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ABSTRACT

A probabilistic tracking model is introduced that identifies storm tracks from feature vectors that are

extracted from meteorological analysis data. The model assumes that the genesis and lysis times of each track

are unknown and estimates their values along with the track’s position and storm intensity over time. A

hidden-state dynamics model (Kalman filter) characterizes the temporal evolution of the storms.

The model uses a Bayesian methodology for estimating the unknown lifetimes (genesis–lysis pairs) and

tracks of the storms. Prior distributions are placed over the unknown parameters and their posterior distri-

butions are estimated using a Markov Chain Monte Carlo (MCMC) sampling algorithm. The posterior dis-

tributions are used to identify and report the most likely storm tracks in the data. This approach provides

a unified probabilistic framework that accounts for uncertainty in storm timing (genesis and lysis), storm

location and intensity, and the feature detection process. Thus, issues such as missing observations can be

accommodated in a statistical manner without human intervention.

The model is applied to the field of relative vorticity at the 975-hPa level of analysis from the National

Centers for Environmental Prediction Global Forecast System during May–October 2000–02, in the tropical

east Pacific. Storm tracks in the National Hurricane Center best-track data (HURDAT) for the same period

are used to assess the performance of the storm identification and tracking model.

1. Introduction

The tropical east Pacific is a meteorologically intriguing

area yet it is poorly studied compared to the other ocean

basins. Synoptic-scale activity may be described in terms

of two distinct yet related phenomena during the summer

half-year: activity related to the intertropical convergence

zone (ITCZ) and activity of westward-propagating dis-

turbances (WPDs; Magnusdottir and Wang 2008). The

east Pacific has the highest frequency of tropical cyclo-

genesis per unit area in the world (e.g., Gray 1968). Many

of the WPDs develop as a result of tropical waves that

have propagated from the Caribbean but may have

originated as far away as Africa (e.g., Avila 1991). Other

WPDs may have originated when individual vortices

merged as a result of ITCZ breakdown (Kieu and Zhang
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2008; Davis et al. 2008). A WPD may interact with the

ITCZ and cause its partial or complete breakdown—

furthermore, the WPD may intensify as a result of this

interaction. While the National Hurricane Center (NHC)

puts out a summary of the tracks of tropical depressions

and named tropical storms every year, the track and in-

tensity of each precursor system is not included. The

current study grew out of efforts to describe the location

and intensity of WPDs in the east Pacific as a function

of time.

While numerous automatic tracking methods of me-

teorological systems exist in the literature, most have

been developed with extratropical applications in mind.

In many cases, these tracking methods are not well

equipped to deal with the high spatial resolution that is

required to describe tropical systems. For example,

while the climate simulations described by Bengtsson

et al. (2007) are at a spatial resolution of 0.78 by 0.78, the

vorticity field was degraded to 2.58 by 2.58 for the pur-

poses of tracking. Additional fields were required to dis-

tinguish tropical cyclones from other less intense, but

spatially more expansive, disturbances. Chauvin et al.

(2006) discuss the challenges associated with detecting

and tracking tropical disturbances and give a comprehen-

sive summary of previous work on the subject. Automated

tracking methods are useful for extracting tracks from

large datasets in order to reduce the amount of human

effort and provide an objective reference for subsequent

analyses. The availability of new and higher-resolution

reanalysis products, as well as climate models that are able

to better resolve storms, provide an opportunity for the

development of sophisticated tracking algorithms that

take advantage of the improved model output to produce

higher-quality and more detailed storm tracks.

In this paper a probabilistic storm tracking model is

presented and applied to analysis output for the tropical

east Pacific. The remainder of this introduction section

provides an overview of our method and compares it to

other tracking methods both in meteorology and other

disciplines. Following the introduction the paper is or-

ganized as follows. The methodology and Bayesian ap-

proach to inference is described in section 2 and applied

to the National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS) analysis in

section 3. The model’s performance is evaluated relative

to the NHC best-track dataset. We conclude with a

summary in section 4.

a. Model overview

We develop a probabilistic model that relates feature

detections from meteorological fields to underlying

storm tracks, and use this model to estimate the life-

times and tracks of tropical disturbances contained in

the 975-hPa1 vorticity field from the NCEP GFS analy-

sis. A storm track is defined in our model by a genesis

(starting) time, a lysis (termination) time, and a se-

quence of states that describe the location and intensity of

the storm over the interval on which it is defined. These

unknown characteristics (the start times, termination

times, and storm status or intensity) are estimated from

a time sequence of an analyzed two dimensional meteo-

rological field at a fixed vertical level. In what follows we

will often refer to the two-dimensional meteorological

field at time t as the image at time t.

We assume that we are given a sequence of gridded

meteorological images and that each image is summa-

rized by a set of feature vectors. The feature vectors are

possible storm detections. In the following, each feature

detection comprises the latitude, longitude, and inten-

sity corresponding to the location of a local vorticity

peak. For each storm track, and for each time t that the

storm is present, at most one of the feature vectors

corresponds to that storm track. The feature vectors

(i.e., possible storm detections) are produced by a suit-

able detector that takes an image as input and returns

a set of feature vectors. The detector will produce false

positives [i.e., detections (local vorticity peaks) that do

not correspond to any storm] and false negatives (i.e.,

instances in which a storm is present but there is no

corresponding feature vector). Such errors are accom-

modated in the model probabilistically: there is a fixed

probability of detection (and a complementary proba-

bility of a missed detection) when a storm is present.

For the 975-hPa relative vorticity field that we work

with, these detections correspond to the location and

value of local vorticity maxima in the Northern Hemi-

sphere. Because of the limited spatial and temporal

resolution of the images, there is inherent uncertainty in

the feature vector values (e.g., spatial uncertainty due to

the gridding of the data). This uncertainty is explicitly

incorporated into the model via a probability model that

relates observed feature vectors to the unknown state of

the storm. This storm model also includes a dynamic

component to model the expected motion of a storm

over time, as well as additional variability to allow for

storm-to-storm variation in tracks and the feature de-

tection process. Our analysis considers all detections

over the entire time period to infer storm locations and

intensity. We use an offline approach in which in-

ferences at a particular time use information from de-

tections earlier and later in time. This is different from

1 This level was chosen over a standard level such as 850 hPa

because the relative vorticity anomaly due to the tropical distur-

bance was greater at 975 than at 850 hPa.
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the many online algorithms that attempt to determine

storm status at a given time based only on the current

and earlier detections (this is discussed further next).

As an illustrative example, Fig. 1 shows a sequence of

three vorticity maps (or images) at three consecutive time

steps on 5 August 2000, along with the corresponding

locations of the detections. The two strongest vorticity

pools in each image correspond to Tropical Storm Fabio

and Hurricane Gilma (Fig. 1b, detections 2 and 4, re-

spectively). The other detections are false positives in

the sense that they are vorticity maxima that do not

correspond to long-lived storms. The image sequence in

Fig. 1 represents a typical set of feature detections and

highlights some of the difficulties involved in storm

tracking. For instance, the local vorticity pools repre-

sented by detections 3 and 4 in Fig. 1b merge together

into a single vorticity pool identified by detection 4 in

Fig. 1d. Also, detection 1 in Fig. 1d is a spurious detection

that introduces additional uncertainty in determining

Fabio’s optimal track. The more detections, the more

possibilities there are to consider.

Some of the false detections could potentially be re-

moved in this case by smoothing the data (e.g., with a

spectral filter). However, as we show below, the current

algorithm preserves the ability to track a wide range of

storms. If we smooth away some false detections this will

limit us to only identifying the strongest storm signatures

in the sequence of images. Instead, our method relies on

a probabilistic model of storm dynamics to determine

which detections are relevant rather than attempt to

determine this from the data a priori.

The key characteristic of our approach is a unified

probabilistic framework that accounts for uncertainty in

storm timing (genesis and lysis), storm location and in-

tensity, and the feature detection process. Thus, issues

such as missing observations in an otherwise strong track

are easily accommodated without human intervention.

The probability model is built via a series of modules

that are integrated. These include the specification of

prior information about storm origin, location, and length,

a dynamic model for storm progression, and a probabilis-

tic model for association of detections and storms. This

makes it possible to apply the approach in other loca-

tions or other contexts by altering one or more of these

components. To apply our algorithm in another location

would require some prior information from area experts

FIG. 1. Sequence of relative vorticity fields at three consecutive time steps at 0000, 0600, and 1200 UTC 5 Aug 2000.

(a),(c),(e) Contour plot of the relative vorticity field along with the location of the feature detections (black dots).

(b),(d),(f) Only the detections, labeled from left to right, and representing the input to the tracking model. There are

two named storms Fabio (b-2, d-3, f-1) and Gilma (b-4, d-4, f-4) and two false positives in each image.
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on the typical storm length and storm genesis area [or

the major development region (MDR)] as well as some

exemplars from which a dynamic model can be devel-

oped. We view this modularity as a strong feature of our

proposed approach. The probabilistic model also leads

naturally to posterior inferences regarding storm loca-

tion and traits that incorporate all modeled sources of

variability and uncertainty. In the remainder of the in-

troduction we describe the key computational problems

in tracking and relate our work to other tracking ap-

proaches in the literature.

b. Computational problems in tracking and
related work

There are two significant problems that must be

solved in order to identify the storms from the observed

feature detections. First, the track initiation and termi-

nation problem must be solved in order to estimate the

start and termination times of the storm. Any method for

solving this problem must, at a minimum, iterate over and

evaluate the T(T 1 1)/2 possible start–termination pairs

in order to find the optimal one (Bar-Shalom 1987).

The second, more difficult, problem is the data asso-

ciation problem that identifies which feature vectors

belong to the storm track (Rasmussen and Hager 2001;

Särkkä et al. 2004). Algorithms for solving the data as-

sociation problem often assume that the start and end

time for a storm are known and that, for each time point

in the storm’s life an observed feature vector is associated

with the storm track. In practice, however, it is possible

that the detector fails to observe the storm at all, so that

there may be no association at a particular time (a missed

detection), significantly complicating the analysis.

1) TRACK INITIATION AND TERMINATION

Track initiation methods in the computer science and

engineering literature are usually based on Reid’s mul-

tiple hypothesis tracker (MHT; Reid 1979). The sequence

of observed images, or more formally the sequence of

feature detections, is scanned from beginning to end and

a set of potential tracks is maintained. A track is initiated

once enough evidence has accumulated to determine

that a potential track is not spurious but rather repre-

sents a real object. A drawback of MHT is that the num-

ber of hypotheses can grow exponentially, so a pruning

mechanism is used that limits either the total number of

hypotheses under consideration or the width of the hy-

pothesis window. Limiting the hypothesis window leads

to the so-called N-scan algorithm and can yield signifi-

cant improvements in computational speed (Cox and

Hingorani 1996).

Alternative track initiation methods employ the prob-

abilistic data association filter (PDAF), which is a ‘‘0-scan’’

or online method that collapses the combinatoric num-

ber of hypotheses into a single representative distribution

after processing each image’s detections. This distribution

is used to assign probabilities to the unknown associa-

tions for the next image, which are then filtered in order

to maintain a small set of track estimates (McMillan and

Lim 1990).

Other track initiation techniques include rule-based

methods that determine when a track begins via a set of

ad hoc rules, and data transforms such as the Hough

transformation (Hu et al. 1997). In some contexts, the

problem can be simplified by assuming that storms al-

ways enter the detection region by transitioning across

an edge. In this case, only the feature points near the

boundary need to be considered as locations of potential

track genesis (Chang et al. 1994).

All of the preceding track initiation techniques at-

tempt to initiate a storm track in an online fashion where

no information is available beyond the current time t. In

contrast our model is an offline method that presumes

access to all of the data (past and future) when making

determinations about storm location at a particular

time. Future observations are especially informative for

the track initiation problem and the model can effec-

tively incorporate this information in order to estimate

likely genesis and lysis times.

2) DATA ASSOCIATION

The data association problem consists of identifying

which feature vectors belong to the storm track. To il-

lustrate its complexity consider a a storm lasting 7 days,

with observations every 6 h (thus there are 28 images)

and suppose there are 5 detections in each image. For

this scenario there are over 6.14 3 1021 possible associ-

ations. Given the size of this space, directly computing

the optimal data association sequence by iterating over

the possibilities is impractical for all but the very

shortest storm tracks. Most practical methods limit the

number of potential associations through the use of a

gating function that eliminates detections that violate

some constraint (e.g., a weighted distance from the

storm’s current estimated location; Bar-Shalom 1987).

Bayesian methods can also be used to provide some

additional modeling flexibility in this context (Cox and

Hingorani 1996).

The dynamics component of our model (described in

section 2b) plays the role of a soft-gating function by

assigning high probability to detections that are likely to

be a track. Our inference method (see section 2d) lever-

ages this information in order to focus its calculations on

likely tracks. Thus, we are able to realize the computa-

tional benefits of gating without throwing away data or

inadvertently committing to a suboptimal storm track.
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3) JOINTLY SOLVING THE INITIATION AND

ASSOCIATION PROBLEMS

The problems of track initiation and data association

are intertwined. Finding the correct track initiation re-

quires solving at least a subset of the data association

problem and solving the data association problem re-

quires that the genesis and lysis times of the storm are

known. If both problems are modeled within a probabi-

listic framework, information is automatically and con-

sistently shared among all the model parameters (i.e., the

relative contributions of a ‘‘good’’ track initiation versus

a good set of track associations is made precise). This kind

of information sharing cannot be achieved if independent

methods are applied to the two subproblems.

Prior nonprobabilistic approaches to solving the initia-

tion and association problems utilize gating functions and

hard constraints on certain track properties, such as storm

velocity and track smoothness, in order to prune away a

large amount of the search space (Hodges 1994; Gauvrit

et al. 1997). These methods can produce excellent tracking

results within a particular domain, but may lack flexibility

because the track constraints and heuristics are often an

integral part of the method. Hodges (1999) introduced an

adaptive method that provides some flexibility in tracking

by modifying the parameters of the objective function

used to identify tracks based on a storm’s location. This

affords the opportunity to introduce prior knowledge of a

storm’s typical behavior over different geographic regions.

The probabilistic framework that we describe can also in

principle allow key parameters to adapt over space and

time although we do not pursue this option in this paper.

There are other probabilistic methods in the litera-

ture. These methods are typically developed as ‘‘for-

ward only’’ online target tracking algorithms (Vermaak

et al. 1995; Karlsson and Gustafsson 2001; Muskulus and

Jacob 2005). Even when a full probabilistic model is

presented, the output of these algorithms may be a point

estimate of the most likely track rather than a full pos-

terior distribution over all possible tracks (Streit and

Luginbuhl 1994; Gauvrit et al. 1997). Oh et al. (2004)

propose a similar model to ours, along with a sampling

strategy to explore the posterior space of data associa-

tions; however, their model does not place prior distri-

butions over the genesis and lysis times. Also, their

sampling strategy tends to be less effective when the

feature vectors are spatially sparse relative to the scale of

the storm dynamics, which is the case in our application.

Storlie et al. (2009) have recently (and independently)

proposed a probabilistic tracking framework that is similar

to our approach in that it uses a general Bayesian frame-

work for inferring tracks, including estimation of lysis and

genesis times. A major difference between our approaches

is, however, that the Storlie et al. method models the

genesis and lysis of storms as local events that occur at a

rate proportional to the current number of active storms,

whereas our model directly parameterizes the actual time

of genesis and lysis. This allows our model to use a prior

distribution to constrain the storm’s lifetime in a manner

that cannot be captured by a local event model. Another

major difference is that the Storlie et al. inference method

is based on simultaneously running multiple instances of

an adapted MHT algorithm. The MHT algorithm operates

in an online manner (forward pass over the data), using

only past data to make inferences for each time point. In

contrast to this MHT-based method, our approach can

leverage both past and future data when making infer-

ences about states and parameters for a particular time.

2. Tracking methodology

In this section, the tracking methodology is described

in detail. Notation is introduced, the probabilistic storm

tracking model is defined, and a sampling strategy is

presented for performing Bayesian inference. The prob-

abilistic model is developed under the assumption of

tracking a single storm—we illustrate later in the experi-

mental results section how to use the single-storm method

to find tracks for multiple storms.

a. Notation and assumptions

The genesis or starting time of the storm is denoted

s and the lysis or termination time is denoted t. The state

of a storm is represented by a state vector xt 2 Rn at each

discrete time t 2 [s, t], conditioned on a fixed genesis time

s and lysis time t. Let X represent the set of valid state

vectors for the storm, X = fxs, . . . , xtg. The state vector xt

can denote for example the location and intensity of the

storm at time t. In this application, x is a five-dimensional

vector composed of the storms’ position, velocity, and

scalar intensity. At each time t we have a set of nt feature

vectors or detections, Yt 5 fyt,1, . . . , yt,nt
g. The detec-

tions are locations and intensities of peaks in a relevant

meteorological field (in our case vorticity) obtained by

a separately provided detector. The collection of all the

feature vector sets is denoted as Y 5 fY1, . . . , YTg. The

state vector xt is hidden (not observable), and it is as-

sumed that at most one of the nt feature vectors in each

Yt provides an indirect measurement of xt. For example,

in Fig. 1b there are nt 5 4 feature vectors, one of which

(number 2) is associated with the xt state for Fabio and

another (number 4) with the xt state for Gilma. The other

detections are assumed to be false positives, detections

that do not correspond to storms of interest for our

tracker. As described earlier we say ‘‘at most’’ one feature

vector corresponds to a storm because we allow for the
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possibility of false negatives or missed detections in which

a storm is present but no detection is recorded in the ap-

propriate location.

We assume that the dependence between state vari-

ables xt is Markov over time (the state at time t depends

only on the previous state) and that the observations Yt

are conditionally independent. The relationship between

the hidden states and their corresponding observed fea-

ture vectors is presented as a directed graphical model in

Fig. 2. Graphical models provide a compact represen-

tation for describing large stochastic models (Jordan

2004; Ihler et al. 2007). Each node in the graph corre-

sponds to a variable and a directed edge establishes

a direct dependency between two variables. If an edge is

not present between two nodes, the variables are as-

sumed to be conditionally independent. Shaded nodes

are observed and unshaded nodes are hidden. Any por-

tion of the graph that is enclosed within a square plate

is replicated over the index in the lower-right corner. In

Fig. 2, the right half of the plate is replicated T 2 1 times.

This implies that the Markov dependency between xt21

and xt holds over all t from 2 to T. This conditional dis-

tribution p(xtjxt21) is called the state transition distri-

bution and describes how a storm’s state evolves over

time. The conditional distribution p(ytjxt) is the obser-

vation distribution and defines the distribution of ob-

served feature vectors given a known storm state.

We next introduce notation that is used to address the

data association problem. Because there are multiple

observations at each time t whose association with the

state variable xt is unknown, the model is extended to

incorporate an unobserved integer association variable

qt 2 f0, 1, . . . , ntg that indexes into the set of nt feature

vectors and identifies the observed feature vector cor-

responding to the storm at time t. A nonzero value of qt

links xt to feature vector yt,q
t

and a zero value indicates

that none of the nt detections correspond to the storm

(i.e., a missed detection). The association variable qt can

be zero under two circumstances: either 1) a storm is

present at time t but the detector did not find a corre-

sponding feature vector, or 2) the current time t is out-

side of the storm’s lifetime (t ; [s, t]).

In what follows below we use the notation and as-

sumptions above to specify a joint distribution over the

unknown variables, s, t, q, X, and the observed data, Y.

We then illustrate how Bayes’s rule can be used to de-

rive the posterior distribution of the unknown variables

conditioned on the observed feature vectors.

b. A linear dynamic model for storm motion

We use a linear dynamical model (LDM) to characterize

the dynamics p(xtjxt21) of the state vector xt. The use of

a LDM is motivated by the desire to remain relatively

parsimonious in terms of the statistical model, with atten-

dant benefits in terms of both parameter estimation and

computation. It should be noted that the assumed dynamics

model for xt is intended to provide a plausible ‘‘first order’’

approximation of storm motion from one image to the

next, rather than a fully realistic model of storm dynamics.

The n 3 n matrix A defines the linear mapping of the

storm’s state at time t 2 1 to time t. The updated state is

then perturbed with zero-mean Gaussian noise with an

n 3 n covariance matrix Q. Because the state vector is

hidden, the only information about xt comes from the

observed feature vector, yt 2Rm. The feature vector yt is

assumed to be a linear transformation of the state vector

with additional Gaussian noise:

p(x
t
jx

t�1
) 5N (Ax

t�1
, Q), (1)

p(y
t
jx

t
) 5N (Cx

t
, R). (2)

The m 3 n matrix C projects the hidden state onto the

m-dimensional feature vector space, and R is an m 3 m

covariance matrix.

Finally, a prior distribution over the initial state vector

is required since the distribution p(xtjxt21) is undefined for

t 5 1. This prior is assumed to be a Gaussian distribution,

p(x
1
) 5N (m

0
, S

0
), (3)

where m0 and S0 specify the expected value and uncer-

tainty of the initial state vector, x1 (e.g., the expected

genesis location and initial intensity for storms). If the

genesis time, lysis time, and associations are known, then

the optimal solution for estimating each state xt is given by

FIG. 2. A directed graphical model representing the relationship

between hidden states and observed feature vectors for adjacent

points in time. Each node in the graph represents a model variable.

The shaded nodes represent observed variables and the unshaded

nodes are unobserved (hidden) variables. There is a single feature

vector yt generated from a storm’s hidden state xt. The right-hand

side of the graph is replicated over time, which implies a de-

pendency p(xtjxt21) for all t . 1.
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the Rauch–Tung–Striebel smoother (Rauch et al. 1965),

which has since become a standard technique in the

tracking literature (Gelb 1974; West and Harrison 1997).

c. A probabilistic model for storm
association and tracking

Figure 3 shows the full probabilistic model, which

extends Fig. 2 to incorporate the storm lifetime vari-

ables, s (genesis time) and t (lysis time), and the asso-

ciation variable q. It is important to note that q, s, and t

only identify when a storm is present and which feature

vectors should be used to estimate the storm’s state.

They do not contain any information about the storm’s

state by themselves. Rather, when q, s, and t are known,

the inference problem reduces to a standard LDM and

can be solved in closed form.

Fundamentally, the joint distribution p(Y, X, q, s, t) is

of interest because any conditional or marginal distri-

bution of Y, X, q, s, and t can be computed from it. We

are typically interested in computing distributions of the

unobserved variables conditioned on the observed fea-

ture vectors, Y. Figure 3 implies that the joint distribu-

tion can be factored as

p(Y, X, q, s, t) 5 p(s, t)p(Xjs, t)p(qjs, t)p(YjX, q).

Thus, only the conditional distributions above need to

be defined in order to fully specify the joint distribution.

The prior distribution over the storm’s lifetime can be

factored into two components corresponding to the gen-

esis time of a storm and its duration, p(s, t) 5 p(s)p(tjs).
The choice of p(tjs) can have a significant effect on the

tracks found by the model. A broad, relatively flat dis-

tribution will not give any preference to tracks of a par-

ticular length and will permit the model to continue

extending a track as long as there are feature detections

present that follow the LDM. In contrast, a peaked

distribution for p(tjs) will force the model to try and find

tracks with a duration that lies within a narrow range.

Table 1 defines the two specific prior distributions that

we evaluated in our experiments in section 3.

If the genesis and lysis times are known, a conditional

prior distribution, p(qjs, t), can be defined over the as-

sociation variables because q depends only on s and t.

Assuming conditional independence, p(qjs, t) can be

factored as p(qjs, t) 5 Ptp(qtjs, t), where p(qtjs, t) is

proportional to a function of the probability of de-

tection, pd. We make the simplifying assumption that the

likelihood ratio between any nonzero and zero value of

qt is equal to the detection/nondetection ratio:

p(q
t
5 jjs, t)

p(q
t
5 0js, t)

5
p

d

1� p
d

for all j and for t in [s, t]. (4)

The least constrained distribution that satisfies both the

above ratio and the constraint that qt 5 0 when a storm is

not present is given by

FIG. 3. A directed graphical model representation of the full

tracking model. The square nodes represent discrete variables and the

circular nodes are continuous. The unknown genesis and lysis times

(s and t) are shared across all times. The hidden states of the dy-

namics model xt are coupled over time and the unknown association

variable qt links the storms with the observed feature vectors. The

observed variables are shaded and the unknown variables are white.

TABLE 1. Table of the prior distributions over storm lifetimes.

The uniform-uniform prior does not force the model to prefer any

particular lifetime length, but the uniform-Poisson prior penalizes

storm tracks that have a lifetime far from the mean, l.

Storm lifetime priors

Uniform-uniform

prior

p(s, t) }

1

T
� 1

u� l

for s 5 1 . . . T, and
t s.t. l # jt � sj# u

0 otherwise

8
<

:

Uniform-Poisson

prior

p(s, t) }
1

T
� l(t�s)

(t � s)!
e�l if s # t , T

0 otherwise

8
<

:
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p(q
t
js, t) 5

1 q
t
5 0

0 otherwise

(

t =2 [s, t]

1� p
d

1 1 (n
t
� 1)p

d

q
t
5 0

p
d

1 1 (n
t
� 1)p

d

otherwise

8
>>><

>>>:

t 2 [s, t].

8
>>>>>>>>><

>>>>>>>>>:

(5)

This distribution also has the property that p(qtjs, t) is

uniform over all nonzero values of qt [which is implied

by Eq. (4)].

The conditional distribution of the storm’s state vec-

tor, xtjxt21, also depends on s and t. The genesis and lysis

times are used to define a translation of the basic LDM

to a starting time equal to s:

p(x
t
jx

t�1
, s, t) 5

p(x
t
jx

t�1
, s, t) 5N (x

t
; m

0
, S

0
), t 5 s

p(x
t
jx

t�1
, s, t) 5N (x

t
; Ax

t�1
, Q), s , t # t

(

t 2 [s, t] :

and where in appendix A we show that the values of the

state vector xt for t ; [s, t] can be ignored.

Finally, we define the distribution over the feature

vectors p(Ytjxt, qt). Conditional independence is assumed

among the elements of the feature vector set, Yt, and each

yt,j is modeled as a draw from one of two probability

distributions depending on whether the feature vector is

associated with a storm or not:

p(Y
t
jx

t
, q

t
) 5 P

n
t

j51
p(y

t, j
jx

t
, q

t
), (6)

where

p(y
t, j
jx

t
, q

t
) 5

N (y
t
; Cx

t
, R) q

t
5 j

g(y
t, j

) otherwise

(

(7)

and g(yt,j) is the distribution of the false positive feature

vectors, which we model as a uniform distribution over

the domain of y.

With all of the conditional distributions in the graph-

ical model defined, the joint distribution, p(Y, X, q, s, t),

may be written as

p(Y, X, q, s, t) 5 p(s, t)P
T

t51
p(Y

t
, q

t
, x

t
jx

t�1
, s, t), (8)

5 p(s, t)
|fflfflffl{zfflfflffl}
lifetime

P
T

t51
p(Y

t
jx

t
, q

t
)

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
observed data

p(x
t
jx

t�1
, s, t)

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dynamics model

p(q
t
js, t)

|fflfflfflfflffl{zfflfflfflfflffl}
data association

, (9)

5 p(s, t)
|fflfflffl{zfflfflffl}
lifetime

P
T

t51
P

n
t

j51
p(y

t, j
jx

t
, q

t
)

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
observed data

p(x
t
jx

t�1
, s, t)

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dynamics model

p(q
t
js, t)

|fflfflfflfflffl{zfflfflfflfflffl}
data association

. (10)

d. Performing inference with the model

To extract a track in a Bayesian manner, the pos-

terior distribution p(X, q, s, tjY) must be com-

puted (i.e., the distribution over variables of interest

given the data Y). For notational convenience, the

unknown model parameters are grouped into a single

parameter vector u 5 fX, q, s, tg and parameter sub-

scripts on u denote the subvector containing that

parameter (i.e., us represents the unknown parameter

s). Consequently, p(us) and p(s) refer to the same

distribution.

Invoking Bayes rule, the posterior distribution may be

written as

p(ujY) } p(Yju)p(u). (11)

If this distribution can be computed (or approximated),

then any posterior quantity of interest may be derived,

such as posterior marginal distributions [e.g., p(XjY), or

modes (maxima) of the posterior distribution]. The pos-

terior modes correspond to likely storm tracks under the

dynamics model, and, once these modes are found, the

corresponding tracks may be ranked according to their
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likelihood. Because the posterior distribution cannot be

computed in closed form, we use numerical techniques to

find the posterior modes. Developing a practically effi-

cient method to perform this estimation is addressed in

the remainder of this section.

The true posterior distribution is approximated by

drawing samples from the posterior distribution using

the Metropolis–Hastings (M–H) sampler (Gelman et al.

2003) and then computing statistics of interest from

the set of samples. The M–H algorithm (algorithm 1)

defines a procedure for drawing samples from an arbi-

trary distribution through the use of a proposal distri-

bution, p(u*ju), which suggests a new set of parameter

values u* given a current set u. Desirable properties of

a proposal distribution are such that (a) new parameter

vectors can be quickly generated, (b) the density p(u*ju)

is easily computable up to a constant that does not de-

pend on u, and (c) the forward and reverse proposal

distributions, p(u*ju) and p(uju*), should not be too

imbalanced.

The proposal distribution we use in this paper is defined

as a mixture of two proposal distributions that allow the

sampler to efficiently explore a local mode of the poste-

rior distribution. The two proposal distributions are local

proposal distributions on s and t that draw either a new

genesis or lysis times, s* and t*, respectively, using a dis-

crete triangle distribution centered on the current genesis

or lysis time. The triangle distribution is truncated to

enforce the boundary conditions, s* # t*, s* . 0, and

t* # T. Once s* or t* is drawn, a data association pro-

posal is drawn using the method described in Bergman

and Doucet (2000) according to the following distribution:

p(q*js*, t*, q, s, t, Y)

5
p(q*js*, t*, q, s, t, Y) s*5 s

p(q*js*, t*, q 5 0, s, t, Y) otherwise.

(

(12)

The distribution in Eq. (12) specifies separate distribu-

tions for the case in which the starting position does not

change and the case in which the starting distribution

does change. In the former case we use information in

the current association q when generating a new pro-

posal q* while in the latter we do not. This is done in

order to balance the likelihood ratio between the for-

ward and reverse proposal distributions. An imbalance

happens when q* represents a storm track that is disjoint

from q. Evaluating p(uju*) will result in a very low

likelihood because the likelihood term at each time t

(dropping the s and t parameters for clarity) is condi-

tioned on the elements of q from time 1 to t 2 1 and the

elements of q* from time t 1 1 to T:

p(uju*) 5 P
t

p(q
t
jq

1:t�1
, q*

t11,T
, Y).

Consider a worst case scenario where q represents

a storm track that moves due west with a genesis pointP
at time t. Let the proposed association vector q* repre-

sent a storm that starts at the same point P at time t 1 1,

but moves due east. Also, assume the likelihood that the

tracks are identical [i.e., p(ujY) 5 p(u*jY)]. When we

evaluate the proposal distribution at time t, the likeli-

hood of a particular association qt is conditioned on a set

of associations from the westerly track up to time t 2 1

and the easterly track from time t 1 1 to T. These

probabilities can become very small since the probabil-

ity of a track making a large, discontinuous jump at time

t is unlikely. To avoid this situation, we set q 5 0 before

drawing a proposal where s 6¼ s*. This ensures that the

reverse proposal likelihood is not penalized for sampling

a different track. If s 5 s*, q and q* are assumed to

represent the same track.

Finally, one issue common to all MCMC imple-

mentations is the problem of assessing whether or not a

Markov Chain has converged to the true posterior dis-

tribution after drawing M samples. If the sampler is

initialized in a region of low posterior probability, then it

may take many iterations for the sampler to accept enough

proposals to converge in distribution to the posterior.

For this reason, the first N of M samples are usually

discarded as a ‘‘burn-in’’ phase in order to ensure that all

the samples are drawn from the true posterior distribu-

tion (Liu 2002; Gilks 1995). Determining a precise value

for N is difficult in the general case. In practice, an ap-

proximate convergence metric developed by Gelman and

Rubin (Brooks and Gelman 1998; Gelman and Rubin

1992) may be used to estimate when a chain has likely

converged by running multiple chains simultaneously.

3. Experiments

We demonstrate the effectiveness of our model and

methodology by applying it to WPDs in the eastern

ALGORITHM 1. The Metropolis–Hastings

sampling procedure.

1. for i 5 1 to n do

2. u* ; p(u*ju)

3. r *
p(u*jY)p(uju*)

p(ujY)p(u*ju)
4. u ; U(0, 1)

5. if u , min(r, 1) then

6. u * u*

7. end if

8. end for
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Pacific, using the 975-hPa relative vorticity field from

NCEP GFS. Isolating WPDs can help identify possible

interactions with ITCZ breakdown since roughly half of

the ITCZ breakdown events are triggered by interac-

tions with strong WPDs (Wang and Magnusdottir 2006).

This is a challenging tracking problem due to the zonally

elongated vorticity structures within the ITCZ itself,

which gives rise to numerous vorticity pools. These

vorticity pools are coherent structures and could rea-

sonably be considered storm tracks in their own right.

We depend on the LDM component of our model to

discern between the ITCZ vorticity pools and those that

represent strong WPDs. We trained our dynamics model

on 10 hand-labeled WPD tracks from the year 2000 that

were estimated from the Geostationary Operational

Environmental Satellite (GOES) visible and GOES IR

images—details are provided in appendix B. We per-

formed the training on satellite imagery rather than the

NCEP GFS data for two reasons. First, and most im-

portantly, it is much easier for the meteorologist to track

the storms using GOES imagery than vorticity. Second,

by training the dynamics model on GOES data and

applying it to NCEP GFS data, we demonstrate that the

trained dynamics model is transferrable to different

datasets.

We sequentially extract tracks from the full season of

feature vectors by initializing a single-storm model at an

approximate local posterior maximum and then drawing

posterior samples using the Metropolis–Hastings MCMC

sampling algorithm with a local proposal distribution as

described in section 2. The mode of the posterior sam-

ples is used as an estimate of a storm track and its as-

sociated feature vectors are then removed from the

dataset. This process is repeated until 100 storm tracks

have been extracted. The mode is reported because it

represents the single most likely track and is more in-

terpretable for this model than other posterior summary

statistics.

a. Feature vector detection

There is considerable freedom in selecting a method to

detect a set of feature vectors from a series of raw me-

teorological images. We use a simple method that works

well for WPD detection. More sophisticated methods,

such as Hodges’s multiresolution approach (Hodges

1994), the watershed segmentation method (Muskulus

and Jacob 2005), or the resolution-dependent method of

Walsh et al. (2007) could instead be used if desired.

First, the relative vorticity image is smoothed using a

7 3 7 isotropic Gaussian filter with a standard deviation

of 28. Then the smoothed image is converted into a bi-

nary image by setting any pixel with an intensity greater

than the threshold of 5 3 1025 s21 to 1. The thresholding

level can have a significant effect on the number of false

positives and false negatives of the feature set. If the

threshold is too high, then many local maxima may

be missed because they fall below the threshold level.

This can lead to a large number of false negatives and,

consequently, a low probability of detection. If the

threshold is too low, then many maxima may be

found that are simply background fluctuations. In this

case the detector will have a high false positive rate and,

again, a low probability of detection. A useful threshold

strikes a balance between these two extremes (Gelfand

et al. 1996).

The next step in our detection method is to apply

connected component analysis (CCA) to the binary

image using an 8-point neighborhood function to find

locally connected regions (Haralick and Shapiro 1992;

Tarjan 1975). Finally, all the local maxima within

each connected component are found by identifying

the pixels, p, such that the relative vorticity It(p) is

greater than all of the neighboring pixels. Once all

the local maxima are identified, a set of feature vectors yt,j

are extracted by recording the positions of the maxima and

the corresponding magnitudes of the relative vorticity

field.

Although the position of each maximum is con-

strained by the gridding of the data, the tracking model

is resistant to any ‘‘stair-stepping’’ effect induced by

a coarse grid. The use of an LDM, with a continuous

representation of the state vector, automatically pro-

duces smoothed tracks from noisy or grid-aligned fea-

ture detections. This eliminates the need to spend

additional effort improving the feature detection accu-

racy. Uncertainty in the true location of a storm due to

gridding is absorbed into the variance terms of the linear

dynamic model.

b. Parameter initialization

It is important to initialize the model parameters close

to likely storms within the dataset to encourage rapid

convergence to plausible tracks. It is infeasible to com-

pute the true modes of the posterior marginal distribu-

tion p(s, tjY) 5 �qp(s, t, qjY) due to the combinatoric

number of association vectors. Instead, we compute an

approximation of p(s, tjY) by optimizing the posterior

distribution over q using the expectation-maximization

(EM) algorithm:

p̂(s, tjY) 5 max
q

p(Yjq, s, t)p(q, s, t).

This optimization is tractable and can be computed in

time O(kTNd3), where k is the number of EM iterations,

JUNE 2010 S C H A R E N B R O I C H E T A L . 2141



T is the number of time steps, N is the expected number

of detections in each frame, and d is the dimensional-

ity of the hidden state vector x. Computational com-

plexity is further reduced by only computing p̂(s, tjY)

for a fixed storm duration d 5 t 2 s. After evaluating

p̂(s 5 t, t 5 t 1 djY) for t 5 1 . . . T 2 d, we select

t* 5 argmax
t

p̂(s, tjY) and initialize the sampler at

u 5 (s 5 t*, t 5 t*1 d, q 5 0).

It is important to initialize q to 0 in order to prevent

the sampler from becoming stuck at a poor local maxi-

mum. When all the associations are unassigned, the

model is free to sample a likely q for the given s and t.

c. Model assumptions

The storm lifetime prior, p(s, t), is set to be pro-

portional to a uniform-uniform distribution over s and t

(see Table 1) with a limited range of 3 to 21 days. We

also evaluated the uniform-Poisson distribution (results

not shown) but found it to be less effective in terms of

the overall quality of tracks found as measured by the

fractional overlap of NHC tracks with the tracks found

by the model. The distribution of the false positive fea-

ture vectors, g(yt, j), is also defined to be a uniform dis-

tribution over the region of interest, which spans the

west coast of the Americas to the date line, from the

equator to 308N, and from 0 to 1023 s21 on the relative

vorticity scale. The probability of detection is set to 0.95

and the width of the triangle proposal distribution is set

to 5 time steps. When performing inference using Mar-

kov Chain Monte Carlo (MCMC), the sampler is run for

2000 iterations and the first 500 samples are discarded as

burn-in. Each of the 1500 posterior samples is an (s, t, q)

tuple that defines a single track. The highest posterior

mode is identified by computing a histogram of the (s, t,

q) tuples and keeping the tuple with the largest number

of samples. In the case of a tie, the mode is chosen at

random from among the tied (s, t, q) tuples. After the

FIG. 4. The model takes the set of feature detections (a) as input.

These detections were extracted from the 2001 NCEP data after

segmenting the image and identifying all the local maxima. Each

black dot is a feature detection. The tracking model uses a LDM in

order to identify a specific class of storm tracks. (b) The expected

location of the storm tracks under the chosen LDM and (c) the final

set of tracks found by the model after combining the feature de-

tections with the assumed dynamics.

FIG. 5. Three cases were observed where the model failed to find

a track corresponding to a NHC best track. The three cases could

be classified into two types of tracking failures. (a) In the first type,

the NHC track has a genesis too far west to be picked up by the

dynamics model. (b) In the second type, the early part of the track

did not follow the assumed dynamics well enough to be selected by

the initialization method.
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mode is identified, it is removed from the set of feature

detections.

d. Application to NCEP GFS analysis

We apply our model to relative vorticity data from

NCEP GFS analysis on the 975-hPa level during the

summer half year (May–October) of 2000–02. The

data is available at 18 by 18 spatial resolution, 4 times per

day, which results in a sequence of 736 vorticity field

images for each year. A total of 100 tracks were

extracted and compared to a reference set of NHC best

tracks.

The model can be applied to data with a different time

resolution either by retraining the dynamics model at

the new time scale, or by rescaling the dynamic param-

eters of an existing model. For example, if the new data

has a temporal resolution that is an integral fraction, n,

of the data used to train the original model, then one can

simply update the existing model parameters: Â 5 An,

Q̂ 5 ÂQÂT.

Figures 4a,b show the full set of feature detections

from 2001 and a contour plot of the expected storm lo-

cations, respectively. The contour plot represents the

probability of observing a storm at a given location as-

suming that the storm tracks follow the LDM dynamics.

The dynamics model places almost no probability on

observing storms in the extreme northern and western

areas of the region of interest and the model does not

initiate any storm tracks outside of a relatively small

FIG. 6. The 2002 NHC best tracks (solid curves) of (a) Hurricanes

Alma, (b) Tropical Storm Iselle, and (c) Hurricane Kenna com-

pared to the tracks returned by the model (dashed curves). The

track for Hurricane Kenna ends abruptly because the model is

prevented from tracking over land.

FIG. 7. A recall curve that plots the percentage of the 996 model

track points that are found within a fixed distance of the NHC track

points. The unmatched tracks from Tropical Storm Henriette,

Hurricane Ele, and Hurricane Huko are excluded from the set.

Over 90% of all the points are found within 1.458 of the NHC tracks

and over 95% are found within 2.28.
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genesis region. The set of all 100 extracted tracks is

shown in Fig. 4c. A qualitative examination of the storm

tracks shows that the extracted tracks obey the general

constraints of the assumed dynamics model.

The model’s tracks are quantitatively compared to the

NHC best track dataset for each year. Quantitative

evaluation of tracking methods is generally difficult

because there is rarely an objective set of ground truth

storm tracks for comparison. Because our LDM pa-

rameters prefer tracking strong storms, the NHC best-

track dataset is used as a proxy for ground truth. The

NHC tracks include all the named storms for a given

year as well as tropical depressions, and thus, they may

be considered as the set of ‘‘important’’ tracks, which

could reasonably be found by any tracking method.

Before beginning any analysis of the model’s tracks, the

NHC best-track set is filtered by removing all the storms

that lie outside the region of interest or the 6-month

seasonal window.2

To carry out the analysis, each NHC track is paired

with the best corresponding track found by our model. A

two-step method is used to identify a set of matching

storm tracks. First, the tracks are scanned to find can-

didates containing an overlapping track point (latitude–

longitude pair) within the same image. Once a candidate

set for each NHC track is identified, the root-mean-

square error (RMSE) is computed between the sets of

corresponding track points. The model track with the

smallest RMSE is selected as the match to the NHC

track.

The set of matches are scanned again and any NHC

track without a matching model track or a RMSE

greater than 88 is considered a missed track and removed

from further consideration. Over the three seasons, only

three NHC tracks were not detected by the model—

Tropical Storm Henriette in 2001, and Hurricanes Ele

and Huko in 2002. These three tracks exhibited two

types of detection failure (Fig. 5). Hurricanes Ele and

Huko are both missed because of the extreme western

location of their genesis. The model places a very low

probability of storm genesis in this region and the

fact that the two storms are ignored is consistent with

FIG. 8. (a) Comparison of the storms tracks and track statistics of the 17 identified NHC tracks in 2000 vs the other

tracks returned by the model. The non-NHC tracks (b) primarily correspond to ITCZ breakdown events, have (c)

a statistically weaker maximum intensity, and (d) shorter lifetime than the named storms.

2 The official hurricane season in the east Pacific lasts from

15 May through the end of November.
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this model prior. In the case of Henriette, the first

2 days of its track did not match the dynamics model,

so the model was never initialized near enough the

true storm parameters to find its corresponding mode

in the posterior distribution. If the model is manually

initialized at Henriette’s genesis, then the storm is

found.

For the rest of the NHC tracks identified by the

model, the model tracks exhibit excellent consistency

with their corresponding NHC positions. A represen-

tative set of tracks from 2002—Hurricane Alma, Trop-

ical Storm Iselle, and Hurricane Kenna—are shown in

Fig. 6. Generally, each NHC track is found to be a subset

of one of the model tracks where the model tracks

a storm both before and after it reaches tropical de-

pression strength. The fact that the tracks from our

model are longer than the NHC tracks is a function of

our feature detection threshold as it identifies vorticity

maxima in storms that are weaker than tropical de-

pressions.

The track points are used as a basis of further quan-

titative comparison by computing a recall curve (Fig. 7)

for the full set of storm tracks across all 3 yr. The vertical

axis is the fraction of model track points that lie within

a certain distance (horizontal axis) of the associated

NHC track points. The NHC and model track points

both must be present at the same time for the compar-

ison to be valid. The only way to achieve a 100% match

at any distance threshold is to have a track point from

our model present for all the NHC track points.

The algorithm exhibits very good recall, with over

75% of the model track points falling within 18 of the

NHC tracks and over 90% falling within 1.58. For com-

parison, the method of Kleppek et al. (2008) reported

a match percentage of less than 60% for a threshold of

about 1.658. Significantly, 100% of the track points are

eventually captured, which indicates that every NHC

track point has a corresponding match in the set of

model tracks.

Finally, Fig. 8 presents a statistical comparison be-

tween the set of model tracks matching the NHC tracks

and the remaining set of detected model tracks.

The NHC matches are shown in Fig. 8a and the non-

NHC tracks in Fig. 8b. The remaining two figures are

histograms comparing the the maximum track in-

tensities (Fig. 8c) and durations (Fig. 8d) of the two

sets of tracks, verifying that the NHC tracks are more

intense.

The non-NHC tracks found by the model tend to be

located within the ITCZ and are mostly zonally directed.

The average duration of the non-NHC tracks is only

slightly shorter than the NHC tracks, which indicates

that the disturbances in the region tend to persist

for about the same time span regardless of their

strength.

4. Conclusions

We have presented a probabilistic model for auto-

matically extracting storm tracks from a set of domain-

specific feature detections. The novel aspects of our

approach lie in the treatment of genesis and lysis times of

storms as unknown variables in a probabilistic framework

and the introduction of a flexible dynamics model in a

modular fashion.

We developed an MCMC-based inference method for

fitting the model parameters to observed data and a prac-

tical methodology for extracting multiple tracks from

a single season of data. We then applied our method to the

NCEP GFS dataset for the years 2000–02 and have shown

quantitatively that our model is able to effectively find

tracks that are 1) consistent with the assumed dynamics,

2) correspond to known storms from the NHC best-track

set, and 3) identify a larger fraction of the track points of

known storms than other published approaches. In princi-

ple the type of model proposed in this paper could also be

applied to the problem of tracking storms over other geo-

graphical regions using an appropriate dynamics model.

The model could be extended to simultaneously track

multiple storms at once, however, the additional com-

plexity was not needed in this application because of the

relatively large separation between storms. A multiple

object tracker would be useful in applications where

tracks overlap in time or the observational noise is large

relative to the dynamics (e.g., jjRjj � jjCQCTjj).
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APPENDIX A

Marginalization of the Hidden States when
qt 5 0 for t;[s, t]

It is advantageous to analytically integrate out nui-

sance variables from a Bayesian model before applying

Monte Carlo simulation since the sampling variance will

be reduced (Särkkä et al. 2007). In our model we con-

sider the distribution of the state vector xt outside of the

storm’s duration, h(xt), as a nuisance variable.

Consider expanding the joint distribution at a single

time i;[s, t] and integrating out the state variable xi:
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This marginalization can be repeated for every xt that

lies outside of the storm’s lifetime. This simplifies the

model and matches our human intuition as well—if no

storm is present, then one should not have to compute

any storm-related quantities. The final form of the sim-

plified joint distribution is

p(Y, X
s,t

, q
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In the case where p(xtjxt21, s, t) is defined by a LDM,

the state variables can be analytically integrated out

within the storm’s lifetime as well, which further sim-

plifies the joint distribution (Bergman and Doucet 2000).

APPENDIX B

LDM Parameter Estimation from
Labeled Examples

For our experiments, we trained the LDM using a set

of 10 hand-labeled WPD tracks,

Z
train

5 fz
i, j
g i 5 1 . . . 10, j 5 1 . . . t

i
,

from August to October 2000 using the EM algorithm

(Digalakis et al. 1993), where zi,j is the feature vector for

storm i at time j and ti denotes the length of storm i.

Because the training data contained only the WPD track

positions (no intensity), we initially fit an m 5 4, n 5 2

LDM to the data and then manually augment the model

parameters in order to add an intensity term and expand

the model to m 5 5, n 5 3.

The model parameters are initialized with a sim-

ple first-order dynamics model that updates a storm’s

position by adding the current velocity. The initial state

mean m0 and covariance S0 are initialized at the mean

and covariance of the positions and velocities of the first

observation across all the labeled tracks:
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After the EM algorithm converges, we augment the

trained model parameters in order to add the intensity

component. Under the assumption that a storm’s intensity
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is independent from its motion, we can perform this

augmentation by simply appending a diagonal term to

each LDM parameter. We model the intensity as a ran-

dom walk, so the dynamics of the intensity are trivial,

A5,5 5 1. Because of our independence assumption, the

observed intensity is a direct measurement of the hidden

state intensity, so C3,5 5 1.

The remaining intensity parameter values are esti-

mated by identifying the closest feature detection to

each of the hand-labeled track points and calculating the

mean and variance of the observed intensity values. The

observed variance is split among Q and R, with pro-

portionally more variance being added to the Q matrix

because we expect our observations to have less in-

herent variability than the random changes in intensity

over a 6-h period.

The final set of LDM parameters that are used in our

experiments are

A 5

1.0002 1.4235 0.0037 �0.1383 0.0

�0.0014 0.5659 0.0053 �0.0771 0.0
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