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The numerical stability of leaping methods for stochastic

simulation of chemically reacting systems

Yang Cao*  Linda R. Petzold* Muruhan Rathinam’  Daniel T. Gillespie *

Abstract.

Tau-leaping methods have recently been proposed for the acceleration of discrete stochastic simulation of
chemically reacting systems. This paper considers the numerical stability of these methods. The concept
of stochastic absolute stability is defined, discussed and applied to these leaping methods: the explicit tau,

implicit tau and trapezoidal tau.
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1 Introduction

Biochemical systems involving small numbers of molecules of certain species exhibit randomness
which may account for the cell to cell variation and play critical roles in biological processes.'™ Sim-
ulation by means of the deterministic reaction rate equations (RREs) cannot capture the stochastic
behavior inherent in these systems. Stochastic simulation methods for chemically reacting systems
have therefore attracted much recent interest.>'! The stochastic simulation algorithm (SSA)>% has
been a standard method to simulate the time evolution of a well-stirred chemically reacting system.
It takes proper account of the randomness which is inherent in these systems. A well-known diffi-
culty of SSA is the computational cost. The computing time tends to be prohibitively long if some
of the reactions fire very frequently and/or if the molecular populations of some of the reactant
species are very large. There are two main reasons for this, both arising from the multiscale nature
of the underlying problem. The first is stiffness. Some reactions are much faster than others and
quickly reach a stable state. The dynamics of the system is driven by the slow reactions. The
SSA simulates every reaction and thus puts a great deal of effort into the more frequently firing
fast reactions, even though they do not contribute much to the dynamics and stochasticity of the
system. In the deterministic regime, this multiscale problem in time is known as stiffness.'? We
emphasize that most chemical systems, whether considered at a scale appropriate to stochastic or
to deterministic simulation, involve several widely varying time scales, so such systems are nearly
always stiff. The second reason for the slowness of SSA has to do with the multiscale population.
Some species are present in relatively small quantities and should be modeled by a discrete stochas-
tic process, whereas other species are present in larger quantities and are more efficiently modeled
by a deterministic ordinary differential equation (or at some scale in between). SSA treats all of

the species as discrete stochastic processes.

Several techniques have been proposed to simulate biochemical systems more efficiently. One



set of techniques involves hybrid methods,®® which combine the traditional deterministic ODE (or
the chemical Langevin equation) and SSA. The idea is to split the system into two regimes: the
continuous regime and the discrete regime. ODEs or algebraic equations are used to describe the
fast reactions between species with large populations. SSA is used for slow reactions or species

with small populations. The multiscale SSA method!® !

generalizes this idea to the case in which
species with small population are involved in fast reactions. The hybrid methods are efficient. But

so far there is no theoretically justifiable method for automatically partitioning the system.

Another idea involves the use of leaping methods. Gillespie first proposed the tau-leaping
method, which we call the explicit tau method in this paper. By means of a Poisson approximation,
the tau-leaping method can “leap over” many reactions. For many problems, the tau-leaping
method can approximate the stochastic behavior of the system very well. The tau-leaping method
connects the SSA in the discrete stochastic regime to the explicit Euler method for the chemical
Langevin equation in the continuous stochastic regime and the reaction rate equation (RRE) in the
continuous deterministic regime. It reduces to SSA for sufficiently small 7 and to the Euler method
for the chemical Langevin equation (CLE) when 7 is large but still satisfies the “Leap Condition”.
When 7 is allowed to be sufficiently large, the CLE tends smoothly to the deterministic RRE,
and the tau-leaping method reduces to the explicit Euler formula for the RRE.” Gillespie’s original
tau-leaping method offers a promising direction toward efficient multiscale stochastic simulation
methods. But it is very inefficient for stiff stochastic problems, just as the explicit Euler method
is very inefficient for stiff ODE systems. The implicit tau-leaping method, which tends to the
implicit Euler method in the deterministic regime, was proposed recently in Ref'® for simulating
stiff stochastic chemically reacting systems. It was demonstrated on some numerical examples that
for stiff stochastic problems, the stepsize of the explicit tau method is limited by the stiffness,
whereas the implicit tau method can use a much larger stepsize. It was also observed that the

implicit tau method exhibits a damping effect in the sense that the variance of the solution given



by the implicit tau method is much smaller than that given by SSA simulation. The variance can

be restored by the down-shifting method proposed in Ref.!?

Convergence of the explicit tau and implicit tau methods has been shown in Ref.!* Both
methods are convergent of order 1 in the mean and the variance. Recently we have also studied
a trapezoidal tau method.!> That method is consistent of order 2 for the mean, and order 1 for
the other moments. In this paper we will show that it also has numerical stability properties that
may be advantageous. In this paper, we study the numerical stability of the three leaping methods,
based on a test problem which has been carefully chosen to reveal the numerical stability properties.
Such a test problem has been traditionally used to study the numerical stability in the deterministic
regime, where

y =My, (1)

with A a complex constant, is used as the test problem. The numerical stability analysis in the
deterministic regime studies two questions. The first is: When the stepsize h — 0, will the
numerical solution for (1) be stable? This property is known as O-stability. We have studied it
recently'® with respect to the leaping methods. The second is: For a fixed stepsize h, when t,, = nh
tends to infinity, will the numerical solution of (1) be stable? The answer to this question yields

the property known as absolute stability.

A detailed study of absolute stability of accelerated discrete stochastic methods such as tau-
leaping is necessary and helpful for our understanding of numerical stability and stiffness in this

regime. The corresponding stochastic model for (1) is the decay process

S — 0, (2)

where the propensity function is a(x) = Ax. This simple model is not of much interest in the
stochastic regime because all of the moments of X vanish to zero when n tends to infinity. Thus

we need to consider a nonvanishing model. Such a model is given by the reversible isomerization



process

S, ¢ S, (3)

where the propensity functions are given by a;(x) = ¢;x; and as(x) = coxy. The reversible isomer-
ization process has been well studied in the literature.'® This system has a stationary state. There
is an analytic solution for the distribution of the stationary state. Thus this model is well-suited to

serve as a test problem.

To study the numerical stability in the stochastic regime, we ask similar questions as in the
deterministic regime. In this paper we will focus on absolute stability. Note that the numerical
solutions are random. Thus we are more concerned with the distribution than with a single trajec-
tory. But the distribution is hard to study. Instead, we will focus on the moments. The question
we are concerned with is: For a fixed stepsize, will all the moments of the numerical solution be
stable when n tends to co? The answer to this question yields a concept of absolute stability in
the stochastic regime. We will show that the absolute stability region, as defined in this manner, is
similar to the corresponding ones in the deterministic regime. But an important difference is that,
although the moments of a given numerical method may converge, they may not converge to the
corresponding moments of the theoretical solution. Thus a further question is: Will the moments
of the numerical solution converge to the corresponding moments of the theoretical distribution of
the stationary state? This paper provides answers to these two questions and presents a stochastic

absolute stability theory.

The outline of this paper is as follows. In Section 2 we review the background of the SSA, the
leaping methods and the theoretical distribution for the stationary state of the reversible isomeriza-
tion model. In Section 3 we define the concept of stochastic absolute stability and present results
for the three methods. Finally, in Section 4 we provide some numerical experiments illustrating the

results.



2 Background

2.1 SSA

Suppose we have N species {Si,---, Sy} and M reaction channels {R;,---, Ry}. The dynamical
state of the system is denoted by X = (X;(¢),-- -, Xn(t)), where X;(¢) is the number of S; molecules

at time ¢. For each j =1,..., M, a;(x) is the propensity function defined by the condition that

aj(z)dt = the probability, given X (¢) = z, that one R; reaction )

will occur in the next infinitesimal time interval [t, ¢ + dt).

The vectors v;,j = 1,..., M are the state change vectors, whose ith component is defined by

v;j = the change in the number of S; molecules produced by one R; reaction. (5)

The dynamics of the system obeys the chemical master equation (CME):

M
OP (@ 0. 10) _ NP (2 — 1) Pla — v, o, to) — ay(x) P (a, o, o), (6)
ot <

where the function P(z,t|z, o) denotes the probability that X (¢) will be z, given that X (t5) = xo.
The CME is hard to solve both theoretically and numerically. An equivalent simulation method is

the SSA,>% which produce realizations of X (t).

The SSA>® is based on the next-reaction density function p(t, j|z,t) which is defined as the
probability, given X (¢) = z, that the next reaction in the system will occur in the infinitesimal time

interval [t + 7,t 4+ 7 + dt) and will be an R; reaction. It follows from (4) and (5) that
p(T, j|z,t) = a;(z) exp(—ao(z)T) (7>0;7=1,...,M), (7)

where ao(z) = Z;Vil aj(z). The SSA generates 7 and j according to (7) and then advances the

system according to

X(t+71)=X()+v,.



Four different (but mathematically equivalent) ways can be used to generate 7 and j from (7).

Details can be found in Refs.? 617,18

The SSA is exact in the sense that it generates the same distribution as described by the
CME. But it can also be very time-consuming because the simulation proceeds one reaction at a

time.

2.2 Tau-Leaping Methods

The tau-leaping method” tries to accelerate the simulation by asking a different question: How many
times does each reaction channel fire in each subinterval? In each step, the tau-leaping method can

proceed with many reactions. This is achieved at the cost of some accuracy. Define

K;(t;z,t) = the number of times, given X (¢) = z, that reaction channel R; will

fire in the time interval [t,t+7) (j=1,...,M).

The tau-leaping method assumes the Leap Condition: Require T to be small enough that the change
in the state during [t,t + ) will be so small that no propensity function will suffer an appreciable
change in its value. K;(7;z,t) is approximated by the Poisson random variable P(a;(x),7) where
P(a,7) denotes the Poisson random variable with mean and variance ar. The basic tau-leaping

method is : Choose a value for 7 that satisfies the Leap Condition. Given X (t) = x, generate for

each j =1,..., M asample value of the Poisson random variable P(a;(z), ), and update the state:
M

Xt +7) =2+ v;Paj(z),7). (9)
j=1

The tau-leaping method tends to the explicit Euler method for the CLE whenever it is also true that
aj(z)T >> 1forall j =1,..., M. Numerical experiments’ have shown that the tau-leaping method
can achieve a very substantial speedup over SSA for some systems. But because it is explicit, it

must take a very small 7 for stiff problems. The implicit tau method'® has been proposed for



discrete stochastic simulation of stiff problems. The formula is given by
M
X0t 47)=z+ Z vi[P(aj(z),7) — aj(z)T + a; (XD (t + 7))7]. (10)
j=1
Newton’s method is used to solve (10). Note that here X (¢ + 7) are floating point values. In the
simulation, we change them to integers by rounding the quantity in brackets on the right side of
(10) to the nearest integer. But to simplify the analysis, here we will use (10) as written. It has
been demonstrated!® that the implicit tau method allows much larger stepsizes than the explicit
tau method, when applied to stiff problems. Convergence proofs for the explicit and implicit tau
leaping methods are given in Ref.!* Here we use the word “leaping methods” to represent a class

of tau-leaping-like methods.

We can define another interesting leaping method, namely the trapezoidal tau method!®

XM (t+r)y=2+ Z v;|P(a;(x),T) — %aj(x)T - %aj(X(t’) (t+7))7]. (11)

j=1

The trapezoidal tau method tends to the trapezoidal method in the deterministic regime. Although
it looks similar to the implicit tau method, it is one order of accuracy higher for the mean of the
solution. We will show in this paper that it also has numerical stability properties that may be

advantageous for some problems.

2.3 The Reversible Isomerization
Recall the reversible isomerization reaction is
S, = Ss. (12)
c2
Since the species satisfy the conservation law

Xi(t) + Xo(t) = 2, (13)



where zr is a constant, the problem is really a one-variable problem:
Xi(t) = X(t), Xo(t) =zr— X(1). (14)

The system (12) has a stationary state'® as ¢ — oo, which follows the binomial distribution

PXC =)= g (1 g (15)
= 7)== ———— —
zNzr — x)!q e ’
where X* = X (00) = Xi(00), ¢ = ;2. The mean and variance of X* are therefore given by the
standard binomial formulas
CoT
E(X*) = 27q = , 16
(47) = arg = 2L (16
C1CoXT
Var(X*) = 27rq(1 — ¢) = —. 17
( ) TQ( q) (C1 + 62)2 ( )

3 Absolute Stability and Stiffness

To study the effects of stiffness on the test problem (12), we apply each formula analytically to the
test problem, to generate the propagation equation for the moments. It will be shown that each
moment evolves in discrete time n according to a difference equation and that there is a propagation
coefficient that essentially determines whether the moment grows unboundedly with n or not. For
absolute stability, it is required that the absolute value of the propagation coefficient be no larger
than 1. But even if this numerical stability condition is satisfied, it does not guarantee that the

moments will converge to that of the theoretical solution.

In the study of absolute stability, we fix 7 and let n tend to infinity. We denote X,, =
X (to + n1). Here we will first focus on the stability of the mean and variance. We give detailed
analysis for all three methods. Then we will show that the absolute stability region for higher

moments is the same as that of the mean.

In our derivation, we will need the following results about the conditional probability. We

first state a lemma on conditional expectation and conditional variance, see Ref?° for proof.



Lemma 3.1 If X and Y are random variables, then

E(Y) = E(E(Y|X)),

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).

3.1 Explicit Tau Method
Applying the explicit tau method (9) with a fixed stepsize 7 to the test problem (12), we have
x4 = X\ 4+ P(ey(zr — XEY), 1) — P2 X5 7). (18)
Conditioning on X,(ft) and applying first part of Lemma 3.1 we obtain
E(X) = (1 = M) E(X) + eyrar, (19)

where A = ¢; + ¢2. The propagation coefficient is (1 — A7) and if |1 — A7| > 1, the solution will blow

up when n — oo. Thus to ensure the stability, 7 must be chosen to satisfy
1—A7| < 1. (20)

Noting that (20) is similar to the absolute stability condition in the classic theory of numerical
solution of ODEs, we call it the absolute stability condition of the explicit tau method. The set of

At for which (20) holds will be called the region of absolute stability of the explicit tau method.

Solving (20), we obtain

T <2/ (21)

10



Letting n — oo and solving for E(X (Y (00)) in (19), we obtain

(&)
c1 + Co

E(X©(c0)) = = BE(X™). (22)

Thus if (21) is satisfied, the mean value given by the explicit tau method converges to the theoretical

mean value.

Next let us consider the evolution of the variance. Again conditioning on X and using

Lemma 3.1 we obtain
Var(X; ) = E(Var(X 3 X0)) + Var(BQGH X))
= E(cor(zr — X)) + 7 X)) + Var((1 = (1 + ¢2)7) X5 (23)
= (1- )\T)QVar(Xq(ft)) + coTx + (€1 — CQ)TE(X,(ft)).
Note that the propagation coefficient is given by (1—A7)?. Thus the stability region for the variance

is also given by (20). Letting n — oo in (23) and applying (22), we obtain

Var(X©D(00)) = (1 — (¢ + ¢3)7)*Var(X ) (00)) + ey + 7(02 _+CZ)62 TXT. (24)
1+ ¢
Solving (24) for Var(X () (c0)), we obtain
(et) 2 C1CoXT 2 %
Var(X'*(00)) Var(X™). (25)

- 2 — A7 (c1 + ¢)? T 2-r
Thus the variance given by the explicit tau method does not converge to the theoretical value, even

if the stability condition is satisfied. If (21) is satisfied, Var(X*®(c0)) is larger than Var(X*).

3.2 Implicit Tau Method

Applying the implicit tau method (10) with a fixed stepsize 7 to the test problem (12), we have

X = X[ 4 Pley(wr — X), 7) = P(ar XS0, 7) + cor (27 — X)) 6)

—ClTXSi)l — o7 (T — X7(1it)) + X,

11



Simplifying (26), we obtain

. . 1 . .
xW =x@ 4~ [p — X)), 1) — P, X, 7). 27
n+1 n + 1+ (Cl +Cg)’7’[ (CQ(‘IT n )7T) (Cl n 7T)] ( )

Applying Lemma 3.1 as before, we obtain

1

E(XW)=BXM) + ————
( n-l-l) ( n)+1+(01+02)’7'

[coT (27 — E(Xfft))) — clTE(X,git))]. (28)

Thus
. 1 . CoTX

E(XW)y=— ~ _ pX@)y 2T 29
( n—|—1) 1+(Cl+02)7' ( n )+1+(Cl+02)7' ( )

The propagation coefficient is )\ , thus the stability condition for the implicit tau method is

1

<1. 30
‘ 14+ A7 (30)

In contrast to the situation for the explicit tau method, (30) is satisfied for large |A7|. Thus the
implicit tau method is stable for stiff problems. Letting n — oo in (28), we obtain the converged
mean value given by the implicit tau method,

Co

E(X®(c0)) = zp = E(X). (31)

Cc1+ ¢

For the variance,

Var(X\0) = E(Var(X, X)) + Var(B(X™,1X57))

s CoT (T — Xfft)) + clTXfft)> + Var( X(n)) (32)

1
= B <<1+<c1+c2m

= 7(1“61%) 2 Var(Xy) +

1+(c1 —|—C2)T
W[CZTxT + (C1 — CQ)TE(X(”))].

Thus the stability condition for variance is the same as (30). Letting n — oo in (32) and applying
(31), we obtain

Var(X® (c0)) =

5 Var(X). (33)

Thus the variance given by the implicit tau method does not converge to the theoretical value.

Var(X () (c0)) is smaller than Var(X*). This explains the damping effect of the implicit tau method,

which was reported in Rathinam et al.!3

12



3.3 Trapezoidal Tau Method
Applying the trapezoidal tau method (11) with a fixed stepsize 7 to the test problem (12), we have

n

T ]' T T
X = XU 4 P(ey(mp— X)), 1) = P(ey X, 1) + 3 o (XD — XU — ey (r X ) — X ()], (34)

Simplifying (34), we obtain

1
X = X0 4~ [P(cy(wr — X)), 7) — P(er X, 7). (35)
n+ n 1+ (014_202)7- n n
Taking expectation we obtain
T T 1 T T
E(X{1) = B(X[") + o7 (w7 — B(X{M)) — eir B(X{™). (36)

1+ (a1 —{—262)7'

Thus

2= (a+e)T CoT T

EX(tr) _
( n+1) 2+(01+62)7’

X) (37)

1 + ((21-1—262)7' .

The propagation coefficient is g;i: Thus the stability condition for the trapezoidal tau method is
2— AT

1. 38

‘ 24 AT (38)

Since (38) is satisfied for large |A7|, the trapezoidal tau method is also a good candidate for the
solution of stiff problems. Letting n — oo in (36), we obtain the converged mean value.

MWMWW=QTQW=E@U (39)

For the variance,

Var(X() = B(Var(X\T) X)) + Var(B(X [ X))

t ¢ 1=t
= E (WCQT(Z'T - Xé 7”)) + CITXé 7")) + Var(@‘x”(l T)) (40)
1 {etea)r ? (tr) 1 (tr)
= GE Var(X,"') + @[@Tﬂw + (c1 — e)TE(Xn )]

Thus the stability condition for variance is the same as (38). Letting n — oo in (40) and applying

(39), we obtain the limit of the variance
Var(X ) (c0)) = Var(X™). (41)

13



Thus the variance given by the trapezoidal tau method converges to the theoretical value. This is

an advantage of the trapezoidal tau method over the explicit and implicit tau methods.

3.4 Stability of Higher Moments

To study the stability region for higher moments, we need to calculate the propagation coefficient.
We will show that for each of the above three leaping methods, the stability region for higher
moments is the same as the stability region for the mean. Since the analysis is similar for all three
methods, in the following we show only the analysis for the explicit tau method. First we need the

following Lemma for the Poisson distribution which is easy to prove and we shall omit the proof.

Lemma 3.2 For the Poisson distribution X = P()),

k—1
E(X*) =M+ N, (42)

J=0

where a; are constants for fized k.

Applying the explicit tau method to the test problem (12), we obtain (18). For convenience

of presentation, we omit the superscript and rewrite (18) as

Xp1 = X+ Plea(zr — Xp),7) — Pl X, 7). (43)

For the k-th moment, from Lemma 3.1 we have

E(Xy,,) = E(BE(X,,1X0)) (44)
Applying (44) to (43), we obtain
E(XF.)) = E(E(X, + P(ca(zr — Xp), 7) — P(c1.Xn, 7)]F| X)) (45)

14



Expanding E([X, + P(c2(zr — X,),7) — P(c1X,, 7)]¥|X,,), we obtain
E([Xn + P(c2(zr — X,,),7) — P(1X,,, 7)]F| X)) =

Y CaXpE([P(ea(wr — Xn), 7)Y [X0) E([—P(er Xn, 7)]' [ Xa),

i+j+=k
(46)
where C;;; = % Note that we have used the fact that conditioned on X, the two Poisson numbers
are independent. Taking expectation of (46) we may obtain an expression for E(XF_ ) as a linear
combination of moments E(X2) where a = 1,..., k. We are interested in the coefficient of E(XF)
i.e. the propagation constant for the kth moment. For this we only need to count the coefficient

for X7 in E([P(ca(z7 — X,), 7))’| X)) and the coefficient for X! in E([—P(ci Xy, )] X,). Applying

(42), we have

CilerizE([P(@(xT - Xu), T)]j|Xn)E(_[P(01Xn; T)]Z|Xn) = Cz‘jl(—czT)j(—ClT)lXﬁ + ZBijer;;a
r<k
(47)
where B;;; are some constants that depend on 7. Substituting (47) into (46) and taking expectation
we obtain
k—1
E(X§) = [1— (e + )" B(Xy) + ) CITE(X)), (48)
=0
where C’]’-c are constants. Note that we have used the fact that

Z Cijl(_CQT)j(—ClT)l =(1—c1— 7).

i+j+H=k

Thus the propagation coefficient is (1 — A7)*. The stability region is the set of A7 such that
1 —A7| <1. (49)
This is the same as the absolute stability region for the mean and for the variance.

A similar analysis can be applied to the implicit tau and trapezoidal tau methods. We know
that the variance for the implicit tau does not converge to the variance of the stationary solution,
while the variance for the trapezoidal tau method does. In the next section we shall show that not

all of the higher moments of the trapezoidal method can converge to that of the stationary solution.

15



3.5 Convergence of Higher Moments for Trapezoidal Tau

Provided that the stability condition (38) is satisfied we know that all the moments of the trapezoidal
tau converge. We have shown that the mean and variance actually converge to the mean and variance
of the stationary distribution (15) of the reversible isomerization reaction. A natural question is
whether all higher moments also converge to those of the stationary distribution. Unfortunately

the answer is negative.

First we recall the notions of distribution functions and weak convergence. Given a random
variable X, its distribution function F' (also known as cumulative distribution function) is defined
by

F(z) =Prob{X <z}, zeR
A sequence of distributions F}, is said to converge weakly to a distribution F' (as n — oo) if

lim F,(z) = F(x)

n—00
for each x € R at which F' is continuous.

Our argument comes down to two facts. One is that the trapezoidal tau cannot converge
weakly to the stationary distribution described by (15). This is because the Poisson scheme gives un-
boundedly large possible values. The other is that since the stationary distribution (15) is uniquely
characterized by its moments, convergence of moments implies weak convergence of the distribu-

tions.

Lemma 3.3 The binomial distribution is uniquely characterized by its moments. In other words
giwen the moments ux, k € N of a binomial distribution, if another distribution has the same

moments then it 1s the same binomial distribution.

Proof We will use Proposition 8.49 of Ref,2! which states that if u, € R, k € N satisfy

1
lim sup M < 00
k. k

16



then there exists at most one distribution with moments .

The stationary distribution of the reversible isomerization is binomial with parameter N =
xp. This means P(X* > x7) = 0 where X* is a random variable distributed according to the

stationary distribution. Hence it follows that

e = E((X7)") < o

and thus
|Mk\% LT
< — =0,
k. — k
as k — o0o. Proposition 8.49 of Ref?! stated above completes the proof. |

Lemma 3.4 The stationary binomial distribution (15) cannot be a stationary distribution for the

trapezoidal tau method. Thus the trapezoidal tau can not converge weakly to the distribution given

by (15).

Proof Suppose X (t) has the same distribution as X* given in (15). Then it follows from (35)
that

Prob{ X" (t + 1) > 27} > 0.

Thus X@)(t + 7) does not have the same distribution (15) attributed to X (¢). Hence the

distribution (15) cannot be a stationary distribution for the trapezoidal tau method. i

Lemma 3.5 Not all moments of the trapezoidal tau method converge to the corresponding moments

of the stationary distribution given by (15).

Proof We will use Theorem 8.48 of Ref.2! This theorem states that if a sequence of probability

distributions F),, n € N, have convergent moments, i.e.

e = lim [ 2"dF,(x)

n—oo

17



exist and are finite, and if there is at most one distribution function F' such that

[t ir @) =,

then the sequence F, converges weakly to F'. Thus if all the moments of the trapezoidal tau
converge to those of the stationary distribution (15) then using Lemma 3.3 we may conclude that
the trapezoidal tau must converge weakly to the stationary distribution (15). But this contradicts

Lemma 3.4. |

4 Numerical Comparison

In this section we apply the three methods: explicit tau, implicit tau and trapezoidal tau to solve
two chemically reacting systems. The first is the test problem (12). The corresponding parameters
were chosen as: ¢; = ¢g = 10, 21(0) = z2(0) = 100 (zr = 200). Histograms were plotted from
10,000 realizations from each method at final time 7" = 10. Figures 1 to 4 show the corresponding
histograms of the X (7) obtained with different numerical methods and different stepsizes 7. When
7 is small, all three methods generate histograms close to that of the SSA method. As 7 increases,
as predicted by the analysis, the histogram generating from the explicit tau method is too broad and
the histogram given by the implicit tau is too narrow, while the trapezoidal tau method generates
a histogram very close to the SSA method. Note that when 7 > 0.1, the explicit tau method is

unstable. Thus there is no plot for the explicit tau method in the corresponding figures.

The second example is the Schlogl reaction. This reaction is famous for its bistable distri-

bution. The reactions are given by

B, +2X = 3X,
Cc2

cs
B, = X,
C4
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where B; and B, denote buffered species whose respective molecular populations N; and Ny are

assumed to remain essentially constant over the time interval of interest. Let

z(t) = number of X molecules in the system at time ¢. (51)

The state change vectors are v = v3 =1, v, = vy = —1. The propensity functions are

ar(z) = FNz(z—1),

ax(r) = Za(r—1)(z - 2), (52)
a3(£) = 3Ny,

as(x) = cyz.

For some parameter values, this model has two stable states. The parameter set that we used in

our simulation has this property, and was given by

cp =3 X 10_7, Co = 10_4, C3 = 10_3, Cq4 = 35,
(53)
N1:1X105, N2:2X105.
We ran the simulation from ¢ = 0, with initial state z(0) = 250, to time 7" = 4. The histograms
generated from SSA, explicit tau, implicit tau and trapezoidal tau with fixed stepsizes 7 = 0.4 are
shown in Figure 5. The results are similar to those obtained for the first problem. The histogram
produced by the trapezoidal tau is close to that produced by the SSA method, while the histogram

produced by the explicit tau exhibits a broadening of the two peaks, and the histogram produced

by the implicit tau exhibits a sharpening of the peaks.

5 Conclusion

We have presented an analysis of the absolute stability of the explicit, implicit, and trapezoidal
tau methods applied to the simulation of the reversible isomerization reaction. The analysis reveals

that the stability region for any moment is the same as the stability region for the first moment, for
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each of these leaping methods. Further more these stability regions are the same as the stability
regions of the explicit Euler, implicit Euler and trapezoidal implicit methods applied to the ODE
Y= Ay.

When the stability is maintained, the means of all three leaping methods converge to the
mean of the stationary distribution of the reversible isomerization reaction. However, the asymptotic
variance of explicit tau is larger than the variance of the stationary distribution, while that of
implicit tau is smaller. These results agree with the intuition that explicit tau amplifies noise while
implicit tau dampens it. The variance of trapezoidal tau converges to the variance of the stationary
distribution. Furthermore, we showed that the higher order moments of trapezoidal tau in general

do not converge to those of the stationary distribution.

We have provided two examples which appear to validate the theoretical results. The first
is the reversible isomerization reaction. For this problem, explicit tau broadens the peak of the
histogram and implicit tau sharpens the peak; trapezoidal tau captures the peak more accurately
than the other two methods. The second example was the Schlogl reaction, which has a final state
histogram with double peaks (as computed by SSA). Although our theory does not directly apply
to this reaction, the qualitative effects seem to apply: explicit tau broadens both peaks, implicit

tau sharpens both peaks, and trapezoidal tau captures the distribution the most accurately.
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Histograms of Reversible Isomerization from different methods (tau = 0.01)
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Figure 1: Histogram (10,000 samples) of X; solved by the SSA method (solid line), explicit tau

(plot with ’+’), implicit tau (plot with "*’) and trapezoidal tau (plot with 'o’) for test problem (12).
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Histograms of Reversible Isomerization from different methods (tau = 0.05)
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Figure 2: Histogram (10,000 samples) of X; solved by the SSA method (solid line), explicit tau

(plot with ’+’), implicit tau (plot with "*’) and trapezoidal tau (plot with 'o’) for test problem (12).

24



Histograms of Reversible Isomerization from different methods (tau = 0.1)
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Figure 3: Histogram (10,000 samples) of X; solved by the SSA method (solid line), implicit tau
(plot with "*’) and trapezoidal tau (plot with ’0’) for test problem (12). Explicit tau is unstable for

this stepsize.
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Histograms of Reversible Isomerization from different methods (tau = 1)
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Figure 4: Histogram (10,000 samples) of X; solved by the SSA method (solid line), implicit tau
(plot with "*’) and trapezoidal tau (plot with ’0’) for test problem (12). Explicit tau is unstable for

this stepsize.
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Histograms of Schlogl reaction from different methods (tau = 0.4)
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Figure 5: Histogram (10,000 samples) of X; solved by the SSA method (solid line), explicit tau

(plot with ’+’), implicit tau (plot with '*’) and trapezoidal tau (plot with ’0’) for Schl6gl reaction.
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