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ABSTRACT 

To achieve successful surgical oncology outcomes, surgeons must completely extirpate 

the full extent of a patient’s cancer volume, both gross and microscopic. Currently, there is a 

lack of technology capable of providing surgeons with real-time feedback to quantify the extent 

of tumor; therefore, cancer may be missed, or surgeons may potentially compromise benign 

tissue. This research investigates whether Fluorescence Lifetime Imaging (FLIm) can optimize 

upper aerodigestive oncologic surgery through real-time surgical margin delineation. One 

hundred patients were evaluated, comprising N=45 patients with oral cavity cancer and N=55 

patients with cancer of the oropharynx.  

This work first demonstrates the series of methodologies, tools, and techniques 

developed to acquire intraoperative FLIm data and validate against gold-standard 

histopathology. Next, the ability of FLIm to demarcate primary tumors of the oropharynx was 

investigated for an initial N=10 patient cohort of tonsil tumors. In this study, FLIm demarcated 

the full extent of all patients’ cancers; however, the best benign vs. tumor contrast originated 

from multivariate analysis of all FLIm time-resolved and spectral intensity parameters. To this 

end, a random forest classifier method was used to integrate multivariate FLIm parameters from 

an N=55 patient dataset comprising conventional primary tumors and leveraged to demarcate 

occult primary tumors of the oropharynx for a cohort of N=7 patients. This work concludes by 

investigating sources of FLIm data variability across all patients, such as tumor characteristics 

(e.g., p16 status), patient age, lymphoid tissue, high-grade dysplasia, and local anesthetic use. 

A preliminary demonstration of FLIm’s ability to identify positive surgical margins in vivo within a 

patient’s surgical cavity is also illustrated. 

 Collectively, this original research demonstrates the feasibility for FLIm to 

intraoperatively demarcate carcinoma during upper aerodigestive oncology procedures, 

therefore motivating ongoing investigation to materialize this technology towards an 

intraoperative diagnostic modality.   



iii 

 

Table of Contents 

ABSTRACT .......................................................................................................................................... ii 

LIST OF FIGURES ................................................................................................................................ vi 

LIST OF TABLES ............................................................................................................................... viii 

ACKNOWLEDGEMENTS ..................................................................................................................... ix 

PREFACE ............................................................................................................................................1 

CHAPTER 1 | Background: Overview of Head & Neck Cancer, Current Approaches and Limitations in 

the Surgical Margin Assessment Process, and Review of Optical Technologies Investigated for Surgical 

Guidance ...........................................................................................................................................4 

1.1 | The Clinical Need for Intraoperative Tumor-Margin Decision-Making ............................................ 4 

1.2 | Anatomy of the Oral Cavity and Oropharynx ................................................................................... 6 

1.3 | Characteristics of Head & Neck Cancer ............................................................................................ 7 

1.4 | Current Diagnostic and Surgical Management Practices for H&N Cancer ....................................... 9 

1.5 | Review of Optical Technologies Investigated for H&N Cancer Delineation (Exempting Time-

Resolved Autofluorescence) ................................................................................................................... 10 

1.5.1 High Resolution Microendoscopy (HRME) ................................................................................. 11 

1.5.2 Narrow Band Imaging (NBI) ....................................................................................................... 11 

1.5.3 Raman Spectroscopy (RS) .......................................................................................................... 12 

1.5.4 Optical Coherence Tomography (OCT) ...................................................................................... 12 

1.5.5 Exogenous Targeted Fluorescence Imaging (TFI)....................................................................... 12 

1.5.6 Exogenous Non-Molecularly Targeted Fluorescence Imaging ................................................... 13 

1.5.7 Intensity-Based Endogenous Fluorescence (IAF) ....................................................................... 14 

CHAPTER 2 | Physical Principles of Fluorescence, Autofluorescence Properties of Head & Neck Cancer, 

and Review of Foundational Research to Date .................................................................................. 18 

2.1 | Physical Principles of Fluorescence ................................................................................................ 18 

2.2 | Introduction to Autofluorescence .................................................................................................. 20 

2.3 | Autofluorescence Properties of H&N Cancer – Mechanisms of Contrast, Review of Foundational 

Research to Date, and Expected Outcomes............................................................................................ 24 

2.3.1 Head and Neck Cancer Drives Changes in Autofluorescence Properties – An Explanation from 

a Physiological Standpoint .................................................................................................................. 24 

2.3.2 Review of Significant Pre-Clinical and Clinical Autofluorescence Research Findings to Date in 

H&N Oncology Research ..................................................................................................................... 26 

2.3.3 The Next Steps to Progress Autofluorescence Research & Instrumentation Towards Devices 

Suitable for Diagnosis and Surgical Guidance ..................................................................................... 31 

2.3.4 Expected Autofluorescence Trends Associated with Pathology ................................................ 34 



iv 

 

CHAPTER 3 | Method for Implementing FLIm for Surgical Guidance of H&N Cancer: Instrumentation, 

Data Visualization, and Classification Approach ................................................................................ 35 

3.1 | FLIm Instrumentation & Computation of Analytical Parameters (Spectral Intensity Ratio, Average 

Lifetime, and Phasor Analysis) ................................................................................................................ 35 

3.1.1 Description of Hardware ............................................................................................................ 35 

3.1.2 FLIm Preprocessing Requirements ............................................................................................. 39 

3.1.3 Calculation of Fluorescence Lifetime Using the Laguerre Approach ......................................... 40 

3.1.4 The Phasor Approach to Fluorescence Lifetime ........................................................................ 42 

3.2 | Visualization of FLIm Data: Augmentation and Accounting for Motion ........................................ 46 

3.3 | Machine Learning Classification Method ....................................................................................... 53 

CHAPTER 4 | Tools, Methodologies, and Techniques for the Coregistration of Tissue Histopathology to 

Intraoperative Optical Imaging Measurements ................................................................................. 58 

4.1 | Abstract .......................................................................................................................................... 59 

4.2 | Introduction: Current Challenges and Opportunities to Improve Histopathology Registration in 

Clinical Optical Imaging Research ........................................................................................................... 60 

4.3 | Methods and Design ...................................................................................................................... 62 

4.4 | Registration of H&E Sections to Ex Vivo Specimens ...................................................................... 65 

4.5 | Registration of H&E In Vivo ............................................................................................................ 68 

4.6 | Histopathology Annotation Tool and Ground Truth Data Mask .................................................... 70 

4.7 | Discussion ....................................................................................................................................... 72 

CHAPTER 5 | Application of FLIm for Intraoperative Delineation of Primary Tumors of the Oropharynx: 

An Initial 10-Patient Feasibility Study ............................................................................................... 75 

5.1 | Abstract .......................................................................................................................................... 75 

5.2 | Introduction.................................................................................................................................... 75 

5.3 | Materials & Methods ..................................................................................................................... 76 

5.4 | Results ............................................................................................................................................ 81 

5.5 | Discussion ....................................................................................................................................... 89 

5.6 | Conclusion ...................................................................................................................................... 92 

CHAPTER 6 | Intraoperative Label-Free Fluorescence Lifetime Imaging for Real-Time Delineation of 

p16+ Oropharyngeal Carcinoma of Unknown Primary Origin: An 8-Patient Cohort Preliminary 

Investigation .................................................................................................................................... 93 

6.2 | Abstract .......................................................................................................................................... 94 

6.3 | Introduction.................................................................................................................................... 94 

6.4 | Materials and Methods .................................................................................................................. 96 



v 

 

6.5 | Results .......................................................................................................................................... 100 

6.6 | Discussion ..................................................................................................................................... 105 

6.7 | Conclusion .................................................................................................................................... 108 

CHAPTER 7 | 100-Patient Dataset Evaluation: Collective LDA Classification, Effect of Biological 

Variables, Patient Demographics, and Surgical Characteristics, and Preliminary Analysis of In Vivo 

Positive Surgical Margins ................................................................................................................ 109 

7.1 | Composition of the 100-Patient Oral Cavity and Oropharyngeal Cancer Database .................... 109 

7.2 | Collective Database Linear Discriminant Analysis (LDA) .............................................................. 111 

7.3 | Influence of Biological Variables, Patient Demographics, and Local Anesthetic Use on FLIm Data

 .............................................................................................................................................................. 114 

7.3.1 Effect of Lidocaine & Epinephrine Injection on In Vivo FLIm - Case Study on Tongue (N=1) and 

Tonsil (N=1) ....................................................................................................................................... 115 

7.3.2 Effect of Age on FLIm Data ....................................................................................................... 118 

7.3.3 FLIm Investigated on Deep Tumor Embedded Under Epithelium (0.5 mm < x < 5 mm) ......... 121 

7.3.4 Effect of Lymphoid Tissue on FLIm Data .................................................................................. 124 

7.3.5 Effect of High-Grade Dysplasia on FLIm Data .......................................................................... 128 

7.4 | Evaluation of Univariate Data Trends (Δ) Between Benign Tissue vs. Cancer ............................. 129 

7.4.1 Methods: Kruskal-Wallis U Test and Evaluation of Benign Tissue vs. Cancer Trends .............. 132 

7.3.2 Pearson’s Chi Square Analysis of FLIm Trends vs. Clinical Characteristics............................... 133 

7.5 | Evaluation of Residual Tumor in Electrocauterized Surgical Cavity ............................................. 137 

CHAPTER 8 | Conclusion: Summary of Research and Next Steps ...................................................... 140 

8.1 | Summary of The Clinical Problem & Six Major Research Objectives Addressed ......................... 140 

8.2 | Review of the Key Scientific Research Findings & Contributions ................................................. 141 

8.3 | Perspective on Next Steps to Prepare FLIm for Intraoperative Surgical Guidance...................... 146 

8.4 | The Big Picture – Towards Clinical Adoption ................................................................................ 149 

APPENDIX | Supplementary Data (Reference Only) ......................................................................... 154 

LIST OF ABBREVIATIONS ................................................................................................................. 164 

COPYWRITE PERMISSIONS ............................................................................................................. 166 

DATA AVALIABILITY STATEMENT .................................................................................................... 167 

REFERENCES .................................................................................................................................. 168 

 

  



vi 

 

LIST OF FIGURES 

Figure 1. Simplified representation of oral cavity and oropharynx (superior) anatomy. 

Figure 2. Simplified Jablonski diagram demonstrating the fluorescence photophysical process. 

Figure 3. Representation of autofluorescence excitation-emission, spectra, and lifetime. 

Figure 4. Expected autofluorescence outcomes predicted with the onset of pathology. 

Figure 5. Clinical FLIm instrumentation and corresponding integration into surgical procedures of the 
oropharynx and oral cavity. 

Figure 6. Data processing workflow for time-domain FLIm using pulse sampling methods. 

Figure 7. Mathematics and visual overview of the phasor approach. 

Figure 8. Characteristics of phasor plots and introduction to phasor harmonics.  

Figure 9. Rendering of augmented FLIm data on tongue SCC visualized by a non-TORS endoscope. 

Figure 10. Illustration of histopathology registered in the oral cavity to a surgical reference frame.  

Figure 11. Graphical demonstration of motion correction concept applied to intraoperative data. 

Figure 12. High-level overview of the motion correction workflow. 

Figure 13. Illustration of block matching process for computing motion vectors. 

Figure 14. Illustration of surgical instrumentation occlusions on surgical field while scanning. 

Figure 15. Overview of FLIm point-measurement motion correction procedure. 

Figure 16. Method for motion estimation in FLIm data by ARPS macroblock matching. 

Figure 17. Demonstration of multi-parametric FLIm data obtained from individual measurements. 

Figure 18. Tissue annotation and training data selection process. 

Figure 19. Overview of random forest classifier training, probability of cancer output, and validation. 

Figure 20. Overview of receiver operator characteristic area under the curve (ROC-AUC) analysis. 

Figure 21. Overview of data collection, coregistration, and data analysis process. 

Figure 22. Process for registering H&E to the ex vivo surgical specimen. 

Figure 23. Transfer of labels from an ex vivo tissue image to the in vivo tissue image. 

Figure 24. Histopathology annotation tool with reference image loaded in.  

Figure 25. Demonstration of data pixel annotation mask.  

Figure 26. Illustration of FLIm integrated into TORS and clinical workflow.  

Figure 27. Coregistration of FLIm to tissue histopathology. 

Figure 28. Case study A. Linear discriminant analysis on palatine tonsil. 

Figure 29. Case study B. Linear discriminant analysis on palatine tonsil. 

Figure 30. In vivo & ex vivo patient-level ROC-AUC performance. 



vii 

 

Figure 31. In vivo & ex vivo patient-level average precision. 

Figure 32. Comparison of univariate FLIm trends for healthy tissue by imaging context. 

Figure 33. Patients with p16+ SCC within the imaged FLIm area. 

Figure 34. Patients with benign tissue only within the imaged FLIm area. 

Figure 35. Tree diagram visually illustrating the composition of the 100-patient H&N dataset. 

Figure 36. Composition of the 92-patient dataset based on cancer malignancy and p16 status. 

Figure 37. Summary of oral cavity and oropharynx linear discriminant analysis performance. 

Figure 38. Evaluation of FLIm data pre- and post- injection of lidocaine with epinephrine. 

Figure 39. Influence of patient age on channel 1 lifetime, investigated on in vivo benign palatine 
tonsil tissue for N=9 patients. 

Figure 40. Investigation of FLIm properties on deep tumor (0.5 mm < x < 5mm) palatine tonsil case 
study. 

Figure 41. Illustrative histopathology for an eight-patient cohort comprising benign tissue, lymphoid 
tissue, and cancer. 

Figure 42. Evaluation of lymphoid tissue’s influence on FLIm lifetime and intensity ratio for base of 
tongue tissue. 

Figure 43. Illustrative histopathology for an eight-patient cohort comprising benign tissue, high-grade 
dysplasia, and cancer. 

Figure 44. Evaluation of high-grade dysplasia’s influence on FLIm lifetime and intensity ratio. 

Figure 45. Autofluorescence lifetime and intensity ratio trends for oral cancer. 

Figure 46. Method for assigning deltas (Δ) between benign tissue and cancer, and application of 
significance testing to the FLIm data. 

Figure 47. Evaluation of average lifetime and spectral intensity ratio vs. tumor p16 status. 

Figure 48. Evaluation of residual tumor in vivo for lingual tonsil and palatine tonsil.  

Appendix Figures 

Figure A49. Tonsil (N=21) linear discriminant analysis classification performance. 

Figure A50. Base of tongue (N=10) linear discriminant analysis classification performance. 

Figure A51. Oral tongue (N=26) linear discriminant analysis classification performance. 

Figure A52. ‘Other’ anatomy (N=14) linear discriminant analysis classification performance. 

Figure A53. In vivo evaluation of CH2 (NADPH) & CH3 (FAD) lifetime and intensity ratio cancer 
trends. 

Figure A54. In vivo evaluation of benign tissue vs. cancer trends for CH1 (collagen) intensity ratio 
between benign tissue and cancer. 

Figure A55. In vivo evaluation of benign tissue vs. cancer Δs for metabolic ratio CH2/(CH2+CH3) 
trends between benign tissue and cancer.  



viii 

 

LIST OF TABLES 

Table 1. Working principles of optical techniques investigated for H&N cancer surgical guidance. 

Table 2. Review of literature: optical modalities investigated for surgical guidance in human patients in 
vivo 

Table 3. Excitation, emission, and lifetime characteristics of collagen, NAD(P)H, FAD, & porphyrins. 

Table 4. Foundational time-resolved autofluorescence research in head & neck oncology. 

Table 5. Overview of patients, afflicted anatomical tissues, resulting pathologies, and residual cancer 
status. 

Table 6. Demographics, clinical characteristics, and surgical outcomes of the study population. 

Table 7. FLIm performance on occult primary cancer: ROC-AUC, sensitivity, and specificity. 

Table 8. Pearson’s chi square analysis of FLIm data trends vs. clinical patient characteristics.  

Appendix Tables 

Table A9. Tonsil (N=34) demographics, clinical characteristics, and surgical outcomes.  

Table A10. Base of tongue (N=16) demographics, clinical characteristics, and surgical outcomes. 

Table A11. ‘Other’ anatomy (N=15) demographics, clinical characteristics, and surgical outcomes. 

Table A12. Oral tongue (N=27) demographics, clinical characteristics, and surgical outcomes. 

  



ix 

 

ACKNOWLEDGEMENTS 

The completion of this dissertation has truly been a transformative process. This 

interdisciplinary research effort is the product of numerous collaborations with fellow biomedical 

engineering colleagues, experts in machine learning algorithm development, pathologists, 

clinical research coordinators, and surgeons in the Department of Otolaryngology – Head and 

Neck Surgery. The experience of being at the forefront of healthcare to design, evaluate, and 

iterate on impactful clinical technology has been a fulfilling and rewarding process. This 

dissertation, and associated publications, would not have been possible without the support and 

guidance from my mentors, colleagues, family, and friends.  

First and foremost, I would like to thank Dr. Laura Marcu for hosting me in her talented 

laboratory group and for providing me with the resources and infrastructure to succeed in my 

graduate career. At the time of joining her lab, Dr. Marcu entrusted me with her most valued 

project, which under an R01 grant in collaboration with Intuitive Surgical, aimed to evaluate the 

diagnostic potential of Fluorescence Lifetime Imaging (FLIm) to diagnose head & neck cancer. 

This work resulted in the largest known clinical FLIm database in the world, featuring in vivo and 

ex vivo data from a diverse patient population, each with various manifestations of cancers and 

etiologies. The acquisition of this magnitude of data resulted in 521 FLIm scans (in vivo, ex vivo 

mucosa, ex vivo deep margin, and in vivo cavity resection), 15.23 hours of FLIm imaging time, 

1,250 H&E slices to annotate and coregister in vivo and ex vivo, and 1,500,000 spectroscopic 

datapoints. This work took five years of extensive organization, coordination, communication, 

and collaboration! I am incredibly grateful to Dr. Marcu for providing the appropriate structure in 

her laboratory through personnel, resources, meetings, and funding to set me up for success in 

this endeavor. Dr. Marcu also played a substantial role in my personal career development, 

allowing me to attend leading conferences in my field of study such as SPIE Photonics West. 

This also includes two international conferences in Bern, Switzerland and Jena, Germany.  



x 

 

I am grateful to the patients who participated in our research to advance this 

investigational technology. The willingness of the patients to add this additional research to their 

procedure took courage, compassion for others, and demonstrated the utmost kindness, as 

their participation promoted technological advances in healthcare which may one day lead to 

better outcomes for future generations of oncology patients.  

This research benefited from the unwavering support and effort of the clinical team who 

collectively made our data collection possible. Angela Beliveau and Randev Sandhu in the 

Department of Otolaryngology – Head & Neck Surgery worked tirelessly to screen potential 

patients for our study and coordinate their full consent process. Additionally, they provided our 

research team with all necessary pathology reports, clinical files, institutional review board (IRB) 

certifications, and other documents needed to make this research possible. I am truly grateful 

for the members of our surgical research team who welcomed me to join them for their oncology 

cases and worked with me directly in the operating room to acquire our data from human 

patients. These surgeons include Drs. Andrew C. Birkeland, D. Gregory Farwell, Arnaud F. 

Bewley, and Marianne Abouyared. In addition, all members of the surgical team worked closely 

with me to interpret our data and provide outstanding intellectual contribution in our data 

collection methods and in our manuscripts. Dr. Dorina Gui in the Department of Pathology and 

Laboratory Medicine served as the primary pathologist for the study and performed thorough 

histopathology annotations on hundreds of H&E slides. Together, our clinical team cooperated 

in this research endeavor with outstanding synergy, and undeniably played a key role in the 

success of this work.  

The FLIm instrument used in this study resulted from a culmination of many contributors 

who came before me. I would like to thank all past and present Marcu Lab members for their 

various contributions related to the lab’s infrastructure and related support network thereof. I 

would like to thank my colleagues Julien Bec, Alba Alfonso-Garcia, Sukhkaran Aulakh, 



xi 

 

Tianchen Sun, Xiangnan Zhou, Athena Tam, and Roberto Frusciante, who each provided 

intellectual contributions, guidance, mentorship to this work. I am highly appreciative of our 

research group for allowing me to draw upon their expertise during this research investigation.   

Our graduate coordinator, Christal Wintersmith, was always willing to assist in any area 

of my educational pursuits here at UC Davis. She was always open to providing me with 

support, both personal and academic. She undeniably played an essential role in my 

educational development and success in the program.  

I am grateful for my dissertation committee members, Drs. Laura Marcu, Randy Carney, 

D. Gregory Farwell, and Andrew C. Birkeland. All committee members were closely engaged in 

my research over the years and provided me with guidance and new research ideas. I am 

indebted to all their mentorship and support in this journey.  

Finally, I would like to thank my family and friends who supported me through every step 

of this adventure. Being the first in my family to attend graduate school and earn a Ph.D. has 

been quite an endeavor and required the ability to adapt and overcome various challenges, 

among which COVID-19 was the most prominent. I would like to thank my parents, Richard and 

Jill Weyers, my brother, Grant Weyers, and extended family, for keeping me happy and feeling 

loved. Lastly, to my beautiful, outstanding wife, Sarah Weyers, who I met in graduate school. 

Having been a graduate student herself, Sarah experienced the Ph.D. process with me and 

supported me in every step of the way. I did not know how rewarding and rich life was until I met 

her! Thank you for your love and support each and every day. I look forward to our future and 

the family we will build together! 

 

  



1 

 

PREFACE 

 Over the last decade, Fluorescence Lifetime Imaging (FLIm) has demonstrated promise 

for differentiating benign tissue from cancer in several oncology applications, ranging from 

laboratory settings with murine and porcine tumors, to ex vivo analysis of surgically excised 

human cancer specimens, to more recently in vivo human patient analysis.1,2 Although not an 

exhaustive list, recent reported oncology applications of FLIm range from breast cancer surgery, 

neurosurgery, head & neck cancer, and atherosclerosis, among others.2 FLIm technology 

enables non-invasive optical evaluation of tissue based on the strong fluorescence emission 

from endogenous tissue fluorophores. The technology can be deployed in real-time, does not 

require the administration of exogenous contrast, and exhibits sensitivity to numerous cancer-

induced microenvironment changes; this includes pH, tissue oxygenation, metabolism, and 

structural protein composition, among others. 

 Preliminary research suggests that FLIm can support broad diagnostic quantitation 

within a wide range of surgical oncology disciplines.2 The original research herein focuses on 

surgical guidance of head & neck (H&N) cancer as a key application area. FLIm technology is 

well-suited for evaluating H&N cancer, as greater than 90% of cancers of the oral cavity (e.g., 

lips, dorsal tongue, and floor of mouth) and oropharynx (base of tongue and palatine tonsil) 

present in the epithelized mucosa (surface tissues), which is within the approximate 250 µm 

penetration depth of FLIm’s ultraviolet (UV) excitation laser.3,4  

There are six core research objectives/questions investigated: (1) In order to benchmark 

FLIm results against the gold standard of hematoxylin and eosin (H&E) histopathology, can a 

series of custom-developed tools, methodologies, and techniques be developed to associate 

ground truth histopathology to optical FLIm measurements acquired over surgical regions of the 

oral cavity and oropharynx (ranging from 2-10 cm)? (2) In a first study investigating the use of 

FLIm for in vivo surgical guidance of oropharyngeal cancer, can the technique successfully 

demarcate the entire extent of all patients’ cancer using time-resolved and spectral intensity 
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features? (3) Can multivariate FLIm metrics be systematically integrated into a random forest 

machine learning classifier and leveraged to enhance the prediction of cancer probability? (4) 

For rare tumor cohorts that evade surgical detection after exhaustive clinical (absence of visual 

cues and palpation), radiographic (negative PET, CT, MRI findings), and surgical evaluation 

(directed biopsies of suspicious lesions), can FLIm support the localization of the primary tumor 

site and correctly identify uninvolved benign functional tissue? (5) What roles, if any, do surgical 

conditions (e.g., local anesthetic use), nuanced tissue characteristics (e.g., lymphoid tissue and 

high-grade dysplasia), cancer characteristics (e.g., HPV-mediated vs. non-HPV-mediated 

cancer), and patient medical characteristics (e.g., patient age) have on FLIm data? Finally, (6) 

can in vivo positive surgical margins presenting in electrocauterized deep margin be detected 

with FLIm? Objectives 1-4 are investigated in detail, whereas the investigation of objectives 5-6 

are limited in scope and serve as proof-of-concept due to a smaller cohort of patients available 

for analysis within these two research aims. Collectively, these objectives serve to establish the 

validation and rigorous assessment of FLIm’s ability to demarcate tumors across a large array 

of pathologies and conditions afflicting H&N anatomy.  

Chapter 1 serves as background for this work and provides and overview of the clinical 

need for intraoperative tumor-margin decision-making, discusses the anatomy of the oral cavity 

and oropharynx, reviews the characteristics of head and neck cancer, and presents the current 

practices to diagnose and surgically manage H&N cancer. The chapter concludes with a review 

of current progress made by optical technologies investigated for H&N surgical guidance 

(exempting time-resolved autofluorescence, which is presented in chapter 2).   

Chapter 2 begins by presenting the physical principles of fluorescence, introduces 

autofluorescence, and discusses the mechanisms of autofluorescence-based contrast in H&N 

cancer. Next, a review of all significant pre-clinical and clinical literature to date for in vivo 

surgical guidance using time-resolved autofluorescence techniques is featured. The chapter 
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concludes with a discussion of key next steps in research to advance this technology in the 

surgical guidance space.  

Chapter 3 discusses the methods developed to implement FLIm for surgical guidance in 

H&N cancer. This includes the FLIm hardware, computation of fluorescence lifetime, the FLIm 

data visualization approach, the workflow to account for motion in the data visualization 

approach, and the methodology for implementing machine learning classification to the 

database.  

Chapter 4 presents the tools, methodologies, and techniques developed for associating 

tissue histopathology status (e.g., benign tissue, high-grade dysplasia, cancer) to intraoperative 

optical imaging measurements both in vivo and on surgically excised specimens. Chapter 5 and 

chapter 6 demonstrate the first use of FLIm for demarcating conventional primary and occult 

primary tumors of the oropharynx, respectively.  

Chapter 7 investigates the collective linear discriminant analysis (LDA) classification of 

the full 100-patient dataset, and investigates the effect of biological variables, patient 

demographics, and surgical characteristics on the FLIm database. A preliminary analysis of 

FLIm used in vivo for identification of residual tumor volume in the surgical cavity of two patients 

is demonstrated. Finally, chapter 8 concludes on the key research findings contributed from this 

original research and provides and outlook on the next steps to materialize FLIm towards an 

intraoperative diagnostic modality. 
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CHAPTER 1 | Background: Overview of Head & Neck Cancer, Current Approaches 
and Limitations in the Surgical Margin Assessment Process, and Review of 
Optical Technologies Investigated for Surgical Guidance 
 

1.1 | The Clinical Need for Intraoperative Tumor-Margin Decision-Making 

Cancer is a condition where cells defy standard growth regulatory mechanisms and 

exhibit sustained proliferation, therefore lacking the “altruistic” behavior characteristic of normal 

cells. The unrestricted multiplication of a single cell results in a tumor, which is a clone of cells 

identical to the original mutated cell. If a tumor mass is slow growing and does not infiltrate 

neighboring tissue, it is classified as a benign tumor. In contrast, tumor cells that multiply rapidly 

and form an invasive mass is characterized as a malignant tumor or cancer.  

The Centers for Disease Control and Prevention (CDC) cites cancer as the second 

leading cause of death; estimates from 2020 suggest 1.8 million individuals in the United States 

were affected by cancer, and cited cancer to be the cause of 606,520 deaths.5 Depending on 

the cancer type and severity, patients may be treated by chemotherapy, hormone therapy, 

immunotherapy, radiation therapy, targeted therapy, and surgery.6 For solid tumors that are 

contained in one specific area, surgery is typically the favored treatment option. In surgical 

oncology, the goal is to completely remove the full extent of the tumor so that only benign tissue 

remains.6 Surgical robotics over the last 20 years have become increasingly used in cancer 

surgery, enabling less invasive access to regions of interest, such as in colorectal cancer, 

thoracic surgery, and oropharyngeal cancer.7 

 During the tumor excision process, a surgeon’s primary goal and challenge is to  

completely eradicate cancer - both gross and microscopic.8 A positive surgical margin (PSM) 

occurs when the complete removal of cancer is not achieved and cancerous cells remain at the 

edge of the resection specimen. A study from 2018 reporting on PSM trends from the National 

Cancer Database (NCDB) ranked the surgical fields with the highest prevalence of PSMs, with 

the top five being: (1) ovarian – 35.00%, (2) prostate – 21.03%, (3) oral cavity – 12.75%, (4) 

thyroid – 11.52%, and (5) bladder – 9.46%.9 Despite outstanding surgical advances over the 
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last two decades, PSM rates continue to remain high; thus, surgeons are faced with an 

important dilemma of preserving benign functional tissue, while being appropriately aggressive 

with margins to ensure that no cancer cells remain after surgery. It is well understood that PSMs 

are highly predictive of cancer recurrence; thus, surgeons must corroborate their assessments 

of margins by intraoperative biopsies and pathologist-interpreted frozen sections acquired from 

surgically excised tissue. 

 Currently, there is a lack of technology capable of providing surgeons with real-time 

feedback to quantify the extent of tumor, posing two core problems: (1) cancer may be missed 

and result in reoccurrence, or (2) surgeons may be too aggressive with resection margins 

compromise benign tissue, resulting in loss of function and poor patient cosmesis. The 

prevalence of PSMs, and challenges associated with intraoperative decision-making, motivates 

the search for novel technology that aids surgeons in quantifying the extent of tumor. While this 

clinical need is shared across the many surgical oncology disciplines, the original research 

herein focuses on a specific application area, namely Head & Neck (H&N) cancer. FLIm was 

specifically investigated due to promising results of the technique achieved over the last 

decade; this includes various surgical oncology fields, such as breast cancer, brain cancer, 

prostate cancer, and additionally the detection of atherosclerosis.2  

Herein, the ability of Fluorescence Lifetime Imaging (FLIm) to enhance intraoperative 

detection and delineation of tumor margins of the oral cavity (e.g., dorsal tongue) and 

oropharynx (e.g., palatine tonsils and base of tongue) was investigated to establish proof-of-

concept for the technique. FLIm measurements were acquired on 100 patients undergoing 

upper aerodigestive oncologic surgery within the operating pavilion at the UC Davis Health 

System. The results presented herein elucidate the first scientific knowledge of FLIm applied in 

vivo for human oncology research of oropharyngeal cancers, as well as surgical guidance 

studies using time-resolved autofluorescence in both the oral cavity and oropharynx. 
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1.2 | Anatomy of the Oral Cavity and Oropharynx 

The anatomy of the Head & Neck (H&N) is complex because many different functional 

structures are in close proximity to each other.10 This includes elements of the digestive, 

nervous, respiratory, lymphatic, and endocrine systems, often within millimeters of one 

another.10 The scope of this research investigation is restricted to the application of FLIm to the 

oral cavity and oropharynx, thus other anatomical locations of the H&N, such as the 

nasopharynx and larynx, are not discussed here.  

 

Figure 1: Simplified representation of oral cavity and oropharynx (superior) anatomy. The palatine tonsils and base of 
tongue comprise tissues of the oropharynx, which are composed of lymphatic tissue aggregates. The anterior 2/3rds 
of the oral tongue lies within the oral cavity and is a muscular organ with taste buds, nerves, arteries, and numerous 
projections of the mucous membrane (papillae). The figure is adapted with extensive modification from Gregory J., 
reference [11]. 

The oral cavity includes the lips, gingiva (gums), buccal mucosa (lining inside the cheeks 

and lips), the floor of mouth (under the tongue), the hard palate (bony top of mouth), the 

retromolar trigone (oral cavity subsite consisting of mucosa posterior to the last mandibular 

molar), and front two-thirds of the tongue.10 The oropharynx is the middle part of the pharynx 

(hollow tube that starts behind the nose and leads to the esophagus) and includes the tonsils, 

the base of tongue, and the soft palate (back of the mouth).10 Figure 1 demonstrates a simplified 
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representation of the oral cavity tongue region, base of tongue region (oropharynx), and palatine 

tonsil region (oropharynx).  

1.3 | Characteristics of Head & Neck Cancer 

H&N cancer, of which oral cavity and oropharyngeal cancer are subsets, represents the 

sixth most common cancer worldwide.12,13 In 2021, it was estimated that H&N cancer comprised 

54,010 new cases of cancer in the United States, and therefore represented 2.8% of all new 

cancer cases.14 Each year, oral cavity and oropharyngeal cancers are directly attributed to an 

estimated 10,850 deaths and thus represent a significant cause of death.14 These cancers are 

most frequently diagnosed among people aged 55-64, and they afflict men in greater proportion 

than women.14 Approximately 85% of these cancers (worldwide) are associated to heavy 

tobacco use and alcohol,15–17 however tobacco-related carcinogenesis is slowly declining due to 

decreased global use of tobacco.18,19 Recently, strong associations of oropharyngeal cancer to 

human papilloma virus (HPV), with clearly increasing incidence, have been reported.20,21 The 

presentation of positive HPV status has been strongly linked to oral-sex exposure, where a 

latency of 10 to 30 years has typically been reported following the presentation of HPV-

mediated oropharyngeal lesions.18,22 HPV-mediated tumors aberrantly overexpress p16 

biomarkers, thus p16 immunohistochemistry is recommended for determining HPV-associated 

etiology.23 

 Most H&N cancers present in patients de novo,20 however precancerous lesions of the 

mucosal lining such as leukoplakia, erythroplakia, and high-grade dysplasia may progress into 

invasive cancers.24 More than 90% of oral and oropharyngeal cancers of the head and neck are 

squamous cell carcinomas (SCC).3,4 Head & neck squamous cell carcinoma (HNSCC) 

originates from squamous cells, which are thin, flat, surface cells that comprise the epithelized 

mucosa of the oral cavity and oropharynx.25 Because HNSCC originates from one cell type 

(squamous epithelial cells) in the mucosal linings of the oral cavity, oropharynx, larynx, and 



8 

 

hypopharynx, one may hypothesize this cancer presents with relatively homogonous 

characteristics (e.g., morphology, metabolic characteristics) across patients.20 Interestingly, 

there is marked heterogeneity of the tumors arising in the oral cavity and oropharynx,20,26 

attributed to the complex interplay of etiologies and the significant extent of molecular changes 

driving carcinogenesis.20 The high degree of HNSCC cellular heterogeneity enables tumor cells 

to reverse lineage commitment to either proliferative or quiescent stages due to complex cell 

populations with various stages of differentiation.27 

 Conventional SCC is characterized by squamous differentiation (typically presenting as 

keratinization) and invasive growth which disrupts the underlying basement membrane.28 The 

basement membrane marks the histological demarcation between the surface stratified epithelia 

and the underlying mesenchymal component.27 SCC is graded into 3 classes: (1) well-

differentiated SCC which resembles normal squamous mucosa, (2) moderately-differentiated 

SCC which displays nuclear pleomorphism, reduced keratinization, and atypical mitoses, and 

(3) poorly-differentiated SCC comprise immature cells, substantial atypical mitoses, minimal 

keratinization, and strong immunopositive cytokeratin markers.28   

 Verrucous carcinoma and basaloid SCC represent two additional commonly 

encountered variants of SCC. Verrucous carcinoma is a non-metastasizing variant of well-

differentiated SCC, presenting with an exophytic, slowly-growing, warty tumor, with pushing 

rather than infiltrative margins.28 These tumors impart a pronounced inflammatory response and 

impart abundant epithelial keratosis.28 Alternatively, basaloid SCC is a high-grade variant of 

SCC composed of both basaloid and squamous components.28 These tumors grow rapidly, are 

aggressive, and exhibit poor prognoses. The basaloid component of these cancers present with 

small packed cells with hyperchromatic nuclei without nucleoli, and scant cytoplasm.28 Basaloid 

SCC requires multimodality treatment, including radical neck dissection surgery, radiotherapy, 
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and chemotherapy.28 Although other H&N cancer subtypes exist, they represent atypical 

subsets of H&N cancer.28 

1.4 | Current Diagnostic and Surgical Management Practices for H&N Cancer 

Adequate intraoperative delineation of cancer is the key factor for long-term survival of 

patients diagnosed with oral and oropharyngeal cancer.29 This requires rapid evaluation of the 

extent of molecular changes (neoplastic area) of the epithelial surface (mucosa). The 

preoperative diagnosis of HNSCC includes all, or a combination of: (1) a thorough review of 

medical history and physical examination,26 (2) radiologic and non-ionizing imaging including 

computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and/or 

positron emission tomography (PET),26 and (3) fine-needle aspiration biopsy, cited as a highly 

sensitive, specific, and accurate method for preliminary histological diagnosis.26,30 

The complete surgical resection of tumors presenting in the oral cavity and oropharynx is 

the preferred method of cancer treatment. Adequate delineation of surgical margins in real-time 

and complete resection of cancer is imperative to maximize patient survival.29 The surgical 

excision of oral cavity cancer (e.g., oral cavity tongue, lips, gums, etc.) is typically performed by 

hand, while oropharyngeal cancers (e.g., base of tongue, palatine tonsils, etc.) are generally 

resected via transoral robotic surgery (TORS) platforms. TORS, which has become increasingly 

utilized over the last few decades in otolaryngology, confers many advantages compared to 

conventional endoscopy procedures; this includes deeper access to anatomical sites which 

enables precise operation in tight spaces without a large open incision, improved patient 

functional outcomes, and enhanced dissection ability of lesions and neoplastic growths.31  

The most routinely employed methods for intraoperative diagnosis include white light 

visualization, tactile feedback, and histopathologic assessment via biopsy; however, these 

traditional approaches present significant intraoperative surgical challenges.32 For both TORS 

and non-robotic surgical procedures, the reliance on frozen section analysis introduces long 
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procedural waiting times, sampling error, the inability to provide continuous assessments of 

pathology margins, invasiveness associated with biopsies, and the potential for interpretative 

errors.33 With respect to TORS in particular, the robotic platform eliminates a surgeon’s ability to 

sense tissue and bone resistances,31,34,35 and thus results in a loss of haptic feedback. This 

limitation has been cited to make TORS procedures more challenging.34,35 Although informative, 

the reliance on white light visualization and tactile feedback to perform diagnosis is a dated and 

imprecise technique which also introduces the potential for subjectivity among healthcare 

practitioners.  

At the present, positive surgical margins are found in up to 30% of patients at final 

histopathology approximately 1 week after the surgery, which is a percentage that has not 

changed over the past 30 years.36–39 The disadvantages associated with the current 

intraoperative gold-standards for oral cancer and oropharyngeal diagnosis motivates the 

development of real-time and non-invasive technology to circumvent the shortcomings of 

current methods and improves diagnostic quantitation.  

1.5 | Review of Optical Technologies Investigated for H&N Cancer Delineation 
(Exempting Time-Resolved Autofluorescence) 

Due to the nature of optical technology penetration depths, which range from the order 

of the µm scale for ultraviolet wavelengths and millimeter scale for infrared wavelengths, such 

technologies are well-suited for interrogation of SCC (surface presenting tumors) for diagnosis 

and surgical guidance. A brief review of the key optical technologies investigated to date for 

H&N surgical guidance is provided here, with a summary featured in tables 1 & 2. These 

modalities include: (1) high resolution microendoscopy (HRME), (2) narrow band imaging (NBI), 

(3) Raman spectroscopy, (4) optical coherence tomography (OCT), (5) exogenous targeted 

fluorescence imaging (TFI), (6) exogenous non-molecularly targeted fluorescence imaging, and 

intensity-based endogenous fluorescence (IAF). An in-depth description of foundational time-

resolved autofluorescence research is presented in section 2.3.2.    
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Beyond this list, other diagnostic adjuncts have been evaluated and reported, however 

have yielded limited success for diagnosis and surgical guidance. This includes vital tissue 

staining (toluidine blue),40 brush cytology,41 salivary tests,42 and other approaches such as 

chemiluminescence.43 These diagnostic adjuncts, as well as ex vivo studies, are not discussed 

here.  

1.5.1 High Resolution Microendoscopy (HRME)  

HRME provides microscopic images of cellular architecture and has been coined an 

“optical biopsy.” 44,45 This technique relies on the transmission of light from light-emitting diodes 

(LED) transmitted through a fiber-optic bundle directly introduced via direct contact to mucosal 

tissue. This technique has the potential to excite endogenous fluorophores with the LED light, 

however typically is combined with superficially applied fluorophores such as proflavine, a 

nucleus-targeting contrast agent.45 Like the LED illumination, emitted light is collected back to 

the fiber-optic bundle, where each optical fiber serves as individual pixels to the generated 

image rendered by a charge-coupled device (CCD) camera.45 Histological features such as 

nuclear size, nuclear crowding, cellular pleomorphism, and nuclear-to-cytoplasm ratio is used to 

differentiate benign tissue from cancer.45 The image resulting from the HRME system appears 

as cells with bright nuclei on a dark background. In HRME images, benign tissue is identified as 

cell nuclei appearing as bright discrete dots with even distribution, as opposed to neoplastic 

tissue which presents chaotic nuclear arrangement and enlarged nuclei.45–47  

1.5.2 Narrow Band Imaging (NBI) 

NBI is an optical image enhancement technology that visualizes capillaries of the 

mucosal surface, and veins within submucosal layers.45 NBI wavelengths are within the visible 

spectrum, offering enhanced penetration depth compared to Ultraviolet-based imaging 

approaches. This technology narrows the bandwidth of illumination light within the absorption 

spectrum of hemoglobin, emitting blue light (400-430 nm) and green light (525-555 nm) to 

approximately match the peaks of absorption wavelengths of hemoglobin to enhance the 
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visualization of microvascular patterns.45 The blue light has shorter wavelength with shallow 

penetration to highlight the superficial vessels, while the green light with longer wavelength 

penetrates deeper to illuminate underlying vessels.45 Because neoangiogenesis is an important 

feature of neoplastic transformation, it is expected that visualization of vascular architecture can 

aid in the identification of pathological tissue.45,48,49  

1.5.3 Raman Spectroscopy (RS) 

Raman spectroscopy (RS) is a vibrational spectroscopic technique which detects 

variations of chemical components through interrogating a sample’s “molecular fingerprint.”45 

C.V. Raman in 1928 discovered that vibrations of intramolecular bonds caused light to scatter 

as a result of absorption or release of energy; this phenomena was coined Raman scattering, 

and was able to be captured and measured to form a spectrum.45 A Raman spectrum contains 

specific and characteristic peaks assigned to a corresponding molecular structure and 

biochemical composition within imaged specimens.50 

1.5.4 Optical Coherence Tomography (OCT) 

OCT is a non-invasive technology capable of high-resolution imaging. OCT generates 

cross-sectional depth resolved two-dimensional and three-dimensional images in a method 

analogous to ultrasound A-scan and B-scan images, but using light rather than sound.51 

Magnitude, polarization, phase, and frequency shift of partially time-coherent light backscattered 

or back reflected from the sample is used as the basis to create the OCT image.51 In biological 

tissue, water and melanin predominantly limit the transmission of OCT-based light.51 Water 

absorption is low between ~280 nm and ~1,100 nm (except for an absorption peak at ~970 nm), 

whereas melanin absorption continuously decreases with increasing wavelength from the 

Ultraviolet to Infrared spectrum.51 

1.5.5 Exogenous Targeted Fluorescence Imaging (TFI) 

Exogenous contrast agents can be sub-divided into those which are targeted and those 

which are non-targeting (passive). Targeted Fluorescence Imaging (TFI) utilizes a targeting 
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fluorescence probe to delineate neoplastic tissue in real-time, typically consisting of a cancer 

targeting moiety and a conjugated fluorescent moiety.52 TFI probes use several mechanisms to 

localize to neoplastic tissue, where a fluorescing modality is typically coupled to an active 

targeting modality with the corresponding mechanisms of action: (1) the targeting moiety binds 

to cancer cell receptors or is internalized into the cancer cell, with the fluorescent moiety 

subsequently fluorescing to highlight the cancer cells; (2) quenched probes can accumulate into 

cancer tissue, where cancer-specific enzymes (e.g., matrix metalloproteases) can de-quench 

the probe to enable detectable fluorescence signal; (3) a combination of #1 & #2; or (4) a 

targeting moiety binds to the neoangiogenesis related components, where the fluorescent 

moiety is subsequently excited and fluoresces.45,53 Once the TFI probes accumulate in 

neoplastic tissue, an external light source (typically NIR excitation) is used to excite the 

fluorescing moiety and translate an image onto a CCD camera. 

Cancer overexpresses epidermal growth factor receptor (EGFR); given that EGFR 

antibodies Cetuximab and Panitumumab are FDA approved, these antibodies are typically 

selected as an active targeting modality to couple with fluorescing modalities. NIR excited 

Cetuximab-IRDye800CW and Panitumumab-IRDye800CW are recently developed cancer 

specific probes which couple EGFR antibodies to IR excited dyes, however these agents are 

currently undergoing investigational use for FDA approval and require controlled lighting.45 

1.5.6 Exogenous Non-Molecularly Targeted Fluorescence Imaging 

An excellent example of a non-targeting fluorescent agent is indocyanine green (ICG), 

an FDA approved NIR fluorescent dye. This agent is commonly used in in perfusion imaging 

and in robotic surgery.45,54 ICG localizes predominantly to tumor due to increased vascular 

endothelial permeability of the tumor microenvironment, where ICG is mainly bound to plasma 

proteins and therefore remains predominantly in the intravascular space.55 5 aminolaevulinic 

acid (ALA) induced protoporphyrin IX (the photosensitizing agent) is another notable example. 

5-ALA is a naturally occurring intermediary in the heme synthetic pathway.56 5-ALA is 
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metabolized at the tissue level to the active compound protoporphyrin IX and accumulates 

within cells after exogenous ALA administration, resulting from low (compared to healthy tissue) 

ferrochelatase activity, the enzyme responsible for conversion of protoporphyrin IX to heme.56 

1.5.7 Intensity-Based Endogenous Fluorescence (IAF) 

The FDA approved VELscope has a long history of use for the early detection of oral 

neoplasia, and is among the most commercially recognized devices deployed for intensity-

based autofluorescence evaluation.32,43,45,57,58 Although these devices rely on the shallow 

penetration (<400 µm) of UV-VIS excitation light, it has been shown that they can detect 

changes in the epithelium with high sensitivity.59 This device emits blue light between 400 and 

460 nm wavelengths to excite endogenous fluorophores. After illumination, healthy tissue 

appears pale green when viewed through a selective long-pass filter, whereas abnormal tissue 

shows autofluorescence loss and appears as fark areas in contrast to surrounding tissue. 

Another similar implementation to VELscope is Identifi. Identafi is a multi-spectral device that 

incorporates white light, violet light, and green-amber light. The white light is for conventional 

oral examinations, the other two lights are designed to be used sequentially to facilitate 

examinations. Similar to VELscope, the violet light with 405 nm wavelength utilizes the 

autofluorescence loss phenomenon to distinguish neoplastic tissue from normal mucosa. Akin 

to NBI, the green-amber light with 545 nm wavelength approximately matches the peaks of 

absorption wavelengths of hemoglobin, which may facilitate the visualization of 

neoangiogenesis.  
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Table 1. Working Principles of Optical Techniques Investigated for H&N Cancer Surgical 
Guidance. 

Technique 
Resolution &  

Penetration Depth 
Advantages Disadvantages 

High Resolution 

Microendoscopy 

(HRME) 

Field-of-View (FOV): 
330 µm – 1,400 µm 

 

Spatial Resolution: 
4.0 – 4.5 µm.60,61 

 

Time resolution: 
10-15 FPS.45,62,63 

 

Penetration Depth: 
50 – 100 µm.45 

 

• Simple instrumentation 
(no complex light sources, 
moving parts, or scanning 
mirrors).45 
 

• Real-time. 

• Sensitivity and specificity 
depend on contrast agent.45 
 

• Requires exogenous contrast.  
 

• Proflavine, the most commonly 
used HRME contrast agent, is 
not FDA approved45 and 
confounds imaging within heavily 
keratinized mucosa.46 
 

• Simplicity of HRME precludes 
optical sectioning.45 
 

• Shallow penetration depth.  
 

• Small FOV creates sampling 
error akin to biopsies.  

Narrow Band 

Imaging 

(NBI) 

Field-of-View: 
~3 mm x 3 mm.64 

 

Spatial Resolution: 
~10 µm when in contact 

with tissue.64 
 

Penetration Depth: 
< 1 mm for visualizing 

capillaries by 
blue light (400 – 430 nm) 

 

& 
 

< 2.5 mm for visualizing 
veins by green light 

(252-555 nm).65 

• No exogenous contrast.  
 

• Reveals vascular and 
mucosal patterns.48 
 

• Easy to implement, user-
friendly, widely available.48 
 

• Real-time implementation.  

• User training needed to 
correctly interpret findings.48 
 

• Variability across users in 
interpreting findings.48 
 

• Vascular architecture is 
investigated for diagnosis, 
however vascular patters are 
affected by keratinization,66 
lymphatic tissue,66 epithelial 
thickness,66 benign lesions,67 
inflammation,67 and sites of 
previous surgery.67 
 

Raman 

Spectroscopy 

(RS) 

Field-of-View: 
0.85 ± 0.01 μm 

 

& 
 

Focal Imaging Depth: 
5.05 ± 0.11 µm at 

1,064 nm laser 
excitation.68 

• Autofluorescence virtually 
eliminated with IR laser 
excitation.69 
 

• High SNR permits robust 
chemometric methods to 
be applied.69 
 

• Rapid, quantitative, 
molecularly specific, and 
objective.69 

• Still in early stages for clinical 
adoption and 
commercialization.70 
 

• Technical limitations, including 
the need for controlled lighting, 
slow acquisition speed, and 
potential for sampling error.  
 

• Choice of wavelength impacts 
Raman scattering efficiency.71 

Optical 

Coherence 

Tomography 

(OCT) 

Spatial Resolution: 
0.88 – 2.19 µm, 

aperture dependent,51 
 using super resolution 

and deconvolution 
techniques.72,73  

 
Spatial resolution is 

dependent on aperture.  
 

Penetration Depth: 
~2 to 3 mm 

 aperture independent.51  
 

• Highly investigated and 
commercially adopted, 
especially in 
ophthalmology.51 
 
• Technique prioritizes use 
of NIR, thereby exhibiting 
enhanced penetration 
depth (compared to UV and 
visible-based optical 
modalities).  
 
• Good depth of 
penetration. 

• Penetration depth depends on 
wavelength and sample 
absorption and scattering 
properties.51 
 
• Motion artifacts in densely 
sampled tissue volumes.74 
 
• Long acquisition times to 
acquire data over large tissue 
areas.74 
 
• Structure-altering tissue 
conditions, such as dysplasia, 
may confound diagnosis. 
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Table 1 (Continued). Working Principles of Optical Techniques Investigated for H&N Cancer 
Surgical Guidance. 

Technique 
Resolution &  

Penetration Depth 
Advantages Disadvantages 

Exogenous 

Targeted 

Fluorescence 

Imaging  

(TFI) 

Spatial Resolution: 
Varies, ~ 21 µm.75 

 
 

Penetration Depth: 
~5 mm using 

IRDye 800 CW  
Ex. 774 nm 

Em. 789 nm.65 

• Targeting antibodies (e.g., 
EGFR), are well studied 
and exhibit ideal 
pharmacokinetic features, 
biodistribution, pose limited 
side-effects, and 
demonstrate low potential 
toxicity.76   
 
 

• Most fluorescent probes 
are NIR excited, enabling 
greater penetration depth 
and enhances tumor to 
background signal. 

• Many current fluorescing 
probes are still in preclinical and 
early clinical investigation 
stages.45 
 

• Intra-tumor phenotype 
heterogeneity can impact 
sensitivity. Certain populations of 
tumors may downregulate the 
expression of cancer cell-surface 
antigens due to immune 
suppression or tumor internal 
coordination.77  
 

• Requires controlled lighting.77 
 

• Exogenous contrast.77 
 

• Reliance on a rather qualitative 
interpretation of fluorescence 
emission.77 
 

• Scattering, absorption, and 
autofluorescence properties may 
create low tumor signal-to-
background ratio and obscure 
the invasive tumor front.77 
 

Exogenous Non-

Molecularly 

Targeted 

Fluorescence 

Imaging 

Spatial Resolution: 
2.66 µm for NIR-

fluorescence microscopy78 
and 

~20 µm for scanning 
fiber endoscopy.79 

 

Penetration Depth: 
> 1 mm for PPIX 

at Ex. 409 nm, Em. 633 
nm.65 

 

~ 5 mm for Indocyanine 
Green (ICG) at Ex. 789 
nm and Em. 814 nm.65 

• 5-ALA and ICG are well 
studied with highly 
documented safety profiles. 
 

• Good depth of penetration 
for ICG. 
 

• Use of ICG and 5-ALA in 
current practice in various 
surgical oncology fields.80  

• Probes are not molecularly 
targeted, thereby exhibiting 
reduced tumor specificity.81 
 

• Relies on the presence of leaky 
capillaries to distribute to 
tumor.82 
 

• Non-tumor specific and lacks 
specificity for early neoplastic 
lesions.81 
 

• Exogenous contrast takes 
additional time to prepare and 
administer to the patient.    

Intensity-Based 

Autofluorescence 

(IAF) 

Spatial Resolution: 
~ 1 mm for VELscope. 

 
0.73 µm confocal laser 
scanning fluorescence 

microscope.59  
 
 

Penetration Depth: 
< 400 µm for VELscope 

• Real-time implementation. 
 

• Endogenous-based 
fluorescence 
(autofluorescence). 
 

• Ability to qualitatively 
identify tumor margins 
through autofluorescence 
loss.45 

• Steady-state fluorescence 
intensity analysis is confounded 
by irregular tissue surfaces due 
to non-uniform excitation/ 
collection geometry.1,83   
 

• Confounded by the variable 
presence of endogenous 
absorbers (e.g., blood) in the 
operative field.83 
 

• Poor specificity.45 
 

Abbreviations: Ex. = Excitation, Em. = Emission, SNR = Signal-to-Noise Ratio, FOV = Field-of-View, NIR= Near Infrared,  
UV= Ultraviolet, EGFR = Epithelial Growth Factor Receptor, PPIX = Protoporphyrin IX 
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Table 2. Review of Literature: Optical Modalities Investigated for Surgical Guidance in Human 
Patients In Vivo 

 

 

Abbreviations: HRME = High Resolution Microendoscopy, NBI = Narrow Band Imaging, RS = Raman Spectroscopy, 
OCT = Optical Coherence Tomography, TFI = Targeted Fluorescence Imaging, ICG = Indocyanine Green,  
SCC = Squamous Cell Carcinoma, EGFR = Epithelial Growth Factor Receptor, PSM = Positive Surgical Margin 
AFI Imaging = Autofluorescence Intensity Imaging 

Authors & 

Year 

Experiment 

Conditions 
Technique 

Evaluated 

Pathology 
Results 

Miles BA, 

Patsias A, 

Quang T, et al. 

2015 84 

In Vivo Human 

Phase I Trial 

N=33 Patients 

HRME for margin 

delineation 

 (“optical biopsy” of 695 

images”) of cancer, margin, 

ipsilateral normal, and 

contralateral normal 

SCC tumors 

of the oral 

cavity and 

oropharynx.  

Accuracy: 95.1 ± 1.0% 

Sensitivity: 96% ± 2.5% 

Specificity: 95% ± 4.5% 

Garofolo S, 

Piazza C, Del 

Bon F. et al. 

2015 85 

In Vivo Human 

Research 

N=82 Patients 

NBI used for intraoperative 

evaluation of early glottic 

cancer of the oropharynx via 

TORS.  

Lesions and 

carcinoma of 

the 

oropharynge

al glottis.  

The rate of positive superficial 

margins was 3.6% with the use 

of NBI, and 23.7% without the 

use of NBI.  

Tirelli G., 

Piovesana M, 

Gatto A. et al.  

2016 86 

In Vivo Human 

Research 

N=70 Patients 

NBI used for intraoperative 

delineation of resection 

margins. 

Oral cavity 

and 

oropharynx 

SCC. 

Use of NBI reduced positive 

margin rate from 36.4% in the 

control group (N=44 patients) 

to 11.5% (N=26 patients) using 

NBI.   

Malik A, Sahu 

A, Singh SP, et 

al.  

2017 87 

In Vivo Human 

Research 

N=99 Patients 

RS used to demarcate 

zones of mucosa prone to 

cancer reoccurrence via 

field changes at the 

molecular level. 

Oral cavity 

SCC. 

Sensitivity: 80% 

Specificity: 29.7% 

Sunny SP, 

Agarwal S, 

James BL, et al.  

2019 88 

In Vivo Human 

Research 

N=14 Patients 

OCT (spectral domain) was 

intraoperatively used to 

assess oral squamous cell 

carcinoma margins.  

Oral cavity 

SCC on 

buccal 

mucosa and 

tongue. 

Sensitivity: 92.8% 

Specificity: 70.51% 

Keulen S., 

Nishio N, 

Fakurnejad S, 

et al.  

2019 36 

In Vivo Human 

Phase I Trial 

N=20 Patients 

TFI (open-field fluorescence 

imaging). EGFR antibody 

panitumumab conjugated to 

IRDYE800CW used.   

Primary oral 

cavity SCC 

tumors. 

All carcinoma delineated 

(100%). Average tumor-to-

background ratio: 2.2 ± 0.4. 

Keulen S., 

Nishio N, 

Fakurnejad S, 

et al.  

2019 89 

In Vivo Human 

Phase I Trial 

N=14 Patients 

TFI (open-field fluorescence 

imaging). EGFR antibody 

panitumumab conjugated to 

IRDYE800CW used.   

Oral cavity 

SCC (pre-

resection, 

followed by 

deep 

margin). 

Surgical decision-making was 

improved in N=3 cases 

(21.4%) and deep-margin 

tumor detected in N=10 

(71.4%) of patients.  

Cicciu M, 

Cervino G, 

Fiorillo L, et al. 

2019 90 

In Vivo Human 

Commercial 

(Review of 25 

Manuscripts 

over 10 Years) 

AFI Imaging (VELscope) 

Excitation wavelength: 

400 nm – 460 nm 

Oral cavity 

SCC 

Mean Sensitivity: 70.19% 

Mean Specificity: 65.95% 

Pan J, Deng H, 

Hu S, et al.  

2020 91 

In Vivo Human 

Research 

N=20 Patients 

 

ICG (intravenously 

delivered) visualized by 

near-infrared fluorescence 

imaging. 

Oral cavity 

SCC  

ICG fluorescence visible in all 

tumors, with a tumor to 

background ratio of 1.45 ± 

0.36 reported. PSMs detected 

in all two patients.  
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CHAPTER 2 | Physical Principles of Fluorescence, Autofluorescence Properties 
of Head & Neck Cancer, and Review of Foundational Research to Date 
 

2.1 | Physical Principles of Fluorescence 

Fluorescence is a form of luminescence, where luminescence is the emission of light 

from any substance, which occurs from electronically excited states.92 Luminescence is 

partitioned into two categories based on the nature of the excited state as either fluorescence or 

phosphorescence.92 When specific molecules absorb photons of appropriate energy, a cascade 

of photophysical events occur; depending on the molecule, this may include: (1) internal 

conversion and vibrational relaxation (resulting in energy loss in the absence of light emission), 

(2) fluorescence, (3) intersystem crossing, and (4) phosphorescence.93 The lifetime of the 

excited state is defined as the average time a molecule spends in the excited state prior to 

return to the ground state.1,92,93 The lifetime of photophysical processes, such as internal 

conversion, varies from tens of femtoseconds,94,95 to nanoseconds for fluorescence,93 and finally 

microseconds to seconds for phosphorescence.95 

Fluorescence lifetime is considered a state function as it does not depend on initial 

perturbation conditions, such as duration of light exposure, excitation wavelength, fluorophore 

concentration, photobleaching, and is independent of fluorescence intensity.93 Fluorescence is 

typically characterized by the absorption cross-section of the molecule, the coupled absorption 

and emission spectrum, the quantum yield (number of emitted photons over the total number of 

absorbed photons), and the lifetime (τ) of the fluorescence signal.2 

Jablonski diagrams, demonstrated in figure 2, are useful representations that visually 

denote the processes of molecular absorbance and emission of light after applying photons to a 

particular molecule. The diagram is an energy diagram, arranged with energy on the vertical 

axis. Bold horizontal lines are representations of the limits of electronic energy states, and within 

each electronic energy state are multiple vibronic energy states that may be coupled with the 

electronic state. The use of straight and curved lines demonstrates transitions between 
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eigenstates that occur from exposure of a molecule to a particular wavelength of light. Only 

certain wavelengths of light are possible for absorbance, which are wavelength energies that 

match the energy difference between two different eigenstates of a particular molecule. ‘S0’ 

represents the ground singlet state, ‘S1
’ is the first singlet state and ‘S2’ is the second singlet 

state. Fluorescence occurs only from the transition from the limit of the ‘S1’ vibrational state 

down to electronic energy levels of the ground state.  

 
Figure 2: Simplified Jablonski diagram demonstrating the fluorescence photophysical process. Incident photons of 
appropriate energy promote electrons from the ground state (S0) to an excited state (e.g., S1, S2). Fluorescence 
results from the transition from the lowest limit of the S1 vibrational state down to vibronic energy states of S0. Figure 
adapted with modification from reference [96]. 

Fluorescence typically occurs from aromatic molecules, where fluorescing substances 

are coined as “fluorophores.” Many fluorophores can be found in nature (e.g., Quinine, Pyridine 

1, Rhodamine B, Fluorescein, etc.) as well as in biological tissues (discussed in chapter 2.3 in 

detail).  Fluorescence lifetime varies between molecular species and is sensitive to 

environmental factors such as the conformation and binding state of the absorbing molecule, 

the temperature, the pH, or the solvent viscosity.97 For fluorophores intrinsic to tissue, such 

dependencies can be used for probing tissue properties including composition, structure, and 

metabolic state.1,58 
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2.2 | Introduction to Autofluorescence 

Autofluorescence is a term used to designate fluorescence that originates from specific 

endogenous (intrinsic) tissue fluorophores, thus representing a label-free optical phenomenon. 

As described previously in the context of a Jablonski diagram, autofluorescence is the radiative 

process that occurs after a molecule absorbs a photon (figure 3A) that promotes an electron 

from the ground state (S0) to an excited state (S1), resulting in an electron decay back to the 

ground state, which resulting in the emission a photon of lower energy (figure 3B). Due to the 

magnitude of possible vibrations and rotational energy levels within a molecule, resulting 

fluorescence occurs over a spectral range, denoted as the emission spectra in figure 3C.  

Correspondingly, fluorescence emission is of lower energy than the absorbed photons, which is 

referred to as Stokes shift (figure 3C). Single fluorophores exhibit mono-exponential lifetime 

decays, where the fluorescence lifetime corresponds to the value of ‘τ’ in I(t) = 
1

𝑒𝑡/τ I0, which is 

the time it takes for I= 
1

𝑒
I0 (figure 3D). Typically, the lifetime of endogenous fluorophores ranges 

from 0.1-7 nanoseconds.93 

Intrinsic tissue fluorophores often present as aromatic molecules. Amino acids like 

tryptophan and tyrosine absorb and emit light in the ultraviolet (UV) range. Enzymatic cofactors 

Nicotinamide Adenine (Phosphate) Dinucleotide (NAD(P)H), Flavin Adenine Dinucleotide (FAD) 

and pyridoxal phosphate fluoresce in the visible range. Other molecules that fluoresce in the 

visible range include collagen, elastin, structural protein crosslinks, keratin, lipopigments and 

porphyrins. The fluorescence properties of these molecules and other tissue fluorophores are 

described in detail elsewhere.93,96,98,99  
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Figure 3: Representation of autofluorescence excitation-emission, spectra, and lifetime. (A) Schematic of light-tissue 
interaction, where incident excitation light results in the generation of fluorescence emission. The tissue penetration 
depth depends on the tissue scattering (μs) and absorption (μa) properties, which are wavelength (λex) dependent. 
The longer the wavelength, the deeper light penetrates. (B) Simplified Jablonski diagram for fluorescence, where a 
photon (hνex) excites the electrons from the ground state (S0) to an excited state (S1). The radiative relaxation back to 
S0 emits fluorescence photons (hνem). (C) Absorption (abs.) and emission (em.) spectra featuring the Stokes shift. (D) 
Temporal intensity decay of the fluorescence emission characterized by the fluorescence lifetime (τ) following an 
excitation pulse. Figure reproduced with permission from Alfonso-Garcia A., et al. reference [2]. 
 

Collagen, NAD(P)H, FAD, and porphyrins are recognized as the main contributors to 

head and neck cancer autofluorescence emission due their prevalence and high quantum yield 

in oral cavity and oropharyngeal tissues.1 The excitation, emission, and lifetime properties of 

these fluorophores are summarized in table 3.  

Collagen is the most abundant protein in the body, making up nearly half of the total 

body protein by weight.100 This protein forms flexible, but nonelastic fibers, that provide tensile 

strength to tissue, thereby imparting resistance to longitudinal stress.100 In the oral mucosa, 

collagen forms the structural network of the connective tissue component and is present in 

fibrillar form.101 The lamina propria beneath the stratified squamous epithelium is the fibrous 
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tissue layer that contains collagen in oral mucosal tissues.101 There are two different collagen 

types in oral mucosa: (1) type III and type IV collagen, representing a loose reticular network, 

comprising the upper connective stroma (lamina propria) and (2) collagen type 1 and type 3, 

present in a ratio of 4:1, in deeper stroma.101 Collagen type I and III are the major fibrillar 

components, presenting in a ratio of 4:1 in the submucosa. Collagen fiber organization and size 

vary topographically in the oral mucosa.101 

Table 3. Excitation, Emission, and Lifetime Characteristics of Collagen, NAD(P)H, FAD, & Porphyrins. 

 Excitation (nm) Emission (nm) Lifetime (ns) 

Collagen 280-350 [102] 370-440 [102] ≤5.3 [93] 

NAD(P)H  

(Free) 
300-380 [103] 450-500 [103] 0.3 [103] 

NAD(P)H  

(Protein Bound) 
300-380 [103] 450-500 [103] 2.0−2.3 [103] 

FAD 

(Free) 
420-500 [103,104] 520-570 [103,104] 2.91 [103,104] 

FAD  

(Protein Bound) 
420-500 [105] Very Weak  

520-570 [105] <0.01 [105] 

Protoporphyrin IX 400-450 [103,106] 635,710 [103,106] Range: 2-3 (dimers) [1] 

10-12 (monomers) [1] 

  Abbreviations: NAD(P)H = Nicotinamide Adenine (Phosphate) Dinucleotide, FAD = Flavin Adenine Dinucleotide 
 

The fluorophores within collagen molecules are the fluorescent amino acids  

phenylalanine and tyrosine, pyridinoline crosslinks, and specific glycation end products such as 

pentosidine.107 Nearly half of the fluorescent components are from the pyridinoline crosslinks, 

which account for 5% of all amino acids in a collagen molecule.107 It is observed that increased 

crosslinking results in increased fluorescence lifetime; because there is an accumulation of 

fluorophores within crosslink sites, changes to fluorescence lifetime of collagen can be linked to 

changes to crosslinking.107  

 The reduced form of Nicotinamide Adenine Dinucleotide (NADH) and its phosphate 

derivative (NADPH) are key fluorescent molecules in the metabolic network, along with Flavin 

Adenine Dinucleotide (FAD).93 Together, NAD(P)H and FAD play ubiquitous roles in cellular 

glycolysis, the citric acid cycle, and oxidative phosphorylation.93,100 The fully oxidized form of 
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NAD(P)H, NAD(P)+, and the fully reduced form of FAD, FADH2, are non-fluorescent forms of 

these redox cofactors.93 It should be noted that the intensity and lifetime of NAD(P)H strongly 

depends on the microenvironment, where NAD(P)H has a mean fluorescence lifetime of 2.3-3.0 

ns when bound to protein, and a short lifetime ~0.3-0.4 ns when in free form.108,109 Metabolic 

shifts in cellular processes, such as cells predominantly undergoing glycolysis vs. oxidative 

phosphorylation, drives a shift in the ratios of the protein-bound NAD(P)H fractions, and 

oxidative and reduced ratios of FAD and NAD(P)H, thereby driving marked changes in 

autofluorescent intensity and lifetime.  

Porphyrins represent among the longest emission wavelength of all naturally occurring 

fluorophores, fluorescing in the reddish-orange range.93 Protoporphyrin IX (PPIX) has been 

reported as a key fluorophore in cancer diagnostics, where enzymatic differences between 

tumor and normal cells culminate in higher PPIX concentration in cancer.1 Although promising, 

PPIX has been less studied and has reduced quantum yield compared to that of collagen, 

NAD(P)H, and FAD.   
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2.3 | Autofluorescence Properties of H&N Cancer – Mechanisms of Contrast, 
Review of Foundational Research to Date, and Expected Outcomes 

2.3.1 Head and Neck Cancer Drives Changes in Autofluorescence Properties – An 
Explanation from a Physiological Standpoint 

 In the 1920s, Otto Warburg demonstrated that cancer cells are highly glycolytic 

compared to normal cells, which favor the much more efficient oxidative phosphorylation 

pathway. This phenomena was coined the Warburg Effect, where reductive glycolysis was 

demonstrated as the prevailing cancer cell metabolic pathway.110,111 While current knowledge 

demonstrates this effect is not as binary as originally thought, this effect generally holds true for 

many cancer cell populations. Recent findings suggest that tumors demonstrate some degree of 

metabolic plasticity, and depending on the conditions, can switch between glycolysis and 

oxidative phosphorylation (although cancer prefers the glycolytic pathway due to the production 

of metabolic intermediates which promote tumor progression).112 HNSCC has been previously 

demonstrated to follow the general principles of the Warburg effect. A transition of cell 

populations to glycolysis under the Warburg Effect demonstrates considerable changes to the 

balance of NAD+/NAD(P)H and FAD/FADH2.  

Tumors are complex structures with malignant cancer cells embedded in vasculature 

and surrounded by a dynamic tumor stroma.113 The tumor microenvironment acts similarly to the 

inflammatory response of healing wounds, in that it promotes angiogenesis, turnover of the 

extracellular matrix (ECM), and is characterized by tumor cells with marked motility.113,114 Matrix 

metalloproteinases (MMPs) regulate a variety of physiological processes and signaling events, 

therefore representing key roles in the molecular communication between tumor and stroma.113 

MMPs form a family of proteases which are associated with a variety of tumor-driven processes, 

including: (1) tumor invasion and intravasation, (2) angiogenesis, (3) regulation of inflammation, 

and (4) the metastatic niche.113 It is known that HNSCC tumors mediate the activity of 

collagenases.115 Other studies have demonstrated that cancer associated fibroblasts within 

squamous cell carcinomas can regulate collagen cross-linking,116 which, synergistically with 
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MMPs, influences the invasive properties of tumor cells. Suitably, MMPs associated with tumor 

progression alters fluorescence lifetimes (decreases lifetime due to reduced crosslinking) and 

intensities (decreases intensity of the fluorescent amino acids phenylalanine and tyrosine due to 

cleavage), thereby imparting a mechanism for autofluorescence contrast between benign tissue 

and cancer.   

A unique feature of cancer is an acidic tumor microenvironment, which is recognized to 

drive cancer somatic evolution and disease progression.117 The tumor acid/alkaline balance is 

regulated through a complex interplay between cellular carbon metabolism and acid removal 

mediated by abnormal tumor-associated vessels, interstitial fluid buffering, and transport 

proteins.117 The pH of extracellular fluid in healthy tissues is tightly regulated between 7.35 – 

7.45, which is important to sustain normal physiology and cellular metabolism.117 Conversely, 

the extracellular fluid pH neighboring cancer cells is acidic, between 6.3 – 7.0, which 

demonstrates the dysregulation of the acid-base homeostatic mechanisms which are observed 

within solid tumor microenvironments where hypoxic conditions and high respiration (e.g., 

excess CO2 production creating carbonic acid) conditions dominate.114,117 Because pH is known 

to alter fluorescence lifetime,108 it is expected that the acidic tumor microenvironment plays a 

role in lifetime-based contrast for endogenous fluorophores. This result was confirmed for 

endogenous FAD in HeLa cells, when the fluorescence lifetime of FAD was measured at 

different intracellular pHs.118 It was found that increased (more basic) intracellular pH resulted in 

decreased average fluorescence lifetime of FAD in these cell cohorts.118 Interestingly, when 

FAD was isolated and placed in buffer solution, the lifetime did not change with pH when 

exposed to a pH range of 5-9.118 This result confirmed that interactions between FAD and 

surrounding functional groups in a protein depend on intracellular pH, which promotes pH-

induced change in the non-radiative decay rate, and thus lifetime, of FAD in HeLa cells.118 An 

analogous result was observed with NAD(P)H in HeLa cells, where the average fluorescence 
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lifetime of NAD(P)H became shorter monotonically as intracellular pH increased in a range from 

pH 5 to pH 9.118 

 The effect of temperature on fluorescence lifetime is an important consideration, 

particularly when interrogating excised tissue for fluorescence lifetimes in diagnostic 

applications, where excised tissue is no longer maintained at normal body temperature (97.7–

99.5 °F). Temperature affects bond rotation rate constants, where increased temperature 

increases the bond rotation rate, which in turn decreases the fluorescence lifetime.93 

2.3.2 Review of Significant Pre-Clinical and Clinical Autofluorescence Research Findings 
to Date in H&N Oncology Research 

This section focuses on a review of the foundational time-resolved autofluorescence 

research conducted in the H&N oncology research space, both in laboratory and clinical 

settings. Table 4 provides an overview of foundational pre-clinical and clinical research 

conducted to date (exempting completed research within this scope of original research herein) 

for head & neck oncology. As the focus of this work is based on intraoperative margin 

evaluation, literature focused on ex vivo is not discussed. We remark however that promising ex  

results using autofluorescence have been demonstrated, including recent work (March 2022) by 

Maie St. John et al.119 
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Table 4. Foundational Time-Resolved Autofluorescence Research in Head & Neck Oncology. 

Authors & 

Year 

Experiment 

Conditions 

Evaluated 

Pathology 
Technique 

Ex. & Em. λ and 

Fluorophores 
Results 

Chang CL,  

You C,  

Chen HM, et al. 

2004 [120] 

In Vivo 

Human 

Patients 

(N=33 Oral 

Cavity 

Lesions) 

Benign, 

Leukoplakia, 

Verrucous 

Hyperplasia, 

Dysplasia, & 

SCC  

TCSPC 

Spectra 

Ex: 410 nm 

Em: 630 nm 

(PpIX) 

LTBenign<LTSCC 

&  

LTBenign<LTDysplasia 

  

Chen HM, 

 Chiang CP,  

You C, et al. 

2005 [121] 

In Vivo 

Human 

Patients 

(N=55 Oral 

Cavity Tongue 

& Mouth 

Lesions) 

Benign, 

Hyperplasia, 

Dysplasia, 

Verrucous 

Hyperplasia 

TCSPC 

Spectra 

Ex: 410 nm 

Em: 630 nm 

(PpIX) 

LT Resolved Benign 

Epithelium, 

Hyperplasia, and 

Dysplasia 

Sun Y,  

Phipps J,  

Elson DS, et al. 

2009 [83] 

In Vivo 

Hamster 

(Buccal 

Pouch) 

Benign,  

Dysplasia,  

 In Situ SCC,  

SCC 

Endoscopic 

FLIm via 

Gate 

Intensified 

CCD 

Camera 

Ex: 337 nm,  

Em1: 390/70 nm 

(Collagen)  

Em2: 450/65 nm 

(NADPH) 

Collagen Intensity 

Decreased in 

Cancer Relative to 

Benign & NADH LT 

Decreased for 

Cancer 

Farwell DG, 

 Meier JD,  

Park J, et al. 

2010 [122] 

In Vivo 

Hamster 

Oral Cavity 

Benign, 

Dysplasia,  

In Situ SCC,  

SCC 

TRFS 

Spectra 

Ex: 377 nm 

Em: 360-650 nm at 

5nm Intervals 

390 nm (Collagen)  

460 nm (NADPH) 

633 nm (Porphyrin) 

LTBenign>LTCancer  

at 460 nm. 

Combined LT and IR 

Resulted in Better 

Discrimination 

Performance 

Jo JA,  

Applegate BE, 

 Park J, et al. 

2010 [123–125] 

In Vivo 

Hamster 

Oral Cavity 

Benign, 

SCC 

FLIm & OCT 

(Multimodal) 

FLIm Ex: 355 nm 

 Em1: 390/40 nm  

(Collagen), 

Em2: 452/45nm 

NADPH, 

Em3: 550/40 nm  

FAD 

Multimodal 

Evaluation Improved 

Discrimination vs. 

Single-Modality 

Sun Y,  

Phipps JE,  

Meier J, et al. 

2013 [126] 

In Vivo 

Human 

10 Patients 

26 Sites 

Buccal 

Mucosa 

Benign,  

SCC 

Endoscopic 

FLIm 

Ex: 337 nm 

Em: 460/50 nm 

(Combination of 

Collagen & NADPH) 

LTSCC < LTBenign 

INTSCC < INTBenign 

Fatakdawala H, 

Poti S,  

Zhou F, et al. 

2013 [127] 

In Vivo 

Hamster 

Buccal Pouch 

Benign, 

 Precancerous 

Lesions,  

SCC 

Multimodal 

FLIm, PAI, & 

UBM 

FLIm Ex: 337 nm  

Em1: 390/40 nm,  

(Collagen) 

Em2: 450/45 nm,  

(NADPH) 

Em3: 542/50 nm 

(FAD) 

Em4: 629/53 nm 

(Porphyrins) 

Benign, Precancer 

Lesions, and SCC 

Distinguished with 

Average LT. PAI 

Detected Higher 

Vascularization 

within Tumor. UBM 

Improved FLIm 

Discrimination 
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Table 4 (Continued). Foundational Time-Resolved Autofluorescence Research in H&N Oncology. 

Authors & 

Year 

Experiment 

Conditions 

Evaluated 

Pathology 
Technique 

Ex. & Em. λ and 

Fluorophores 
Results 

Pande P,  

Shrestha S,  

Park J, et al. 

2016 [128] 

In Vivo 

Hamster 

Buccal Pouch 

Benign, 

Precancerous 

Lesions, 

SCC 

Multimodal 

FLIm and 

OCT 

FLIm at Ex: 355 nm  

Em1: 390/40 nm,  

(Collagen) 

Em2: 452/45 nm, 

(NADPH) 

Em3: 600/125 nm 

(FAD & Porphyrins) 

Automated Quantitative 

Image Analysis of 3D 

FLIm and OCT. 

Classification Accuracy 

of Both Modalities: 

87.4%; FLIm Only: 

83.4% 

Malik BH, 

 Lee J,  

Cheng S, 

 et al. 

2016 [129] 

In Vivo 

Hamster 

Buccal Pouch 

Benign, 

Low grade 

Dysplasia, 

High Grade 

Dysplasia 

FLIm 

Ex: 355 nm 

Em1: 390/20 nm 

(Collagen), 

Em2: 450/22.5 nm 

(NADPH) 

Em3: 500 nm/20 nm 

(FAD) 

LTBenign > LTSCC 

For Collagen and 

NAD(P)H 

 

Gorpas D,  

Davari P,  

Bec J, et al. 

2018 [130] 

In Vivo 

Human 

Oral Cavity 

Mucosa 

Oral Lichen 

Planus (OLP) 

TRFS 

Spectra 

Ex: 337 

Em1: 390/40 nm 

(Collagen) 

Em2: 466/40 nm 

(NADPH) 

Em3: 542/50 nm 

(FAD) 

Em4: 629/53 nm 

(Porphyrins) 

LTOLP Collagen, NADH, 

& FAD < LTBenign 

Collagen, NADH, & 

FAD 

Lagarto JL,  

Phipps JE,  

Faller L,  

et al. 

2018 [131] 

In Vivo 

Swine 

Tonsil,  

Base of 

Tongue, 

 Soft Palate  

Electrocautery 

Effects on 

Mucosal 

Tissue 

FLIm 

Integrated 

into Da 

Vinci Si 

Transoral 

Robotic  

Surgical 

Platform 

Ex: 355 nm 

Em1: 390/40 nm 

(Collagen) 

Em2: 470/28 nm 

(NADPH) 

Em3: 542/50 nm 

(FAD) 

Em4: 629/53 nm 

(Porphyrins) 

FLIm Incorporated into 

TORS. Aiming Beam 

Augmented Data. 

Distinct FLIm 

Signatures w/ 

Electrocautery. 

Temporal Dependence 

of Electrocautery 

Jo JA,  

Cheng S, 

Cuenca R,  

et al. 

2018 [132,133] 

In Vivo 

Human 

Oral Cavity 

Lesions 

Benign, 

High Grade 

Dysplasia,  

SCC 

FLIm 

Endoscope 

Ex: 355nm 

Em1: 390/20 nm  

(Collagen), 

Em2: 452/22.5 nm 

(NADPH),  

Em3: ~500 nm 

(NADPH/FAD) 

LTBenign > LTscc 

INTBenign > INTscc  

Gorpas D,  

Phipps J, 

 Bec J, et al. 

2019 

In Vivo 

Pig & Human 

Oropharynx 

Benign, 

SCC, 

SCC with 

Lymphoid 

Tissue 

Background 

FLIm 
Integrated 

into Da 
Vinci Si 

Ex: 355 nm 
Em1: 390/40 nm 

(Collagen) 
Em2: 466/40 nm 

(NADPH) 
Em3: 542/50 nm 

(FAD) 
Em4: 629/53 nm 

(Porphyrins) 

First Demonstration of 
FLIm in the Human 
Oropharynx. Benign 

Tissue, SCC, and SCC 
Over Lymphoid Tissue 
Resolved with Multi-

Spectral LT Plots 

 

Abbreviations: Ex. = Excitation, Em. = Emission, λ = Wavelength, SCC = Squamous Cell Carcinoma, LT= Lifetime,  
TCSPC= Time Correlated Single Photon Counting, CCD = Charge Coupled Device, UBM = Ultrasound Backscatter Microscopy 
TRFS = Time Resolved Fluorescence Spectroscopy, PAI = Photoacoustic Imaging, PPIX = Protoporphyrin IX, IR = Intensity Ratio 
TORS = Transoral Robotic Surgical Platform 

  * Table excludes research conducted under the purview of the present research investigation. 
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As demonstrated in table 4, the first published study regarding autofluorescence lifetime 

measurements on human subject oral carcinogenesis was reported in 2004, where a time-

correlated single-photon counting system (TCSPC) system was used to study the temporal 

profile of Protoporphyrin IX (PpIX) as an indication of carcinogenesis in vivo.120 Among 33 

human patient oral cavity tissues assessed, normal tissue was found to have a significantly 

shorter (PpIX) lifetime than tissue characterized by dysplasia and cancer, thus demonstrating 

the preliminary feasibility of autofluorescence for the demarcation of dysplasia and tumor 

tissue.120 Further studies by this group in 2005 on a 55 human subject cohort substantiated their 

preliminary findings, also demonstrating the ability to differentiate hyperplasia from normal 

epithelium by PpIX autofluorescence.121 

In 2009, using an endoscopic FLIm instrument with a gate intensified CCD camera, Sun 

et al. published first multi-spectral assessment of oral cancer, where collagen (390/70 nm) and 

NADH (450/65 nm) autofluorescence was leveraged to differentiate normal tissue from 

dysplasia, carcinoma in situ, and squamous cell carcinoma in vivo on hamster buccal pouch 

models.83 Collagen intensity and lifetime was found to decrease for cancer relative to healthy 

tissue.83  A study in 2010 used time resolved fluorescence spectroscopy (TRFS) was used to 

detect oral carcinoma in hamster buccal pouch models.122 Healthy tissue, dysplasia, carcinoma 

in situ, and invasive carcinoma were evaluated using autofluorescence spectra of collagen, 

NAD(P)H, and porphyrins.122 Sensitivity and specificity were calculated using spectral ratio, 

average lifetime, and use of a zero-order Laguerre fitting coefficient to the temporal profile.122 

Superior results were achieved with respect to sensitivity and specificity when using spectral 

ratio, average lifetime, and the zero-order Laguerre fitting coefficient together.122 A sensitivity of 

76.5% and specificity of 96.2% was achieved.122 

An independent study in 2010 by Jo et al. introduced the first multimodal FLIm-OCT 

device for the characterization of oral cavity cancer;124 collective findings using this instrument 



30 

 

on hamster cancer models in vivo demonstrated that multimodal evaluation of cancer and 

healthy tissue improved discrimination capacity by improving both sensitivity and specificity.123–

125  A subsequent 2013 study by Fatakdawala et al. coupled multimodal FLIm, photoacoustic 

imaging (PAI) and ultrasound backscatter microscopy (UBM) to distinguish normal tissue from 

precancerous and carcinoma tissue in hamster buccal pouch models.127 The authors noted the 

improvement which multimodal approaches confer to FLIm, where the highest sensitivity and 

specificity was reported when FLIm was used in combination with the other imaging modalities 

for healthy vs. cancer differentiation. Pande et al. further substantiated these findings with their 

own multimodal FLIm-OCT implementation.128   

In 2016, promising results were reported for the in vivo detection of oral carcinogenesis 

for hamster cheek pouch models, where collagen, NADH, and FAD were used to differentiate 

between normal tissue, benign lesions, low-grade dysplasia, and high-grade dysplasia with 

statistical significance.129 Also in 2016 Jo et al. demonstrated the first use of automated 

quantitative image analysis of 3D FLIm and OCT for the automated diagnosis of oral cavity 

cancer, which was an essential first step towards automated diagnostic algorithms on 

autofluorescence in this research area. In 2017, TRFS was used to detect oral lichen planus in 

vivo in human subjects, with collagen, NADH, and FAD leveraged as the primary fluorophores 

for time-resolved contrast.130 In 2018, the effect of electrocautery on ms-FLIm for live Yorkshire 

pigs was investigated.131 BOT, tonsil, tonsil-soft palate intersection, and tongue were 

evaluated.131 This work discovered distinct redox ratios and FLIm signatures appear with 

electrocautery, with an apparent temporal dependence following cauterization to restore 

fluorescence back towards the non-cauterized baseline.131 Other work in 2018 used ms-FLIm 

for detection of dysplasia, oral cancer, and benign lesions.132,133 Optical redox ratio, collagen 

intensity, FAD intensity, and NAD(P)H lifetime were most informative in differentiating 
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conditions.132,133 Finally in 2019, multispectral-TRFS was integrated into the da Vinci surgical 

system, with its functionality validated in swine and human patients.134 

2019 was a remarkable year for the intraoperative translation of FLIm for intraoperative 

surgical guidance as Gorpas et al. worked with Intuitive Surgical to integrate multi-spectral FLIm 

into the da Vinci surgical system.135 The validation of this transoral robotic surgery integration 

was reported on both swine (n=3) and human (n=4) patients.135 Results were also published on 

the effect of electrocautery on ms-FLIm for live Yorkshire pigs using this da Vinci surgical 

platform.131 This integration into the da Vinci opened up a new and previously unexplored 

research area for FLIm, oropharyngeal cancer, as these deeper and harder to access cancers 

(palatine tonsil, lingual tonsil, base of tongue, etc.) require the use of TORS for resection.  

2.3.3 The Next Steps to Progress Autofluorescence Research & Instrumentation Towards 
Devices Suitable for Diagnosis and Surgical Guidance  

Significant human-based time-resolved autofluorescence studies conducted to date 

have primarily focused on the feasibility of FLIm for intraoperative diagnosis. These studies 

have typically characterized only one cancer type or anatomical site at a time, and many of 

these studies have used measurements on contralateral healthy tissue for juxtaposition to 

cancer measurements. Performing comparisons based on contralateral sites however does not 

establish feasibility for intraoperative surgical guidance since measurements within the heathy-

tumor interface must be explored. Current studies have solely focused on oral cavity cancer 

(e.g., tongue, lips, floor of mouth, gingivae), but many have not explored deeper and harder to 

access anatomical cancers, such as the oropharynx (e.g., palatine tonsil, base of tongue, lingual 

tonsils). Previous studies have not characterized how fluorescence lifetimes and intensities 

change with distance from cancer tissue, and if there is a gradient of transitions in FLIm data, or 

a discrete change in fluorescence at the tumor-healthy interface. Other physiological conditions 

which may impact FLIm measurements, such as ulceration, necrosis, and dysplasia have been 

sparsely investigated.  
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Previous research has not characterized how other major factors such as heavy 

smoking and tobacco use, tissue damage from mastication forces, and other factors alike 

impact oral tissue autofluorescence. In particular, chronic smoking and chewing tobacco use is 

known to change pigmentation and thickness of the oral epithelium,136 increase keratin 

formation,136 alter cellular metabolism and gene expression,137 change collagen properties,138 

and create other conditions such as inflammation.139 Such dramatic alterations of the epithelium 

due to tobacco use are within the purview of fluorescence lifetime and intensity-based 

alterations, and are thus essential to characterize in order to assess the impact of smoking and 

non-smoking populations on fluorescence lifetime research.  

With respect to anatomy, the tissues of the oral and oropharyngeal cavity vary in structure, 

function, and metabolism, yet the majority of FLIm research to date has done little to elucidate 

the autofluorescence differences among disparate anatomies and has typically grouped 

measurements at all anatomical locations under one analysis for studies based on multiple 

anatomic sites. To cite a specific scenario, consider the shallow penetration depth of FLIm 

(<250 µm); it is expected that tissues with varied epithelial thicknesses should confer 

differences in FLIm signal since the lamina propria and basement membrane will provide 

enhanced autofluorescence signal contributions for tissues with small epithelial thicknesses.  

Normal values for epithelial thickness within oral cavity tissues vary from 106 µm ± 25 µm at the 

floor of mouth, 216 µm ± 59 µm for the oral cavity tongue, and 294 µm ± 68 µm in the buccal 

mucosa.140 Interestingly, inflammatory responses,141 hyperplasia,142 dysplasia,142 and 

cancer142,143 have been associated with increased epithelial thickness; all of which should drive 

changes in autofluorescence signal.  

Due to the sensitivity of autofluorescence to chemical and physical factors,108 it is 

expected that fluorescence lifetime and intensity measurements will vary at different anatomical 

locations as epithelial thickness140, collagen content,144 metabolism, and other factors will vary. 
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The evaluation of oral autofluorescence has traditionally grouped all cancer types together, 

however different oral cancer types in theory should exhibit significant autofluorescence 

differences due to different malignancy levels, different mechanisms of action, disparate 

metabolic properties, and varied cell morphologies. The extent of contrast achievable within a 

patient and the degree of variation among patients have not been quantitatively evaluated. 

Suitably, there is great opportunity to further characterize FLIm’s diagnostic potential of oral 

cavity and oropharyngeal cancer, which is an essential next step in the realization of this 

method for intraoperative use in tumor margin mapping and diagnosis.  

To continue to advance FLIm past initial feasibility stages with the eventual goal of 

clinical diagnostic use, an essential next step is to rigorously evaluate if FLIm-derived lifetime 

and intensity ratio parameters can be always found and used as a means of generating 

significant intrapatient contrast between healthy tissue and cancer, irrespective of experimental 

situations. For FLIm to be widely implemented for universal diagnosis, it is essential to 

understand if certain tissue anatomies, cancer types, medical histories (such as tobacco use), 

or imaging contexts (in vivo vs. ex vivo) yield poor contrast. Such results will inform on FLIm’s 

overarching diagnostic potential and identify patient cohorts, and other factors, which yield poor 

contrast and perhaps require alternative techniques for performing robust diagnosis.  

Another important aspect of future work in this area is to elucidate overarching FLIm-

derived parameters (e.g., average lifetimes and intensity ratios) for healthy tissue, dysplasia, 

and cancer, and to evaluate the degree of interpatient variability. It will be important to study the 

impact of imaging conditions (anatomical tissue type, in vivo vs ex vivo imaging, patient medical 

history, etc.) on these trends to understand common ground which will enable universal 

diagnostic use. Collectively, this work will rigorously evaluate the diagnostic efficacy of FLIm, 

study the impact of experimental situations and imaging conditions on FLIm-based contrast, and 

provide a comprehensive overview of the associated FLIm lifetime and intensity trends thereof. 
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This work additionally serves as feasibility for investigation of other techniques, such as 

machine learning.  

2.3.4 Expected Autofluorescence Trends Associated with Pathology 

Figure 4 graphically summarizes the hypothesized fluorescence lifetime, fluorescence 

intensity, and predicted changes to mucosal thickness with inflammation, dysplasia, and cancer.   

 
Figure 4: Expected autofluorescence outcomes predicted with the onset of pathology. Published studies demonstrate 
that epithelial thickness of oral mucosa increases with inflammation, dysplasia, and cancer, which results in reduced 
collagen autofluorescence intensity.59,129,145,146 Dysplasia and cancer drive a shift towards shorter NAD(P)H lifetimes, 
129,130,146  decreased redox ratio, defined as CH2/[CH2+CH3],145 increased NAD(P)H intensity, 59,129,145  and increased 
FAD intensity. 129,146 Cancer additionally drives a decrease in FAD lifetime,130 and an increase in Porphyrin 
lifetime.120,146 Figure concept motivated from reference [146]. 

 Previously reported oral cavity autofluorescence research demonstrates that 

inflammation decreases NAD(P)H,146 FAD146 and collagen intensity relative to baseline benign 

tissue values.59,145,146 Dysplasia has been shown to increase NAD(P)H,59,129,145 FAD,129,146 and 

porphyrin intensities,120,146 decrease NAD(P)H lifetime,146 decrease redox ratio,145 and decrease 

collagen autofluorescence intensity.59,120,129,145 Oral cancer demonstrates substantial increases 

in NAD(P)H59,145 and FAD intensities,129,146 a significant decrease in NAD(P)H lifetime,129,130 an 

increase in porphyrin lifetime,120,146 a decrease in FAD lifetime,130 a decrease in collagen 

intensity,59,129,145 and a decrease in the redox ratio.145 
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CHAPTER 3 | Method for Implementing FLIm for Surgical Guidance of H&N 
Cancer: Instrumentation, Data Visualization, and Classification Approach 
 

3.1 | FLIm Instrumentation & Computation of Analytical Parameters (Spectral 
Intensity Ratio, Average Lifetime, and Phasor Analysis) 

3.1.1 Description of Hardware 

Fluorescence Lifetime Imaging (FLIm) hardware and analytical approaches vary 

depending on the scale of measurement (e.g., microscopic vs. mesoscopic assessments) and 

implementation (e.g., microscopy vs. point-scanning). From a hardware standpoint, 

autofluorescence can be evaluated through both spectral intensities, as well as through time-

resolved characteristics of autofluorescence temporal dynamics. Single-photon and two-photon 

excitation setups are common, and the emission spectrum evaluated varies, hence the 

endogenous fluorophore emission spectrum of interest is tailored to capitalize on the intended 

fluorophore target. These devices may be implemented in various fashions, such as benchtop 

devices (e.g., microscopy), endoscopes, and point-scanning methods. The preprocessing 

requirements, approach to analysis (such as time or frequency domain FLIm), and other 

analytical models also change depending on the implementation and number of fluorophores 

evaluated. The discussion of all implementations are outside the scope of this research 

investigation and are detailed extensively elsewhere.1,2,96 However, the FLIm instrumentation 

used to acquire intraoperative data within the context of this research is presented in detail in 

the following section. 

The clinical system used for data acquisition is a custom-built, fiber optic-based, multi-

spectral, point-scanning, pulse-sampling FLIm system. This device was developed for rapidly 

acquiring intraoperative data across multiple centimeter tissue scales and was designed to 

augment computed fluorescence lifetime data over surgical images in real-time.134 This 

instrument employs a 355 nm micro Q-switched pulsed laser (0.6 ns FWHM pulse width, 120 Hz 

repetition rate; STV-02E-1x0, Teem Photonics, France) delivered through a 365 μm core 

diameter multi-mode fiber imaging probe designed for surgical oncology applications. The same 
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fiber optic was used to collect the autofluorescence emanating from the tissue regions 

evaluated. The fiber’s proximal collection end is coupled to a wavelength selection module 

(WSM) which features a set of four dichroic mirrors and bandpass filters (i.e., CH1: 390 ± 20 nm; 

CH2: 470 ± 14 nm; CH3: 542 ± 25 nm; and CH4: 629 ± 26.5 nm) used to spectrally resolve the 

autofluorescence signal. These spectral bands were tailored to capitalize on the 

autofluorescence emission maxima of endogenous fluorophores previously reported as the 

main contributors to head and neck cancer autofluorescence emission, specifically collagen, 

NAD(P)H, FAD, and porphyrins.1 The optical signal from each spectral band is time-multiplexed 

onto a single microchannel plate photomultiplier tube (MCPPMT, R3809U-50, 45ps FWHM, 

Hamamatsu, Japan), amplified (AM1607-3000, Miteq Inc., Hauppauge, NY), and time-resolved 

by a high sampling frequency digitizer (12.5 GS/s, 3GHz, 8-bit, 512 Mbytes, PXIe-5185, 

National Instruments, Austin, TX, USA) at 80 ps time intervals. 

In the pulse sampling approach, short (sub-nanosecond) and intense (~0.1-10 μJ) 

excitation pulses generate a large amount of fluorescence photons that are detected by a high-

bandwidth photodetector.147,148 A fast digitizer measures the resulting electrical transient signal 

with a resolution of tens of picoseconds, and full fluorescence intensity decays are recorded 

within a few microseconds. With this implementation, room illumination has a negligible effect 

on the fluorescence signal (a large number of fluorescence photons generated within a 

nanosecond) that can be even further minimized by low-frequency filtering.131,135,149 Other 

groups have adapted the basic concept of this instrument125,150,151 to make it compatible with 

galvanometer scanners for in vitro and in vivo tissue diagnosis with hand-held endoscopes152 or 

through scanning microscopy.125 

To determine the spatial location of each FLIm point measurement, a 455 nm 

continuous-wave diode-laser aiming beam (TECBL50G-440-USB, World Star Tech, Canada) 

was integrated into the WSM of the FLIm system to highlight the location where FLIm point 
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measurements were acquired to facilitate image reconstruction.135 This aiming beam is 

delivered through the same optical path used to excite tissue autofluorescence. The amplifier of 

the instrument is AC coupled with a cut off frequency of 10 kHz to filter out any signal 

contribution from the aiming beam and other sources of light, such as lights in the operating 

room. The position of the measurement location is determined by localizing the aiming beam 

within a 2-dimension white light image of the tissue specimen (captured by the camera 

integrated into the da Vinci system). This localization is performed by transforming the image 

into the hue saturation value (HSV) color space, thresholding the hue and saturation channels, 

and performing a series of morphological operations to isolate the center of the beam. By 

performing aiming beam segmentation in parallel with the deconvolution of autofluorescence 

decay signals, FLIm parameter visualizations can be generated.  
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Figure 5: Clinical FLIm instrumentation and corresponding integration into surgical procedures of the oropharynx 
(TORS acquisition) and oral cavity (non-TORS acquisition). (A) Visual schematic of the of the FLIm instrument, 
integration of the FLIm video stream into the TORS platform for surgical control, and multi-mode fiber optic 
integration into the da Vinci SP. (B) Photograph of the FLIm probe with a 3D printed stainless steel grasper being 
maneuvered by the da Vinci SP’s Maryland graspers to conduct an in vivo scan of a patient’s palatine tonsil. (C) 
Photograph of clinical FLIm system, comprising components of the FLIm schematic in title A within the encasing. (D) 
Rendering of an in vivo scan of a patient’s oral cavity, where the FLIm fiber optic is held by hand with a 5 French 
Omniguide laser handpiece and the surgical region is visualized with a Stryker 00 endoscope. (E) Augmented FLIm 
rendering of SB2 lifetime data (associated primarily with the metabolic cofactor NAD(P)H), where the jet map 
between blue to red represents fluorescence lifetimes of 3 ns to 6 ns respectively.  

Figure 5 visually demonstrates the custom-built FLIm instrumentation used in this study 

and shows the corresponding integration into H&N surgical procedures. For surgical procedures 

of the oropharynx, FLIm was integrated into the da Vinci Si/SP surgical system, illustrated in 

figures 5A and 5B respectively. Figure 5C presents a photograph of the actual clinical FLIm 

device. For oral cavity cancer procedures, FLIm was integrated into the clinical workflow using a 

handheld Omniguide laser handpiece and a Stryker endoscope for surgical field visualization 

and is illustrated in figures 5 D-E respectively. 
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3.1.2 FLIm Preprocessing Requirements 

Time-domain FLIm instrumentation records fluorescence emission pulses at distinct 

wavelengths or wavelength bands. Absolute fluorescence intensity and intensity decay 

parameters can be extracted from the measured fluorescence pulses in multiple ways. Since 

the physical representation of the fluorescence emission decays follows a mono-exponential 

(single fluorophore) or multi-exponential (multiple fluorophores as found in tissue) function, 

fitting the intensity decay to a multi-exponential curve is an intuitive solution. However, this 

method is computationally intensive, slow, and not well suited for typical biological samples 

where the number of fluorescent species is large and unknown. Fast computational methods 

that do not require a priori assumptions on the number of fluorescent species is preferred to 

extract FLIm parameters. A large number of algorithms have been proposed for FLIm data 

analysis and are summarized elsewhere.99 Here, the discussion is focused on methods used to 

process clinical FLIm data in this original research. 

A schematic of the data pre-processing steps for the multispectral FLIm system is 

illustrated in figure 6. Fluorescence from four spectral bands is temporally multiplexed onto a 

single MCP-PMT detector. The raw waveforms are therefore a concatenation of the 

fluorescence signal from each spectral band (figure 6A). Averaging the waveforms over multiple 

pulses improves the signal-to-noise ratio (SNR). The fiber probe introduces a non-negligible 

background from fluorescence generated at the proximal end, within the length of the fiber-optic 

cable, and at the distal end of the fiber; this effect is most noticeable in the first spectral band 

illustrated in figure 6B. Only the distal-end background temporally overlaps with the sample 

fluorescence signal, reducing the dynamic range of the system. The fiber background is 

subtracted from the raw waveform (figure 6C). After background subtraction, the sample 

fluorescence is truncated to isolate the decay waveform corresponding to each spectral band 

(figure 6D). The truncated waveform (figure 6D) and the measured instrument response function 
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iIRF (figure 6E) are used to estimate the fluorescence impulse response function fIRF (figure 

6F). 

 

Figure 6: Data processing workflow for time-domain FLIm using pulse sampling methods. (A) Raw waveform signal. 
(B) Fiber background. (C) Background subtracted from the signal. Each box outlines the signal in one spectral band 
(j). (D) Truncated signal yj(k). (E) Instrument impulse response function (iIRF) hj(k). (F) Deconvolved fluorescence 
impulse response function (fIRF) Ij(k) from which to extract intensity and lifetime parameters. Figure reproduced with 
permission from Alfonso-Garcia A, et al. reference [2]. 

3.1.3 Calculation of Fluorescence Lifetime Using the Laguerre Approach 

Both the fluorescence system (tissue) and the instrument system are assumed to be 

linear time invariant systems, such that they are entirely characterized by their impulse 

response functions.153 The fluorescence signal is assumed to be multi-exponential.153 The 

measured signal as a function of time ‘y(t)’, is a convolution of the fluorescence impulse 

response function (fIRF) ‘h(t)’, with instrument response function (iIRF) ‘I(t)’ (equation 1).153  

y(t) = I(t) ∗ h(t)                                                                       (Eq. 1) 
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Thus, for linear, shift-invariant systems, the following holds: 

Y(f) = I(f)H(f)                                                                          (Eq. 2) 

Where translating this to the discrete time representation, for a sampling interval of δt, with 

sampling time points ti = iδt and i = 0,…, N-1 over a total of N sampling points gives: 

  y(k) = ∑ 𝐼(𝑘 − 𝑖) ∙ ℎ(𝑘) + ɛ𝑘 𝑘
𝑖=0                                                         (Eq. 3) 

for k = 0, ..., N-1, where additive white noise at time point tk is ɛk. The iIRF is measured using a 

fluorescent dye with a very short lifetime (~30 ns), which in this case is 2-[4-(Dimethylamino)- 

styryl]-1-methylpyridinium iodide (2-DASPI).  

The goal is to estimate fIRF, denoted as h(k), from measured iIRF I(k) and time-

resolved fluorescence signals y(k).153 Here, fIRF h(k) is parameterized by decomposition onto 

an ordered set of discrete time Laguerre functions where α = 0.9 is used for scale and L=12 

expansion coefficients are used as previously reported and demonstrated in equation 4.153  

                                                   (Eq.4)       

                                           where L=12, α = 0.9 and bl =       

                        (Eq.5) 

The cl is the lth expansion coefficient, α is a basis parameter, and L is the total number of 

Laguerre Basis Functions (LBFs) bl(k; α). Constrained least squares deconvolution is used to 

estimate the deconvolved decay function ĥ(k) as previously described.153 This yields equation 6: 

                                                                (Eq.6)       

 Average lifetime τavg was calculated from the mean lifetimes from individual exponential 

components weighted by their fractional contributions for N equal sampling time points,153 such 

that estimation of the average lifetime is denoted as: 
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                                                                   (Eq.7)       

3.1.4 The Phasor Approach to Fluorescence Lifetime  

A phasor is a frequency domain representation of fluorescence lifetime evaluated at a particular 

frequency. The phasor analysis approach to fluorescence lifetime analysis consists of the 

transformation of the fluorescence decay histogram I(t) into its sine and cosine components.154 

Data in this type of analysis is displayed in a polar plot (phasor plot) and does not require fitting 

thorough exponential decays, therefore allowing each phasor datapoint to be independent of the 

number of exponentials needed to determine its decay.154,155 Phasor plots represent each decay 

with two coordinates; ‘phase’ and ‘modulus’ are used in polar coordinates, and in cartesian 

coordinates, ‘g’ and ‘s,’ represented by equation 8 and 9 respectively, are used.156 The ‘g’ and 

‘s,’ correspond to the real and imaginary parts of the Fourier transformation respectively, and 

are a projection of the polar coordinates into the coordinate axes.156 

  (Eq.8)                  (Eq.9)   

 Here, ‘ω,’ equals 2πƒ and ‘n’ is the harmonic frequency (typically between values of 1 to 

5).157 In the frequency domain, phasor points are defined by phases (φ) and modulations (m) as 

represented in equations 10 and 11.157 

    (Eq.10)                                        (Eq.11)   

The values of ‘gi (ω)’ and ‘si (ω)’ are regarded as coordinates of vectors with an origin at 

(0,0). Phasors are normalized such that the coordinates do not have units. The horizontal axis 

of the phasor plot is used for the ‘g’ cosine transform with values between 0 and 1, and the 

vertical axis is for the ‘s’ sine transform, which has values between 0 and 0.5.  
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Phasors follow normal vector algebra, where their coordinates can be added or 

subtracted. Phasor analysis is advantageous in the sense that no a priori knowledge or 

assumption are needed to be made about the number of fluorescent species and lifetime 

characteristics within a given system.154,158 The 2D graphical view of lifetime distributions enable 

rapid visual distinguishing of where fluorescence populations lie, which can enabled enhanced 

identification of patters and trends in autofluorescence data. Figure 7A demonstrates the 

derivation of the real ‘g’ and imaginary ‘s’ parts of the phasor from the time domain to yield the 

frequency domain representation g(ω) and s(ω). Figure 7B depicts a universal phasor plot, 

where the real component ‘g’ occupies the horizontal axis, and the imaginary component ‘s’ 

represents the vertical axis. 

 

Figure 7: Mathematics and visual overview of the phasor approach. (A) Derivation of the real ‘g’ and imaginary ‘s’ 
parts of the phasor from the time domain to yield gi (ω) and si (ω). (B) Representation of the phasor plot with 
components phase (φ) and modulation (m) which determine phasor coordinates ‘s’ and ‘g.’ Figure concept inspired 
from reference [159]. 

Phasor analysis can be performed with any harmonics of the original modulation 

frequency.154 Without changing the lifetime value, the use of different harmonics changes the 

location of the corresponding phasors in plots because the phase (φ) and modulation (m) 
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change with different harmonics.154 Evaluating phasor data at different harmonics may be 

useful, particularly when separate phasors belong to different species that may overlap in the 

first harmonic, but may be separated at higher harmonics.  

Figure 8 outlines essential properties of phasor plots. Figure 8A demonstrates that 

phasor points which lie on the general phasor semi-circle represent a single-lifetime fluorophore 

characterized by a mono-exponential decay. Phasors characterized by multiple fluorescent 

species represents a complex, which exists as a linear combination of individual phasors of 

single-lifetimes species (figure 8 B-D). Connecting these individual phasors on the semicircle 

yields a convex set inside the semicircle, thus a species of multiple lifetime components must lie 

inside the semicircle.159 A qualitative rendering of how a bi-exponential fluorophore mixture 

contributes to an overall intensity waveform with lifetime ‘τ,’ and the relationship in the phasor 

domain, are demonstrated in figure 8E and 8F respectively. Lastly, figure 8G demonstrates how 

evaluating phasor plots at different harmonics may add value in differentiating phasors that 

belong to different species (e.g., benign vs. cancer). 
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Figure 8: Characteristics of phasor plots and introduction to phasor harmonics. (A) Representation of a single 
fluorescent species with lifetime τ, which results in the phasor (orange dot) lying on the universal semi-circle. (B) 

Illustration of a bi-exponential fluorescing species with lifetime τ1 (one of the green dots) & τ2 (the other green dot) 
which results in the phasor (orange dot) lying within the semi-circle. (C) & (D) represents tri-exponential and tera-
exponential lifetimes respectively where the phasor lies within the polygon area, serving as a linear combination of 
the fluorescing species. (E) Rendering of a bi-exponential fluorophore mixture intensity curve (Im) consisting of 
contributions from fluorophore IA and IB, and (F) the resulting illustration of influence on the phasor plot, where the 
phasor resulting from the fluorophore mixture (blue) is a linear combination of fluorophore A (red) and fluorophore B 
(green). (G) Representation of phasor harmonics where phasors from different populations (e.g., benign tissue vs. 
cancer) may overlap at certain harmonics, but at alternate harmonics, may enable enhanced separation of the data. 
Figure parts A-D adapted from reference [158], part F from [160], and part G from [154]. 
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3.2 | Visualization of FLIm Data: Augmentation and Accounting for Motion 

An important feature of the intraoperative data collection effort is the ability to augment 

FLIm data in real-time over surgical regions of interest. Figure 9 demonstrates the data output 

from a non-TORS FLIm scan over tongue SCC, where blue values represent Channel 2 

average lifetimes values in the 3 ns range, and orange-red values in the 6 ns range. In this 

example, the blue values indicated the region of cancer. 

 

Figure 9: Rendering of augmented FLIm data on tongue SCC visualized by a non-TORS endoscope. Channel 2 
lifetime (associated to NAD(P)H) is displayed on a jet map color scale, where blue values represent lifetimes in the 3 
ns range, and orange-red values representing lifetimes toward the longer 6 ns range. 

An important aspect of FLIm data visualization is the need to account for surgical motion 

when augmenting data. Accounting for surgical motion not only directly affects the proper 

visualization of augmented FLIm features on tissue, but also the validation of results. For 

example, accounting for surgical is needed to maintain the correct registration of optical imaging 

measurements to ground truth histopathology. In this validation process, a single frame 

(720x1280 resolution), entitled the ‘reference frame,’ is selected for H&E annotation from a 

given surgical FLIm scan video. Histopathology is coregistered to that reference frame (as 

demonstrated in figure 10); this registration of histopathology enables annotated pixel 

coordinates of the 720x1280 pixel image to serve as the ground truth to FLIm datapoints 

acquired at tracked coordinates (obtained from the aiming beam). When motion occurs, the 
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coordinates of augmented data no longer match the native tissue location in the reference 

frame; correspondingly, without compensating for motion, the acquired datapoints do not reflect 

the correct histopathologic validation.   

 

Figure 10: Illustration of histopathology registered in the oral cavity to a surgical reference frame. Histopathology is 

used as the gold-standard in the validation (corroboration) of FLIm data to pathology status.  

Figure 11 demonstrates a visual example of the effect of motion on static augmented 

coordinates. In this example, the reference frame is illustrated on the left, with the locations of 

acquired measurements marked ‘green.’ The frame on the right represents a subsequent video 

frame after the occurrence of motion. For the frame on the right, ‘green’ measurements 

correspond to static augmented values which did not account for motion, whereas 

measurements marked in ‘yellow’ represent the correct locations augmented values should 

have adjusted to following the occurrence of motion. Without motion correction, the deviation of 

the augmented coordinates from the reference frame would not be accounted for, thus the 

original measurements (depicted green on the right image) would not reflect the appropriate 

coordinate adjustment after motion. Suitably, it is recognized that if motion is not accounted for 

in the analysis process, association of FLIm datapoints to histopathology status would be 

potentially inaccurate.  
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Figure 11: Graphical demonstration of motion correction concept applied to intraoperative data. The left image 
represents the reference frame, where the right image represents the surgical video seconds after with motion. The 
‘green’ points of the right image reflect uncorrected augmentation, and ‘yellow’ points denote motion correction 
applied to the data. Figure reproduced with permission from Marsden M, et al. reference [161]. 

 Beyond validation of the FLIm data, motion additionally impacts visualization of the 

augmented FLIm image. Consider the previous figure 9 which demonstrates a non-TORS FLIm 

scan of an oral cavity tongue tissue. If motion occurs during this FLIm scan, the augmented 

values will not shift without an appropriate coordinate transformation that accounts for motion.   

 To address this challenge, a workflow was conceptualized to estimate and account for 

motion; this workflow is represented at a high level in figure 12. This process includes: (i) 

obtaining coordinates from the FLIm aiming beam, (ii) estimating motion between a previous  

(It-1) and current frame (It), and (iii) renewing the prior frame’s (It-1) coordinates to the current 

frame’s (It) coordinates. The reference frame selected for annotation is regarded as frame (It) in 

figure 12, therefore the coordinates of prior frames (It-1, It-2, It-3, etc.) and subsequent frames 

(It+1, It+2, It+3, etc.) are renewed to the reference frame’s (It) coordinates. Suitably, tissue motion 

estimation and aiming beam position correction was performed on a frame-by-frame basis 

during FLIm acquisition. 
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Figure 12: High-level overview of the motion correction workflow. Coordinates from a prior frame (Xt-1,Yt-1) are 
associated to coordinates of the present frame (Xt,Yt) through motion vectors mvx and mvy for Xt-1 and Yt-1 
respectively. This renews coordinates following the occurrence of motion, where the revised coordinates are relative 
to a given frame chosen as a reference for histopathological labeling.  

In vivo FLIm scans enable locally correlated motion patterns to be observed across 

tissue surfaces with gradual motion between frames. Informed by this observation, motion 

estimation was performed using adaptive root pattern search (ARPS) block-matching,162 which 

allows for efficient and accurate estimation of local motion vectors. Block-matching, 

demonstrated in figure 13, was selected over feature matching methods163,164 for motion 

estimation due to the presence of visually homogeneous tissue regions in the oral cavity and 

oropharynx lacking in strong landmarks. These homogeneous regions can be more accurately 

tracked by comparing image patches (i.e., block-matching) rather than individual interest points. 

 
Figure 13: Illustration of block matching process for computing motion vectors. Individual macroblocks of the divided 
720 x 1280 pixel image of a previous frame I(t-1) are compared to a current frame I(t) motion vectors mvx and mvy for 
Xt-1 and Yt-1 such that (Xt,Yt) = (Xt-1+mvxXt, Yt-1+mvyYt). Figure reproduced with permission from Marsden M, et al. 
reference [161]. 

When using the image block-matching method, the variable presence of surgical 

instruments such as suction tools, robotic instrument arms, and the scanning fiber probe itself 

imparted challenges when using visual differences across frames to track motion. The 
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instruments themselves both occluded visualized tissue and represented a change to visualized 

features in subsequent frames. An example of this is shown in figure 14. 

 
Figure 14: Illustration of surgical instrumentation occlusions on surgical field while scanning. (A) Surgical field before 
occluding instrument blocks the surgical image and (B) non-TORS FLIm scanning sheath blocking a portion of the 
surgical field. Such occlusions create challenges in the adaptive root pattern search (ARPS) block-matching process. 
Figure reproduced with permission from Marsden M, et al. reference [161]. 

 To account for the effect of instrumentation in the block matching process, a U-Net 

convolutional neural network (CNN) architecture165 was used to train a segmentation model to 

isolate aiming beam contributions to the surgical video and create an instrument segmentation 

mask. The details of the developed CNN approach are reported in detail elsewhere.166 

At a high level, figure 15 demonstrates and overview of the motion estimation and 

correction process. This includes segmenting the aiming beam, creating an instrument 

segmentation mask, estimating motion vectors, and updating FLIm coordinates to maintain an 

appropriately augmented surgical field-of-view. This developed algorithm was implemented in 

Matrix Laboratory (MATLAB).  
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Figure 15: Overview of FLIm point-measurement motion correction procedure. Video frames of the FLIm scan were 
acquired with an external Stryker endoscope for oral cavity cases and integrated da Vinci SP camera for TORS 
procedures of the oropharynx. Point-measurement localization (orange) was performed by segmenting the aiming 
beam emitted from the fiber optic using a U-Net CNN. Tissue motion correction (green) was performed by 
segmenting the surgical instruments using a U-Net CNN to exclude these regions from tracking. Motion estimation via 
an optimized block-matching approach was then applied. Point-measurement position correction was performed on a 
frame-by-frame basis for previous measurement locations using the estimated motion vectors. Data visualization 
(blue) was then performed by generating an augmented overlay using measured spectroscopic data (e.g., average 
fluorescence lifetime for a specific spectral band) for all point-measurements acquired. Marsden M, et al. reference 
[161]. 

As demonstrated in figure 16, to perform the block matching process, each video input 

frame was divided into non-overlapping 32 × 32-pixel macroblocks (MBs), corresponding to 2.5% 

of the overall image width. Prior to motion estimation for a given frame, a region-of-interest for 

motion correction was first selected in terms of MBs based on prior aiming beam segmentation 

locations. Second, occluded MB tissue regions were detected for each frame using a previously 

developed surgical instrument segmentation CNN167 before being excluded from direct motion 

estimation. This step prevents motion from surgical instruments affecting motion estimation for 

the underlying tissue. ARPS motion estimation was then performed. A set of motion vectors 

were estimated for each frame, allowing for previously estimated aiming beam positions to be 

refined through a position correction step using these motion vectors. 
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Figure 16: Method for motion estimation in FLIm data by ARPS macroblock matching. First, the motion correction 
ROI was updated based on the scanned tissue region to remove redundant processing. The size of this ROI 
increases over the course of a given FLIm run as more tissue surface is scanned. In practice, only a small portion of 
the surgical FOV is scanned and included in this ROI, limiting the computational demands. Then, tissue occlusion 
was detected using a surgical instrument segmentation CNN to prevent errors due to instrument motion. Adaptive 
rood pattern search (ARPS) block-matching was then performed to estimation local motion vectors. If a given macro-
block was occluded, motion vectors were interpolated from neighboring macroblocks included in the ROI. With an 
estimated set of motion vectors for a given frame, position correction was performed for prior FLIm point-
measurements to ensure an accurate visualization is subsequently generated. Figure reproduced with permission 
from Marsden M, et al. reference [161]. 
 

If a given MB was occluded, motion vectors were interpolated from the 3 nearest non-

occluded MBs through a weighted average inversely proportional to the distance between 

blocks. It was required that all 3 MBs used for vector interpolation lied within a 5-MB radius of 

the occluded macroblocks, otherwise no motion vector interpolation was performed. The 

rationale for applying motion vector interpolation stems from the observation that tissue motion 
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within a local region is largely homogeneous. With an image width of 1280 pixels employed the 

32 × 32 macroblock size corresponded to 2.5% of the overall image width. Calculating local 

motion vectors across a full video sequence also allows for estimated measurement positions to 

be translated via vector summation to any desired reference frame for histopathologic 

corroboration.  

3.3 | Machine Learning Classification Method 

Each acquired FLIm datapoint yields multiple optical parameters for analysis; this 

includes 4 computed average fluorescence lifetimes, 4 spectral intensity ratio parameters, and 

12 Laguerre expansion coefficients per channel (48 total). Additionally, the raw spectral 

fluorescence decay curve can be analyzed as an additional analytical input in deep learning 

approaches, such as convolutional neural networks. Figure 17 graphically demonstrates the 

magnitude of data obtained from a single FLIm measurement.  

 
Figure 17: Demonstration of multi-parametric FLIm data obtained from individual measurements. Each second of 
FLIm scanning yields 30 datapoints (averaged 4 times from 120 Hz excitation laser repetition rate). Each datapoint is 
associated with the illustrated 4-waveform fluorescence decay. Deconvolution of these waveforms, and associated 
computation of intensity ratio and lifetime, gives rise to 1 computed lifetime, 1 intensity ratio, and 12 Laguerre 
expansion coefficients per channel. When analyzing channels 1-3, this yields 42 total parameters, and for channels 1-
4, 56 total parameters are available for analysis.  

 While univariate (single-parameter) analysis may be informative in the tumor delineation 

process, the inherent value of multi-parametric analysis of intraoperative fluorescence lifetime 

imaging has been demonstrated by our group in several studies;2,168,169 it is understood that 
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leveraging multiple possible sources of FLIm-derived optical contrast achieves superior benign 

vs. cancer discrimination, than single-parameter analysis alone. To this end, a random forest 

classification method which leverages multi-parametric FLIm parameters to predict cancer 

probability was reported our study by Marsden et al.169 The following discussion within this 

section will elaborate on pertinent details of the developed approach. 

 In this original work, a random forest classifier170 was trained using lifetime, intensity 

ratio, and Laguerre coefficient parameters from channels 1-3, yielding 42 parameters in total for 

each acquired FLIm datapoint measurement. Channel 4 was not analyzed due to low signal-to-

noise ratio (SNR) data. Patient FLIm data associated via histopathology to benign tissue and 

cancer was used to train the random forest classifier. Data associated with dysplasia was 

omitted from training and was used for evaluation purposes only. An initial 53-patient dataset 

was used to train and evaluate the classifier in section 3.2, and then later a full 100-patient 

database evaluation was performed in section 4.2. Figure 18 demonstrates the high-level 

process for annotating histopathology on surgical images and selecting FLIm point-

measurements in classifier training data. Measurements acquired outside of H&E demarcated 

regions were considered benign from the absence of findings in patient radiology (PET, CT, 

MRI, and ultrasound where applicable). An overview of random forest classifier training, 

probability of cancer output, and validation is demonstrated in figure 19.  
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Figure 18: Tissue annotation and training data selection process. (a) The ground truth for classifier training was 
derived directly from histopathology via H+E staining. Each annotated slice was coregistered with white light images 
of the specimen (in vivo and ex vivo), (b) Surgical FOV for in vivo imaging of a given specimen and (c) Corresponding 
registration of pathology (in vivo). Homogenous regions of a single tissue label (healthy, cancer, dysplasia) were 
annotated in a region-based fashion. (d) Point measurements centered at a boundary between disparate tissue 
conditions, specifically within a 15-pixel radius of multiple tissue labels (approx. 2.0 mm), were excluded from 
classifier training due to their ambiguous ground truth. The scale bar for white light images corresponds to 5 mm. 
Reproduced with permission from Marsden, M, et al. reference [169]. 

An ensemble size of 100 was selected for the random forest supervised machine 

learning algorithms, as ensemble sizes greater than 100 did not improve performance further, 

as demonstrated my Marsden et al.169 Classifier training and evaluation comprised a leave-one-

patient-out scheme. A binary assessment of cancer probability was then output from the 

classifier, where validation of the prediction was performed by histopathology.   
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Figure 19: Overview of random forest classifier training, probability of cancer output, and validation. Acquired FLIm 
point measurements each yield a multi-channel fluorescence decay waveform. The waveforms from channels 1-3 are 
used in further analysis, whereas channel 4 is omitted due to poor SNR. Laguerre deconvolution and FLIm parameter 
extraction gives rise to 1 average lifetime, 1 intensity ratio, and 12 Laguerre coefficients per channel, thus 42 total 
parameters for analysis per FLIm measurement. These metrics are input into a random forest classifier for training 
and evaluation using a leave-one-patient-out scheme. The output of the classifier enables a binary prediction of 
cancer probability. Finally, the results of the predicted binary output can be validated against histopathology to 
compute the true positive vs. false positive rate of the data. The area under the curve, designated as ROC-AUC, 
enables quantification of the extent of classification accuracy. Random forest figure tile adapted from reference [171]. 

 A receiver operator characteristic area-under-the-curve (ROC-AUC) approach was used 

to classify the true-positive-rate (TPR) vs. false-positive-rate (FPR) of the classifier output when 

validated to histopathology. The computation of TPR (sensitivity), specificity, FPR, and ROC-

AUC is demonstrated in equations 12-15 respectively. 

TPR / Recall / Sensitivity  =  
True Positive (TP)

True Positive (TP) + False Negative (FN)
                  (Eq.12)   

Specificity  =  
True Negative (TN)

True Negative (TN) +  False Postive (FP)
              (Eq.13)       

FPR / 1-Specificity  =  
False Positive (FP)

True Negative (TN) + False Positive (FP)
                 (Eq.14)    

ROC-AUC = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))𝑑𝑥
1

𝑥=0
                                      (Eq.15) 
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Figure 20 graphically illustrates an ROC-AUC plot and performance as a function of data 

class overlap. As illustrated in figure 20B, the best-case scenario is when the ROC-AUC of an 

LDA output is high (toward a value of 1.00), which indicates that benign and cancer data can be 

completely separated in linear space through an optimized decision boundary. An ROC-AUC of 

0.70 (figure 20C) signifies data with significant overlap and is typically regarded in the 

classification field as the minimum ROC-AUC value to indicate that two data classes can be 

adequately separated. As represented in figure 20D, an area-under-the-curve value of 0.50 is 

the worst-case scenario, where the level of true decisions (TP & TN) approximately match the 

level of false decisions (FP & FN), indicating no discrimination. Values < 0.50 demonstrate 

reversed assessment of the negative and positive classes. 

 

Figure 20: Illustration of receiver operator characteristic area under the curve (ROC-AUC) computation and 
performance as a function of data class overlap. (A) Illustration of the receiver operator characteristic curve with 
corresponding area under the curve (gray) taken as the computation of true positive rate (TPR) and false positive rate 
(FPR), with the computation demonstrated in equations 12 and 14 respectively. (B) Rendering of ROC-AUC 
performance with an area under the curve of 1.00 when there are no false positives or false negatives and only 
correctly classified true negatives and true positives after optimization of the decision boundary. (C) Illustration of 
reduced ROC-AUC performance (0.70) when significant overlap between the data classes yields false positive and 
false negative misclassification. An area under the curve of 0.70 is regarded as the minimum in the classification field 
to designate adequate classification performance. (D) When there is complete overlap between the two data classes 
(i.e., benign and cancer tissue), there is no separability of the data, imparting an equal TRP and FPR, which yields an 
area-under-the-curve of 0.50.  
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CHAPTER 4 | Tools, Methodologies, and Techniques for the Coregistration of 
Tissue Histopathology to Intraoperative Optical Imaging Measurements  
 

This study protocol was inspired upon identifying key challenges in the clinical validation 

of optical imaging technologies, where experimental measurements must be linked to a ground-

truth, namely histopathology-derived tissue labels (e.g., benign tissue, dysplasia, cancer). By 

way of context, optical technologies have become increasingly investigated in clinical settings 

for diagnosis and surgical guidance. Histopathology serves as the gold standard for identifying 

disease, where hematoxylin and eosin (H&E) stained slides are most typically used for 

oncologic diagnosis. The association of experimental measurements to histopathology presents 

an ongoing challenge when performing clinical research; to gain traction in rigorously vetting the 

diagnostic potential of optical technologies, there must be an accurate link between acquired 

data and ground-truth tissue labels. Registration errors are detrimental when developing 

classification algorithms, which require adding the correct tissue label to optical data used for 

training and evaluating performance. Despite the importance of accurate registration, few 

studies enumerate their methods used for performing tissue labeling and how potential 

registration errors are accounted for (if at all). These limitations accordingly impact the 

reproducibility of such research and devalues the accuracy of the optical technique’s 

performance.   

This study protocol begins by elucidating various sources of registration error that may 

occur when establishing the histopathologic validation of intraoperatively acquired optical 

imaging measurements. Thereafter, this protocol codifies the various methodologies developed 

to control for these potential sources of error. Additionally, custom-built tools to perform labeling 

of surgical images and corresponding data extraction are provided. This work was developed 

within the context of investigating a custom-built Fluorescence Lifetime Imaging (FLIm) device 

for head & neck cancer surgical guidance, however it is noted that this protocol can be 

extrapolated to research involving other optical imaging modalities based on histopathologic 
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validation, and even methods that require localized registration of assays to tissue (e.g., 

molecular analysis based on tissue microarrays). 

4.1 | Abstract 

Background: Optical diagnostic technologies have become increasingly investigated in 

the clinical space for diagnosis and surgical guidance. These technologies interrogate tissue 

with light and generate contrast based on intrinsic optical properties. Histopathology serves as 

the gold standard for identifying disease, however the process for correctly associating optical 

data to histopathology-derived tissue labels (e.g., benign tissue, dysplasia, lymphoid tissue, 

cancer) remains a key challenge. It is acknowledged that registration errors negatively affect the 

validation of optical technologies, and in turn, affects the reproducibility of results. Considering 

this challenge, the protocol herein strives to elucidate various sources of registration error and 

codifies the various methodologies and tools developed to enhance histopathologic 

corroboration to optical imaging measurements. 

Methods: Methodologies to account for common sources of registration error, and tools 

to assign labels to optical imaging data, were developed. This includes: (1) procedures for 

digital annotation of histologic grossing processes, (2) a customized tool for pathologists to 

digitally annotate histopathology sections, (3) processes to account for tissue deformation, (4) 

denoting tissue labels on ex vivo specimen images, (5) demarcating tissue excision margins on 

in vivo reference images, (6) identifying and matching of anatomical landmarks of reference 

images between ex vivo tissue and in vivo pre-resected tissue, (7) methodology for transferring 

ex vivo tissue labels to in vivo pre-resected tissue, and (8) a custom-developed MATLAB tool to 

perform histologic labeling of surgical images, and subsequent extraction of labeled data. 

Discussion: This study protocol proposes solutions to account for sources of data 

labeling errors, provides tools to the scientific community for labeling optical data based on their 

localization in the surgical image, and facilitates clinical validation of the technology. While this 
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work was developed within the context of a Fluorescence Lifetime Imaging (FLIm) device 

investigated for head & neck cancer surgical guidance, this protocol can be extrapolated to 

other optical imaging modalities and oncology investigations involving histology labeling. 

4.2 | Introduction: Current Challenges and Opportunities to Improve 
Histopathology Registration in Clinical Optical Imaging Research 

Optical technologies have become increasingly investigated for their role in surgical 

oncology.2 Advancements in instrumentation, computational capacity, and enhanced analytical 

methods have enabled these technologies to transition from bench-top instruments towards 

modalities suitable for clinical research in patients.2 The working principle of optical instruments 

is to interrogate tissue with light, thereby generating contrast based on optical properties (e.g., 

reflection, scattering, absorption, autofluorescence). These technologies thereby obtain 

information about tissue characteristics (e.g., composition, morphology, biochemistry, 

microvasculature), which can be achieved through inherent tissue and molecular properties, or 

by the application of exogenous agents. Some prominent technologies in clinical investigation 

include optical coherence tomography, Raman spectroscopy, narrow-band imaging, high-

resolution microendoscopy, targeted fluorescence imaging, intensity-based fluorescence 

imaging, and fluorescence lifetime imaging (FLIm).  

To evaluate the diagnostic performance of optical instruments, it is essential to associate 

optical parameters to ground-truth tissue characteristics. In surgical oncology, the gold-standard 

to evaluate tissue pathology status is through histologic analysis of either biopsies or surgically 

excised tissue sections. More recently, immunohistochemistry and molecular analysis are 

emerging as additional accepted standards, alongside histopathology. The histologic stain, 

hematoxylin and eosin (H&E), is most commonly used for characterizing pathology. Upon 

reviewing H&E sections, a pathologist can then determine ground-truth tissue labels (e.g., 

benign tissue, reactive changes, dysplasia, ulceration, cancer, and other pathologic features).  
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A key challenge in demonstrating the diagnostic value of optical technologies is the 

spatial registration of tissue pathology to the location where optical data was recorded.172 This is 

essential for the labeling the optical parameters in relationship with local pathology as accepted 

in medical practice. Inaccurate spatial registration of tissue pathology to optical data limits the 

ability to thoroughly investigate the performance of an optical technique, thereby impacting the 

development of classification algorithms and limits the reproducibility of the research. The 

challenges associated with correlating histopathology to optical measurements are well 

documented,2,172,173 and also affect radiology-based imaging techniques (e.g., magnetic 

resonance imaging,174,175 positron emission tomography,175 and ultrasound,176 among others). 

Error in tissue pathology registration is acknowledged to originate from three primary 

sources: (1) during surgical excision, (2) during the tissue fixation process, and (3) when 

reporting tissue labels identified from H&E back onto the gross specimen.174 The tissue removal 

process itself creates deformation of resected tissue relative to its in vivo conformation. 

Devascularization imparted by surgical resection results in the loss of blood volume and internal 

fluids, thus in parallel with sample dehydration, results in tissue shrinkage.174 Electrocautery, 

which leads to protein coagulation, may additionally contribute to tissue deformation. In addition, 

the process of tissue sample preparation for histology involves formalin fixation, which results in 

tissue shrinkage and distortion. When linking histopathology-derived labels to intact tissue, the 

lack of clearly defined landmarks (distinct features on the tissue specimen) may lead to 

misorientation and misalignment of the location of gross sections. Other potential sources of 

registration error are outlined in detail elsewhere by Alyami W. et al.174 

4.2.1 Application to Clinical Fluorescence Lifetime Imaging (FLIm) Research 

While investigating FLIm’s diagnostic performance in H&N surgical oncology 

procedures, our group experienced the need to develop robust histopathological registration 

methods that enable corroboration of FLIm parameters with histopathologic findings. As such, 
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solutions to mitigate opportunities for spatial registration error are needed. Here we report a 

variety of tools and techniques created in MATLAB to perform histopathologic labeling of 

surgical images, link optical data to tissue histological features at the surgical resection margins, 

and subsequently perform labeled data extraction. Collectively, this work seeks to call attention 

to sources of registration errors and acknowledge their impact on the optical imaging field while 

providing tools to the scientific community to improve registration accuracy.  

4.3 | Methods and Design 

4.3.1 Study Design 

This protocol was developed in support of establishing the relationship between the 

FLIm data obtained from surgical resection margins in situ and the corresponding 

histopathologic features of tissue removed during surgical procedures. This study involved a 

cohort of 100 patients, where study participants presented with tumors of either the oral cavity 

(e.g., tongue) or oropharynx (e.g., base of tongue and tonsil). Under Institutional Review Board 

(IRB) approval, research was conducted on patients, and/or with their surgically excised 

specimens, only after receiving informed consent. All research was performed and supervised 

within the University of California, Davis Tertiary Academic Medical Center.  

The study protocol developed herein applies to ongoing and future studies concerned 

with establishing FLIm as a tool for real-time intraoperative guidance of H&N cancer. While this 

work was developed within the context of a Fluorescence Lifetime Imaging (FLIm) device 

investigated for head & neck cancer surgical guidance, this protocol can be extrapolated to 

other imaging modalities and oncology investigations involving histology labeling of optical 

imaging data.  

4.3.2 Overview of the Data Collection, Coregistration, and Data Analysis Process 

Figure 21 presents an overview of the FLIm data collection, registration of 

histopathology to tissue both ex vivo and in vivo, and the analysis process. This includes: (21A) 

recruitment of patients, (21B) data acquisition in vivo, (21C) data acquisition ex vivo, (21D) 
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annotations of locations of where tissue is surgically grossed, (21E) digital annotation of tissue 

labels (e.g., benign, dysplasia, cancer) on H&E sections by a pathologist, (21F) registration of 

H&E tissue labels to the ex vivo specimen, (21G) creation of a surgical outline and landmark 

matching in vivo, (21H) registration of ex vivo tissue labels in vivo, (21I) the annotation of 

registered tissue labels from surgical images using a custom-built tool, (21J) the creation of a 

ground truth data mask to corroborate localized point spectroscopic FLIm measurements to 

tissue labels, (21K) data extraction, and finally (21L) data analysis. Each step is described in 

detail in the following sections.  

4.3.3 In Vivo and Ex Vivo Data Collection 

FLIm data was acquired during cancer removal procedures performed either by hand for 

oral cavity cancer procedures, or by transoral robotic surgical platforms, namely the da Vinci 

SP, for  oropharyngeal cancer. This surgical integration was demonstrated in our prior work.134 

Following informed consent, the patients (figure 21A) were anesthetized, intubated, and 

prepared for surgery as part of routine standard-of-care for their surgical procedure. The in vivo 

FLIm scan was conducted on the tumor epithelial surface and the surrounding uninvolved 

benign tissue (figure 21B) as identified by the surgeon. Throughout the duration of the scan, 

FLIm datapoints were localized as pixel coordinates within the surgical white light image. FLIm 

datapoint localization was achieved by segmentation of a continuous wave 455 nm aiming 

beam, which generated visible blue illumination at the location where data was acquired. Upon 

completing the scan, the surgeon proceeded with en bloc excision of the tissue suspected of 

cancer. An ex vivo FLIm scan was then performed on the surgically excised specimen (figure 

21C).  
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Figure 21: Overview of data collection, coregistration, and data analysis process. (A) Patients were recruited in the 
research study after obtaining their informed consent. After patients were prepared for surgery, an intraoperative 
FLIm scan was conducted (B) in vivo and with (C) the surgically excised specimen ex vivo. (D) Annotations were 
obtained of the surgical grossing process to facilitate H&E registration to the excised tissue. (E) A pathologist 
digitally annotated H&E to create tissue labels (e.g., benign tissue, dysplasia, cancer). (F) Tissue labels were next 
registered to the ex vivo specimen. (G) A surgical resection outline was created using videos of the surgical 
procedure and used in combination with tissue features to perform registration between in vivo and ex vivo images 
and (H) transfer the labels to the in vivo image.  (I) Labeled surgical images were annotated using a MATLAB 
annotation tool to create a (J) data mask containing tissue labels. (K) For each optical measurement, FLIm time-
resolved and spectral intensity parameters were extracted, as described elsewhere.153 (L) Labeled FLIm data was 
used to develop classifiers using a leave-one-patient-out validation scheme.169  
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4.3.4 Surgical Grossing Annotation Process 

Following FLIm scanning, the excised specimens were transferred to a pathology 

grossing room. As part of standard-of-care, the intact specimens were inked with tissue marking 

dyes (cationic charged ink, Fisher Scientific, USA) according to anatomic orientations 

designated by the surgeon (e.g., superior, inferior, anterior, posterior). This marking enables 

orientation of the excised tissue samples sent to the histopathology laboratory. The dyes are 

specifically formulated to be visible on frozen and permanent H&E sections. After inking, the 

tissue specimen was serially grossed to generate tissue slices, which were then formalin-fixed, 

paraffin embedded, sectioned, and stained to create H&E slides for pathology interpretation. 

The locations where gross tissue slices were obtained (cut lines) were annotated on a pre-

grossed image of the ex vivo specimen; this step ensured that the locations of gross slices 

submitted for H&E staining could be directly traced back to the original location of the surgical 

specimen (figure 21D). All H&E slides were then scanned for digital microscopy retrieval at 0.5 

µm / pixel resolution using a Aperio Digital Pathology Slide Scanner (Leica Biosystems, United 

States). 

4.3.5 Pathologist Digital Annotation Process 

A pathologist (DG), who was agnostic to FLIm data, digitally annotated scanned H&E 

slides using Aperio Imagescope. Tissue labels were assigned according to histologic features 

observed within 250 µm of the tissue’s epithelial surface, in addition to the deep margin (figure 

21E). The following tissue labels were used: (1) benign tissue, (2) carcinoma, (3) low-grade 

dysplasia, (4) high-grade dysplasia, (5) lymphoid tissue, (5) inflammation, (6) reactive tissue, 

and (7) ulceration.  

4.4 | Registration of H&E Sections to Ex Vivo Specimens 

Figure 21F demonstrates the resulting tissue labels associated to the excised specimen. 

The ex vivo coregistration process is described in detail in figure 22. To register tissue labels 

from bread-loafed H&E sections to an ex vivo specimen, digitally annotated H&E sections were 
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first measured by Aperio Imagescope’s automated pixel to distance conversion (figure 22A). In 

figure tile 22A, green annotations correspond to benign tissue labels, orange to low-grade 

dysplasia, and red to cancer. Figure 22B depicts all grossed tissue slices for a given specimen. 

Each digital H&E section and image of the gross slice were placed on a PowerPoint slide, and 

the background was removed from both images. The H&E section and gross slice were spatially 

overlaid and made semi-transparent to compare images. The tissue ink on the H&E section and 

gross slice were used to verify the correct orientation (i.e., left vs. right, up vs. down). After 

verifying the orientation, both the fixed section (figure 22A) and the gross slice (figure 22B) were 

measured, and their dimensions compared. Small discrepancies were expected due to folding 

and/or absence of some areas of the fixed section. This was confirmed by identifying landmarks 

visible on both the fixed and gross sections. Once the H&E section and gross slice pictures 

were matched, the tissue labels from the H&E were replicated onto the gross slice. This process 

was performed by using the dimensions obtained from the tissue H&E section and gross 

(macroscopic) slices and comparing differences in both morphology (e.g., tissue bending) and 

dimensions (e.g., tissue shrinkage). Slice A7 is illustrative of a H&E section which closely 

matches the morphology and dimensions of the gross slice; accordingly, little to no adjustment 

was needed to transfer the H&E tissue labels. Slice A12 alternatively demonstrates significant 

bending and compression of the H&E section relative to the gross slice, therefore requiring 

adjustments to transfer tissue labels from H&E sections to the gross slices. In the next step, as 

shown in figure 22C, digital annotations (designated by gray bars) were overlaid on the 

locations of the pre-grossed specimen where gross slices were obtained. The process for 

comparing spatial discrepancies was then performed analogously between the gross slices 

(figure 2B) and the matching locations on the intact surgical specimen (figure 22C), resulting in 

the transfer of the gross slice tissue labels to the ex vivo specimen image (figure 22D).  
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Figure 22: Process for registering serial sectioned H&E sections onto the intact ex vivo surgical specimen. The intact 
surgical specimen (tile C) is cut into gross sections (tile B), each section is formalin-fixed, paraffin embedded, 
sectioned, and stained to create H&E slices (tile A) before examination by the pathologist. (A) H&E-stained slides 
were scanned and digitally annotated by a pathologist (DG) to create tissue labels corresponding to features (e.g., 
benign tissue, dysplasia, cancer) of the epithelial tissue surface. In the figure, benign tissue is indicated by green 
tissue labels, low-grade dysplasia by orange labels, and cancer by red labels. (B) H&E tissue labels were 
transferred onto the gross sections; when transferring tissue labels, adjustments were made to account for 
differences in morphology (e.g., bending) and dimensions (e.g. shrinkage) between H&E sections and gross 
sections. (C) During the process of surgically grossing the surgical specimen in the pathology room, gray bars were 
digitally overlaid over the intact specimen image to indicate the regions where gross slices were obtained. Tissue 
labels mapped onto the gross sections (tile B) were transferred to the intact gross specimen (tile C) in the same 
process that accounts for morphological and dimensional variations, resulting in (D) tissue labels coregistered to the 
ex vivo specimen.   
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4.5 | Registration of H&E In Vivo 

4.5.1 In Vivo Reference Frame Selection and Surgical Outline Delineation 

Figure 21G illustrates an in vivo surgical outline, which is used to determine the 

boundaries where an intact gross specimen was excised. To create this outline, a key initial step 

is to identify a reference frame from the data acquisition video where the surgical field-of-view is 

not obstructed. Using images of the patient’s surgical cavity and recorded video of the surgical 

procedure, the surgical outline is then marked on the in vivo reference image. Landmarks were 

next identified between the in vivo reference image (figure 21G) and ex vivo image (21F) to 

facilitate in vivo registration.  

4.5.2 In Vivo Registration Process 

When performing in vivo registration, it is essential to account for deformations of the ex 

vivo specimen relative to the in vivo tissue conformation. In vivo tissue is under various elastic 

and geometric influences; upon surgical excision, changes in tissue morphology (e.g., tissue 

folding, twisting) and dimensional changes (e.g., shrinkage due to fluid loss) occur. Figure 21H 

demonstrates the result of mapping tissue labels from an ex vivo specimen in vivo; the process 

for performing this registration is detailed in figure 23. Tiles A-C of the figure demonstrate the 

process for outlining boundaries of the surgical region on base of tongue tissue in a patient case 

study. Using the reference image (figure 23A) and the surgical electrocautery outline (figure 

23B) derived from intraoperative videos, the surgical outline was annotated on the pre-resected 

tissue reference frame (figure 23C). Figure 23 D-G demonstrates a second case study of oral 

tongue tissue where the surgical outline was demarcated on a reference image (figure 23D) and 

used in combination with landmarks (figure 23E) and the ex vivo specimen to create tissue 

labels within the in vivo reference image (figure 23F). These landmarks were used to assess 

orientation, compression, and expansion of the tissue in the registration of the tissue labels. 

Upon completing the registration process, the results of FLIm scan classifier output can be 

validated against ground-truth tissue labels (figure 23G).   
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Figure 23: Transfer of labels from an ex vivo tissue image to the in vivo tissue image. Parts A-C present a case study, which 
demonstrates the creation of a surgical outline on the in vivo surgical image, which aids in transferring the labels overlaid on 
the ex vivo specimen to the in vivo surgical image. (A) Surgical field of view where FLIm scan was conducted prior to surgical 
excision. (B) Photograph of intraoperative surgical excision process. Here, a video of the entire surgical process is obtained 
and a key image that demonstrates the excision boundary was selected to determine the surgical outline. (C) The excision 
outline is then demarcated on the reference image. Parts D-G present a second case study (different patient, presented in 
figure 2) where the in vivo registration process is performed after determining the surgical outline, demarcated by black 
arrows on the FLIm reference image (tile D). (E) Key landmarks identifying clearly visible features, of which 10 are denoted, 
are identified on the ex vivo image and used to match to landmarks in vivo. (F) Landmarks are used to facilitate the 
coregistration of the ex vivo specimen image to the in vivo image and transfer associated histopathology labels. Notice that 
some ex vivo features are not visible near the teeth region in vivo, particularly the low-grade dysplasia region, and are thus 
omitted from the reference frame. (G) Finally, after transferring histopathology labels to the in vivo image, the FLIm data itself 
was labeled based on the point-measurement location and data from the patient was analyzed. An example of the binary 
random forest machine learning classifier output is demonstrated in (G). Using a leave-one-patient-out classification scheme 
(presented in detail elsewhere),169 the classifier predicted cancer where datapoints are red, and benign tissue where 
datapoints are green.    
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4.6 | Histopathology Annotation Tool and Ground Truth Data Mask 

A MATLAB annotation tool (figure 21I) was developed to create a label mask (figure 21J) 

using registered tissue labels from ex vivo (figure 21F) and in vivo (figure 21H) reference 

images. The label mask allows tissue labels to be annotated in a pixel space. Correspondingly, 

the annotated pixels are used to label optical spectroscopic data for which the measurement 

location is known in the white light pixel space. Due to the potential value of this tool for optical 

imaging researchers, the code, a user guide, and an example dataset is provided for 

researchers on GitHub (a provider of internet hosting for software development and version 

control). These resources are provided at the directory of bwweyers/Histopathology-Annotation-

Tool. The characteristics of this tool are described in detail in the GitHub user guide; in brief, this 

tool (figure 21I) allows a user to create a series of tissue labels (e.g., lymphoid tissue, benign 

tissue, cancer) to annotate surgical reference images (figure 21H / figure 24). The tool allows for 

label sets to be saved, and then exported to a customized MATLAB image labeling workspace 

where coregistered surgical reference images can be annotated. The result of the completed 

label annotations results in a ground truth data mask, demonstrated in figure 21J / figure 25.  

 

Figure 24: Histopathology annotation tool with reference image loaded in. This step is done prior to annotations being 
performed.  

 

https://github.com/bwweyers/Histopathology-Annotation-Tool
https://github.com/bwweyers/Histopathology-Annotation-Tool
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Figure 25: Demonstration of data pixel annotation mask. Depicted is a 720x1280 data annotation mask exported from 
the Data Annotation Tool using the Test Dataset.  

By way of demonstration, consider the following: all surgical videos in this database 

were acquired with 720x1280 pixel resolution. FLIm spectroscopic point-measurements 

acquired during a surgical scan are assigned to coordinates in the 720x1280 pixel space to 

denote the location where the point-measurements were acquired. The annotated 720x1280 

pixel reference image (with coregistered tissue labels) is imported into this tool for labeling. 

Assuming a label value of 1 is used for cancer, and 2 for benign tissue; the pixels in the 

720x1280 label mask (figure 25) would have a value of 1 in correspondence to the locations of 

cancer identified in mucosal regions of the H&E slice. This mask would have a value of 2 in 

correspondence to benign tissue identified in regions of the H&E slice, and elsewhere a value of 

0 where there is no annotation. This label mask can then be used as a filter to identify data 

obtained at coordinates in the 720x1280 pixel space and associate them with histopathology 

labels. If a datapoint was acquired at pixel [450, 700] with respect to the reference image, and 

the label mask contained a cancer annotation (pixel value of 1) at pixel coordinates [450,700], 

that datapoint would be labeled as cancer. This tool correspondingly allows for the rapid and 

versatile association of data coordinates to tissue labels for analysis. 
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4.6.1 FLIm Data Extraction & Analysis 

The FLIm system acquires 30 averaged datapoints per second (120 Hz measurement 

speed, averaged 4 times).153 Each spectral datapoint yields a plurality of FLIm-derived 

parameters (e.g., time-resolved and spectral intensity metrics, as demonstrated in figure 

12K).153 These parameters can be further incorporated into classification models to predict 

cancer probability. Figure 21L demonstrates the output of a random forest classification 

algorithm169. Coregistered tissue labels from the data mask (figure 21J) compared to data 

outputs (figure 21L) allows for analysis of FLIm metrics and evaluation classification 

performance.  

4.7 | Discussion 

Accounting for sources of registration error, and taking steps to mitigate inaccuracy, 

represents an ongoing challenge. When investigating the utility of optical technologies for 

clinical use, it is imperative to evaluate optical data accurately against the accepted gold-

standard. It should be noted that the challenges related to correctly registering ground-truth 

histopathology not only affects researchers, but also presents challenges to operating 

surgeons.177,178 In an attempt to improve the marginal control of oral cavity and oropharyngeal 

carcinoma, surgeons routinely perform frozen section analysis.177 In scenarios where frozen 

sections are reported as positive, ensuring the correct location of where the frozen section was 

derived to facilitate re-excision of additional tissue is essential.177 Considerations described 

within this protocol may prove useful to clinicians to aid in the accuracy of histopathologic 

corroboration of frozen sections in surgical settings. While the gold-standard for tissue 

pathology presented herein focuses on histopathology, other approaches which require local 

registration to tissue (e.g., molecular markers assessed via tissue microarrays) also bear 

relevance to the described registration considerations.  

As identified by de Boer et al. in 2019, “[In the optical research field] there is only limited 

literature focusing on correlating optical measurements with histopathology, and when a method 
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for correlation the optical data to histopathology is described, the reported registration methods 

do not seem to correct for tissue deformation.”172 The key contribution provided by this protocol 

is the ability to codify all methods in one place to facilitate reproducibility and mitigate 

opportunities for registration error by drawing attention to primary scenarios where error is 

introduced. An additional key contribution is the tool and framework developed for performing 

labeled data extraction. Collectively, the dedicated resources herein seek to provide 

standardization of the coregistration process and articulate a structured approach to make this 

process as robust as possible with the currently available methods.  

Multiple strategies to perform histopathology registration have been implemented by 

different researchers across the optical technology research space. To focus on 

autofluorescence-based research involving oral tissue, static measurements (where a probe is 

held in position) on a tissue location have most commonly been performed, followed by directed 

biopsies at the measured site, with subsequent pathologist interpretation.120,122,130,179 Other 

studies, such as by Jo et al., have used a hand-held endoscope capable of scanning a small 

field-of-view (mm-scale) and directly registering to biopsy specimens.128,132,133,152 Our approach 

to FLIm for intraoperative surgical guidance is significantly different in the sense that FLIm 

imaging occurs over large areas of tumor, on the order of multiple centimeters. For practical 

reasons (e.g., bleeding and tissue processing time), the collection of many small biopsies at 

distinct measurement locations cannot be performed. Therefore, histopathological validation 

must occur over the whole resected tissue. Accordingly, in this research, labeling of imaging 

data, in addition to data extraction, requires more extensive registration approaches compared 

to research involving direct validation via biopsy.  

  A predominant challenge in assessing the accuracy of the histopathology registration is 

the lack of quantitative measures to assess performance, therefore it is difficult to quantify the 

improvement of coregistration accuracy using the reported methods. This challenge originates 
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from the many qualitative and somewhat subjective tasks involved in the coregistration process 

(e.g., landmark identification, determination of compression or expansion artifacts, and reduced 

clarity of the in vivo surgical field of view when lighting or focus of the visualizing endoscope is 

not ideal). While not possible to directly assess the improvement in histopathologic registration 

accuracy which this study protocol confers, the developed approach has increased the degree 

of objective metrics that can be referenced to minimize potential error and facilitate more 

accurate registration.  

 Continuing to improve on the present histopathology registration effort by emphasizing 

more automated and quantitative approaches will be essential to further advance registration 

accuracy. Along these lines, a central limitation in the proposed protocol is the potential to 

introduce subjectivity across the various steps. In this context, integrating advances to feature 

matching software, such as those developed for facial recognition, will enable more precise 

optical registration and orientation based on subtle geographic and anatomic features. The 

addition of fiducial markers, such as ink and surgical clips, can additionally facilitate enhanced 

registration accuracy. Various other methods are actively being explored to aid in automated 

feature extraction. This includes extracting Fourier-based features, scale-invariant feature 

transformation based on difference of Gausians, extracting features from anatomical structures 

and tissue boundaries across images to create comparable scales, in addition to other 

automated landmark-based approaches.180 While the best approach to improve present 

histopathology registration may require a combination of techniques to achieve accurate 

registration, it is clear that more sophisticated automated approaches is the key next step to 

achieve standardized registration with reduced variability across researchers. Through the 

incorporation of the described techniques, in parallel to advances in imaging technologies and 

spatial recognition software, the accuracy of future coregistration efforts and reproducibility of 

research will continue to improve.   
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CHAPTER 5 | Application of FLIm for Intraoperative Delineation of Primary 
Tumors of the Oropharynx: An Initial 10-Patient Feasibility Study 
 

5.1 | Abstract 

This chapter reports on the first use of FLIm to demarcate tumors of the oropharynx 

using TORS platforms. We first demonstrate that cancer in epithelial tissue diagnosed by 

histopathology can be differentiated from surrounding healthy epithelial tissue imaged in 

vivo prior to cancer resection and ex vivo on the excised specimen. Second, we study the 

fluorescence properties of tissue imaged in vivo at surgical resection margins (tumor bed). 

Fluorescence lifetimes and spectral intensity ratios were calculated for three spectral channels, 

producing a set of six FLIm parameters. Results from N=10 patients undergoing TORS 

procedures demonstrated that healthy epithelium can be resolved from cancer (P <0.001) for at 

least one FLIm parameter. We also showed that a multiparameter linear discriminant analysis 

approach provides superior discrimination to individual FLIm parameters for tissue imaged 

both in vivo and ex vivo. Collectively, this work highlights the potential for FLIm to be developed 

into a diagnostic tool for clinical cancer applications of the oropharynx and serves as the 

preliminary basis for investigation of classification methods (e.g., machine learning) for real-time 

surgical decision-making. This technique could help to circumvent the issues posed by the lack 

of tactile feedback associated with robotic surgical platforms to better enable cancer delineation. 

5.2 | Introduction 

A first step in investigating the use of FLIm for surgical guidance of the oropharynx is to 

first demonstrate the ability to resolve benign tissue from cancer at a patient-level. Prior to this 

study, no reported studies demonstrate the use of FLIm in vivo to demarcate conventional 

primary tumors of the oral cavity. Accordingly, the goals of this study were to: (1) conduct FLIm 

measurements during TORS procedures involving oropharyngeal carcinoma, (2) to evaluate the 

effect of experimental procedures on FLIm data, and (3) to determine whether a combination of 
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FLIm-derived parameters can be always found and used as means of intrapatient diagnostic 

contrast irrespective of experimental situations.  

Both univariate (i.e., single-parameter) and multivariate approaches involving FLIm 

spectral intensity and time-resolved features were investigated. For the multivariate approach, 

linear discriminant analysis (LDA) was used to incorporate all FLIm spectral intensity and time-

domain fluorescence parameters to resolve benign tissue from cancer. FLIm data was 

evaluated both in vivo and ex vivo with the surgically excised specimens. This study additionally 

investigated FLIm characteristics of the in vivo surgical cavity. 

5.3 | Materials & Methods 

5.3.1 Integration of FLIm into TORS Instrumentation 

The FLIm instrumentation and the corresponding integration into TORS is discussed 

extensively in chapter 3.1.1. In brief, to acquire data in this investigation, the FLIm system was 

coupled to the da Vinci Si Surgical System via a 5Fr EndoWrist Introducer, demonstrated in 

figure 26. In vivo pre-resection and cavity scans were performed by TORS, whereas ex vivo 

scans were performed by hand (figure 26).  
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Figure 26: Illustration of FLIm integrated into TORS and clinical workflow. (A) Schematic of the custom-built FLIm 
system, featuring the excitation beam to generate autofluorescence, the aiming beam to spatially coregister data, and 
the four spectral channels to resolve fluorescence lifetime and spectral intensity. Also illustrated is an example of the 
measured fluorescence waveforms output from the four time-delayed spectral channels; the method for the detailed 
calculation of fluorescence lifetime and spectral intensities for each spectral channel is described by Liu et al.[153]  
(B) Integration of the FLIm system with the da Vinci surgical system in the OR workflow: (1) represents the in vivo 
workflow for both pre-resection and post-resection (cavity) analysis where the da Vinci surgical system (including the 
integrated camera) was leveraged to collect measurements, and (2) represents the ex vivo workflow used for 
resected specimen pathology assessments where an Omniguide Laser Handpiece was used to perform a hand-held 
scan visualized by a mounted camera. The surgeon console and da Vinci system images are adapted with 
permission from Intuitive Surgical Inc. Reproduced with permission from Weyers et al. reference [168]. 

5.3.2 Human Patients and Data Collection 

Under institutional review board (IRB) oversight, 10 human patients undergoing upper 

aerodigestive oncologic surgery of the oropharynx were recruited for the study. The enrolled 

patients, along with their corresponding surgical locations, etiologies, and residual cancer status 

are enumerated in table 5.  
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Table 5. Overview of Patients, Afflicted Anatomical Tissues, Resulting Pathologies, and Residual 
Cancer Status. 

Patient Anatomy Pathology Residual Tumor 

1 Lingual Tonsil SCC N/A 

2 Palatine Tonsil SCC N/A 

3 Palatine Tonsil SCC N/A 

4 Palatine Tonsil SCC N/A 

5 Palatine Tonsil SCC N/A 

6 Palatine Tonsil SCC N/A 

7 Palatine Tonsil Basaloid SCC N/A 

8 Palatine Tonsil SCC N/A 

9 Base of Tongue Benign (No Cancer) N/A 

10 Palatine Tonsil SCC N/A 
 

 

Figure 27: Coregistration of FLIm to tissue histopathology. (A) First, a surgical region of interest was identified in vivo 
by the operating surgeon. A FLIm scan was then performed at the surgical region of interest, in addition to benign 
peripheral tissue, to create and augmented FLIm image. En bloc tumor excision was then performed, and a FLIm 
scan of the surgical cavity and surgically uninvolved peripheral tissue was acquired. Thereafter, an ex vivo scan was 
performed on the excised specimen. (B) The surgically excised specimen was surgically grossed to create H&E 
sections. The pathologist annotated the corresponding histology, and the results were extrapolated onto the 
respective slice both in vivo and ex vivo as demonstrated in chapter 4. All scale bars represent 0.5 cm. Reproduced 
with permission from Weyers et al. reference [168]. 
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Prior to robotic surgery, the EndoWrist instrument containing the fiber optic from the 

FLIm instrument was installed in the da Vinci surgical system and was placed inside the oral 

cavity of the patient under anesthesia. Surgeons identified the tissue areas of interest based on 

preoperative planning. FLIm measurements were then acquired by scanning the EndoWrist 

instrument over that region, as demonstrated in figure 27. FLIm data was collected in vivo prior 

to en bloc surgical excision, with the excised surgical specimen, and in the patient’s surgical 

cavity in vivo. Peripheral benign tissue was also imaged within the in vivo pre- and post-

resection scans. FLIm results were registered to histopathology for validation, as demonstrated 

in chapter 4. FLIm data deconvolution and data visualization was performed using the methods 

from chapter 3.   

5.3.3 Data Annotation, Coregistration, and Preprocessing 

FLIm measurements were coregistered to tissue annotations and analyzed only at 

regions directly guided by histopathology. Measurements near heterogeneous tissue conditions 

(i.e., boundaries between cancer and healthy tissue) were excluded by removing any 

measurement within a 10-pixel radius (~0.75 mm) of multiple disparate tissue conditions. A 

larger exclusion radius would remove a large quantity of data points from the analysis stage of 

this initial study. A SNR threshold of 30 dB was applied across all spectral channels. Outlier 

removal was performed prior to any univariate statistical analysis for each FLIm parameter 

using a median absolute deviation (MAD) filtering approach,181 where parameter values ±2.5 

MAD from their respective median were removed for each patient. This MAD filtering procedure 

was performed separately for in vivo pre-resection scans, ex vivo scans, and cavity scans. 

Spectral channel 4 was excluded from analysis due to the poor signal properties observed, thus 

six FLIm parameters were evaluated in this study: average fluorescence lifetime and spectral 

intensity ratio from spectral channels 1–3. Outlier removal and SNR filtering removed 0.5% and 

2.5% of data points respectively. 
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5.3.6 Statistics and Discrimination Metrics 

Statistical tests and discrimination metrics were implemented to quantify FLIm’s ability to 

distinguish between benign tissue and cancer. Statistically, no assumptions of a normal 

distribution were made for acquired FLIm data, however, independence and equal variance 

were assumed; with these considerations, the Wilcoxon rank sum test, a non-parametric 

statistical method, was selected for statistical evaluation.182,183 Receiver operating characteristic 

(ROC) and precision-recall curve analysis were performed for each FLIm parameter to calculate 

a set of discrimination metrics. 

Once calculated for a given variable, area-under-the-curve (AUC) and average precision 

(AP) provide a comprehensive overview of its discriminative power. Average precision is 

influenced more by the performance of the positive class (e.g., cancer) and can highlight poor 

discrimination even if the dataset is imbalanced between classes (i.e., majority healthy), while 

AUC treats each class with equal importance. For each patient, analysis was performed 

separately for each imaging context (in vivo prior to tissue resection, ex vivo after tissue 

resection for the excised specimen, and within the in vivo surgical cavity). 

5.3.7 Multiparameter Discrimination 

LDA was used to investigate if a weighted linear combination of the six calculated FLIm 

parameters can provide better discrimination of tissue types than individual FLIm parameters. 

This analysis was performed separately for each patient and tissue context, as the focus of this 

work was on intrapatient sources of FLIm contrast, rather than the development of a generalized 

classifier. The LDA variable was calculated for each case by resubstitution validation (through 

singular value decomposition), minimizing the intraclass variance and maximizing the interclass 

variance. The optimized set of weights was applied to the FLIm data for a given scan before 

min-max scaling was performed, producing a set of LDA variables in the range of 0.0–1.0 for 

this scan, which are used to distinguish healthy tissue from cancer. AUC and AP were 

calculated for this LDA variable, allowing for a direct comparison with each individual FLIm 



81 

 

parameter in terms of discriminative power. The objective here was not to train a generalized 

classifier, but to compare single parameter and multiparameter tissue discrimination approaches 

within individual patients. 

5.4 | Results 

FLIm measurements acquired from patients (N=10) and subsequently analyzed 

generated a total of 42,777 FLIm data points coregistered with histopathology. 13,765 of these 

data points were associated to cancer and the remaining 29,012 to benign tissue. This dataset 

includes nine in vivo pre-resection scans, nine ex vivo specimen scans, and seven post-

resection tumor bed scans. No positive surgical margins were identified in the resection tumor 

bed scans. Patient 9 did not have cancer; thus this patient was omitted from figures 28 and 28. 

Table 5 summarizes the patient information involved in this study. 

The patient case studies in figure 28 and figure 29 were selected for the following 

reasons: first, they highlight different levels of single parameter contrast (both in vivo and ex 

vivo) and show how limited contrast can be overcome through a multiparameter LDA approach, 

and second, distinct tissue conditions (i.e., levels of heterogeneity) are observed in the 

histopathology for each case. Each case study presents: (1) heat map visualizations of all six 

FLIm parameters with the associated AUC and AP score, (2) violin plots (a non-parametric data 

visualization method which includes both a box plot and a kernel density plot) for all six FLIm 

parameters with statistically significant change (P < 0.001) highlighted, (3) a heat map 

visualization of the multiparameter LDA variable along with AUC and AP score, and (4) 

registered histopathology.  

Following the in vivo and ex vivo scan for each case, the FLIm profile of the surgical 

cavity scan is presented. For in vivo pre-resection and ex vivo scans, the aim was to evaluate 

whether neoplastic changes in epithelial tissue diagnosed by conventional histopathology can 
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be differentiated from surrounding healthy epithelial tissue, while for the post-resection cavity 

scan, the goal was to evaluate changes in optical parameters due to cauterization. 

5.4.1 Case Study A 

Case study A (figure 28) presents FLIm measurements for Patient 8. Statistically 

significant change (P < 0.001) was observed between tissue conditions for five FLIm 

parameters in the in vivo pre-resection scan and four FLIm parameters in the ex vivo post-

resection scan. LDA improved both AUC and AP score for both scans compared to the best 

performing individual parameter in each case. For the in vivo scan, the use of the LDA variable 

improved AUC and AP by just 0.02 and 0.01 respectively, suggesting that when good single-

parameter contrast is observed (i.e., AUC of 0.89) that a multiparameter approach (LDA) only 

results in marginal improvement. For the ex vivo scan, the use of the LDA variable improved 

AUC and AP by 0.04 and 0.01 respectively, these marginal improvements due to the already 

strong single parameter contrast observed (AUC of 0.74). A bimodal distribution was observed 

within the tumor bed for intensity ratio in CH1, CH2, and CH3, suggesting that distinct tissue 

conditions are present. 

5.4.2 Case Study B 

Case study B (figure 29) presents FLIm measurements for Patient 5. Statistically 

significant change (P < 0.001) is observed between tissue conditions for two FLIm parameters 

in the in vivo pre-resection scan and four FLIm parameters in the ex vivo post-resection scan. 

LDA improved both AUC and AP score in both scans compared to the best performing 

individual parameter in each case. For the in vivo scan, the use of the LDA variable improved 

AUC and AP by 0.11 and 0.12 respectively, highlighting the advantage of a multiparameter 

approach when single parameter contrast is not strong (i.e., AUC of 0.60). For the ex vivo scan, 

the use of the LDA variable improved both the AUC and AP by 0.11, once again highlighting the 

benefit of a multiparameter approach. A bimodal distribution is observed within the tumor bed 
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for average lifetime in channels 1–3 and intensity ratio CH1, suggesting heterogeneity within 

this region. 

 

Figure 28: Case study A (Patient 8): Linear discriminant analysis on palatine tonsil. Upper panel: pre-resection in 
vivo scans. (a) Heat map visualizations and (b) violin plots of the six FLIm parameters (significance marked ‘*’ for 
P<0.001). (c) Heat map visualization of the linear discriminant analysis (LDA). Middle panel: ex vivo scans. (a) Heat 
map visualizations and (b) violin plots for the six FLIm parameters. (c) Heat map visualization of the LDA variable 
Bottom Panel: surgical cavity scans. (a) Heat map visualization and (b) Violin plots for six FLIm parameters. (c) 
White light image of the tumor resection bed. Reproduced with permission from Weyers et al. reference [168].  
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Figure 29: Case study B (Patient 5): Linear discriminant analysis on palatine tonsil. Upper panel: pre-resection in 
vivo scans. (a) Heat map visualizations and (b) violin plots of the six FLIm parameters (significance marked ‘*’ for 
P<0.001). (c) Heat map visualization of the linear discriminant analysis (LDA). Middle panel: ex vivo scans. (a) Heat 
map visualizations and (b) violin plots for the six FLIm parameters. (c) Heat map visualization of the LDA variable 
Bottom Panel: surgical cavity scans. (a) Heat map visualization and (b) Violin plots for six FLIm parameters. (c) 
White light image of the tumor resection bed. Reproduced with permission from Weyers et al. reference [168]. 
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5.4.3 ROC-AUC and Average Precision Comparisons at Patient-Level 

Statistically significant change (P <0.001) between healthy epithelium and cancer was 

observed for at least one FLIm parameter in all in vivo pre-resection scans and 8/9 ex vivo post-

resection scans. A comparison of patient-level ROC-AUC scores for the in vivo pre-resection 

scans and ex vivo scans is presented in figure 30. The main sources of contrast among the six 

FLIm parameters varied among patients for each scan context. In all scans, the use of the LDA 

variable resulted in superior AUC score, with a 0.07 ± 0.03 mean increase observed for the in 

vivo pre-resection scans and a 0.06 ± 0.03 mean increase observed for the ex vivo post-

resection scans. In terms of single parameter discriminative performance, the highest single 

parameter mean AUC was observed for CH3 intensity ratio in both scan contexts. A single 

parameter AUC score greater than 0.70 was observed for 6/9 in vivo pre-resection scan and 4/9 

ex vivo post-resection scans. 

A comparison of patient-level average precision for the in vivo and ex vivo post-resection 

scans is presented in figure 31. As observed for ROC-AUC analysis, the main source of 

contrast varies between patients for both scan contexts. The use of LDA resulted in a superior 

overall AP score, with a 0.08 ± 0.06 mean increase observed for the in vivo pre-resection scans 

and a 0.06 ± 0.03 mean increase observed for the ex vivo post-resection scans. In terms of 

single parameter discriminative performance, the highest single parameter mean AP was 

observed for CH3 intensity ratio in the in vivo pre-resection scans and CH1 intensity ratio for the 

ex vivo scans. A single parameter AP score greater than 0.70 was observed in 6/9 in vivo pre-

resection scans and 3/9 ex vivo post-resection scans. 
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Figure 30: In vivo & ex vivo patient-level ROC-AUC performance. A comparison of patient-level ROC-AUC 
performance for (A) in vivo pre-resection scans and (B) ex vivo post-resection scans. μ corresponds to the mean 
performance for each parameter including the linear discriminant analysis (LDA) variable. For each scan type, use of 
the LDA variable resulted in superior AUC to the best performing signal parameter, with a 0.07 ± 0.03 mean increase 
observed for the in vivo pre-resection scans and a 0.06 ± 0.03 mean increase observed for the ex vivo scans. A 
single parameter AUC score greater than 0.70 was observed for 6/9 in vivo pre-resection scan, and 4/9 ex vivo 
scans. Reproduced with permission from Weyers et al. reference [168]. 

 

 

Figure 31: In vivo & ex vivo patient-level average precision. A comparison of patient-level average precision 
performance for (A) in vivo pre-resection scans and (B) ex vivo post resection scans. μ corresponds to the mean 
performance for each parameter including the linear discriminant analysis (LDA) variable. For each scan type, the 
use of the LDA variable resulted in superior AP to the best performing signal parameter, with a 0.08 ± 0.06 mean 
increase observed for the in vivo pre-resection scans and a 0.06 ± 0.03 mean increase observed for the ex vivo 
scans. A single parameter AP score greater than 0.70 was observed in 6/9 in vivo pre-resection scans and 3/9 ex 
vivo scans. Reproduced with permission from Weyers et al. reference [168]. 
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5.4.4 Comparison of Healthy Epithelium in the Tonsil Region 

Figure 32 illustrates the range of FLIm parameter values for all measurements of non-

cauterized healthy epithelium taken in three distinct experimental contexts: in vivo pre-resection 

(n = 5,606 measurements), ex vivo post-resection (n = 7,252 measurements), and in vivo post-

resection (peripheral to tumor bed) (n = 4,060 measurements). All measurements were 

performed for the tonsil region of the oral cavity (N=9). Data from any non-tonsil patient (i.e., 

Patient 9) is excluded from this analysis to restrict the focus to the same anatomy.  

Due to the high number of measurements included in this analysis (n > 10,000), P 

values are not computed as these statistics are shown to always indicate significance as ‘N’ 

grows very large.184 Alternatively, Cohen’s d185 effect size (ES) was computed to overcome this 

high sample size. Higher ES values are observed between healthy epithelium contexts for 

intensity ratio parameters compared to average lifetimes. Channel 3 has the smallest set of ES 

values between healthy epithelium contexts for both average lifetime and intensity ratio, 

indicating this channel’s FLIm profile may be the most robust to these context changes. For 

average lifetime in channels 2 and 3, there is a small ES observed between pre-resection in 

vivo and post-resection peripheral tissue (in vivo), suggesting a consistent FLIm profile for these 

parameters before and after resection. For channel 1 average lifetime, a high ES is observed 

between healthy epithelium in all three imaging contexts, suggesting this parameter is less 

robust to these changes with respect to a healthy epithelium imaging context. 
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Figure 32: Comparison of univariate FLIm trends for healthy tissue by imaging context. Comparisons are made for all 
measurements of non-cauterized healthy epithelial tissue (tonsil regions, N=9 patients) acquired in vivo pre-resection 
(n = 5,606 measurements), ex vivo post-resection (n = 7,252 measurements), and in vivo post-resection (peripheral 
to tumor bed) (n = 4,060 measurements). Intensity ratios and average lifetimes for (A) CH1 fluorescence emission, 
(B) CH2 fluorescence emission, and (C) CH3 fluorescence emission. Cohen’s d effect size (ES) is computed between 
imaging contexts. *ES > 0.5; **ES > 0.8. Reproduced with permission from Weyers et al. reference [168]. 

5.4.5 Comparison of Tumor Bed with Pre-resection Healthy Epithelium and Cancer 

Average lifetime parameters observed in the tumor bed (n = 19,567) are compared with 

those observed pre-resection for both in vivo healthy epithelium (n = 6,151) and in vivo cancer 

(n = 3,760) across the entire 10-patient cohort. For channel 1 average lifetime an ES of 1.45 

and 1.5 are observed respectively when comparing tumor bed with healthy epithelium and 

cancer, suggesting a consistent change for this parameter when compared to both tissues. 

Conversely, for average lifetime in channels 2 and 3, no ES value greater than 0.36 is observed 

when comparing tumor bed with healthy epithelium and cancer, suggesting a less prominent 

change for these channels. 
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5.5 | Discussion 

The results collectively demonstrate FLIm-derived average lifetime and intensity ratio 

parameters can distinguish between benign oropharyngeal tissue and cancer. This work first 

investigated the use of FLIm to provide intrapatient contrast between healthy surface epithelium 

and cancer in vivo prior to resection, and ex vivo (figures 28–30). While the number of individual 

parameters able to resolve healthy tissue from tumor varies, for 9/9 in vivo pre-resection scans 

and 8/9 ex vivo scans, we show that at least one FLIm parameter shows statistically significant 

difference (P <0.001) per patient between healthy epithelial tissue and cancer. The 

experimental context by which data was acquired (in vivo or ex vivo) and tissue heterogeneity 

appears to play a role in the number of parameters needed for discrimination. Overall, more 

parameters are needed for discrimination when more complex histopathological features were 

observed for a given patient.  

This initial research highlighted that a weighted linear combination of all six FLIm 

parameters by LDA provides superior discrimination of tissue conditions in both scenarios. 

Intensity ratio parameters demonstrated superior discriminative power to average lifetimes, 

however average lifetime parameters did contribute to the performance of the LDA. The best 

FLIm-based diagnostic assessment was achieved in vivo. This first research objective identified 

a core challenge, which is that that reliable and consistent variables across patients need to be 

identified for robust diagnostic-decision-making. Due to the variability in reliable parameters for 

differentiating benign vs. cancer tissue, more advanced classification algorithms may benefit 

this work by identifying patterns in complex multivariate FLIm data which enable consistent 

cancer demarcation potential across patients.  

Second, we evaluated the effect of electrocautery in vivo on FLIm properties (figures 28 

& 29, bottom panel). Channel 1 lifetime within the electrocauterized surgical bed were 

significantly lower when compared to the values obtained for tumor measured in vivo pre-

resection in the same patient. This trend was observed for all patients (CH1: ES of 1.45) 
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indicating that CH1 (associated with the fluorescence emission of matrix proteins) might be able 

provide a means of contrast if residual tumor is present. For CH2 and CH3, an ES of 0.15 and 

0.29 was observed, indicating little effect. We also noted that the average lifetime values of 

healthy electrocauterized submucosa were also significantly lower relative to healthy epithelium 

(CH1: ES of 1.5). 

Third, we investigated the effect of the surgical procedure and potential hemostasis on 

healthy epithelium (figure 32). The results indicate that FLIm parameters for healthy and cancer 

tissue changes with imaging context; this phenomena is expected due to the inherent sensitivity 

of endogenous fluorophores to their local microenvironment.108 Biological tissue is under 

tremendous stress when it is surgically separated from the body,186 particularly due to the loss 

of blood supply, temperature, and oxygenation changes following resection. Such conditions 

lead to a rapid shift (on the order of minutes)187 of tissue metabolism towards anaerobic 

respiration,188 and rapid cell death,188 which will manifest with changes in tissue 

autofluorescence properties following excision. It has also been established that the molecular 

changes induced during and after tumor resection are heteromorphic (exhibiting unique 

differences among patients),186,187 while also demonstrating dependence on the anatomical 

tissue resected.186 The healthy tissue surrounding the periphery of a surgical resection bed also 

changes as a result of the procedure, where surgery introduces a cascade of biological 

responses due to injury.189 In particular, surgery creates a hypermetabolic response, induces 

catabolic metabolism changes, creates local vasodilation, and initiates other inflammation-

mediated biochemical changes.189  

The results demonstrate that intensity ratios are more likely to vary with imaging context. 

With respect to average lifetime, channel 1 was most affected by the imaging context, whereas 

the lifetime parameters from CH2 and CH3 (associated with metabolic changes) were less 

affected. In particular, no major differences were observed for measurements performed in vivo 
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pre- and post-resection. However, changes were observed for surgically excised specimens. 

These findings suggest a potential recovery of metabolic features of the epithelial tissue at the 

periphery of the tumor bed, but as expected, irreversible changes take place in the excised 

tissue specimens. 

Although CH3 intensity ratio overall enabled the best separation of cancer vs. healthy 

tissue for this dataset, it is important to note that lifetimes were still very informative in 

distinguishing healthy tissue from cancer and in some cases, offered the best tumor vs. healthy 

contrast on a patient-by patient basis. For example, for Patient 2, CH1 lifetime provided the 

strongest contrast between healthy tissue and cancer. When coupled with LDA, even if intensity 

ratio enabled the best data class separation, lifetimes bolstered the overall cancer vs. healthy 

tissue discrimination capacity for all patients. 

In clinical practice, we envision that FLIm will leverage weighed combinations of all 

channels, using both intensity and lifetime data, to detect cancer. Having at least one channel 

which provides adequate tumor vs. healthy contrast is not required for cancer delineation; based 

on the results of this study, there is no single FLIm parameter that can distinguish healthy tissue 

from cancer in all contexts, therefore a multiparameter approach is required. For example, in 

figure 30, in vivo and ex vivo for Patient 7, there is no single metric from one channel that gives 

a significant difference, however after using weighted combinations of the FLIm metrics in an 

LDA, adequate tumor vs healthy contrast is achieved. This result again highlights the need for 

classification algorithms to identify patterns within complex multivariate FLIm data to identify 

consistent and reliable patters across patients for diagnostic decision-making.  

This manuscript demonstrates that a set of FLIm parameters can always achieve 

contrast between healthy and tumor tissue for a 10-patient cohort. This is an important first step 

towards training a general classifier since discrimination is only possible if the FLIm method 

itself can provide adequate healthy vs. tumor contrast. Having used this work as a baseline to 
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demonstrate the feasibility of FLIm for intraoperative cancer detection, training a general 

classifier is the focus of our next work. In training a general classifier, our goal will be to 

incorporate a larger data population (after performing further clinical studies) which accounts for 

the diverse range of head and neck anatomic sites, cancer types, and inherent tissue 

differences across patients. Future work will also seek to evaluate how FLIm parameters are 

specifically affected by the presence of more granular features, such as the presence of 

ulceration, necrosis, low-grade and high-grade dysplasia. 

5.6 | Conclusion 

The results of this study suggest that Fluorescence Lifetime Imaging (FLIm) has the 

potential to be developed into a diagnostic tool for clinical cancer applications of the oropharynx. 

Once such a system is implemented and extensively validated, this technique can help to 

circumvent the issues posed by the lack of tactile feedback associated with robotic surgical 

platforms and assist in cancer delineation. For FLIm to be used as a universal transoral 

diagnostic standard, the biological complexity of cancer and the fundamental biochemical 

variability across patients need to be considered to develop a generalized combination of signal 

parameters which can be utilized for diagnostic decision-making. Machine learning methods will 

be investigated as means to produce such a generalized model and define the fluorescence 

decay signatures of specific conditions. We anticipate that continued rigorous research in this 

area will enable the generation of larger and more robust data sets to better elucidate the extent 

of interpatient variability and identify common autofluorescence properties which can be 

leveraged for pathology contrast. 
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CHAPTER 6 | Intraoperative Label-Free Fluorescence Lifetime Imaging for Real-
Time Delineation of p16+ Oropharyngeal Carcinoma of Unknown Primary Origin: 
An 8-Patient Cohort Preliminary Investigation 
 

This chapter evaluates whether label-free Fluorescence Lifetime Imaging (FLIm), 

coupled with standard diagnostic workups, could enhance primary lesion detection of the 

oropharynx in patients with p16+ head and neck squamous cell carcinoma of the unknown 

primary origin (HNSCCUP). Herein, FLIm was integrated with the da Vinci SP transoral robotic 

surgical platform (TORS) to acquire optical datapoints and display results. To our knowledge, 

this is one of the earliest studies to integrate a supplemental imaging approach with TORS to 

enhance occult primary tumor detection. One other group has made notable progress in this 

area using narrowband imaging (NBI) on an 8-patient HNSCCUP cohort.190 

Over a 2-year period, FLIm data was acquired using TORS on 61 head & neck cancer 

patients presenting to University of California, Davis Health. Among these subjects, 55 patients 

comprised conventional primary tumors of the oropharynx, whereas the other 6 patients were 

classified with p16+ HNSCCUP after exhaustive preoperative diagnostic workup. HNSCCUP are 

uncommon tumors (~2,600 annual United States cases), therefore the potential for further 

HNSCCUP patient recruitment in this single-institution study was limited. A random forest 

machine learning classifier was trained on FLIm optical parameters derived from the larger 

independent 55-patient dataset and leveraged to investigate HNSCCUP discriminatory 

performance in the 6-patient cohort. Results were validated by histopathology. 

Among the 6 HNSCCUP patients, p16+ occult primary was surgically identified in 3 

patients, whereas 3 patients ultimately had no identifiable primary site in the oropharynx (i.e., no 

carcinoma beyond the cervical lymph nodes). FLIm correctly detected HNSCCUP in all 3 patients 

(ROC-AUC: 0.90 ± 0.06), and correctly predicted benign oropharyngeal tissue for the remaining 3 

patients. The mean sensitivity was 95 ± 3.5%, and specificity 89 ± 12.7%. 
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 The preliminary results demonstrate the potential for FLIm to facilitate intraoperative 

delineation of mucosa-presenting p16+ HNSCCUP. Ultimately, these initial results suggest the 

potential for FLIm to reduce surgical procedure times, preserve functional healthy tissue, and 

enable enhanced intraoperative decision-making for the benefit of the patient. 

6.2 | Abstract 

Background: This study evaluated whether Fluorescence Lifetime Imaging (FLIm), 

coupled with standard diagnostic workups, could enhance primary lesion detection in patients 

with p16+ head and neck squamous cell carcinoma of the unknown primary (HNSCCUP). 

Methods: FLIm was integrated into transoral robotic surgery to acquire optical data on 6 

HNSCCUP patients’ oropharyngeal tissues. An additional 55-patient FLIm dataset, comprising 

conventional primary tumors, trained a machine learning classifier; the output predicted the 

presence and location of HNSCCUP for the 6 patients. Validation was performed using 

histopathology. 

Results: Among the 6 HNSCCUP patients, p16+ occult primary was surgically identified 

in 3 patients, whereas 3 patients ultimately had no identifiable primary site in the oropharynx. 

FLIm correctly detected HNSCCUP in all 3 patients (ROC-AUC: 0.90 ± 0.06), and correctly 

predicted benign oropharyngeal tissue for the remaining 3 patients. The mean sensitivity was  

95 ± 3.5%, and specificity 89 ± 12.7%. 

Conclusions: FLIm may be a useful diagnostic adjunct for detecting HNSCCUP.  

6.3 | Introduction 

Head and neck squamous cell carcinoma of unknown primary origin (HNSCCUP), also 

known as occult primary, is defined as the occurrence of squamous cell carcinoma in cervical 

lymph nodes with no primary site identified.191 These cases (~2,600 annually in the United 

States) represent approximately 3-5% of all new cases of head and neck squamous cell 

carcinoma, and are considered unknown after exhaustive clinical, radiographic, and surgical 

evaluation.192–196 HNSCCUP is disproportionately correlated to positive human papillomavirus 
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(HPV) status and exhibits weaker association to tobacco and alcohol abuse.197,198 Statistically, 

most HPV+ HNSCCUP patients are male, White, non-smokers, and non-drinkers.194,199 HPV-

mediated tumors aberrantly overexpress p16 biomarkers, thus p16 immunohistochemistry is 

recommended for determining HNSCCUP etiology.23  

It is critically important to locate the primary site in these patients to reduce treatment-

related morbidity via more anatomically-focused interventions.197,200 Most HNSCCUP cancers 

are eventually located in the cryptic lymphoepithelium of the palatine tonsils and the lingual 

tonsils of the base of tongue.194,195,198 Traditional surgical assessments of these cases included 

bilateral tonsillectomy and base of tongue biopsies in efforts to locate the primary tumor.198,201 

Recent publications in the HPV era, have suggested the appropriateness of only performing an 

ipsilateral tonsillectomy in the workup of these patients.202 The adoption of transoral robotic 

surgical platforms (TORS) is increasingly being utilized in the workup of HNSCCUP and has 

facilitated improved HNSCCUP detection rates194,203–205; however, depending on the diagnostic 

and clinical capabilities of different medical institutions, more than 50% of primary tumors may 

remain undiscovered for patients with HNSCCUP.201 To improve intraoperative decision-making 

and enhance the detection of these elusive tumors, new diagnostic technologies compatible 

with TORS are needed. 

While FLIm has not been specifically developed as a tool for identifying unknown 

primary tumors, the recent success of this technology for demarcating conventional primary 

oropharyngeal tumors2,168,169 has motivated the present investigation of discriminatory 

performance in HNSCCUP patients. Specifically, we investigated whether the addition of FLIm 

to standard diagnostic workups could enhance the detection of primary lesions within p16+ 

HNSCCUP patients. To our knowledge, this is one of the earliest studies to integrate a 

supplemental imaging approach with TORS to enhance occult primary tumor detection. One 
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other group has made notable progress in this area using narrowband imaging (NBI) on an 8-

patient HNSCCUP cohort.190 

 This study aimed to conduct intraoperative FLIm measurements on patients with TORS-

facilitated extirpation of HNSCCUP to identify the presence of occult primary tumors not 

identified by standard-of-care workup. FLIm was integrated into the da Vinci SP and deployed 

for acquiring measurements on oropharyngeal tissues with a high propensity for harboring the 

primary tumor (i.e., palatine and lingual tonsils).194,195,198 We sought to test the hypothesis that 

intraoperatively acquired FLIm measurements output from a machine learning classifier can 

successfully detect p16+ occult primaries presenting in the mucosa (<250 µm from tissue 

surface) and differentiate such malignancies from healthy tissue. 

6.4 | Materials and Methods 

This study comprises an N=61 patient dataset evaluating FLIm for diagnosis and 

surgical guidance of oral cavity and oropharyngeal cancers. Of the 61-patients, 55 comprised 

conventional primary tumors of the oropharynx, whereas the other 6 patients were classified 

with p16+ HNSCCUP after exhaustive diagnostic workup. Procedures were approved by the 

University of California, Davis Institutional Review Board (IRB ID#800853) and conducted in 

accordance with the Code of Ethics of the World Medical Association for experiments involving 

humans.  

6.4.1 Study Design and Inclusion/Exclusion Criteria of Patients 

Eligible patients presenting to UC Davis Otolaryngology – Head & Neck Surgery 

department were recruited in the study over a 2-year period from May 2019 – April 2021 without 

demographic or prognostic consideration. Patients with a preoperative diagnosis of HNSCCUP 

were eligible for this study. Patients were classified as presenting with HNSCCUP after an 

exhaustive clinical, radiographic, and surgical evaluation did not identify the primary tumor site; 
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this includes negative PET and CT findings, absence of tactile cues when palpating tissue, lack 

of visual identification by endoscopy, and negative directed biopsies at suspicious areas.  

Exclusion criteria consisted of: (1) pediatric patients based on IRB considerations, (2) 

patients with HIV+ status from a safety standpoint for research personnel, (3) individuals with 

previous major head & neck surgery where extensive scarring may be present, and (4) patients 

with known use of orally administered crack-cocaine or methamphetamine (MA), which imparts 

severe adverse effects on oral tissues and confounds FLIm measurements.206 HNSCCUP 

patients with p16- cancer were not assessed within the scope of this manuscript (as HPV-

negative disease represents a different entity).  

One prospective p16+ HNSCCUP patient resided within the study’s exclusion criteria, 

and therefore was not analyzed (see discussion) due to their known recurring use of orally 

administered methamphetamine (MA). In total, N=6 p16+ HNSCCUP patients met the inclusion 

criteria for the study and provided their informed consent to participate in this research. 

6.4.2 Instrumentation & Data Collection 

Figure 5 of section 1.3 illustrates the custom-built, fiber-based, point-scanning FLIm 

system with corresponding integration into the da Vinci SP surgical system. In-depth 

characterizations of this instrument and specifications are detailed in the previous section. The 

optical fiber’s distal end features a 3D printed stainless steel grasper, which is held and 

maneuvered by the da Vinci SP robotic system’s instruments (figure 5).   
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As this technology is a point-scanning technique, the field-of-view can be as large as the 

entire visualized surgical area (multiple centimeter scale) from the da Vinci SP. When scanning 

directly adjacent to tissue, the spatial resolution of the device is determined by the fiber core 

size (365 µm) and the probe-to-tissue distance, yielding a resolution between 0.6 ± 0.2 mm 

depending on the distance of the probe to the tissue surface. The peritumoral region has many 

morphologic and phenotypic distinctions from non-tumor-bearing healthy tissue, including 

altered pH levels, metabolic characteristics, and oxygenation gradients, extending up to 1 cm 

from the margins of tumor tissue.207 Correspondingly, although the penetration depth of the UV 

laser is approximately 250 µm, the secondary tissue effects from neoplasms extend multiple 

millimeters beyond the cancer site, potentially allowing FLIm to detect cancers beyond the 

absolute penetration depth of the UV laser; this has yet to be formally evaluated. 

6.4.3 Data Collection 

FLIm scanning was conducted after patients were anesthetized, intubated, and prepared 

for TORS. Intraoperative biopsies were conducted after FLIm scanning to mitigate any potential 

confounding effect on the data. The da Vinci SP was introduced into the patient’s oral cavity and 

the sterile optical fiber’s distal end was grasped and actuated by the robot’s Maryland graspers 

(figure 5). In vivo scans of approximately 90 seconds in duration were conducted bilaterally over 

palatine tonsils and the base of tongue regions to generate spectroscopic data overlaid over 

white light images. An example of this spectroscopic data overlay on a patient’s tongue tissue 

(used in the classifier training dataset) is illustrated in figure 17 (section 3.3). The fiber optic 

probe was then removed from the patient, and the surgeon proceeded with en bloc excision of 

tissues suspected of occult primary. This typically included a bilateral tonsillectomy followed by 

biopsies and/or lingual tonsillectomy depending on the surgeon’s discretion. Excised specimens 

were sectioned in a pathology grossing room to generate multiple sequential H&E slides for 
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pathologic interpretation; these slides included a combination of both frozen and permanent 

sections. HPV status was assessed by using p16 immunohistochemistry. 

6.4.4 Calculations and Analysis of Data 

Average lifetime estimation for each spectral band was performed using constrained 

least square deconvolution with Laguerre expansion. This fast and robust technique has been 

detailed extensively.153 Briefly, the pulsed UV laser repetition rate of 120 Hz determines the 

FLIm measurement speed. The FLIm waveforms which originate from each spectral 

measurement are averaged four times before further processing, leading to 30 averaged 

spectroscopic datapoints acquired each second. For each of the four spectral bands of the 

instrument, the average lifetime value, spectral intensity, and 12 fitting coefficients of the 

Laguerre expansion are computed (figure 17 - section 3.3). Spectral properties of the 

fluorescence emission are also estimated by computing the relative intensity of each spectral 

channel of the instrument. This leads to a total of 56 parameters (4 time-resolved average 

lifetimes, 4 spectral intensity ratios, and 48 expansion metrics). 

A random forest machine learning classifier estimated the probability of healthy vs. 

cancer for each point-measurement.170 This classifier was trained on the larger 55-patient cohort 

of known primary oropharyngeal tumors (38 palatine tonsil and 17 base of tongue patients) and 

then applied to make predictions on the measurements obtained from HNSCCUP patients. 

Sensitivity and specificity were calculated by standard convention. ROC-AUC quantified the true 

positive rate vs. false positive rate of individual spectroscopic point-measurements based on 

histological findings. This approach builds up on the development of predictors previously 

described elsewhere (figure 19 – section 3.3).169 The unit of analysis for statistical evaluation 

consists of binary predictors (i.e., cancer vs. healthy) output from machine learning classification 

for individual spectroscopic datapoints acquired over a surgical region of interest. This type of 

analysis is distinct from region/lesion-based assessment, where multiple measurements are 
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combined to predict the nature of a preidentified region. This approach typically leads to better 

sensitivity and specificity numbers, however, requires a priori knowledge of the extent of the 

lesions. 

6.4.5 Coregistration and Histopathological Validation of Data 

Registration of data to histopathology is detailed in our prior work, and in chapter 4 .168 In 

brief, a pathologist (DG) digitally annotated H&E slides using Aperio (Leica) Imagescope 

viewing software. Features within 250 µm of the tissue’s mucosal surface were annotated, 

corresponding approximately to the maximum penetration depth of the laser. The following 

annotation labels were used: (1) carcinoma, (2) lymphoid tissue, and (3) benign tissue. Label 1 

was treated as the positive class (i.e., cancer) and labels 2 & 3 were treated as the negative 

class (i.e., benign) from an analysis standpoint. Histopathology sections were overlaid onto a 

high-resolution image of the excised specimen, accounting for compression and expansion 

registration artifacts between histology and the excised specimen. An in vivo recording of the 

surgical excision process was used to facilitate registration of the excised specimen to the 

original in vivo environment. This histopathological data was then overlaid onto a reference 

image in vivo. To account for motion between the TORS surgical camera and the evaluated 

tissue, a novel motion compensation algorithm was applied.166 Quantification of performance 

was based only on regions with coregistered histopathology. 

6.5 | Results 

Table 6 depicts all patient demographics, pertinent clinical characteristics, and surgical 

outcomes of the enrolled patient population. An average of 2,355 FLIm spectroscopic datapoints 

(ranging between 1,393 and 4,793) were acquired from each of the 6 patients. 3 patients 

(Patients 1-3) presented with HNSCCUP (all p16+) within the regions where FLIm scans were 

performed. Patient 6 did have p16+ HNSCCUP near the FLIm scan area, however the region of 

cancer was outside the area of the research scan, thus only FLIm data for benign tissue was 

acquired. All other patients enrolled in the study presented with HNSCCUP, however no 
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oropharyngeal primary was identified with TORS. Each patient had multiple tissues excised 

where some of these tissues contained the occult primary and others were benign, as presented 

in table 6. Patients 4-6 only had benign tissue imaged in the FLIm scan area, thus only 

specificity is calculated for these patients due to the absence of the positive data class (i.e., 

cancer). Only tissue areas validated with histopathology were used to calculate ROC-AUC, 

sensitivity, and specificity.  

Table 7 presents ROC-AUC, sensitivity, and specificity calculations for each patient. 

FLIm correctly detected the presence of the occult primary in all 3 patients (Patients 1-3), 

yielding a mean ROC-AUC score of 0.90 ± 0.06. The extent of the cancer (quantified by 

sensitivity) was detected with a mean of 95 ± 3.5%. The method however demonstrated mixed 

specificity results for these patients. Patients 4-6 comprised data from benign tissues only, 

where the FLIm classifier correctly demarcated the entire extent of all tissues as benign and 

output a mean specificity of 99 ± 1%. All 6 patients together, which includes the 3 patients with 

p16+ SCC within the FLIm scan area and the 3 patients with only benign tissue evaluated, 

resulted in a classification specificity of 89 ± 12.7%. 
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Table 6. Demographics, Clinical Characteristics, and Surgical Outcomes of the Study Population. 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 

D
e

m
o

-
g

ra
p

h
ic

s
 Gender Male Male Male Male Male Male 

Age at Surgery 63 74 59 62 77 69 

Race White White White White White White 

Ethnicity 
Not 

Hispanic 
Not 

Hispanic 
Not 

Hispanic 
Not 

Hispanic 
Not 

Hispanic 
Not 

Hispanic 

P
e

rt
in

e
n

t 
C

li
n

ic
a
l 

C
h

a
ra

c
te

ri
s

ti
c

s
 

Alcohol Use 2 DPD 3 DPD Infrequent Infrequent 1 DPD 3 DPD 

Tobacco Use 
Never 

Smoker 
0.25 PPD 

(Quit 2011) 
Never 

Smoker 
Never 

Smoker 
0.5 PPD 
(Current) 

0.5 PPD 
(Quit 2014) 

Illicit Drug Use No No No No No 
Cannabis 

(Daily) 

S
u

rg
ic

a
l 
O

u
tc

o
m

e
s
 

Post-Operative Occult 
Primary Diagnosis 

p16+ SCC p16+ SCC p16+ SCC p16+ SCC p16+ SCC p16+ SCC 

Occult Primary Tissue 
Imaged in Area of FLIm 

Scan Region? a 

Yes 
R-PT 

Yes 
L-BOT 

Yes 
R-BOT 

No No No 

Occult Primary Tissue 
Ultimately Found in 

Oropharynx? a 

Yes 
R-PT 

Yes 
L-BOT 

Yes 
R-BOT 

No No 
Yes 

Superior 
R-PT 

Other Benign Excised 
Tissues a 

L-PT 
R-BOT 
R-GTS 

R-BOT 
L-BOT 

L-PT 
L-PT 

L-BOT 
L-GTS 

R-BOT 
R-GTS 

L-PT 
R-BOT 
R-GTS 

 

Abbreviations: DPD = Drinks Per Day, PPD = Cigarette Packs Per Day, MA= Methamphetamine, SCC = Squamous Cell Carcinoma,  
p16+ SCC= HPV Positive & HPV Mediated Squamous Cell Carcinoma, BOT = Base of Tongue, PT= Palatine Tonsil, 
GTS= Glossotonsillar Sulcus. 
a “R” and “L” designate “Right” or “Left” respectively with anatomy (e.g., R-PT refers to Right Palatine Tonsil). 
 

 

Table 7. FLIm Performance on Occult Primary Cancer: ROC-AUC, Sensitivity, and Specificity. 

 ROC-AUC Sensitivity Specificity 
p16+ SCC 

Within FLIm 
Scan Area 

Patient 1 0.97 92% 87% 
Patient 2 0.90 96% 81% 
Patient 3 0.82 99% 68%  

No Carcinoma 
Within FLIm 
Scan Area 

Patient 4 - - 100% 

Patient 5 - - 98% 

Patient 6 - - 99% 

 Mean 0.90±0.06 96±3.5% 89±12.7% 

Abbreviations: p16+ SCC = HPV-Positive Squamous Cell Carcinoma 

 

Figure 33 presents case studies for all 3 patients with p16+ HNSCCUP imaged by FLIm. 

Each patient case study displays both the binary probability of cancer for each acquired spectral 

point-measurement and the patient’s corresponding registered histopathology in vivo.  
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Figure 33: Patients with p16+ SCC within the imaged FLIm area. Each patient case study displays three tiles: (1) the 
original photograph of the surgical white light image, (2) the histopathology of the excised specimen registered in 
vivo, and (3) an overlay of the binary probability of cancer for each acquired spectral point-measurement. (A) Patient 
1 with p16+ SCC of the right palatine tonsil. (B) Patient 2 with p16+ SCC of the left base of tongue. (C) Patient 3 
with p16+ SCC of right base of tongue.  
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Figure 34: Patients with benign tissue only within the imaged FLIm area. Each patient case study displays three 
tiles: (1) the original photograph of the surgical white light image, (2) the histopathology of the excised specimen 
registered in vivo, and (3) an overlay of the binary probability of cancer for each acquired spectral point-
measurement. (A) FLIm scan for Patient 4 of a benign left palatine tonsil. (B) FLIm scan for Patient 5 of a benign 
right base of tongue tissue. (C) Patient 6 case study illustrative of a challenging scenario where the FLIm scan area 
does not overlap with the area of cancer. For this patient with cancer of the right palatine tonsil, all benign tissue 
areas are correctly marked as healthy with 99% sensitivity, however the FLIm scan was not performed on the small 
area of the palatine tonsil where the occult primary p16+ SCC occurred. This case is illustrative of the importance of 
fully scanning an entire surgical region of interest with the FLIm technique to avoid missing a potential occult primary 
area.    

Figure 34 presents case studies for all 3 patients who did not have cancer imaged within 

the FLIm scan area (i.e., only benign tissue evaluated). Like figure 33, this figure displays the 
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binary probability of cancer classifier output and the patient’s corresponding registered 

histopathology in vivo.  

6.6 | Discussion 

Collectively, the results demonstrate FLIm’s clinical value in the surgical management of 

p16+ HNSCCUP in two key areas: (1) differentiation between oropharyngeal tissues that are 

benign versus those involved with p16+ SCC, and (2) demarcation of the extent of cancer. 

The ability to correctly identify benign tissues uninvolved with HNSCCUP was 

demonstrated with the 3-patient cohort who had only benign tissues imaged in the FLIm scan 

region. Among these patients, the FLIm classifier yielded exceptionally high specificities, 

averaging 99 ± 1% and correctly delineated the entire scanned regions of these tissues as 

benign. Ultimately, these patients each had multiple benign tissues of their oropharynx excised, 

which comprised palatine tonsils, base of tongue tissues, and glossotonsillar sulcus regions 

(table 6). Due to the increased intraoperative procedure times, costs, pain, and functional 

implications from resection of patient’s healthy tissue, there is strong motivation to prevent the 

unnecessary excision of benign tissues.  

FLIm’s ability to identify oropharyngeal tissues harboring HNSCCUP, as well as 

demarcate associated cancer margins, was demonstrated for the 3-patient cohort presenting 

with p16+ HNSCCUP tissue within the FLIm scan region. For these patients, HNSCCUP was 

successfully detected using the FLIm classifier method. The best classifier results were 

observed for Patient 1, where healthy tissue and cancer were comprehensively differentiated. 

The classifier for Patient 2 performed well overall and fully demarcated the extent of the tumor. 

Cancer was successfully detected for Patient 3 presenting with p16+ HNSCCUP of the right 

base of tongue, however there was a low specificity (68%). Close inspection of figure 33C 

reveals that the borders of the specimen were pre-marked with the da Vinci SP monopolar 

electrocautery tool prior to FLIm scanning, which is typically performed after the FLIm scan. In 
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our previous work, we found that our FLIm signal is disrupted and altered by electrocautery, 

where effects on the FLIm signal extend many millimeters beyond the electrocautery site.131 

Figure 33C illustrates that many of the false positives occur around the cautery outline, thus 

offering a potential explanation for the low specificity. We hypothesize that FLIm could 

potentially differentiate between cancer and healthy tissue with accuracy on electrocauterized 

surfaces, however this has yet to be tested, and electrocauterized data was not included in the 

classifier training model.  

6.6.1 Exclusion Criteria Remarks 

One HNSCCUP patient was not analyzed due to their medical history which designated 

this patient in the study’s exclusion criteria. This patient routinely orally self-administered MA, 

which like crack-cocaine, is associated with severe oral health complications.206 In brief, MA 

itself is acidic and when smoked or inhaled, has been linked to direct corrosive effects on oral 

tissues.208,209 It has been found that MA is linked to increased expression of proinflammatory 

factors,210 cellular senescence,210 reduced oral tissue wound healing,211 and reduced saliva pH 

and buffering capacity.212 Additionally, in murine models, MA has been found to facilitate host-

mediated collagen degradation by increased expression and production of matrix 

metalloproteinases (MMPs).211 Collectively, the effects of MA on oral cavity tissues 

demonstrates conserved properties to many cancer hallmarks,114 therefore motivating this 

patient’s exclusion from analysis due to confounding effects on the data. It is conceivable that 

with a large enough training dataset of MA patients, FLIm can differentiate benign MA-affected 

tissue from cancer, however this has yet to be tested.  

Unlike the effect of MA, patient tobacco and ethanol (EtOH) use has not demonstrated 

apparent challenges in distinguishing benign tissue from cancer in our prior work.168,169 One 

potential explanation for the classifier’s resilience to this medical history may stem from the 
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magnitude of patient data available (i.e., varied patient tobacco and EtOH use habits) to train 

the classifier’s algorithm in predicting cancer probability. 

6.6.2 Study Limitations & Collective Dataset Remarks 

Although the results obtained from this study are promising, the N=6 HNSCCUP patient 

sample size is a key limitation; however, it should be emphasized that the rare nature of 

HNSCCUP makes the potential for patient recruitment in this single institution study limited. Like 

most high-volume head and neck cancer centers, we were stringent in our definition of 

HNSCCUP and only assigned patients to this designation after comprehensive preoperative 

workup were performed, including visual and endoscopic inspection, palpation, and 

comprehensive imaging. While validation was performed on 6 HNSCCUP patients, it is 

emphasized that training data in the classifier was developed using the larger 55-patient 

conventional SCC dataset, enabling the extrapolation of classification results on pilot study 

cohorts reliable. Along these lines, future investigation for the diagnostic utility of FLIm as a 

diagnostic adjunct for HNSCC should place emphasis on multi-institutional studies to obtain 

larger sample sizes.  

A limitation of FLIm is demonstrated in patient 6, where cancer only presented in a 

subtle area of the superior right palatine tonsil and resided outside of the FLIm scan. This case 

study is illustrative of the importance of thoroughly scanning the entire region of interest to 

assess the presence of tumor.  

TORS has been incorporated as a successful strategy to detect unknown primary 

carcinoma of the oropharynx.194,203–205 Several authors have demonstrated detection rates 

averaging as high as 80%.213–215 While our study had a pathologic detection rate lower than 

those studies (50%), our practice is to aggressively look for the primary site with physical 

examination, imaging, and only consider the diagnosis of unknown primary if there is no 

suspicion of location based on preoperative and intraoperative findings. This difference in 
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approach, and the size of our data sample, might explain the detection success discrepancy 

between our institution and the literature. 

Collectively, these results, although preliminary, are promising for the potential 

identification of cancer of the unknown primary. These findings demonstrate potential to 

enhance surgical decision-making by aiding a surgeon in identifying candidate tissues of the 

oropharynx involved with carcinoma and in establishing the extent of cancer. If this potential to 

detect subtle mucosal-presenting carcinomas is confirmed in larger studies, FLIm could have 

dramatic impacts on radiation field reduction, or even the elimination of radiation therapy, in 

patients adequately treated with surgery alone. Along these lines, potential for FLIm to 

potentially guide initial biopsies and margins, which can reduce morbidity of unnecessary 

tonsillectomies/biopsies on oropharyngeal tissues that do not harbor malignancy.  

6.7 | Conclusion 

FLIm, in combination with the conventional diagnostic workup for HNSCCUP, may be a 

useful adjunctive modality for detecting primary tumors. This preliminary investigation 

demonstrated that FLIm, integrated with TORS, may aid a surgeon in rapidly and non-invasively 

screening patients for mucosa-presenting (<250 µm from tissue surface) p16+ HNSCCUP. The 

results suggest that FLIm can correctly demarcate entire benign tissues of the oropharynx and 

thus indicate to a surgeon that tissues suspected of occult primary are uninvolved with 

carcinoma. For all patients presenting with p16+ HNSCCUP in the FLIm scan region, the 

method correctly identified the presence and location of the occult primary with overall strong 

performance, in addition to accurately identifying uninvolved healthy functional tissue. 

Ultimately, these results demonstrate potential to reduce surgical procedure times, preserve 

functional healthy tissue, and enable enhanced intraoperative decision-making for the benefit of 

the patient.  
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CHAPTER 7 | 100-Patient Dataset Evaluation: Collective LDA Classification, Effect 
of Biological Variables, Patient Demographics, and Surgical Characteristics, and 
Preliminary Analysis of In Vivo Positive Surgical Margins   

This final chapter is dedicated to drawing conclusions on the 100-patient dataset 

acquired over the five-year period from 2017 – 2021. The major findings based on linear 

discriminant analysis and univariate analysis are presented. Chapter 8.1 details the composition 

of the 100-patient oral cavity and oropharyngeal cancer database. Chapter 8.2 presents the 

collective FLIm-based patient-level performance evaluation through LDA resubstitution 

validation. Chapter 8.3 investigates the influence of local anesthetic use, patient demographics, 

and biological variables on FLIm data; this includes: (1) evaluating the effect of lidocaine and 

epinephrine injection on patient oral tongue and tonsil data in vivo, (2) demonstrating the effect 

of patient age on FLIm data, and (3) assessing the impact of deeply embedded tumor (>0.5 mm 

from epithelium), lymphoid tissue, and high-grade dysplasia on FLIm data. Chapter 8.4 

investigates overall univariate data trends and uses Pearson’s Chi Square analysis to 

investigate correlations between FLIm data and anatomic, patient, and tumor characteristics. 

Lastly, chapter 8.5 demonstrates two in vivo case studies demonstrating the use of FLIm time-

resolved features to identify positive surgical margins in a patient’s electrocauterized surgical 

cavity.  

7.1 | Composition of the 100-Patient Oral Cavity and Oropharyngeal Cancer 
Database 

 Figure 35 visually presents the 100-patient H&N database composition in a tree diagram 

format. One hundred patients of age 18+ were recruited and participated in the FLIm research 

study upon obtaining their informed consent. Of the 100 patients consented, 92 patients were 

satisfactory for data analysis. Eight patients were not analyzed due to complications in data 

collection, such as hardware issues (e.g., laser misalignment, video signal loss, poor signal-to-

noise-ratio) or insufficient datapoint samples to approximate a standard normal distribution.  
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 For the 92 patients analyzed, data was obtained from N=34 patients undergoing palatine 

tonsil resection, N=16 base of tongue, N=27 oral tongue, and N=15 patients with cancer 

distributed elsewhere within either the oral cavity or oropharynx. For the purposes of classifying 

non-smoking vs. smoking patients, the U.S. Centers for Disease Control defines a non-smoker 

as a patients who has smoked less than 100 cigarettes per lifetime.216 Accordingly, this 

designation was used in the classification of patient tobacco status using reported patent 

medical history records. Within this analyzed dataset, 35 patients were classified as non-

smoking patients, and 57 patients were classified as smokers. Seventy-two patients were male, 

and 20 patients were female. 

 

Figure 35: Tree diagram illustrating the composition of the 100-patient H&N dataset.  

Appendix tables A9-A12 enumerate the patient-specific demographic details, clinical 

characteristics, and surgical outcomes for the tonsil, base of tongue, ‘other anatomy’, and oral 

tongue patients, respectively. Patient ID is listed to the right of the anatomical designation in 

parentheses. HPV status indicates the status of the patient’s surgically excised tissue(s) when 

tested for HPV using a p16 antibody probe.  

Based on the final interpretation of tissue pathology provided by patients’ surgical 

grossing laboratory reports, six numeric classes of cancer were established to designate the 

level of cancer malignancy according to the following pathologist descriptors of final pathology 
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status: (1) benign tissue or low-grade dysplasia [malignancy N/A], (2) polymorphous 

adenocarcinoma or condyloma [lowest malignancy], (3) squamous cell carcinoma (SCC) in situ 

and non-invasive SCC [low malignancy], (4) verrucous SCC [medium malignancy], (5) SCC and 

invasive SCC [high malignancy], and (6) basaloid SCC [very high malignancy].  

Figure 36 reports a summary of how the patient dataset was distributed in terms of 

anatomy, p16 status, and cancer malignancy. The results demonstrate that squamous cell 

carcinoma comprised most of the database (N=73, 79.3%). As expected of tumors of the 

oropharynx (tonsil & base of tongue), N=33 of N=38 (86.8%) of the tumors were associated with 

positive p16 status, whereas all tumors of the oral cavity were HPV negative (except for a single 

patient that had composite oropharyngeal tissue resected during a total glossectomy 

procedure). 

 

Figure 36: Composition of the 92-patient dataset based on cancer malignancy and p16 status. Results were 
bifurcated based on patient anatomy, HPV (p16) diagnosis, and pathologist-indicated cancer designation.  

 

7.2 | Collective Database Linear Discriminant Analysis (LDA) 

LDA is used as a tool for classification, dimensionality reduction, and data visualization. 

Within the scope of this H&N FLIm investigation, LDA provides robust class separability 

between benign and cancer data by drawing an optimized decision region between the two data 

classes. This analysis seeks to maximize the variance between healthy tissue and cancer, while 
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minimizing within-class variance. LDA is a powerful analytical tool since the optimization of the 

decision region, which separates the healthy and cancer data classes, provides quantitation of 

the extent of overlap between the two data classes. For this analysis, once a linear boundary is 

established which maximizes the separation of the two data classes, receiver-operator-

characteristic area-under-the-curve (ROC-AUC) classification performance can then be 

evaluated as a function of the true positive rate (TPR) vs. false positive rate (FPR) of the data, 

expressed by equation 12 and equation 14 respectively. 

Herein, LDA was leveraged to investigate the H&N patient dataset to explore what FLIm 

parameters and analytical methods (i.e., computed average lifetime vs. phasor harmonic 

analysis) gives rise to the best discrimination potential from both an intra- and inter-patient 

standpoint.  Patients eligible for LDA analysis consisted of those who had both benign tissue 

and cancer imaged by FLIm. Patients with occult primary tumor where the primary was not 

located, and patients without a cancer diagnosis (e.g., high grade dysplasia, leukoplakia) were 

not assessed in this section. To be eligible for analysis within this section, a minimum of 30 

datapoints corresponding to both cancer and benign tissue was required. Thirty datapoints 

correspond to 1 second of data acquisition (corresponding to 120 Hz laser repetition rate 

averaged 4 times to give 30 measurements per second); 30 datapoints additionally represents 

the minimum number of samples needed to create a standard normal distribution according to 

the central limit theorem. Among the 92 patients available for analysis, 71 patients met these 

criteria.  

Figure 37 demonstrates the summary of LDA performance achieved across all patients, 

bifurcated based on 4 anatomical groupings: oral tongue (N=26), tonsil (N=21), base of tongue 

(N=10), and ‘other’ (N=14). Appendix figures A54 – A57 depict the patient-level LDA. Linear 

combinations of univariate parameters were computed, designated by ‘Collective LDA’. ‘M.R.’ 

corresponds to metabolic ratio computed by taking the intensity of [CH2] and dividing by the 
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intensity of [CH2 + CH3]. CH1, CH2, and CH3 phasors represents the highest LDA achieved 

when evaluating the phasors across each of their first five harmonics: (1) ω= ω0, (2) ω= 2ω0, (3) 

ω= 3ω0, (4) ω= 4ω0, and (5) ω= 5ω0. ‘Phasor LDA’ corresponds to the ROC-AUC obtained from 

LDA when linearly combining the first phasor harmonic of CH1, CH2, and CH3. ‘LT LDA’ 

corresponds to the use of CH1-3 lifetime (3 univariate parameters) in the weighted linear 

combination computation of ROC-AUC arising from LDA. Analogously, ROC-AUC of ‘IR LDA’ 

was computed with the variables IR CH1-3 and M.R. (4 variables in total). Finally, ‘LT & IR LDA’ 

was computed using lifetime parameters from channels 1-3, intensity ratio from channels 1-3, 

and M.R. (7 variables total). From section 3.1, the expectation is that the weighted linear 

combination of FLIm parameters should provide better discrimination of benign vs. cancer tissue 

than individual FLIm parameters.  

 

Figure 37: Summary of oral cavity and oropharynx linear discriminant analysis performance. ‘M.R.’ corresponds to 
metabolic ratio defined as [CH2] / ( [CH2]+[CH3] ). The AUC reported within ‘Best Harmonic Phasor Contrast’ 
represents the phasor between the first and fifth harmonic giving rise to the highest AUC value. ‘Phasor LDA’ 
involved the weighted linear combination of CH1, CH2, & CH3 phasor’s first harmonic. ‘LT LDA’ is the result of the 
weighted linear combination of CH1-3 lifetime. ‘IR LDA’ is defined as the combination if CH1-3 intensity ratio and 
M.R. and ‘LT & IR LDA’ reports the AUC from the combination of all seven parameters: CH1-3 lifetime, CH1-3 IR, and 
M.R.   

 As demonstrated by figure 37, CH1 lifetime collectively provided lower AUC-based 

discrimination of benign tissue vs. cancer compared to CH2 & CH3 lifetime (at the intrapatient 

level). CH1-3 phasor AUC was higher for each anatomy than CH1-3 lifetime AUC, suggesting 
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additional contrast can be leveraged through phasor analysis to substantiate more conventional 

computed average lifetime based on Laguerre features alone. CH3 IR provided the highest 

healthy vs. cancer LDA contrast, which continues to corroborate previous findings from chapter 

5. CH1 IR provided similarly high AUC to CH3 IR. The weighted linear combination of phasors 

resulted in higher AUC than the weighted linear combination of lifetime, as well as intensity 

ratio. The weighted linear combination of all lifetime and intensity ratio parameters (designated 

by ‘LT & IR LDA’) resulted in the highest AUC, suggesting the importance of using the weighted 

linear combination of multiple parameters in benign vs. cancer decision-making, further 

substantiating conclusions drawn from section 3.1. The best collective weighted LDA AUC was 

achieved for oral tongue (0.89 ± 0.10), and the lowest for tonsil (0.84 ± 0.09). 

7.3 | Influence of Biological Variables, Patient Demographics, and Local 
Anesthetic Use on FLIm Data 

This section investigates the influence of surgical characteristics (i.e., local anesthetic 

use), biological variables, and other patient demographics on FLIm data. The first part, section 

7.3.1, explores if the surgical use of local anesthetics (lidocaine mixed with epinephrine) alters 

native tissue FLIm properties. To perform this investigation, a FLIm scan was performed 

immediately prior to the injection of local anesthetic, followed by a repeat scan of the tissue 

immediately after injection. This procedure was performed on both oral tongue and tonsil tissue; 

FLIm lifetime and intensity ratio parameters were subsequently analyzed to assess differences 

between the pre- and post-injection of the anesthetic. Section 7.3.2 investigates the influence of 

patient age on FLIm data using a cohort of non-smoking palatine tonsil patients. Section 7.3.3 

explores if FLIm can detect deep tumor embedded beneath the mucosa (0.5 mm < x < 5 mm). 

This investigation is motivated by the understanding that FLIm’s penetration depth is limited to 

~250 µm from tissue surfaces, however changes pH, stromal behavior, metabolic 

characteristics, and transcriptomic aberrations may extend ‘secondary tissue effects’ of a 

neoplasms millimeters beyond a cancer site.207 With the understanding that the anatomical 
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composition of tissue between the oral cavity and oropharynx differs, especially with the 

presence of lymphoid tissue comprising tissues of the oropharynx (e.g., base of tongue, palatine 

tonsil, and lingual tonsil), section 7.3.4 investigates the effect of lymphoid tissue on FLIm data, 

relative to standard epithelized mucosa. Lastly, section 7.3.5 evaluates the FLIm properties 

associated to high-grade dysplasia, relative to benign tissue and cancer.  

7.3.1 Effect of Lidocaine & Epinephrine Injection on In Vivo FLIm - Case Study on Tongue 
(N=1) and Tonsil (N=1) 

During oral surgery, some surgeons opt to use local anesthetics, where lidocaine mixed 

with epinephrine is commonly used. While lidocaine has a vasodilatory effect on tissue, when 

mixed with epinephrine, it has an overall vasoconstriction effect, enabling hemostatic properties 

to help control surgically-induced local bleeding.217 

In order assess if lidocaine injection has any measurable effect on FLIm lifetime and 

intensity ratio parameters, an initial study was conducted in vivo on standard oral cavity and 

oropharyngeal mucosa. In this study, a pre- and post-lidocaine FLIm scan was conducted on 

two tissues – dorsal tongue and palatine tonsil (figure 38). First, as demonstrated in figure 38A, 

a pre-lidocaine FLIm scan of an approximate 1-minute duration was acquired. Next, lidocaine 

mixed with epinephrine was injected by the surgeon; the injection was performed in a manner to 

distribute the local anesthetic as uniformly as possible within the area of the FLIm scan. 

Thereafter, a post-lidocaine FLIm scan was immediately performed, where the imaging area 

and density of datapoints were made to be as close as possible to replicate the pre-lidocaine 

scan. This procedure was performed on both dorsal tongue and palatine tonsil.  

Figure 38B demonstrates a representative surgical image acquired during each scan, 

followed by augmentation of channel 1 fluorescence lifetime, which was output from the spectral 

measurements originating from the FLIm scan. Qualitatively, juxtaposing the pre- and post-

lidocaine scans for both dorsal tongue and palatine tonsil demonstrates a red-shift in the 

collective datapoints of the scan; the red-shift is indicative of longer average fluorescence 
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lifetime because of lidocaine injection. Figure 38C supports this finding in channel 1 

quantitatively with the increase in median lifetime of post-injection (gray) vs. pre-injection (slate 

blue). Figure 38C also demonstrates significant differences pre- and post-lidocaine injection for 

channel 2 in both oral tongue and tonsil, and in channel 3 for tonsil.  

Figure 38D demonstrates differences pre- and post-lidocaine injection for dorsal tongue 

and palatine tonsil. Relative to pre-lidocaine tissue, post-lidocaine FLIm scans demonstrated an 

increase in channel 1 intensity ratio and metabolic ratio for both tongue and tonsil, an increase 

in channel 2 intensity ratio for tongue, and a decrease in channel 3 intensity ratio.  

 Collectively, these initial results suggest that lidocaine use may impact intrinsic tissue 

fluorescence lifetime and intensity properties. This is an important consideration since the initial 

results show that lidocaine increased channel 1 intensity ratio, and decreased channel 3 

intensity ratio.  
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Figure 38: Evaluation of FLIm data pre- and post- injection of lidocaine with epinephrine. (A) A preliminary pre-

lidocaine injection FLIm scan was performed, followed by immediate lidocaine injection, and a subsequent post-

lidocaine scan. (B) Channel 1 lifetime FLIm renderings augmented on white-light surgical images of tongue and tonsil 

tissue pre- and post-lidocaine injection. (C) Violin plots of pre- and post-lidocaine injection on oral tongue and palatine 

tonsil, where slate blue denotes the pre-lidocaine FLIm distribution, and gray designates the post-lidocaine FLIm 

distribution. (D) Boxplots of pre- and post-lidocaine FLIm intensity ratio and CH2 / [CH2+CH3] data. Statistical 

significance of (C) and (D) designed by Mann-Whitney U significance testing.   
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7.3.2 Effect of Age on FLIm Data 

The clinical appearance of oral cavity and oropharyngeal mucosa in healthy older 

populations is akin to that of young populations;218 histologic examination however 

demonstrates evidence of patient age resulting in various degrees of epithelial thinning, 

decreased cellular proliferation, loss of submucosal elastin and fat, and increased fibrotic 

connective tissues, and degenerative alterations in collagen.218 Along these lines, patient age is 

recognized as a biological consideration that may play affect fluorescence lifetime and intensity 

properties.  

A challenge with the present human dataset is the potential sources of variability arising 

from both genetic and environmental factors. For example, when considering identifying the 

impact of patient age on FLIm properties, factors such as tobacco use, gender, and anatomic 

site, among other factors, must be accounted for so they do not confound analysis. Patient 

tobacco history is variable across patients, and the severity of impact to oral health is dependent 

on a variety of factors, including longevity of smoking and packs per day. While not formally 

evaluated, patient gender in theory should present some differences in FLIm characteristics 

between men and women; the rationale for this stems from gender-specific differences in 

epithelial thickness.219 Through investigations of gender specific epithelial thickness using 

optical coherence tomography (OCT), men were found to present with thicker epithelium (30 µm 

on average) compared to women.219 In the oral cavity and oropharynx, most epithelial 

thicknesses range from 100 µm to 250 µm depending on the anatomic site (e.g., soft palate, 

tonsil, tongue, hard palate, etc.). Due to FLIm’s shallow penetration depth (~250 µm), and 

provided that the average epithelial thickness is correlated to patient gender, women with 

thinner epithelium in principle have higher autofluorescence contribution from the underlying 

lamina propria than men with thicker epithelium. Since the epithelium and lamina propria differ 

considerably from both a biochemistry and histologic standpoint, gender, alongside tobacco use 

and anatomic site, must be considered when evaluating the effect of patient age on FLIm data.  
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As previously mentioned in chapter 7.1, 92 patients were entered into analysis, with 

imaging data conducted from the following patient composition: 34 palatine tonsil patients, 16 

base of tongue, 27 oral tongue, and 15 patients with the “other” anatomic designation. 

Considering the effect of FLIm on patient age, only patients with non-smoking history were 

analyzed within an anatomic cohort, leaving the following patient breakdown: 13 non-smoking 

palatine tonsil patients (10 men, 3 women), 7 base of tongue patients (7 men, 0 women), and 8 

non-smoking oral tongue patients (3 men, 5 women). The 10-palatine tonsil male patients were 

selected for investigation on patient age since these patients comprised the largest cohort 

based on the bifurcation of the dataset.  

The effect of patient age on FLIm properties was assessed on benign tissue of the 

palatine tonsil and not on cancer. The rational for this stems from the marked heterogeneity of 

the tumors arising in the oral cavity and oropharynx,20,26 attributed to the complex interplay of 

etiologies and significant extent of molecular changes driving carcinogenesis.20 The high degree 

of HNSCC cellular heterogeneity enables tumor cells to reverse lineage commitment to either 

proliferative or quiescent stages due to complex cell populations with various stages of 

differentiation.27 In order to assess the effect of patient age on FLIm properties, benign tissue 

served as the better candidate for analysis due to the more homogenous profile of the tissue 

across patients.  

FLIm lifetime and intensity ratio parameters for the cohort of 10 male palatine tonsil 

patients were thereby evaluated on benign tissue as a function of patient age. MATLAB’s built-in 

function ‘corrplot’ was used to create a matrix of plots showing correlations among FLIm optical 

parameters and patient age. Histograms of the variables appeared along the matrix diagonal, 

with scatter plots of variable pairs appearing in the off diagonal. The slopes of the least-squares 

reference lines in the scatter plots were equal to the displayed correlation coefficients. No linear 

or quadratic correlation, defined as R2
 > 0.20, was identified from the correlation plots, except for 



120 

 

channel 1 lifetime, which demonstrated a high linear correlation (R2=0.81) between increasing 

patient age and decreasing channel 1 lifetime. These results are demonstrated in figure 39.  

Within figure 39, each boxplot designates and individual patient and their corresponding 

age, whereas the y-axis designates the range of channel 1 lifetime data associated to the 

patient’s benign tonsillar tissue. One patient of ten was omitted due to no benign tissue of the 

palatine tonsil available for analysis (i.e., all imaged regions of that patient’s palatine tonsil were 

cancer). The results demonstrate a linear relationship with a computed linear regression R2 

value of 0.81.  

 
Figure 39: Influence of patient age on channel 1 lifetime, investigated on in vivo benign palatine tonsil tissue 
for N=9 patients. The figure illustrates computed average lifetime boxplots and the associated number of 
datapoints, in addition to the linear regression R2 value.   
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7.3.3 FLIm Investigated on Deep Tumor Embedded Under Epithelium (0.5 mm < x < 5 mm) 

 The shallow penetration depth associated (~250 µm) with FLIm due to the inherent 

optical properties of UV laser excitation is a key limitation of the technique. However, because 

greater than 90% of all H&N cancers present as mucosa-presenting SCC,3,4 and since the 

range of epithelial thickness of the H&N anatomy is on average between 100 to 200 µm,219 

FLIm is well-suited for interrogation these surface-presenting tumors for diagnosis and surgical 

guidance. 

Despite most H&N tumors demonstrating superficial presentation within the mucosa of 

tissues, it is important to understand if FLIm has an ability to identify deeper tumor (0.5 mm < x 

< 5mm) extending beyond the penetration depth of the laser; such an ability would play an 

important role in the broader clinical adoption and universal utilization of this technique for 

oncologic procedures of the oral cavity and oropharynx. Although FLIm’s UV laser would not 

directly penetrate to deeper tumor depths (0.5 mm < x < 5mm), it is conceivable that the 

technique can pick up on “secondary tumor tissue effects” imparted by cancer.  

Histologically, normal tissue adjacent to tumor (NAT) is used as controls in oncology 

studies, however the biochemical and transcriptomic profile of NAT is influenced by the tumor, 

exhibiting different properties from non-tumor bearing benign tissue.207 It has been 

demonstrated that NAT presents a unique intermediate state, disparate from conventional 

cancer and benign tissue from both morphologic and phenotypic distinctions.207 This includes 

altered pH levels,220 allelic imbalance,221 stromal behavior,222 epigenetic aberrations,223 and 

altered transcriptomic behavior. These biochemical, phenotypic, and genetic changes are found 

to take effect as far as 10 millimeters beyond the site of tumor (depending on tumor size and 

characteristics).207 Suitably, the sensitivity of endogenous fluorophores to numerous 

biochemical factors (pH, oxygenation, temperature, solvent polarity, and binding to 

macromolecules)108 may enable FLIm to detect deep cancer through unique spectral signatures 

imparted from NAT.  
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FLIm’s ability to detect deep tumor through intermediate normal tissue adjacent to tumor 

was formally assessed in a patient case study, presented in figure 40. In this case study, deep 

tumor was defined as the histologic delineation of cancer by our pathologist (Dr. Dorina Gui) 

within 500 µm to 5,000 µm of the tissue epithelium. 500 µm was chosen based on double the 

approximate FLIm penetration depth through tissue, and 5,000 µm as half of the maximum 

distance which “secondary tumor tissue effects” are reported to extend into adjacent benign 

tissue beyond solid tumor margins.  

The case study in figure 40A first demonstrates representative H&E sections of palatine 

tonsil tissue where the pathologist identified both superficial (< 500 µm from surface) and deep 

tumor (500 µm ≤ x < 5,000 µm). Figure 40B presents the LDA evaluation of benign tissue vs. 

cancer, and benign tissue vs. deep cancer. Lifetime, intensity ratio, and phasors were assessed 

using LDA. The LDA ROC-AUC performance of multi-parameter lifetime, lifetime & intensity 

ratio, and phasor analysis demonstrated comparable performance; these incudes an ROC-AUC 

of 0.85 for the multi-parametric benign vs. cancer LDA (using both lifetimes and intensity ratio), 

and an ROC-AUC of 0.87 for benign vs. deep cancer. The combined channel phasor LDA ROC-

AUC performances exceeded 0.70 for all assessed harmonics. Channel 1 and 2 intensity ratios 

provided the best discriminative performance from univariate LDA analysis. 

The multiparametric LDA analysis of figure 40B showed that benign tissue vs. deep 

cancer was resolved with adequate (>0.70) ROC-AUC, demonstrating FLIm’s ability to detect 

differences between NAT tissue and standard benign tissue far from tumor sites. This finding 

suggests that although FLIm’s limited penetration depth cannot directly image cancer cells, 

deeper tumor, which imparts secondary tissue effects in adjacent benign tissue, may enable 

FLIm to identify the presence of deep (>500 µm from tissue surface) tumor tissue. From both 

patients, intensity ratio LDA outperformed lifetime LDA, suggesting FLIm intensity ratios serve 

as the most significant parameters enabling benign vs. deep cancer discrimination.  
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Figure 40: Investigation of FLIm properties on deep tumor (0.5 mm < x < 5mm) palatine tonsil case study. (A) 

Representative H&E sections with pathologist annotations. Scale bar corresponds to 2.0 mm. (B) Univariate and 

multivariate linear discriminant analysis (LDA) for benign tissue vs. standard cancer (0 µm < x ≤ 500µm) and benign 

tissue vs. deep tumor (0.5 mm < x ≤ 5 mm). (C) Box plots of intensity ratio and CH2 / [CH2+CH3] with Mann-Whitney 

U significance testing denoted.  
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Figures 40C demonstrates boxplots of FLIm intensity ratio parameters for benign tissue 

(indicated as green), cancer (red), and deep cancer (orange). Mann-Whitney U significance 

testing was performed to evaluate across the boxplots for significant differences. As 

demonstrated in figure 40C, epithelial cancer and deep cancer presented with statistically equal 

medians for channel 1 and 3 intensity ratio. For this patient, the median channel 1 and 3 

intensity ratio values for benign tissue vs. cancer and benign tissue vs. deep cancer were 

statistically different. For channel 2 intensity ratio, benign tissue vs. cancer and benign tissue vs. 

deep cancer were statistically different, however the medians between cancer and deep cancer 

were not statistically equal. The results support the hypothesis that FLIm can detect deep tumor 

through secondary tissue effects imparted in the NAT space.  

7.3.4 Effect of Lymphoid Tissue on FLIm Data 

 The effect of lymphoid tissue on FLIm optical signatures is an important consideration 

due to the disparate histological and physiological composition of this tissue relative to standard 

epithelized tissues and lamina propria of the head and neck anatomy. At the present, no current 

published studies have investigated the impact of lymphoid tissue on FLIm lifetime and intensity 

ratio parameters.  

 The lymphatic tissues of the oropharynx are composed of a circumferential tonsillar ring, 

known as Waldeyer's ring; this region comprises the palatine tonsils, nasopharyngeal tonsils, 

lingual tonsils, and tubal tonsils.224 Lymphoid tissue typically resides in the lamina propria 

(beneath the epithelium) and contains high concentrations of lymphocytes. After detecting an 

antigen, these lymphocytes switch from a quiescent state to a more metabolically active state of 

proliferation.225 Upon activation, lymphocytes conform to meet the bioenergetic and biosynthetic 

demands of increased cell proliferation, demonstrating an intrinsic link between metabolic 

reprogramming and lymphocyte activation.225 Lymphoid tissue contains B, T, and M-cells. 

During the resting (quiescent) state, naïve T cells undergo low levels of glycolysis while deriving 
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most of their energy via oxidative phosphorylation or fatty acid oxidation.225 When activated, 

naïve T cells must switch to a metabolic program that can sustain anabolic growth to generate 

progeny known as effector T cells (TEFF). This program looks very similar to the Warburg Effect 

described in cancer cells where glucose-derived pyruvate is converted to lactate in glycolysis 

despite aerobic conditions.225 After the pathogen or other source of antigen is cleared, most TEFF 

cells die leaving behind a population of longer-living memory T cells (TM). TM cells have a 

metabolic profile akin to naïve T cells whereby energy is derived predominantly from oxidative 

phosphorylation. However, TM cells differ from naïve T cells in that they have greater 

mitochondrial mass. This allows TM cells with tremendous capacity for mitochondrial-derived 

ATP generation necessary for a rapid immunologic response to re-exposure of the antigen. 

 Collectively, this background serves to demonstrate that lymphoid tissue presents with 

unique and variable metabolic profiles. Additionally, the collagen surrounding the lymphoid 

tissue architecture features type III collagen fibrils, which is in contrast to the predominant type I 

collagen found elsewhere in H&N anatomy.226 Accordingly, it is conceivable that the different 

structural protein composition would play a role in altering channel 1 (collagen) FLIm signal, and 

the metabolic effects would have some effect on channel 2 (NADPH) and channel 3 (FAD) FLIm 

parameters.  

 Figure 41 features representative histology acquired from benign tissue, lymphoid tissue, 

and cancer from 4 base of tongue patients (Patient A-D). The scale bar corresponds to 300 µm 

for all figures. From the histology, it is apparent that all benign tissues have a highly organized 

and well-defined epithelial structure, basement membrane, and underlying lamina propria. From 

the histology, the increased hematoxylin component (darker purple from staining more cellular 

nuclear material) demonstrates a substantial increase in cellular density when compared to the 

histology of benign tissue. The lymphoid tissue aggregates in the example primarily reside 
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directly beneath the basement membrane. Cancer demonstrates the most histologic variability, 

due to cancer’s inherent histology variability.  

 An important consideration in evaluating the effect of lymphoid tissue on FLIm data, 

relative to benign tissue, is the observed histologic variability across patients. For example, in 

figure 41, lymphoid tissue for the base of tongue appears quite variable across patient A, B, C, 

and D, where all histology is from base of tongue patient. For these patients, the density of 

diffuse lymphatic tissue which accumulates in the lamina propria has variability, which in turn 

can affect optical scattering and absorption properties. Suitably, understanding this variation can 

help put FLIm results in context with more dynamic histopathologic corroboration. 

 
Figure 41: Illustrative histopathology for an eight-patient cohort comprising benign tissue, lymphoid tissue, 
and cancer. Base of tongue H&E represented in patients ‘A-D.’ Scale bar corresponds to 300 µm. 

  Figure 42 depicts the results of FLIm lifetime and intensity ratio parameters derived from 

two representative base of togue patients (Patient A & B). All results relate to measurements 

acquired in vivo, with an assignment of benign tissue, lymphoid tissue, or cancer based on the 

coregistered histopathology derived from the surgically excised specimen. The data is plotted in 

terms of boxplot graphs, where green boxplots correspond to benign tissue, purple to lymphoid 

tissue, and red to cancer.  



127 

 

 
Figure 42: Evaluation of lymphoid tissue’s influence on FLIm lifetime and intensity ratio for base of tongue tissue. 

Benign tissue indicated in green, lymphoid tissue in purple, and cancer in red. (A) Representative histology sections 

for benign tissue, cancer, and lymphoid tissue. (B) Boxplots of the distributions of lifetimes for benign tissue (green), 

lymphoid tissue (purple), and cancer (red) for the two patient case studies. (C) Phasor plots for benign tissue 

(green), lymphoid tissue (purple), and cancer (red). Mann-Whitney U test significance indicated by ‘**’ for P<10-5, ‘*’ 

for P<0.05, and ‘n.s.’ as not significant for P>=0.05. 

 These results suggest that lymphoid tissue shifts fluorescence lifetime in all channels 

towards longer values, relative to benign tissue and cancer. This is observed from both 

computed average lifetime (figure 42B) and phasor analysis (figure 42C).   
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7.3.5 Effect of High-Grade Dysplasia on FLIm Data 

From a surgical standpoint, dysplasia is a subjective and difficult diagnosis, and is 

considered a precancerous lesion. In otolaryngology, historically, low-grade dysplasia is 

observed closely, whereas high-grade dysplasia (HGD) is resected due to risk of cancer 

progression. Suitably, the ability for FLIm to confer discrimination between benign tissue, HGD, 

and cancer would be advantageous in a surgical capacity, better enabling decision-making as to 

which lesions may become problematic. Figure 43 features histology derived from N=4 patients 

presenting with HGD at final pathology. Significant histologic differences within the mucosa 

between benign tissue and HGD is observed, visualized by an increase in nuclear crowding and 

the apparent disruption of the basement membrane for HGD.  

 
Figure 43: Illustrative histopathology of benign tissue, high-grade dysplasia, and cancer. Base of tongue and oral 
tongue H&E is represented. Scale bar corresponds to 300 µm.  

From the N=4 patients featured in figure 43, one base of tongue patient (Patient A) and 

one oral tongue patient (Patient B) are featured in the case study demonstrated in figure 44, 

which investigates the effect of HGD on FLIm parameters. All results reported pertain to FLIm 

measurements acquired in vivo, where green boxplots pertain to the data associated to benign 

tissue, orange boxplots to dysplasia, and red to cancer. In general, HGD more closely 

represented FLIm lifetime and intensity ratio characteristics to cancer than benign tissue.  
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Figure 44: Evaluation of high-grade dysplasia’s influence on FLIm lifetime and intensity ratio parameters for base of 

tongue (Patient A) and oral tongue (Patient B). Benign tissue indicated in green, high-grade dysplasia in orange, and 

cancer in red. (A & B) Representative histopathology from Patient A and B respectively. (C & D) Lifetime channel 1-3 

for Patient A & B, where green boxplots correspond to benign tissue, orange to high-grade dysplasia, and red to 

cancer. (E & F) Intensity ratio channels 1-3 for Patient A & B. Mann-Whitney U test significance indicated by ‘**’ for 

P<10-5, ‘*’ for P<0.05, and ‘n.s.’ as not significant for P>=0.05. 

7.4 | Evaluation of Univariate Data Trends (Δ) Between Benign Tissue vs. Cancer  

 Prior research investigating the effects of cancer on fluorescence lifetime and intensity 

parameters have been documented for oral cavity tissues in various studies.59,129,130,145,146 These 

studies preclude the investigation of these trends in the oropharynx as this anatomical region is 

accessed through TORS, which in the field of fluorescence lifetime imagine, has been unique to 

our laboratory group (Marcu Lab at UC Davis). Relative to baseline collagen intensity, the 

literature demonstrates that cancer is associated with reduced collagen intensity.59,129,145 This 

trend of reduced intensity of collagen autofluorescence is the method by which the commercially 

available technology VELscope and Identafi operate by for contrast between pathological and 
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benign tissue. Cancer is recognized to increase NAD(P)H59,145 and FAD129,146 intensity, while 

decreasing NAD(P)H129,130 and FAD130 lifetime relative to benign tissue. Another study has 

documented reduced optical redox ratio (CH2 / [CH2 + CH3]) for oral cancer relative to benign 

tissue.145 A graphical illustration which summarizes these previously reported trends is 

demonstrated in figure 45.  

 Autofluorescence loss attributed to collagen with cancer progression is a well-

established phenomenon. When cancer progresses, the tumor microenvironment is altered in 

favor of enabling tumor invasion and intravasation as a factor of the metastatic niche.113 It is well 

known that HNSCC tumors mediate the activity of collagenases, such as matrix 

metalloproteinase 1, 9, 13, and 18, which unwind triple-helical collagen and hydrolyzes the 

peptide bonds of fibrillar collagen type I, III, and IV.115 Because approximately 50% of 

autofluorescent constituents are located within the peptide bond crosslinks of collagenous 

molecules, cancer-associated collagen crosslink degradation reduces autofluorescence 

intensity attributed to collagen.107 This property is the phenomenon by which commercially 

available technologies such as VELscope operate, where autofluorescence loss enables the 

identification of neoplastic tissue. 

FLIm channel 2 and 3 capitalize on the autofluorescence maxima of NAD(P)H and FAD 

respectively. Chance et al. in 1976227 and 1979228 coined “redox ratio” as a direct indicator of the 

amount of oxygen used in the mitochondria of cells, where the collective ratio of NAD(P)H and 

FAD fluorescence ties closely to the cellular oxygenation state; suitably, NAD(P)H and FAD are 

frequently analyzed together in a ratio, named redox or metabolic ratio. Together, these 

metabolic cofactors together provide useful information about the metabolic status of cells.  
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Figure 45: Autofluorescence lifetime and intensity ratio trends for oral cancer. Compared to baseline autofluorescence 

intensity and lifetime properties for benign tissue, cancer has been demonstrated to exhibit the following properties in oral 

epithelium: (1) decreased collagen intensity,59,129,145 (2) increased NAD(P)H intensity,59,145 (3) increased FAD intensity,129,146 

(4) decreased NAD(P)H lifetime,129,130 (5) decreased FAD lifetime,130 & (6) decreased optical metabolic ratio defined as 

NADPH / [NADPH + FAD].146 

 Herein, this section investigates if the results from the 92-patient dataset conform to the 

previously reported results from other researchers. The sign (+/-) of the Δ value between benign 

tissue and cancer is assessed, as well as magnitude of the differences. Relationships between 

the magnitudes and FLIm trends with respect to patient clinical cancer characteristics and 

medical history are elucidated; this evaluation is performed to better understand inherent patient 

characteristics that affect FLIm lifetime and intensity parameters. This understanding can help 

better shape the development and input training data considered in creating robust classification 

algorithms using the data.   
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7.4.1 Methods: Kruskal-Wallis U Test and Evaluation of Benign Tissue vs. Cancer Trends 

 Differences in univariate FLIm lifetime and intensity ratio parameters were assessed 

using the methods demonstrated in figure 46. First, the Mann-Whitney U significance test was 

used to evaluate distributions of the data from benign tissue and cancer for a given patient. For 

a given patient, this test evaluated the null hypothesis that the data in benign (blue) and cancer 

(red) are samples from a continuous distribution (i.e., 30+ datapoints according to the central 

limit theorem with no apparent skew between the median and quartiles) with equal medians, 

against the alternative that the medians are not equal. The test assumes the two samples 

(benign and cancer) are independent, and the sample may have different numbers of 

datapoints. P-values less than 0.05 are significant, and values less than 0.0001 exhibit a high 

significance level. Figure 46A demonstrates 3 benign tissues (blue) vs. cancer (red) violin plot 

distributions, acquired from 3 different patients for demonstration. The left-most distribution 

quantitatively does not have any significance, corroborated quantitatively with a P value greater 

than 0.05. The middle distribution of figure 46A is significant at the P < 0.05 level, indicating that 

the medians between benign tissue and cancer are not equal. The right-most benign (blue) vs. 

cancer (red) distribution is significant at the P < 0.0001 level.  

 For data derived from a given patient, if statistical significance was computed to be 

P<0.05 or less, an assignment of sign (+/-) for the difference, denoted as Δ, between benign 

tissue and cancer was computed (Figure 46B). Distributions where values for benign tissue 

were greater than cancer gave a +Δ, and where cancer values were higher than benign tissue, 

gave a -Δ.  
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Figure 46: Method for assigning deltas (Δ) between benign tissue and cancer, and application of significance testing 

to the FLIm data. (A) Visual example of violin plot distributions between benign tissue (blue) and cancer (red) 

obtained from a given patient. The violin plots enable qualitative comparison through visual assessment, and 

quantitative statistical evaluation testing the null hypothesis that the medians are equal between the benign and 

cancer distribution; statistical evaluation was performed with Mann-Whitney U significance testing. (B) Where 

differences in the median were at a significance of p<0.05, the difference (Δ) between benign tissue (blue) and 

cancer (red) were computed. +Δ indicates that the median FLIm parameter of the benign distribution was greater 

than cancer. -Δ indicated the median FLIm parameter of the cancer distribution was greater than benign.  

7.3.2 Pearson’s Chi Square Analysis of FLIm Trends vs. Clinical Characteristics  

As demonstrated in the appendix data for figures A58 – A60, the majority of the FLIm 

data trends from the 88-patients analyzed correlate to the autofluorescence lifetime and 

intensity ratio trends expected for oral cancer. To understand potential sources of variability in 

the FLIm data for the minority of patients who do not conform to the typical trends, a Pearson’s 

Chi Square Test was performed to investigate if any apparent correlation exists between clinical 

characteristics (patient gender, ethnicity, race, p16/HPV status, tobacco use, anatomic site, and 

cancer class) and FLIm data trends. FLIm trends were evaluated based on the sign (+/- Δ) of 

the difference between benign tissue and cancer. This non-parametric statistical test is well-

suited for evaluating whether there is an association between categorical variables and to 

understand whether the variables are independent or related.  

CH1 – CH3 intensity ratio, CH2 and CH3 lifetime, and metabolic ratio [CH2] / 

[CH2+CH3] was assessed. The following subdivisions of clinical characteristics were made: (1) 

Gender as ‘male’ and ‘female’; (2) Ethnicity as ‘Not Hispanic or Latino,’ ‘Hispanic or Latino’, and 

‘Unknown’; (3) Race as ‘White’, “Hispanic or Latino’, ‘Asian’, ‘Indian’, and ‘Unknown’; (4) HPV 
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Status as ‘positive’ or ‘negative’; (5) Tobacco Use as either ‘lifelong non-smoker (<100 

cigarettes in lifetime)’ or ‘smoker (≥ 100 cigarettes in lifetime)’, (6) Anatomy as ‘oral cavity’ and 

‘oropharynx’, and (7) Cancer Class as ‘other,’ ‘verrucous SCC’, ‘SCC and invasive SCC’, and 

‘Basaloid SCC.’ 

 Computations for Pearson’s Chi Square test were performed in IBM SPSS. As 

demonstrated from figure 46, the sign of delta values (+/-) between benign tissue and cancer 

were evaluated where the difference was statistically significant at the patient level (p < 0.05) 

when all patient-level data was compared by Mann-Whitney U Significance testing. The 

summary of the results for all assessed analytical variables and patient clinical characteristics is 

featured in table 12.  

Table 8. Pearson’s Chi Square Analysis of FLIm Data Trends vs. Clinical Patient 
Characteristics.  

 

Statistical significance achieved where p < 0.05 and identified by bolding and denoted by asterisks. Potentially 

significant results (0.05 ≤ p < 0.10), which may become significant with greater sample size, identified by bolding. 

 The results of table 8 demonstrate a few important concepts. First, the analysis 

demonstrates minimal to no correlation of patient gender, ethnicity, race, tobacco use, and 

cancer malignancy to the sign (+/-) of the median difference between benign tissue and cancer. 

Anatomic site and HPV status both appeared to play the most significant role in the outcome of 
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Gender 0.151 0.243 0.052 0.504 0.078 0.852 0.475 0.761 

Ethnicity 0.619 0.825 0.795 0.805 0.806 0.606 0.719 0.632 

Race 0.69 0.281 0.951 0.651 0.771 0.257 0.346 0.345 

HPV Status 0.006 * 0.096 0.004 * 0.002 * 0.071 0.092 0.015 * 0.108 

Tobacco 
User 

0.221 0.526 0.365 0.446 0.614 0.79 0.529 0.878 

Anatomy 0.09 0.764 0.301 0.023 * 0.335 0.14 0.041 * 0.39 

Cancer Class 0.764 0.572 0.933 0.307 0.868 0.557 0.514 0.245 
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the sign of the FLIm data trends. For anatomy, two analytical variables (Δ [CH2]/[CH2+CH3] & 

Δ CH3 LT) were significant from the test, and for HPV/p16 status, 4 analytical variables were 

significant (ΔCH1 IR, ΔCH3 IR, Δ [CH2]/[CH2+CH3] & Δ CH3 LT).  

 From the statistical test, since p16 status was determined as the most informative of 

differences observed for FLIm benign vs. cancer data trends; correspondingly, the distribution of 

patient data trends for channel 1 intensity ratio, channel 2 & 3 intensity ratio, and channel 2 & 3 

average lifetime as a function of tumor p16 status was investigated. The median of the 

difference between cancer – benign for the investigated FLIm metrics are reported in terms of 

magnitude and sign within figure 52. 

 Figure 47 A&B demonstrates that IR CH1 for cancer is less than benign tissue for all 

N=20 patients with p16- tumors, as anticipated by data trends reported in the literature (figure 

45). While most p16+ tumors also correspond to this trend (N=20,76.9%), a few p16+ patient 

tumors demonstrate the reverse trend, where IR CH1 cancer > benign (N=6, 23.1%). Figure 47 

C&D demonstrates that the majority of p16- patient data corresponds to IR CH2 cancer > 

benign and IR CH3 cancer > benign (N=18, 90%), as expected by the literature (figure 50). For 

the p16- tumor patient cohort, no p16- tumors present as IR CH2 cancer < benign and IR CH3 

cancer < benign (N=0, 0%). For p16+ tumors however, multiple patients demonstrate IR CH2 

cancer < benign and IR CH3 cancer < benign (N=7, 25.9%), and the rest of these p16+ tumors 

group in the expected result: IR CH2 cancer > benign and IR CH3 cancer > benign (N=20, 

74.1%). No significant correlation to p16 status was found for Δ CH2 & Δ CH3 lifetime, as 

assessed by figure 47 E&F, however it is noted that the magnitude of the Δ between channel 2 

and 3 are linearly correlated (R2 = 0.89 for p16+ tumors and R2 = 0.91 for p16- tumors).   
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Figure 47: Evaluation of average lifetime and spectral intensity ratio vs. tumor p16 status. All values correspond to the 

medians at the patient-level for (cancer – benign) data. Each datapoint corresponds to the magnitude and sign of a single-

patient’s FLIm data result. (A) Δ Channel 1 intensity ratio for p16+ and (B) p16- tumors, (C) Δ Channel 2 & Δ Channel 3 

intensity ratio for p16+ and (D) p16- tumors, and (E) Δ Channel 2 & Δ Channel 3 average lifetime for p16+ and (F) p16- 

tumors. 
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 Collectively, the results suggest that HPV+/p16+ status may mediate unique 

characteristics of the tumor, which FLIm may be able to detect. For the p16+ tumors which 

behaved differently than p16- tumors from a FLIm data trend standpoint, it may be worth 

investigating the reasons for the observed discrepancies as this may have clinical implications 

and potential value. Future investigation may consider additional histologic review and 

molecular analysis as alternative methods to further explore the inherent properties of the 

observed p16+ tumor outliers, and if any relationship can be linked to the apparent differences 

in FLIm properties for this tumor cohort. Additionally, this result is important within the scope of 

developing machine learning algorithms, as the inclusion of pathology-derived tumor 

characteristics in the classifier may better refine the training data set and potentially lead to 

enhanced classification accuracy.  

7.5 | Evaluation of Residual Tumor in Electrocauterized Surgical Cavity  

Within the 100-patient data collection, 8 patients in total presented with positive surgical 

margins (PSMs) after initial en bloc surgical excision of tumor. Among these 8 patients, only 

N=2 patients were possible for PSM analysis due to either one, or a combination of the following 

reasons: (1) coregistration was not clear, (2) PSM area was not visible based on the angle of 

the visualizing camera during the FLIm scan, (3) the PSM area was microscopic and therefore 

the remaining cancer area was too small for analysis (> 0.25 mm2), or (4) the PSM area was not 

scanned, and was therefore missed within the FLIm data acquisition.  

The two in vivo case studies available for analysis are presented in figure 48, where 

patient case study A corresponds to lingual tonsil (n=29 cancer and n=507 benign 

electrocautery datapoints) and patient case study B corresponds to palatine tonsil (n=27 cancer 

and n=1,032 benign electrocautery datapoints). As performed with the full dataset, all PSM 

areas were determined by conventional histopathology interpreted by pathology derived from 

the deep margin of the en bloc excised specimen.  
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 For the two case studies, figure 48 A&C illustrates the registration of deep margin 

histopathology on the surgical cavity, whereas figure 48 B&D demonstrates boxplots of the 

computed average lifetime for benign vs. cancer surgical cavity tissue for case study A and B 

respectively. Figure 48 E demonstrates average lifetime augmented for channels 1-3 for case 

study B.  

The two case studies illustrate higher average lifetime (P<0.05) across all three channels 

for positive surgical margin tissue compared to benign electrocauterized tissue. This is also 

visualized within the augmented lifetime plots.  While preliminary, these results are encouraging 

of FLIm’s ability to demarcate PSMs. Due to the small sample size of residual tumor patients 

possible for analysis, it was not possible to apply ensemble-based classification for cancer 

probability prediction. Future work may benefit from investigating the use of classification 

algorithms in the PSM identification process, once a suitable dataset size is available for 

analysis. 
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Figure 48: Evaluation of residual tumor in vivo for lingual tonsil (Patient A) and palatine tonsil (Patient B). (A) 

Registered histopathology and (B) boxplot diagram of channel 1-3 average lifetime for Patient A. (C) Registered 

histopathology and (D) boxplots of average lifetime for Patient B. (E) Computed average lifetime augmented over 

surgical image with registered histopathology for channels 1-3.    
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CHAPTER 8 | Conclusion: Summary of Research and Next Steps 
 

8.1 | Summary of The Clinical Problem & Six Major Research Objectives 
Addressed 

Surgeons across oncology disciplines need novel technologies which enhance their 

ability to determine tumor margins in real-time. A balance in the extent of tissue removed must 

be carefully considered; if too conservative with tissue resection, cancer may remain in the 

patient and reoccur, whereas if too aggressive, benign functional tissue may be lost and result 

in poor cosmesis. Certain tumor cohorts, such as occult (i.e., unknown primary) tumors, may 

evade detection all together despite exhaustive radiographic, surgical, and clinical workups. 

Within the scope of head and neck cancer, positive surgical margins are found in up to 30% of 

patients at final histopathology approximately 1 week after the surgery, which is a percentage 

that has not changed over the past 30 years.36–39 Accordingly, surgeons need new technologies 

which enable the full extent of cancer to be identified to optimize patient surgeries and enhance 

clinical outcomes. 

 This original work investigated the ability of FLIm to aid in the intraoperative tumor 

margin evaluation of H&N cancer by addressing six research objectives, where objectives 1-4 

were investigated in detail, and objectives 5-6 through preliminary feasibility/case studies. 

These objectives include: (1) In order to benchmark FLIm results against the gold standard of 

H&E histopathology, a series of custom-developed tools, methodologies, and techniques were 

developed to correlate ground truth histopathology to optical FLIm datapoints acquired over 

entire surgical regions. This was an essential first step in order to develop the appropriate 

validation to pathology status for measurements conducted in vivo and ex vivo. (2) Through 

univariate statistical analysis and multivariate linear discriminant analysis, it was demonstrated 

that FLIm can differentiate healthy tissue from cancer across a range of anatomies of the oral 

cavity oropharynx. The FLIm parameters which provided the best benign tissue vs. tumor 

contrast were identified. This was the first demonstration of FLIm for surgical guidance of 
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oropharyngeal cancer; this work correspondingly motivated a transition to classification-based 

analysis to leverage multivariate FLIm data and enhance cancer probability assessments. (3) 

For rare tumor cohorts which evade surgical detection (i.e., unknown primary tumors) after 

exhaustive clinical (absence of visual cues and palpation), radiographic (negative PET, CT, MRI 

findings), and surgical evaluation (directed biopsies of suspicious lesions), the results 

demonstrated that FLIm can support the localization of the primary tumor side and correctly 

identify uninvolved benign functional tissue. (4) In a collaborative approach integrating an expert 

in machine learning from our laboratory group, FLIm lifetime, intensity ratio, phasor analytical 

parameters, and Laguerre coefficients were systematically integrated into classification 

algorithms to predict cancer probability. The classifier which integrated multivariate FLIm data 

enhanced tumor demarcation, compared to previous approaches that relied on single FLIm 

parameters for benign vs. cancer contrast. (5) The effect of surgical conditions (e.g., local 

anesthetic use), patient demographic characteristics (e.g., patient age), biological tissue 

characteristics (lymphoid tissue, high-grade dysplasia), and cancer characteristics (e.g., HPV-

mediated vs. non-HPV associated cancer) on FLIm data trends was investigated. Finally (6) two 

preliminary in vivo case studies demonstrated FLIm’s ability to detect residual tumor presenting 

in electrocauterized deep margin tissue, therefore showing potential to demarcate residual 

tumor.   

8.2 | Review of the Key Scientific Research Findings & Contributions 

The following sections summarize the original contributions and scientific findings 

established in this research effort. Chapter 4, presented as a study protocol, contributed novel 

tools, methodologies, and techniques developed for the coregistration of histopathology to 

intraoperative optical imaging measurements in vivo. This included: (1) procedures for digital 

annotation of histologic grossing processes, (2) a customized tool for pathologists to digitally 

annotate histopathology sections, (3) processes to account for tissue deformation, (4) denoting 
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tissue labels on ex vivo specimen images, (5) demarcating tissue excision margins on in vivo 

reference images, (6) identifying and matching of anatomical landmarks of reference images 

between ex vivo tissue and in vivo pre-resected tissue, (7) methodology for transferring ex vivo 

tissue labels to in vivo pre-resected tissue, and (8) a custom-developed MATLAB tool to perform 

histologic labeling of surgical images, and subsequent extraction of labeled data.  

This chapter focused on a key limitation in clinical optical research, which is the accurate 

association of optical measurements to tissue labels (e.g., benign tissue, dysplasia, cancer) as 

determined by ground-truth histopathology. This chapter communicated that registration errors 

between optical measurements and histopathology negatively affects the accuracy and 

validation of these technologies. Registration errors in turn become even more detrimental when 

developing classification algorithms where adding the correct histopathology label to each 

spectroscopic measurement is essential for developing training data and evaluating 

performance. It was articulated that despite the importance of mitigating registration error, many 

studies in the optical research space are unclear as to how they perform histopathology 

registration and account for tissue deformation between the evaluated tissue and H&E sections. 

These limitations accordingly impact the reproducibility of such research and devalues the 

accuracy of the optical technique’s performance. 

Suitably, this work strived to facilitate reproducibility by clearly articulating methods used 

in the clinical validation of FLIm using H&E histology. Due to the paucity of published methods 

in the optical research space for robust clinical histopathologic validation, this work aimed to 

provide ideas, methodologies, and tools to the scientific community to improve on current 

approaches. This chapter also conveyed the importance of mitigating registration errors to 

accurately vet optics technology and develop classification algorithms in the clinical research 
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space. These contributions were designed to be extrapolatable to other optical research 

technologies in the clinical space, therefore extending to broader optical research applications 

beyond FLIm.  

 Chapter 5 featured the first intraoperative FLIm study conducted in vivo for surgical 

guidance of oropharyngeal cancer. This work demonstrated FLIm’s ability to differentiate benign 

tissue from cancer of the oropharynx (on palatine tonsil tumors) using both univariate and 

multivariate FLIm parameters. It was established that all patients presented with at least one 

FLIm parameter (e.g., channel 3 lifetime) that enabled benign tissue to be differentiated from 

cancer (P<0.001). The results showed that leveraging all FLIm parameters together, through 

linear discriminant analysis, enabled the best healthy vs. tumor contrast; this finding 

underscored the importance of exploring classification algorithms which integrate all FLIm 

lifetime and intensity ratio parameters in diagnostic decision-making, due to the enhanced 

discrimination capacity. The FLIm parameters which provided the best contrast across patients 

was variable. For example, in some patients, channel 3 intensity ratio enabled the best benign 

vs. tumor contrast, while for other patients, channel 1 lifetime provided the best differentiation 

between benign tissue and cancer. Close investigation of these results demonstrated that the 

parameters imparting the best FLIm-based contrast appear to bear some relationship to 

inherent patient tumor characteristics (e.g., p16 status) and potentially the patient’s medical (i.e., 

age, cancer type, tobacco use, etc.). Finally, this section discovered that FLIm better identified 

cancer in vivo compared to ex vivo. This was observed due to the loss in metabolic-associated 

contrast in FLIm’s spectral channels associated to metabolism (CH2: NAD(P)H & CH3: FAD). 

This result was anticipated due to the loss of vasculature and impeded cellular energetics of 

tissue imparted through the surgical excision process.   

Chapter 6 evaluated whether fluorescence lifetime imaging (FLIm), coupled with 

standard diagnostic workups, could enhance primary lesion detection in patients with head and 
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neck squamous cell carcinoma of the unknown primary (HNSCCUP). These tumors represent 

approximately 3-5% of all new cases of head and neck squamous cell carcinoma (SCC), and 

are considered unknown after exhaustive clinical, radiographic, and surgical evaluation.192–196  

To conduct this study, FLIm was integrated into transoral robotic surgery to acquire optical data 

from 6 HNSCCUP patient’s oropharyngeal tissues. An additional 55-patient FLIm dataset, 

comprising conventional primary tumors, trained a machine learning classifier; the output 

predicted the presence and location of HNSCCUP for the 6 patients. Among the 6 HNSCCUP 

patients, p16+ occult primary was surgically identified in 3 patients, whereas 3 patients 

ultimately had no identifiable primary site in the oropharynx. FLIm correctly detected HNSCCUP 

in all 3 patients (ROC-AUC: 0.90±0.06), and correctly predicted benign oropharyngeal tissue for 

the remaining 3 patients. The mean sensitivity was 95 ± 3.5%, and specificity 89 ± 12.7%. The 

results demonstrated that for mucosa-presenting p16+ HNSCCUP, FLIm holds great promise in 

aiding the surgeon, as an adjunctive technology, to screen, intraoperatively delineate, and 

excise these elusive tumor cohorts. Ultimately, these initial results indicated FLIm’s potential to 

reduce surgical procedure times, preserve functional healthy tissue, and enable enhanced 

intraoperative decision-making for the benefit of the patient. 

 Chapter 7 presented various results and case studies pertaining to the collective 100-

patient database analysis. Section 7.1 outlined the composition of the 100-patient dataset with 

respect to anatomic sites assessed, patient characteristics, and cancer characteristics (e.g., p16 

status). Chapter 7.2 performed a full-database linear discriminant analysis (LDA) evaluation. 

They key findings were that phasor analysis resulted in slightly better benign vs. cancer 

discrimination than Laguerre-derived lifetime metrics alone, both from individual channels and 

through combined LDA analysis, indicating the importance of considering phasor analysis in this 

research effort, both in classification algorithms and in database analysis. For all patients, the 

univariate metrics which provided the best contrast in order were: CH3 IR > CH1 IR > CH3 LT > 
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CH2 IR > CH 2 LT > CH 1 LT. Combining both lifetime and intensity parameters together led to 

the best discrimination. Oral tongue achieved the best LDA-derived ROC-AUC (0.89±0.10). 

Channel 1 and 2 lifetimes did not discriminate cancer well (ROC-AUC < 0.70) in the oropharynx, 

however did much better at classification on oral cavity tongue (ROC-AUC > 0.70), indicating 

that the FLIm parameters giving rise to the best contrast may exhibit dependence on the 

evaluated anatomy; this result makes sense in context of the underlying physiologic and 

histologic differences between the oral cavity and oropharynx.  

  Chapter 7.3.1 investigated if the surgical use of local anesthetics in the surgical field 

affects FLIm properties. In the study, local anesthetics (lidocaine and epinephrine solution) were 

found to increase channel 1 lifetime and intensity ratio in back-to-back pre- and post-lidocaine 

FLIm scans, conducted on a patient’s oral tongue and palatine tonsil. Chapter 7.3.2 discovered 

a linear inverse relationship (R2=0.81) between increasing patient age and decreasing channel 

1 lifetime. Chapter 7.3.3 demonstrated FLIm’s potential to detect deep tumor tissue (in the 

range of 0.5 mm to 5 mm) through indirect imaging of biochemical alterations imparted within 

normal tissue adjacent to tumor. Chapter 7.3.4 demonstrated that lymphoid tissue, which is 

predominantly distributed in varied proportions of oropharyngeal tissues within the lamina 

propria, results in increased fluorescence lifetime in all channels. Chapter 7.3.5 assessed the 

univariate FLIm trends associated with high-grade dysplasia. In these case studies, FLIm 

properties (lifetime and intensity ratio) of HGD more closely followed cancer than benign tissue.   

 Chapter 7.4 evaluated demonstrated the tendency of FLIm data (evaluated through 

deltas of [Δ cancer – benign]) to understand if cancer imparts a systemic and consistent shift in 

fluorescence lifetime and autofluorescence properties, or if more nuanced trends were identified 

pertaining to cancer characteristics and patient demographics. Pearson’s Chi Square statistical 

analysis was used to explore correlated in the data. It was observed that anatomic site and 

tumors mediated by HPV were the most significant predictor of data trends, and that patient 

demographic characteristics and medical history were weakly correlated to the observed trends. 
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 Lastly chapter 7.5 demonstrated FLIm’s ability to resolve positive surgical margins (also 

known as residual tumor), in vivo (N=2) based on univariate analysis of FLIm lifetime.  

8.3 | Perspective on Next Steps to Prepare FLIm for Intraoperative Surgical 
Guidance 

FLIm represents a promising modality for intraoperative use. Some of the major 

advantages of this technique includes the ability to acquire measurements while operating room 

lights are on, the real-time implementation, endogenous-based contrast, and point-scanning 

implementation which facilitates the optical interrogation of complex and tortuous anatomies of 

the head & neck. The collective original research established FLIm’s ability to diagnose a wide 

variety of tumors of the oral cavity and oropharynx both through classification algorithms and 

resubstitution-based analysis of univariate and multivariate FLIm data. While promising, these 

research findings are the product of retrospective data optimization, which would need to be 

accounted for in real time for actual diagnosis and intraoperative decision-making. This 

optimization includes: (1) accounting for surgical motion in real-time to maintain accurate 

augmentation of acquired FLIm datapoints to the location acquired on tissue, (2) correcting 

incorrect localization, and thereby augmentation, of the FLIm data, and (3) real-time machine 

learning outputs, which integrate all FLIm analytical metrics, to predict cancer probability. While 

still under development, our group’s ongoing research seeks to have solutions for this in the 

near future, with feasibility recently demonstrated.166 

 Two central limitations of the present study exist, both being based on the reliance of 

histopathology for validation. First, as chapter 4 addressed, the incorrect registration of 

histopathology to optical imaging measurements affects the validation efforts of this project. 

While registration error is unavoidable, the proposed schema introduced in chapter 4 sought to 

mitigate potential for error. The second, arguably most significant limitation, is the reliance on 

hematoxylin and eosin-stained slides to provide the “ground truth” in this study. While 

pathologist interpreted H&E slides are the gold standard for identifying pathologic tissue in this 
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field, H&E is acknowledged as an imperfect standard; this is due to H&E reporting on structural 

stained cellular characteristics, rather than on genetic and biochemical characteristics. Along 

these lines, FLIm may exhibit sensitivity to tumor biochemistry (e.g., pH, metabolic gradients, 

etc.), however such characteristics cannot be corroborated against FLIm’s optical 

measurements since such information is absent in H&E. To this end, approaches which perform 

molecular analysis on small regions of tissue, obtained through laser microdissection, as well as 

alternate stains, such as trichrome, have been proposed to enhance the input data available to 

be associated to optical measurements.  

The use of genomic analysis to characterize FLIm data is currently under investigation 

by our group. For this research, protocols to spatially resolve gene expression in formalin-fixed 

paraffin-embedded (FFPE) tissue sections have been obtained from 10x Genomics. This 

protocol allows for FFPE tissue sections to be obtained through laser microdissection of tissue 

microarrays and correspondingly evaluated for gene expression. The protocol uses RNA-

templated ligation, where pairs of probes specific to genes in the protein-coding transcriptome 

are hybridized to their gene targets and ligated to one another. The tissue thereafter is 

permeabilized to release ligated probe pairs to bind to capture probes on the side, thereby 

enabling the evaluation of gene expression. The complete protocol is available at 

10xgenomics.com, protocol CG000240, revision C.  

 For robust clinical diagnosis, FLIm is trending towards the direction of machine learning, 

both to assist with data visualization and in data analysis (due to the complex multiparametric 

nature of FLIm data). There is still significant progress to be made in the classification aspect of 

this project. This includes further investigating deep learning and central neural network 

approaches, exploring alternate decision-tree optimization approaches (e.g., XGBoost), 

inclusion of other FLIm parameters (e.g., multiexponential fitting, phasors, etc.), and 

incorporation of patient metadata (e.g., tobacco use, p16 status, age, etc.).  
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Recent technical and methodological advancements are rapidly facilitating FLIm 

hardware towards clinical adoption.2 Zhou X. et al. recently (2021) demonstrated new FLIm 

hardware229 which improves upon the FLIm system used in the course of this original research. 

This new FLIm system has up to a 5-fold reduction in measurement variability, independent gain 

adjustment of spectral bands, up to 4-times faster imaging speed, and increased signal-to-noise 

ratio. It is anticipated that the incorporation of these hardware improvements will improve upon 

current sensitivity and specificity results; these improvements are expected due to the reduced 

measurement variability and density of acquired datapoints, which would better enable 

statistical rigor and improvements to data used for training and evaluation of classifiers.   

 Under a R01 renewal, 200 additional patients are to be enrolled and investigated within 

targeted 4-year period, which began July 2021. The additional patient enrollment with the 

revised FLIm system developed by Zhou X. et al229 will further enhance the available data for 

classification algorithms and accounting for patient medical histories and demographic 

information.  

 Other ongoing intraoperative investigation using FLIm in the head & neck oncology 

includes the investigation of FLIm for identifying lymph node metastases. For patients with 

HNSCC, there is up to a 30% chance of occult nodal metastasis at the time of surgery.230 This 

finding is despite negative clinical and radiographic evidence of neck lymph node metastasis. 

Accordingly, it is routine for patients to undergo a preemptive elective neck dissection in search 

of lymph node metastases.230 Identification of metastatic lymph nodes remains a challenge, and 

is critical for accurate staging and guides the extent of adjuvant therapy and prognosis.230 

Current ongoing work by our group is investigating the optical evaluation of surgically excised 

and bisected lymph nodes in a surgical grossing room environment to see if benign vs. cancer-

associated lymph nodes can be detected. If working, this finding can enhance surgical decision-

making and patient treatment at the point-of-care during surgery.  
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Collectively, this original research demonstrates the feasibility for FLIm to 

intraoperatively demarcate carcinoma during upper aerodigestive oncology procedures, 

therefore motivating ongoing investigation to materialize this technology towards an 

intraoperative diagnostic modality. If real-time intraoperative use proves to be as efficacious as 

the current retrospective analysis demonstrates, this technology can have dramatic impacts in 

clinical practice through enabling rapid identification of neoplastic tissue and the confirmation of 

negative surgical margins.  

8.4 | The Big Picture – Towards Clinical Adoption  

 While the widespread clinical adoption of optical technology (such as FLIm) is still far 

from the status achieved by radiology and nuclear-based imaging methods, intraoperative tissue 

assessments based on optical methods have gained significant ground. A paramount example 

of this is optical coherence tomography (OCT), which is currently the standard-of-care in 

ophthalmology.231 In general, optical imaging techniques are well suited for providing clinicians 

with real-time feedback at the point-of-care. Optical technologies are non-ionizing (unlike X-ray 

& positron emission tomography modalities), can be designed to be portable, are cost-effective, 

and many can be integrated into clinical workflows. A key advantage of FLIm, which is shared 

across most implementations of optical technology, is the ability to interrogate tissue for 

information without administering exogenous contrast, which facilitates the ease to implement 

these devices in real-time within clinical settings. When external contrast needs to be applied, 

additional time needs to be expended to prepare and administer the contrast agent, in addition 

to considering pharmacokinetic and pharmacodynamic properties.  

 As discussed by Gioux et al.,232 there are three general criteria which serve as 

prerequisites to adopt novel clinical technologies: (1) the existence of a clinical need, (2) the 

ability of the technology to solve or ameliorate challenges pertaining to the clinical need, and (3) 

the ability for the proposed technology to integrate seamlessly into existing clinical workflows 
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without impeding the surgical procedure. The work herein has articulated FLIm’s ability to 

address criteria 1 & 2 in detail, whereas the focus of this remaining section is to address FLIm’s 

ability to fulfill criteria 3.  

 Gorpas et al. in 2019 demonstrated FLIm’s ability to integrate into transoral robotic 

surgery using the da Vinci Si platform without impeding the surgical workflow,134 whereas 

Weyers et al. demonstrated this integration into the da Vinci SP in 2022.233 A key advantage of 

FLIm is the ability to conduct measurements in the presence of any operating room lighting 

conditions; the dynamics of FLIm instrumentation permit imaging irrespective of tissue 

illumination. The point-scanning implementation of FLIm is well-suited for both small (sub-

centimeter) and large (centimeter scale) tumor volumes within complex anatomy (i.e., anatomy 

with uneven surfaces, flaps, ceases), enabling versatile interrogation of tumors in a variety of 

conformations. This ability to rapidly evaluate tissue over large scales is a significant advantage 

which helps mitigate the potential for sampling error and increases the breadth of applications. 

For example, with respect to intraoperative tumor resection, it is required to first locate relatively 

large tumor masses (millimeters to centimeters), particularly for occult primary tumors. To 

achieve impactful outcomes which has a direct impact on patient survival rates, it becomes 

necessary to directly identify regions of infiltrating cells, as such cells are often responsible for 

cancer recurrence. This is where the ability to interrogate large tissue areas using FLIm’s point-

scanning implementation becomes beneficial.   

FLIm’s ability to be transported in and out of the operating room, like ultrasound, is 

significant. Consider CT, MRI, and PET - for these modalities, a patient must be brought to the 

imaging device, time must be expended to position and situate the patient for scanning, and in 

many cases, contrast agents need to be prepared (e.g., iodine for CT, radiotracers for PET) and 

systemically injected. FLIm alternatively is setup at the point-of-care, where the device can be 

brought to the patient during surgery and manipulated to conduct measurements on demand.  
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 Safety is an important factor to fulfill criteria 3. The emission of the clinical FLIm 

instrument reported herein is categorized under class 2 of 21 CFR 1040.10, and operates at 

energy levels well below the limits for eye/skin exposure stipulated by ANSI Z136.1, therefore 

being considered safe for standard operation without specific eye protection from system 

operators or personnel within the vicinity of the instrument.  

 Beyond otolaryngology, FLIm is able to be deployed for oncology investigation in other 

areas, such as in brain tumors, breast cancer, prostate cancer, atherosclerosis, among others.2 

While the magnitude of spectral intensities and trends corresponding to time-resolved 

characteristics between benign tissue and cancer may change depending on the oncology 

application (e.g., absence of collagen in normal brain tissue), our group has experienced 

success deploying this technology across oncology disciplines due to the general conservation 

of fluorophores (e.g., NAD(P)H, FAD) and cancer vs. benign tissue properties (i.e., Warburg 

effect) across various anatomies.2  

 From a surgeon’s perspective, the clinical adoption of FLIm requires clear, interpretable 

outputs which is generalizable and understandable across healthcare professionals. FLIm data 

is complicated, with multivariate time-resolved and spectral-intensity parameters. Designing 

FLIm outputs which seamlessly synthesize the complexity of FLIm data into clear outputs (such 

as probability of cancer) which aid in surgical decision-making will remain imperative.  

 Medical device technology transfer remains a complex process, but ultimately needs to 

be addressed thoroughly through both the invention and implementation stages to achieve 

clinical adoption. Clark D. et al. in 2019 characterized the medical technology pathway as 

follows: (1) conception – intent & definition, (2) creation – design & development, (3) 

confirmation – verification and validation, (4) realization – processes and information, (5) 

production – product and services, (6) provision – supply and diffusion, and (7) improvement – 

safety and effectivness.234 1-4 correspond to the invention stages, whereas 5-7 correlate to 
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implementation stages.234 FLIm is currently in the confirmation stage 3, which comprises 

verification and validation processes. Key next steps towards clinical trials should focus on a 

study design with the following characteristics as suggested by Clark D. et al.234 – the study 

should be simple, tailored to a patient group, designed to address clear questions of clinical 

importance, and appropriately blinded outcomes assessments and controls. During design 

transfer, the healthcare environment will need to be carefully considered in the development of 

the final prototype. This requires clear communication between engineering teams and 

clinicians to ensure clinical/user needs are being addressed, that the FLIm system is 

ergonomically favorable to the clinician, and that the technology does not impede any current 

health management workflows.  

 While the future for FLIm is promising, there is still significant ground to cover to achieve 

clinical adoption. This includes but is not limited to preparation for clinical trials, continued 

successful multi-institutional clinical outcomes, consideration of human factors, design transfer, 

production processes, regulatory evidence, GMP manufacturing, training, logistics, distribution, 

marketing, deployment, adoption, post-marketing surveillance, impact assessments, etc.234 

While the process appears complex, the path to success that other prominent optical modalities 

took towards clinical adoption (i.e., OCT) can be evaluated and leveraged to improve the current 

technology translation pathway for FLIm. 

Despite significant ground to still cover, FLIm holds great promise in aiding surgeons in 

their goal of balancing aggressiveness in tumor extirpation and conservation of benign 

functional tissue. By providing surgeons with accurate tools to intraoperatively quantify the 

extent of tumor, the time to complete the surgical procedure will be accelerated and the 

potential for positive surgical margins will be reduced; this will undeniably support the healthcare 

industry by allowing clinicians to treat more patients, to enhance the precision and accuracy of 
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surgical treatment, and will reduce risk to the patient with decreased time under anesthesia and 

enhanced accuracy of tumor removal through the optimization of the surgical procedure.   
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APPENDIX | Supplementary Data (Reference Only) 

Table A9. Tonsil (N=34) Demographics, Clinical Characteristics, and Surgical Outcomes.  

Anatomy & ID 
Cancer 
Class Gender Race HPV Status Tobacco Use Age at Surgery 

Tonsil (6) 5 M White Negative  Non-Smoker 55 

Tonsil (48) 1 M White Negative Smoker 51 

Tonsil (66) 1 M White Negative Smoker 67 

Tonsil (51) 5 M White Negative Smoker 68 

Tonsil (71) 1 M White Negative Non-Smoker 62 

Tonsil (29) 1 M White Negative Smoker 58 

Tonsil (2) 1 M White Negative Smoker 77 

Tonsil (14) 6 M White Positive Non-Smoker 54 

Tonsil (37) 5 M White Positive Non-Smoker 57 

Tonsil (26) 5 M White Positive Non-Smoker 58 

Tonsil (44) 5 M White Positive Non-Smoker 63 

Tonsil (81) 5 M White Positive Non-Smoker 71 

Tonsil (59) 5 M White Positive Non-Smoker 72 

Tonsil (60) 5 M White Positive Smoker 47 

Tonsil (7) 5 M White Positive Smoker 57 

Tonsil (41) 5 M White Positive Smoker 58 

Tonsil (24) 5 M White Positive Smoker 64 

Tonsil (5) 6 M White Positive Smoker 65 

Tonsil (92) 5 M White Positive Smoker 66 

Tonsil (52) 5 M White Positive Smoker 69 

Tonsil (16) 5 M White Positive Smoker 70 

Tonsil (13) 5 M White Positive Smoker 71 

Tonsil (99) 5 M White Positive Smoker 71 

Tonsil (31) 5 M White Positive Smoker 73 

Tonsil (94) 5 M White Positive Smoker 81 

Tonsil (12) 5 M Hispanic/Latino Negative Smoker 49 

Tonsil (33) 5 M Hispanic/Latino Positive Non-Smoker 43 

Tonsil (90) 5 M Hispanic/Latino Positive Non-Smoker 49 

Tonsil (82) 5 M Hispanic/Latino Positive Smoker 43 

Tonsil (97) 5 M Hispanic/Latino Positive Smoker 57 

Tonsil (35) 1 F White Negative Non-Smoker 75 

Tonsil (30) 5 F White Positive Non-Smoker 57 

Tonsil (36) 5 F White Positive Non-Smoker 64 

Tonsil (31) 5 F White Positive Smoker 73 

Pathology Report Cancer Class Designations: (1) Benign tissue or low-grade dysplasia, (2) Polymorphous adenocarcinoma or 
condyloma, (3) Squamous Cell Carcinoma (SCC) in situ and non-invasive SCC, (4) Verrucous SCC, (5) SCC and Invasive SCC,  
(6) Basaloid SCC. ‘Non-Smoker’ defined as a patient with a reported use of less than 100 total cigarettes in entire lifespan.  



155 

 

Table A10. Base of Tongue (N=16) Demographics, Clinical Characteristics, and Surgical Outcomes. 

Anatomy & ID 
Cancer 
Class Gender Race HPV Status Tobacco Use Age at Surgery 

BOT (4) 1 M White Negative Non-Smoker 54 

BOT (58) 5 M White Negative Smoker 64 

BOT (84) 5 M White Positive  Non-Smoker 51 

BOT (45) 5 M White Positive Non-Smoker 54 

BOT (70) 5 M White Positive Non-Smoker 59 

BOT (18) 1 M White Positive Non-Smoker 75 

BOT (83) 5 M White Positive Smoker 66 

BOT (80) 5 M White Positive Smoker 66 

BOT (28) 6 M White Positive Smoker 71 

BOT (47) 5 M White Positive Smoker 71 

BOT (63) 5 M White Positive Smoker 74 

BOT (87) 5 M White Positive Smoker 77 

BOT (100) 5 M White Positive Smoker 78 

BOT (64) 5 M White Positive Smoker 79 

BOT (69) 5 M Hispanic/Latino Negative Non-Smoker 66 

BOT (93) 1 M Hispanic/Latino Negative Non-Smoker 66 

Pathology Report Cancer Class Designations: (1) Benign tissue or low-grade dysplasia, (2) Polymorphous adenocarcinoma or 
condyloma, (3) Squamous Cell Carcinoma (SCC) in situ and non-invasive SCC, (4) Verrucous SCC, (5) SCC and Invasive SCC,  
(6) Basaloid SCC. ‘Non-Smoker’ defined as a patient with a reported use of less than 100 total cigarettes in entire lifespan.  

Table A11. ‘Other’ Anatomy (N=15) Demographics, Clinical Characteristics, and Surgical Outcomes. 

Anatomy & ID 
Cancer 
Class Gender Race HPV Status Tobacco Use Age at Surgery 

Glossotonsillar 
Sulcus (67) 

5 M White Negative Non-Smoker 50 

Pharynx (95) 5 M White Negative Smoker 54 

Pharynx (15) 6 M White Positive  Smoker 66 

Floor of Mouth 
(17) 

5 M White Negative Smoker 78 

Floor of Mouth 
(96) 

5 F White Unknown Smoker 60 

Lip (57) 2 M White Negative Smoker 82 

Retromolar 
Trigone (72) 

5 M Asian Positive  Non-Smoker 48 

Gingiva (76) 5 M White Unknown Smoker 62 

Gingiva (38) 5 M White Unknown Smoker 72 

Gingiva (88) 5 F White Negative Non-Smoker 63 

Gingiva (79) 1 F White Unknown Non-Smoker 90 

Palate (91) 5 M White Unknown Smoker 83 

Palate (56) 2 F Hispanic/Latino Negative Non-Smoker 54 

Vallecula (98) 5 M White Positive  Non-Smoker 51 

Vallecula (85) 5 M White Unknown Non-Smoker 63 

Pathology Report Cancer Class Designations: (1) Benign tissue or low-grade dysplasia, (2) Polymorphous adenocarcinoma or 
condyloma, (3) Squamous Cell Carcinoma (SCC) in situ and non-invasive SCC, (4) Verrucous SCC, (5) SCC and Invasive SCC,  
(6) Basaloid SCC. ‘Non-Smoker’ defined as a patient with a reported use of less than 100 total cigarettes in entire lifespan.  
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Table A12. Oral Tongue (N=27) Demographics, Clinical Characteristics, and Surgical Outcomes. 

Anatomy & ID 
Cancer 
Class Gender Race HPV Status Tobacco Use Age at Surgery 

Oral Tongue (68) 5 M White Negative Non-Smoker 57 

Oral Tongue (50) 1 M White Negative Smoker 53 

Oral Tongue (65) 1 M White Negative Smoker 69 

Oral Tongue (62) 5 M White Negative Smoker 71 

Oral Tongue (73) 5 M White Positive Smoker 54 

Oral Tongue (55) 5 M White Unknown Non-Smoker 69 

Oral Tongue (27) 5 M White Unknown Smoker 40 

Oral Tongue (77) 5 M White Unknown Smoker 63 

Oral Tongue (34) 5 M White Unknown Smoker 66 

Oral Tongue (25) 5 M White Unknown Smoker 68 

Oral Tongue (74) 5 M White Unknown Smoker 73 

Oral Tongue (43) 5 M White Unknown Smoker 76 

Oral Tongue (32) 5 M Hispanic/Latino Unknown Smoker 73 

Oral Tongue (61) 5 M Indian (India) Negative Non-Smoker 23 

Oral Tongue (46) 5 M Unknown Unknown Smoker 76 

Oral Tongue (75) 5 F  White Negative Smoker 62 

Oral Tongue (89) 5 F White Negative Smoker 76 

Oral Tongue (20) 5 F White Negative Non-Smoker 64 

Oral Tongue (39) 4 F White Unknown Non-Smoker 69 

Oral Tongue (49) 5 F White Unknown Non-Smoker 81 

Oral Tongue (53) 5 F White Unknown Smoker 60 

Oral Tongue (86) 5 F White Unknown Smoker 73 

Oral Tongue (23) 5 F White Unknown Smoker 75 

Oral Tongue (22) 5 F White Unknown Smoker 82 

Oral Tongue (78) 5 F Asian Negative Non-Smoker 75 

Oral Tongue (54) 5 F Asian Unknown Non-Smoker 66 

Oral Tongue (42) 5 F Asian Unknown Smoker 62 

Pathology Report Cancer Class Designations: (1) Benign tissue or low-grade dysplasia, (2) Polymorphous adenocarcinoma or 
condyloma, (3) Squamous Cell Carcinoma (SCC) in situ and non-invasive SCC, (4) Verrucous SCC, (5) SCC and Invasive SCC,  
(6) Basaloid SCC. ‘Non-Smoker’ defined as a patient with a reported use of less than 100 total cigarettes in entire lifespan.  
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Figure A54: Tonsil (N=21) linear discriminant analysis classification performance. ‘M.R.’ corresponds to metabolic ratio 
defined as [CH2] / ( [CH2]+[CH3] ). ‘H1-H5’ represent the first harmonic (ω= ω0) to fifth harmonic (ω= 5ω0) of a given phasor 
channel. ‘CH1-3 Harmonic LDA’ reports the AUC arising from the weighted linear combination of CH1, CH2, and CH3 
phasors evaluated at each of the five harmonics. ‘Max Phasor’ reports the highest AUC arising from a given patient from the 
best CH1-3 weighted linear phasor harmonic combination. ‘LT LDA’ is the result of the weighted linear combination of CH1-3 
lifetime. ‘IR LDA’ is defined as the combination if CH1-3 intensity ratio and M.R. and ‘LT & IR LDA’ reports the AUC from the 
combination of all seven parameters: CH1-3 lifetime, CH1-3 IR, and M.R.   
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Figure A55: Base of tongue (N=10) linear discriminant analysis classification performance. ‘M.R.’ corresponds to metabolic 
ratio defined as [CH2] / ( [CH2]+[CH3] ). ‘H1-H5’ represent the first harmonic (ω= ω0) to fifth harmonic (ω= 5ω0) of a given 
phasor channel. ‘CH1-3 Harmonic LDA’ reports the AUC arising from the weighted linear combination of CH1, CH2, and 
CH3 phasors evaluated at each of the five harmonics. ‘Max Phasor’ reports the highest AUC arising from a given patient 
from the best CH1-3 weighted linear phasor harmonic combination. ‘LT LDA’ is the result of the weighted linear combination 
of CH1-3 lifetime. ‘IR LDA’ is defined as the combination if CH1-3 intensity ratio and M.R. and ‘LT & IR LDA’ reports the 
AUC from the combination of all seven parameters: CH1-3 lifetime, CH1-3 IR, and M.R.   
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Figure A56: Oral tongue (N=26) linear discriminant analysis classification performance. ‘M.R.’ corresponds to metabolic ratio 
defined as [CH2] / ( [CH2]+[CH3] ). ‘H1-H5’ represent the first harmonic (ω= ω0) to fifth harmonic (ω= 5ω0) of a given phasor 
channel. ‘CH1-3 Harmonic LDA’ reports the AUC arising from the weighted linear combination of CH1, CH2, and CH3 
phasors evaluated at each of the five harmonics. ‘Max Phasor’ reports the highest AUC arising from a given patient from the 
best CH1-3 weighted linear phasor harmonic combination. ‘LT LDA’ is the result of the weighted linear combination of CH1-3 
lifetime. ‘IR LDA’ is defined as the combination if CH1-3 intensity ratio and M.R. and ‘LT & IR LDA’ reports the AUC from the 
combination of all seven parameters: CH1-3 lifetime, CH1-3 IR, and M.R.   
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Figure A57: ‘Other Anatomy’ (N=14) linear discriminant analysis classification performance. ‘M.R.’ corresponds to metabolic 
ratio defined as [CH2] / ( [CH2]+[CH3] ). ‘H1-H5’ represent the first harmonic (ω= ω0) to fifth harmonic (ω= 5ω0) of a given 
phasor channel. ‘CH1-3 Harmonic LDA’ reports the AUC arising from the weighted linear combination of CH1, CH2, and 
CH3 phasors evaluated at each of the five harmonics. ‘Max Phasor’ reports the highest AUC arising from a given patient 
from the best CH1-3 weighted linear phasor harmonic combination. ‘LT LDA’ is the result of the weighted linear combination 
of CH1-3 lifetime. ‘IR LDA’ is defined as the combination if CH1-3 intensity ratio and M.R. and ‘LT & IR LDA’ reports the 
AUC from the combination of all seven parameters: CH1-3 lifetime, CH1-3 IR, and M.R.   
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Figure A58: In vivo evaluation of CH2 (NADPH) & CH3 (FAD) lifetime and intensity ratio cancer trends. (A) Median of 
patient-level benign tissue vs. cancer lifetime for channel 2 & 3. (B) Median of patient-level benign tissue vs. cancer intensity 
ratio for channel 2 & 3. Positive Δ value indicates FLIm-parameter for benign tissue is higher than cancer, and vice versa for 
negative Δ value. All values expressed as the difference (Δ) in median optical metabolic ratio for a given patient between 
benign tissue and cancer. Medians were only computed if at least 30 FLIm datapoints registered to both benign tissue and 
cancer were obtained. Values expressed as a stem plot, where ‘n.s.’ indicates the median between patient-level benign 
tissue vs. cancer were not significant by Mann-Whitney U significance testing.  
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Figure A59: In Vivo Evaluation of Benign Tissue vs. Cancer Trends for CH1 (collagen) Intensity Ratio between benign tissue 

and cancer. Positive Δ value indicates CH1 intensity ratio for benign tissue is higher than cancer, and vice versa for negative 

Δ value. All values expressed as the difference (Δ) in median optical metabolic ratio for a given patient between benign 

tissue and cancer. Medians were only computed if at least 30 FLIm datapoints registered to both benign tissue and cancer 

were obtained. Values expressed as a stem plot, where ‘n.s.’ indicates the difference between patient-level benign vs. 

cancer CH1 IR datapoints were not significant by Mann-Whitney U significance testing. 
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Figure A60: In Vivo Evaluation of Benign Tissue vs. Cancer Δs for Metabolic Ratio CH2/(CH2+CH3) trends between benign 

tissue and cancer. Positive Δ value indicates the ratio of CH2 / [CH2+CH3] for benign tissue is higher than cancer, and vice 

versa for negative Δ value. All values expressed as the difference (Δ) in median optical metabolic ratio for a given patient 

between benign tissue and cancer. Medians were only computed if at least 30 FLIm datapoints registered to both benign 

tissue and cancer were obtained. Values expressed as a stem plot, where ‘n.s.’ indicates the difference between patient-

level benign vs. cancer optical metabolic ratio datapoints were not significant by Mann-Whitney U significance testing.   
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LIST OF ABBREVIATIONS 

AUC – Area Under the Curve  

BOT – Base of Tongue 

CDC – Centers for Disease Control 

CH – Channel (In Reference to FLIm Spectral Channels 1, 2, 3, or 4) 

CLS – Constrained Least Squares (Deconvolution Method) 

CNN – Convolutional Neural Network 

ECM – Extracellular Matrix 

FAD – Flavin Adenine Dinucleotide 

FLIm – Fluorescence Lifetime Imaging 

FLIM – Fluorescence Lifetime Microscopy 

FN – False Negative 

FOV – Field of View 

FP – False Positive 

FPR – False Positive Rate (FP/[TN+FP]) 

FPS – Frames Per Second 

FWHM – Full Width at Half Maximum 

GTS – Glossotonsillar Sulcus 

GUI – Graphical User Interface 

H&E – Hematoxylin and Eosin  

H&N – Head and Neck 

HGD – High Grade Dysplasia 

HIPPA – Health Insurance Portability and Accountability Act 

HIV – Human Immunodeficiency Virus  

HNSCCUP – Head and Neck Squamous Cell Carcinoma of Unknown Primary 
Origin 

HPV – Human Papilloma Virus 

HRME – High Resolution Microendoscopy 
HSV – Hue Saturation Value 

IR – Intensity Ratio (FLIm Univariate Parameter) 

IRB – Institutional Review Board 

IRF – Impulse Response Function 

LDA – Linear Discriminant Analysis 

LGD – Low Grade Dysplasia 

LT – Lifetime (FLIm Univariate Parameter) 

LT – Lingual Tonsil 

MA – Methamphetamine  

MAD – Median Absolute Deviation 

MATLAB – Matrix Laboratory Software (Release R2018b) 

MMP – Matrix Metalloproteinase 

MRI – Magnetic Resonance Imaging 

NAD(P)H – Nicotinamide Adenine (Phosphate) Dinucleotide 

NAS – Nasopharynx 

NAT – Normal Tissue Adjacent to Tumor 
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NBI – Narrow Band Imaging 

OCT – Optical Coherence Tomography 
OLP – Oral Lichen Planus 

p16- – HPV Negative (Determined by no P16 Protein Antibody Binding) 

p16+ – HPV Positive (Determined by P16 Protein Antibody Binding) 

PAI – Photoacoustic Imaging 

PET – Positron Emission Tomography 

PPIX – Protoporphyrin IX 

PSM – Positive Surgical Margin 

PSM – Positive Surgical Margin 

PT – Palatine Tonsil 

RF – Random Forrest (Classifier) 

ROC-AUC – Receiver Operator Characteristic Area Under the Curve 

SCC – Squamous Cell Carcinoma 

SNR – Signal to Noise Ratio 

SVM – Support Vector Machine 

TCSPC – Time Correlated Single Photon Counting 

TN – True Negative 

TORS – Transoral Robotic Surgery 

TP – True Positive 

TPR – True Positive Rate (TP/[TP+FN]) 

TRFS – Time Resolved Fluorescence Spectroscopy 

UBM – Ultrasound Backscatter Microscopy  

US – Ultrasound 

UV – Ultraviolet  

WSM – Wavelength Selection Module 
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