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Stiffness in Stochastic Chemically Reacting Systems:

The Implicit Tau-Leaping Method

Muruhan Rathinam*  Linda R. Petzold?  Yang Caof  Daniel T. Gillespie?

August 19, 2003

Abstract

We show how stiffness manifests itself in the simulation of chemical reactions at both the
continuous-deterministic level and the discrete-stochastic level. Existing discrete stochastic
simulation methods, such as the Stochastic Simulation Algorithm and the (explicit) tau-leaping
method, are both exceedingly slow for such systems. We propose an implicit tau-leaping

method that can take much larger time steps for many of these problems.

1 Introduction

In microscopic systems formed by living cells, the small numbers of reactant molecules can
result in dynamical behavior that is discrete and stochastic rather than continuous and de-

terministic.'™ An analysis tool that respects these dynamical characteristics is the stochastic
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simulation algorithm (SSA), a numerical simulation procedure that is essentially exact for
chemical systems that are spatially homogeneous or well stirred. Despite recent improve-
ments,? as a procedure that simulates every reaction event, the SSA is necessarily inefficient
for most realistic problems. There are two main reasons for this, both arising from the multi-
scale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales,
the fastest of which are stable; and (2) the need to include in the simulation both species
that are present in relatively small quantities and should be modeled by a discrete stochastic
process, and species that are present in larger quantities and are more efficiently modeled by
a deterministic differential equation (or at some scale in between). We emphasize that most
chemical systems, whether considered at a scale appropriate to stochastic or to deterministic
simulation, involve several widely varying time scales, so such systems are nearly always stiff.

In this paper we will address the problem of stiffness for discrete stochastic systems. We
will demonstrate how stiffness is manifested in stochastic chemical kinetics, and show how to
modify the recently-proposed tau-leaping method® so that much longer timesteps can be taken
for stiff systems.

The SSA, the tau-leaping method,® the modified tau-leaping method that will be introduced
here, and deterministic ordinary differential equation (ODE) simulation are each most effective
in certain situations. When the populations of all reactant species are small, the SSA will be
as fast and efficient as one could reasonably wish. The goal of tau-leaping was to speed up
the SSA when either all reactant species are present in moderately large numbers, or (much
more commonly) when some reactant species are present in small or moderate numbers while
others are present in very large numbers. In such situations, significant stochastic effects can
still arise, but tracking them with the SSA will be very time consuming. These situations can
be expected to arise in many cellular systems of interest to biochemists. For those systems,

the exact SSA is usually much too slow, while the deterministic reaction rate equation (RRE),



though fast, fails to capture the stochastic effects. It was shown in® that tau-leaping morphs
into the SSA when all the molecular populations are very small, and morphs into the explicit
Euler method for the RRE when all the molecular populations are very large. Our present work
is aimed at formulating tau-leaping strategies that accurately and efficiently handle systems
“in between” those two extremes.

The outline of this paper is as follows. In Section 2 we review simulation algorithms for
chemical kinetics for a wide range of scales. In Section 3 we outline the problem of stiffness
for the simulation of chemical kinetics systems at both the continuous and stochastic scales.
In Section 4 we propose an implicit tau-leaping method that overcomes the stepsize limitations
due to stiffness of the explicit tau-leaping method, and we outline its implementation. Finally,
in Section 5 we present some numerical experiments demonstrating both the effectiveness and

some limitations of the new implicit tau-leaping method.

2 Simulation Algorithms for Chemical Kinetics

In a chemically reacting system involving N molecular species {S1,...,Sn}, the state vector
X(t) = (X1(t),...,Xn(t)), where X;(t) is the number of molecules of species S; in the system
at time ¢, will evolve stochastically because of the inherent randomness of thermal molecular
motion. Stochastic molecular collisions give rise to stochastic chemical transmutations in
accordance with a given set of M reaction channels {Rj,...,Ry}. If the system is well-
stirred and in thermal equilibrium, the dynamics of reaction channel R; will be completely
characterized by a propensity function a; and a state-change vector v = (vij,...,vn;): a;(x)dt
gives the probability that one R; reaction will occur in state x during the next infinitesimal
time interval dt, and v;; gives the change in the S; molecular population induced by one R;
7

reaction.

By appealing to the laws of probability theory, one can derive a chemical master equation



(CME) that governs the time evolution of the probability density function of X(t), as well as a
stochastic simulation algorithm (SSA) that can generate numerical realizations of X(¢). Both
the CME and the SSA are exact consequences of the foregoing dynamical assumptions, so in
spite of the difference in their descriptive thrusts, they are logically equivalent to each other.

The SSA simulates each successive reaction event that occurs in the system. It is a Monte

Carlo method which proceeds from the fact that, if X(¢) = x, then with

M
a'O(X) £ Z a; (X)7
Jj=1

the time 7 to the next reaction event is an exponentially distributed random variable with mean
1/ap(x), and the index j of that next reaction is an integer random variable with probability
a;(x)/ao(x). Because the SSA simulates one reaction at a time, it will be very slow in the
commonly occurring case that some reactions take place on a very fast timescale. Although
exact methods have been proposed® that speed up the SSA, by itself it remains much too slow
for practical simulation of realistic biological systems.

An approzimate scheme called tau-leaping has recently been proposed® to accelerate the
SSA. The basic idea of tau-leaping is as follows. Given a pre-selected time step 7 that en-
compasses more than one reaction event, if we could determine how many times each reaction
channel fired during that time step, we might be able to forego knowing the precise instants at
which those firings took place. In such a circumstance, we could leap along the system’s history
axis from one 7-subinterval to the next, instead of stepping along from one reaction event to
the next. It has been shown® that this can be done approzimately if T is taken small enough
that the propensity functions remain nearly constant during the time step. The tau-leaping
simulation method is an attempt to speed up the SSA by sacrificing some exactness. But the
approximate method must be used with circumspection, since while we are glad to leap over
“unimportant” reaction events, we must take care not to leap over “important” ones.

To render these ideas more precisely, in tau-leaping attention is focused on the set of M



random variables

K;(t;x,t) = the number of times reaction channel R; fires

in [t,t + 7), given that X(¢) =x, (j=1,...,M). (1)

It follows from the above definitions that if the system is in state x and reaction Ry fires k;
times, and reaction Ro fires ko times, etc., then the system will change to state x+ Z]Nil kjv;.
Therefore, the random variables K;(7;x,t) defined in (1) completely determine the evolution
of the system as follows: If X(¢) = x, then for any 7 > 0,
M
X(t+71)=x+ Y Ki(r;x,t)v;. (2)
j=1

The simple (explicit) tau-leaping method makes the approximation
Kj(1;%,t) = Pj(aj(x), )

where the P; are statistically independent Poisson random variables.® Thus by (2), the explicit

tau-leaping algorithm takes the following form: If X(¢) = x, then for any 7 > 0,
M
X(t+7)mx+ Y viPjla;(x),7). (3)
j=1
It has been shown® that this tau-leaping method limits to the SSA-method as the time step
7 becomes smaller than the mean time to the next reaction. In a forthcoming paper, we will
present an analysis of this tau-leaping method, which in particular shows that the method is
first order accurate in 7.
At the next coarser scale, suppose conditions are such that, starting in state x at time ¢, we
can leap over an interval 7 that spans a very large number of firings of every reaction channel,
yet all those firings induce only miniscule changes in the values of all the propensity functions.

Then, since the Poisson random variable P(a,t) will, when at >> 1, be well approximated by

the normal random variable N (at, at),” the number of firings of channel R; in [t,t+7) can be



approximated by

K;(m;x,t) =~ Pjlaj(x),7)
~ Nj(a;(x)7,a;(x)T)

Ki(t;x,t) =~ a;(x)7 + (a;(x)7)2N;(0,1).

Substituting this into Equation (2) yields the Langevin method: If X(t) = x, then for any
T >0,

M M
X(t+1)~x+T Z vja;(x) + /2 Z l/ja}ﬂ(x)./\/'j(o, 1), (4)
i=1 J=1

where the A;(0,1) are statistically independent normal random variables with means 0 and
variances 1. Equation (4) is in fact the well known first order explicit method for simulating
the continuous Markov process defined by the chemical Langevin equation.'1' A great deal
of work in the past decade has gone into developing theory and numerical methods for equa-
tions of this type, which are known in the mathematical literature as stochastic differential
equations (SDEs). Well-developed theory exists for determining the order of convergence of
this and higher order methods for SDEs.'? Some recent work has addressed automatic stepsize
selection.!?

Finally, in the limit of infinitely large molecular populations of all of the reactant species, or
more specifically in the thermodynamic limit, each term in the second summation on the right
hand side of (4) usually becomes vanishingly small compared to the correspondingly indexed
term in the first summation.'* Therefore, in that limit Equation (4) usually reduces to, again
with X(t) = x,

M

X(t+71)~ x—i—TZujaj(x). (5)
j=1

This will be recognized as the ezplicit Euler method for the numerical solution of the deter-
ministic ODE system given by the reaction rate equations (which are more commonly scaled

by the system volume).



3 Stiffness

In deterministic systems of ODEs, stiffness generally manifests when there are well separated
“fast” and “slow” time scales present, and the “fast modes” are stable. Because of the fast
stable modes, all initial conditions result in trajectories which, after a short and rapid transient,
lead to the “stable manifold” where the “slow modes” determine the dynamics and the fast
modes have decayed.

In general, a given trajectory of such a system will exhibit rapid change for a short du-
ration (corresponding to the fast time scales) called the “transient”, and then evolve slowly
(corresponding to the slow time scales). During the initial transient the problem is said to be
nonstiff, whereas while the solution is evolving slowly it is said to be stiff. One would expect
that a reasonable numerical scheme should be able to take larger time steps once the trajec-
tory has come sufficiently close to the slow manifold without compromising the accuracy of the
computed trajectory. That this is not always the case is well known to numerical analysts, and
in general explicit methods are only able to perform well if they continue to take time steps
that are of the order of the fastest time scale. This happens because explicit methods advance
the solution from one time to the next by approximating the slope of the solution curve at or
near the beginning of the time interval. Since any numerical method makes errors on every
time step, the numerical solution is never exactly on the stable manifold. Instead, it will be
on some trajectory that approaches the stable manifold very rapidly. Thus the approximation
to the slope employed by explicit methods will always be on the order of the fastest time scale
of the system. The very large slope decreases to almost zero in a time interval of the order of
the fastest time scale. If the explicit numerical scheme continues to take small time steps of
the order of these fast trajectories, then there is no problem. However, if the explicit method
takes a larger time step, which would seemingly be appropriate for following the trajectories

on the slow manifold, then the large estimated slope and the large time step lead to a point



on the other side of the the slow manifold, which is likely to be further away from it than was
the previous point. This point is likely to have an even larger slope, leading to highly unstable
oscillations.

An implicit method on the other hand does not approximate the slope of the trajectory near
the beginning of the interval of a time step. Instead, it gives more weight to the slope at the
unknown point at the end of the time step. This tends to avoid the above described instability,
but at the expense of having to solve a nonlinear system of equations for the unknown point at
each time step. In fact, implicit methods often damp the perturbations off the slow manifold.
Once the solution has reached the stable manifold, this damping keeps the solution on the
manifold, and is desirable. Further details on stiffness in deterministic ODE systems can be
found in!® and the references therein.

The aim of this paper is to explore the nature of stiffness in discrete stochastic systems,
to propose an implicit version of the (explicit) tau-leaping method discussed in Section 2, and
to demonstrate the extent to which the implicit method is effective for stiff discrete stochastic
systems.

When stochasticity is introduced into a system with fast and slow time scales, with fast
modes being stable as before, one may still expect a slow manifold corresponding to the
equilibrium of the fast scales. But the picture changes in a fundamental way. After an initial
rapid transient, while the mean trajectory is almost on the slow manifold, any sample trajectory
will still be oscillating at the fast time scale in a direction transverse to the slow manifold. In
some cases the size of the fluctuations off the slow manifold will be practically negligible.
In those circumstances, an implicit scheme may take large steps, corresponding to the time
scale of the slow mode. But in other cases, the fluctuations off the slow manifold will not be
negligible in size. In those instances, an implicit scheme that takes time steps much larger

than the time scale of the fast dynamics will dampen these fluctuations, and will consequently



fail to capture the variance correctly.

We will demonstrate that the implicit tau-leaping method can take large time steps for stiff
discrete stochastic systems, producing a solution which is accurate for the slow variables of
the system, and for which the mean of the fast variables on the slow manifold is accurate. We
will also show how the distribution of the fast variables on the slow manifold can be recovered

at relatively low cost.

4 The Implicit Tau-Leaping Method

The tau-leaping method described by (3) is an explicit method because the propensity functions
a; are evaluated at the current known state, so the future unknown random state X(t + 7) is
given as an explicit function of X (¢). Throughout the rest of the paper we shall refer to (3) as

the explicit-tau method, and write it
M
Xt +7) =X (1) + ) viPi(a(XE(2)),7), (6)
j=1
where the superfix “et” stands for explicit-tau. We mentioned in Section 3 that the explicit
Euler method exhibits instability for stiff systems with large stepsizes. The explicit-tau method
is essentially an extension of the explicit Euler method to discrete stochastic systems, and as
such it too has poor stability. In this section we motivate and derive an implicit tau-leaping
method. In Section 5 we will present numerical experiments that demonstrate the accuracy
and efficiency of this method, as compared to the explicit-tau method and the SSA.
To motivate our formulation of the implicit-tau method, we look again at the explicit-
tau method (6). Here the increment in the state X(¢%) (¢t 4 7) — X(¢9)(¢) is given by a linear
combination of statistically independent Poisson random variables P;(a;, T) whose parameters

aj are evaluated at X (et) (t). An attempt to completely implicitize the method would require

generating Poisson random variables P;(a;, 7) with the a; evaluated at the unknown random



state X(¢ + 7) that we are trying to find. Since it is not entirely clear how to interpret and
solve such an equation, we will attempt a partial implicitization. To this end, let us regard
each of the random variables P; as the sum of two parts, one being the mean value a;7 of
P;, and the other being the zero-mean random variable P; — a;7. We then evaluate the mean
value part a;7 at the unknown state X (¢ + 7), and the zero-mean random part P; — a;7 at the

known state X(¢). Thus we arrive at an implicit method described by

M
XO(t+7) = X))+ vija; (XD +7))r
j=1

M
+ 2w (Polay(XO 1), 7) - 0, (X 1) 7). (7)

Here the random variables P; are, as before, statistically independent Poisson random vari-
ables. In a forthcoming paper, we will present an analysis of the accuracy and stability
properties of this method, which in particular shows that the method is accurate to first order
inT.

We note that in the implementation of the method (7), the random variables P; (a; (X (1)), 7)
can be generated without knowing X (¢ + 7). Also, once the P;(a;(X(t)),7) have been
generated, the unknown state X(*) (t+7) depends on P;(a;(X)(t)),7) in a deterministic way,
even though this dependence is given by an implicit equation. As is done in the case of deter-
ministic ODE solution by implicit methods, X (%) (t+7) can be computed by applying Newton’s
method for the solution of nonlinear systems of equations to (7) where the P;(a;(X)(t)),7)
are all known values.

Just as the explicit-tau method segues to the explicit Euler methods for SDEs and ODEs,
the implicit-tau method segues to the implicit Euler methods for SDEs and ODEs. In the

SDE regime we get, approximating Poissons by normals

M M
X+ 1) m X)) + 7> via(XO ¢+ 1) + 72 w0, (X0 (1) 2N;(0,1),  (8)
j=1 j=1

where N;(0, 1) are independent normal random variables with mean zero and variance 1. This

10



is precisely the implicit Euler version of (4).!2

t14

In the thermodynamic limit** where random terms in the above SDE system may be

ignored, the implicit-tau method becomes the implicit Euler method
M
X(t+71)=X(¢t) +TZVjaj(X(t+T)), (9)
7j=1

for the corresponding deterministic reaction rate equations.

It is well known that, for stiff ODE systems, the implicit Euler method has a strong damp-
ing property. Indeed, it is this property that makes the implicit Euler method so desirable for
such systems: once the solution is close enough to the slow manifold that the stepsize can be
increased, the method damps out any errors and keeps the solution close to the slow manifold.
The implicit tau-leaping method inherits this damping property, which is still advantageous
for taking large time steps and staying close to the slow manifold. However, as a consequence
of this property, the method will also damp out the natural fluctuations of the fast variables.
So while the implicit tau-leaping method computes the slow variables with their correct dis-
tributions, it computes the fast variables with the correct means but with distributions about
those means that are too narrow.

We have developed a time-stepping strategy that is intended to restore the overly-damped
fluctuations in the fast variables. The idea is to interlace the implicit tau-leaps, each of which
is on the order of the time scale of the slow variables and hence “large”, with a sequence of
many much smaller time steps, each of which is on the order of the time scale of the fast
variables. The smaller time steps are to be taken over a duration that is comparable to the
“relaxation/decorrelation” time of the fast variables. These small time steps may be executed
using either the explicit-tau or the implicit-tau. This sequence of small steps is intended to
“regenerate” the correct statistical distributions of the fast variables, which have been made
too narrow by the preceding large implicit tau-leaps. The fact that the underlying kinetics

is Markovian or “past-forgetting” is important in being able to apply such a procedure. The

11



optimal interlacing strategy and the choice of explicit versus implicit-tau for the small time
steps is the subject of further research.

In the next section, our first example will illustrate the damping of the fluctuations in the
fast variables caused by successive large implicit-tau leaps, and then the successful regeneration
of those fluctuations through a sequence of 10 successive small implicit-tau leaps, all with a
very substantial net gain in computational efficiency.

Finally, we note that the implicit-tau method (7) has the property that the state change
Xt (¢ 4 7) — X (¢) is generally not an integer vector. It is possible to avoid non-integer state
changes by modifying the implicit-tau method. It might be tempting to do this by simply
rounding every component of X (i) (t+ 7) to the nearest integer. But it is better to ensure that
the state change be stoichiometrically realizable; i.e., not only should the state change be an
integer vector, but it should also be a sum of the form kv +---+kyvar, where kq, ..., kys are
nonnegative integers. This way, the state change can be interpreted as the result of reaction
channel R; firing k; times for j = 1,..., M. This yields the following implicit method: First,
compute X' = X(t + 7) according to (7), i.e. by using Newton’s method to solve the implicit

equation

M M
X' =x+ ) ve;(X) 7+ Y v (Pilaj(x),7) —a;(x) ), (10)
= =1

where x is the system’s state at time ¢. Then approximate the number of firings K;(7;x,1)

of the reaction channel R; in the time interval [t,t + 7| by the integer-valued random variable

A

K;(7;x,t) defined by

Kj(t;x,t) = [a;(X) T + Pj(aj(x),T) — aj(x) 7] . (11)
Here the Pj(aj(x),7) for j = 1,..., M are the same numbers used in equation (10), and [2]

denotes the nearest nonnegative integer corresponding to a real number z. Finally, invoking

12



(2), estimate the state at time ¢t + 7 as

M
X(t+ 1) :x+Zujkj(T;x,t). (12)
7j=1

Although this modification might be prudent for some systems, for the simple systems we
have studied thus far, the original version of the implicit tau method has performed as well as
this “rounded” version. Therefore, in the remainder of this paper we will focus on the original

“unrounded” implicit-tau method.

5 Numerical Experiments

Example 1 This problem, the decaying-dimerizing reaction set studied in, consists of three

species S1,.52 and S3 and four reaction channels:
(13)

We chose values for the parameters
cl = 1, Cy = 10, C3 = 1000, Cq4 = 0.1

which will render the problem stiff. The initial conditions z1(0) = 400, z2(0) = 798 and

x3(0) = 0 were chosen to lie on the approximate slow manifold given by the equation

Z9 (.’I)l - 1)

5
=—x
1000
This avoids the inconvenience for the constant-stepsize algorithms under study of having to take
small steps during the initial transient, and large steps on the slow manifold. The propensity

functions are given by

a1 =11, a2 = 5x1(r1 — 1), ag = 1000z, aq = 0.1z2,

13



and the problem was solved on the time interval [0,0.2].

Figure 1 depicts sample trajectories as simulated by the exact SSA. Figure 2 shows the
same sample trajectory of z3, on a more revealing scale for that variable. We note that while
1 and zo vary rapidly, x3 varies slowly. All three variables z1, 9 and x3 exhibit random
behavior, 3 being the most random. Figures 3, 4 and 5 show the histograms for the final state
values, comparing SSA with explicit tau-leaping. Each histogram was obtained by simulating
an ensemble of 10,000 trajectories. The explicit tau-leaping was performed with a constant
stepsize of 2 x 1075.

It is evident from Figures 3, 4 and 5 that the explicit-tau method captures the statistics
of the final states very well with only 10,000 time steps over the interval, whereas the SSA
required on average 310,000 time steps. In terms of computation time, 10,000 simulations
using SSA took 5,697 cpu seconds, while 10, 000 simulations using explicit-tau with a constant
stepsize of 2 x 107° took 731 cpu seconds. These computations were performed on a 1.4Ghz
Pentium IV Linux workstation.

Figure 6 shows that the explicit-tau method becomes unstable at stepsizes roughly equal
to or larger than 2.2 x 10~*. This is the stability limit that would be predicted by a linearized
stability analysis of the forward Euler method applied to the corresponding deterministic
ODE model. In a forthcoming paper, we will address stability criteria and analysis for discrete
stochastic systems.

To verify that the implicit-tau method can take much larger time steps while maintaining
accuracy, we simulated an ensemble of 10,000 trajectories using explicit-tau with constant
stepsize 10™% and implicit-tau with constant step size 0.01. The stepsize 10~* for explicit-tau
was chosen to be as large as possible without compromising accuracy (it is near the stability
limit of 2.2x10™*). Figures 7, 8 and 9 compare the final state relative bin frequencies computed

by all three methods. Tables 1 and 2 show the sample means and standard deviations for the
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final states estimated by the three methods.

SSA | Explicit-Tau | Implicit-Tau | Interlaced Tmplicit-Tau
Sample mean : z1(0.2) | 387.3 386.2 387.6 387.2
Sample mean : z2(0.2) | 749.5 750.1 749.5 749.4
Sample mean : z3(0.2) | 15.45 15.48 15.42 15.59

Table 1:

Sample means (for a sample size of n = 10,000) for the final states in Example 1 as computed

by SSA, explicit-tau, the original implicit-tau, and the interlaced implicit-tau methods, with stepsizes as

described in the text.

SSA | Explicit-Tau | Implicit-Tau | Interlaced Implicit-Tau
Sample standard deviation : z1(0.2) | 18.42 24.76 3.07 17.74
Sample standard deviation : z2(0.2) | 10.49 13.45 5.34 10.24
Sample standard deviation : z3(0.2) | 3.91 3.88 3.89 3.91

Table 2: Sample standard deviations (for a sample size of n = 10,000) for the final states in Example 1
as computed by SSA, explicit-tau, the original implicit-tau, and the interlaced implicit-tau methods, with

stepsizes as described in the text.

It is clear from the histograms that if the goal is to capture the slow state x3 including
its randomness (which is significant), then implicit-tau is far superior to explicit-tau, because
it achieves comparable accuracy with a factor of 100 fewer steps. Although the computa-
tional effort per step is greater for implicit-tau than explicit-tau, this is far out-weighed by
implicit-tau’s ability to take much larger steps. The computation time for 10,000 implicit-tau
simulations was 15 cpu-seconds, as compared to 731 cpu-seconds for explicit-tau and 5,697
cpu-seconds for SSA.

On the other hand, if one is interested in capturing the fluctuations of the fast variables x1

and zg, then implicit-tau with these large time steps will not be adequate. In order to capture
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the distributions of 21 and s, we used the technique described in Section 4 of interlacing small
time steps with large time steps. In this example, we took the first 19 steps with implicit-tau
using stepsize 0.01 as before. Then implicit-tau was used to take one step of size 0.0098. For the
remaining time of 0.002 we took 10 steps of size 2 x 10™° using implicit-tau. The first 20 steps
are the large steps which capture the mean values of all the state variables, and the noise in the
slow variable, accurately. The last 10 small steps recover the distribution information of the
fast variables x; and x. The time period to recover the distribution information is roughly
the “relaxation time” of the fast variables. The final state histogram for this simulation is
compared with that of the SSA in Figures 10, 11 and 12, and shows good agreement with SSA
for all three variables z1, o and z3. The computation time for 10,000 simulations using this
interlaced method was 23 cpu-seconds (versus 731 cpu-seconds for the explicit-tau simulations
in Figures 3, 4 and 5). In this example, we were able to capture the distributions of all state
variables at the final time with only one recovery period. In general, it may be necessary to
do the recovery steps more often. An optimal strategy for the interlacing procedure is a topic

for further research.

Example 2 In some stiff systems, the fast variables exhibit near deterministic behavior
while the slow variables still exhibit randomness. In such cases, implicit-tau will clearly be the

method of choice, as can be demonstrated using the simple reaction set
Ri: 8§38,
Ry: 8338,
Ry:  Si+53 8 +58,.

Since the total number of S; and S3 molecules is constant (say z7), and if we don’t care

about the byproduct Ss, we can model this system with two variables z = (z1, z2) (i.e. numbers
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of S; and S, molecules respectively) and three reactions. The propensity functions are
a1(z) = c1z1
az(z) = co(zT — 1)
as(z) = c3r1T0.
The stoichiometric vectors are v; = (—1,0)7, v, = (1,0)%, and v3 = (0,—1)1. We chose
c1 = cg = 10°, ¢3 = 0.0005, and z7 = 20,000, with initial condition z(0) = (10000, 100).
Since ¢; = ¢g, then 7 = z7/2 will be an equilibrium value for z;. The dynamics of z; is
independent of 2, but the dynamics of zo depends on z1. Also note that the reactions R;
and Ry are much faster than Rs.
Since the dynamics of 21 alone is the same as in the simple reversible isomerization prob-

lem,!! the exact asymptotic mean and variance can be computed analytically (see the Ap-

pendix). The equilibrium value z; = 10,000 is the asymptotic mean, and the asymptotic

standard deviation of z; is given by \/% = \/W = 70.7 (here z is the asymptotic
mean value, which in our case is z7/2). This is less than 1% of the equilibrium value. Thus
we may regard the noise in z; as negligible. But as we shall see, the noise in z cannot be
regarded as negligible.

We simulated an ensemble of 10, 000 trajectories using all three methods: SSA, explicit-tau
with constant step size 5 x 107 (half the size of the maximum value to maintain stability),
and implicit-tau with constant step size 0.005, all to estimate the final state at time 7' = 0.01.

Figures 13 and 14 compare the final state histograms computed by explicit-tau and implicit-
tau with those computed by SSA. The full behavior of the noisy variable x5 is adequately repro-
duced by both tau-leaping methods, while the inaccuracies of both methods in the estimations
of the fluctuations in x; are inconsequential because of their smallness. The implicit-tau
method is superior to the explicit-tau method, since the former takes 2 steps for each trajec-

tory while the latter takes 2,000. The explicit-tau method in turn is superior to the SSA,

17



which takes on average 2 x 107 time steps for each trajectory.

Note that in this reaction, one can make the relative size of the equilibrium noise in 1z
arbitrarily small by scaling up ¢; and ¢z and z1(0) = z7/2 by the same factor. This leaves the
stiffness ratio 2(2317:;2) unchanged but makes the noise in x; as small as we want compared to
its equilibrium value. For instance if we choose ¢; = ¢z = 108 and z(0) = (10%,100) then the
equilibrium noise of z; will have a standard deviation of /50000 =~ 224, which is 0.02% of the
equilibrium value 10%. Thus the noise will be less than what we obtained with our choice for
c1,¢2 and zp. We did not choose the values ¢; = ¢o = 10 and z7 = 200, 000 because the SSA

simulation takes an extremely long time to run and we wanted an example where we could

make a quantitative comparison with SSA.
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6 Conclusions

We have shown how stiffness manifests itself in the simulation of chemical reactions at both
the continuous, deterministic level and the discrete, stochastic level. While the explicit-tau
method is an important first step in the efficient simulation of stochastic chemical systems, it
must use a very small stepsize when applied to stiff systems.

We have proposed an implicit version of the tau-leaping method. We have demonstrated
through numerical simulations that the implicit tau method achieves the same level of accuracy
as the explicit-tau method when the latter is stable, and that the new method overcomes the
instability problem of explicit-tau for larger stepsizes. For large stepsizes, we have seen that
the implicit tau method resolves well the slow stochastic components, and it captures the mean
of the fast components. We have introduced a method for recovering the distributions of the
fast stochastic components based on a time stepping scheme that interlaces several small time

steps with several large time steps.
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A(z) and D(zx) respectively.
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The Reversible Isomerization Reaction

(&
The pair of reactions S = Ss describes the reversible conversion of two isomeric species S7 and
Cc2
Sy into each other. The reaction probability rate constants c; for these monomolecular channels
are numerically equal to the rate constants k; that appear in the corresponding deterministic

reaction rate equations for the species concentrations.!” The propensity functions and state-

change vectors for these reaction channels are
a1(x) = c1z1, a2(x) = com2, (14)

v = (—1,+1), vy = (+1, —1). (15)

In the absence of any other reaction channels, the total number of isomers zT will remain
constant in time. This circumstance allows us to eliminate one of the species variables, say

the Sy variable, in favor of the other,
Xo(t) =z — X1(2), (16)

and thereby obtain a mathematically simpler univariate problem. In this appendix, we shall
derive exact expressions for the mean and variance of X;(¢) = X(¢) for the initial condition
X (to) = o, where zp and zT may be any two integers satisfying 0 < zo < zr. We should note
that solutions to the full chemical master equation are known for the special cases g = 0 and
zo = z7.18

The process X (t) evolves according to the following dynamical rules: If X(¢) = z, then

in the next infinitesimal time dt, X will increase by 1 or decrease by 1 with the respective

probabilities W, (z) dt and W_(x) dt, where
Wi(z) =colzr — ), W_(z) = 1. (17)

This kind of dynamical behavior identifies X (¢) as a birth-death type Markov process with

stepping probability rate functions W, (z) and W_(z). Quite generally for such a process, the
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time derivatives of the mean and variance are given by'®

d(X (1)) _
o = AX©),
dvar;{ji((t)} 2 ((X(t) AX (1)) — (X(£)) (A(X(®)) + (D(X(2)),

where

Alz) =Wi(z) —W_(z), D(z)=Wi(z)+W_(z).
For the stepping functions (17), A and D are easily calculated to be
A(z) = cozr — (€1 + o),

D(z) = cozr + (1 — ¢2)z.

When these forms are substituted into Egs. (18) and (19), we obtain

d<)§it)> = coxr — (€1 + 2)(X (1)),
w = —2(c1 + ¢2) var{X (t)} + cazr + (c1 — c2)(X(¢)).

(21)

(22)

The time-evolution equation (21) for the mean (X (¢)) is mathematically identical to the

associated deterministic reaction rate equation, although expressed here in terms of the molec-

ular populations instead of concentrations. This is not so in general, but it is the case whenever

the propensity functions are linear in the species variables. Equation (21) has the form of the

first order linear differential equation dy(t)/dt = ky(t) + f(t), for which the general solution

in quadrature form is

t
y(t) = eFt 1) {y(to) + [ f) e’““’“’)d’f'} ,
to

(23)

as may readily be verified by direct differentiation. Evaluating this quadrature form for Eq.

(21) using the initial condition (X (ty)) = zo gives

(X(t)) = 2o + (Too — T0) (1 _ e—(01+62)(t—t0)) ’

24
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where

C2ZXT
c1+ ¢

(25)

Too =

By substituting the result (24) into Eq. (22), we obtain for the variance a differential
equation that is once again of the first order linear form. When we evaluate the corresponding

quadrature solution (23) using the initial condition var{X (to)} = 0, we get

var{X (t)} = LOO) (1 _ e—2(61+(:2)(t—t0))

(61 + c2 (26)
4 ((C1 —c2)(mo — :voo)> (e—(cl+02)(t—to) B e—2(cl—|—02)(t—t0)> _
(Cl + Cz)
We note in passing that Eqs. (24) and (26) imply the asymptotic results
(X (00)) = oo and var{X(co)} = % (27)
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Sample trajectory simulated by SSA
T

900

80

=]

ENMA W\ 1 A X
WMy WA PN, e gt

700 - 4
600 - 4
500 4
300 q

200~ q

Figure 1: Sample trajectories for Example 1, simulated by the exact SSA. The upper curve is o,

the middle curve is x1, and the lower curve is z3.

Sample trajectory of x3(t) simulated by SSA
18 T T T T T

0 ! ! ! ! ! ! ! ! !
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Figure 2: Sample trajectory z3(¢) in Example 1, simulated by SSA.
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Final state x1(0.2) : Normalized frequencies versus bin centers (10000 samples)
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Figure 3: Final state histogram for z; in Example 1, computed by the SSA (stars) and the explicit-

tau method (squares), the latter with constant stepsize 2 x 1075.

Final state x2(0.2) : Normalized frequencies versus bin centers (10000 samples)
0.04 T T T T T T T T T
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Figure 4: Final state histogram for 25 in Example 1, computed by the SSA (stars) and the explicit-

tau method (squares), the latter with constant stepsize 2 x 1075,
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Final state x3(0.2) : Normalized frequencies versus bin centers (10000 samples)
0.1 T T

T T T
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O Explicit Tau Stepsize 0.00002
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0.06 - q
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0.03 4
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0.01f q

Figure 5: Final state histogram for z3 in Example 1, computed by the SSA (stars) and the explicit-

tau method (squares), the latter with constant stepsize 2 x 107°.

Sample trajectory simulated by explicit tau (stepsize 0.00025)
1000 T T T T

—-200 L L L I I

Figure 6: Sample trajectories for Example 1 as simulated by the explicit-tau method with stepsize
2.5 x 107*. The trajectories develop unstable oscillations, and yield unrealistic negative states

beyond t =~ 0.1.
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Final state x1(0.2) : Normalized frequencies versus bin centers. (10000 samples)
T T
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Figure 7: Final state histogram for z; in Example 1, as computed by the SSA (stars), the explicit-tau
method with stepsize 1 x 10~* (squares) and the implicit-tau method with stepsize 0.01 (diamonds).
Note that the explicit-tau method overestimates the noise while the implicit-tau method underes-

timates it.
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Final state x2(0.2) : Normalized frequencies versus bin centers (10000 samples)
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Figure 8: Final state histogram for x5 in Example 1, as computed by the SSA (stars), the explicit-
tau method with stepsize 1 x 107 (squares), and the implicit-tau method with stepsize 0.01 (dia-
monds). Note that the explicit-tau method overestimates the noise while the implicit-tau method

underestimates it.

Final state x3(0.2) : Normalized frequencies versus bin centers (10000 samples)
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Figure 9: Final state histogram for 3 in Example 1, as computed by the SSA (stars), the explicit-tau

method with stepsize 1 x 107 (squares), and the implicit-tau method with stepsize 0.01 (diamonds).
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Final state x1(0.2) : Normalized frequencies vs bin centers (10000 samples)
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Figure 10: Final state histogram for z; in Example 1, as computed by the SSA (stars), and the

implicit-tau method (squares) with interlaced stepping.

Final state x2(0.2) : Normalized frequencies vs bin centers (10000 samples)
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Figure 11: Final state histogram for z, in Example 1, as computed by the SSA (stars), and the

implicit-tau method (squares) with interlaced stepping.
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Final state x3(0.2) : Normalized frequencies vs bin centers (10000 samples)
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Figure 12: Final state histogram for z3 in Example 1, as computed by the SSA (stars), and the

implicit-tau method (squares) with interlaced stepping.
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0 x107° Final state x1(0.01) : Normalized frequencies vs bin centers (10,000 samples)
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Figure 13: Final state histogram for z; in Example 2, as computed by the SSA (stars), the explicit-
tau method with step size 5 x 107 (squares), and the implicit-tau method with stepsize 5 x 1073
(diamonds). Note that most of the variation (as computed by SSA) is within 1% deviation from
the mean value of 10*, and thus the noise in this variable may be regarded as negligible. The plot

of the histogram has been scaled to fit the narrow range of values of ;.
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Final state x2(0.01) : Normalized frequencies vs bin centers (10,000 samples)
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Figure 14: Final state histogram for o in Example 2, as computed by the SSA (stars), the explicit-
tau method with step size 5 x 107% (squares), and the implicit-tau method with stepsize 5 x 1073

(diamonds). In contrast to the fluctuations in x;, the fluctuations in this variable are not negligible.
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