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Abstract

Machine Learning and the Reliability of Adjudication
by
Ryan W. Copus
Doctor of Philosophy in Jurisprudence and Social Policy
University of California, Berkeley

Professor Justin McCrary, Co-Chair
Professor Kevin Quinn, Co-Chair

Machine learning can be used to help guide and regulate adjudicator decisions, increas-
ing the reliability and overall quality of decision making. The first chapter provides an
analytic and normative overview of what I refer to as “statistical precedent.” It explains
how statistical models of previous decisions can help assess and improve the reliability of an
adjudication system. The subsequent chapters elaborate on and empirically illustrate two
of the techniques introduced in the first chapter. Chapter two, using an original dataset
of Ninth Circuit Court of Appeals decisions, presents a method for estimating the amount
of inter-judge disagreement. Chapter three, using an original dataset of California parole
hearings, demonstrates the potential of synthetically crowdsourced decision making.
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Chapter 1: Statistical Precedent

1 Introduction

Adjudication is omnipresent in the regulatory state. In addition to the federal, state, mag-
istrate and administrative law judges who we employ to apply rules and standards to par-
ticular claims, we assign cases to armies of probation officers, food safety inspectors, asylum
officers, tax auditors, Medicare claims processors, nursing home inspectors, parole commis-
sioners, teaching evaluators, police detectives, veteran’s disability claims processers, patent
examiners, IRB compliance officers—the list is almost endless. With rare exception, these
decentralized decision-making systems operate in much the same way as they always have:
various human judges® using their human judgments to make human decisions. But those
decisions are often all too human. Due to inter-judge and intra-judge inconsistency as well as
systematic biases, cleaner restaurants are shut down while dirtier restaurants remain open,
dangerous inmates are released into society while safer inmates are kept in prison, less de-
serving sexual discrimination plaintiffs win cases while more deserving plaintiffs lose, and
bad patents are issued while good patents are denied.

This article argues that machine learning has a major role to play in improving our ad-
judication systems. Advanced analytics is transforming industries: finance, sales, medicine,
transportation, elections, sports, and even fantasy sports have been deeply impacted by im-
provements in predictive technology. It can do the same for adjudication. In brief, I argue
that it can help us determine what the law is. Does that immigrant qualify for asylum? Do
those acts constitute sexual harassment? Is that invention novel? Does the claimant qualify
for social security disability benefits? While answers to such questions do, and, for the fore-
seeable future, will continue to depend on the subtlety and flexibility of human reasoning,
predictive technologies can supplement that reasoning. This article explains how.

In any effort to determine what the law is, it is important to distinguish between what
legal philosophers have termed the “internal” and “external” legal perspectives (Shapiro
2006). Broadly speaking, the internal perspective is a normative one. By taking the internal
perspective, we address ourselves to the proper interpretation and application of law. The
archetype is a judge deciding a case. The external perspective, in contrast, is primarily
a descriptive one. The inquiries we conduct from the internal perspective eventually yield
decisions, and these are the data points on which the external perspective primarily relies. We
might adopt the external perspective as social scientists, attempting to trace the genealogy
of law and offering causal explanations for its content. Or we might engage with the external
perspective as Holmesian lawyers, interested in merely predicting what a court will decide
so as to better advise and represent our clients.

Machines, while of value to the internal perspective, are severely limited in their ability
to engage in the normative reasoning that the internal perspective requires. Without ex-

1. T use the terms “judges” and “adjudicators” interchangeably to refer decision-makers in decentralized
decision-making systems.



traordinary advancements in artificial intelligence that are unlikely to materialize anytime
soon, they cannot even begin to replicate the complexity of human judgment that the inter-
nal perspective so often requires. Computer programmers write code that can automatically
apply clearly articulated rules, but that code cannot yet engage normatively or interpret
the meaning of rules. Statisticians and economist can estimate the factors that inform the
internal perspective, letting us better understand the effects decisions may have (e.g., they
may provide estimates of recidivism risk that can inform sentencing decisions). But again,
their statistics cannot tell us what the law means and requires. Both tasks can prove useful,
but they will often fall far short of answering the internal perspective’s version of “What is
the law?”

Machines are more at home in the external perspective. Freed from the need to replicate
the complexity of the human reasoning process, they can simply aim to predict its results,
and machines excel at the task of prediction. It is the reason for the excitement in the private
industry, as companies like Lex Machina and Legalist build models to predict the outcomes
of lawsuits.

But for those of us who are neither pure social scientists nor Holmes’s bad man, machine
competence in the external perspective may fail to inspire hope in the ability of machines to
answer the “What is law?” that we care most about. But it should. The external perspective
is of critical importance to forming and defending our internal perspective. The reason is two-
fold. First is humility. Lacking the expertise, talent, or time to fully engage with the internal
perspective, we may defer to judicial decisions out of humility, thus partially adopting as our
own the results of an adjudication system’s tangling with the internal perspective. For most
of us most of the time, our best answer to the internal perspective’s “What is the law?” is
the same as the answer to the external perspective’s — it is whatever judges decide it is. Even
judges, high on talent and expertise if not time, routinely resort to the external perspective
in defense of their judgments when they cite non-binding precedent in string cites. A second
justification for internalizing the external perspective is the second-order values of fairness
and predictability. Appreciation for these pragmatic benefits might reasonably lead someone
to modify their first-order interpretation of the law. In fact, these are the values that can
justify the rule of precedent — the formal incorporation of the external into the internal
perspective. But the interests of fairness and predictability may support incorporation even
in the absence of a formal rule of precedent. As pithily captured by Justice Brandeis, “in
most matters it is more important that the applicable rule of law be settled than that it
be settled right.” Thus, whether out of humility or for fairness and predictability, there are
important reasons for our internal perspective to defer to the external perspective.

But there are serious barriers to internalizing the external perspective. First, the humility
we owe to the external perspective is partially a function of how reliable legal decisions are.
In other words, how much we trust in the wisdom of a particular judicial decision depends
on how often a different judge — or even the same judge at a different time — would decide the
case differently. But reliability is difficult to assess. With rare exception, we only get to see
one decision per case, so we don’t get to observe judicial disagreement directly. Researchers
and administrators have sought to overcome the problem in two ways (Grunwald 2015). In



one approach, judges are asked to respond to simulated materials so that we can observe
different judges’ responses to the same stimuli. The main problem with these “inter-rater
reliability” studies is external validity, as disagreement in the simulated environment may
poorly describe real-world disagreement. The other solution has been to identify disparities
in rates at which judges making actual, real-world decisions. While these disparity studies
have high external validity, they suffer from problems with internal validity because they can
miss important dimensions of disagreement. Two decision makers might, for example, each
decide 50% of cases in favor of claimants. A simple comparison of averages would detect no
difference between the decision makers, but it’s possible that they would actually disagree
in 100% of cases (Fischman 2014a).

The second barrier to internalization is the difficulty of mapping the external perspective
in a timely manner. While we can simply wait for the outcome of particular cases, we’ll
often want to form our internal perspective before the outcome is decided. Obviously, this
is at least true for the judge charged with deciding the outcome. A formal or informal rule
of precedent partially solves the problem. With publication of outcomes and reasoning in
prior cases, judges can look to past results in similar cases to guide and constrain their
decisions in current cases. But the shortcoming of precedent as a solution to inconsistency is
in the ambiguity of “similar.” If interpreted narrowly, such that even minor differences in fact
patterns can distinguish cases, precedent fails to constrain decision-making. If interpreted
broadly, such that cases with more substantive differences are still deemed similar, precedent
suffers from the familiar problem of the over- and under-inclusiveness of rules. The problem
is particularly acute in legal areas where factual idiosyncrasies are important to merits, and
thus we generally see only limited use of traditional precedent in areas like social security
disability, parole, or asylum. Moreover, even if precedent can successfully constrain decision-
making with minimal over- and under-inclusiveness, it may not be reliably produced: in a
system where the outcome and rule are largely dependent on the preferences of the judge
assigned to decide a case, precedent may deserve little humility-induced deference.

Statistical precedent can substitute or complement traditional rules of precedent, helping
to overcome the ambiguity of “similar.” Statistical precedent, rather than locating similar-
ity in a few particular cases, tethers decision-making to statistical patterns in a dataset
of historical decisions. But it is still in its infancy. To date, proposals and implementa-
tions of statistical precedent—such as disseminating information about peer decision rates,
establishing decision quotas, or targeting for review decisions from judges whose rates are
abnormal—have addressed reliability with little precision. In brief, because they only target
raw inter-judge disparities, they fail to address multi-dimensional forms of inconsistency.

In this article, I explain how predictive technology can help to overcome the problems of
assessing reliability and of mapping the external perspective so that statistical precedent can
be used to intelligently guide and constrain decision-making. More specifically, predictive
models of individual judges can be used to dramatically improve upon the estimates of
reliability offered by disparity studies. And predictive models of adjudication systems—
models that treat an adjudication system as a unitary entity—can smooth over the noise
and inconsistency in decision making, helping to bring statistical precedent into maturity.



The paper proceeds as follows: Part I introduces readers to the basics of machine learning.
If predictive technology is to play a vibrant role in the improvement of adjudication systems,
machine learning will have to be demystified and understood by legal administrators and
scholars. Part I is a contribution to that effort. Part I briefly discusses the applications of
machine learning to the internal perspective’s interpretation of law, as well as their short-
comings. Part III provides a basic sketch as to how predictive models of decision making
expand the ability to assess reliability in adjudication systems and to establish high-quality
statistical precedent. Part IV considers barriers to and problems with using machine learn-
ing to pursue reliability in decisions, including legal and data-based hurdles. Part V briefly
concludes.

2 An Intuitive Introduction to Machine Learning

Imagine a newly appointed parole board commissioner. Her previous experience as a sheriff
means she has some experience with the inmate population, but it certainly doesn’t make
her an expert in recidivism. It’s time to make her first decision. For whatever reasons, a
few characteristics of the potential parolee keep coming to her mind as she contemplates her
decision: the inmate is a 39-year-old white male, currently serving year 20 for a rape and
murder, has two prior robbery convictions, one previous assault conviction, a small facial
tattoo, a 10th grade education, an acceptance letter from a half-way house, no offspring,
two write-ups in prison for cell phone use, a history of moderate alcoholism, and a two-year
sobriety token from Alcoholics Anonymous. During the hearing, the inmate seemed sincere
in his regret and intent to avoid criminal activity, but having been fooled many times as
a sheriff, she has learned to question those instincts. The Parole Board keeps extensive,
computerized historical data on recidivism. She decides to take a look to see if it can help.
First, she looks up last year’s violent-crime recidivism rate: 15%. It’s lower than she would
have thought, so that’s useful, but she wants to know more about this particular inmate’s
likelihood of recidivism. So, she searches for the recidivism rate of 39-year-old white males
who served 20 years for a rape and murder, had two prior robbery convictions, one previous
assault conviction, a small facial tattoo, a 10th grade education, an acceptance letter from
a half-way house, no offspring, has two write-ups in prison for cell phone use, a history of
moderate alcoholism, and a two-year sobriety token from Alcoholics Anonymous. No results.
That was obviously too specific. So instead she constructs a search that is more moderate
on the specific/general scale: males between thirty and forty who were serving time for rape
and murder, had at least one prior assault conviction, did not graduate high school, and
had a facial tattoo. There are 8 such cases, and five of those individuals (63%) went on
to commit another violent crime — the sample size seems too small to trust. Facial tattoos
aren’t very common: maybe she can get a bigger sample by eliminating that as a search
parameter. She gets 213 results with 21 cases of violent recidivism (10%). But is that the
best estimate? Is a facial tattoo an important correlate of crime that this estimate ignores?
Or should she maybe try additional searches. For example, maybe she should have tried
dropping the education parameter rather than the facial tattoo — and maybe that even lets



her put the cell-phone write-ups back into the search?

A branch of machine learning, called supervised learning, attempts to provide optimal
solutions to problems like the above: with a supply of predictor variables (e.g., age, facial
tattoo, education) and outcome variables (e.g., violent recidivism), we can let a machine train
itself to identify which combinations of predictor variables are most helpful in predicting the
outcome. This part of the article provides an introduction to that process, introducing
readers to some of the basic vocabulary and concepts of machine learning.

2.1 The Bias-Variance Tradeoff

The above scenario captures the key issue addressed by predictive technology: the battle
between bias and variance. Image 18 helps to convey the concepts. We want a low bias, low
variance estimate, as represented by the target in the upper left corner. Unfortunately, lower
bias generally means higher variance, and lower variance generally means higher bias. Why?
Consider again the experience of the newly appointed parole commissioner. An unbiased
estimate of an individual’s likelihood of violent recidivism uses all information about that
individual—it aims for the center of the target. But by using all of the information, the
number of comparable individuals (i.e., individuals with the same characteristics) dwindles,
and any estimate based on such a small number of people is likely to be unreliable—our
dart player is aiming for the center, but she has a shaky (high variance) hand. By ignoring
information about the individual of interest, say by leaving the facial tattoo out of the search
query, we increase the number of individuals we are basing an estimate on, but we move the
aim away from the center of the target, towards individuals without a facial tattoo. The
dart player’s hand is steadier, but it is no longer aiming at the center.

Even worse, variance increases exponentially as more characteristics are added to the
search. In a world with extensive electronic records, the list of available characteristics can
be almost endless, so this “curse of dimensionality” can be a serious problem. For example,
even with only 10 dichotomous variables (e.g., male or female, previous assault conviction or
not, history of alcoholism or not), there are 2! = 1024 different types of people. Even with
a moderately sized dataset of ten thousand, we’'d expect only ten of each type of person.
With such small sample sizes, estimates would have extremely high variance.

Fortunately, we don’t have to choose between adding a characteristic to the search in-
quiry or simply ignoring it. With techniques like multiple regression, we can partially add
characteristics to the “search inquiry” (the quotes are now necessary because the partial ad-
dition of characteristics involves mathematical operations that are more sophisticated than a
simple search inquiry, and we’d be more accurate to now call it a statistical model). Rather
than observing the recidivism rate for the rare 30 to 40-year-old white male convicted of
murder who also has a facial tattoo, we could instead start with the recidivism rate for the
much more common 30 to 40-year-old white males convicted of murder (with or without
a facial tattoo). Worried that we've disregarded an important predictor of recidivism (i.e.,
worried that we’ve taken on too much bias in the effort to reduce variance), we could try

2. Image from http://scott.fortmann-roe.com/docs/BiasVariance.html



Figure 1: The Bias-Variance Tradeoff

Low Variance High Variance
L -
a7
:_: -
& L
L
L -
<
- L]
o7
=

different methods of incorporating the facial tattoo as a predictor. We might, for example,
see how facial tattoos are associated with recidivism rates for all inmates and add that to
our baseline estimate for 30 to 40-year-old white males convicted of murder. Or perhaps
we suspect that the association is special for those convicted of murder, so we instead check
how facial tattoos are associated with recidivism for that subgroup.

The problem is now even starker: with all of the choices about which variables to add,
which to add partially, and how to add them partially, how can we possibly figure out the
“search query”—the statistical model—with the best bias/variance balance? In other words,
how do we find the dart player with the right mix of aim and steadiness?

2.1.1 Training, Validation, Testing, and Application Sets

Finding the right model, the model with the right mix of bias and variance, requires a good
testing procedure. Allow me to switch metaphors. Imagine that a school principal is trying
to find the student that will get the highest scores on next year’s SAT so that can nominate
the student for a national SAT competition. She has a large set of SAT questions from
previous years’ tests. What should she do with them? Most of her students have never even
seen an SAT question, so she knows there isn’t any point in simply holding a test now and
choosing the highest scorer—she’d miss out on talented students who only performed poorly



because they were unfamiliar with the SAT. She could release all of the questions to let her
students get the most possible practice with the SAT, but then how could she assess the
students — the students with the highest scores might just be the students who memorized
the answers to all the questions. As a general matter, it’s clear what she should do: use
most of the questions to let the students train, but save some the questions so that student
performance can be evaluated later.

Machine learning practitioners do the same thing as the school principal. They use some
of the dataset, called the “training set,” to fit each model. For a simple search inquiry model
like that contemplated by the newly appointed parole commissioner, that training would be
as simple recording at the average recidivism rates for various subgroups in the training set.
They then test to see how well the trained models perform on the remaining data, called
the “validation set.” This helps to make sure that the models aren’t “overfitting” the data—
performance on the validation set makes sure that the models are truly learning something
about the world and not just “memorizing the exam answers.” It helps us to distinguish the
models that contain useful information (the signal) from the models that contain useless
information (the noise). The use of a validation set is one of the key moves in finding a
model with a good mix of bias and variance.

But might the school principal do even better? Perhaps. Her role has been passive
so far, but she could get more active in helping students to reach their potential. More
specifically, she might take students who perform well on the validation test and encourage
them to tweak their study habits. In the same way, machine learning practitioners often
identify promising models and change them, or “tune” them, for better predictions. They
then validate the models again with the validation set, and retune them, and so on. But
this raises a concern. If we're changing the models according to their performance on the
validation set, we reencounter the problem of overfitting that inspired the use of a validation
set in the first place: we may now be overfitting models not just on the training set, but on
the validation set as well. To continue the student testing metaphor, if the principal keeps
retesting students with the same test questions, she should worry that the high performing
students are really just the students who have memorized the test questions. To solve this
problem, machine learning practitioners sometimes reserve another portion of the data, called
the “test set,” to serve as a final source of validation for the most promising models.

A testing procedure also needs to be coupled with a grading method. We need a metric
for choosing a good statistical model, and an oft-used and intuitively appealing metric is
mean squared error, or MSE. The MSE for a predictive technique is simply the average of
the squared differences between the technique’s predictions and the actual outcomes. So,
for example, assume that a statistical model predicts that the likelihood or recidivism for
three individuals is 68%, 22%, and 4%. Further assume that only the second individual
recidivates, thus getting a score of 1 while the other two get scores of zero. The MSE is
((0—.68)*+ (1 —.22)2 4+ (0 — .04)%)/3 = .36. With machine learning, we are often trying to
find a statistical model that will minimize the MSE. Why is minimizing the MSE appealing?
Because of the MSE’s intimate connection with the average. For some intuition, consider the
following puzzle: you are given a list of numbers, and you have to choose some value that,



when subtracted from each number in the list, squared, and averaged, produces the smallest
number. The value that solves this puzzle is simply the average of the list of numbers. In
other words, the average minimizes the MSE. The puzzle also works in reverse: minimizing
the MSE gets us closest to the average. So, one can think of the effort to find a statistical
model that minimizes the MSE as an effort to most accurately estimate group averages (e.g.,
recidivism rates).

In summary, machine learning practitioners often divide their dataset into (1) a training
set for the purpose of training models, (2) a validation set for the purpose of evaluating,
tuning, and identifying the best models (with a metric like mean squared error) and (3) a
test set for final evaluation of the top model(s). But with this setup, data taken for one
purpose is data taken from another purpose, and data can be extremely valuable. The
technique of cross-validation, described in the next section, is a powerful trick for avoiding
the tradeoffs between consuming data for training and validating.

2.1.2 K-Fold Cross-Validation

The school principal, concerned with getting her student a lot of practice, might reserve only
10% of the test questions for validating her students. But she might have difficulty getting
accurate student assessments with such a small test. Of course, were she to dedicate a higher
percentage of the test questions to validation, the students would have less to practice with.
In brief, while reserving more questions would give her a better chance of finding the best
students, it would also — by limiting the practice students get — reduce the chances of even
creating the best students in the first place. It is a seemingly inescapable tradeoff between
training and validation.

But the tradeoff can be avoided with the training and validation of statistical models
through k-fold cross validation. In the effort to find the best models, we can use almost all
of the data to both train and validate. The technique works as follows. For illustration, let
k equal 10:

« Randomly split the data (less a possible test set) into k=10 sets.

o Train models on sets 1-9. Validate them on set 10.

« Train models on sets 1-8 and set 10. Validate them on set 9.

e Train models on sets 1-7 and sets 9-10. Validate them on set 8.

o Continue the training process until all ten sets have been used for validation.
o Select the best model.

o Train the best model on the full data for application or further testing.

With k-fold cross-validation, all of the data can be used to validate the models. At the
same time, the models are validated after being trained with a large portion of the data,



assuring that strong models are not passed over simply because they have not had sufficient
opportunity for practice. The trick works because, unlike a student, a model’s memory can
be erased — after a round of training and validation, memory of the both the training and
validation can be erased, allowing for a new round of training and validation.

The choice of the value of k is largely a tension between training and computing time.
By increasing k, models are allowed more training before validation. With k=10, the models
are trained with 90% of the data. With k=20, 95%. With k=100, 99%. But increasing k
also increases the rounds of training and validation, a process that can take a significant
amount of time. Because the returns from increasing k diminish rapidly (e.g., increasing the
rounds of training/validation from 10 to 20 to 100 only increases the percentage of data used
for training from 90% to 95% to 99%), it often makes sense to set k at a number near 10.

2.1.3 Choosing the Candidate Models

The previous sections have yielded the goal: choose a statistical model that we think will
have the lowest MSE in application, using as our criteria the model that has the lowest
cross-validated MSE. But what should the candidate models be? It’s often impossible, and
almost always unwise, to validate every possible model—the possibilities are near infinite,
and even if they weren’t, validating all of the possibilities would generally take too much
time and undermine the effectiveness of the validation procedure (if the principal tests 1
billion students, the best performing students probably had a lot of luck on their side).

So how do we identify a reasonable number of models to enter into the validation process?
A human could create some. The parole commissioner might, for example, chose to enter
an assortment of different search queries that pop into her mind, and she might enter some
set of regressions into the validation process as well. But “just choose some” isn’t much of
answer.

Researchers in machine learning have been making advances in the development of self-
constructing models. Freely available statistical programs now provide anyone with access to
machine-learning algorithms like random forests, LASSO regressions, gradient boosted trees,
neural networks, and support vector machines. These types of algorithms can automatically
select predictive variables for inclusion in a model as well as select how to combine those
variables in the model (e.g., whether to interact two variables). Moreover, those algorithms
can easily be tweaked, or “tuned,” so that they construct multiple models that can be
included in the cross-validation process.

To help readers better understand how algorithms can select variables and how they
interact, this section provides a very brief introduction to just one type of such an algorithm,
random forests. But in order to understand random forests, one has to first understand
Classification and Regression Trees (CARTSs). The core idea behind CART is simple and is
perhaps best conveyed by an example. Suppose the newly appointed parole commissioner
wants to use a CART to estimate the likelihood that inmates will violently commit recidivism.
Label the dataset she is using as “Node A.” CART’s first step will be to find the single
characteristic that can best split Node A between those who committed a violent crime
upon release and those who did not. Call these two new sets of data Node B and Node C,



respectively. Perhaps age was the characteristic that accomplished the best split: parolees
over 30 years of age are much less likely to violently recidivate. CART the proceeds to make
the best splits of the new nodes. Perhaps Node B, consisting of parolees under 30, is best
divided between those who committed a violent crime upon release and those who did not by
splitting on prior violent crimes: those who had two or more previous convictions for violent
crime are much more likely to commit a violent crime in the future. Call these two new
datasets Node D and Node E. And perhaps Node C, consisting of parolees 30 or older, are
best split into recidivators and non-recidivators by their disciplinary record in prison: those
who were free of disciplinary infractions for the previous three years were much less likely to
recidivate. Call these two new datasets Node F and Node G. CART continues this process,
best splitting each node into two new nodes until there are no more non-trivial splits to
make. At the culmination of this process, each historical inmate will be in an end node that
is defined by the splits that got it there. For example, one end node could be parolees under
30 who had fewer than two previous convictions for violent crime, were older than 25, had
a facial tattoo, had no children, and had a history of drug abuse. Perhaps four of the five
parolees in this end node violently recidivated, so an inmate with these characteristics would
have a predicted 80% of violent recidivism. A different end node might consist of parolees
who were over 30, were free of disciplinary infractions for the previous three years, had a less
than a high school education, had an acceptance letter from a half-way house, had a history
of moderate alcoholism, and had a two-year sobriety token from Alcoholics Anonymous.
Perhaps only one of the eight parolees in this end node recidivated, so an inmate with these
characteristics would have a predicted 12.5% chance of violently recidivating.

But there’s a major problem with using CARTSs for prediction: they tend to overfit the
data, taking on too little variance and being too unbiased. They’re similar to the student
who simply memorizes the exam answers, and they’re thus unlikely to perform well in the
validation process. First, the end nodes they create are generally too small for reliable
estimates — an end node with five data points represents a highly variable estimate. Second,
CARTs track the noisy features of the data too closely, making early splits that aren’t
holistically optimal (e.g., maybe splitting on age is just barely the better as first split than
splitting on previous convictions, and splitting on previous convictions would have allowed
for better downstream splits). Random forests are a solution to the low variance of CARTS,
adding variance through two means. First, rather than grow one CART with all of the
training data, random forests consist of many CARTS, each grown with only a random
sample of the training data. This helps avoid too closely tracing the unimportant details of
the data. Second, instead of splitting each node based on the single best variable of all of the
variables, a CART grown for a random forest splits each node with the single best variable of
a random selection of the variables. Again, this helps prevent overfitting. The random forest
is now the collection of these CARTs, and each CART can be understood as casting a vote
for each parolee depending on whether it classified the parolee as likely to recidivate or not.
If, for example, 60% of the CARTS classified parolees with a certain set of characteristics as
likely to recidivate, an inmate with those characteristics would have a predicted 60% chance
of violently recidivating according to the random forest. The random forest algorithm can
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thus automatically create a strong candidate model for testing in validation process.

2.1.4 Ensemble Learning

Imagine that our parole commissioner has identified a set of candidate models. Perhaps she
has used her intuition to build some of them (e.g., some basic search queries that she thinks
could yield helpful estimates), but she also used an assortment of algorithms like random
forests that can self-construct. She uses 10-fold cross validation and calculates the MSE
for each candidate models’ predictions. The winner (i.e., the model with the lowest mean
squared error) is a random forest that splits nodes based on a randomly selected 30% of the
variables. She might then decide to use that random forest to help her estimate recidivism
risks.

But our parole commissioner can probably do better with “ensemble” learning. Instead
of just using the one best model, she could use some a collection of the models. Perhaps, for
example, an average of the three best models’ predictions would be best. Or maybe a random
forest predicts really well for some type of parolees, but a Lasso regression generates better
predictions for other types. Or maybe the models should be weighted according to their
cross-validation performance. There are all sorts of ways that different models’ predictions
could be combined to create ensemble predictions, and each different method of combining
the predictions is yet a new predictive model.

How does the parole commissioner identify which combination of the models she should
use? She faces a very familiar problem: she wants to identify the candidate combination that
has the right mix of bias and variance! How does she find the best candidate combination?
By doing the same thing she did to identify the best candidate model: cross-validating. The
details of ensemble cross-validation, which involve two layers of cross-validation, are a little
beyond the scope of this introduction, but the idea shouldn’t be objectionable. Combinations
of cross-validated models are just models themselves, and as explained above, models can
be cross-validated.

2.1.5 Final Evaluation of the Winning Model/Combination

With the best model or combination of models chosen, there remains a key question: how
good is it? There are various measures for how well it performs on the test set (or the
validation set if it hasn’t been overused), but two of the most common and intuitive measures
are the correct classification rate (CCR) and the area under the curve (AUC). The correct
classification rate is exactly what it sounds like: what percentage of cases does the model
correctly classify? But this can be unsatisfying. For example, if there is low base rate of
recidivism like 20%, a model could have a high CCR, (80%) simply by predicting that everyone
has a 20% chance of recidivating (and thus classifying everyone as non-recidivators). Such a
model would be worthless — it would have no predictive power. On the other hand, another
model could have considerable predictive power but perform no better in terms of CCR. Such
a model could succeed in identifying inmates that are significantly more likely and less likely
to recidivate — perhaps it correctly predicts that half of inmates have zero percent chance of
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recidivating and the other half have a 40% chance. AUC does a better job of capturing this
difference in predictive power. Intuitively, the AUC can be understood as the probability
that a model rates randomly selected 1 (e.g., a recidivator) as more likely to recidivate than
a randomly selected 0 (e.g., a non-recidivator). Of course, what we ultimately care about is
whether the model is useful for its intended purpose. While measures like CCR and AUC
can be helpful indicators of usefulness, more direct tests are often possible. For example,
one might judge a model of recidivism by whether its decisions outperform the decisions of
human judges (Lakkaraju et al. 2017).

3 The Limits of Machine Learning in the Internal Per-
spective

Machines, in general, are of limited use in interpreting the law. While platforms like Turbo
Tax can fruitfully apply if-then logical statements for clear applications of law, as soon as
things get complicated, if then statements are no longer useful. They cannot hermeneutically
engage with the law.

But machine learning can inform the internal perspective through evidence-based decision
making (EBDM). With EBDM, rather than relying on unaided judgment, decision-makers
use predictions of some important outcome to assist in making decisions. The above in-
troduction to machine learning was also an introduction to EBDM. In that scenario, that
outcome is recidivism, the primary issue for many decisions made in the criminal justice
system, including parole and bail decisions. Research in EBDM is progressing rapidly in the
criminal justice context, with Richard Berk’s work on using machine learning to estimate
criminal risk leading the way (Berk 2012).

Despite the progress in criminal justice EBDM, it is a poor fit for many, if not most, of
our adjudication systems. The problem is that we lack objectively measurable outcomes that
could be used to guide many of our most important adjudications. How do we know if an
employer’s behavior constituted sexual harassment? If a nursing home is adequately treating
its residents? If a child is being abused or neglected? If a patent should or shouldn’t be
issued? If a disability claim should be granted? If asylum should be granted? We have yet
to find outcome metrics that could reliably answer these questions. Without such metrics,
EBDM has little to offer. At least as of now, our collective judgment is the best we have.

And even when it we do seem to have objectively measurable outcomes, the objectivity
may be an illusion. Measures of recidivism, for example, may be a poor approximation of
actual recidivism. If certain types of people (e.g., racial minorities ) are policed more heavily
than others, then the more heavily policed individuals will tend to have higher measured
rates of recidivism even if they commit crimes at the same rate. Or some parolees may
simply be better at evading detection. If these gaps between measures of recidivism and
actual recidivism are large, then than predictive models that rely on measures of recidivism
will be inaccurate. As the computer science lingo states, “Garbage in garbage out.”

Finally, even if we do truly have objectively measurable outcomes, there is still the
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problem of selection bias. Legal decisions, by their nature, generally have important effects.
For example, in the criminal justice system we only see outcomes for the released. While
the released and non-released may look similar on the variables we have access to, we have
good reason to suspect that the released inmates are different than the non-released inmates
in ways we can’t detect—judges, who presumably get to consider more characteristics of
the inmates than the algorithm does, decided to release the former but not the latter. If
the suspicion is correct, an algorithm that was constructed using data on released inmates
would not be expected to perform well in predicting the criminal risk of non-released inmates.
The problem extends to the most adjudication systems: because decisions are an important
determinant of the outcome data we see, it is precarious to use that data to inform decisions
(Lakkaraju et al. 2017). We might imagine, for example, the Social Security Disability
tracking employment outcomes of those who submitted a disability claim and using that
data to build a predictive model of employment. Given that disability claims are only
supposed to be granted where an individual is not “able to engage in any substantial gainful
activity because of a medically-determinable physical or mental impairment,” predictions
about the individual. But, of course, the decision on a disability claim dramatically affects
whether an individual finds gainful employment: those denied disability, it is reasonable
to presume, are much more likely to seek employment in order to offset the denial of their
disability claim. But if the disability decision affects the outcome, the outcome cannot safely
guide the decision.

4 Existing Approaches to Internalizing the External
Perspective

The empirical analysis and pursuit of reliability in adjudication systems is not new, but
current approaches are severely limited. Below, I briefly review the state of existing research
into reliability and the primary methods used to promote it.

4.1 Assessing Reliability

Empirical assessment of reliability has generally taken one of two forms B Tn the first, ad-
judicators are asked to make separate decisions after reviewing the same case materials or
simulated scenarios. The main problems with this approach are expense and the difficulty
of simulating realistic decision-making environments and materials. It is costly and difficult
to have adjudicators spend time on fake cases and to create realistic and representative sce-
narios. In the second from of analysis, researchers and administrators identify disparities in
actual decisions. The primary problem with this approach is that it has so far been limited
to observing differences in averages between judges, and this can dramatically misrepresent
the level of inconsistency.

3. A third approach, aimed directly at error rates rather than inconsistency, is to use some proxy for
whether decisions are correct (Benitez-Silva, Buchinsky, and Rust 2004).
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4.1.1 Inter-rater Reliability Studies

In inter-rater reliability studies, adjudicators are asked to make decisions after reviewing
identical case materials. Researchers can then analyze disagreement rates to assess the con-
sistency of the adjudication system. In some contexts, the case materials are actual cases
simply assigned to multiple adjudicators. Daniel Ho, for example, showed that Washing-
ton state food safety inspection unit disagreed in 60% of cases when assigned to evaluate
the same establishments (Daniel E. Ho 2017). But because that can be time-consuming
for adjudicators and an unreasonable burden on parties/claimants in systems where they
dynamically participate in the process, inter-rater reliability studies can also be conducted
with some subset or simulation of case materials. The Veterans Disability Administration,
for example, evaluates reliability of its claims processing with a questionnaire that describes
a brief scenario.®. Although more common in highly administrative settings , inter-rater re-
liability studies have also been used to assess reliability in traditional court systems. These
studies are uniformly conducted with simulated cases rather than actual cases (Austin and
Williams 111 1977; Partridge and Eldridge 1974; Van Koppen and Kate [1984).

In addition to the expense, the main problem with using inter-rater reliability studies
in adjudication systems is the lack of external validity. The scenarios that are often used
may not be representative of actual cases, and adjudicators might treat cases differently
when they are aware their decision will have no real-world effect or when they know that
reliability is being evaluated. It would be difficult, for example, to entice federal judges to
spend the time and energy on a simulated employment discrimination case as they would
on an actual case. And even if it were possible, those judges might seek to protect their or
court’s reputation, putting their ideological preferences aside if they knew that their decision
was part of an effort to measure levels of disagreement among judges.

4.1.2 Disparity Studies

In light of the limitations and expense of inter-rater reliability studies, it is not surprising that
reliability is often studied through disparities in actual decisions. For example, adjudicators
differ in the rates at which they grant asylum to refugees (Ramji-Nogales, Schoenholtz, and
Phillip G. Schrag 2007), social security disability benefits (Nakosteen and Zimmer 2014a),
and extended prison sentences (Anderson, Kling, and Stith 1999). Generally, these disparity
studies leverage the fact that adjudication systems frequently make use of random or as-if
random assignment of cases to judges, allowing them to attribute the cause of disparities to
differences in adjudicators’ preferences.

By analyzing real decisions in real cases, this approach to the study of reliability avoids
the problems with external validity that plague inter-rater reliability studies, but it suffers
instead from problems with internal validity. Because disparity studies rely on decisions in
different cases (that are only the same on average) rather than decisions in identical cases, it
is difficult to detect the true amount of disagreement (Fischman 2014a). In brief, differences
in averages may leave some disagreement uncovered. Consider an example where one judge

4. http://www.gao.gov /assets/670/667027.pdf
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reverses 20% of cases and another judge reverses 30% of cases. Assuming randomization of
case assignment and a sufficiently large sample of cases, the judges would obviously disagree
in 10% of cases. But the level of this counterfactual disagreement may be much higher: if
they had decided the same cases, the two judges might always reverse different cases, meaning
they would disagree in a full 50% of cases. The concern is not merely theoretical. In one of
the early inter-rater reliability studies on federal sentencing (Partridge and Eldridge 1974),
a key finding was that the “vast majority of the judges are sometimes severe relative to their
colleagues and sometimes lenient.” A simple comparison of actual sentence lengths given by
judges would have missed this and vastly overstated the reliability of federal sentencing.

Recoding of decisions along lines that better capture disagreement or subsetting cases for
independent analysis can help overcome these problems (Fischman 2014a). For example, a
comparison of reversal rates in employment discrimination cases might reveal less disagree-
ment than a comparison of the rates at which judges decide in favor of the plaintiff. In
effect, by recoding outcomes as pro/anti plaintiff rather than reverse/affirm, the analysis of
disagreement is conducted on two subsets of cases: those where the plaintiff appealed and
those where the defendant appealed. The difficulty, of course, is identifying the appropriate
subsets of cases. Adjudicators may disagree along an assortment of dimensions, and even if
an experienced participant could articulate those dimensions, there may be no useful mea-
surements (e.g., some judges might find articulate litigants more persuasive, but in many
instances, we may have not recorded raw speech data, much less quantified “articulateness”
with it). Moreover, the dimensions that judges disagree over may vary between pairs of
judges. While different preferences for plaintiffs prevailing might capture the majority of
disagreement between Judge A and Judge B, it could be that different levels of aversion to
reversing cases captures the main source of disagreement between Judge A and Judge C,
while different preferences for well-written briefs captures the disagreement between Judge
C and Judge B.

Despite the shortcomings of disparity studies, their findings can and have been instructive
— even if they do overstate the reliability of an adjudication system, those overstatements
can be alarmingly low, generating calls for system reform.

4.2 Promoting Reliability

We have an existing set of tools for reducing inconsistency in decision making, but precision-
targeted statistical precedent is a powerful new addition. In this section, I briefly review
some of the key existing approaches to limiting inconsistency.

4.2.1 The Rule of Precedent

In the United States, the rule of precedent has been the front-line defense against incon-
sistency in judicial decision making. By developing rules that bind future decisions, a rule
of precedent can reduce inconsistency in outcomes insofar as some judges would have made
decisions incompatible with the rule had it not existed (and do in fact make decisions com-
patible with the rule given its existence). While there have always been questions about
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how well precedent succeeds in constraining future decisions, the shortcomings of traditional
precedent are stark in the modern era. The sheer number and factual complexity of contem-
porary claims have dramatically undermined the power of precedent. First, the explosion
in the number of claims by individual systems (e.g., the 9th Circuit) has dramatically in-
creased the amount of precedent, making it more difficult for systems to maintain coherent
bodies of precedent that can reliably constrain future decisions. Second, government use of
decentralized decision-making systems has aggressively expanded to more factually-intensive
contexts where a rule of precedent is less valuable—adjudication of claims for social security
disability benefits, parole, for example, frequently turn on differences between cases (e.g.,
credibility of parties) that are hard to usefully delineate with ex ante rules. In short, in
many contexts, law cannot be moved further down the rule side of the rules versus standards
spectrum without serious adverse consequences. The inability of traditional precedent to
regulate decision-making in the contemporary world is perhaps best exemplified by the US
Courts of Appeal. Once a bedrock for the rule of precedent, the federal appellate courts are
increasingly abandoning it, designating less than 12% of opinions as precedent.

4.2.2 Statistical Precedent

Though it does not have the pedigree of a traditional rule of precedent, statistical precedent
is another tool for guarding against inconsistent decision making. Statistical precedent,
rather than using stated rules in individual decisions, leverages historical statistical patterns
in decision making to guide future decisions.

Experiments with statistical precedent have been limited so far, both in quantity and
sophistication. At one point, the SSA targeted for review disability decisions by adminis-
trative law judges who had abnormally high approval rates (Krent and Morris 2013) and
the Administrative Conference of the United States has newly recommended that the SSA
consider reviewing “decisions from judges whose allowance rates are both well under and well
above statistical average” H. In a classic work on inconsistency in social security disability
decisions, (Mashaw [1985) suggested, though ultimately rejected, the idea that “disparities
could be eliminated or sharply constrained by a quota system. State agencies or individual
disability examiners could be given a grant rate (say 35 percent +/- 5 percent) for each
time period (say a month). Awards would then be made on a comparative or relative basis
and award rate disparities would virtually disappear.” Though the SSA tried to implement
such a quota, the ALJs aggressively fought for their “decisional independence,” and the SSA
eventually folded before the experiment could be completed (Hausman 2016).

The above types of statistical precedent are a clumsy response to inconsistency. Most
importantly, while they might succeed in reducing disparities, they might fail to reduce
inconsistency. As noted earlier, even if two judges grant claims in the same percentage of
cases, they might grant claims in very different types of cases. The same problem plagues
proposals to punish wayward judges, to encourage consistency by distributing information

5. Table B-12, Annual Report of the Director: Judicial Business of the United States Courts 2016
6. https://www.acus.gov/recommendation/improving-consistency-social-security-disability-adjudications
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about peer grant rates, or targeting for review the cases that come from judges with deviant
grant rates.

Despite a largely unsuccessful history, the use of statistical precedent is likely to grow
precipitously. Some adjudication systems have begun exploring the potential of incorporating
advanced analytics into their decision processes. The Administrative Conference of the
United States, for example, has suggested that the Social Security Administration’s Appeal’s
Council target for review decisions that “appear, based on statistical or predictive analysis
of case characteristics, to have a likelihood of error or lack of policy compliance.”™ The
Veteran’s Benefits Administration has likewise explored the use of machine learning in its
claims processing (Deutsch and Donohue 2009). And while details are a closely guarded
secret, the Internal Revenue Service uses predictive technology to identify tax returns for
auditing. Section IV.B sets the analytic foundations for the coming implementations of
statistical precedent.

4.2.3 Other

Other tools for addressing inconsistency in decision making include centralized rulemaking,
statistical rules, better judges, institutional design, and peer review. I briefly describe these
tools below. Probably the most common antidote for inconsistency in adjudication is to
move away from a standards-based system and more toward a rules-based system. The
shortcomings of using rules to address inconsistency are well covered. While rules can reduce
discretion and increase reliability, they can also introduce error by being over- and under-
inclusive (Kaplow [1992). In short, because rules are constructed ex ante, it is difficult for
them to account for the wide variety of events that actually occur, and they can thus generate
suboptimal outcomes in cases.

Another option is decision matrices. The Federal Sentencing Guidelines stand as a promi-
nent example, but other systems have experienced similar reforms. But like standard central-
ized rules, decision matrices are also often criticized for being too over- and under-inclusive.
Critics of the federal sentencing guidelines, for example, have argued that they created ex-
cessive restrictions on judicial discretion and led to too many inapposite sentences (Alschuler
1991).

Another class of responses to inconsistency falls under the umbrella of what might be
called “better judges.” Either through improved hiring or improving existing adjudicators
through professional development training, the notion is that better judges would be more
consistent. But despite the intuitive appeal of the “better judges” approach to inconsistency,
filling in the details is a difficult task. How do we identify and hire better judges? What
should professional development programs develop, and how should they develop it? Despite
frequent efforts to improve hiring or offer training to adjudicators, there is little to no evidence
that they decrease inconsistency among adjudicators.

Institutional design can also be used to curtail inconsistency. A major design feature is
the number of judges assigned to hear a given case. It is generally theorized that increasing

7. ACUS Recommendation 2013-1, Improving Consistency in Social Security Disability Adjudications, 78
Fed. Reg. 41,352 (July 10, 2013)
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the number of judges who participate in each decision is can increase reliability (Legomsky
2007). The notion is that larger decisional units will decrease the variance of decisions,
both by mechanically limiting the power of extremist judges and by allowing for deliberation
that can help prevent ill-considered decisions. But there are also countervailing pressures.
First, research in psychology provides reason to doubt that group decision making limits
extreme decisions. Groups can actually result in more decisions that are more extreme than
the decisions that any of the individuals would have made (Moscovici and Zavalloni [1969).
Second, while group decision making might help prevent sloppy decisions by adding eyes and
minds, it’s also possible that each adjudicator’s effort and attention decreases as adjudicators
are added because they can rely more on other judges (Halberstam 2015). Furthermore,
increasing the size of decisional units can obviously be expensive if it requires hiring more
judges, a necessity if we do not want to increase each decisional unit’s caseload.

5 Machine Learning and Internalizing the External Per-
spective

In this section of the paper, I provide a non-technical account of how machine learning can
be used to better measure inconsistency and control it through statistical precedent. For
simplicity, the below discussion is restricted to binary legal decisions, but the key insights
could be extended to legal contexts with non-binary decisions (e.g., criminal sentencing
decisions).

5.1 Assessing Reliability with Targeted Disparity Studies

Recall the problems of measuring reliability in adjudication. Inter-rater reliability stud-
ies, because they involve observing different judges making decisions in identical cases, can
provide highly accurately estimates the amount of disagreement between judges. In other
words, they have high internal validity. But because judges do not duplicate effort on real
cases as a matter of general practice, inter-rater reliability studies generally make use of
artificial decision stimuli and environments, and those highly accurate estimates may be
poor representations of disagreement over real world outcomes. In other words, inter-rater
reliability studies have low external validity. In contrast, disparity studies, because they
rely on decisions made in real cases, have high external validity. But because they rely on
average differences in decision rates between judges rather than disagreement over outcomes
in the exact same cases, they have low internal validity — they can fail to detect significant
amounts of disagreement (e.g., two judges who both grant claims in 20% of cases may grant
them in entirely different types of cases, meaning they could disagree in 40% of cases even
though there is no disparity between them).

Machine learning can help us dramatically increase the internal validity of disparity
studies, transforming them from studies of raw disparities to nuanced studies of disagreement.
The key insight is simple: if we could perfectly predict the types of cases that Judge A grants
and the type of cases that Judge B grants, we could also perfectly identify the types of cases
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in which they disagree — and thereby have a perfect measure of reliability. Of course, such
perfect predictions will generally be impossible, but machine learning offers a powerful tool
for getting as close as possible. By building a predictive model of Judge A’s decisions and a
separate predictive model of Judge B’s decisions, we can make a best effort to identify the
types of cases that Judge A is more likely to grant and the types of cases the Judge B is
more likely to grant. This partition of the cases allows for our best estimate of disagreement.

The formal details of this approach to identifying disagreement are worked out and
presented in Chapter 2, but the following should help crystallize the intuition. Suppose two
judges, one generally viewed as liberal and another generally viewed as conservative, both
reverse lower court employment discrimination decisions at a rate of 20%. There is a simple
move that we imagine could reveal disagreement between the judges: rather than compare
their rates of reversal, we can compare the rates at which they make “liberal” decisions. How
might we do this? We could take divide the cases into two: those cases that, if reversed,
would be liberal decisions (e.g., cases where the defendant won at the lower court) and those
cases that, if reversed, would be conservative decisions (e.g., cases where the plaintiff won
at the lower court). We then code the actual decisions as liberal or conservative based on
whether they were actually reversed (e.g., code a decision as liberal if the defendant won in
the lower court and the case is actually reversed). A comparison of the rate at which the two
judges make these liberal decisions provides a new and—if our intuitions were correct—better
estimate of disagreement.

But why stop there? Instead of (1) taking Judge A, who we think of as liberal, and Judge
B, who we think of as conservative, (2) coding decisions as liberal or conservative, and (3)
comparing the rates at which they make liberal decisions, why not instead (1) take Judge
A and Judge B, (2) code decisions as either Judge-A-like or Judge-B-like, and (3) compare
the rates at which the two judges make Judge-A-like decisions? The obvious objection is
that we don’t know what a Judge-A-like or Judge-B-like decision is. But we have a best
answer from machine learning models of Judge and Judge B: a Judge-A-like decision is one
where a Judge A is predicted as more likely to make the decision than Judge B is. Such a
decision might be a reversal in cases where plaintiff won an employment discrimination at
the lower court, but it might also be something much more complicated — something only
a machine could pick up on. For example, Judge A might be more likely to reverse a case
where the defendant won in lower court, the lower court judge was Judge Smith, and the
case never went to discovery. And Judge A may not actually care about any of those factors!
It may be that he’s really just charmed by charming lawyers and that those factors happen
to correlate with attorney charm. The success of a machine-learning approach to measuring
reliability hinges only on the ability to predict decisions — not the much more difficult task
of explaining them. Moreover, this analysis can be conducted separately for every pair of
judges. While liberal/conservative my reasonably capture disagreement between Judge A
and Judge B, it may do a very bad job of capturing the disagreement between Judge A
and Judge C (or Judge B and Judge C). This flexible approach to disagreement, then, can
avoid the trappings of unidimensional measures of disagreement, revealing significantly more
inconsistency.
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It is important to note that such measures of disagreement, despite being more accurate
than measures based on raw disparities, are nonetheless only floors on the amount of incon-
sistency. Insofar as the machine learning models of the judges misclassify decisions (e.g.,
labeling a decision as a Judge-B-like decision when it is actually a Judge-A-like decision), it
will still understate inconsistency (and overstate reliability). But machine learning can also
help us solve this problem, allowing us to estimate a ceiling on disagreement in addition to
a floor. The key here is the performance of a combined model of two judges that ignores
any information about the two judges. By pooling their cases and testing to see how well
their decisions can be collectively predicted, we can estimate the percentage of cases they
would agree on. Formally, when the sample sizes of the two judges are equal, the estimate
of agreement is one minus the correct classification rate (“CCR”) of the pooled model, mul-
tiplied by two: (1-CCR)*2. This estimate is actually a floor on agreement, but it also serves
as a ceiling on disagreement.

With all pairwise measures of inter-judge disagreement estimated, we can start to char-
acterize the reliability of an entire adjudication system. For example, with the pairwise
estimates in hand, it is fairly easy to provide estimates to questions like: what percentage of
cases would be decided differently if, hypothetically, they had all been randomly reassigned
to adjudicators? What percentage of cases could have been decided differently if they had
be assigned to the most different judges? What are the case characteristics of the cases that
judges disagree about most? Which judges’ decisions patterns are the most extreme relative
to other judges?

The accuracy of this approach to reliability is limited only by the ingenuity of our algo-
rithms, the size or our datasets, and the detail with which we record case characteristics. If
current trends continue, all of three of these factors will continue to increase, but they are
already at a level such that we can start leveraging the benefits of machine learning. We can
better detect whether inconsistency is at alarming levels. We can better understand what a
legal decision means about the quality of a claim (e.g., is a denial of social security disability
claim a strong signal that the person doesn’t qualify for disability, or is it instead more a
signal of which adjudicator was assigned to hear the case). We can better test the effects of
legal reforms on reliability (e.g., how did the federal sentencing guidelines effect inter-judge
disagreement? ). In brief, the stage is set for the rigorous study of the reliability of our
adjudication systems.

5.2 Promoting Reliability with Precision-Targeted Statistical Prece-
dent

As discussed in section II1.B.1, statistical precedent is not a new idea. Scholars and adminis-
trators have frequently proposed tethering future decisions to historical statistical patterns.
But statistical precedent has so far been imprecisely targeted: because existing proposals
are based on only unconditional averages in decision-making, their ability to reduce incon-
sistency is limited. With machine learning, we can generate precision-targeted statistical
precedent. Return for a moment to our newly appointed parole board commissioner. Imag-
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ine that she has read about the limits of evidence based decision making and that she is now
less inclined to rely on estimates of recidivism risk. But also imagine that she is hesitant to
rely on her unaided judgment. What does she do about the 39-year-old white male who is
currently serving year 20 for a rape and murder, has two prior robbery convictions, one pre-
vious assault conviction, a small facial tattoo, a 10th grade education, an acceptance letter
from a half-way house, no offspring, two write-ups in prison for cell phone use, a history of
moderate alcoholism, and a two-year sobriety token from Alcoholics Anonymous? Instead
of relying on a machine learning algorithm for the best estimate of the inmate’s probability
of recidivating, she could leverage machine learning to help her answer a different question:
what is the probability that my peers would release this inmate?

The question can best be answered with what I call a “systems model” A systems
model excludes variables that are random with respect to the merits of cases. For example,
a systems model would not include the identity of the judge randomly assigned to hear
the case, the time of day it was randomly scheduled for, or whether it is decided on the
day after a judge’s football team won. By excluding these variables, the systems model
smooths over the sources of inconsistent decision making. A perfect systems model is one
whose predicted probabilities represent the probability that each individual case prevails
— apart from sources of inconsistency. Thus, with a perfect systems model, a case with
a predicted probability of .75 has a 75% chance of being granted — it is usually granted,
but 25% of the time, perhaps because sometimes a particularly harsh judge in a harsh
mood will decide it, the case will be denied. Such a perfect systems model has an intuitive
interpretation: the predicted probabilities from such a model represent the percentage of
votes that a case would receive if all judges cast multiple independent votes on the case.
At the other extreme, a systems model may be perfectly imperfect: here, the predicted
probabilities do not represent that probability that a case prevails. Instead, the predicted
probability reflects a failure of the model to distinguish between different types of cases.
Thus, a case with a .75 predicted probability does not have a 75% chance of being granted.
Rather, 75% of cases with a .75 predicted probability have a 100% chance of being granted
and 25% have a 0% of being granted. In reality, models will almost always be somewhere
in between. And, as explained below, statistical precedent should take a different form
depending on how perfect or imperfect a systems model is.

In addition to a systems model, sub-models of individual decision-making units (e.g.,
models of judgeSE) can be used to inform statistical precedent. Unlike a systems model,
which is meant to smooth over the discordant patterns of a system, decision-unit models are
specifically designed to capture inter- and intra-judge inconsistencies. Each unit’s model is

8. While individual judges will often be the most obvious and relevant boundary for decision-making units,
units can be delineated in other ways. One might, for example, partition decision-making units into early-
day decision makers and late-day decision makers, such that an individual judge’s decisions—depending on
whether she makes them early in the day or late in the day—are deemed to come from two different units.
Because the decision-unit models are meant to capture disagreement, units should be delineated according
to which boundaries maximize the detectable disagreement. But sample size is also a relevant consideration:
more data allows an algorithm to trace more detailed patterns. Thus, one might also cluster together multiple
judges to form a single decision-unit.
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created by fitting the model on data generated just by that decision-making unit, and, as I
explain in detail below, they can be used to better adapt statistical precedent to account for
each unit’s particular forms of inconsistency.

While predicted probabilities might provide useful information to a decision-maker, the
full benefits of statistical precedent will often require that the they be converted into rec-
ommendations that can be consistently applied. A mere predicted probability could be
interpreted and applied differently by different judges (or even by the same judge at differ-
ent times), and, as I'll explain below, some of those interpretations will be better than others.
The conversion process can vary along four key dimensions: (1) the grouping of cases; (2) the
coarseness with which predicted probabilities are binned; (3) the extent to which targeted
decision rates should be boosted so as to leverage collective wisdom; (4) whether recommen-
dations are judge-neutral or judge-specific; (5) and whether the recommendations are for the
initial decision or for review of the initial decision.

Importantly, statistical precedent can generally be used in a way that holds the overall
leniency of a court system constant. Statistical precedent can thus avoid controversial issues
about whether a court’s mean decision rate is too harsh or too lenient. Again, I explain the
details of holding such overall leniency constant below.

I discuss each of the five dimensions and the relevant considerations in detail below, but
a few simple examples can help make the ideas more concrete. Suppose the Social Security
Administration were to implement statistical precedent for their disability decisions. Imagine
the SSA has built a system model that predicts whether an applicant will be granted disability
benefits. Consider four possibilities:

(1) The SSA groups cases into two groups. In each group, predicted probabilities are
binned into three bins: low quality (those cases with a predicted probability below .25),
medium quality (cases with predicted probabilities between .25 and .75), and high quality
(cases with predicted probabilities above .75). Those bins are assigned target rates that
represent that are not boosted. For example, because 15% of cases in group one’s low bin
have been granted in recent history, the SSA targets a 15% grant rate for current cases in
that bin. The recommendations are judge neutral, e.g., it is recommended that all ALJs
target a 15% grant rate for low cases. Finally, the recommendations are directed to the
ALJs making the initial decision rather than to the SSA Appeals Council.

(2) The SSA does not group cases and bins predicted probabilities into two bins: low and
high. The low bin consists of all cases with predicted probabilities below .4. Those bins are
assigned fully boosted target rates that represent: the predicted probabilities are interpreted
as the indicating the merit of a case, and so it is recommended that ALJs grant 100% of the
cases in the high bin and 0% of the cases in the low bin. The recommendations are judge
neutral, as they do not alternate across judges. Finally, the recommendations are directed
the SSA Appeals Council rather than the ALJ making the initial decision — if the ALJ’s
initial decision is contrary to the target rate, it is recommended that the Appeals Council
review the decision.

(3) The SSA adopts a standard allowance-rate quota of 30%: all ALJs are instructed to
target a grant rate of 30%, which is the percentage of cases that have been granted system-
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wide in recent history. In the more formal terms of this paper, there is one group and one
bin, and the recommendations are not boosted, are judge neutral, and are directed at the
ALJs making the initial decision.

(4) The SSA chooses to use one group and not to bin. The target rates are a moderately
boosted: based on estimates regarding the extent to which they represent case merit, each
predicted probability is pushed toward 0 or 1 by varying amounts to set the target rate.
The recommendations are judge specific, meaning that the predictions from judge-models
are compared to target rates from the system models in order to form recommendations. It
is recommended that the Appeals Council review cases where the judge predictions are far
from the system predictions.

Below, I discuss in more detail each of the five key dimensions of statistical precedent.

5.2.1 Grouping Cases

Grouping cases can help statistical precedent target inconsistency with greater precision.
To illustrate the core idea, consider a simple system with two judges and just two types of
equally-prevalent cases, back pain and fibromyalgia cases. Judge A and Judge B both grant
benefits in 30% of cases, but Judge A grants 60% of back-pain cases and 0% of fibromyalgia
cases, while Judge B grants 0% of back-pain cases and 60% of fibromyalgia cases. A simple
allowance-rate quota of 30% with one group would do nothing to promote agreement, as
both judges could continue deciding cases in completely opposite ways. But by dividing the
cases into two groups, we could begin to encourage cooperation. Not any division of cases
would suffice. A random split, for example, would again do nothing to promote compromise:
both judges could again continue deciding cases in a completely opposite way. But as the
division of cases best reflected the division between the two judges, we could open room for
agreement. In short, by creating two groups that track the disagreement between the two
judges, one of back-pain cases and the other of fibromyalgia cases, we could maximize the
possibility of compromise. In more formal terms, the optimal split is a group where Judge
A’s predicted probabilities are higher than Judge B’s and another group where Judge B’s
are higher than Judge A’s. By establishing an allowance-rate quota of 30% in fibromyalgia
cases, Judge A would be encouraged to increase his grant rate from 0% to 30%, and Judge
B would be encouraged to reduce her grant rate from 60% to 30%. It is conceivable that
both judges continue to decide cases in the exact opposite ways even in the face of the two
group quotas (e.g., Judge A grants fibromyalgia cases only for women and Judge B grants
fibromyalgia cases only for men). But such continued high rates of disagreement would at
least have to reflect new sources of disagreement, sources which could even be subsequently
addressed with updated statistical precedent.

9. Updating statistical precedent to account for new forms disagreement can be complicated. Under the
current scenario, statistical precedent means that Judge B is more likely to grant male fibromyalgia cases
than Judge A, even though originally judge B was more likely to grant such cases. Three groups are needed
to optimally target inconsistency. One group is cases that Judge A was more likely to grant originally. The
second group of cases are those that Judge B was more likely to grant originally and continues to be more
likely to grant. The third group of cases are those that Judge B was more likely to grant originally but is
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The core idea extends to the more realistic and complex world of many judges with
numerous dimensions of disagreement. Just as cases can be divided by the extent to which
they best reflect disagreement between two judges, they can by divided by the extent to
which they best reflect disagreement between many judges. While the full technical details
are beyond the scope of this paper, the key intuition is simple: judges can be grouped
together into decision-units by similarities in the decision-making patterns, and then groups
of cases can be created according to variations in the ranking of predicted probabilities
among decision units.

While not all uses of statistical precedent are benefited, some forms can more precisely
target inconsistency by grouping. But grouping is not costless. The primary cost of grouping
is the taxation of judicial mental capacity. For meaningful application, a judge would have
to become familiar with what a Group A case is: targeting a rate requires judgment about
a case’s merit relative to other cases in the group. As the number groups proliferates, the
complexity of the judge’s job increases as well.

5.2.2 Binning Predicted Probabilities

Within a group of cases, predicted probabilities may also be binned so as to help more
precisely target inconsistency. For simplicity, assume one group and average grant rate of
50%, but that some cases have much higher predicted probabilities than others. Judges could
be given access to each case’s predicted probability, but such a raw, case-specific probability
is only minimally useful. For example, how should a judge, armed with knowledge that
the case she is currently deciding has a .30 predicted probability of being granted, alter
her decision-making process so as to limit inconsistency? The answer is unclear. While
the judge might intuitively use the predicted probability with good effect, an analytically
coherent employment of predicted probabilities requires more guidance.

Binned predicted probabilities are a first step in providing that analytically coherent
guidance. Predicted probabilities might, for example, be binned into low, medium, and high
bins, with judges encouraged to grant cases in those bins at rates corresponding to the average
predicted probability within the bin (e.g., 20% for cases in the low bin, 40% in the medium
bin, and 80% in the high bin). But note that, standing alone, quotas within bins are a poor
antidote to inconsistency. Generally, setting a target rate within bins is not as powerful
as setting target rates in groups. Case groups are designed to target disagreement. And
while bins can mitigate disagreement, they do so suboptimally. For example, it’s possible
that a bin of cases with an average predicted probability of .5 is created by half of judges
granting all such cases and half granting none. In such case, a bin with a 50% target rate

less likely to grant under the first regime of statistical precedent.

10. Inconsistency is optimally targeted by grouping cases into n! groups where n is the number of decision-
units. For example, if there are three decision units, Judge A, Judge B, and Judge C, groups of case should
be created such that predicted probabilities have the following relationship: A > B > C,A > C > B,B >
A>C, B>C>A,C>A>B,C > B> A. If there are few or even no cases within any of those groups, it
likely makes sense to discard them into a miscellaneous group. Similarly, it may make sense to choose only
groups that show large deviations or to combine together groups where the deviations are similar in form
(e.g., where A >>>> B > C and A >>>>> C > B).
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would have a high chance of reducing inconsistency, as both groups of judges would be
encouraged to moderate their behavior and grant 50%. But it’s also possible both groups
of judges are granting 50% of cases in that bin already, just a different 50%. In that case,
a bin quota would do nothing to encourage consistency. As such, binning of predicted
probabilities is not an ideal solution to inconsistency. Instead, the main benefit of binning
is the ability to attach analytically coherent recommendations to them when coupled with
boosted predictions. Note that binning is generally not necessary when statistical precedent
is used for targeted review rather than an initial recommendation.

5.2.3 Boosted Predictions

As briefly noted above, there are two basic ways that predicted probabilities from a systems
model can be interpreted. First, we can view predicted probabilities as accurate with respect
to groups of cases, but inaccurate with respect to individual cases. For example, under this
interpretation, for a set of cases with predicted probabilities of approximately .40, 40% of
those cases are indeed granted. But 40% of those cases would have been granted regardless of
which judge decided them, when they decided them, or what mood they were in. And another
60% would have been denied regardless. But there is a second interpretation: predicted
probabilities are accurate with respect to individual cases. Under this interpretation, a
predicted probability of .4 means that if a case were hypothetically reentered into a judicial
system, it would be granted 40% of the time and denied 60% of the time, with the decision
differing only because it happened to be assigned to certain judges in certain moods.

Under the second interpretation, where predicted probabilities are accurate with respect
to individual cases, the predicted probabilities have a normatively appealing elegance. A
higher predicted probability means that more judges would more often grant that case than
a case with a lower predicted probability. In brief, the predicted probabilities represent the
percentage a votes a case would get in a world where each judge casts multiple independent
votes in each case. On such a reading, according to basic democratic and crowdsourcing
principles, the cases with more votes should be granted before those with fewer votes.

This provides an opportunity. Insofar as predicted probabilities reflect votes from the
hypothetical world where all judges vote multiple times in every case, they can be used to
provide additional guidance to judges. Rather than simply nudging judges to grant cases at
a rate equal to their predicted probabilities, we should nudge judges to assess the quality of
cases by their predicted probabilities. We should encourage judges to grant cases with high
predicted probabilities (many votes) at a rate higher than their predicted probabilities (e.g.,
a case with 90% of votes should probably always be granted). Similarly, we should encourage
judges to grant cases with low predicted probabilities (few votes) at a rate lower than their
predicted probabilities (e.g., a case with only 10% of votes in favor of grant should probably
never be granted). In short, we should seek to transfer grants from low quality cases to high
quality cases, holding the overall grant rate constant while improving the overall quality of
decisions. The transfer can be accomplished by boosting high predicted probabilities higher
and lower predicted probabilities lower and calculating target rates accordingly.

The problem is that we will rarely know the extent to which a predicted probability is ac-
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curate with respect to an individual case, but we can make empirical progress. First, external
benchmarks to help assess whether individual cases with higher predicted probabilities are
indeed of higher quality than individual cases with lower predicted probabilities. For exam-
ple, Chapter 3 leverages governor review of granted cases to assess the individual accuracy
of predicted probabilities for California Parole decisions. In California, the governor reviews
and has the ability to reverse decisions by the parole board that are in favor of release. If
predicted probabilities are only accurate with respect to sets of cases, we have little reason
to expect differential treatment by the governor: whether a particular case has a high or low
predicted probability reveals nothing about its quality under the first interpretation — it only
says something about the quality of cases with similar predicted probabilities. On the other
hand, if the predicted probabilities are individually accurate, we would expect the governor
to reverse low predicted probability cases at a higher rate than cases with a higher predicted
probability. Indeed, we find that the governor is twice as likely to reverse cases in the lower
half of predicted probabilities than cases in the higher half. We take this as evidence that
we should at least moderately boost of predicted probabilities. While such appellate level
results are often a convenient source of data, other external benchmarks can help assess
the individual accuracy of predicted probabilities. A system might, for example, employ
gold standard panels to assess the quality of cases to gather evidence about how closely
connected case quality and predicted probabilities are. In other contexts, researchers may
have access more objective proxies. For example, in the criminal justice context, recidivism
stands as a prime candidate. A higher recidivism rate among those with lower predicted
probabilities would provide evidence of individually accurate predicted probabilities, and
researchers have recently demonstrated impressive levels of accuracy from a systems model
of bail decisions(Lakkaraju et al. 2017).

A second class of techniques for assessing the extent to which predicted probabilities are
accurate in individual cases involves building measures that proxy the extent to which noise
variables explain the unexplained component of the systems model. Insofar as noise variables
(e.g., the random assignment of judges and time slots) improve the predictive capacity of the
model, the predicted probabilities of the systems model must reflect the individual quality of
cases — if it is the noise variables that are limiting the predictive power of the systems model,
then there is not a difference in quality between cases with similar predicted probabilities.
Section IV.A outlines a method for aggressively detecting noise in a system. But it is also
possible to generate more case-specific measures of noise, which can allow calibrating the
boosting of particular predicted probabilities in accordance with an estimate of how much
noise variables predict outcomes in that case.

There are three potential downsides to boosting predicted probabilities. First, predicted
probabilities may be improperly boosted. If predicted probabilities are in fact not individu-
ally accurate, then boosting them could provide poor guidance to judges. For example, if the
set of cases with predicted probabilities of approximately .7 are split between 70% of cases
that are always granted and 30% of cases that are never granted, boosting those predicted
probabilities to .9 would encourage judges to grant cases that none of them would have ever
granted. It’s thus important to assess the extent to which predicted probabilities are indi-
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vidually accurate. Second, boosting predicted probabilities can have complicated effects on
systematic biases. Absent boosting, statistical precedent may capture and continue existing
biases, but boosting could potentially exacerbate them. The effect stems from two sources.
First, because boosting adds points to high predicted probabilities and deducts points from
lower predicted probabilities, then cases whose predicted outcomes are deflated by systemic
bias will be disfavored by boosting. Second, some methods of boosting specifically target
those cases that are subject to the most inconsistency in decision making. Insofar as incon-
sistency is focused on cases that are subject to bias, such methods of boosting will be in
even greater danger of increasing biases. Chapter 3 discusses methods for addressing bias in
statistical precedent.

The final downside to boosting predicted probabilities is that it provides parties with
more incentive to manipulate their variables in hopes of securing themselves a better recom-
mendation. If parties, for example, know that an algorithm takes account of whether they
have hired a lawyer or not, and hiring a lawyer is positively associated with a positive out-
come, they could choose to hire a lawyer simply for the sake of the boost in their predicted
probabilities. But the hiring of a lawyer may only be a signal of case quality, not a causal
factor. Thus, the party who would not have otherwise hired a lawyer can gain advantage by
doing so, masquerading as a higher quality case. Relatedly, it also increases the possibility
that the mix of cases that enter a system is changed, as parties who would not have (or
would have) entered the system now choose to do so (or not to) because of the boost given
to them by statistical precedent. I discuss these problems in more detail in Section V.

5.2.4 Judge-Specific v. Judge-Neutral Recommendations

Statistical precedent can be judge neutral or judge specific. Judge-neutral guidance does not
differ by judge — all judges are given the same nudge (e.g., a recommendation to target a grant
rate of 30% for cases in a particular group). Judge-specific precedent, in contrast, adapts
to the patterns of the particular judge making a decision or under review. It can do so by
comparing the predicted probabilities from a systems model with the predicted probabilities
from the decision-unit model of the judges whose decision is at issue. Cases where the
difference between the two are large can be flagged, and a judge-specific recommendation
can be generated.

Judge-specific precedent is more precisely targeted to inconsistency, and there is little to
no reason not to use judge-specific precedent when it is employed for review of decisions.
But there are strong benefits to judge-neutral precedent when it is being used to guide initial
decisions. The downside to judge-specific precedent for guidance of the initial decision is the
difficulty of converting it to analytically coherent recommendations. For example, we can
alert a judge that she’s 20% more likely to grant a case then her peers. She might even
be able to make effective use of such information, perhaps by exercising extra caution or
giving second thoughts to granting the case in front of her. But it is not possible to convert
the predicted probability to a more specific recommendation. Judge-neutral precedent, in
contrast, can easily be converted to target rates that can guide initial decisions.
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5.2.5 Initial v. Review Recommendations

Statistical precedent can be used to guide either the initial decision or the to help target
appellate review of outlier decisions. The benefits of using statistical precedent for targeted
review are substantial. Importantly, the complications involved with grouping cases and
binning predicted probabilities can be ignored. And, as noted above, statistical precedent
for targeted review can more easily leverage the precision of judge-specific precedent. More-
over, employing statistical precedent for targeted review rather than guiding initial decisions
mitigates the incentive that boosted probabilities provide for variable manipulation.

But the cost of reserving statistical precedent for only targeted review can also be sig-
nificant. Because it necessitates duplication of judicial effort, appellate review is expensive.
It is better that decisions are initially in conformity with statistical precedent rather than
corrected to be so. The complexities and problems of initial review — grouping cases, binning
predicted probabilities, increased risk of variable manipulation — may thus be worth taking
on.

6 Problems and Barriers

Incorporating analytics into our adjudication systems will not be easy. There are both real
barriers and problems to overcome. In this part of the paper, I briefly discuss some of those
issues and suggest ways forward.

6.1 Data

Good data is a prerequisite for building good predictive models. The first step to good data
is recording it. Unfortunately, many systems are still struggling to digitalize. But digitaliz-
ing standard data collection procedures won’t be enough to fully unlock the potential of a
machine learning approach to reliability. Because the tasks of the approach are predictive,
information that is not ostensibly related to proceedings could still prove crucial. Collecting
that type of information could be solved by an expansive ethic to data recording. But in the
absence of such an ethic, or even in conjunction with it, the linking of externally created and
aggregated datasets (the kind that private companies routinely now trade in so that they
can better target advertisements) to court system datasets could dramatically improve the
predictive power of models.

But even if the problem of recording data is solved, it is only the first step. The data
will need to find its way into the hands of individuals and teams who can take full advantage
of the data. While the internal staff of adjudication systems might be able to build and
appropriately deploy predictive models by themselves, there is reason for skepticism. We
might expect internal innovation to be slow for two reasons. First, the work of internal
staff can be hampered by the very people whose decisions they are analyzing and, perhaps,
seeking to regulate. Adjudicators are often in positions of prestige and power relative to
administrators within a system. And, like most people, those adjudicators are unlikely
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to welcome scrutiny and oversight. The protracted battle between administrators and the
SSA’s administrative law judges stands as a prominent example.@ Or consider the Federal
Judicial Center’s research on the federal courts. The Center does not conduct analysis
that is dependent on judicial identity, going so far as to wipe datasets of judge-identifying
information.

Second, internal staff are not sufficiently large or intellectually diverse enough to keep up
with the state of the art. Instead, real advancements will likely require external assistance.
But as someone who has spent much of the last five years trying to access data from adju-
dication systems, my hopes for extensive cooperation between administrators and external
researchers are low. The fear, I think, is of bad publicity.

This unfortunate state of affairs is, in no small part, the fault of researchers and journal-
ists. There is a certain “gotcha” style to much of the empirical work on adjudication, whether
the work is journalistic or scholarly. The style makes sense in light of publishing incentives.
Few readers are interested in balanced accounts of how a system handles intricate tradeoffs
faced by adjudication systems. It’s the charges of things like wide inter-judge disparities and
racism in decisions that get researchers and journalists attention. Administrators thus face
a high risk of bad publicity but little reward. I'm not sure how this trust problem can be
solved.

The most likely path forward may be in researchers bypassing cooperation and instead
collecting and linking datasets anew. Scholars studying adjudication systems are increas-
ingly scraping the web for data and using text-parsing code to generate datasets, finding
ways to study systems that don’t seem to want studying. Perhaps once scholars can demon-
strate to adjudicators, administrators, and the wider public that advanced analytics can be
productively employed, cooperation becomes more common.

6.2 Status Quo Bias

Statistical precedent, because it leverages past decisions for guidance, can tether future
decisions to the past in ways that may be harmful. For example, (Legomsky 2007) argues
against quotas on asylum approval rates on the grounds that “rapid changes in human rights
conditions would render the announced percentages continually obsolete.” While that claim
may be true in the asylum context, it is largely an empirical question: have decisional
patterns—at the level captured by statistical models—actually changed dramatically over
time? If not, we have less reason to think that they will in the future. Nonetheless, the
danger may be real, and it is a good reason to hesitate in establishing strong controls on
adjudicators (e.g., strict decision quotas). But the danger should not be overstated. If,
on the one hand, there are rapid changes in the world that would dramatically affect the
nature of the cases, we might also expect that those changes would be observable in such
a way that administrators could alter or temporarily suspend regulations for affected cases.

11. In one of the more recent installments of the battle, ALJs pushed back against administrators’ setting
of a goal that each ALJ decide 500-700 cases per year. Association of Administrative Law Judges v. Colvin,
777 F.3d 402 (7th Cir. 2015).
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If, on the other hand, changes in the world are slow, then, as long as controls are not too
tight, adjudicators can change their decision patterns to accommodate those changes, and
subsequent algorithms can be updated to incorporate those accommodations.

But maybe concerns over status quo bias are less about changes in the world that lead to
new mixes of cases and more about changes in the goals and values of an adjudicatory system.
But again, as long as controls on adjudicators are not too restrictive, they can accommodate
slow changes. Rapid changes in values pose a different problem. If, for example, statistical
precedent is used to generate recommendations for decisions in the criminal justice system,
those recommendations would be out of step with sharp shifts in views about the appropriate
level of incarceration. It’s possible, though, that such temporal flattening is, overall, a feature
and not a bug. I imagine many readers would find a tethering to the status quo comforting in
the context of a Trump administration’s approach to immigration decisions. But whether it is
a feature or a bug, statistical precedent’s relationship to the status quo is probably overstated.
In fact, the more serious concern may be that it too easily facilitates aggressive changes — an
algorithm can easily be adjusted to better reflect new values by simple manipulation of the
predicted probabilities, and those values can be easily transmitted to adjudicators (perhaps
even in the form of quotas).

In the end, statistical precedent is probably neither inherently conservative nor progres-
sive. It can be used in the service of different ideologies. The task will be remembering that
and subjecting models to renewed scrutiny. While it may be tempting, we should not put
automation on autopilot. Machine learning is merely a tool, and while a thorough under-
standing of how that tool works may be the province of technocrats, how we use that tool
is not.

6.3 Legal Issues

The use of advanced analytics in adjudication implicates issues of equal protection and due
process. Below, I highlight some of the issues that are likely to arise and offer preliminary
thoughts on how to address them.

6.3.1 Equal Protection

When building predictive models of decision making, what should we do with suspect clas-
sifications? Should we—and does constitutional doctrine allow us to—include variables like
race, gender, and national origin? Clearly the answer is yes where the model is only being
used to estimate and describe inconsistency, but what about if it is being used to guide
judicial decisions, target cases for appellate review, or otherwise influence outcomes?

What is clear is that ignoring suspect variables is not a satisfactory answer. If we're
worried that algorithms may be biased toward members of protected classes, leaving suspect
variables out of a model is not the way to address that bias. While our commitment to
not discriminating on the basis of factors like race might be expressed by exclusion of those
variables, it is poorly expressed: other variables will likely serve as proxies, soaking up the
explanatory power that the suspect variables would otherwise carry. While the model would
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be different in content, it would be indistinguishable in consequences. This is a simple truth
that the educated public will come to understand (if it doesn’t already). If we all know that
what we express by excluding suspect variables is void of consequence, it is difficult to see
what expressive value it can have.

One alternative is to pursue the initial instinct more vigorously: if other variables are
undoing the exclusion of suspect variables, then let’s exclude them too. For example, if we're
worried that zip code is serving as a proxy for race, exclude zip code from the algorithm too.
Is crime type correlated with race or gender? Then drop crime type as well. The problem
with this approach is that suspect variables can be related to other variables in a host of
complex, counterintuitive, and hard-to-detect ways. To feel comfortable that we've purged
a predictive model of troublesome variables, we would effectively have to abandon models
altogether. There are more moderate and effective methods for addressing embedded biases.

The ideal option is to directly and explicitly address the possible underlying biases that
render the suspect variables suspect in the first place. The technical complications of correct-
ing for that bias are beyond the scope of this article, but the general ideas are simple enough
to understand. We might, for example, try to account for any racial bias in an algorithm by
artificially setting the race for all individuals to the same race (e. g@ all individuals could be
treated as white for the purposes of generating recommendations).’2 Alternatively, we could
attempt to estimate the average bias against certain groups, and add back to the predicted
probabilities any penalty that the group suffers (e.g., if, controlling for other variables, black
inmates are 10% less likely to be paroled, we might add that 10% to black predicted proba-
bilities). Or perhaps we could observe disparities in the way different judges make decisions
about protected classes and make the assumption that the judges who treat protected classes
more leniently are the judges that are making unbiased decisions.

But although a full accounting and correcting for bias is ideal, it can also be profoundly
difficult to accomplish. In estimating bias, have we actually controlled for all of the other
variables that might explain the disparities? Are the judges who treat protected classes
more leniently actually doing so because an absence of bias, or are they perhaps simply
less responsive to some of the other variables that happen to correlate with protected class?
While we may be confident in our answers to these questions in some contexts, they will be
nearly impossible to answer with any confidence in other contexts.

A much more technically feasible alternative is to guard against employing a predictive
model of decision making that is worse than the decisions on which it is based. If we refrain
from boosting predicted probabilities, the task is already complete. Because unboosted
predicted probabilities only seek to spread idiosyncratic decision making more evenly through
a system, it presents little danger of intensifying biases. But the story is different if statistical
precedent is deployed boosting. The intuition is straightforward: if the majority is biased
against a protected class, and the predicted probability for each case represents the results
from a full vote, then the majority’s bias is fully present in each case. Fortunately, we can

12. While this approach is intuitively appealing, its shortcomings can be stark. Omitted variable bias. Even
if there are no omitted variables, it’s possible that although there is a moderate racial bias in decisions, a
machine learning algorithm ends up not actually using race. The approach can also generate highly variable
corrections that radically undermine the performance of the algorithm.
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guard against such perverse results. Without having to estimate bias, we can simply add
votes (i.e., add points to the predicted probabilities) until members of the protected class
would prevail as frequently in the simulated world as they did in the actual world. Is “not
making things worse” good enough? I think so. If we can prevent predictive models from
increasing constitutionally troubling forms of bias, I find it difficult to see why we would
forgo their benefits.

6.3.2 Due Process

Statistical precedent, insofar as it is used to guide or otherwise regulate decisions, impli-
cate issues of due process. Litigants obviously have due process interest in the ability to
investigate and assure accuracy of the methods being used to decide their fates. The diffi-
culty is in balancing that interest with competing interests. Evidence based decision making
in criminal justice is already facing due process objections from scholars and litigants. In
that context, the identified competing interest has, at least so far, been the proprietary
nature of the algorithms. A private company, Northpointe, has developed one of the most
widely used criminal risk assessment tools, the Correctional Offender Management Profiling
for Alternative Sanctions (“COMPAS”). The COMPAS algorithm was at the center of the
Wisconsin Supreme Court’s decision in State v. Loomis. Loomis, an individual who had
been sentenced by a judge who had considered the COMPAS recommendation, challenged
the constitutionality of using COMPAS to inform the sentencing decision, in part on the
basis that “it violates a defendant’s right to be sentenced based upon accurate information,
in part because the proprietary nature of COMPAS prevents him from assessing its accu-
racy.™ While the Wisconsin Supreme Court did not find a due process violation, it is almost
certainly not the last word on the issue.

Regardless of how courts ultimately settle on the competition between due process inter-
ests and proprietary interests, there is another competing interest that may eventually prove
to be even more important: the interest in maintaining an effective predictive model. The
tension between transparency and an effective predictive model as an instance of Campbell’s
Law: “The more any quantitative social indicator is used for social decision-making, the
more subject it will be to corruption pressures and the more apt it will be to distort and
corrupt the social processes it is intended to monitor.”

Consider a systems model that is used generate recommendations for social security
disability decisions. It is designed to guide administrative law judges’ application of rules
and standards—to help them distinguish the applicants that, according to the law, qualify
for benefits from those that do not. But because the predictive model only predicts what
judges decide—and not why they decide it—it is not well-suited to actually serve as the
rules and standards. If the details of the predictive model were transparently accessible to
the public, it might “distort and corrupt” the application process. For example, perhaps

13. Tt is now popular to worry about the bias of algorithms, but we also need to worry about bias against
algorithms (Dietvorst, Simmons, and Massey 2015).

14. State v. Loomis, 881 N.W.2d 749, 770-71 (Wis. 2016).

15. https://en.wikipedia.org/wiki/Campbell%27s_ law
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attorney representation is highly predictive of a successful claim but that it is not a causal
relationship (Perhaps those who bother to hire an attorney are just those who are confident
in their claims). Claimants who would not have otherwise hired an attorney, now aware that
an algorithm gives claimants extra points for having an attorney, decide to hire an attorney
in order to misrepresent themselves as the type of litigant that would hire an attorney, both
wasting societal resources and undermining the ability of the model to distinguish those that
qualify from those that don’t.

The tension between transparency and effectiveness is partially addressed by keeping
statistical precedent flexible, allowing judges to distinguish the true high scores from the
fake high scores, and therefore keeping the incentives for misrepresentation low. But insofar
as misrepresentation is inexpensive and model recommendations exert influence on decision
making, the tension remains. We might also imagine a central agency tasked with inspecting
and assessing algorithms to assure their accuracy. Ultimately, there is significant uncertainty
about how we will deal with the tension between the due process interest in transparency
and the interests in model effectiveness and proprietary rights.

7 Conclusion

The relationship between the internal, normative perspective on law and the external, de-
scriptive perspective on law is a dynamic one. While it’s the results of the internal conver-
sation that generate the data for the external perspective, we can and do refer back to that
external perspective in our internal conversations. Judges point to what other judges do to
justify themselves, even if they are not bound by precedent. Citizens point to court decisions
as evidence of what the law required. Knowledge of what others think is, even if we don’t
know or understand the reasons for their thinking it, is relevant to our own thinking. Out
of humility and support for democratic values, we give deference. But how much deference?
That depends in no small part on the reliability of decision-making. Judging by coin flips is
rarely deserving of our deference.

In this paper, I've argued that machine learning can advance both our understanding of
reliability and our tools for promoting it. Comparing predictive models of judges to estimate
inconsistency allows us to retain the external validity of disparity studies while improv-
ing internal validity. And the predictions from a model of a system, one that summarizes
the votes of all judges, can be used to identify consensus views. The combination of the
two—separate predictive models of judges and predictive models of the entire system—is
particularly promising, allowing an aggressive search for idiosyncratic results. With this

16. Northpointe, even though the details of its COMPAS algorithm remain a secret, already has to deal
with the issue. It employs methods for detecting individuals who attempt to lower their risk score by
answer questions dishonestly (Freeman 2016). Publicly revealing the inner workings of the predictive model
could only exacerbate the problem. Even if the prospect of wide-scale study of the COMPAS algorithm
by people charged with crime seems preposterous, more sophisticated businesses could conceivably publish
study guides. In any case, the problem of transparency is clear in other contexts where litigants are more
sophisticated.
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capacity to better identify outliers comes the ability to better regulate decisions in an effort
to make them more deserving of our deference.
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Chapter 2: Detecting Inconsistencys

1 Introduction

Discretion to a potentially large set of semi-autonomous administrators is a fact of life for
any government. Political principals at the top levels of government may articulate policies
and priorities, but it is the administrators who make those policies and priorities into reality
(Lipsky [1980; Daniel E. Ho 2017; Ting 2017). We refer to systems in which administra-
tors operate, such as ICE, as decentralized adjudication systems. Decentralized adjudication
systems are distinguished by their routine adjudicative, administrative or enforcement func-
tions. This is in contrast to other parts of the government, where officials focus primarily on
establishing rules to be applied across a wide variety of circumstances.=8 These two kinds of
governance often interact. Political principals may adjust policy to constrain the behavior
of those administrators, but even then, there are limits to their ability to do so. Some-
times, these administrators have different preferences than their political superiors and seek
to selectively enforce policy, generating policy drift. But policy drift is not the sole problem
confronting political principals; they are also concerned with the quality of administration.

One important element of quality is the degree to which administrators are making deci-
sions consistently. In most areas of policy, political principals themselves view enforcement
inconsistency as undermining their core policy goals. Thus, measurements of inconsistency
are important for political principals who seek to advance their policy goals, as well as the
public more broadly. For example, high-profile fatal incidents at nursing homes have raised
awareness of the variation in enforcement across states, including variation in the size of fines
levied for violations. As a result, the U.S. Centers for Medicare and Medicaid Services has
worked to reduce inter-state variation in nursing homes inspections (Ornstein and Groeger
2012). Municipal governments often employ large cadres of inspectors and enforcement of-
ficers to monitor restaurants, to issue and verify building permits, to ensure sidewalks are
clear of snow, to fine parking violators, etc. The degree of consistency is often a concern.
Indeed, a 2011 grand jury oversight report on the Building Services Division in Oakland,
California found (emphasis added):

[Clode enforcement inspectors have aggressively pursued blight and sub-standard prop-
erties throughout Oakland as determined by their individual interpretations of the ap-
plicable city code. This has led to an inconsistent enforcement program backed by
inspectors’ threats of filing large liens on the offending properties.

Alameda County Grand Jury (2011))

In the context of immigration enforcement, consular and border officials all around the
world process a large caseload of applications from non-citizens seeking to enter the United

17. Coauthored with Ryan Hubert
18. Many organizations perform both functions. For example, in this paper, we study the Ninth Circuit,
which has both a rule-making function and an adjudicative function (Cameron and Kornhauser 2010).
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States. High profile denials spark renewed attention to the seeming arbitrariness of visa or
entry decisions (see for example, Turnbull 2013; Narea 2017; Rose 2017). For example, a
recent Supreme Court decision permitted the Trump administration to deny entry to immi-
grants covered by Executive Order 13780 (the “Travel Ban”) as long as those immigrants
have no “bone fide relationship” with a U.S. person or entity (|[Trump v. Int’l Refugee Assis-
tance Project 2017). Such determinations are made on a case by case basis by immigration
officials. An policy maker overseeing immigration officials may observe that those officials
deny entry to 80% of immigrants covered by the Travel Ban. On its face, this number
provides some information about the overall degree of laxity of U.S. immigration officials.
However, if a policy maker’s goals are more sophisticated—for example, that the U.S. should
deny entry to specific kinds of high risk immigrants—then this mean provides limited infor-
mation. Indeed, if the policy maker also knew that, on average, immigration officers would
make different decisions on 40% of of all applications, then the policy maker might conclude
that the agents are not receiving sufficient guidance on how to identify high risk immigrants.

Accurate measures of inconsistency are rarely available to a policy maker or researcher.
In fact, a version of the fundamental problem of causal inference often applies in this setting:
because we may never observe different administrators working on the same case, estimating
their disagreement on cases is difficult. Scholars and administrators have sought to overcome
this difficulty in two main ways. First, they have surveyed judges with simulated case mate-
rials, allowing for observation of decisions on the same case (e.g., Dhami 2005). While these
inter-rater reliability studies are in high in internal validity, the use of simulated materials
poses serious problems for external validity. A second method for estimating inconsistency
is by estimating mean differences in the way different judges decide as-if randomly assigned
cases (e.g., Ramji-Nogales, Schoenholtz, and Phillip G. Schrag 2007; Nakosteen and Zimmer
20141h). Because these disparity studies rely on real decisions, they are high in external va-
lidity. But their reliance on simple differences in means poses serious problems for internal
validity.

In this article, we show how machine learning can be used to optimize the estimation
of inconsistency in decentralized adjudication systems using administrative data on actual
decisions. The core dilemma is that mean differences between decision makers on outcomes—
that is, disparity statistics—are not a good proxy for inconsistency. Those disparity statis-
tics systematically understate the level of disagreement. As we describe in detail below,
this downward bias can be mitigated through estimation of heterogeneous treatment effects
(HTEs). However, estimating HTEs is not a trivial matter. Our contribution is to pro-
vide a method for optimally targeting the search for HTEs in order to minimize downward
bias associated with estimating inconsistency. In particular, one only needs to subset the
parameter space into a two-partition based on the “direction” of disagreement between de-
cision makers.™ Knowing the direction of disagreement on a decision requires knowing the
counterfactual decisions made decision makers who were not assigned to a case. This latter
step is feasible due to advances in machine learning, as well as increased data availability.

19. For example, the set of cases where decision maker A is more lenient than decision maker B, and the
set of cases where the opposite is true.
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Using machine learning, we generate high quality predictions for these unobserved counter-
factual quantities. Our method also solves a set of subsidiary technical problems that have
plagued studies of inconsistency, including limitations imposed by small sample sizes and
non-random assignment of cases to administrators.

We demonstrate our method by estimating inconsistency in the decision-making among
the judicial panels of the Ninth Circuit Court of Appeals. To do so, we use an original
dataset of all civil appeals heard between 1995 and 2013. Scholars, judges, and politicians
have contended that the Ninth Circuit is chaotic, too inconsistent, and the home of “jack-
pot justice.” These accusations have engendered routine calls and bills to split the Ninth
Circuit. We find that at least 9% of appeals would be decided differently had they been
(randomly) reassigned and that the two most dissimilar kinds of panels decide at least 40%
of appeals differently. Because we lack data on other circuit courts that could allow us to
make comparative assessments of the Ninth Circuit’s level of inconsistency relative to those
courts, we instead focus on the impact of inconsistency on the court’s internal procedures.
In particular, we examine whether unpublished opinions simply apply settled law, as re-
quired by the court’s rules B The evidence strongly suggests that they do not. As we detect
more inconsistency over case outcomes, we also observe higher rates of non-publication. The
pattern holds even after controlling for case area.

2 Quality and Inconsistency

At least since the dawn of the field of public administration, scholars have been concerned
with the quality of governance (e.g., Wilson [1887; Taylor [1911). While the literature on
the topic is vast, there are two main ways to assess the quality of government: policy
and implementation. The policy approach assesses policy outcomes against a predefined
normative benchmark. For example, La Porta et al. (1999) consider good government to be
that which promotes economic development. The authors take a set of variables, such as
protection of property rights, tax rates and infrastructure quality, as evidence of good or bad
government. However, one can also take policy goals as given and investigate how well they
are implemented. Indeed, the vast majority of government is devoted to implementing policy.
This takes a particular form: “administrators” make determinations on a set of “cases.” Is
company X liable for damages in a tort suit? Is person Y entitled to a social welfare benefit?
Does restaurant Z comply with local health ordinances?

To fix ideas, consider a variant of the policy space adopted for use in models of judicial
politics, the case space (Lax 2011). To emphasize that our argument generalizes beyond
the context of the judicial system, we refer to this as implementation space. We assume the
implementation space is unidimensional (specifically, a convex set X C R), and thus each
point in the space represents a possible constellation of facts—a caseE2 A decision maker

20. In the U.S. federal courts, judges decide whether to officially publish their decisions. While the distinc-
tion between published and unpublished opinions has been blurred due to the advent of electronic databases,
formally speaking, published opinions constitute legal precedent while unpublished opinions do not.

21. The fact pattern is determinative in the sense that there are no other facts relevant for policy imple-
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uses a rule, T to decide what decision to make B For example:

deny (0) grant (1)

1

T
~
i

Figure 2: Implementation Space

A high level policy maker usually delegates enforcement to a large set of low level ad-
ministrators in a decentralized adjudication system. For simplicity, suppose there are two
administrators, 1 and 2. Those two administrators may—for whatever reason—use different
criteria whenever they make their determinations. For some number of cases, the two ad-
ministrators disagree, and their decision making is thus inconsistent. Typically, there have
been two ways to study this phenomenon empirically. First are inter-rater reliability studies
that measure whether two (or more) administrators would come to the same decision on the
same case. These kinds of studies vary in their degree of external validity. Daniel E. Ho
() presents the results of a novel experiment with an intervention that enabled direct
measurement of disagreement on identical cases. However, such experiments are expensive,
and thus rare.

A second standard way to study this phenomenon is through disparity studies. Consider

igure 3. Administrator 1 has a grant rate of around 66% whereas Administrator 2 has a
grant rate around 33%. When examining [Figure 3, it is apparent that the two administrators
disagree on 66 — 33 = 33% of cases. This latter quantity is known as a “disparity.” Many
scholars have used disparites to study differences between decision makers across a wide array
of institutions, including asylum applications (Ramji-Nogales, Schoenholtz, and Phillip G.
Schrag 2007), social security disability appeals (Nakosteen and Zimmer 2014h), and judge
sentencing (Anderson, Kling, and Stith @) The main advantage of disparity studies is
that they allow us to study decentralized adjudication systems in as they exist in the real
world.

Administrator 1
Administrator 2

T Ty
Figure 3: Decision Making with Multiple Administrators

But while disparity studies provide us with important information about variation among
administrators, they understate how much disagreement there is among those administra-
tors. This is because they rest on the unverified—and often incorrect—assumption that

mentation.
22. Here, we assume rules to be monotonic, however, the discussion easily extends to non-monotonic rules.
An example of a non-monotonic rule is a speed limit that specifies both a minimum and maximum speed.
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disagreement between decision makers goes in the same direction across all cases. Roughly
speaking, this means that two decision makers make their decisions in a “similar” manner,
even if they sometimes disagree on marginal cases. To make this more concrete, suppose
that the two administrators do not make their decisions in a similar manner. As depicted in
, Administrator 1 grants for high values in X while Administrator 2 grants for low
values in X.

Administrator 1
Administrator 2

T To
Figure 4: Decision Making with Multiple Administrators

The two administrators’ grant rates remain unchanged, and so does the disparity statistic.
But as [Figure 4 illustrates, they disagree on many more than 33% of cases. Building on the
work of Fischman (20144), we show below that when scholars use disparity as a proxy for
disagreement, they are always understating the degree to which the decision makers disagree.
Our method minimizes that understatement.

3 Measuring Inconsistency

A decentralized adjudication system can be defined by four components. First, there is a
finite set of decision makers, which we label 7 = {1, ..., J}, and index by j. Second, there
is a finite set of cases about which decisions are made, which we label N'= {1,..., N}, and
index by i. For a subset of cases decided by a specific decision maker j € J, we write
N; = {1,...,N;}. Third, there is a set of possible decisions that could be made for each
case, which we label Y.E For example, Y could be dichotomous, such as admit/deny or
reverse/affirm, or continuous, such as the length of a criminal sentence or a fine.2? As long
as a single determination is made on each case, we allow decision makers to be groups, setting
aside the micro-foundations of group decision making.@ Finally, there is a decision making
function, which is a function mapping sets of decision makers and cases into outcomes, which
we denote as C : J x N — Y. For example, the decision making function for a set of border
agents would specify how each agent would decide whether to admit each immigrant they
process. Since we only observe actual decisions, we treat C as a black box and focus on
measuring observable patterns in decision making.

23. We could allow the set of decisions to depend explicitly on the case, but here we assume that the set
of possible decisions that could be taken for each case is constant.

24. We require that the elements of Y be ordinal. Our method does not allow for non-binary categorical
outcomes.

25. For an overview of the issues raised by group decision making, see chapter 2 of Persson and Tabellini
(2000). For an application to appellate courts, see Landa and Lax (2009).
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Given these components, we can formally define inconsistency in a decision making body.
We first must differentiate between two distinct concepts: disagreement and inconsistency.
We define disagreement to be the proportion of cases where two decision makers would come
to different decisions:

() k) = B [1p,00) [A(¥i(7), Yi(R))] 1)

where 1 is the indicator function, j, k € J are two different decision makers, d(-) is a metric
on Y, and D is a scalar®¥ Since we implement our method using data from the Ninth
Circuit, where we treat decisions as binary (i.e., affirm or reverse the lower court’s decision),
we will assume that Y = {0,1} and we will use the usual Euclidean metric on R. We can
thus rewrite pquation (1) as:

8(j, k) = B[|Y:(7) - Yi(k) ] 2)

In a decision making body with two decision makers, d(-) would completely characterize the
amount of inconsistency that exists among the decision makers. However, with more than
two decision makers, we must define a composite measure based on the disagreement be-
tween each pair. There are many ways to characterize this quantity, but following Fischman
(20144)), we focus on two: average inconsistency and extreme inconsistency. Define P to be
the set of decision maker pairs: P = J x J. Then, average inconsistency is defined by

Ao = E[(5, k)] (3)

and represents the average level of disagreement between the decision makers. Intuitively,
how many decisions would be made differently if all the cases were randomly reassigned? We
characterize average inconsistency differently than Fischman (20144). Briefly, we allow that
cases could be reassigned to the same decision maker, whereas Fischman (2014a) assumes
that cases are reassigned to different decision makers.

Extreme inconsistency is formally defined by

A, =max{d(j, k) : (j, k) € P} (4)

and represents the disagreement between the two decision makers who are the most dissimilar
in their decision making. This quantity can be viewed as bookend normative benchmark, as
it captures how high disagreement could be.

Limits of Disparities

We have already noted the limitations of disparity studies, but here we show formally how
they understate disagreement and inconsistency. As is apparent from pquation (1) we express

26. For example, suppose Y = [0,100]. Then, we might consider two decisions different from one another
if they are more than ten units apart. Formally, d(Y;(j), Yi(k)) = |Yi(y) — Yi(k)| < 10 = D.
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disagreement and inconsistency in idealized terms. In particular, disagreement between two
decision makers, 7 and k, is measured across all cases, even though only only one decision
maker can sit on a particular case 7. To put this in terms of the Neyman-Rubin causal model,
Yi(j) and Y;(k) are potential outcomes, where one decision maker is considered the “control”
condition and one decision maker is considered the “treatment” condition. As long as the
assignment of decision makers is as-if random then standard methods allow us to generate
an unbiased estimate of the average treatment effect (ATE, which we denote as ¢(j, k)):

¢(7,k) =E[Y(j) = Y (k)]

In fact, the major methodological benefit of studying ATEs is that they are relatively easy
to estimate once we satisfy these few assumptions. Specifically, due to the linearity of the
estimand, we can decompose it into E[Y (j)] — E[Y (k)], which allows us to simply compare
the means of the treatment and control groups.

When comparing the decisions of decision makers, researchers usually use this analytical
framework to estimate an ATE (or some related quantity, such as regression coefficients).
For example, how many more pro-civil rights decisions does an all Democratic panel of
judges make as compared to an all Republican panel of judges? Or, how many more asylum
applications does Asylum Officer 1 grant than Asylum Officer 27 Such research questions
are at least implicitly concerned with measuring the extent of disagreement between decision
makers or types of decision makers. However, ATEs can systematically understate actual
disagreement, as well as the extent of inconsistency in a decision making system.

Consider an example comparing two state court appellate judges. Suppose one judge is
a Democratic and the other is a Republican. Moreover, suppose an analyst is interested in
studying how this Democratic judge (D) and this Republican judge (R) decide civil rights
cases differently. If she were to try to measure the extent of disagreement between these two
judges, the appropriate estimand would be derived directly from pquation (2). We label the
estimand for pquation (2) by d(j, k), and in this example it is:

(D, R) = E[[Y(D) - Y(R)|]

Of course, estimation of this quantity is complicated by the fact that the expectation operator
cannot be linearly decomposed. If instead, the analyst estimates an ATE—which is easier
to estimate—then her estimand is

¢(D, R) =E[Y(D)] - E[Y(R)]
Unfortunately, ¢(D, R) would be a downward biased estimand for disagreement. In
7. There are more examples than we can reasonably list here, but several recent ones are Earticularlxl
Eoteworthv. See, for example, Revesz ( 199;)7 Anderson, Kling, and Stith (1999), Cockburn, Kortum, and
Stern (2003), Farhang and Wawro (2004), Ramji-Nogales, Schoenholtz, and Phillip G. Schrag (2007), Boyd,
Epstein, and Martin (2010), and Kastellec (2013).
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sition 1 in , we show generally that®d
o(j, k) < 0(j, k). ()

Moreover, pquation (5) holds strictly whenever there are “strong heterogeneous treatment
effects” as defined by Definition ]J in [Appendix ]j Intuitively, an ATE will always understate
disagreement if the treatment has a positive effect in some cases and a negative effect in
others. In our example, if Y is whether a plaintiff is victorious in a civil rights case, then an
ATE comparing D and R would understate the level of disagreement between them if D is
more likely to reverse than R when the defendant won in the lower court but less likely to
reverse than R when the plaintiff won in the lower court.

This problem is not solved by re-coding the outcome variable. For example, an an-
alyst might re-code the outcome variable to be pro-plaintiff/pro-defendant instead of re-
verse/affirm. While this generates a valid measure of the difference in rate of pro-plaintiff
decisions for the two judges, it still does not capture disagreement. Suppose, for example,
that the two judges differ in their propensity to reverse lower court decisions: D always
reverses the lower court decision, and R never does. Moreover, suppose cases won by the
plaintiff are appealed as often as cases won by the defendant. Then, the rate of pro-plaintiff
decision making by both types of panel is 0.5. An analyst would observe an ATE of zero, po-
tentially concluding that the two judges disagree very little. In fact, they perfectly disagree:
in every case, the panels rule differently.

As a general principle, estimating ATEs using different outcome variables will reveal
different amounts of disagreement between decision makers. The reason is fairly straight-
forward: each outcome variable reflects disagreement on different dimensions of the decision
makers’ utility functions. If, for example, preferences about deferring to lower courts is
the primary dimension on which appellate judges disagree, then reversal rates will be a
better measure of disagreement than whether the plaintiff or defendant ultimately prevail.
But, analysts almost never know ex ante which outcome best captures disagreement. The
estimation of a specific ATE represents a small, and specific, bite of the apple, and may even
lead researchers to draw faulty theoretical conclusions. Yet, some ATEs may do a better job
of capturing disagreement. For example, the treatment could partition the decision makers
into groups that are “most like-minded” and the outcome of interest could be the issue on
which the groups of judges disagree most. But, since decision making differs across many
possible dimensions, an ATE based on a particular treatment and particular outcome derived
intuitively will yield a poor proxy for the overall level of disagreement between judges.

In light of this problem, we reformulate the analysis of decision making as a prediction
problem with the goal of backing out the dimensions characterizing the most disagreement.

28. Fischman (20144) demonstrates how measures of inconsistency are always interval-defined, so
ion 1| can be seen as alternative expression of results from that paper.
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Getting Around The Problem: Heterogeneous Treatment Effects

One way to view the problem we identify is that there are heterogeneous treatment effects
(HTEs, see Athey and Imbens 2015; Grimmer, Messing, and Westwood 2016; Bullock, Green,
and Ha 2010). In the context of medicine, for example, a doctor who knows that a particular
drug has a positive average treatment effect, may also wish to know which patients respond
positively, which respond negatively, and which do not respond at all. Such information,
which is thrown away by the particular way that treatment effects are aggregated, has
important clinical applications and can help doctors understand better how a drug works.
Define M to be a partition of the set of cases N that represents a partition of the case-level
covariate space and where each M € M is nonempty. Then, the estimand of interest is the
conditional average treatment effect (CATE):

¢(j, k, M) = En[Y(j) — Y (k)] (6)

As Grimmer, Messing, and Westwood (2016) point out, if ¢(j, k, M) varies as M does, then
there are heterogeneous treatment effects. In our context, such variation is informative
because it allows us to observe how often treatment effects are non-zero, which maps into
disagreement. Disagreement for a specific partition M is:

= Eum[|¢(, k. M)|]

This approach helps researchers avoid making problematic assumptions on the joint dis-
tribution of the potential outcomes by bringing the absolute value outside the expectation
operator, thus allowing for “traditional” estimation of average treatment effects. The down-
side to this procedure is that it is highly dependant on the method used to partition the
parameter space (i.e., the choice of M). At the limit, §(j, k, M) becomes §(j, k) as the
partition becomes fine enough such that the average treatment effect is estimated for each
unit separately (i.e., as M approaches N). Of course, the fundamental problem of causal
inference rules out this possibility (Holland [1986), but one could implement matching to
find the closest match for every treated (or control) unit. With a large enough sample size,
one could find suitable matches, but the estimation of the average treatment effect for each
matched pair would introduce unmanageable finite sample bias.

For practical reasons, an analyst must choose a partition M. [Proposition ﬂ in lAppendiX Ej
shows that all possible partitions M generate estimands of disagreement that are smaller
than the actual level of disagreement. Thus, our task is to pick M to maximize §(j, k, M).
Moreover, since 0(j, k, M) is always biased downward due to the averaging of heterogeneous
effects, we can optimally partition the parameter space into a partition M* with exactly two

29. Another equivalent way to write the CATE is
oV, T,2) =E[Y(T=1)-Y(T =0)|X = z]

where X is a vector of covariates and x is a particular value of covariates.

43



subsets:
M* ={i e N1 Yi(j) = Yi(k)} M~ ={i e N :Y(j) < Yi(k)}
Then, our estimand for disagreement can be written as

6(j, k, M*) = Epe- [|0(Y, T, M)|]
=E[Y(j) = Y(K)|Y(j) > Y(k)] Pr[Y(j) > Y (k)] (7)
+EY(k) =YY () <Y(K)]Pr[Y(j) < Y(k)]

Finally, given that our ultimate goal is to estimate inconsistency in an entire decision
making body and disagreement only measures inconsistency between two decision makers,
the appropriate estimands for average and extreme inconsistency can be written as follows:

Aa - E(j,k)EP [6(37 k7M*)] Ae - max{5(j, kvM*) : (j7 k) € 7)} (8>

Estimation

We have shown that ATE-based estimands of disagreement, such as disparities, will always be
biased downward. As a result, an ATE-based estimand constitutes a lower bound on the true
level of disagreement among decision makers. It is important to emphasize once again that
attempts to measure disagreement or inconsistency are always either lower or upper bounds
on the true measure, including the method we introduce in this paper (see Fischman 2014a)).
However, while our method also yields a lower bound, our contribution is to substantially
reduce the bias of more common disparity-type measures of inconsistency. As is apparent
from the foregoing discussion, we can only reduce bias by subsetting the parameter space,
thus reducing sample sizes and increasing variance. Our estimation challenge is therefore to
find the optimal bias-variance trade-off. We face three specific problems in estimation, what
we refer to as the problems of partitioning, clustering and finite sample bias.

The partitioning problem refers to the challenge of optimally selecting M to reduce
bias in the estimates for §(j, k). The problem is both theoretical and practical. In the
previous section, we derive an estimand with the most efficient partition §(j, k, M*), see
equation (7). Because we need only divide our sample into observations where Y (j) > Y (k)
and Y'(j) < Y (k), our partition is as coarse as possible thus increasing variance by as little as
possible (relative to the baseline ATE). The practical problem is how to classify observations
into the two sets of the partition. We treat this as a prediction problem and recommend using
machine-learning methods to generate estimates of Y;(j) and Y;(k) for all i that were decided
by either j or k. We label these EA/;( j) and 2(1{:) In our illustrative example, described in
the next section, we use Super Learner, an ensemble method that uses a set of constituent
algorithms to predict outcomes in the data (Laan, Polley, and Hubbard 20074).

Until now, our discussion has focused heavily on the estimation of disagreement, §(j, k),
but not inconsistency. To measure inconsistency, we need to define the set P, which is the
set of pairwise comparisons we wish to study. In the context of experiments, this is known

44



as the choice of the treatment arms. This is what we call the clustering problem. In some
contexts, the clustering problem is not actually a problem. For example, suppose we have
a decision making body with three decision makers, A, B, and C', who each make decisions
on 1,000 cases. If we had data from all 3,000 decisions, we would have sufficient sample size
to efficiently estimate disagreement between each pair of decision makers: §(A, B), 6(A, C)
and 0(B, ().

This poses a more serious problem where there are a small number of cases assigned
to some of the treatments, as predictions would be extremely noisy and uninformative.
Consider, for example, the Ninth Circuit. If we define each decision making unit as a specific
three-judge panel, then even ignoring senior and designated judges, with 28 active judges
there are 3,276 possible panels. The population of cases is too thinly split among such a
large number of decision-making units to allow for meaningful analysis. It will therefore
often be necessary to cluster judges into larger groupings to increase sample sizes used to
build prediction models. Essentially, we must sometimes re-define the “treatment” and
“control” to be panels of different types of judges, rather than specific judges. To be clear,
clustering explicitly opts for increased bias in order to decrease variance, and the extent to
which an analyst trades off bias for variance is context-dependent and discretionary. But
we strongly recommend clustering decision makers by similarities in their decision patterns
rather than shared demographic or political characteristics. Indeed, as we illustrate below,
researchers can use a training set to build decision-predictive models for each decision maker,
and decision makers can then be clustered by similarities in the outputs of those models.

Finally, our approach solves a problem identified by Fischman (2014a): finite sample
bias artificially inflates estimates of inconsistency. Traditional estimates of disagreement
overstate inconsistency because they treat all observed differences among decision-makers
as reflecting true differences, ignoring the fact that differences are actually a combination
of true differences and statistical noise. Moreover, the problem can become more severe as
researchers increase variance by subsetting in the search of more inconsistency. Fischman
(2014a) describes a method for adjusting inconsistency estimates for finite sample bias. Our
approach, rather than correcting for finite sample bias, avoids introducing it in the first place.
By using training sets to set our expectations for the direction of inter-judge differences ez
ante, we allow noise to result in negative estimates of disagreement when those expectations
are not met, eliminating variance’s contribution to bias.

4 Application: Ninth Circuit

In the previous section, we described a general approach for estimating inconsistency in
an adjudication system. In this section, we demonstrate how to use machine learning to
implement our method using a large and extensively coded original dataset of all civil cases
filed in the Ninth Circuit and terminated on the merits over a period of nineteen years.

30. In [éppendix g, we describe our data and discuss how it constitutes an improvement on other available
datasets.

45



Our procedure generates estimates of extreme and average inconsistency that uncover a
greater degree of disagreement among judges than traditional approaches can. In particular,
we find levels of extreme and average inconsistency in the Ninth Circuit of 40% and 9%,
respectively. That is, the two most dissimilar types of panels (which are endogenously
determined by our machine-learning method) would decide 40% of cases differently, while two
randomly selected panels would decide 9% of cases differently on average. As a benchmark,
we can compare these estimates to two other disparity measures that cluster judges by party
of appointing President, based on theoretical intuitions that partisanship is the dimension
that captures the most disagreement among judges. Our method substantially outperforms
both a naive comparison of reversal rates and a comparison of pro-plaintiff decision rates. If
we use reversal rates, we obtain estimates that uncover substantially less inconsistency: 12%
and 4% for extreme and average inconsistency, respectively. If we use pro-plaintiff decision
rates, we obtain estimates that uncover even less inconsistency: 2% and 1% for extreme and
average inconsistency, respectively.

We now describe the procedure we used to obtain our machine-learning estimates of
inconsistency. The procedure follows six basic steps.

. ﬂd Trf Set l\ép fEa%}% Ju e Tr ining and Test Sets
: 1n1% Pera %‘ élz pe(:1 %ons or the Tost eszet‘.
de 1;-? Sf)ecmlons aitwise P omparlson.
stimate nconmsteéély Usmg the Test Set.

Steps 1 and 2 address the clustering problem, using the training set to cluster judges in
accordance with their voting patterns rather than their demographic characteristics. Steps
3 and 4 address the partitioning problem, using estimated differences in panel-type voting
patterns to partition our data. We note that Steps 1 and 2 will be unnecessary in systems
where decision-making units each decide a large number of cases. Where this is true, there
is no reason to waste data by using a designated training set to generate predictions for the
test set. Researchers can instead conserve data via cross-validation, allowing parts of the
data to successively serve as temporary test sets.

Step 1: Build Training-Set Models of Each Judge

We randomly sample 70% of the data for inclusion in the training set. The remaining 30% is
reserved as a test set, which we use to undertake our main analysis. We contribute a greater
share of the data to the training set because the tasks we use it for are more data intensive.

Using the training set, we construct a Super Learner model of voting for each appellate
judge that sat on more than 70 cases. Each judge’s model takes as inputs data about each
case they sat on, and returns a predicted probability that the judge would vote to reverse
the trial court decision. In a sense, the model allows us to characterize each judge’s behavior

31. We note that the six steps could be extended to include a seventh step for measuring uncertainty
around the point estimates for inconsistency. Because we do not improve upon the sub-sampling method as
described in Fischman (20144), we restrict our focus here to point estimates. In principle, an analyst could
use the sub-sampling technique in conjunction with our method to construct confidence intervals.

46



over all their cases leveraging information about the panels they sat on. We include six
candidate models in the Super Learner: a LASSO regression, the mean reversal rate, two
user-specified linear regressions that we thought could capture voting patterns, a random
forest, and boosted CARTs. The algorithm then constructs a weighted model of these
constituent algorithms that generates the best predictions, as measured by mean squared
error. Details are available in Appendix Al.

It is worth noting that the researcher can be aggressive in this step. If we were presenting
predictions from these models as results (i.e., as claims about the state of the world), we
would have to be concerned that they were an artifact of data mining, intentional or not.
But partitioning the test set from the training set allows the researcher to combine the power
of clinical judgment and mechanical algorithms—if we get too aggressive and find patterns
in the data that reflect chance rather than reality, then applying that “finding” to the test
set we set aside will tend to yield uninformative and null estimates. Since we will eventually
use these judge-specific models to group judges, if they capture noise rather than signal,
then they should not prove useful in the test set.

Figure f visualizes judge-specific models for some prominent jurists in the Ninth Circuit.
To illustrate the potential benefits of a machine-learning approach, we highlight the rela-
tionship between the trial court winner and reversal likelihood. The models suggest that
Judge Reinhardt and Judge Leavy decide cases in a highly inconsistent manner but that
the magnitude of the overall inconsistency is entirely captured by a comparison of reversal
rates—our model predicts that Judge Reinhardt is always more likely to reverse a case than
is Judge Leavy. On the other hand, although Judge Pregerson and Judge Kleinfeld have
similar overall reversal rates, we predict that they frequently reverse different types of cases.
We predict that Pregerson is more likely to reverse when a defendant won in the lower court
but less likely to reverse when a plaintiff won.

Figure 5: Comparing Judge Predictions

Leavy v. Reinhardt Reversal Probabilities Kleinfeld v. Pregerson Reversal Probabilities

Predicted Reversal Probability for Leavy
o o o
Predicted Reversal Probability for Kleinfeld
o o o

0.25 0.50 0.75 1 0.25 0.50 0.75
Predicted Reversal Probability for Reinhardt Predicted Reversal Probability for Pregerson
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Step 2: Cluster Judges and Apply to Training and Test Sets

We use each judge’s judge-specific model of voting (from Step 1) to generate a predicted
probability for how they would have voted in each of the training-set cases, even for cases
they did not sit on. Then, for each pair of judges, we calculate the mean absolute distance
between the two judges’ predicted votes. This is roughly interpretable as an estimate (albeit
a very noisy estimate) of the percentage of cases for which that pair of judges would cast
different votes. Using these pairwise distances between judges, we use standard cluster
analysis to group judges.22# Figure f shows the results of the cluster analysis.

Figure 6: Cluster Dendrogram

The judges cluster pretty clearly into six groups. With more data, it might make sense to
use a finer clustering, but anything more than six groups begins to stretch the data too thinly,
leaving too few observations of each panel type to make statistically relevant comparisons.

We take the liberty of using the names of well-known judges to label the clusters: judges
are thus each identified as being part of the Reinhardt Cluster, the Leavy Cluster, the
Kozinski Cluster, the Pregerson Cluster or the O’Scannlain Cluster. The exact membershi
and demographic characteristics of the groups are available in [Tables 3 to E in éﬁéendix d.
We also add a cluster that we label the Visiting Cluster. This cluster consists of judges
who had fewer than 70 observations in the training set, most of whom are judges sitting by
designation. Throughout the text, we refer to particular “types” of judges using formatted
labels corresponding to the cluster names: R, L, K, P, 0 and V. For example, we refer to a judge
from the O’Scannlain Cluster as an 0-judge, and a panel of such judges as an 000-panel.

32. Specifically, we use the hclust package for hierarchical clustering in R. We use the ward.D method for
its tendency to generate clusters of relatively equal size.
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Step 3: Generate Panel-Specific Predictions and Apply to Test Set

We reuse the training set and the same candidate models that we used to build the judge-
specific models (Step 1) to generate panel-specific predictions for each case in the test set.
As we show in , our Super Learner model outperforms each constituent algorithm.

Table 1: Model Performance

Model MSE  Weight
Super Learner  0.179 -
Boosted Trees  0.181 0.51
Random Forest 0.181 0.45
LASSO 0.184 0.00
Regression 1 0.189 0.00
Regression 2 0.189 0.00
Regression 3 0.185 0.04
Mean 0.195 0.00

visualizes predictions for four of the panel types and highlights the potential for
machine-learning approaches. The left panel suggests that the main source of disagreement
between LLL-panels and RRR-panels is something related to judges’ reversal proclivity. Even
though LLL-panels appear to exhibit a pro-defendant leaning, RRR-panels do not. RRR-panels
simply reverse a lot more than LLL-panels, regardless of whether the plaintiff or defendant
won in the lower court. An analyst concerned about the mechanisms driving differences
between LLL-panels and RRR-panels would infer that willingness to reverse is what actually
differentiates decision making between RRR- and LLL-panels.

On the other hand, the right panel of the figure illustrates that substituting a KKK-panel
for a PPP-panel is predicted to decrease the probability of reversal where a defendant won in
lower court but increase the probability where a defendant lost. The figure suggest that a
simple comparison of average reversal rates of PPP-panels and KKK-panels would understate
the extent to which the two types of panels decide cases differently because they tend to
reverse different types of cases. In other words, judges who are more similar to Kozinski tend
to reverse defendant-wins less often than judges more similar to Pregerson, and vice versa.
Next, in Step 4, we show how these predictions can be used to re-code decisions in the test
set so that we can more accurately estimate the actual level of inconsistency in adjudication.

33. Ideally, one would use a new training set to construct panel-specific predictions, as any noise that
contributed to the grouping of judges could be compounded in the panel model, leading us to over-estimate
differences between panel types. But we think it was more important to “spend” our data on the judge-
specific models. Furthermore, any over-estimating of differences between panels will ultimately bias our
test-set estimates of inconsistency downward.

Moreover, if Steps 1 and 2 are not necessary (as explained above), the panel-specific predictions can be
estimated on the entire dataset.
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Figure 7: Comparing Panel Predictions

LLL v. RRR Reversal Probabilities PPP v. KKK Reversal Probabilities
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Step 4: Code Test Set Outcomes for Each Pairwise Panel Compar-
ison

As we discussed in , the presence of heterogeneous treatment effects means that a
comparison of overall reversal rates between types of panels will lead one to underestimate the
level of inconsistency in adjudication. For example, all-Republican panels and all-Democratic
panels might have identical reversal rates, but all-Republican panels may be more likely to
reverse civil rights cases when plaintiffs won in the lower court and all-Democratic panels may
be more likely to reverse civil rights cases when defendants won. As a result, our challenge
is to optimally partition the parameter space to capture the most amount of disagreement.

We seek to estimate §(j, k, M*) for each pair of decision makers, (j, k) € P. Restating

cquation (7)), our estimand is:

0(j, kb, M*) = E[Y () =Y (R)[Y () 2 Y (R)]Pr[Y(j) = Y (k)]
+EY (k) =YY () <Y®)]PrY(5) <Y(K)]

We allow Super Learner to acquire knowledge about how panel types decide cases.
Specifically, we estimate potential outcomes on our training set, Y;(j) for all i € A and
all j € P. Then, for a given pairwise comparison (j, k), we code the outcome of a case
as a j-decision or a k-decision depending on whether a j panel or k£ panel is predicted as
more likely to have made the decision that was actually made (according to the model that
we constructed with the training set). To implement this, we treat either j or k as the
“treatment” and code a new outcome variable, which we refer to as “autocoded” and label
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zjk() Suppose we define j to be the treatment, then:

Pk = {1@ it Yi(j) > Yi(k) ©)
1-Y, ifY(j) <Y,

One can interpret zjk() to be whether or not observation ¢ had a j-like outcome. For
example, if j is an LLL-panel and k is an RRR-panel, V"™ (.) = 1 implies that observation
1 featured an outcome Y; that was consistent with a model of LLL decision making, but not
RRR decision making. Notice that our autocoded outcome estimates (74, k, M*) by splitting
our data for each pairwise comparison of panels into four groups:

M = {i e N V() > Vik)} M = {i € N;: Yi(j) < Yi(k)}
M = {i e Ni: %)) = Vi(k)} My = {i € N : i(j) < Yi(k)}

Our estimator is therefore:@

3(j,k,M*)=Nij Svi+d (- —Nik ZYﬁZ(l—Yi)

In Step 6, we go into more detail about how we estimate our composite measures of
inconsistency, A, and A., using this procedure.

Step 5: Identification Strategy

Our analysis relies on an assumption of statistical independence between cases and judge
panels. We require this assumption since our goal is to isolate the unconfounded effect of
judges on outcomes. If this were not the case, our estimates of each judge’s effect on case
outcomes could simply reflect differences in the types of cases that judges are assigned.
However, as we discuss in |Appendix D}, there are at least two possible threats to the ran-
domization assumption in the context of the Ninth Circuit. In fact, proper randomization is
rarely guaranteed in decision making systems, so this step provides a technique for correcting
for potential selection bias.

In order to guard against threats to randomization, we move beyond raw comparisons of
panel decision rates (that would rely on random assignment) and account for the possibility
that some panels may be more or less likely to issue decisions in cases that are, as a general
matter, more or less likely to be reversed. Because bias occurs when a confounding variable
is correlated with both the treatment and the outcome, we use a prognostic score correction,

34. See [Proposition 3| in |AppendiX Ej, where we prove that our autocode procedure generates an equivalent
estimand to 0(j, k, M*).

35. Recall, the estimate of 3( j,k, M*) is for a pairwise comparison of j and k type panels. We seek an
overall measure of inconsistency, where we incorporate the g( J, k, M*) for each pairwise comparison.
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which aims to make the confounding variable orthogonal to the outcome (Hansen 2008).@
To do this, we use machine learning and the training set to estimate each case’s predicted
probability of reversal under the “control” condition, which we have been denoting by k. We
label the predicted probability 1;(k, X;), which is commonly referred to as the “prognostic
score” (Hansen 2008). In our main analysis, we incorporate these prognosis scores directly
into our outcome variable. That is, instead of using the actual decision,

v — 1 if panel reverses
" )0 if panel affirms,

we use the difference between the predicted probability of a reversal under the control con-
dition (estimated with the training set, and referred to as k) and the actual outcome,

ka =Y — YZz(k, X;).

Since ka € [—1, 1], the bias corrected autocode is
gar _ JEEEY0) 2 Yi(k)
’ —ZI* i Yi() < Yi(k)

Thus, if, for example, some panels are more likely to issue decisions in cases with high
reversal probabilities (due to breakdowns in randomization), that fact is accounted for (as
best as possible) when making comparisons.? Our modified estimator, now resistant to
breakdowns in the randomization procedure, is:

5(j, ke, M*|X) = Ni Sz -N "zt | - Nik S ozt
P\ ]\//Tf

Step 6: Estimate Inconsistency with the Test Set

Now we estimate average inconsistency and extreme inconsistency. Our estimator for extreme
inconsistency is straight forward:

A, = max {3(j, k, M'[X) : (j. k) € P} (10)

36. Researchers have traditionally used propensity scores (or some other technique) to force independence
between the confounding variable and the treatment.

37. Two details are worth mentioning. First, we estimate the prognosis scores with and without party
variables for fear they could be post-treatment. The results do not change significantly. Second, since the
identification of the “treatment” and “control” groups is arbitrary when comparing two panels, all of our
analyses with prognosis scores is completed twice, with each panel being regarded as the “control” group.
Results are not sensitive to the arbitrary choice of the “control” group, but we nevertheless average results.
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Recall that average inconsistency is an estimate of the percentage of cases that would have
been decided differently if the court had re-randomized the assignment of cases to panels.
In calculating average inconsistency, we account for the fact that different panel types hear
greater or fewer cases using a re-randomization weighting. Consider panels of type 7 and k.
Then, the probability that a j panel is re-randomized a k panel (or vice versa) is:

N, N
Gl k) = 23 2k
Uk =% %
where N; and N are the number of cases seen by a type j panel and type k panel, respectively.
Our estimator for average inconsistency is therefore:

ANo= Y @ k) 835,k M|X) (11)

(4,k)eP

With these six steps, a researcher can generate estimates of inconsistency in adjudica-
tion systems, and, as we've detailed above, can offer substantial improvements to existing
methods.

5 Discussion: Evaluating the Ninth Circuit

According to its critics, the Ninth Circuit is “in chaos,” a system of “jackpot justice,” and

“nutty.” One way of assessing these claims would be to compare our estimates of inconsis-
tency in the Ninth Circuit with estimates from other circuits. Unfortunately, we lack data
from other circuits needed to make these comparisons. Instead, we look to whether patterns
in decision making comply with the Ninth Circuit’s internal operating procedure: is the
practice of designating opinions “not for publication,” which renders them non binding on
future cases, consistent with the court’s appellate procedure and the policies that are used
to defend that procedure?

According to Ninth Circuit policy, an opinion is to be published if it “[e]stablishes, alters,
modifies or clarifies a rule of federal law” (Circuit Rule 36-2(a)). Consistent with this idea,
the conventional wisdom among court observers is that cases with unpublished opinions are
“easy” cases that are less controversial and more straightforward to resolve. Epstein, Landes,
and Posner (2013), for example, argue that “most [unpublished opinions| are affirmances in
uncontroversial cases” (p. 155) and that “.. cases that arouse no disagreement among the
judges tend not to be the cases that shape the law” (p. 55). Sunstein, Schkade, and Ellman
(2004) have similarly claimed that “unpublished opinions are widely agreed to be simple and
straightforward, and to involve no difficult or complex issues of law” (p. 313). And Judge
Harry T. Edwards of the District of Columbia Circuit argued in a co-authored article with
Michael Livermore that “judgments rendered in unpublished decisions ... typically involve
more straightforward applications of law” (Edwards and Livermore 2009, p. 1923). Finally,
in a 2002 hearing on unpublished opinions held in the U.S. House Subcommittee on Courts,
the Internet, and Intellectual Property, Ninth Circuit Judge Alex Kozinski said
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But I can state with some confidence that the sinister suggestion that our unpublished
dispositions conceal a multitude of injustices and inconsistencies is simply not borne
out by the evidence. I feel so confident of this point, having participated in rendering
thousands of these dispositions myself, that I would welcome an audit or evaluation
by an independent source.

Unpublished Judicial Opinions (2002)

Here, we lend our method for measuring inconsistency to the independent auditing effort.
A logical implication—and a testable hypothesis—derived from this conventional wisdom
is that cases featuring a low degree of inconsistency among judges (i.e., a high degree of
agreement) should be the ones that are more likely to be resolved with an unpublished
opinion, and vice versa. In other words, there should be a (weakly) positive relationship
between disagreement and opinion publication.

Testing this hypothesis empirically presents a practical problem: inconsistency is mea-
sured at the system-level, whereas opinion publication is measured at the case-level. In order
to test the relationship between system-level inconsistency and case-level opinion publica-
tion, we therefore need to subset our sample into bins of cases that feature similar levels of
disagreement. We do this by generating case-specific “disagreement scores” for each case.
By ordering cases by this disagreement score, we can plausibly partition the full data set of
cases into smaller sets that will have increasing levels of inconsistency.

We separate cases into four quartiles by their case-level disagreement scores and measure
systemic inconsistency among the cases in each of the four quartiles. This allows us to directly
examine the relationship between our systemic measure of inconsistency and publication
rates. [Figure § plots those inconsistency estimates against publication rate. Disagreement
between judges and opinion publication is negatively correlated.

38. As a by-product of Step 3, there is a predicted probability of reversal for each case for each panel type.
Disagreement scores are a measure of spread of each case’s set of predicted probabilities. Here, we use mean
absolute deviation (from the mean), but results using variance as the measure of spread are similar.
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Figure 8: Inconsistency and Publication

We also regress publication directly on disagreement scores. There is again a strong
negative relationship between these case-level disagreement scores and opinion publication:
for a 1% increase in the disagreement score, there is 2.6% reduction in the probability that a
case will be resolved with a published opinion (significant at the 0.001 level). This association
holds even when we control for case type: 1% increase in the disagreement score is associated
with 2.1% reduction in the probability that a case will be resolved with a published opinion.

In summary, our analysis strongly suggests that, contrary to conventional wisdom, un-
published opinions are not being used to dispose of the “easy” cases that judges agree on.
In fact, it is where law does not determine the outcome that judges are most likely to issue
unpublished decisions.

An astute observer of appellate courts might argue that although decision making may
be inconsistent with standard justifications for the use of unpublished opinions, it may
nonetheless be consistent with stated policy: while unpublished opinions do not resolve
“easy” cases, they might be used to dispose of cases that are legally easy but factually
difficult. In other words, judges may agree on what the law is and simply disagree over
how to apply the law to complex fact patterns. Thus, judges could still be using published
opinions to resolve a case that “[e]stablishes, alters, modifies or clarifies a rule of federal law”
(Circuit Rule 36-2(a)) while using unpublished opinions to apply clear and settled law to
difficult fact patterns.

We find little support for the argument that judges agree on law and disagree on ap-
plication. To assess the argument, we run our method for estimating inconsistency on the
publication decision instead of the substantive outcome. If judges are merely disagree on
the application of clear and settled law, we should expect to find little disagreement over the
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decision to publish. This is not what we find. shows the distribution of estimated
disagreement between all panel types over the decision to publish. Although the small part
of the distribution below zero indicates that there would be some regression to the mean, a
substantial number of panels disagree in a non-trivial percentage of cases. In short, judges
do not only disagree on the application of law—they disagree as to whether law is clear and
settled.

Distribution of Inter—Panel Disagreement Over Publication
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Figure 9: Disagreement about Whether to Publish

6 Conclusion

We have presented a method for estimating inconsistency in decentralized adjudication sys-
tems. Although it is still only a lower bound on inconsistency, it represents a vast im-
provement on the disparity studies that have so far been used. Particularly when coupled
with inter-rater reliability studies that use simulated case materials, our observation-based
method provides a way forward for the rigorous study of inconsistency. We applied our
method to the decision making in the Ninth Circuit, showing how we could start building
measures of performance. But lacking data on other circuits that could allow for meaningful
comparisons, we instead focused on assessing Ninth Circuit compliance with internal circuit
policy over the publication of judicial opinions. Evidence suggests that judges are not, as
policy dictates and many judges and scholars have claimed, using unpublished opinions in
cases that apply settled law. In fact, we find evidence that judges are more likely to use
unpublished cases where inter-judge disagreement over the proper outcome is highest.
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Chapter 3: Synthetic Crowdsourcing®

1 Introduction

Justice, the trope goes, is what the judge ate for breakfast. The problem of inconsistency
in legal and administrative decisions is widespread and well documented. Recent research
has demonstrated that case outcomes can vary significantly depending on the characteristics
of the deciding judges: researchers have documented stark disparities between judges in do-
mains including social security disability (Nakosteen and Zimmer 2014q), criminal sentencing
(Abrams, Bertrand, and Mullainathan 2012) and asylum (Ramji-Nogales, Schoenholtz, and
Philip G. Schrag 2007; Fischman 20141h). In addition to these disparities across judges, stud-
ies show that individual judges are themselves inconsistent from case to case. Circumstances
such as the outcome of a football game (D. L. Chen and H. Spamann 2014) and the time of
day (Danziger, Levav, and Avnaim-Pesso 2011) can substantially affect legal decisions.

The creation of general rules, whether imposed through centralized legislation or decen-
tralized precedent, is a core strategy to protect against inconsistency and arbitrariness in
decision making, but rules are often poorly suited for the fact-intensive contexts that make
up a large portion of modern adjudication (Sunstein 1995). In contexts where small and
varied deviations in fact patterns can substantially impact merits, rules will be crude and
insensitive to the particulars of the case. For example, adjudication of claims for social secu-
rity disability benefits, asylum, and parole frequently turn on issues that are hard to usefully
delineate with ex ante rules.

Scholars and administrators have proposed a variety of methods to reduce inconsis-
tency in fact-intensive decision-making settings. Proposed approaches include: increasing
the number of decision makers responsible for making each panel (Legomsky 2007), matrix-
based decision-making guides (e.g., Federal Sentencing Guidelines), peer review (Daniel E
Ho 2017), statistical models that estimate outcomes that are highly relevant to the deci-
sion process (e.g., models of recidivism), more and better training for decision makers, and
top-down review of deviant decision makers.

In this article, we present a novel statistical tool that combines many of the benefits
of existing approaches while avoiding many of their costs. ”Synthetic crowdsourcing” uses
machine learning to predict future decisions using data on past decisions. The aim is to
simulate a world in which all judges cast multiple independent votes in every case. By
excluding variables that are statistically uncorrelated with the merits of a case (e.g., the
identity of randomly assigned judge or whether a judge’s football team won the night before)
and aggregating judgment across and within decision makers, such predictive models can
cancel out arbitrary and contingent factors, smooth over sources of inconsistency, and capture

39. Coauthored with Hannah Laqueur

40. The Administrative Conference of the United States, for example, has newly recommended that the
Social Security Administration review ”decisions from judges whose allowance rates are both well under
and well above statistical average.” https://www.acus.gov/recommendation/improving-consistency-social-
security-disability-adjudications.
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the wisdom of the crowd. The results of the voting simulation can then be used to guide
decision-making or to help administrators identify deviant decisions for further review.

The article proceeds as follows. Section P reviews the evidence of inconsistency in adju-
dication as well as existing approaches to reducing it. Section B offers a conceptual account
of synthetic crowdsourcing and its potential uses. Section Y provides proof of concept with
an analysis of California Parole Board decisions. Section p addresses limitations. Section
concludes.

2 The Problem of Inconsistency

2.1 Evidence of Inconsistency

Researchers have documented stark disparities in the rates at which adjudicators grant asy-
lum to refugees (Ramji-Nogales, Andrew I Schoenholtz, and Philip G Schrag 2007), provide
social security disability benefits (Nakosteen and Zimmer 20144), decide whether to remove
children from parental custody (Nickerson 2007), and determine prison sentence lengths
(Brantingham [1985). In U.S. asylum cases, for example, research suggests at least 27% of
cases would be decided differently if they were randomly assigned to a different judge (Fis-
chman 2014h). At the appellate level, it is estimated that roughly half of asylum appeals
could have be decided differently had they been assigned to a different panel (Fischman
2014b).@ Daniel Ho (2017) showed that Washington state food safety inspection unit dis-
agreed in 60% of cases when assigned to evaluate the exact same establishments. Judges also
show low levels of inter-rater reliability in hypothetical sentencing decisions, with standard
deviations of 30% to 60% of the mean sentence length (Grunwald 2015).

Several recent studies have started to empirically explore inconsistencies within individual
decision-makers. Research suggests, for example, that an inmate’s chances of parole declines
precipitously the longer a judge works without a break (Danziger, Levav, and Avnaim-Pesso
2011). Asylum officers are up to 3.3% more likely to reject asylum if they granted asylum in
their previous case (Chen, Moskowitz, and Shue 2016) and 1.5% more likely to grant asylum
after their city’s NFL team won (Daniel Li Chen and Holger Spamann 2016).

These types of inter and intra-judge inconsistencies negatively affect the accuracy, pre-
dictability, fairness, and legitimacy of an adjudication system. The literature on the costs of
inconsistency is extensive, and we do not attempt to summarize it here. Instead, we simply
make what we think is the uncontroversial assumption that the outcome of a case should
not depend on factors that are unrelated to the merits of the case. For example, outcomes
should not depend on which judge is assigned to decide a case, whether that judge’s football
team won the night before, or what the judge ate for her proverbial breakfast. The synthetic
crowdsourcing approach we propose serves to reduce decision inconsistencies that result from
such factors.

41. Generally, these disparity studies leverage the fact that adjudication systems frequently make use of
random or as-if random assignment of cases to judges or administrators, allowing the researchers to attribute
the cause of disparities to differences in adjudicators’ preferences.
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2.2 Existing Solutions to Inconsistency

Scholars and administrators have proposed a variety of approaches to reducing inconsistency
in fact-intensive legal and administrative decision-making settings where the marginal benefit
of more rule-making is minor; all are accompanied by serious costs. One set of responses
aim to improve decision making by improving the decision-makers, either with professional
development training or new hiring. The notion is that better, or better trained, judges
and administrators will be more consistent (Legomsky 2007). Although the approach has
intuitive appeal, filling in the details is a difficult task. How do we identify and hire “better”
judges? What precisely should professional development programs work to develop, and
how should they develop it? Despite frequent efforts to improve hiring or offer training to
adjudicators, there is little to no evidence that such efforts in fact decrease inconsistency
among adjudicators (Legomsky 2007)).

Another approach to reducing inconsistency is to increase the number of judges who
participate in each decision. The notion is that larger decision units will decrease the variance
of any given decision, both by mechanically limiting the power of extremist judges and by
allowing for deliberation that can help prevent ill-considered decisions (Legomsky 2007). But
decision making in large groups can result in the amplification of errors, cascade effects, and
group polarization (Sunstein 2005). Furthermore, increasing the size of decision units has
substantial financial or labor costs: it requires either hiring more judges or increasing each
decision unit’s caseload.

Quotas have been proposed as a means to regulate decisions, but they represent a rel-
atively clumsy response to inconsistency. Mashaw ([1985) suggested, although ultimately
rejected, the idea of reducing disparities in social security disability decisions with a quota
system. "State agencies or individual disability examiners could be given a grant rate (say
35 percent +/- 5 percent) for each time period (say a month),” he wrote, "awards would
then be made on a comparative or relative basis and award rate disparities would virtually
disappear.” More recently, the Administrative Conference of the United States has recom-
mended that the Social Security Administration consider reviewing “decisions from judges
whose allowance rates are both well under and well above statistical average” (Krent and
Morris 2013). A similar principle underlies policies to punish decision-makers who consis-
tently deviate from the average grant rate or policies that seek to encourage consistency
by distributing information about peer grant rates (Legomsky 2007). While quotas might
succeed in reducing the overall disparities in decisions, they might still fail to reduce incon-
sistency in decisions for comparable cases. This would arise if, for example, decision-makers
grant the same percentage of cases but nonetheless grant claims in very different types of
cases (Fischman 2014h).

Decision matrices, such as the Federal Sentencing Guidelines, explicitly attempt to gen-
erate consistent decisions for comparable cases, but in practice, such formulas can fail to
account for the wide variety of events and circumstances that actually occur and thus result
in sub-optimal outcomes (Kaplow [1992). For example, the Federal Sentencing Guidelines,
developed in response to evidence of vast sentencing disparities, have since been criticized
on a number of grounds, with arguments between advocates and critics echoing the funda-
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mental rules vs. standards debates. The chief criticism is that the guidelines too crudely
aggregate: limiting judicial discretion comes at the price of too many inapposite sentences.

Within the criminal justice system, statistical forecasts of future dangerousness—risk
assessment instruments—are increasingly being used to help judges make less biased, more
efficient, and more consistent decisions in contexts including parole, bail, and sentencing.
Opponents argue they are opaque, unreliable, and unconstitutional (Starr 2014). Most im-
portantly for the purposes of the current discussion, such tools are restricted to context in
which an important outcome proxy for a correct or good decision is measurable (e.g., future
offending). Thus, these statistical prediction instruments are, at a minimum, limited as ap-
proach. Many legal and administrative decision-making contexts do not have an identifiable
proxy for whether a decision is correct or good.

Finally, peer review represents a recent and promising proposal to limit disparities and
improve decisions. Ho (2017) recently published the results of the first and only randomized
control trial of peer review in a government agency, randomizing food safety inspectors
into weekly peer review inspections and meetings. The study found that the intervention
increased the accuracy and decreased the variability of inspections. The greatest drawback
to a peer review approach is its financial cost.

3 Synthetic Crowdsourcing

Synthetic crowdsourcing uses machine learning to generate predictions of case decisions.
These predictions can be used to help decision-makers make better and more consistent de-
cisions in the future or can be employed as a tool for administrative monitoring and review.
By aggregating judgments across and within decision-makers, synthetic crowdsourcing can-
cels out arbitrary and contingent factors, leverages the wisdom of the crowd, and minimizes
inter- and intra-judge inconsistency.2d Synthetic crowdsourcing extends the core benefits of
en banc decision making to the full population of cases while avoiding the dangers of group
think. Similar to traditional matrix-based decision-making tools such as the Federal Sen-
tencing Guidelines, synthetic crowdsourcing uses statistical patterns in historical decisions
to guide future decisions. But unlike traditional approaches, it leverages machine learning
to optimally tailor that guidance, allowing for substantial improvements in the consistency
and overall quality of decision making.

Synthetic crowdsourcing can be understood as an effort to simulate a world in which
each judge casts multiple independent votes in every case. In what follows, we explain how
to best pursue that simulation effort and suggest how the results from the simulation can
actually be implemented to guide and improve decision-making systems. In Section @, we
provide proof of concept using a predictive model of the California Board of Parole Hearings
parole suitability decisions.

42. We present the case for the guiding dichotomous outcomes, but most of the framework could be straight-
forwadly extended to continuous outcomes.
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3.1 The Simulation Goal

In an effort to reduce inconsistency, our goal is to remove the influence of factors that are ran-
domly or as-if randomly assigned by adjudication systems. A hypothetical but normatively
appealing solution for mitigating the influence of (as-if) random factors is a world where,
in each case, each judge independently casts multiple independent votes under a variety of
conditions (e.g. after her football team won, after her football team lost, in the morning, in
the afternoon etc.). Case outcomes would then be determined by the voting results. Such a
world is normatively appealing for two reasons. First, it allows us to remain agnostic with
respect to the value of different judges’ decisions. We avoid potentially contentious debates
and instead rely on the appeal of democratic principles. Second, Condorcet’s Jury Theo-
rem, the classic theorem of political science and antecedent to the “wisdom of the crowds,”
provides normative grounding for this approach: as long as decision-makers are, on aver-
age, making good decisions, then a world with more independent votes will generate better
decisions (Austen-Smith and Banks 1996).

Of course, in reality, such a hypothetical world is unobtainable. Requiring all judges to
participate in every case multiple times is prohibitively expensive and—if independence of
votes is desired—pragmatically impossible. But we can statistically simulate such a world.

Before turning to the simulation technique we make a final note regarding the limitation
of this simulation goal. It targets the elimination of factors that are, by practice of an
adjudication system, assigned on a random or as-if random basis. But the simulation target
does not directly address problems of systematic biases. To be sure, decisions should also
not depend on race, class, gender or other morally arbitrary factors. The reason for our
focus on randomly assigned factors is ultimately technical:_their (as-if) random assignment
renders them far easier to target. As we describe in Section f, synthetic crowdsourcing can be
potentially be supplemented to address problems of systemic bias. Nonetheless, its primary
purpose is to eliminate the influence of random factors that generate inconsistencies within
and across judges.

3.2 The Simulation Technique

We recommend simulating the targeted world with a predictive model of decision making that
excludes variables that are randomly or as-if randomly distributed among cases, includes all
available variables that may be non-trivially related (statistically speaking) to the merits of
a case, and is built with machine learning methods. Our recommendation is in conflict with
the existing but limited literature on the use of decision predictive models to guide decision
making. “Judgmental bootstrapping,” as its proponents refer to it, “involves developing
a model of an expert by regressing his forecasts against the information that he used” in
order to “infer the rules that the expert is using” (Armstrong 2006). This approach is often
effective. For example, bootstrapping models have been shown to be better at predicting
loan defaults (Abdel-Khalik and El-Sheshai 1980) and forecasting the number of advertising

43. Note also that the inconsistencies may be disparately distributed, so even without supplementation to
directly address bias, synthetic crodwsourcing can ameliorate differential treatment.
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pages a magazine will sell (Ashton, Ashton, and Davis 1994). But in contexts where decision-
making requires nuanced judgments, its shortcomings can be stark. Most importantly, often
we have no ability to measure much of the information that judges use in a complex decision
task. Without that information, judgmental bootstrapping will, along with removing noise,
remove much of the signal that it is designed to capture.

Machine learning offers several advantages over traditional regression-based methods.
Machine learning algorithms can search over a rich set of variables and functional forms,
thus capturing more signal in the data. And machine learning minimizes prediction error
by using the data itself to decide how to make the bias-variance trade-off. Importantly,
we dispense with any restriction that the model include only variables actually used by the
decision-makers, and we instead exclude only the noise variables described above—those
variables that we have good reason to believe are statistically unrelated to the actual merits
of a case. These variables may include the judge to which one happens to be assigned,
the results of the immediately preceding cases, the time of day, whether the judge’s football
team won the night before, the weather, and the judge’s mood. By excluding these variables,
predictions are averaged over the arbitrary circumstances that often influence case outcomes.

Our recommendation to include all variables that may be statistically related to the
merits of a case is likely to be met with skepticism insofar as it implies the use of morally and
constitutionally suspect variables like race and gender. It is now well understood, however,
that the problem of algorithm-embedded bias cannot be resolved by simply excluding the
variable of concern (e.g., race) from the predictive model. This is because other variables
may serve as proxies for the bias-inducing variable, and the model may then simply capture
biases through those proxies. Attempting to eliminate those proxies is also unlikely to be
successful, as ostensibly benign variables might interact in complex ways that are difficult to
identify. We discuss more promising approaches to ameliorating systematic bias in Section p|.

Building a model with machine learning rather than traditional linear regression meth-
ods not only allows for better signal capture, but it also has the benefit of separating the
predictive task from controversial normative choices. The traditional regression approach
puts modeling choices in the hands of the analyst. Different statistical models may gen-
erate different predictions and associated recommendations. An analyst may, intentionally
or not, choose a model that generates recommendations in accordance with his or her own
normative preferences. A machine learning approach lets the data determine which model
or combination of models generates the best predictions.

3.3 Evaluating the Simulation Results

Responsibly employing the simulation results of a synthetic crowdsourcing model requires
an assessment of the simulation’s success. We identify three key dimensions along which
the simulation results can be evaluated: calibration, discrimination, and residual system
noise. The first two are standard performance metrics; the third is unique to synthetic
crowdsourcing.

Like any classification model, a synthetic crowdsourcing model should be well calibrated.
That is, a good model will demonstrate agreement between observed outcomes and predic-
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tions: X% of cases with a predicted probability of .X should have a positive outcome.

Unlike other classification models, a synthetic crowdsourcing model cannot be adequately
assessed with standard measures of discrimination. Standard measures of discrimination (i.e.,
how well a model separates positive and negative outcomes) will systematically understate
the success of a synthetic crowdsourcing model.22 As applied to typical classification models,
any failure to discriminate is a failure of the model: ideally, all predicted probabilities are
either a 1 or a 0. The same is not true of synthetic crowdsourcing models. Consider, for
example, a set of cases with predicted probabilities of .75. When generated from a synthetic
crowdsourcing model, the correct interpretation of those probabilities is somewhere between
two ends of a spectrum. On one end of the spectrum, each case has a 75% chance of a
positive outcome, and the actual outcome is determined by factors excluded from the model,
such as the judge randomly assigned to hear the case or the mood of the judge. On the other
end of the spectrum, 75% of the cases would always end in a positive outcome and 25%
would always end in a negative outcome regardless of random factors. Standard measures of
discrimination reflect the latter interpretation, an interpretation that is only correct if the
law is perfectly applied without judicial idiosyncrasy.

We propose two methods for assessing the extent to which standard metrics understate
discriminatory power due to residual system noise. The first uses alternative markers of case
merits such as the results of appellate review, recidivism in the context of criminal justice
decisions, or subsequent employment in the case of social security disability decisions. If
residual system noise is high, then there should be a strong positive relationship between
predicted probabilities and case merits regardless of the actual decision outcome. In other
words, a case with a high (low) predicted probability should reflect the fact that most
judges, most of the time, would decide the case positively (negatively). Cases with high
(low) predicted probabilities that nonetheless result in a negative (positive) outcome should
be products of residual systemic noise, such as an extremist judge or a judge in an extreme
mood. Thus, within the subsets of positively and negatively decided cases, one would expect
positive correlations between predicted probabilities and markers of merits. On the other
hand, if residual systemic noise is low, no such correlations would be expected: a high
probability case that nonetheless results in a negative outcome is not an judge-induced
aberration—it is just a consensus decision that the model failed to identify.

44. A common metric of discrimination is the area under the receiver operating curve (AUC), which provides
the probability that a randomly selected case with a positive result (a hearing that ended in a grant) would
have a higher predicted probability than a randomly selected case with a negative result (a hearing that
ended in a denial). An area of 1 indicates a model that can perfectly discriminate between grants and denials;
a model that is no better than random would score a 0.5.

45. Our suggestion to use alternative markers of case merits raises the question: why not directly use those
markers of case merits to build a model? The reason is two-fold. First, in most contexts, the ability to
observe a marker of case merit is conditional on the outcome. For example, a researcher studying parole can
only observe recidivism if an inmate is released from prison. It is precarious to apply a model to the entire
population (e.g., paroled and not paroled inmates) if the model was built only on a subset of the population
(e.g., paroled inmates) that may be observably different than the entire population. There have been recent
advances against this problem, but it remains a substantial hurdle (Lakkaraju et al. 2017). Second, the
alternative marker of merit may be a lower quality marker than judicial consensus (the concept targeted by
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Absent an alternative marker of case merits, a second approach is to directly measure
the residual system noise (i.e., the amount of intra and inter-judge disagreement) and to
use those measurements to reduce the amount of variation that a synthetic crowdsourcing
model is designed to explain. For example, if we know 20% of the decision-making is due
to as-if randomly assigned factors excluded from the model, we should only expect a perfect
synthetic crowdsourcing model to explain 80% of the decision variance. This approach is
more difficult than using external markers of case merits, as there are technical impediments
to the measurement of noise. But recent research shows how machine learning can improve
measurement of noise in adjudication systems (Copus and Hubert 2017).

3.4 Employing the Simulation Results

Synthetic crowdsourcing can be used as a tool for targeting review of decisions or as a guide
for making initial decisions. Implementation is simplest in the case of review. Synthetic
crowdsourcing predictions can be used to target review resources towards cases that are
most likely to be a product of deviations from judicial consensus. As resources permit,
those cases with the highest predicted probabilities of a positive outcome that are decided
negatively, and those cases with the lowest predicted probabilities that are decided positively,
can be flagged for secondary or appellate review.

Employing the simulation results to help guide the primary decision demands more in-
volved implementation choices. The predicted probabilities from a synthetic crowdsourcing
model should generally be binned and converted to simple recommendations that judges can
easily make sense of an apply; a raw predicted probability is likely to be used differently by
different judges, doing little to address the problem of inconsistency that synthetic crowd-
sourcing is designed to address. For example, in the parole context, we might create three
bins: cases with a low peer assessment (.0-.29 probability of parole release), moderate peer
assessment (.30-.70 probability), and high peer assessment (.71-1) probability).@ This bin-
ning parallels standard risk assessment instruments in the criminal justice system: predicted
probabilities of re-offending are binned to indicate offender risk level (e.g. low, medium,
high), and risk levels are associated with recommended judicial decisions (e.g., release, use
discretion, detain).

4 Proof of Concept: California Board of Parole Hear-
ings Release Decisions

In the following section, we build a decision predictive model of California Board of Pa-
role Hearings decisions to demonstrate the potential of synthetic crowdsourcing to improve
decision making.

synthetic crowdsourcing). Some scholars, for example, have argued that recidivism is a poor marker of merit
in the criminal justice system because it only captures the incapacitation benefits of imprisonment (Starr
2014).

46. Finer bins yield more precise guidance, but they also tax judicial competence to follow that guidance.
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Through a public records request we obtained the population of California Board of
Parole Hearings (the “Board”) suitability hearing transcripts conducted between 2011 - 2014.
The dataset was built using Python regular expressions to pull key information from each
hearing transcript. The extracted variables used in the decision predictive algorithm include
the commitment crime, the psychological risk assessment score as well as the identity of the
evaluating psychologist, the minimum eligible parole date, the inmate’s lawyer, the district
attorney if present at the hearing, the number of victims present at the hearing, whether or
not an interpreter was present at the hearing, the results of any previous suitability hearings,
the inmate’s date of entry into prison, and information concerning how many times the
inmate has appeared before the Board, and the inmate’s prison.

As discussed in Section B, in constructing the synthetic crowdsourcing model, we exclude
variables that are, as a matter of system design, statistically unrelated to the merits of a
case. That is, we exclude variables that are as-if randomly assigned. For example, we do
not include the identity of the parole commissioners assigned to decide a case, the time of
day a hearing is scheduled, or whether a judge’s football team won the night before. Again,
these exclusions from the model are an essential feature of synthetic crowdsourcing, which
is designed to eliminate the arbitrary elements of the decision-making system.

We construct our predictive algorithm using Super Learner, a generalized stacking en-
semble learning technique in which the output from a set of diverse base learning algorithms
is combined via a meta-learning algorithm. The Super Learner has been theoretically proven
to represent an asymptotically optimal system for combining the base-level predictions via
cross-validated risk minimization (Laan, Polley, and Hubbard 2007b), with “risk” defined
by a user-specified objective function, such as minimizing mean squared error or maximizing
the area under the receiver operating characteristic curve.

Super Learner takes as input any number of user-supplied algorithms (e.g., a paramet-
ric linear regression, random forest, lasso, etc) and combines those models’ predictions to
generate "super” predictions. Specifically, the Super Learner proceeds in two steps: first,
validation-set predictions are generated for each candidate model; second, the true outcome
is regressed on the candidate models’ predictions to assign each model’s predictions a weight.

4.1 Evaluating The Simulation Results

We evaluate the simulation along the key dimensions identified in Section : calibration,
discrimination, and residual systemic noise.

4.1.1 Calibration and Discrimination

Our model correctly predicts validation-set 2011-2014 suitability hearing decisions with 79%
accuracy (the grant rate in this period was 28%). The cross-validated area under the ROC
curve (AUC) is .80, meaning that, given any random pair of decisions, one a grant and one

47. We also extracted information on a limited number of 'noise’ variables - variables that are as-if randomly
assigned - including the presiding and deputy commissioners, the date and time of the hearing, and the results
of the immediately preceding hearings.
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a denial, the model has an 80% success rate in ranking the grant higher than the denial in
terms of predicted probabilities. Figure [L] graphically portrays the model’s discriminatory
power and calibration. The figure reveals the wide distribution of predicted probabilities
provided by the model. It is particularly effective at identifying hearings that have a very
low probability of resulting in a grant. The figure also shows that the model is well calibrated,
indicating the actual proportion of hearings that resulted in a grant or denial closely tracks
the model’s (validation-set) predicted probabilities.

Figure 10: Validation Set Parole Predictions: 2011 - 2014
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4.1.2 Evidence of Residual System Noise

Again, standard measures of discrimination understate the performance of synthetic crowd-
sourcing because the model is designed to exclude variation from as-if randomly assigned
factors. We therefore want assurance that the distance between the predicted probabilities
and zero or one reflect residual system noise rather than a mere lack of predictive power.
As described in section @, if there is substantial residual system noise, one should
expect a positive correlation between markers of case merit and a synthetic crowdsourcing
model’s predicted probabilities of a positive case outcome. In California, the Governor has
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the ability to review and reverse any parole granted to an inmate convicted of murder, and
we use the results of the California Governor’s review process as an external marker of case
merit. Insofar as the model is merely failing to predict collective decision-making, we should
expect no relationship between predicted probabilities and reversal rates. If, on the other
hand, the model is excluding system noise, we would expect the Governor to reverse low
probability grants more often than high probability grants as he corrects for commissioner
deviations. Some readers might object that the Governor’s assessment of a case is a poor
marker of case merit. Perhaps, for example, the Governor is more concerned with political
considerations than with assessing an inmate’s chances of recidivating. But as long as the
Governor’s decisions are merely unrelated to merit rather than negatively correlated with it,
the disconnect between actual merit and a marker of merit would only make it more difficult
to find evidence of residual system noise.

The relationship between the Governor’s reversal rate and predicted probabilities demon-
strates that the model is excluding and smoothing over a substantial amount of residual
system noise. Figure shows relationship between validation set predicted probabilities
and the Governor’s reversal rate.®2 Cases with low predicted probabilities are significantly
more likely to be reversed by the Governor, which is the expected relationship when there
is substantial residual system noise.

The calibration and discrimination metrics, along with evidence of residual system noise,
strongly suggest that the model could be used to help the Board make better decisions.
Importantly, our analysis is necessarily limited by the data we have access to: the variables
that we could accurately extract from parole hearing transcripts. Were administrators of the
parole system to actually implement a synthetic crowdsourcing model, it could be built with
the more expansive set of variables maintained by the California Department of Corrections
and Rehabilitation (CDCR) and the Board of Parole Hearings, thereby increasing the signal
to noise ratio even further.

4.2 Implementation

A synthetic crowdsourcing model could improve both of the review processes currently em-
ployed in the parole system: the Governor reviews of all parole grants (for inmates convicted
of murder), and the Board provides secondary review of cases when the assigned commission-
ers cannot come to a consensus. While Governor review may correct for unusual decisions
to grant parole, it does nothing to correct for unusual decisions to deny parole. The gover-
nor’s power to review could be extended to cases where parole was denied but the synthetic
crowdsourcing model generated a high probability of a grant. The Board’s internal review
practices could also be improved upon with synthetic crowdsourcing. Relying merely on

48. This is a simple extension of the well known fact that correlation coefficients are attenuated by random
measurement error.

49. As a proxy for governor reversals, we denote a case as reversed if an inmate’s parole is granted but
the inmate reappears in another hearing at a later date. In order to avoid problems of potentially biased
missingness, we restrict the analysis to 2011 and 2012 hearings so that there is sufficient passage of time for
inmates to show up in the dataset again if their parole is reversed.
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Figure 11
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explicit disagreement between commissioners to flag cases will miss the great majority of
controversial decisions: judges explicitly disagree in less than 0.1% of cases. But a simple
regression of the outcome on commissioner with prison-year fixed effects shows that implicit
disagreement is significantly higher: among the 10 commissioners with the most decisions
(> 600), grant rates differ by as much as 15% (p <.001). A synthetic crowdsourcing model
can help regulate these sorts of controversial decisions by flagging low-probability grants and
high-probability denials for secondary review.

Synthetic crowdsourcing could also help guide the primary parole decisions made by the
Board of Parole Hearings commissioners. Such an implementation would require judgments
along two important dimensions. First, an algorithmic recommendation could be more or
less binding. For example, the algorithmic prediction could be offered as a mere recom-
mendation to commissioners, serving as an anchor, but with commissioners free to ignore
it. Alternatively, and more prescriptively, the prediction could be used as a third vote
on a two-member panel, such that a single decision maker’s agreement with the algorithm
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would be sufficient to decide the outcome. Second, the algorithmic recommendation could
be more or less granular in its presentation of the model’s predicted probabilities. It could,
for example, be presented as a binary recommendation: if the predicted probability of an
inmate’s parole is above a specified threshold, the algorithm recommends parole. Or the
predicted probabilities may be binned into three categories - low, medium, and high proba-
bility of release - with corresponding recommendations of denial for low, release for high, and
discretion for medium. Regardless of the exact implementation, the notion is that the com-
missioner decisions would remain discretionary but would coincide more frequently with the
algorithm—and the collective judgment of commissioners—than they would in the absence
of the implementation.

5 Limitations

We now move from the parole example to discuss general limitations of synthetic crowd-
sourcing. We focus the discussion on synthetic crowdsourcing as tool for guiding primary
decisions, where the issues are most pronounced. The concerns are substantially mitigated
when synthetic crowdsourcing is simply used to target review of inconsistent decisions.

5.1 Biased Decision-Making

As noted in Section E, synthetic crowdsourcing can help to ameliorate inter and intra-judge
inconsistency, but, on its own, it does not address systematic biases. If judges, on average,
discriminate against certain types of litigants, that bias can be embedded in the model.
Racial bias is perhaps the most obvious concern, particularly in the criminal justice system.
If, for example, parole commissioners systematically release black inmates at a lower rate than
their otherwise identical white counterparts, black inmates will, unfairly, have systematically
lower predicted probabilities of release. Assuming synthetic crowdsourcing is used as a
decision aid, with binned probabilities associated with release recommendations, this will
impact inmates whose predicted probabilities of release are right above or below a decision
threshold.

Embedded biases can be addressed in two ways. First, the problem can be assessed empir-
ically to at least ensure that synthetic crowdsourcing is not inflating bias. That is, before im-
plementation, recent decisions can be compared to what the synthetic crowdsourcing model
would have recommended to assess whether relevant disparities are widened under the syn-
thetically crowdsourced recommendations. If indeed synthetically crowdsourced predictions
would increase disparities, this can be addressed by ad]j ustin%group—speciﬁc recommendation
bins so as to maintain the status quo outcome distribution.

50. A substantial literature assessing discrimination in criminal justice decision making has generated mixed
evidence (Mechoulan and Sahuguet 2015), but concern is still serious and widespread.

51. One legal concern with this approach is that it has at least surface-level similarities to the type of
mechanical race-based adjustments that have been found unconstitutional in the higher education context.
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A second approach, if there is measurable bias in decisions, is to explicitly adjust the
synthetically crowdsourced predictions to correct for the bias. That is, estimates of the causal
impact of inmate race on decision-making can be used to adjust the algorithm’s output. For
example, if the estimate of disparate treatment of black offenders is a 10% reduction in parole
chances, this method would add .10 to black offenders’ predicted probabilities. The challenge
of explicitly adjusting the algorithmic output is the challenge of estimating the causal effect of
race on decision-making. While estimating discrimination is empirically challenging, recent
advances in data collection and estimation techniques are allowing for more plausible causal
inference with observational data. Methods such as propensity score matching (Hirano,
Imbens, and Ridder 2003; Abadie and Imbens 2006) and those that combine treatment
modeling with outcome modeling (Rubin 1979; Van der Laan and Robins 2003) provide extra
traction in observational studies. These advances in research design are increasingly being
coupled with non-parametric, data-adaptive estimation techniques, such as genetic matching
(Diamond and Sekhon 2013) and targeted learning with Super Learner(Van der Laan and
Rose 2011)). New design and estimation techniques have the benefit of separating the research
design from the estimation procedure so as to guard against specification searching. While
data-adaptive estimation techniques cannot eliminate the need for assessing which variables
must be controlled for, they can at least largely eliminate the debate over how variables
are controlled for, allowing the data to determine which models are best.These advances
in data, design and estimation are unlikely to ease all concerns of omitted variable bias,
but the threshold of certainty required for the advancement of scientific knowledge should
often be relaxed in policy world contexts that require action. Academics enjoy the luxury of
waiting around or choosing questions based on the availability of a strong quasi-experimental
research design, but the world sometimes demands a best answer. One might proceed even
without robust causal estimates if the biases are particularly important to address.

5.2 Status Quo Bias

A second consideration is that synthetic crowdsourcing is inherently backward looking: using
statistical predictions of past decisions to inform future decisions tethers future decisions to
the status quo. This tethering to the past may be problematic if past decisions are or
become incompatible with current values.®4 For example, in the California parole context,
an algorithm built in the early 2000s would be modeled on an era in which fewer than 5%
of inmates were released from prison (the current rate of release is over 30%). On the other
hand, in some contexts, tying future decisions to past decisions may might offer an appealing
temporal consistency, a version of legal precedent or institutional memory. Furthermore,
synthetic crowdsourcing need not favor the status quo: it can be used quickly update a

52. The tethering of past to future is not complete, as synthetic crowdsourcing models can automatically
be updated as values shift. Insofar as judges express new values by deviating from the synthetic crowdsourc-
ing recommendations, updated models will incorporate those deviations. The updating process can also be
accelerated by selecting some random subset of cases to be decided without the aid of the synthetic crowd-
sourcing model. Departures from recommendations could alert administrators to a malfunctioning model
and be used to update the model.
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system in accordance with new values. For example, adjusting the release recommendation
thresholds or making a racial bias correction to the algorithmic output could effect change
that might otherwise come only with slow shifts in judicial attitudes.

5.3 Public Access and Litigant Adaptation

Recent litigation has highlighted the tension between proprietary rights to statistical algo-
rithms used in the public arena and the public’s ability to inspect those algorithms. In 2017,
the US Supreme Court denied a petition for certiorari in Loomis v. Wisconsin, a case in
which Loomis argued his due process rights were violated because the sentencing court relied
on the Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
criminal-risk instrument. The proprietary nature of COMPAS had prevented Loomis from
challenging the algorithm’s accuracy and scientific validity.

The focus on the tension between public access and proprietary rights has overshadowed
what might be a more fundamental tension: given public access, parties can adapt to models
in ways that undermine model accuracy. The problem of litigant adaptation comes in two
forms. First, users of the legal system may be able to strategically alter their “variables”
so as to obtain more favorable algorithmic recommendations. Consider, for example, an
inmate’s attorney in the California parole system. Some private attorneys are moderately
associated with higher chances of parole. While that may be in part causal, some of the
association is likely due to correlation with unobservables: those more eligible for release
may also be more likely to hire a private attorney. If inmates know that an algorithm will
give them a better recommendation if they hire certain attorneys, they may be more likely to
do so, artificially boosting their release recommendations. Second, public access could result
in parties entering adjudication systems that they would not have entered absent knowledge
of the algorithm. This can create a disjunct between the population targeted by a model
and the population to which it is applied. Consider an inmate who, absent an algorithm,
would have chosen to defer his parole hearing because of his correct belief that parole com-
missioners would have judged him unsuitable for release. Despite the inmate’s weak case
for parole, he may share some characteristics—characteristic used by the algorithm—with
inmates who have a high probability of release. Knowledge of his algorithmic recommenda-
tion might convince the inmate to proceed with his scheduled parole hearing. In such a case,
the synthetic crowdsourcing model would incorrectly inform commissioners that their peers
would generally recommend parole.

Technical solutions to the problem of litigant adaptation can obviate the need for re-
stricting public access.2d One obvious means of avoiding variable manipulation is to exclude
variables that litigants can inexpensively manipulate. The drawback of this approach is
that such variables may be highly predictive, so excluding them could substantially reduce

53. Restricting public access is unlikely to be a long-term solution to the problem of litigant adaptation.
Even if private companies or system administrators could be trusted to secretly develop accurate and well-
functioning algorithms, maintaining that secrecy is likely to prove difficult. In a world of growing statistical
and coding literacy, open source statistical software, and web-scraped data, efforts to reverse engineer models
are likely to be plentiful.
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the accuracy of models. An approach that helps to circumvent the strategic entry concern
is to couple the decision recommendations with statistical models of entry. This strategy
will only work, however, if data is available for both the population of actual litigants and
potential litigants, and requires the ratio of potential litigants to actual litigants not be so
high as to make identifying new types of entrants statistically unfeasible. A third solution,
which addresses both strategic manipulation of variables and strategic entry into adjudica-
tion system, is to employ multiple output-equivalent models that use heterogeneous variables.
Where data is aggressively recorded, it is likely that many variables and/or interactions of
variables serve as reliable proxies for other variables/interactions. In this case, one set of
variables and interactions can be substituted for another set without substantial changes
to model predictions. By either randomly selecting one of the models or averaging over all
models, this multiple-model strategy decreases litigant incentives to adapt. For example,
if there are two models, the expected benefit from strategic manipulation of a variable is
reduced by 50%. The incentive to strategically enter the system is also reduced: to obtain
the full benefit of a excessively high recommendation with multiple models, a non-entrant
must match entrants on the variables used in all of the models rather than in just one.

5.4 The Black Box Problem & Procedural Fairness

Even allowing public access to algorithms cannot entirely solve the problem of transparency.
Machine learning as a statistical technique is inherently ”black box”—we can see the input
and the output, but what happens in between is opaque. As machine learning is used in a
growing number of real world applications from medicine to finance to public administration
of criminal justice, health, and welfare, there is growing debate around the extent to which
this black-box character represents a problem. We cannot resolve the general debate, and
there are of course trade-offs between the superior predictive performance offered by ma-
chine learning and the relative opacity of the procedure. But for the purposes of considering
synthetic crowdsourcing, we simply note that we are not advocating for automated decision
making. Rather, we suggest machine learning predictions can assist human decisions. Syn-
thetic crowdsourcing aims to simply nudge judges toward consensus to help mitigate the
influence of mood and other judicial idiosyncrasies.

The black box nature of machine learning intensifies a related concern regarding the use
of algorithms in administrative decision making: the idea that procedural fairness requires
the ability to understand and engage with a decision. A large body of research in psychology
shows that people care greatly about the process by which outcomes are reached, even if the
result is an outcome they find unfavorable (Lind and Tyler 1988). Insofar as people think
equitable and legitimate decisions are those in which each person is treated individually,
an algorithm-assisted approach, particular one employing machine learning, may violate this
sense of procedural fairness. Here too we underscore that employing synthetic crowdsourcing
by no means implies replacing humans with machine. Further, it is not self-evident that
fairness intuitions would, or at least should, be in greater conflict with an algorithm-assisted
process than they are in a system where the idiosyncrasies or mood of a particular judge can
dramatically affect the outcome of a case.
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6 Conclusion

In this paper we have presented a powerful tool for reducing judge-to-judge and within-judge
inconsistencies in decision making. By excluding variables that are statistically uncorrelated
with the merits of a case (e.g., the identity of randomly assigned judges or whether a judge’s
football team won the night before) and aggregating judgments across and within decision
makers, synthetic crowdsourcing decision models can cancel out arbitrary and contingent
factors, smooth over sources of inconsistency, and capture the "wisdom of the crowd.” The
results of the voting simulation can then be used to guide future decision making or to flag
deviant decisions for further review.

73



References

Abadie, Alberto, and Guido W. Imbens. 2006. “Large Sample Properties of Matching Esti-
mators for Average Treatment Effects.” 01383, econometrica 74 (1): 235-267. Accessed
May 22, 2016. http://onlinelibrary.wiley.com/doi/10.1111/5.1468-0262.2006.
00655 .x/abstract.

Abdel-Khalik, A. Rashad, and Kamal M. El-Sheshai. 1980. “Information Choice and Utiliza-
tion in an Experiment on Default Prediction.” 00120, Journal of Accounting Research:
325-342. Accessed October 7, 2015. http://www. jstor.org/stable/2490581.

Abrams, David, Marianne Bertrand, and Sendhil Mullainathan. 2012. “Do Judges Vary in
Their Treatment of Race?” 00113, Journal of Legal Studies 41 (2): 347-383. Accessed
October 7, 2015. http: //papers . ssrn. com/sol3/Papers . cfm?abstract _id=
1800840.

Alameda County Grand Jury. 2011. 2010-2011 Alameda County Grand Jury Final Report.
Technical report. http://www.acgov.org/grandjury/final2010-2011. pdf.

Alschuler, Albert W. 1991. “The failure of sentencing guidelines: A plea for less aggregation.”
The University of Chicago Law Review 58 (3): 901-951.

Anderson, James M., Jeffrey R. Kling, and Kate Stith. 1999. “Measuring Interjudge Sen-
tencing Disparity: Before and After the Federal Sentencing Guidelines.” Journal of Law
and Economics 42 (S1): 271-308.

Armstrong, J. Scott. 2006. “Findings from Evidence-Based Forecasting: Methods for Re-
ducing Forecast Error.”” 00148, International Journal of Forecasting 22 (3): 583-598.
Accessed October 5, 2015. http://www.sciencedirect.com/science/article/pii/
S50169207006000537.

Ashton, Alison Hubbard, Robert H. Ashton, and Mary N. Davis. 1994. “White-Collar Robotics:
Levering Managerial Decision Making.” 00009, California Management Review 37 (1):
83. Accessed October 7, 2015. http://search.proquest.com/openview/8590459ba
01563262a9¢3ad830c53746/17pg-origsite=gscholar.

Athey, Susan, and Guido W. Imbens. 2015. “Machine Learning Methods for Estimating
Heterogeneous Causal Effects.”

Austen-Smith, David, and Jeffrey S Banks. 1996. “Information aggregation, rationality, and
the Condorcet jury theorem.” American Political Science Review 90 (1): 34-45.

Austin, William, and Thomas A Williams III. 1977. “A survey of judges’ responses to sim-
ulated legal cases: Research note on sentencing disparity.” J. Crim. L. € Criminology
68:306.

74


http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0262.2006.00655.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0262.2006.00655.x/abstract
http://www.jstor.org/stable/2490581
http://papers.ssrn.com/sol3/Papers.cfm?abstract_id=1800840
http://papers.ssrn.com/sol3/Papers.cfm?abstract_id=1800840
http://www.acgov.org/grandjury/final2010-2011.pdf
http://www.sciencedirect.com/science/article/pii/S0169207006000537
http://www.sciencedirect.com/science/article/pii/S0169207006000537
http://search.proquest.com/openview/8590459ba0156326aa9c3ad830c53746/1?pq-origsite=gscholar
http://search.proquest.com/openview/8590459ba0156326aa9c3ad830c53746/1?pq-origsite=gscholar

Benitez-Silva, Hugo, Moshe Buchinsky, and John Rust. 2004. How large are the classification
errors in the social security disability award process? Technical report. National Bureau
of Economic Research.

Berk, Richard. 2012. Criminal Justice Forecasts of Risk: A Machine Learning Approach.
00021. Springer Science & Business Media. Accessed May 22, 2016. https://books. g
oogle.com/books?hl=en&lr=4id=Jr1b60r8YisC&oi=fnd&pg=PR3&dg=Richard+Berk+
(2012+machine+learning&ots=IuCe6dipsc&sig=CBHsKVxRWYVmFX4kxx8WOyFSyGO.

Boyd, Christina L., Lee Epstein, and Andrew D. Martin. 2010. “Untangling the Causal
Effects of Sex on Judging.” American Journal of Political Science 54 (2): 389-411.
doi:10.1111/3j.1540-5907.2010.00437 . x.

Brantingham, Patricia L. 1985. “Sentencing disparity: An analysis of judicial consistency.”
Journal of Quantitative Criminology 1 (3): 281-305.

Bullock, John G., Donald P. Green, and Shang E. Ha. 2010. “Yes, But What’s the Mecha-
nism? (Don’t Expect an Easy Answer).” Journal of Personality and Social Psychology
98 (4): 550-558.

Cameron, Charles M., and Lewis A. Kornhauser. 2010. “Modeling Collegial Courts (3):
Adjudication Equilibria.” http://ssrn.com/abstract=2153785.

Chen, D. L., and H. Spamann. 2014. This Morning’s Breakfast, Last Night’s Game: Detecting
Extraneous Factors in Judging. Technical report. 00009. Working paper, ETH Zurich.

Chen, Daniel L, Tobias J Moskowitz, and Kelly Shue. 2016. “Decision Making Under the
Gambler’s Fallacy: Evidence from Asylum Judges, Loan Officers, and Baseball Umpires.”
The Quarterly Journal of Economics 131 (3): 1181-1242.

Chen, Daniel Li, and Holger Spamann. 2016. “This Morning’s Breakfast, Last Night’s Game:
Detecting Extraneous Influences on Judging.” Social Science Research Network Working
Paper Series. The Impact of Value-Irrelevant Fvents on the Market Pricing of Earnings
News. Contemporary Accounting Research 33 (1): 172-203.

Cockburn, Tan, Samuel Kortum, and Scott Stern. 2003. “Are All Patent Examiners Equal?
Examiners, Patent Characteristics, and Litigation Outcomes.” In Patents in the Knowledge-
Based Economy, 19-53. Washington, DC: The National Academic Press.

Copus, Ryan, and Ryan Hubert. 2017. “Detecting Inconsistency in Governance.” Accessed
November 1, 2017. https://papers.ssrn.com/sol3/papers.cfm?abstract id=
2812914.

Danziger, Shai, Jonathan Levav, and Liora Avnaim-Pesso. 2011. “Extraneous Factors in
Judicial Decisions.” 00356, Proceedings of the National Academy of Sciences 108 (17):
6889-6892. Accessed October 5, 2015. http://www.pnas.org/content/108/17/6889.
short.

5


https://books.google.com/books?hl=en&lr=&id=Jrlb6Or8YisC&oi=fnd&pg=PR3&dq=Richard+Berk+(2012+machine+learning&ots=IuCe6dipsc&sig=CBHsKVxRWYVmFX4kxx8WOyFSyG0
https://books.google.com/books?hl=en&lr=&id=Jrlb6Or8YisC&oi=fnd&pg=PR3&dq=Richard+Berk+(2012+machine+learning&ots=IuCe6dipsc&sig=CBHsKVxRWYVmFX4kxx8WOyFSyG0
https://books.google.com/books?hl=en&lr=&id=Jrlb6Or8YisC&oi=fnd&pg=PR3&dq=Richard+Berk+(2012+machine+learning&ots=IuCe6dipsc&sig=CBHsKVxRWYVmFX4kxx8WOyFSyG0
http://dx.doi.org/10.1111/j.1540-5907.2010.00437.x
http://ssrn.com/abstract=2153785
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2812914
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2812914
http://www.pnas.org/content/108/17/6889.short
http://www.pnas.org/content/108/17/6889.short

Deutsch, Emily Woodward, and Michael Donohue. 2009. “The Role of New Media in the
Veterans Benefits Arena.” Veterans L. Rev 1:183.

Dhami, Mandeep K. 2005. “From Discretion to Disagreement: Explaining Disparities in
Judges’ Pretrial Decisions.” Behavioral Sciences and the Law 23 (3): 367-386.

Diamond, Alexis, and Jasjeet S. Sekhon. 2013. “Genetic Matching for Estimating Causal Ef-
fects: A General Multivariate Matching Method for Achieving Balance in Observational
Studies.” 00458, Review of Economics and Statistics 95 (3): 932-945. Accessed May 22,
2016. http://www.mitpressjournals.org/doi/abs/10.1162/REST _a_00318.

Dietvorst, Berkeley J, Joseph P Simmons, and Cade Massey. 2015. “Algorithm aversion:
People erroneously avoid algorithms after seeing them err.” Journal of Ezperimental
Psychology: General 144 (1): 114.

Edwards, Harry T., and Michael A. Livermore. 2009. “Pitfalls of Empirical Studies that
Attempt to Understand the Factors Affecting Appellate Decisionmaking.” Duke Law
Journal 58 (8): 1895-1989.

Epstein, Lee, William M. Landes, and Richard A. Posner. 2013. The Behavior of Federal
Judges: A Theoretical and Empirical Study of Rational Choice. Cambridge, MA: Harvard
University Press.

Farhang, Sean, and Gregory J. Wawro. 2004. “Institutional Dynamics on the U.S. Court
of Appeals: Minority Representation Under Panel Decision Making.” Journal of Law,
Economics, and Organization 20 (2): 299-330.

Fischman, Joshua B. 2014a. “Measuring Inconsistency, Indeterminacy, and Error in Adju-
dication.” American Law and Economics Review 16 (1): 40-85.

. 2014b. “Measuring Inconsistency, Indeterminacy, and Error in Adjudication.” 00011,
American law and economics review 16 (1): 40-85. Accessed October 5, 2015. http:
//aler.oxfordjournals.org/content/16/1/40.short.

Freeman, Katherine. 2016. “Algorithmic Injustice: How the Wisconsin Supreme Court Failed
To Protect Due Process Rights in State v. Loomis.” North Carolina Journal of Law and
Technology 18:75-180.

Grimmer, Justin, Solomon Messing, and Sean J. Westwood. 2016. “Estimating Heteroge-
neous Treatment Effects and the Effects of Heterogeneous Treatments with Ensemble
Methods.”

Grunwald, Ben. 2015. “Questioning Blackmun’s Thesis: Does Uniformity in Sentencing Entail
Unfairness?” Law & Society Review 49 (2): 499-534.

Halberstam, Yosh. 2015. “Trial and Error: Decision Reversal and Panel Size in State Courts.”
The Journal of Law, Economics, and Organization 32 (1): 94-118.

76


http://www.mitpressjournals.org/doi/abs/10.1162/REST_a_00318
http://aler.oxfordjournals.org/content/16/1/40.short
http://aler.oxfordjournals.org/content/16/1/40.short

Hansen, Ben B. 2008. “The Prognostic Analogue of the Propensity Score.” Biometrika 95
(2): 481-488.

Hausman, David. 2016. “Consistency and Administrative Review.”

Hirano, Keisuke, Guido W. Imbens, and Geert Ridder. 2003. “Efficient Estimation of Average
Treatment Effects Using the Estimated Propensity Score.” 01273, Econometrica 71 (4):
1161-1189. Accessed May 22, 2016. http://onlinelibrary.wiley.com/doi/10.
1111/1468-0262.00442/abstract.

Ho, Daniel E. 2017. “Does Peer Review Work? An Experiment of Experimentalism.” Stanford
Law Review 69:1-119.

Ho, Daniel E. 2017. “Does Peer Review Work: An Experiment of Experimentalism.” Stan.
L. Rev. 69:1.

Holland, Paul W. 1986. “Statistics and Causal Inference.” Journal of the American Statistical
Association 81 (396): 945-960. doi:10.2307/2289064.

Kaplow, Louis. 1992. “Rules versus standards: An economic analysis.” Duke Lj 42:557.

Kastellec, Jonathan P. 2013. “Racial Diversity and Judicial Influence on Appellate Courts.”
American Journal of Political Science 57 (1): 167-183. doi:10.1111/5.1540-5907 .
2012.00618.x.

Krent, Harold J, and Scott Morris. 2013. “Achieving Greater Consistency in Social Secu-
rity Disability Adjudication: An Empirical Study and Suggested Reforms.” In Admin-
istrative Conference of the United States (April 3). Awailable at https://www. acus.
gov/sites/default /files /documents/Achieving__Greater__Consistency_Fin al_Report_4-
3-2013 _clean. pdf.

La Porta, Rafael, Florencio Lopez-de-Silanes, Andrei Shleifer, and Robert Vishny. 1999. “The
Quality of Government.” Journal of Law, Economics, and Organization 15 (1): 222-279.

Laan, Mark J. van der, Eric C. Polley, and Alan E. Hubbard. 2007a. “Super Learner.” http:
//biostats.bepress.com/ucbbiostat/paper222/.

. 2007b. “Super Learner.” 00267, Statistical applications in genetics and molecular
biology 6 (1). Accessed October 5, 2015. http://www.degruyter.com/view/j/sagmb.
2007.6.1/sagmb.2007.6.1.1309/sagmb.2007.6.1.1309.xml.

Lakkaraju, Himabindu, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan.
2017. “The Selective Labels Problem: Evaluating Algorithmic Predictions in the Pres-
ence of Unobservables.” In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 275-284. ACM.

Landa, Dimitri, and Jeffrey R. Lax. 2009. “Legal Doctrine on Collegial Courts.” Journal of
Politics 71 (3): 946-963.

7


http://onlinelibrary.wiley.com/doi/10.1111/1468-0262.00442/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1468-0262.00442/abstract
http://dx.doi.org/10.2307/2289064
http://dx.doi.org/10.1111/j.1540-5907.2012.00618.x
http://dx.doi.org/10.1111/j.1540-5907.2012.00618.x
http://biostats.bepress.com/ucbbiostat/paper222/
http://biostats.bepress.com/ucbbiostat/paper222/
http://www.degruyter.com/view/j/sagmb.2007.6.1/sagmb.2007.6.1.1309/sagmb.2007.6.1.1309.xml
http://www.degruyter.com/view/j/sagmb.2007.6.1/sagmb.2007.6.1.1309/sagmb.2007.6.1.1309.xml

Lax, Jeffrey R. 2011. “The New Judicial Politics of Legal Doctrine.” Annual Review of Po-
litical Science 14:131-157. doi:10.1146/annurev.polisci.042108.134842.

Legomsky, Stephen H. 2007. “Learning to Live with Unequal Justice: Asylum and the Limits
to Consistency.” Stanford Law Review: 413-474.

Lind, E Allan, and Tom R Tyler. 1988. The social psychology of procedural justice. Springer
Science & Business Media.

Lipsky, Michael. 1980. Street-Level Bureaucracy: Dilemmas of the Individual in Public Ser-
vices. New York: Russell Sage Foundation.

Mashaw, Jerry L. 1985. Bureaucratic justice: Managing social security disability claims. Yale
University Press.

Mechoulan, Stéphane, and Nicolas Sahuguet. 2015. “Assessing racial disparities in parole
release.” The Journal of Legal Studies 44 (1): 39-74.

Moscovici, Serge, and Marisa Zavalloni. 1969. “The group as a polarizer of attitudes.” Journal
of personality and social psychology 12 (2): 125.

Nakosteen, Robert, and Michael Zimmer. 2014a. “Approval of social security disability ap-
peals: analysis of judges’ decisions.” Applied Economics 46 (23): 2783-2791.

. 2014b. “Approval of Social Security Disability Appeals: Analysis of Judges’ Deci-
sions.” Applied Economics 46 (23): 2783-2791.

. 2014c. “Approval of Social Security Disability Appeals: Analysis of Judges’ Deci-
sions.” 00001, Applied Economics 46 (23): 2783-2791. Accessed October 5, 2015. http:
//www.tandfonline.com/doi/abs/10.1080/00036846.2014.914147.

Narea, Nicole. 2017. Iranian National Challenges USCIS Investor Visa Denial. Accessed
June 26, 2017.

Nickerson, Mike. 2007. “Child protection and child outcomes: Measuring the effects of foster
care.” The American Economic Review 97 (5): 1583-1610.

Ornstein, Charles, and Lena Groeger. 2012. Two Deaths, Wildly Different Penalties: The
Big Disparities in Nursing Home Quersight.

Partridge, Anthony, and William Butler Eldridge. 1974. The Second Clircuit sentencing study:
A report to the judges of the Second Circuit. Federal Judicial Center.

Persson, Torsten, and Guido Tabellini. 2000. Political Economics: Explaining Economic Pol-
icy. Cambridge, MA: The MIT Press.

Ramji-Nogales, Jaya, Andrew I. Schoenholtz, and Philip G. Schrag. 2007. “Refugee Roulette:
Disparities in Asylum Adjudication.” 00355, Stanford Law Review: 295-411. Accessed
October 5, 2015. http://www. jstor.org/stable/40040412.

78


http://dx.doi.org/10.1146/annurev.polisci.042108.134842
http://www.tandfonline.com/doi/abs/10.1080/00036846.2014.914147
http://www.tandfonline.com/doi/abs/10.1080/00036846.2014.914147
http://www.jstor.org/stable/40040412

Ramji-Nogales, Jaya, Andrew I Schoenholtz, and Philip G Schrag. 2007. “Refugee roulette:
Disparities in asylum adjudication.” Stanford Law Review: 295—411.

Ramji-Nogales, Jaya, Andrew I. Schoenholtz, and Phillip G. Schrag. 2007. “Refugee Roulette:
Disparities in Asylum Adjudication.” Stanford Law Review 60:295-412.

Revesz, Richard L. 1997. “Environmental Regulation, Ideology, and the D.C. Circuit.” Vir-
ginia Law Review 83 (8): 1717-1772.

Rose, Joel. 2017. Canadians Report More Scrutiny And Rejection At U.S. Border Check-
points. http://www.npr.org/2017/03/29/521920595/ canadians-report-more-
scrutiny-and-rejection-at-u-s-border—-checkpoints.

Rubin, Donald B. 1979. “Using Multivariate Matched Sampling and Regression Adjustment
to Control Bias in Observational Studies.” 00671, Journal of the American Statistical
Association T4 (366a): 318-328. Accessed May 22, 2016. http://amstat.tandfonline.
com/doi/abs/10.1080/01621459.1979.10482513.

Shapiro, Scott. 2006. “What Is the Internal Point of View?” Fordham Law Review 75:1157.

Starr, Sonja B. 2014. “Evidence-Based Sentencing and the Scientific Rationalization of
Discrimination.” 00053, Stan. L. Rev. 66:803. Accessed October 5, 2015. http: //
heinonlinebackup . com/hol-cgi-bin/get pdf.cgi?handle=hein . journals/
stflr66&section=24.

Sunstein, Cass R. 1995. “Problems with rules.” California Law Review: 953-1026.

. 2005. “Group judgments: Statistical means, deliberation, and information markets.”
NYUL Rev. 80:962.

Sunstein, Cass R., David Schkade, and Lisa Michelle Ellman. 2004. “Ideological Voting on
Federal Courts of Appeals: A Preliminary Investigation.” Virginia Law Review 90 (1):
301-354.

Taylor, Frederick Winslow. 1911. The Principles of Scientific Management. New York: Harper
& Brothers Publishers.

Ting, Michael M. 2017. “Politics and Administration.” American Journal of Political Science
61 (2): 305-319.

Trump v. Int’l Refugee Assistance Project. 2017. 582 U. S. . LexisNexis Academic
(June 27, 2017).

Turnbull, Lornet. 2013. Suspicious Feds Turn Back Many Foreigners at Airport. http :
//www . seattletimes . com/seattle-news/suspicious-feds-turn-back-many-
foreigners-at-airport/.

Unpublished Judicial Opinions. 2002. Technical report. Washington, DC: U.S. House of Rep-
resentatives Subcommittee on Courts, the Internet, and Intellectual Property.

79


http://www.npr.org/2017/03/29/521920595/canadians-report-more-scrutiny-and-rejection-at-u-s-border-checkpoints
http://www.npr.org/2017/03/29/521920595/canadians-report-more-scrutiny-and-rejection-at-u-s-border-checkpoints
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1979.10482513
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1979.10482513
http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/stflr66&section=24
http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/stflr66&section=24
http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/stflr66&section=24
http://www.seattletimes.com/seattle-news/suspicious-feds-turn-back-many-foreigners-at-airport/
http://www.seattletimes.com/seattle-news/suspicious-feds-turn-back-many-foreigners-at-airport/
http://www.seattletimes.com/seattle-news/suspicious-feds-turn-back-many-foreigners-at-airport/

Van der Laan, Mark J., and James M. Robins. 2003. Unified Methods for Censored Longitu-
dinal Data and Causality. 00609. Springer Science & Business Media. Accessed May 22,
2016. https://books . google.com/books?hl=en&lr=&id=z4 -dXslTyYC&oi=fnd&
pg=PR5&dq=Unified+Methods+for+Censored+Longitudinal+Data+and+Causality.
&ots=uPPI9VEFqeN&sig=_cQyRe35av790veVZmJteVcOeAA.

Van der Laan, Mark J., and Sherri Rose. 2011. Targeted learning: causal inference for ob-
servational and experimental data. 00216. Springer Science & Business Media. Accessed
October 5, 2015. https://books.google.com/books?hl=en&lr=4&id=RGnSX5aCAgQC&
oi=fnd&pg=PR3&dqg=Targeted+Learning:+Causal+Inference+for+0bservational+
and+Experimental+Data&ots=FPb9cuAT7B&sig=P-RCh8efs-QtJYplduNsq2W7Tbw.

Van Koppen, Peter J, and Jan Ten Kate. 1984. “Individual differences in judicial behavior:
Personal characteristics and private law decision-making.” Law and Society Review: 225—
247.

Wilson, Woodrow. 1887. “The Study of Administration.” Political Science Quarterly 2 (2):
197-222.

80


https://books.google.com/books?hl=en&lr=&id=z4_-dXslTyYC&oi=fnd&pg=PR5&dq=Unified+Methods+for+Censored+Longitudinal+Data+and+Causality.&ots=uPP9VEFqeN&sig=_cQyRe35av79OveVZmJteVc0eAA
https://books.google.com/books?hl=en&lr=&id=z4_-dXslTyYC&oi=fnd&pg=PR5&dq=Unified+Methods+for+Censored+Longitudinal+Data+and+Causality.&ots=uPP9VEFqeN&sig=_cQyRe35av79OveVZmJteVc0eAA
https://books.google.com/books?hl=en&lr=&id=z4_-dXslTyYC&oi=fnd&pg=PR5&dq=Unified+Methods+for+Censored+Longitudinal+Data+and+Causality.&ots=uPP9VEFqeN&sig=_cQyRe35av79OveVZmJteVc0eAA
https://books.google.com/books?hl=en&lr=&id=RGnSX5aCAgQC&oi=fnd&pg=PR3&dq=Targeted+Learning:+Causal+Inference+for+Observational+and+Experimental+Data&ots=FPb9cuAT7B&sig=P-RCh8efs-QtJYp1duNsq2W7Tbw
https://books.google.com/books?hl=en&lr=&id=RGnSX5aCAgQC&oi=fnd&pg=PR3&dq=Targeted+Learning:+Causal+Inference+for+Observational+and+Experimental+Data&ots=FPb9cuAT7B&sig=P-RCh8efs-QtJYp1duNsq2W7Tbw
https://books.google.com/books?hl=en&lr=&id=RGnSX5aCAgQC&oi=fnd&pg=PR3&dq=Targeted+Learning:+Causal+Inference+for+Observational+and+Experimental+Data&ots=FPb9cuAT7B&sig=P-RCh8efs-QtJYp1duNsq2W7Tbw

Appendices

A Machine Learning

Throughout the steps of our analysis, we construct most of our predictive models using
Super Learner, an ensemble machine-learning method developed in University of California
Berkeley’s Biostatistics Department (Laan, Polley, and Hubbard 2007). Super Learner
takes as input any number of user-supplied models (e.g., a parametric linear regression,
random forest, LASSO, etc.) and combines those models’ predictions to generate “super”
predictions. Specifically, the Super Learner proceeds in two steps: first, validation-set
predictions are generated for each candidate model; second, the true outcome is regressed
on the candidate models’ predictions to assign each model’s predictions a weight.

In order to generate validation-set predictions, Super Learner breaks whatever data it
is given into ten separate random “chunks.” Ten-fold cross-validation is the default and is
generally regarded as an appropriate choice. The first chunk, the first tenth of the data, is
then set aside and the underlying models are built using the remaining nine tenths of the
data. The left-out tenth of the data, the “validation set,” is then plugged into the underlying
models and used to generate model predictions. The same process is repeated for each of the
remaining chunks. That is, the second tenth of the data is set aside, and Super Learner
builds the models on the remaining nine tenths of the data (the first chunk is now being used
to help build the model) and then generates validation set predictions for the second chunk.
And so on for all ten chunks. The appeal of these validation set predictions is that they
allow us to estimate how the underlying model would perform on data it has never seen.

The first step generates validation set predictions for each data point for each underlying
model. In the second step, Super Learner then leverages the cross-validation information
on model performance to assign weights to each model according to how well their predictions
match the true outcome. It does this by regressing the true outcome on the underlying model
predictions. As a default, Super Learner runs a non-negative least squares regression.
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B Data

Our main contribution is our methodological solutions to the problems of partitioning, clus-
tering, and finite sample bias. However, the partitioning and clustering problems are more
or less severe depending on the nature of the data one uses. As a general principle, the more
data available, the less severe the bias-variance trade-off is. The trade-off is also less severe
when a decision making body has only a small number of decision makers who each decide
a relatively large number of cases.

To conduct our analysis, we constructed a large and extensively coded original dataset
of all civil cases filed in the Ninth Circuit and terminated on the merits over a period of
nineteen years. The Ninth Circuit is one of thirteen Courts of Appeals in the U.S. federal
court system and it contains nine states and two overseas territories (see Fiéure I) It hears
appeals originating from the district courts located within these states and territories, as
well as appeals of some agency decisions originating from within its borders (e.g., decisions
on immigration cases).

Figure 1: The Ninth Circuit
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We compiled our dataset from the circuit’s docket sheets covering every case filed in the
court between 1995 and 2013, which we collected directly from PACER. In most U.S. courts,
docket sheets are used to track the progress of cases, and they therefore serve as a court’s
administrative record of the procedural developments in each case. In the Ninth Circuit, a
docket sheet contains background information on the case—such as area of law, trial judge
and parties—and separate entries for each event in the case. They are an incredibly rich
source of information and allow us to perform more detailed analyses than have been done
in studies of judicial decision making in the federal courts.
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Using standard text parsing methods implemented in python,E we extracted key informa-
tion from each docket sheet: background information about the case (area of law and number
of parties), information about the district court proceedings (judge, court and disposition),
and information about the appeal (judge panel, disposition and opinion publication). We
began with 217,273 docket sheets, of which 51,729 of them were appeals of civil cases. In
this analysis we limit our attention to civil appeals.

Our data represents a significant improvement over other available datasets. Firstly, we
have data for every single case filed in the Ninth Circuit for nearly twenty years, as opposed
to (a) a much smaller random sample or (b) a potentially biased sample, such as published
opinions. This first issue has limited scholars’ ability to study heterogeneous effects (due
to small sample sizes), but in principle it should not affect the validity of the effects that
are estimated. However, the second issue poses a major challenge for empirical studies of
courts. As Fischman (2015) points out: “[sJome studies may also introduce correlated effects
by selecting cases on the basis of endogenous characteristics, such as whether an opinion was
published or whether it cited a particular precedent” (p. 812-813). Our data contains the
universe of civil cases in the Ninth Circuit, which are (in theory) randomly assigned.

Secondly, since we derive our data from docket sheets, we have access to a wide range of
case-related data. Moreover, our machine-assisted coding methods allowed us to accurately
and aggressively code variables not previously available to scholars of the Courts of Appeals.
For example, our dataset contains information on the parties and their attorneys. We go
beyond simple counts and even code types of parties.

Finally, our data is coded directly from court records, thus avoiding some of the potential
problems associated with data collected from commercial database services, such as Westlaw
or LexisNexis. In particular, these databases’ primary clientele is practitioners, so the data is
likely to be incomplete. With respect to docket sheets in particular, our cursory comparison
between Westlaw’s data and ours reveals that they do not keep all of their docket sheets
up-to-date. One possible reason for this could be that these services stop updating docket
sheets for cases that they determine to be unimportant for their customers. While scholars
rarely assess the completeness of commercial databases, our unique dataset allows for such
comparisons.

For our analysis, we reduced our sample in two important ways. Firstly, because our
main dependent variable is negative treatment of lower court decisions, we drop all cases
that are not terminated on the merits, such as dismissed appeals. Second, because some of
the cases may be related to one another (see ), we batched similar cases together.
To generate each observation in the batched dataset, we simply average over the constituent
cases. These steps left_us with a sample of 16,723 batched cases, on which our analysis is
based. In [Table 1f and 'Table 2, we present some basic descriptive statistics for our sample.

1. Code available upon request.

2. As we discuss in , there are potential deviations from random assignment in the Ninth
Circuit. We account for this in two ways, which we describe in detail.

3. This is an interesting avenue for future research.
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Table 1: Descriptive Statistics: Appeal Characteristics

All Ciwil Cases Batched Cases
Negative Negative
Variable Proportion Treatment Proportion Treatment
Appeal Characteristics
Termination on Merits 0.521 0.310 1.000 0.310
Negative Treatment 0.162 1.000 0.310 1.000
Published Opinion 0.177 0.432 0.309 0.452
Dissent 0.018 0.557 0.038 0.564
Concurrence 0.017 0.537 0.026 0.616
Appellate Panels
Party: DDD 0.095 0.377 0.175 0.386
Party: DDR 0.222 0.306 0.414 0.317
Party: DRR 0.168 0.270 0.313 0.270
Party: RRR 0.046 0.241 0.083 0.262
Race: WWW 0.305 0.304 0.553 0.309
Race: WWN 0.186 0.301 0.349 0.316
Race: WNN 0.040 0.270 0.076 0.284
Race: NNN 0.003 0.263 0.006 0.288
Sex: FFF 0.005 0.308 0.009 0.306
Sex: FFM 0.069 0.322 0.135 0.328
Sex: FMM 0.234 0.301 0.436 0.310
Sex: MMM 0.227 0.294 0.405 0.304
N 51,729 16,723
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Table 2: Descriptive Statistics: Trial Characteristics

All Civil Cases

Batched Cases

Negative Negative
Variable Proportion Treatment Proportion Treatment
Trial Judges
Magistrate Judge 0.067 0.140 0.069 0.281
Democratic Appointee 0.416 0.158 0.402 0.318
Republican Appointee 0.486 0.168 0.497 0.318
Non-white 0.218 0.164 0.129 0.352
White 0.684 0.163 0.413 0.311
Woman 0.211 0.146 0.200 0.301
Man 0.691 0.169 0.700 0.321
Case Characteristics
Private Suit 0.772 0.162 0.728 0.323
U.S. Party 0.228 0.160 0.272 0.288
Plaintiff Won 0.238 0.192 0.192 0.377
Defendant Won 0.727 0.152 0.778 0.274
District Court
Alaska 0.019 0.171 0.022 0.330
Arizona 0.081 0.139 0.081 0.305
California - Central 0.290 0.166 0.280 0.340
California - Eastern 0.072 0.140 0.070 0.288
California - Northern 0.157 0.148 0.156 0.285
California - Southern 0.053 0.166 0.053 0.343
Hawaii 0.033 0.113 0.028 0.252
Idaho 0.018 0.181 0.018 0.376
Montana 0.024 0.182 0.031 0.294
Nevada 0.072 0.170 0.070 0.327
Oregon 0.072 0.192 0.077 0.339
Washington - Eastern 0.018 0.181 0.019 0.310
Washington - Western 0.083 0.176 0.090 0.323
N 51,729 16,723
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Judge Clusters

Table 3: Reinhardt Cluster

Name Party Sex Race Senior Termination
1 Marsha Siegel Berzon D F White
2 Myron H. Bright D M White 1985-06-01
3 Morgan Christen D F White
4 Warren John Ferguson D M  White 1986-07-31  2008-06-25
5 Raymond C. Fisher D M White 2013-03-31
6 Betty Binns Fletcher D F White 1998-11-01 2012-10-22
7 Samuel Pailthorpe King R M Pac. Isl./White 1984-11-30 2010-12-07
8 Donald Pomery Lay D M White 1992-01-07 2007-04-29
9 Jacqueline Hong-Ngoc Nguyen D F Asian American
10 John T. Noonan R M  White 1996-12-27
11 Richard A. Paez D M  Hispanic
12 Stephen Roy Reinhardt D M White
13 Jane A. Restani R F White 2015-03-01
14  William W Schwarzer R M  White 1991-04-30
Table 4: Kozinski Cluster
Name Party Sex Race Senior Termination
1 Alfred Theodore Goodwin R M White 1991-01-31
2 Ronald Murray Gould D M White
3 Susan Graber D F White
4 Michael Daly Hawkins D M White 2010-02-12
5 Procter Ralph Hug D M White 2002-01-01
6 Sandra Segal Tkuta R F White
7 Alex Kozinski R M White
8 N. Randy Smith R M White
9 Atsushi Wallace Tashima D M Asian American 2004-06-30
10 Eugene Allen Wright R M White 1983-09-15  2002-09-03
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Table 5: Leavy Cluster

Name Party Sex Race Senior Termination
1 Arthur Lawrence Alarcon D M  Hispanic 1992-11-21 2015-01-28
2 Robert R. Beezer R M White 1996-07-31 2012-03-30
3 Melvin T. Brunetti R M White 1999-11-11  2009-10-30
4 Jay S. Bybee R M White
5 Herbert Young Cho Choy R M Asian American ~ 1984-10-03 2004-03-10
6 Joseph Jerome Farris D M African American 1995-03-04
7 Ferdinand Francis Fernandez R M  Hispanic 2002-06-01
8 Andrew David Hurwitz D M  White
9 Edward Leavy R M White 1997-05-19
10 M. Margaret McKeown D F White
11 Mary Helen Murguia D F Hispanic
12 Thomas G. Nelson R M White 2003-11-14 2011-05-04
13 Johnnie B. Rawlinson D F African American
14  Thomas Morrow Reavley D M White 1990-08-01
15 Pamela Ann Rymer R F White 2011-09-21 2011-09-21
16 Barry G. Silverman D M  White
17 Otto Richard Skopil D M White 1986-06-30 2012-10-18
18 Joseph Tyree Sneed R M White 1987-07-21  2008-02-09
19 Sidney Runyan Thomas D M White
20 Paul Jeffrey Watford D M African American
Table 6: O’Scannlain Cluster
Name Party Sex Race Senior Termination
1 Carlos T. Bea R M  Hispanic
2 Consuelo Maria Callahan R F Hispanic
3  William Cameron Canby D M White 1996-05-23
4 Richard R. Clifton R M White
5 Kevin Thomas Duffy R M White 1998-01-10
6 Cynthia Holcomb Hall R F White 1997-08-31 2011-02-26
7 Andrew Jay Kleinfeld R M White 2010-06-12
8 Diarmuid Fionntain O’Scannlain R M White
9 Mary Murphy Schroeder D F White 2011-12-31
10 Richard C. Tallman D M White
11 Stephen S. Trott R M White 2004-12-31
12 John Clifford Wallace R M White 1996-04-08
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Table 7: Pregerson Cluster

Name Party Sex Race Senior Termination

1 Robert Boochever D M White 1986-06-10 2011-10-09

2 James Robert Browning D M White 2000-09-01  2012-05-06

3 William A. Fletcher D M White

4  Dorothy Wright Nelson D F White 1995-01-01

5 Harry Pregerson D M White

6 Milan Dale Smith R M White

7 David R. Thompson R M White 1998-12-31 2011-02-19

8 Kim McLane Wardlaw D F Hispanic

9 Charles Edward Wiggins R M White 1996-12-31 2000-03-02
Table 8: Visiting Cluster

Name Party Sex Race Senior Termination

1 Absent From Federal Biography
2 Judges with Fewer Than 100 Observations
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D Threats to Identification

One potential methodological advantage of studying decision making in federal courts is that
cases are generally assigned to judges at random. However, many past studies of decision
making in appellate courts are effectively unable to exploit this randomization due to biases
introduced in the selection of their samples. For example, studies of published opinions can
no longer treat panel assignment as if it were random, since the judges themselves decide
whether to publish their opinions. Since our data includes the entire population of cases
filed in the Ninth Circuit, we avoid some of the pitfalls of previous studies and better exploit
the assignment of judge panels in the circuit.

However, examination of our data and conversations with a former clerk in the Ninth
Circuit revealed two potential threats to identification. As is standard practice in other
courts, related cases may be grouped together and assigned to the same panel.2 To control
for this possibility, we batched all of our cases by panel, area of law and year. For example,
if Judges Reinhardt, Kozinski and Paez served together on four Fair Labor Standards Act
cases in 2004, we would batch these cases into a single observation. Ideally, we would batch
cases we know to have been batched after randomization, but our data does not allow us to
observe this. However, the batching rule we used is conservative, in the sense that we may
be overbatching but we are not underbatching. The former simply reduces our sample size
beyond what is necessary, whereas the latter would undermine the panel randomization.

Since litigants in a suit may settle at any point, a second threat to identification could be
strategic settlement by litigants after a panel is randomly chosen and revealed to the litigants.
Others have argued that this is not likely to affect randomization significantly since panels
are drawn shortly before litigants are expected to present their cases to the court (Fischman
2015). But because settlement may occur anytime before an opinion is actually released,
and because opinions are released, on average, 18 months after appeals are filed in the Ninth
Circuit,? we consider settlement behavior a plausible threat to randomization. We think
the threat is particularly serious when a case was orally argued, as judges may reveal their
intentions through questioning, thereby altering settlement behavior.

4. This practice was at the center of a recent ethics controversy involving federal Judge Shira Scheindlin
in the Southern District of New York. In 2013, whe was removed from a high profile stop-and-frisk case by
the Second Circuit, who noted (among other things) that Judge Scheindlin had abused her district’s “related
case” rule that allows judges to bypass random assignment and take cases reasonably related to cases already
before them.

5. Ideally, we would like to know how many months after panel revelation the opinion is released, but our
current dataset does not contain the date that the panel was selected.
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E Proofs

Definition 1. A CATE exhibits strongly heterogeneous treatment ef-
fects if and only if there exists M € M such that ¢(j, k, M) > 0 and M’ € M
such that ¢(j, k, M) < 0.

Proposition 1. Suppose that Y C R. Every ATE-based estimand will be a
lower bound of disagreement. That is, it will be biased downward: ¢(j, k) <

6(4, k).
Proof of . Because d(-) is a metric on Y, it follows that
d(z,z) < d(z,y) + d(y, 2)
Moreover, by the properties of expectations,
Eld(z, 2)] < Eld(z, y)] + Eld(y, 2)]

Now, consider three points in the set Y: Y(j), Y (k) and 0. We can express the triangle
inequality as follows:

E[d(Y (5),0)] < E[d(Y(5),Y (k)] + E[d(Y (k),0)]
Rearranging terms yields

E[d(Y (5),0)] — E[d(Y (k),0)] < Eld(Y (5),Y (k)]

and by the linearity of the expectation operator,

E[d(Y (j),0) —d(Y (k),0)] < E[d(Y (j), Y (k))]

Finally, note that in R, d(Y(5),0) = Y (j), so that
E[Y(j) - Y (k)] < E[d(Y (5), Y (k))]
By the definitions of disagreement and ATE, we have directly shown that all ATEs will be

weakly smaller than disagreement. ]

Corollary 1. An ATE-based estimand will be strictly lower than disagree-
ment if there are strongly heterogeneous treatment effects in the sense oferefJ
inition 1.

Proposition 2. For all M # N, §(j,k, M) <46(j, k).
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Proof. By contradiction, suppose that there exists some M # N such that §(j, k, M) >
d(j, k). We can rewrite this condition as

Evtem[|Eien[Yi(5) = Yi(k)]l] > Eien|Yi(5) — Yi(k)]]
By the law of iterated expectations, this can be further re-written as
Extem||BienlYi(j) = Yi(B)]|] > Evem [EiemlYi(5) — Yi(k)]]]

By the definition of M, since M # N, there must be at least one element M € M such
that |M| > 1. Denote that element by M’. By Jensen’s inequality,

|Eiear [Yi(7) = Yi(R)]| < Eiear [[Yi(5) = Yi(k)]]
It follows, then, that
Eyvem [EiemlYi(5) = Yi(k)l] < Evem [EiemllYi(5) — Yi(k)|]
This contradicts our assertion that 6(j, k, M) > (4, k). O

Definition 2. Let A7*(j) and A?"(k) be defined as follows:

A = {Y,; if ng) > Y;(k) and i€ N,
’ 1-Y;, iY(y) <Yi(k) and i € N}
AP h) = {}g if Y;(j) > Yi(k) and i € N,
' 1-Y; ifYi(y) <Y;(k)and i € N,

Proposition 3. 4(j, k, M*) = E [A™*(j)] — E [A7*(k)].
Proof. We show this directly:
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Therefore, §(j, k, M*) = E [AM*(j)] — E [A7*(k)]. O
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