprint at high-level source code gets sophisticated for
large and complex codes. Particularly, when the user operates with pointers or calls many
nested device functions, transformer might not detect global memory transactions. So, in
our second version of implementation, we shift tracking task to the lower level of source code
“SASS”. We exploit a recent developed SASS instrumentation tool, SASSI [18], to inject our
tracking module into SASS code. We embed our tracking module in SASSI handler which
is invoked after every device memory transaction. This module records every fine-grained
1 —byte, 2 — byte, 4 — byte, 8 — byte and 16 — byte global memory writes into a corresponding

container. During checkpoint or restart, cudaCR uses same width memory transaction for
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data movement. Although SASSI runs at hardware speed, its current implementation still
has significant run-time overhead. The main factor is because SASSI uses stack to pass their
objects so it’s ABI-compliance and register-spilling has poor performance. Especially, in our
case that tracking module doesn’t have much time-overhead by itself but needs to invoke

many times.

3.5 Optimization

One drawback of the current implementation is when an application expands and launches
a kernel with more threads and blocks, the amount of backup memory required for shared
and private data increases. For example, if an application with 100 million threads launches
a kernel with a block size of 32 x 32, assuming 48KB shared memory per block, it will
allocate nearly 5GB shared memory backup and probably will need more for their private
data. To make our scheme scalable, we apply a space optimization to our first version. The
main idea behind this optimization is to reuse the backup spaces that have already been allo-
cated for accomplished threads. To fulfill this idea, instead of allocating number_of blocks
x maximum_shared memory per blocks for shared memory backup, transformer allocates
maximum number_of blocks_per_ SM X number_of SMs X max_shared memory_per_block. In
other words, it allocates memory equivalent to the total amount of available shared memory
on a chip. At run-time, once a block finishes its task, we don’t require its backup data since it
passes all checkpoints successfully. So, the next block that is replaced with an accomplished
block will use the shared memory backup of the corresponding SM. The transformer uses
smid special register (with inline PTX instructions) and device locks to uniquely enumerates
active blocks. We apply a similar approach to private backup memory. The transformer al-
locates number_of SMs X maximum number_of threads per SM X sizeof (struct) bytes

for private memory backup instead of number of threads X sizeof (struct). By index-
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ing threads in blocks and knowledge of the executing SM’s ID, the transformer can uniquely

assign a pre-used (but not-in-use) chunk of private memory backup to each active thread.

In summary, with this optimization, the amount of backup storage for shared and private
memories does not depend on the application’s size but the GPU architecture (such as the
number of SMs and the maximum number of threads per block). For example, if a kernel with
millions of threads is running on GTX980 (Maxwell, compute capability = 5.2, maximum
shared memory per SM = 96KB, SMs = 16, maximum number of threads per block = 2048,
max number of 32-bit registers = 255), it doesn’t need more than 35MB backup for both
shared and local registers which is trivial compared to its 4GB device memory. Neglecting
this small amount of memory, applications can roughly use half of device memory for their

global data (the other half is used for global backup).

Moreover, in our second version, we used unified memory and unified virtual addressing
that is available in newer GPU architectures (compute capability 3.0 and more) to address
global memory limitation. In this case, (1) devices can use their memory entirely, (2) man-
aging backup memory in mutli-gpu nodes is simpler (because devices share the same virtual
memory address), (3) host side can use backup memory while kernel is running, (4) backup
memory could shift to host side and driver abstracts this transfer. So, in this case, it’s

possible to recover data in the event of GPU failure that needs to reboot the device.
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Chapter 4

Results and Discussion

In this section, we briefly describe the various benchmarks used for evaluating cudaCR and
their access pattern. Then, we present time and storage overhead of checkpoint/restart using

cudaCR on these test cases.

4.1 Experimental Setup

We evaluate our implementation on NVIDIA Tesla K40 GPU with 15 streaming multipro-
cessors. The shared memory size is 48KB per block and the global memory bandwidth is
288 GB/s. The host-side CPU is a dual-socket Intel Xeon E5-2630 v3 with 8 cores per
socket for a total of 16 cores. We use CUDA nvcc version 7.5 as the GPU compiler with full

optimization enabled (-03 flag).

28



4.2 Case Studies

To validate the integrity and measure the overhead of our proposed scheme, we test cudaCR

on three different CUDA benchmarks detailed below with different data access patterns.

e Dense matrix multiply (sgemm) — This benchmark performs a dense matrix multiplica-
tion using the standard BLAS format on matrices of sizes 8192, 16384, and 19456. Matrix
multiply is one of the most popular and well-studied algorithms that is highly compute
bound. This benchmark is from the Parboil GPU benchmark suite [19].

e 3-D Stencil computation — An iterative Jacobi stencil operation on a regular 3-D grid.
We chose three grids of sizes 512 x 512 x 400, 1024 x 512 x 400, and 1024 x 1024 x 400 for
our experiments. This is a memory-bound computation with a low flop:byte ratio. This

benchmark is also from the Parboil GPU test suite.

e k-means clustering — This is a popular iterative clustering algorithm used extensively
in data-mining. We choose k£ to be 100, 400, and 800 for our tests. This benchmark is

from Rodinia GPU test suite [3].

Since the duration of the kernels in the above benchmarks is far from a realistic system’s
MTBF, it’s unlikely for them to encounter any failure during run-time. So, we artificially
inject errors into the system. Designing error-detection module for our scheme was not our
contribution in this work however we simulate this in two separate ways based on different
error-detection approaches. Generally, error-detection can be applied at software level or
hardware level. At the software level, error-detection routine usually uses an application-
level checksum to detect errors, for example, it checks parity and reports data corruption.
To simulate this, we change the value of a number of variables (with constant probability in
different locations including local, shared, and global memory) for randomly selected threads

immediately before selected checkpoints. Then, in the error-detection routine, we set the
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CR_flag (refer to code in Code 3.5) of that block automatically. In the other methodology,
the system uses hardware error detector and reports its source. For example, GPU ECC can
detect double-bit errors and Nvidia driver writes its address into the InfoRom. To simulate
this, we launch a tiny fault-injection kernel on a different stream simultaneously. We control
the kernel time to be approximately similar to the benchmark kernel’s time. Then we change
some value in the global locations (with constant probability in original kernel’s domain) and
report their address in a global list. For error-detection, if each thread accesses either of these
locations, we set the CR_flag of that block. By triggering errors’ threshold and manipulating

their location, we are able to determine which threads and when they encounter an error.

For each benchmark, we conducted three tests. (1) We run the benchmark in an error-free
mode and save the output. This is represented as naive in our results. (2) We save the
output of the error-polluted kernel without any checkpointing. (3) We apply cudaCR by
making precompiler changes and inserting sample checkpoints inside the kernel. Then we

inject faults and output the result.

4.3 Results

By comparing outputs of aforementioned tests, we observed differences in the output between
the first test (naive case) and second test (faulty kernel without CR) as expected while there
was no difference between the outputs of the first test (naive case) and third test (faulty
kernel with CR). This experiment shows that cudaCR can fully recover state on all three
benchmarks. Also, slightly longer run-time of the third test with respect to the second test

shows that cudaCR re-computed some code fragments by few blocks for error recovery.

It is almost impossible to report a single value for time overhead and storage requirement

because they depend on several factors such as the number of checkpoints, number of blocks
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without space optimization (MB) | with space optimization (MB)
‘ Benchmark ‘ private ‘ shared ‘ global ‘ total ‘ private ‘ shared ‘ global ‘ total ‘ gain ‘

stencil 18 98 3300 | 3416 3 <1 3300 | 3303 || 4%
k-means 36 64 220 320 3 <1 220 223 || 31%
sgemm 234 262 402 898 9 <1 402 412 || 54%

Table 4.1: Backup memory requirements for benchmarks with and without memory opti-
mizations.

that have encountered an error, amount of memory that has to be checkpointed, number of
global memory accesses, block and grid sizes, and so on. Intitively, we can approximate the

time of an application with cudaCR by the following formula.

tor > to + tsetup + 1 % (g My + sppMspp + ta) + 1,

where % is the application time without any CR, 4., is the time needed for backup memory
allocation/initialization, constructing structures, and indexing threads/blocks. ¢, is the time
spent on re-computing. It also depends on what fraction of blocks go to restoration phase
and how much parallilization we could have. n is the number of checkpoints, ¢4 is error
detection time and M, and My, , are the amount of memory that has to be checkpointed in
global and shared-private memories respectively. Since we didn’t track shared and private
data, the required time to checkpoint specific amount of such data are about the same, so
we merge them into a single coefficient, oy, ,. However, for global data, we do tracking that
takes considerable time. In fact, for every global write, cudaCR registers its addresses into
a list in local memory (that may reside in global memory) and recovers it during CR; hence
we expect a much greater coefficient for global data (o, >> ag,). Hopefully, caching in
global memory reduces the global data coefficient, «,, but it still contributes significantly to

cudaCR performance.
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Figure 4.1: Application run time of naive and CR-enabled tests for different benchmarks.
The number on top of the bars denote problem sizes.
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In order to make test cases more comparable, we fix the number of checkpoints to 2 and
ensure same SM occupancy for different experiments. We also remove error detection, re-
computation portion, memory allocation (because it’s done once), and fault-injection from
time overhead to calculate pure checkpointing overhead. Figure 4.1 shows application run-
time for naive code (blue bars) and application run-time after applying first version of cud-

aCR to code (red bars).

The plots in the first row are for sgemm benchmarks with matrix dimension of 19456, 16384,
and 8192. In sgemm, threads have limited global accesses (32 writes per thread in tile 32
x 32) but have plenty of floating-point operations, so we observe small overheads of 17.9%,
19.2%, and 37% respectively. As the size of matrices increases, the time for computation
increases (t9) while global writes remains almost constant (M,) and hence the checkpointing
overhead reduces a little. Second-row shows results for k-means clustering with varying
number of clusters (800, 400, and 100). We get an impressive little overhead of 2-3% for
this benchmark because it has a few global modifications per thread and more importantly
we insert checkpoints in the best locations that need minimal data for store/restoration.
Unlike k-means and sgemm, stencil performs much more global memory modification. We
increase the dimension of the grid to have more than 800 writes per thread for this benchmark
to really stress cudaCR. The third row presents results from grid sizes of 512 x 512 x 400,
1024 x 512 x 400, and 1024 x 1024 x 400. As one might expect, due to a large number of global
accesses, we observe larger overheads (near 200%). Reported time overhead demonstrates
how effective cudaCR will be if checkpoints are inserted in appropriate locations (like k-means
clustering) or on compute-bound applications (such as sgemm). However, it might not deliver
good performance on applications that spend the majority of their time on global memory

accesses rather than computation (bandwidth applications like stencil).

To evaluate our discussed memory optimization, we apply it on all three benchmarks. Table

4.1 shows the amount of backup memory used in the three benchmarks. For stencil (grid
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size of 1024 x 1024 x 400 with a block size of 16 x 16), naive code requires 3416 MB but
after space optimization, backup memory reduces to 3303 MB. Similarly, k-means (1 million
data point with 34 double-precision features, and 400 clusters) and segmm (with matrix size
of 4096 x 4096 and block size of 8 x 64) use 31% and 54% less backup memory respectively.

Therefore, cudaCR shows extremely low storage requirement after memory optimization.
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Chapter 5

Conclusion

Due to the lack of full in-kernel GPU checkpoint /restart at the application-level, we design
and implement a new scheme for NVIDIA GPUs and CUDA programming model called
cudaCR. The proposed scheme is able to capture data everywhere inside the kernel at check-
points under a specific condition. Unlike previous GPU checkpoint /restart implementations,
cudaCR moves checkpointing/restoration task from CPU to GPU. Experiments across dif-
ferent benchmarks show that our scheme has low overheads in time and backup storage,
especially for real and standard GPU applications. Our in-kernel checkpoint/restart is suit-

able for long-running kernels in the multi-GPU environment.

Our current application-level CR requires the user to inject checkpoints in the code. Future
work will address the challenge of designing a smart compiler that can identify the best (or
approximate) locations for checkpointing. Also, the current version of cudaCR still has few
limitations regarding performance and register data-movement in big codes that need to be

addressed in the next version.
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