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Dalitz plot analyses of B0 → D−D0Kþ and Bþ → D̄0D0Kþ decays
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We present Dalitz plot analyses for the decays of B mesons to D−D0Kþ and D̄0D0Kþ. We report the
observation of the D�

s1ð2700Þþ resonance in these two channels and obtain measurements of the mass
MðD�

s1ð2700ÞþÞ ¼ 2699þ14−7 MeV=c2 and of the width ΓðD�
s1ð2700ÞþÞ ¼ 127þ24−19 MeV, including stat-

istical and systematic uncertainties. In addition, we observe an enhancement in the D0Kþ invariant mass
around 2350–2500 MeV=c2 in both decays B0 → D−D0Kþ and Bþ → D̄0D0Kþ, which we are not able to
interpret. The results are based on 429 fb−1 of data containing 471 × 106BB̄ pairs collected at the ϒð4SÞ
resonance with the BABAR detector at the SLAC National Accelerator Laboratory.

DOI: 10.1103/PhysRevD.91.052002 PACS numbers: 13.25.Hw, 14.40.Nd

I. INTRODUCTION

In the B → D̄ð�ÞDð�ÞK final states [1], whereD is aD0 or
a Dþ, D� is a D�0 or D�þ, and K is a Kþ or a K0, we have
the possibility to search for D̄ð�ÞDð�Þ resonances (charmo-
nium or charmoniumlike resonances) as well as Dð�ÞK
resonances (cs̄ resonances). These final states have been
useful in the past to determine properties of the Ds1ð2536Þ
and ψð3770Þ mesons and of the Xð3872Þ state at BABAR
[2] and Belle [3,4] as well as the D�

s1ð2700Þþ meson at
Belle [4]. These analyses, based on the studies of invariant

mass distributions, were able to extract properties such as
the mass, width, and spin of the resonances.
The analysis presented here gives useful information

about cs̄ mesons present in these decays. Before 2003 only
four cs̄ mesons were known and their properties were
consistent with the predictions of potential models [5].
Since then the D�

s0ð2317Þ and Ds1ð2460Þ states have been
discovered by BABAR and CLEO [6] with widths and
masses in disagreement with the expectations. The
D�

s1ð2700Þþ meson was discovered by BABAR decaying
to DK in inclusive eþe− interactions [7] and confirmed by
Belle in the final state Bþ → D̄0D0Kþ [4]. The LHCb
experiment studied the D�

s1ð2700Þþ meson in the DþK0
S

and D0Kþ final states [8] and obtained a more precise
determination of its properties. TheD�

s1ð2700Þþ meson was
also observed in inclusive eþe− interactions decaying to
D�K [7]. An additional cs̄ state, the D�

sJð2860Þþ, was
discovered by BABAR decaying to DK and D�K [7] and
confirmed by LHCb [8]. Recently, LHCb claimed that the
structure at 2.86 GeV=c2 was an admixture of spin-1 and
spin-3 resonances [9]. Finally, the DsJð3040Þþ meson was
observed in the D�K final state by BABAR [7].
In this study, we perform Dalitz plot analyses for the

channels B0 → D−D0Kþ and Bþ → D̄0D0Kþ which
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contain only pseudoscalar particles in the three-body decay.
These Dalitz plot analyses allow the interferences between
the different amplitudes which are present in the final states
to be taken into account correctly. This is the first time that
such Dalitz plot analyses have been performed for these
decays.

II. THE BABAR DETECTOR AND
DATA SAMPLE

The data were recorded by the BABAR detector at the
PEP-II asymmetric-energy eþe− storage ring operating at
the SLAC National Accelerator Laboratory. We analyze the
complete BABAR data sample collected at the ϒð4SÞ
resonance corresponding to an integrated luminosity of
429 fb−1 [10], giving NBB̄ ¼ ð470.9� 0.1� 2.8Þ × 106

BB̄ pairs produced, where the first uncertainty is statistical
and the second systematic.
The BABAR detector is described in detail elsewhere

[11]. Charged particles are detected and their momenta
measured with a five-layer silicon vertex tracker and a
40-layer drift chamber in a 1.5 T axial magnetic field.
Charged particle identification is based on the measure-
ments of the energy loss in the tracking devices and of
the Cherenkov radiation in the ring-imaging detector. The
energies and locations of showers associated with pho-
tons are measured in the electromagnetic calorimeter.
Muons are identified by the instrumented magnetic-flux
return, which is located outside the magnet.
We employ a Monte Carlo simulation to study the

relevant backgrounds and estimate the selection efficien-
cies. We use EVTGEN [12] to model the kinematics of B
mesons and JETSET [13] to model continuum processes,
eþe− → qq̄ (q ¼ u; d; s; c). The BABAR detector and its
response to particle interactions are modeled using the
GEANT4 [14] simulation package.

III. EVENT SELECTION AND
SIGNAL YIELDS

The selection and reconstruction of B0 → D−D0Kþ and
Bþ → D̄0D0Kþ, along with 20 other B → D̄ð�ÞDð�ÞK
modes, is described in Ref. [15]. We briefly summarize
the selection criteria in this section. We reconstruct D
mesons in the modes D0 → K−πþ, K−πþπ0, K−πþπ−πþ,
andDþ → K−πþπþ. The B candidates are reconstructed by
combining a D̄ (representing either aD− or a D̄0), aD0, and
a Kþ candidate. For the mode Bþ → D̄0D0Kþ, at least one
of the D0 mesons is required to decay to K−πþ. A mass-
constrained kinematic fit is applied to the intermediate
particles (D0, Dþ, π0) to improve their momentum reso-
lution and the resolution of the invariant masses of the
studied resonances.
Two kinematic variables are used to isolate the B-meson

signal. The first variable is the beam-energy-substituted
mass defined as

mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s=2þ ~p0:~pB

E0

�
2 − j~pBj2

s

; ð1Þ

where
ffiffiffi
s

p
is the eþe− center-of-mass energy. For the

momenta in the laboratory frame, ~p0, ~pB, and the energy,
E0, the subscripts 0 and B refer to the eþe− system and the
reconstructed B meson, respectively. The other variable is
ΔE, the difference between the reconstructed energy of the
B candidate and the beam energy in the eþe− center-of-
mass frame. Signal events have mES compatible with the
known B-meson mass [16] andΔE compatible with 0 MeV,
within their respective resolutions.
For the modes B0 → D−D0Kþ and Bþ → D̄0D0Kþ, we

obtain 1.1 and 1.3 B candidates per event on average,
respectively. If more than one candidate is selected in an
event, we retain only the one with the smallest value of
jΔEj. According to Monte Carlo studies, this criterion finds
the correct candidate, when present in the candidate list, in
more than 95% of the cases for the two final states. We keep
only events with jΔEj < 10–14 MeV depending on the D
final state [15].
In order to obtain the signal and background yields, fits

are performed on the mES distributions, as described in
detail in Ref. [15]. The probability density function (PDF)
of the signal is determined from Monte Carlo samples. A
Crystal Ball function [17] (Gaussian PDF modified to
include a power-law tail on the low side of the peak) is used
to describe the signal. The background contribution is the
sum of cross-feed events and combinatorial background.
The cross-feed background to a mode consists of all
incorrectly reconstructed B → D̄ð�ÞDð�ÞK events. The ratio
of cross-feed events to signal events is 11% for B0 →
D−D0Kþ and 17% for Bþ → D̄0D0Kþ. The cross-feed
events are described by the sum of an ARGUS function
[18] and a Gaussian function, where the latter allows us to
take into account the cross-feed events peaking in the signal
region. For both modes, the Gaussian part represents a
negligible contribution to the total cross feed. Since the fit
for the yield for one channel uses as input the branching
fractions from other channels, an iterative procedure using
the 22 B → D̄ð�ÞDð�ÞK modes is employed [15]. The
combinatorial background events are described by the
sum of an ARGUS function and a Gaussian function,
reflecting the fact that a small fraction of events peaks in the
signal region (coming for example from D̄D0Kþ events
where one of the D mesons is not decaying to a studied
mode). The fits performed on the mES distributions using
the sum of the PDFs for the signal and for the background
are shown in Fig. 1. We obtain 635� 47 and 901� 54
signal events for B0 → D−D0Kþ and Bþ → D̄0D0Kþ,
respectively [15].
We impose an additional condition to enhance the

purity for the Dalitz plot analysis. We require 5.275 <
mES < 5.284 GeV=c2, obtaining a total number of 1470
events with a signal purity of ð38.6� 2.8� 2.1Þ% for
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B0 → D−D0Kþ and obtaining a total of 1894 events with a
signal purity of ð41.6� 2.5� 3.1Þ% for Bþ → D̄0D0Kþ,
where the first uncertainties are statistical and the second
systematic.

IV. DALITZ PLOT ANALYSES

A. Method

We use an isobar model formalism to perform the
Dalitz plot analysis [19]. The decays are described by a
sum of amplitudes representing nonresonant and resonant
contributions:

M ¼
X

i

ciAi; ð2Þ

where the ci ≡ ρieiϕi are complex coefficients of modulus
ρi ≡ jcij and phase ϕi. The quantities Ai are complex
amplitudes and can be written as

Ai ¼ Di × TiðΩÞ; ð3Þ

where Di represents the dynamical function describing
the ith intermediate resonance, and TiðΩÞ represents the
angular distribution of the final state particles as a
function of the solid angle Ω. For nonresonant events,
we have Ai ¼ 1. The quantity Di is parametrized by a
Breit-Wigner function, whose expression for a resonance
r → AB is given by

D ¼ FBFr

M2
r −M2

AB − iΓABMr
; ð4Þ

where FB and Fr are the Blatt-Weisskopf damping
factors for the B meson and for the resonance, Mr is
the mass of the resonance, MAB the invariant mass of the
system AB, and ΓAB its mass-dependent width. The
expression for the mass-dependent width is

ΓAB ¼ Γr

�
pAB

pr

�
2Jþ1

�
Mr

MAB

�
F2
r ; ð5Þ

where Γr and J are the width and the spin of the
resonance. The quantity pAB is the momentum of either
daughter in the AB rest frame, and pr is the value of pAB
when MAB ¼ Mr. The resonances we study here have a
large enough natural width and we can ignore the effect
of the detector resolutions.
The exact expressions of the Blatt-Weisskopf factors [20]

are given in Ref. [21] and depend on the momenta of the
particles involved, on the spin of the resonance, and on the
radius of the Blatt-Weisskopf barrier. For the B meson and
for the intermediate resonance, we use a radius of
1.5 GeV−1. The angular term TiðΩÞ is also given in
Ref. [21] and depends on the masses of the particles
involved in the reaction as well as on the spin of the
intermediate resonance.
We extract the complex amplitudes present in the data

(from their modulus ρi and phase ϕi) and the mass and
width of the D�

s1ð2700Þþ resonance. To obtain these
parameters, we perform an unbinned maximum likelihood
fit where the likelihood function for the event n can be
written as

Ln ¼ p × εiðm2
1; m

2
2Þ ×

jMj2R jMj2εðm2
1; m

2
2Þdm2

1dm
2
2

þ ð1 − pÞ × Bðm2
1; m

2
2ÞR

Bðm2
1; m

2
2Þdm2

1dm
2
2

; ð6Þ

where jMj2 ¼ P
i;jcic

�
jAiA�

j is calculated for the event n.
In this expression, m1 and m2 represent the invariant mass
of D̄D0 and D0Kþ for the event n. The quantity p
corresponds to the purity of the signal. The function
εðm2

1; m
2
2Þ is the efficiency across the Dalitz plot, and

the function Bðm2
1; m

2
2Þ represents the background in the

Dalitz plot. The integrals are computed using Monte Carlo
events: since we use varying resonance parameters, the
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FIG. 1 (color online). Fits of the mES data distributions [15] for
the modes B0 → D−D0Kþ (top) and Bþ → D̄0D0Kþ (bottom).
Points with statistical errors are data events, the red dashed line
represents the signal PDF, the blue dashed line represents the
background PDF, and the black solid line shows the total PDF.
The vertical lines indicate the signal region used in the rest of the
analysis.
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integration is performed at each minimization step. We
minimize the total negative log likelihood,

F ¼
X

n

− 2 × logðLnÞ; ð7Þ

where the index n represents a particular event and the sum
is performed over the total number of events. We compare
the different fits using ΔF ¼ F − F nominal, where F is the
value of the total negative log likelihood for a given fit and
F nominal is this value for the nominal fit defined below. We
are sensitive only to relative moduli and phases, which
means we are free to fix one modulus and one phase. We
choose the D�

s1ð2700Þþ resonance as the reference ampli-
tude with assignments jcD�

s1ð2700Þþ j ¼ 1 and ϕD�
s1ð2700Þþ ¼ 0.

A Monte Carlo simulation is performed using the fit
results and is superimposed on the data in the Dalitz plot or
on invariant mass projections. In addition to the value of F ,
we compute the quantity χ2=ndof, where ndof is the number
of degrees of freedom, computed as the number of bins in
the Dalitz plot minus the number of free parameters in the
fit. We use an adaptive size for the bins so that each bin
contains at least 15 events to get an approximately
Gaussian behavior.
The fit fraction for each amplitude is defined as

fi ¼
jcij2

R jAij2dm2
1dm

2
2P

j;kcjc
�
k

R
AjA�

kdm
2
1dm

2
2

: ð8Þ

The fit fractions do not necessarily add up to 1, due to the
interferences that can take place between the different final
states. The errors on the fit fractions are evaluated by
propagating the full covariance matrix obtained from
the fit.
The initial values of the parameters are randomized

inside their bounds and 250 different fits are performed
with these randomized initial values. We choose the fit
which presents the smallest value of the total negative log
likelihood F , which allows us to avoid local minima and to
obtain the global minimum of the negative log likelihood.

B. Efficiency and background determination

As seen in Eq. (6), the efficiency variation over the Dalitz
plot needs to be parametrized. We employ Monte Carlo
simulations of the signal events for each reconstructed D
decay for the modes B0 → D−D0Kþ and Bþ → D̄0D0Kþ.
The signal density is simulated as being constant over the
Dalitz plot. We divide the Dalitz plot in bins of size
0.36 × 0.53 ðGeV2=c4Þ2. For each two-dimensional bin,
we divide the number of simulated signal events after
selection and reconstruction by the generated number of
events. We combine neighboring bins with low statistics so
that each bin has more than ten simulated events after the
reconstruction. We obtain a mapping of the efficiency for
each reconstructed D mode and combine these mappings

by weighting them together according to the D secondary
branching fractions.
To obtain the function εðm2

1; m
2
2Þ of Eq. (6), we use a

bilinear two-dimensional interpolation method applied on
the global efficiency mapping. The interpolation makes use
of the four values from the bins around a given mass
coordinate to compute the efficiency. At the edge of the
mapping, we use the value of the bin without interpolation
to avoid bias toward a null efficiency.
The background distribution in the Dalitz plot is

described by the function Bðm2
1; m

2
2Þ of Eq. (6). We observe

that the Monte Carlo simulation reproduces correctly
the data by comparing events in the mES sideband
(mES < 5.26 GeV=c2) between the data and the simulation.
We therefore employ a Monte Carlo simulation of back-
ground events, using the same reconstruction and selection
as in the data. We obtain a distribution of the background in
the Dalitz plot using bins of size 0.27 × 0.37 ðGeV2=c4Þ2.
The distribution of the background includes the contribu-
tion from the combinatorial background (including the
background which peaks in the signal region), and we
check that the small proportion of cross-feed events has a
similar distribution as the background in the Dalitz plot.
The background distribution is interpolated with a bilinear
two-dimensional method to get the value at any coordinate.

C. Fits of the Dalitz plots

The Dalitz plots for B0 → D−D0Kþ and Bþ →
D̄0D0Kþ are shown in Fig. 2. The known amplitudes that
could give a contribution in the Dalitz plot for both
modes are

(i) nonresonant events,
(ii) the D�

s1ð2700Þþ meson, and
(iii) the D�

s2ð2573Þþ meson, which can decay to D0Kþ,
but has not been observed in B → D̄ð�ÞDK decays.

The D�
sJð2860Þþ state decays also to D0Kþ but is not

included in the nominal fit. Furthermore, for the mode
Bþ → D̄0D0Kþ, additional contributions from charmo-
nium states are possible and are included in the fit:

(i) the ψð3770Þ meson, and
(ii) the ψð4160Þ meson.

The χc2ð2PÞ, ψð4040Þ, and ψð4415Þ mesons can also
decay to D̄0D0. However, they are not included in the
nominal fit and are treated separately. In the following fits,
the masses and widths of the resonances are fixed to their
world averages [16], except for the D�

s1ð2700Þþ where the
parameters are free to vary. The spin of this resonance is
assumed to be 1.

1. Preliminary fits

We start by a fit to the Dalitz plot with the previously
listed amplitudes in the decays B0 → D−D0Kþ and
Bþ → D̄0D0Kþ. The projections on the D0Kþ invariant
mass are shown in Fig. 3 (no nonresonant component is
included for Bþ → D̄0D0Kþ as explained below). We see
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clearly in both cases that the fits are not satisfactory, with
values of χ2=ndof (of ΔF ) equal to 82=48 (36) and 265=51
(223) for B0 → D−D0Kþ and Bþ → D̄0D0Kþ, respec-
tively. In particular, we see that the D0Kþ region between
2350 and 2500 MeV=c2 is not well described, especially
for Bþ → D̄0D0Kþ. This region corresponds to the thresh-
old in the D0Kþ phase space. The Belle experiment has
also reported this enhancement of data with respect to the

background in the study of the Bþ → D̄0D0Kþ decay
mode [4].

2. D0Kþ low-mass excess

We check that the enhancement is due to the signal and
not the background using two methods to subtract the
background. The first method consists of dividing the
D0Kþ invariant mass range into 20 MeV=c2 slices and
fitting the mES distribution in each slice. The signal
contribution is extracted from the fit and plotted as a
function of mass to obtain a background subtracted D0Kþ
invariant mass distribution. The second method is based on
the use of the sPlot technique [22], which allows the
subtraction of the background in the invariant mass dis-
tribution using other uncorrelated variables so that the
signal is kept with the correct statistical significance for the
variable to be plotted. The sPlot technique uses the results
of the mES fit described in Sec. III (yields and covariance
matrix) and the PDFs of this fit to compute an event-by-
event weight for the signal and background categories. We
obtain a D0Kþ invariant mass distribution free of back-
ground by applying the sPlot weight to each event. Using
these two methods of background subtraction, we observe
that the enhancement at low mass is present in the D0Kþ
invariant mass distributions for both modes, proving that it
originates from B → D̄D0Kþ final states.
We verify that this effect cannot be explained by the

reflection of a known resonance. A reflection could
originate from cross-feed events. If one of the cross-feed
modes of the mode of interest contains a resonance, then
this resonance can appear as a structure in the mode of
interest, with a smaller magnitude and a shifted mass. As
noted earlier, we observe that the cross feed is small for the
modes B0 → D−D0Kþ and Bþ → D̄0D0Kþ. We use sim-
ulations of B → D̄Ds1ð2536Þ, followed by Ds1ð2536Þ →
D�K, using the branching fractions from Ref. [2] to
estimate the possible pollution from these cross-feed
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FIG. 3 (color online). Projections of the Dalitz plot on the D0Kþ axis for the data (dots) and for the result of the preliminary fit (total
histogram) for the modes B0 → D−D0Kþ (left) and Bþ → D̄0D0Kþ (right). The fit includes the background (plain yellow histogram),
the nonresonant (vertical-hatched blue histogram), the D�

s1ð2700Þþ (red histogram), and the D�
s2ð2573Þþ (plain dark gray histogram)

amplitudes. For Bþ → D̄0D0Kþ, the additional charmonium contributions consist of the ψð3770Þ (horizontal-hatched light blue
histogram) and the ψð4160Þ (plain light gray histogram) amplitudes.
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modes. We observe that this source of pollution is negli-
gible and cannot explain the enhancement. We also make
use of simulations of the cross-feed processes B →
D̄D�

s1ð2700Þþ, followed by D�
s1ð2700Þþ → Dð�ÞK, but

we observe that these modes give almost no contribution
to B0 → D−D0Kþ and Bþ → D̄0D0Kþ. In conclusion, no
reflection seems to explain the enhancement seen at low
mass in the D0Kþ invariant mass distributions.
This excess at low mass could be explained by an

additional resonance, although none is expected in this
mass range. To test this hypothesis, we refit the data adding
the PDF of a scalar resonance with mass and width that are
free to float. The quality of the fits improves after the
addition of the scalar, with values of χ2=ndof (of ΔF ) equal
to 58=44 (−2) and 90=49 (−1) for B0 → D−D0Kþ and
Bþ → D̄0D0Kþ, respectively. The fit for B0 → D−D0Kþ
returns a mass and width of the scalar of 2412�
16 MeV=c2 and 163� 64 MeV and for Bþ → D̄0D0Kþ
of 2453� 20 MeV=c2 and 283� 45 MeV, respectively
(statistical uncertainties only). These two results are not
incompatible (∼1.5σ difference for both mass and width,
where σ is the standard deviation), but the assumption of
such a wide resonance at this mass would be speculative.
We also try fits with a wide virtual resonance below the
D0Kþ threshold, but these fits yield widths with uncer-
tainties that are larger than the corresponding central
values. Thus, it is not possible to conclude that a real
scalar resonance contributes to the B → D̄D0Kþ decays.
The excess at low mass, although evident, lacks enough
statistics to draw definitive conclusions about its nature. In
consequence, since the excess at low D0Kþ mass in this
data is not understood, we use an arbitrary function to
describe it.
This function is chosen to be an exponential starting at

the D0Kþ mass threshold. The exponential function takes
the form AExpo ¼ e−αðm2

2
−m2

2thrÞ where AExpo is the amplitude
from Eq. (3), α is a free parameter, m2 the D0Kþ invariant
mass of the event, and m2thr the mass threshold, corre-
sponding to the sum of the D0 and Kþ masses. Another
approach, introduced in Ref. [23], consists of integrating an
exponential contribution as part of the nonresonant ampli-
tude, assuming that the nonresonant amplitude is not
necessarily constant over the Dalitz plot.

3. Nominal fits

ForB0→D−D0Kþ, the nominal content of the fit includes
the nonresonant, the D�

s1ð2700Þþ, the D�
s2ð2573Þþ, and the

exponential amplitudes, which makes a total of nine free
parameters in the fit. For Bþ → D̄0D0Kþ the fits are not
improved when adding the nonresonant component, so we
use for the nominal content of the fit the D�

s1ð2700Þþ, the
D�

s2ð2573Þþ, theψð3770Þ, the ψð4160Þ, and the exponential
amplitudes. This fit has a total of 11 free parameters.
As stated above, the final fits for B0 → D−D0Kþ and

Bþ → D̄0D0Kþ are each chosen from among 250 fits with

randomized initial values of the fit parameters. For
B0 → D−D0Kþ, we observe that the majority of the fits
(60%) converge to the exact same values of the set of fitted
parameters, which we choose as our nominal fit. However a
proportion of fits (23%) converges to a slightly lower value
of F with a sum of fit fractions [Eq. (8)] greater than 250%.
This large sum of fractions, which is unlikely to be
physical, originates from large interference between the
nonresonant and the exponential contributions, which are
both ad hoc amplitudes. These fits return values of the
parameter related to the resonances very close to those of
the nominal fit: these differences are taken into account in
the calculation of the systematic uncertainties. Moreover,
we find a local minimum for 3% of the fits with ΔF ¼ 1,
which we account for in the systematic uncertainties. We
observe that 5% of the fits have ΔF > 20. For Bþ →
D̄0D0Kþ, one-third of the 250 fits converge to the global
minimum, chosen as our nominal fit. We observe four local
minima, representing a proportion of 42% of the fits,
situated at ΔF < 4 of the global minimum. Since these
fits are close to the nominal one, we use them as a
contribution to the systematic uncertainties for the param-
eters related to the resonances. We see that 10% of the fits
have ΔF > 20, justifying the use of the procedure of
randomizing the initial values of the parameters.
The nominal fit for B0 → D−D0Kþ is shown in Fig. 4

and returns χ2=ndof ¼ 56=45. The nominal fit for Bþ →
D̄0D0Kþ is presented in Fig. 4 and gives χ2=ndof ¼ 86=48.
The high value of the χ2=ndof can be partly explained by
some discrepancies between the data and our fit located
mainly in the ψð3770Þ region. We do not extract any
information from this region, and we consider that the fit
gives a satisfactory description of the data in other regions.
To assess the values found for F for the nominal fit for

each mode, we generate a large number of Monte Carlo
samples based on the PDFs of the nominal fits with the
statistics of the data and fit these samples with the same
method as in the data. We observe that the nominal values
ofF for the two modes are close (0.2σ) to the central values
of the distributions of F obtained from the Monte Carlo
samples. Similarly to the data, the simulations show the
presence of several local minima close to the global
minimum.
Comparing the fit results before and after removing a

resonance with fixed shape parameters allows us to trans-
late directly the difference of negative log likelihood as a χ2

distribution with two degrees of freedom (modulus and
phase). A difference ΔF of 12 and 29 corresponds roughly
to a statistical significance of 3σ and 5σ, respectively. This
significance does not take into account the systematic
uncertainties, and the final significance decreases after
taking them into account. This property is used here to
estimate the need for the D�

s2ð2573Þþ and ψð4160Þ reso-
nances. In a first stage, we repeat the nominal fit without the
D�

s2ð2573Þþ amplitude. We observe that the minimum log
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likelihood increases with ΔF ¼ 16 for B0 → D−D0Kþ

and ΔF ¼ 5 for Bþ → D̄0D0Kþ, indicating that the
presence of the D�

s2ð2573Þþ resonance is significant in
B0 → D−D0Kþ. Removing the ψð4160Þ component from
the Dalitz plot fit of Bþ → D̄0D0Kþ gives ΔF ¼ 23.
Adding an additional amplitude for either the

D�
sJð2860Þþ or the DsJð3040Þþ resonance does not

improve the fits (assuming a spin of 1 for these two states).
For Bþ → D̄0D0Kþ, adding a contribution for either the

χc2ð2PÞ, ψð4040Þ, or ψð4415Þmeson does not improve the
fit to a significant level. None of the parameters changed by
a statistically significant amount when adding to the fit
these extra resonances, and no systematic error is assigned
for these resonances.

V. SYSTEMATIC UNCERTAINTIES

We consider several sources of systematic uncertainties
in the fit parameters, such as the moduli, the phases, the fit
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FIG. 4 (color online). Projections of the Dalitz plot on the three axes for the data (dots) and for the result of the nominal fit (total
histogram) for the modes B0 → D−D0Kþ (left) and Bþ → D̄0D0Kþ (right). The fit includes the background (plain yellow histogram),
the nonresonant (vertical-hatched blue histogram, present only for B0 → D−D0Kþ), the D�

s1ð2700Þþ (red histogram), the D�
s2ð2573Þþ

(plain dark gray histogram), and the exponential (cross-hatched green histogram) amplitudes. For Bþ → D̄0D0Kþ, the additional
charmonium contributions consist of the ψð3770Þ (horizontal-hatched light blue histogram) and the ψð4160Þ (plain light gray
histogram) amplitudes.
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fractions, and the mass and width of the D�
s1ð2700Þþ.

Tables I and II give the details of the systematic uncer-
tainties. To estimate a potential fit bias, we generate a large
number of Monte Carlo samples based on the nominal fits

with the same statistics as in the data. We perform the Dalitz
plot fit on these samples and extract the central value and
uncertainty of each parameter. We obtain a distribution of
the pull for each parameter, defined as the difference

TABLE I. Systematic uncertainties for B0 → D−D0Kþ in the moduli, in the phases (∘), in the fractions (%), in the mass (MeV=c2) and
the width (MeV) of the D�

s1ð2700Þþ, and in α, the parameter of the exponential function. The labels refer to systematic uncertainties
related to the fit bias (“Bias”), efficiency interpolation (“Eff.”), statistical uncertainty in efficiency (“Eff. II”), background knowledge
(“Bkg”), Blatt-Weisskopf barrier (“BW”), low-mass description (“Low mass”), D�

s2ð2573Þþ amplitude (“D�
s2”), and other minima

(“Min.”). The sign ‘—’ means that no systematic uncertainty has been attributed to the specific parameter.

Parameter Value Bias Eff. Eff. II Bkg BW Low mass D�
s2 Min. Total

Modulus D�
s2ð2573Þþ 0.031 �0.001 0 �0.001 0 �0.001 0 0 �0.001 �0.002

Modulus nonresonant 1.33 �0.09 �0.03 �0.05 þ0.21
−0.33

þ0.39
−0.00 0 þ0.04 — þ0.46

−0.35
Modulus exponential 6.94 �0.24 �0.06 �0.19 þ0.12

−0.21
þ0.72
−0.20 0 þ0.21 — þ0.82

−0.43
Phase D�

s2ð2573Þþ 277 �4 �1 �2 �2 þ0
−8

þ2
−0 0 þ4

−0
þ6
−9

Phase nonresonant 287 �2 0 �1 þ9
−6

þ2
−14 0 0 — þ10

−15
Phase exponential 269 �6 �1 �4 þ3

−0
þ0
−13 0 þ15 — þ17

−15
Fraction D�

s1ð2700Þþ 66.7 — �0.2 �0.6 þ2.2
−2.1

þ0.4
−2.1

þ1.3
−0.0 þ0.6 þ2.3

−2.3
þ3.5
−3.8

Fraction D�
s2ð2573Þþ 3.2 — 0 �0.2 þ0.0

−0.1
þ0.0
−0.3

þ0.2
−0.0 0 þ0.1

−0.0
þ0.3
−0.4

Fraction nonresonant 10.9 — �0.3 �0.7 þ3.3
−4.3

þ6.1
−0.0 0 þ0.2 — þ7.0

−4.3
Fraction exponential 9.9 — �0.2 �0.5 þ2.9

−1.5
þ0.0
−2.9 0 þ0.9 — þ3.0

−3.3
MðD�

s1ð2700ÞþÞ 2694 �2 0 �1 0 þ13
−2

þ0
−1 0 þ3

0
þ13
−3

ΓðD�
s1ð2700ÞþÞ 145 �8 �1 �3 þ4

−3
þ17
−9

þ5
−0 −6 þ11

−4
þ22
−14

α 1.43 �0.11 �0.02 �0.08 þ0.20
−0.26

þ0.48
−0.00 0 −0.06 — þ0.54

−0.30

TABLE II. Systematic uncertainties for Bþ → D̄0D0Kþ in the moduli, in the phases (∘), in the fractions (%), in the mass (MeV=c2)
and the width (MeV) of theD�

s1ð2700Þþ, and in α, the parameter of the exponential function. The labels refer to systematic uncertainties
related to the fit bias (“Bias”), efficiency interpolation (“Eff.”), statistical uncertainty in efficiency (“Eff. II”), background knowledge
(“Bkg”), Blatt-Weisskopf barrier (“BW”), low-mass description (“Low mass”), D�

s2ð2573Þþ amplitude (“D�
s2”), ψð3770Þ amplitude

(“ψ”), and other minima (“Min.”). The sign ‘—’ means that no systematic uncertainty has been attributed to the specific parameter.

Parameter Value Bias Eff. Eff. II Bkg BW Low mass D�
s2 ψ Min. Total

Modulus D�
s2ð2573Þþ 0.021 �0.001 �0.001 �0.001 0 þ0.003

−0.000
þ0.006
−0.000 0 0 þ0.005

−0.002
þ0.009
−0.003

Modulus ψð3770Þ 1.40 �0.08 �0.02 �0.03 þ0.05
−0.06

þ0.03
−0.10

þ0.06
−0.00 þ0.07 −0.19 þ0.14

−0.00
þ0.20
−0.24

Modulus ψð4160Þ 0.78 �0.02 �0.01 �0.03 �0.01 þ0.00
−0.10

þ0.16
−0.00 þ0.06 −0.02 þ0.06

−0.08
þ0.18
−0.14

Modulus exponential 16.15 �0.53 �0.13 �0.35 þ0.57
−0.70

þ0.00
−1.44 0 þ0.66 −0.18 — þ1.09

−1.74
Phase D�

s2ð2573Þþ 267 �9 �3 �3 þ7
−8

þ1
−3

þ5
−0 0 0 þ10

−0
þ17
−13

Phase ψð3770Þ 284 �5 0 �2 �1 þ0
−22

þ7
−19 −2 −4 þ25

−4
þ26
−30

Phase ψð4160Þ 188 �6 0 �2 �4 þ0
−3

þ12
−0 −1 þ1 þ2

−15
þ14
−17

Phase exponential 308 �2 �1 �2 �2 �4 0 þ2 þ1 — þ6
−5

Fraction D�
s1ð2700Þþ 38.3 — �0.3 �0.6 þ0.3

−0.0
þ0.0
−0.1

þ0.0
−2.4 −1.4 0 þ0.0

−5.5
þ0.8
−6.2

Fraction D�
s2ð2573Þþ 0.6 — �0.1 �0.1 0 þ0.2

−0.0
þ0.3
−0.0 0 0 þ0.2

−0.1
þ0.4
−0.2

Fraction ψð3770Þ 9.0 — 0 �0.3 þ0.3
−0.2

þ0.0
−0.5

þ0.1
−0.4 þ0.1 −0.4 �0.1 þ0.4

−0.8
Fraction ψð4160Þ 6.4 — �0.1 �0.3 �0.3 þ0.0

−0.7
þ1.7
−0.1 þ0.4 −0.1 þ0.7

−2.3
þ1.9
−2.4

Fraction exponential 44.5 — �0.2 �0.6 þ0.0
−0.2

þ0.0
−2.0 0 þ1.1 −0.2 — þ1.3

−2.1
MðD�

s1ð2700ÞþÞ 2707 �4 0 �1 �3 þ7
−4

þ0
−4 þ1 0 þ0

−5 �8

ΓðD�
s1ð2700ÞþÞ 113 �5 �1 �3 þ9

−7
þ17
−0

þ0
−9 −5 þ2 þ0

−7
þ20
−16

α 0.68 �0.01 0 �0.01 �0.01 þ0.02
−0.00 0 −0.02 0 — �0.02
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between the central value from a particular Monte Carlo
sample and the nominal value, divided by the uncertainty in
the fit value from the Monte Carlo sample. These distri-
butions have a width compatible with 1 as expected, but
their mean is observed to be shifted with respect to 0, which
points toward fit biases that we correct for in our results.
The systematic uncertainty related to this bias correction is
taken as half of the bias added in quadrature with the
uncertainty in the bias (the systematic uncertainty related to
the bias is labeled as “Bias” in Tables I and II).
Systematic uncertainties arise from the efficiency cal-

culation. To estimate these we first use the raw efficiency in
each bin of the Dalitz plot instead of the interpolation and
consider the difference for each parameter as an estimate of
the systematic uncertainties for the efficiency (labeled as
“Eff.” in Tables I and II). Second, we take into account the
statistical fluctuation on the efficiency due to the finite
number of Monte Carlo events. In each bin of the Dalitz
plot, we randomize the efficiency within its statistical
uncertainty and produce many new mappings of the
efficiency. The analysis is performed using these new
efficiency mappings, which gives a distribution for each
parameter from which we extract the systematic uncertain-
ties (column “Eff. II”).
Another source of systematic uncertainty comes from the

background description. Repeating the analysis using the
raw value of the background in each bin of the Dalitz plot
instead of the interpolation does not change the results. In
addition, the signal purity is varied according to its total
uncertainty (see Sec. III), which allows us to get the
systematic uncertainty related to the signal and background
knowledge (column “Bkg”).
Several systematic uncertainties arise from the fit mod-

eling. The first one comes from the Blatt-Weisskopf barrier,
which is not known precisely. Fits of both modes with this
value as a free parameter show that the analysis is not
sensitive to it. To estimate the related systematic uncer-
tainty, we repeat the analysis changing the value of the
Blatt-Weisskopf barrier radius from the nominal value
1.5 GeV−1 to 5 GeV−1 and 0 GeV−1. The differences
for each parameter between the nominal fit and these fits
give the systematic uncertainties (labeled as “BW” in the
tables). Another systematic uncertainty originates from the
description of the low-mass excess. Since this effect is not
understood in the current data, it is important to estimate
the possible influence it induces on the fit parameters,
especially the mass and the width of the D�

s1ð2700Þþ
meson. To compute the systematic uncertainties associated
with this effect, we assume first that the excess originates
from a scalar resonance at low mass: we repeat the fits
replacing the exponential contribution by a scalar reso-
nance with a mass and a width free to float. Second, instead
of the exponential function, we use an alternative model,
AAlt ¼ 1

1þa×ðm2
2
−m2

2thrÞ
with a a free parameter. The maximum

deviations with respect to the nominal fit for each of these

two alternatives are used as the systematic uncertainties
(column “Low mass”). We then study the influence of the
resonances on the analyses. Since the D�

s2ð2573Þþ ampli-
tude presents a low fit fraction, we repeat the fits without
this amplitude and take the difference as a systematic
uncertainty (column “D�

s2”). The effect of the spin-1
D�

sJð2860Þþ has also been investigated: because the fits
return negligible fractions for this state, the systematic
uncertainties on the other parameters are found to be
negligible. For Bþ → D̄0D0Kþ, another systematic uncer-
tainty (column “ψ”) arises from the ψð3770Þ parameters
fixed to the world average value [16]. As an alternative, we
use the measurement from the KEDR experiment [24]. This
experiment reports a result which takes into account the
resonance-continuum interference in the near-threshold
region and which agrees well with previous BABAR
measurements [2,25].
As discussed previously, 250 fits are performed for each

mode with randomized initial values of the fit parameters,
which allows us to find the nominal fit. We find several
minima which are close to the nominal fit, and we use the
largest differences in parameter values (for those related to
resonances) as contributions to their systematic uncertain-
ties (column “Min.”).

VI. RESULTS

A. Dalitz plot analysis

The results for the Dalitz plot analysis of the modes
B0 → D−D0Kþ and Bþ → D̄0D0Kþ are presented in
Tables III and IV. In both modes, we observe a large
contribution of the D�

s1ð2700Þþ resonance via B0 →
D−D�

s1ð2700Þþ; D�
s1ð2700Þþ → D0Kþ for B0→D−D0Kþ

and via Bþ → D̄0D�
s1ð2700Þþ; D�

s1ð2700Þþ → D0Kþ for
Bþ → D̄0D0Kþ. This is the first time the D�

s1ð2700Þþ is
observed in the decay B0 → D−D0Kþ. We observe that the
D�

s2ð2573Þþ meson contributes a small fraction to B0 →
D−D0Kþ whereas it is not significant in the other mode.
We note that the D�

s2ð2573Þþ meson is expected to be

TABLE III. Results from the Dalitz plot fit (moduli, phases, and
fractions) for B0 → D−D0Kþ. The different contributions are
listed: the D�

s1ð2700Þþ and D�
s2ð2573Þþ resonances, the non-

resonant amplitude, and the low-mass excess described by an
exponential. The first uncertainties are statistical and the second
systematic.

Contribution Modulus Phase (∘) Fraction (%)

D�
s1ð2700Þþ 1.00 0 66.7� 7.8þ3.5−3.8

D�
s2ð2573Þþ 0.031� 0.008

� 0.002
277� 17þ6−9 3.2� 1.6þ0.3−0.4

Nonresonant 1.33� 0.63þ0.46−0.35 287� 21þ10−15 10.9� 6.6þ7.0−4.3
Exponential 6.94� 1.83þ0.82−0.43 269� 33þ17−15 9.9� 2.9þ3.0−3.3
Sum 90.6� 10:7þ8.4−6.7
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suppressed in B → D̄ð�ÞDð�ÞK decays due to its spin
value of 2. We observe the decay Bþ → ψð3770ÞKþ;
ψð3770Þ → D̄0D0, which confirms one of our previous
results [2]. We notice that the process Bþ → ψð4160ÞKþ

followed by ψð4160Þ → D̄0D0 is needed to improve the
description of the data. The low-mass excess in the D0Kþ

invariant mass is evident in B0 → D−D0Kþ and is the main
contribution in Bþ → D̄0D0Kþ. With this data sample it is
not possible to determine the origin of this excess. The
exponential function used to describe the effect has a
parameter α equal to 1.43� 0.71þ0.54−0.30 and 0.68� 0.08�
0.02 for B0 → D−D0Kþ and Bþ → D̄0D0Kþ, respectively.

B. Branching fractions

The partial branching fraction Bres for a given resonance
is computed using the fraction fres of the resonance (see
Tables III and IV) and the total branching fraction Btot of
the specific B mode. We use the total branching fractions
measured in a previous publication [15] with the exact same
data sample. The computation is as follows:

Bres ¼ fres × Btot:

The uncertainties for the partial branching fraction are
computed from the quadratic sum of the uncertainties from
the total branching fraction [15] and the uncertainties from
the fraction (see Tables III and IV), where we treat
separately the statistical and systematic uncertainties.
The results are presented in Table V. We can compare

these results with previous publications that are available
for the mode Bþ → D̄0D0Kþ. In BABAR [2], using an
analysis of the D̄0D0 invariant mass, the result for the
ψð3770Þ was BðBþ→ψð3770ÞKþ½D̄0D0�Þ¼ð1.41�0.30�
0.22Þ×10−4, which is in good agreement with the current
result. This present measurement supersedes the previous
one. The Belle experiment [4] finds for the partial branch-
ing fraction BðBþ→ D̄0D�

s1ð2700Þþ½D0Kþ�Þ¼ð11.3�
2.2þ1.4−2.8Þ×10−4 and BðBþ → ψð3770ÞKþ½D̄0D0�Þ ¼ ð2.2�
0.5� 0.3Þ × 10−4, which present a difference with our
measurements of 1.7σ and 1.4σ, respectively.

The significance of the decay of the ψð4160Þ charmo-
nium resonance to D̄0D0 is 3.3σ, including systematic
uncertainties. The significance of the D�

s2ð2573Þþ meson
decay to D0Kþ is 3.4σ (for the mode B0 → D−D0Kþ),
including systematic uncertainties.

C. Properties of D�
s1ð2700Þþ

We show in Table VI the result for the mass and width of
the D�

s1ð2700Þþ meson for the two modes obtained from
the Dalitz plot analysis. The measurements in the two final
states agree with each other within their uncertainties. We
combine the measurements for the mass and width,
respectively, calculating the weighted means and taking
into account the asymmetric uncertainties. This procedure
works for uncertainties that are not correlated between the
measurements. Only the systematic uncertainty coming
from the Blatt-Weisskopf factor is correlated between the
modes: we perform first the combination without this
particular systematic uncertainty, where we obtain
MðD�

s1ð2700ÞþÞ¼2699�7MeV=c2 and ΓðD�
s1ð2700ÞþÞ¼

127�17MeV (including statistical and systematic). For the
uncertainty related to the Blatt-Weisskopf factor, we use the
maximum positive and negative deviations found in the two
modes that we add quadratically to the total uncertainties.
Finally, the combination of both modes gives

MðD�
s1ð2700ÞþÞ ¼ 2699þ14−7 MeV=c2;

ΓðD�
s1ð2700ÞþÞ ¼ 127þ24−19 MeV; ð9Þ

where the uncertainties quoted are the total uncertainties
(including statistical and systematic).

TABLE V. Summary of partial branching fractions. The first
uncertainties are statistical and the second systematic. The nota-
tion B0→D−D�

s1ð2700Þþ½D0Kþ� refers to B0→D−D�
s1ð2700Þþ

followed by D�
s1ð2700Þþ → D0Kþ.

Mode B ð10−4Þ
B0 → D−D�

s1ð2700Þþ½D0Kþ� 7.14� 0.96� 0.69
Bþ → D̄0D�

s1ð2700Þþ½D0Kþ� 5.02� 0.71� 0.93
B0 → D−D�

s2ð2573Þþ½D0Kþ� 0.34� 0.17� 0.05
Bþ → D̄0D�

s2ð2573Þþ½D0Kþ� 0.08� 0.14� 0.05
Bþ → ψð3770ÞKþ½D̄0D0� 1.18� 0.41� 0.15
Bþ → ψð4160ÞKþ½D̄0D0� 0.84� 0.41� 0.33

TABLE VI. Mass and width of theD�
s1ð2700Þþ meson obtained

from the Dalitz plot analyses of the modes B0 → D−D0Kþ and
Bþ → D̄0D0Kþ. The first uncertainties are statistical and the
second systematic.

Mode Mass (MeV=c2) Width (MeV)

B0 → D−D0Kþ 2694� 8þ13−3 145� 24þ22−14
Bþ → D̄0D0Kþ 2707� 8� 8 113� 21þ20−16

TABLE IV. Results from the Dalitz plot fit (moduli, phases, and
fractions) for Bþ → D̄0D0Kþ. The different contributions are
listed: the D�

s1ð2700Þþ, D�
s2ð2573Þþ, ψð3770Þ, and ψð4160Þ

resonances, and the low-mass excess described by an exponential.
The first uncertainties are statistical and the second systematic.

Contribution Modulus Phase (∘) Fraction (%)

D�
s1ð2700Þþ 1.00 0 38.3� 5.0þ0.8−6.2

D�
s2ð2573Þþ 0.021� 0.010þ0.009−0.003 267� 30þ17−13 0.6� 1.1þ0.4−0.2

ψð3770Þ 1.40� 0.21þ0.20−0.24 284� 22þ26−30 9.0� 3.1þ0.4−0.8
ψð4160Þ 0.78� 0.20þ0.18−0.14 188� 13þ14−17 6.4� 3.1þ1.9−2.4
Exponential 16.15� 2.26þ1.09−1.74 308� 8þ6−5 44.5� 6.2þ1.3−2.1
Sum 98.9� 9.2þ2.5−7.0
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These values can be compared to the current world
average of MðD�

s1ð2700ÞþÞ ¼ 2709� 4 MeV=c2 and
ΓðD�

s1ð2700ÞþÞ ¼ 117� 13 MeV [16]. Our measurements
are compatible with the world averages.
The Dalitz plot analyses have been performed with the

spin hypothesis J ¼ 1 for the D�
s1ð2700Þþ. To test this

hypothesis, we repeat the fits using the hypotheses J ¼ 0
and J ¼ 2. The results are presented in Table VII. We
conclude from this table that J ¼ 0; 2 are not able to fit
correctly the data, and that J ¼ 1 is strongly favored.
Because of parity conservation, we deduce that the
D�

s1ð2700Þþ meson is a state with JP ¼ 1−, which confirms
the measurement performed by the Belle experiment [4].

VII. CONCLUSIONS

We have analyzed 471 × 106 pairs of Bmesons recorded
by the BABAR experiment and studied the decays B0 →
D−D0Kþ and Bþ → D̄0D0Kþ. Dalitz plot analyses of
these decays have been performed, where we extract
moduli and phases for each contribution to these decay
modes. We observe the D�

s1ð2700Þþ meson in both final
states and measure its mass and width to be

MðD�
s1ð2700ÞþÞ ¼ 2699þ14−7 MeV=c2;

ΓðD�
s1ð2700ÞþÞ ¼ 127þ24−19 MeV; ð10Þ

where the uncertainties include statistical and systematic
uncertainties. We determine its spin parity to be JP ¼ 1−.
Several possibilities have been discussed to interpret the

D�
s1ð2700Þþ meson. This resonance could be interpreted as

the n2Sþ1LJ ¼ 13D1 cs̄ state [26] or as the first radial
excitation of the D�

sð2112Þ meson (23S1) [27]. Some
authors interpret the D�

s1ð2700Þþ state as a mixing between
the 23S1 and the 13D1 states [28], obtaining a model which
is able to solve some of the discrepancies with the

experimental data. Another possibility would be that the
signal interpreted as the D�

s1ð2700Þþ originates from two
resonances overlapping each other [26].
We observe an enhancement between 2350 and

2500 MeV=c2 in the D0Kþ invariant mass that we are
not able to interpret. This enhancement, which has an
important contribution in the Bþ → D̄0D0Kþ decay mode,
is described by an ad hoc function in the Dalitz plot fit. This
effect was also seen in the Belle experiment in the study of
the Bþ → D̄0D0Kþ final state [4].
It is not clear what could be the cause of this enhance-

ment in the D0Kþ invariant mass, although we note that
some Ds excited states are expected in this mass range in
some models [27,29] and have not been observed yet.
Some authors, as for example in Ref. [23], who have
observed the same effect in other channels claim that it
could be a specific form of a nonresonant amplitude.
Finally, we do not observe the D�

sJð2860Þþ and
DsJð3040Þþ resonances in the final states B0→D−D0Kþ
and Bþ → D̄0D0Kþ.
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