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Highlights

• Species distribution models (SDMs) are an important 
tool to describe and predict potential changes of 
areas of suitable habitat but may be less accurate 
at a species’ range edge

• Using targeted citizen science initiatives can be an 
effective method to capture occurrence records at 
the poleward edge of a species’ range

• Data from two targeted citizen science initiatives in 
Tasmania were used to improve the representation 
of two range extending marine species

• We compared SDMs using traditional data repository 
observations with the targeted citizen science 
initiatives to investigate the potential change in spatial 
predictions of habitat suitability for the two marine 
species

• We found models which included these targeted 
citizen science programs predicted higher mean 
suitability across all seasons in some regions around 
Tasmania, with the greatest change predicted in the 
winter season for both species

Abstract
Citizen science programs are effective methods to collect 
large volumes of data to assist researchers in monitoring 
ecological environments. As species shift their distributions 
globally due to climate change, the use of citizen science 
data to detect these shifts is increasing. Using targeted 
citizen science programs to collect data on these species 
could provide information on range edges to inform species 
distribution modelling. Currently, species distribution 
models (SDMs) often rely on large data repositories 
that may lack observations, and hence ability, to detect 
changes at the range edge. Here, we developed a SDM 
to compare traditional data repository observations with 
targeted citizen science data at the southern distribution 
limit of two recreationally important marine fish in 
Tasmania, Australia to investigate the potential change 
in spatial predictions at their range edge. The SDM using 
the targeted citizen science data in addition to traditional 
observation data improved the representation of species 
by 2.3 and 52.7% and increased the southern distribution 
of the species by 277 and 438 km, for snapper and King 
George whiting, respectively. Future (centred around 2050 
under IPCC RCP 8.5) habitat suitability was predicted to 
increase more over the winter season, with implications 
for species overwintering and persistence of populations. 
The use of citizen science data allowed for the modelling 
of historical and future change for two range-extending 
species, an outcome possible due to the collaboration of 
two citizen science programs that collected observational 
data on the target species. Species range shifts will require 
ongoing monitoring and we have demonstrated that 
complimentary citizen science initiatives are effective 
in capturing occurrences of species at their range edge. 
Increasing collaboration between programs may further 
increase data collection efforts and provide the knowledge 
to create a hub for these data to be used more efficiently 
in the future.

Keywords: Chrysophrys auratus, citizen science, delta downscaling, fisheries, ocean warming, range-shift, Sillaginodes 
punctatus, South-East Australia, species distribution model, species redistribution.

https://orcid.org/0000-0002-1176-2321
https://orcid.org/0000-0002-8666-5112
https://orcid.org/0000-0002-3355-0856
https://orcid.org/0000-0002-9406-0578
https://orcid.org/0000-0002-8307-128X
https://orcid.org/0000-0002-3479-2793
https://orcid.org/0000-0003-0192-4339
https://orcid.org/0000-0002-6735-5899


Graba-Landry et al. Citizen science at the range edge

Frontiers of Biogeography 2023, 15.1, e58207 © the authors, CC-BY 4.0 license  2

Introduction
Citizen science initiatives present effective 

opportunities to gather a large quantity of data 
by involving members of the community and can 
provide many benefits to participants (Jordan et al. 
2012, Den Broeder et al. 2017, Bremer et al. 2019). 
Improved observational effort achieved by engaging 
members of the public in ecological monitoring can 
increase the potential for long-term assessments 
of localised regions (e.g. Hepper 2003), capture the 
distribution or behaviour of a singular species across 
a broad spatial scale (Callaghan and Rowley 2020, 
Weaver et al. 2020), document the occurrence of 
rare species (Roberts et al. 2022), or record new 
species in novel habitats (e.g. the Range Extension 
Database and Mapping Project (Redmap); Stuart-
Smith et al. 2018, Pecl et al. 2019b). The advent of 
new technologies (e.g. image and sound processing 
software, app-based platforms, etc.) have increased 
the potential for citizen scientists to effectively monitor 
their local environments and provide valuable data 
to scientists (Bonney et al. 2014, Aceves-Bueno et al. 
2017, Roberts et al. 2022). However, the value of 
citizen science for ecological monitoring is dependent 
on initiatives having clear objectives and the inclusion 
of data validation steps to ensure information is 
reliable (Callaghan et al. 2019). For example, if 
objectives relate to determining species distributions, 
citizen science initiatives may seek to enhance the 
spatiotemporal coverage of species occurrence data, 
whereas initiatives aiming to monitor biodiversity 
may endeavour to frequently assess localised sites 
for changes through time (Callaghan et al. 2019). 
Given that citizen science participation is on the rise, 
collaboration across various initiatives holds the 
potential to maximise impact, increase data collection 
potential and social engagement with environmental 
initiatives (Bonney et al. 2014).

Incorporating citizen science in ecological 
monitoring projects often results in trade-offs (i.e. 
improved cost effectiveness of data collection versus 
reduced data quality; Callaghan et al. 2019), depending 
on design of the specific program. As with any kind of 
ecological sampling, potential biases associated with 
citizen science data collection should be considered 
within the sampling design, and addressed within 
program implementation (i.e. participant training, data 
validation by experts or image/sound software) and 
with appropriate statistical approaches (Dickinson et al. 
2010). When properly trained, and with sound 
knowledge of the local environment, data gathered 
by citizen scientists can be equivalent to that of 
experts (Danielsen et al. 2014). However, given that 
citizen science datasets are a product of the efforts of 
multiple people, observer bias can affect their quality. 
Observer bias is known to depend on the quality of 
training (Fitzpatrick et al. 2009), how long citizen 
scientists have been involved with the program (i.e. 
“learner” or “first year” effects; Bas et al. 2008, Jiguet 
2009, Schmeller et al. 2009) and age of observers 
(Delaney et al. 2008). Further, access to areas of 
interest often result in spatial and temporal variation 

in sampling effort (Dickinson et al. 2010). These spatial 
and temporal biases, which are often associated with 
easy to access locations or management exclusion 
zones (e.g. marine reserves, rehabilitation areas, 
no-take zones), or favourable times of the year 
(i.e. weekends, school holidays, periods of good 
weather, etc.), are a concern for questions requiring 
homogenous sampling through space and time (such 
as for species distribution modelling: Callaghan et al. 
2019). Given these limitations, scientists seeking to 
analyse data produced by citizen science initiatives 
for the purpose of species distribution modelling 
must carefully select and apply appropriate methods 
(Table 1). For example, generalized linear or generalized 
additive mixed effects models (GLMMs and GAMMs) 
have proven to be useful tools for analysing citizen 
science data as the addition of a random effect (e.g. 
year, season, location) can absorb some of the spatial 
and temporal variation (i.e. clustering) commonly 
associated with citizen science data (Bird et al. 2014). 
Further, thinning data through space and time is 
an additional technique that has proven useful for 
reducing spatial and temporal autocorrelation among 
occurrence records sourced from citizen science 
datasets (Brodie et al. 2015, Champion et al. 2018).

As climate change is driving a global redistribution 
of species, understanding when and where species 
may be moving is a priority for ecologists and natural 
resource managers (Pecl et al. 2017). Collecting data 
on range extending species is difficult as this is largely 
dependent on which stage of the range extension 
pathway a species may be progressing through (i.e. 
between arrival, persistence and establishment: 
Bates et al. 2014), and thus often challenging. Given 
that the relative abundance of species at their range 
edges is typically lower than throughout their core 
distribution, critical information regarding species 
occurrence in range edge habitats is often poorly 
understood. Therefore, citizen science is an ideal 
tool for collecting data on species at their range 
edges (Robinson et al. 2015), as engaging with the 
local community markedly increases the potential 
to locate and record species in novel environments 
(Wang et al. 2018, Pecl et al. 2019b). In response to 
this need, the Range Extension Database and Mapping 
Project (Redmap: Pecl et al. 2019b) was established 
to encourage members of the Australian public to 
photograph and report species that they observe or 
catch that are new or unusual for that particular area 
along the coast. Photos submitted to Redmap are 
verified by one of ~80 experts around the country 
to ensure robust out of range observational data 
(Pecl et al. 2019b). Out of range observations linked 
to long-term change in climatic processes (e.g. ocean 
warming), are likely indicative of a range shift (rather 
than a random vagrant found out of range) and 
repeated observations in novel environments indicate 
a species may be at the initial “arrival” stage of their 
range extension (Bates et al. 2014, Pecl et al. 2019b). 
For example, yellowtail kingfish (Seriola lalandi) was 
identified 200 km southward of its previous known 
record using the Redmap platform, as was the first 
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record of amberjack (S. dumerili) in eastern Tasmania 
(Stuart-Smith et al. 2018). While Redmap has been 
successful in the initial identification of species at 
the range edge, it is a challenge however to sustain 
observer motivation when a species becomes more 
common place, and loses its novelty (Pecl et al. 2019b), 
which may underrepresent the abundance of that 
species at the range edge.

Species distribution models (SDM) have been 
used widely in ecology and conservation as a tool for 
exploring trends in species diversity (Graham et al. 2006) 
and predicting climate-driven species redistributions 
(Araújo et al. 2005, Thomas and Ohlemuller 2006, 
Elith et al. 2010). SDMs perform the latter by 
determining the preferred habitat of a given species, 
and then using projected future climate data to estimate 
the future location of preferred habitat for that species 
(Araújo et al. 2005, Elith et al. 2010). SDMs, otherwise 
coined as ‘habitat suitability models’ (Keith et al. 2008), 
achieve this by relating species data (e.g. abundance 
or occurrence data) to environmental variables to 
determine species’ environmental habitat preferences, 
which can then be used to estimating a species’ 
distribution (Elith et al. 2006, Barbet-Massin et al. 2012). 
The use of SDMs to predict climate-driven shifts in 

marine systems are increasing (see Robinson et al. 2015, 
Champion et al. 2018, Champion et al. 2019, Davis et al. 
2021) and have accurately predicted the geographic 
distributions of species across a range of marine taxa, 
including fish (Guinotte et al. 2006), temperate corals 
(Tittensor et al. 2009), invertebrates (Bentlage et al. 
2009) and macroalgae (Verbruggen et al. 2009). Citizen 
science data is valuable for the calibration of correlative 
SDMs because large datasets are often available that 
can be robustly combined through strategic removal 
of records (i.e. data thinning as described above), and 
assessments of data autocorrelation and collinearity 
of predictors (Table 1).

Due to disproportionate warming in Tasmania 
(Hobday and Pecl 2014), driven by the extension of the 
Eastern Australian Current, this region is a hotspot for 
marine species range extensions, having more records 
of species poleward of their historic distributions than 
anywhere else in Australia (Gervais et al. 2021). These 
shifts are either from waters adjacent to the Australian 
mainland into Tasmanian waters, or from the north 
of Tasmania into more southern areas. Range-shifting 
species include algae, ascidians, bivalves, gastropods, 
octopuses, starfish, sea urchins, crustaceans, sharks 
and rays, and fish (Pitt et al. 2010, Last et al. 2011, 

Table 1. Steps to address data limitations of common occurrence-only citizen science data with varied objectives to 
develop robust species distribution models.

Step Method
1. Selecting appropriate data to 
match to environmental covariates

While historical records of occurrence may date back to the 1800s, 
as records are matched to satellite-derived covariates, data is 
normally constrained to the 1980s—when satellite data became 
available.

2. Data thinning To account for spatio-temporal autocorrelation among species 
occurrence records, only one occurrence is included from the same 
day and location, and all other occurrences from the same day can 
only be retained if they are greater than 0.05 km apart (Brodie et al. 
2015, Champion et al. 2018).

3. Generation of pseudo-absences For presence-only data sets, points are generated to estimate 
areas of species absence: pseudo-absences. A ratio of 10 pseudo-
absences:1 occurrence, as recommended for regression type 
analyses of species distributions, throughout the temporal extent 
encompassed by species occurrence data (Barbet-Massin et al. 
2012).

4. Assessment of spatial and 
temporal autocorrelation

Once data thinning steps are completed, and models are developed, 
spatial and temporal semi-variograms relevant to the scale of which 
the data are collected (i.e., usually within 100 kms, and within 
30 days for recreational fishing studies) are visually assessed to 
determine the degree of spatial or temporal autocorrelation for data 
used in the model.

5. Assessment of collinearity among 
predictors

Collinearity among predictors is assessed by comparing variance 
inflation factors (VIF) which are used to detect the severity 
of multicollinearity in the ordinary least squares regression 
(Thompson et al. 2017).
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Robinson et al. 2011, Ramos et al. 2018, Gervais et al. 
2021). The potential implications of range shifting 
species for resource management are important to 
consider, as many stakeholder groups are already 
starting to adapt autonomously to these changes 
(Pecl et al. 2019a).

In this study, we focus on two species: snapper 
(Chrysophrys auratus) and King George whiting 
(Sillaginodes punctatus), which are undergoing 
range extensions in and increasing in abundance 
in the Tasmanian region, providing new fishing 
opportunities for recreational and, to a lesser extent, 
commercial fishers (Last et al. 2011, Robinson et al. 
2015, Wolfe et al. 2020). As the presence of these two 
species in Tasmania is now relatively well known, a 
targeted citizen science program that engaged with 
recreational anglers to document catches of these 
species was implemented in 2019. Here we draw on 
data from this citizen science initiative, in conjunction 
with data from the Redmap Australia, to quantify and 
predict the distributions for these species at their 
poleward range edges. We demonstrate the value 
of citizen science data recorded at the range edge 
by: (i) Quantifying the contribution of citizen science 
initiatives strategically operating at species range edges 
to improve our understanding of species distributions 
at their distributional limits, (ii) comparing spatial 
predictions of habitat suitability for snapper and King 
George whiting at their poleward range edges using 
SDMs that did and did not include data from targeted 
citizen science initiatives at the range edge, and (iii) 
using SDMs that incorporated data from the range 
edge to project future shifts in suitable habitat for 
snapper and King George whiting in an ocean warming 
hotspot under future climate change.

Materials & Methods

Quantifying the contribution of citizen science 
initiatives

Study extent
The spatial extent of our analysis ranges from 

25 to 46°S and 134 to 154°E. Although snapper can 
occur further north of this latitudinal domain, we 
chose a cut off latitude at 25°S (i.e. Bundaberg), to 
generate a thermal preference curve relevant to the 
mid-southern limit of the range of snapper on the 
east coast. Furthermore, this domain was selected 
as it encompassed the south-eastern Australian 
ocean warming hotspot (Hobday and Pecl, 2014), 
which is warming at a rate between two to four 
times faster than the global average and driving a 
poleward redistribution of marine life in this region 
(Gervais et al. 2021).

Occurrence records from the range edge
Three unique sources of range edge species 

occurrence data were captured in this study and 
utilised in the development of species distributions 
models. These include:

Data from the range edge (1, 2 and 3)

1. Tassie Fish Frame Collection Program
The Tassie Fish Frame Collection (TFFC) Program 

was launched by the Institute for Marine and Antarctic 
Studies (IMAS) at the University of Tasmania in 
December 2019 with the aim of creating a recognisable 
and ongoing fish frame (i.e. a fish with the fillets 
removed) collection program for Tasmania. The 
program has provided a platform to engage with the 
Tasmanian recreational fishing community, and an 
opportunity for fishers to participate in citizen science 
through the donation of important biological samples 
and data, from fish waste which would otherwise be 
discarded (i.e. fish frames).

To enable the Tassie Fish Frame Collection Program 
to operate on a state-wide scale, a network of 16 drop-
off points was established to provide strategic spatial 
coverage along most of coastal Tasmania. These drop-
off points were predominately tackle stores, which 
provide a natural point for knowledge sharing and 
communication around fishing for the target species. 
IMAS staff members regularly liaised with the drop-
off points to organise pick-up and transport of frozen 
fish frames to IMAS laboratories in Launceston and 
Hobart for processing. As these data were provided to 
researchers, there is high confidence in the data quality 
though this is also associated with a higher cost to obtain 
the data (advertising of the program, collecting the 
frames, identifying and processing the samples, etc.). 
Within the project sampling period (July 2019–July 
2021) a total 718 fish frames were donated from across 
Tasmania, which included 264 snapper and 454 King 
George whiting. Prior to the official launch of the TFFC 
program, fish frames were occasionally donated by the 
recreational angling community to IMAS for research 
purposes, and as such an additional 669 King George 
whiting fish frames were included within this data set 
donated between 2016–2019 (until July). It was this 
initial success of engaging with the recreational fishing 
community which formed the basis to launch the official 
TTFC Program for targeted species around the state.

2. Range Extension Data Base and Mapping Project 
(Redmap)

Redmap (www.redmap.org.au, Pecl et al. 2019b) 
is an Australian citizen science initiative which 
encourages members of the public to photograph 
and report new or unusual species along the coast. 
These photographs are then identified or verified by 
a network of expert scientists, ensuring the quality 
of the reports. As such, it is a useful source of data 
particularly for range extending species (Robinson et al. 
2015, Champion et al. 2018, Champion et al. 2019). 
Modelling species at their range edges requires data 
from these range limits, and therefore Redmap is an 
ideal data source because its objective is specifically to 
identify species outside of their historical distributions.

3. Fishery-independent sampling
Fishery independent sampling is a method by 

which researchers fish and sample the population, 
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and can account for any biases associated with 
fishery-dependant sampling (i.e. size limits, seasonal 
closures, bag limits etc). Therefore, to account for 
spatial and temporal biases from citizen science sources 
in Tasmania, we also used occurrence records from 
fishery-independent sampling during the period of 
which the TFFC Program was launched (i.e. 2019–2021; 
Table S1). Sampling consisted of fishery independent 
research trips mainly targeting undersized fish (rod and 
line and seine nets). Due to the nature of this kind of 
sampling, the data is of high quality but is one of the 
most expensive collection methods.

Additional sources of occurrence data (4 and 5)
To ensure the core distributions of both study 

species were appropriately represented and species 
distribution models fitted to data from both core and 
range edge environments, data were also sourced from:

4. Atlas of Living Australia
Atlas of Living Australia (ALA, www.ala.org.au) is a 

comprehensive collection of occurrence records and 
biodiversity data, aggregated from natural history 
collections, government departments, researchers 
and university institutions, community groups and 
individuals Australia-wide. These data are numerous 
and free to use, however the quality of data may be 
variable, and cannot be confirmed by the data user.

5. Reef Life Survey
Reef Life Survey (RLS, reeflifesurvey.com, Edgar et al. 

2020) is a non-profit citizen science program which 
use highly trained volunteer SCUBA divers to conduct 
standardized underwater visual surveys of rocky- 
and coral reefs worldwide and provide open-source 
occurrence and biodiversity data. Due to training 

received by those collecting the data, quality is high, 
but as it requires this training and processing of the 
data collected, is also an expensive data source.

When occurrence data from each aforementioned 
sources were combined, these records ranged from 
1897–present. However, the temporal range of data 
was restricted to 1985–2021 to match the availability 
of satellite-derived environmental covariates. We 
then mapped these occurrences to determine the 
contribution (%) of each data source to the entire 
distribution of each species, accounting for all 
possible data, and the data only used by each species 
distribution model (required data thinning steps and 
model development explained in methods below).

Comparing spatial predictions of habitat suitability

Species Distribution Model Development

Spatial and temporal autocorrelation and data 
thinning

To account for spatio-temporal autocorrelation 
among species occurrence records that may be 
apparent within the combined set of species 
occurrences, only one occurrence was included from 
the same day and location, and all other occurrences 
from the same day were only retained if they were 
greater than 0.20° apart for snapper and 0.10° apart 
for King George whiting (Table 1; Brodie et al. 2015, 
Champion et al. 2018). These values were determined 
by the visual assessment of spatial and temporal semi-
variograms (as described in Table 1). Once this was 
done, a total of 3662 snapper and 429 King George 
whiting records were available for model fitting and 
cross-validation (Fig. 1).

Figure 1. Presence (pink) and pseudo absence (grey) points used in optimal species distribution model for a) snapper 
(Chrysophrys auratus) and b) King George whiting (Sillaginodes punctatus).

http://www.ala.org.au
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Pseudo-absence generation
To characterise unsuitable environmental conditions 

for each study species, pseudo-absence points were 
randomly generated at a ratio of 10 pseudo-absences:1 
occurrence, as recommended for regression type 
analyses of species distributions (Barbet-Massin et al. 
2012), throughout the temporal extent encompassed 
by species occurrence data. Pseudo-absences were 
only generated nearshore of the 200 m isobath 
(the continental shelf break) and within the spatial 
envelope encompassed by species occurrence data to 
characterise environmental variation prevalent within, 
and not beyond, the known distributions of the study 
species. Combining occurrence and pseudo-absences 
data produced a binomial distributed response 
variable for statistical modelling (Barbet-Massin et al. 
2012). Large sampling of pseudo-absence points for 
generating background data have been shown to have 
high explanatory power and predictive skill when 
assessing range shifts or animal movement across wide 
spatial scales (Hazen et al. 2021), and was therefore 
deemed appropriate as our study extent extended as 
far north as 25°S in Queensland (snapper) and 32°S in 
South Australia, and 37°S in New South Wales (King 
George whiting) (Fig. 1).

Environmental predictors
To predict the spatial distribution of suitable habitat 

for snapper and King George whiting, individual 
species distribution (i.e. habitat suitability) models 
for each species were developed. Specifically, sea 
surface temperature (SST), depth (m), and distance 
(m) to seagrass habitat (King George whiting only) 
were used as predictors of environmental habitat 
suitability (Table 2), which are known to be significant 

predictors of the distributions of both snapper and King 
George whiting throughout their southern Australian 
distributions (Jenkins et al. 2020). Satellite-derived 
sea surface temperature (SST) data was sourced 
from the Copernicus Marine Environment Monitoring 
Service (Table 2). Gridded bathymetry data measured 
from optical sensors was obtained from the General 
Bathymetric Chart of the Oceans (GEBCO Compilation 
Group 2020). Each presence and pseudo-absence point 
were matched to day- and location-specific values for 
SST and depth. Seagrass habitat data was sourced 
from Seamap Australia (Butler et al. 2017), and the 
distance to seagrass was calculated by measuring the 
distance of each presence and pseudo-absence point 
to the nearest seagrass polygon using the function 
st_distance in the “sf” package in R (version 1.0.2; 
Pebesma 2018).

Collinearity among predictors was assessed using 
variance inflation factors (VIF) that detect the severity 
of multicollinearity in the ordinary least squares 
regression (Thompson et al. 2017). VIFs for factors 
included in the optimal model were <1.09 for both 
snapper and King George whiting (Table S2), indicating 
a low degree of dependence between the focal 
predictor (i.e. SST, depth, distance to seagrass) versus 
the other predictors in the model (i.e. SST relative to 
depth and distance to seagrass, etc; Thompson et al. 
2017), and would therefore have little effect on model 
performance (Zuur et al. 2007).

Species distribution modelling incorporating range 
edge occurrences

Individual generalised additive mixed models 
(GAMM) with a logit link function were developed 
for both snapper and King George whiting by 

Table 2. Descriptions of explanatory covariates for model selection for habitat suitability models for snapper 
(Chrysophrys auratus) and King George whiting (Sillaginodes punctatus).

Predictor Description Source Spatial 
Resolution Units

SST Daily global sea surface temperature 
reprocessed (level 4) from 
Operational SST and Ice Analysis 
system.

Copernicus Marine 
Monitoring Service 
(https://marine.
copernicus.eu), product 
#010_011

0.05° °C

Depth Gridded bathymetry data measured 
by optical light sensor downloaded 
from the General Bathymetric Chart 
of the Oceans.

General Bathymetric 
Chart of the Oceans 
(GEBCO_2021 https://
www.gebco.net/)

0.004° m

Distance to 
Seagrass

Distance to seagrass was measured 
by measuring the distance of each 
point to the nearest seagrass polygon 
from the Seamap Australia dataset.

Seamap Australia (https://
seamapaustralia.org/) 
Downloaded from: 
https://data.gov.au 
FINALPRODUCT_Seamap 
Aus)

0.004° m

Year Calendar year (random intercept 
term in mixed models).

- -

https://marine.copernicus.eu
https://marine.copernicus.eu
https://www.gebco.net/
https://www.gebco.net/
https://seamapaustralia.org/
https://seamapaustralia.org/
https://data.gov.au
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relating the binomially distributed response variable 
(presence vs. pseudo-absence) to environmental 
predictors (Zuur et al. 2009). Due to the lack of 
consistent information of sampling effort in the Atlas 
of Living Australia database, Year was also included 
as a random effect in the model to account for intra-
annual variability in sampling effort (Champion et al. 
2018). Multiple models containing all reasonable 
combinations of model predictors were trialled and 
model selection was conducted by comparing Akaike 
Information Criterion (AIC) values (see Table S3 for full 
model selection). To avoid overfitting in the snapper 
GAMM, four knots were applied to the SST smoothing 
term to reflect ecological realism in the thermal habitat 
response of this species (i.e. a unimodal thermal 
performance curve: see Fig. S1).

Model evaluation
To ensure that removing occurrences from the 

same day and location, and occurrences within 0.20° 
and 0.10° and for snapper and King George whiting 
respectively, established spatiotemporal independence 
among occurrence records used to fit SDMs, spatial 
and temporal semi-variograms were used to relate 
semi-variance of points to the space (degrees) and 
time (days) separating each occurrence record (Figs. 
S2, S3). Cut-off distances were chosen to reflect the 
spatial and temporal limits where autocorrelation 
is likely to arise (i.e. at relatively close distances in 
space (i.e. < 100 km) and time (i.e. < 30 days). Semi-
variograms were created by converting dates into 
Julian days to generate a cut off distance of 30 days 
to assess temporal autocorrelation and coordinates 
were used with a cut off distance of 111 kms (1.0°) to 
assess spatial autocorrelation.

To assess the predictive accuracy of the optimal 
models for each species, k-fold cross validations were 
used. This was done by randomly partitioning the 
full set of species occurrence and pseudo-absences 
into five subsets (k = 5) containing an equal amount 
of occurrence and pseudo-absences at a ratio of 10 
pseudos:1 occurrence (Barbet-Massin et al. 2012, 
Brodie et al. 2015). Each model was then trained 
on each of four sets of subset data, and then tested 
against the 5th subset. Five folds were used as a 
conservative measure as partitioning data into a 
greater number of model fitting and testing folds 
would have compromised the predictive skill of the 
model being tested (Smith et al. 2017).

The area under the receiver operating characteristic 
curve (AUC) and the true skill statistic (TSS) were 
calculated to determine both model accuracy and 
predictive performance, as appropriate for statistical 
models used to predict spatial variation in species 
habitat suitability (Allouche et al. 2006, Brodie et al. 
2015). Rates of true positive predictions (sensitivity) 
and false positive predictions (1 - specificity) were used 
to calculate the mean AUC (range 0–1, where a value 
of 0.5 indicates poor prediction i.e., similar to random, 
and values > 0.8 indicate good predictive accuracy; 
Araújo et al. 2005). The AUC is a useful metric to assess 
the accuracy of species distribution models as it can 

differentiate between suitable and unsuitable habitat 
without assuming a cut-off probability (Elith et al. 
2006). The TSS was calculated as TSS = sensitivity + 
specificity – 1, and ranges between -1 to 1, where 0 
indicates zero predictive skill. The optimal model for 
snapper had a mean AUC (SD) of 0.9559 (0.0005) and a 
mean TSS (SD) of 0.8443 (0.0026). The optimal model 
for King George whiting had a mean AUC (SD) of 0.9873 
(0.0002) and a mean TSS (SD) of 0.9626 (0.0013).

Comparing the influence of citizen science 
observations from the range edge on spatial 
predictions of suitable habitat

To compare the influence of citizen science 
observations from the range edge on the spatial 
predictions of suitable habitat for snapper and 
King George whiting we developed similar GAMMs 
using only occurrence records from the ALA and RLS 
datasets. We then compared spatial predictions of 
suitable habitat of the aggregated historical period (i.e. 
1998–2018) between models which included data from 
targeted citizen science initiatives at the range edge 
(i.e. the TFFC Program and Redmap, supplemented 
with the fishery independent data) and those that 
did not. Given our objective was to make spatial 
comparisons between models, we kept the optimal 
combination of covariates determined by AIC from 
models with the entire data set (as above). Generalised 
linear models were then developed per species to 
assess differences in future spatial projections of 
models including and excluding data collected from 
the programs at the range edge. These models also 
included season as a fixed factor, and a binomial error 
distribution (as data were bound between 0 and 1). We 
also calculated the absolute difference in forecasted 
habitat suitability between the models using each 
dataset by subtracting the grid cells each prediction 
raster per season:

prediction_rasteralldata – prediction_rasternorangeedge
Historical spatial predictions of suitable habitat 

used satellite-derived sea surface temperature (SST) 
data aggregated to an Austral seasonal temporal 
resolution (i.e. spring: September–November, summer: 
December–February, autumn: March–May, winter: 
June–August) over the 21-year period 1998–2018. 
Seasonal SST rasters were then stacked with depth and 
distance to seagrass (King George whiting) spatial data 
layers, as these predictors were assumed to be static, 
and bilinearly interpolated to a common resolution 
of 0.004°. This fine scale resolution was selected 
to ensure that the effects of nearshore variation 
in depth on species distributions were effectively 
represented within spatial predictions (Table 2). The 
predicted responses (i.e. relative probability of species 
occurrence) of each of the optimal models were then 
converted into a ‘habitat suitability index’ (following 
Champion et al. 2018). This was calculated by dividing 
all relative probability of occurrence predictions by 
the maximum relative probability predicted over the 
entire spatial domain duration of the study period. This 
was done because the relative probability of presence 
values are dependent on the ratio of occurrence to 
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pseudo-absence data selected to fit the model (Pearce 
and Boyce 2006). The habitat suitability index therefore 
ranged between 0 (not suitable) and 1 (highly suitable).

Using SDMs to project future shifts

Analysis for changes to habitat suitability 
under future climate change

To project future changes in the poleward range 
edge distribution of snapper and King George whiting 
we used the SDM parameterised with range edge 
occurrence data.

i) Delta downscaling method for future climate 
change projections

To assess the potential shift and/or increase in 
habitat suitability under future projections, future 
environmental data were obtained by downscaling 
sea surface temperature to a common resolution from 
five CMIP5 climate models (Table S4) forced under the 
IPCC RCP 8.5 prediction scenario. This was done by 
applying the delta method to modelled environmental 
data (e.g. Morley et al. 2018, Navarro-Racines et al. 
2020), which involves calculating the difference (i.e. 
delta value) between seasonally aggregated SST data 
for the period 2036–2065 (centred on 2050) and a 
modelled historical baseline period encompassing 
1993–2006 for each CMIP5 model forced under 
the RCP 8.5 emissions scenario. Secondly, delta 
value matrices were bilinearly interpolated from 
their native model resolution (~1°) to the finer 
resolution of observed ocean data (i.e. 0.05°) and 
adding to a satellite-derived seasonal climatology 
that encompassed the period 1993–2006.

Observed SST data for the historical baseline 
period was sourced from the Copernicus Marine 
Environment Monitoring Service (sea surface 
temperature product #010_011). This procedure 
produced seasonally aggregated sea surface 
temperature, downscaled to a common 0.05° 
resolution from six CMIP5 models forced under 
RCP 8.5. This method was chosen as it has been shown 
to be robust to correct mean climate projections 
worldwide (Hawkins et al. 2013, Morley et al. 2018) 
and it has been useful in for providing downscaled 
mean climate conditions over shorter (i.e. decadal) 
time periods (Navarro-Racines et al. 2020).

A multi model average of the six CMIP5 climate 
models used to produce downscaled SST data was 
used to make future projections of habitat suitability 
of snapper and king George whiting. This model 
average was further interpolated to 0.004° to match 
the resolution of depth and distance to seagrass 
habitat (King George whiting only) predictors as they 
are assumed static. Future habitat projections created 
using these data were then compared to predictions 
created using observed environmental (i.e. SST) data 
for a 21-year period (averaged) of encompassing 
1998–2018, as to compare two ~20-year averaged 
data sets centred on 2008 (hindcast) and 2050 
(forecast).

Analysis for changes to habitat suitability under 
future climate change

In the interest of understanding the emerging 
fishery of snapper and King George whiting in Tasmania 
and the potential spatial variation in predicted suitable 
habitat in this region, we divided Tasmania into six 
regions. These include, i) North-West (NW), extending 
north of Temma (41°12’S, 144°38’E), and extending 
just east of Devonport (41°09’S, 146°28’E), ii) North-
East-North (NEN) which includes the Tamar River the 
Furneaux Islands and contours the North East coast to 
Eddystone Point (40°59’S, 148°20’E), iii) North-East (NE) 
which extends south of Eddystone, to Bicheno (41°52’S, 
148°18’E), iv) East (E) which extends south of Bicheno 
to the Southern tip of Maria Island (Latitude = 41°44’S), 
v) South-East (SE) which extends south of Maria Island 
and west to Recherche Bay (43°34’S, 146°53’E), and 
lastly vi) West (W) which includes most of the West 
Coast; west of Recherche Bay and south of Temma 
(Fig. 2). As seagrass habitat is not yet mapped for the 
Furneaux Islands, predicted habitat suitability for this 
region are not directly comparable with other regions, 
but assessing projected changes through time for this 
region remain robust.

High resolution proportional change between 
historical and future periods

To assess for changes in habitat suitability between 
historical (1998–2018) and future (2036–2065) time 
periods, we measured the proportional change within 
each 0.004° (416 m2) grid cell within each region. 
This was done to account for the variation in habitat 

Figure 2. Map of Tasmania split into six regions used for 
analysis to assess regional differences in habitat suitability. 
North-West = NW, North-East-North = NEN, North-East = 
NE, East = E, South-East = SE, West = W.
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suitability within each region. We calculated the 
proportional change by subtracting the grid cells of the 
hindcast raster from the forecast raster and dividing 
by grid cells of the hindcast raster and multiplying 
each value by 100.

i.e. ( )–  /    100)forecast hindcast hindcastraster raster raster ×

Linear models were used to assess differences in 
this high-resolution proportional change between 
regions and season to inform the likely trajectory 
of future fishing opportunities for snapper and King 
George whiting in these regions. Region and season 
were used as fixed factors and a gaussian error 
distribution was used. Data was assessed for normality 
and homogeneity of variance by assessing residual 
and Q-Q plots.
Statistical Analyses

All statistical analyses were conducted using the R 
Environment (version 4.0.3; R Core Team 2021). Spatial 
thinning of occurrence records was conducted using the 
‘spThin’ package (version 0.2.0; Aiello-Lammens et al. 
2015), generalised additive mixed models were fitted 
using the ‘gamm4’ package (version 0.2.6; WoodScheipl 
2020), k-fold cross-validation was conducted using 
the ‘dismo’ package (version 1.3.3; Hijmans et al. 
2020), generalised linear and linear models were 
conducted using the ‘lme4’ package (version 1.1.27.1; 
Bates et al. 2015). Where differences between factors 
were detected in linear and generalised linear models, 
pairwise comparisons between factors and were 
conducted using the ‘emmeans’ package (version 1.6.3; 
Lenth 2021). Spatial analyses (i.e. model averaging 
of downscaled climate models forced under RCP 8.5, 
averaging of environmental data between 1998–2018, 
and conducting spatial predictions using best habitat 
suitability model) were conducted using the ‘raster’ 
package (version 3.4.13; Hijmans 2021). Maps and 
plots were made using ‘raster’, ‘sf’, and ggplot2 within 
the ‘tidyverse’ (version 1.3.1; Wickham et al. 2019) 
packages.

Results
Quantifying the contribution of citizen science 
initiatives

Data Sources
The combined contributions of the TFFC Program 

and Redmap citizen science data sources increased 
the volume of available data by 2.3% and extended 
the distributional coverage by 277.70 km poleward for 
snapper (Fig. 3a, b), and increased the volume of data 
by 52.7% and extended the distributional coverage by 
437.90 km poleward for King George whiting (Fig. 3f, g). 
After spatial and temporal thinning of the data for 
model fitting (i.e. removing occurrences from the same 
day and location, and occurrences within 0.2° and 0.1° 
for snapper and King George whiting respectively), the 
proportion of available data for model fitting from the 
Tassie Fish Frame Collection program and Redmap was 

2.8% and 37% for snapper and King George whiting 
respectively (Fig. 3c, h). However, within Tasmania 
alone, the Tassie Fish Frame Collection Program and 
Redmap comprised the majority of the data at 81% and 
85.7% for snapper and King George whiting respectively 
before spatial and temporal thinning, and increased 
to 88% and 90% once thinned and available for model 
fitting (Fig. 3d, e, i, j).

Comparing spatial predictions of habitat suitability

Environmental habitat suitability models
The optimal models (based on AIC comparisons) 

for snapper and King George whiting environment 
habitat included sea surface temperature (SST: °C), 
distance to seagrass (m), and depth (m) (Table S3):

Snapper: Response ~ ( ) ( ) ( ) |,    4    1s SST k s depth year= + +

King George whiting: Response ~ 
( ) ( )        1|s SST depth distance to seagrass year+ + +

where: Response is the relative probability of 
occurrence as a function SST, depth and distance 
to seagrass (King George whiting), ‘s’ denotes a 
smoothing term.

The effect of SST on snapper occurrence was 
non-linear with a peak effect at approximately 20°C 
(Fig. 4a). Depth was also significantly non-linear but 
displayed a general positive effect at shallower depths 
(i.e. < -50m; Fig. 4b, Table 3).

The effect of SST on King George whiting occurrence 
was non-linear and peaked at approximately 18 °C 
(Fig. 4c, Table 3). Both depth and distance to seagrass 
were significant linear predictors of King George 
whiting occurrence, where the effect on King George 
whiting occurrence declined with increasing depth 
and distance to seagrass (Fig. 4d, e, Table 3).

Comparisons of spatial predictions of 
historical (1998 – 2018) habitat suitability 
between models including and excluding 
targeted citizen science at the range edge

i) Snapper
Historical spatial predictions differed between 

the two models using different datasets where mean 
future predicted habitat suitability of snapper across 
the Tasmanian domain ranged from 9–31% higher 
from the GAMM which included data from the TFFC 
Program and Redmap (Fig. 5a, Table 4). Historical 
spatial projections of habitat suitability (by grid cell) 
differed on average from 0.008 (± 0.01 SD) suitability 
units in the winter to 0.03 (± 0.03 SD) in the summer 
between the optimal GAMM which included all 
data, and the GAMM which excluded data from the 
programs at the range edge (Fig. 5), which accounts 
for an average proportional increase per grid cell 
ranging between 0.39 (± 0.24 SD) in the winter to 
0.65 (± 0.27 SD) in the summer.
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ii) King George whiting
Historical spatial predictions differed between 

the two models using different datasets where mean 
future predicted habitat suitability of King George 
whiting across the Tasmanian domain ranged from 
31–41% higher from the GAMM which included data 
from the Tassie Fish Frame Collection Program and 
Redmap (Table 4). Historical spatial projections of 
habitat suitability differed on average from 0.01 (± 
0.03 SD) suitability units in the summer to 0.03 (± 0.04 
SD) in the winter between the optimal GAMM which 
included all data, and the GAMM which excluded data 

from the programs at the range edge (Fig. 5b, Table 4), 
noting that most of the differences occurred on the 
East and SE coast (Fig. 5b, Table 4).

Using SDMs to project future shifts

i) Snapper
When using the SDM which included data from 

the TFFC Program, Redmap, and fishery independent 
sampling, the proportional change in habitat suitability 
of snapper was greatest in the winter throughout 
each region in Tasmania (when comparing seasonally 

Figure 3. Spatial distribution of data sources for a) snapper (Chrysophrys auratus) and f) King George whiting 
(Sillaginodes punctatus), and data sources available for modelling (b, d, g, i) and used in species distribution model after 
data thinning steps (c, e, h, j) for snapper (upper panels) and King George whiting (lower panels). Note, “Res.” Represents 
fishery independent sampling data.
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aggregated environmental data averaged across 
20 years: hindcasted (1998–2018), and forecasted 
(2036–2065) periods) within each grid cell (0.004° or 
416 m2)). The average percent increase (estimated 
marginal model mean ± SE) ranged from 126.33 (± 0.29) 
% in the NE region to 249.31 (± 0.06) % in the NEN 

region (Fig. 6a, Table S5). The greatest proportional 
increase in habitat suitability was 296.58% in the 
NEN region in the winter (Fig. 6a). There was also a 
small increase in suitability in the spring and summer 
seasons across all regions ranging from an increase of 
35 (± 0.08)–60.89 (± 0.14) % in the spring (NW and SE 

Figure 4. Partial effects of sea surface temperature (SST), depth and distance to seagrass on the fitted values of the optimal 
habitat suitability model for a–b) snapper (Chrysophrys auratus) and c–e) King George whiting (Sillaginodes punctatus) 
± 95% confidence intervals (shaded in grey).

Table 3. Summary of results for the optimal model for suitable habitat of snapper (Chrysophrys auratus) and King George 
whiting (Sillaginodes punctatus). Smoothing terms are denoted by an ‘s’.

Species Factor Effective degrees of 
freedom (edf) Coefficient estimate p-value

Snapper s(SST) 2.99 -1.81 <0.01*
s(depth) 2.82 8.09 <0.01*

Yearintercept - -14.45 <0.01*
King George 

whiting
s(SST) 2.46 -0.18 0.02*

distance_Seagrass - -1.19 e-4 <0.01*
depth - 0.92 <0.01*

Yearintercept - 2.0 <0.01*
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regions respectively) and 21.01 (± 0.06)–40.27 (± 0.13) 
% in the summer (NEN and SE regions respectively: 
Fig. 6a). Proportional change remained low and 
consistent in the autumn across all regions.

ii) King George whiting
Proportional change in habitat suitability of King 

George whiting within each grid cell (0.004°/416 m2), 
when comparing seasonally aggregated environmental 
data averaged across 20 years: hindcasted (1998–2018) 
and forecasted (2036–2065) periods was greatest 

in the winter throughout each region. The average 
percent increase (estimated marginal model mean 
± SE) ranged from 54.9 (0.51) % in the East, to 132% 
in the North-East North (NEN: Fig. 6b). The greatest 
predicted future proportional increase in habitat 
suitability was 189% in the SE in the winter (Fig. 6b). 
There was also increased variance in the proportional 
change within each region during the winter due to 
some grid cells increasing in suitability while others 
remained unchanged (Fig. 6b, Table S6). There was 
also an increase in suitability in the spring across all 

Table 4. Results of pairwise contrasts comparing future spatial predictions between models including (i.e. all data) and 
excluding targeted citizen science initiatives at the range edge by season for snapper and King George whiting. Results 
are on the response scale.

Species Season Contrast Odds 
Ratio SE df Z ratio p

Snapper Spring All data / excl. range edge programs 1.17 0.02 Inf 7.81 <.001*
Summer All data / excl. range edge programs 1.31 0.02 Inf 16.84 <.001*
Autumn All data / excl. range edge programs 1.25 0.02 Inf 12.53 <.001*
Winter All data / excl. range edge programs 1.09 0.02 Inf 4.35 <.001*

King 
George 
whiting

Spring All data / excl. range edge programs 1.39 0.04 Inf 9.78 <.001*
Summer All data / excl. range edge programs 1.31 0.04 Inf 9.27 <.001*
Autumn All data / excl. range edge programs 1.32 0.04 Inf 9.34 <.001*
Winter All data / excl. range edge programs 1.41 0.04 Inf 9.87 <.001*

Figure 5. Differences between spatial projections (absolute change) of historical habitat suitability (1998 – 2018) during 
the summer season for a) snapper (Chrysophrys auratus) and b) King George whiting (Sillaginodes punctatus) between 
models using the entire data set, and models which excluded data from the Tassie Fish Frame Collection Program, Redmap, 
and fishery independent sampling (Res.) at the range edge (i.e. the south-east coast of Tasmania). Points are occurrence 
records. *NB This figure is a high resolution snap-shot at the range edge, during one season. For all comparisons across 
all of Tasmania please see Supplemental Information (Fig. S4).
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regions ranging from 20.66 (± 0.50) % in the East to 
40.22 (± 0.90) % in the North-East (Fig. 6b). Change 
remained low and consistent in the summer and 
autumn (Fig. 6b, Table S6).

Discussion
Here, we highlight the value of citizen science 

initiatives for quantifying the distribution of species 
at their range edges and predicting changes in habitat 
suitability under climate change at their distributional 
limits. We found that strategic citizen science initiatives 
operating at species range edges can improve the 
representation of species occurrence records in 
publicly available datasets considerably, especially 
near species’ distribution limits. These data are of 
considerable value, given they increased extent of 
available occurrence data by 278 and 438 km poleward 
for snapper and King George whiting, respectively, than 

was previously documented in online databases (i.e. 
ALA) where species occurrence records were focused 
on regions of species’ core distributions. Further, while 
data from these initiatives accounted for a relatively 
small proportion of the entire data set across the 
Australian domain (i.e. 2.3% and 52.7% for snapper 
and King George whiting respectively), the majority 
of the data within Tasmania alone came from the 
Tassie Fish Frame Collection Program and Redmap 
(i.e. 81% and 85.7% for snapper and King George 
whiting respectively). Redmap acted as a ‘canary in the 
coalmine’ to document extralimital species arrivals and 
raise awareness of range-extending species (Nursey-
Bray et al. 2018). This was then complimented by the 
Tassie Fish Frame Collection Program, which used 
consistent communication amongst a smaller targeted 
group of fishers to sustain ongoing data collection. 
Therefore, cross-pollination between initiatives 
increased data collection potential and increased the 

Figure 6. Proportional change (%) in predicted habitat suitability of each grid cell (i.e. 416 m2 area) within six regions 
of Tasmania, comparing seasonally aggregated environmental data averaged across 20 years: hindcasted (1998–2018), 
and forecasted (2036–2065) periods, predicting oceanographic suitable habitat of a) snapper (Chrysophrys auratus) and 
b) King George whiting (Sillaginodes punctatus). Boxplots show the median and inner quantiles, points are means ± SE. 
Note the y-axis between species differs.
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potential scope to a broader citizen science audience 
(Bonney et al. 2014). Lastly, fishery independent 
sampling at the range edge was conducted to account 
for any biases associated with fishery-dependant 
sampling (i.e. size limits, seasonal closures, bag limits 
etc), and accounted for a relatively small proportion 
of the range edge data (14% and 18% of occurrences 
for snapper and King George whiting respectively in 
Tasmania). Therefore, citizen science programs can be 
effective in gathering the bulk of the data, allowing for 
more targeted research sampling trips to compliment 
the citizen science datasets.

Quantifying the contribution of citizen science 
initiatives

Our analyses demonstrate how a combination 
of citizen science datasets can be integrated for the 
development of marine SDMs by following a series of 
strategic data thinning and assessment steps (Table 1). 
Combining data from different initiatives, which use 
different data collection methods (i.e. opportunistic 
vs. structured sampling), is well known to increase the 
data available for questions in regards to biodiversity, 
conservation and ecology (Peterson et al. 2020, 
Callaghan et al. 2021). The integration of species 
occurrence data was important for capturing the 
environmental variation experienced by these species 
throughout their distributions and highlighted that data 
from species range edges are required to parameterise 
models that effectively predict habitat suitability for 
species at their distributional limits. When comparing 
historical spatial predictions of models which included 
data collected by the Tassie Fish Frame Collection 
Program and Redmap, we found models which included 
these targeted citizen science programs predicted 
higher mean suitability across all seasons around 
Tasmania by 9–31% and 31–41% for snapper and 
King George whiting respectively. For snapper, whose 
distribution extends further north to tropical waters, 
the difference in spatial projections within Tasmania 
between the models which included and excluded 
occurrence records at the range edge was more 
pronounced (i.e. accounting for a greater area where 
spatial predictions of suitable habitat were higher when 
including data at the range edge to train the model). 
This is likely due to the broad thermal habitat range 
of snapper, and therefore by including occurrence 
records at the range edge increases the probability 
of occurrence in colder waters. For King George 
whiting, whose mainland distribution is restricted to 
the southern waters of Victoria, South Australia, and 
Western Australia (and therefore having a narrower 
thermal range), differences in model projections were 
more pronounced in the east and south-east coasts, 
likely caused by the relatively similar thermal habitat 
in the north of Tasmania compared to the mainland.

Comparing spatial predictions of habitat suitability
While the total area where differences between 

the models may be relatively small for King George 
whiting, including data from targeted citizen science at 
the range edge still improves model prediction accuracy 

at the range edge. For example, in Georges Bay, on the 
east coast—an emerging nursery area for King George 
whiting (Graba-Landry et al. 2022), mean historical 
habitat suitability projections from the model which 
included data from the TTFC Program and Redmap 
were 22–26% higher than the model which excluded 
these data (Fig. S5, Table S7). Further, differences in 
model projections between the two species may also 
be caused by potential progression in their range shift. 
For example, it is still unclear whether snapper persist 
as a self-sustaining population in Tasmania (Graba-
Landry et al. 2022), whereas King George whiting in 
Tasmania are likely self-sustaining and genetically 
distinct from their mainland counterparts (Jenkins et al. 
2016). Therefore, snapper may have a greater area 
of higher projected suitability when the model is 
trained on TFFC and Redmap data rich in range edge 
occurrences, as the expanding portion of the range 
of snapper may encompass more of the Tasmanian 
region than that of King George whiting. Nevertheless, 
whether differences are due to differences in the 
suitable thermal habitat ranges of each species or 
differences in their progression in the range extension 
pathway (Bates et al. 2014), data collected from citizen 
science initiatives at the range edge improved model 
projections for future habitat suitability.

Using SDMs to project future shifts

Implications for warmer winters for snapper 
and King George whiting

Under future predictions, for both species, 
habitat suitability is predicted to increase more so in 
the winter season (snapper: 126.33–249.31%, King 
George whiting: 51–132%) which has implications 
for the successful overwintering of new recruits, and 
therefore establishment into Tasmania. As the SDM 
provided evidence of suitable habitat across the entire 
Tasmanian domain (at least for the later juvenile and 
adults life stages typical of the datasets used for model 
training) conditions allowing for successful recruitment 
and overwinter survival of recruits may be limiting the 
persistence of snapper in the south and south-west of 
Tasmania. This may also be the case on the east coast 
of Tasmania for King George whiting, where reported 
catch is considerably less than in the north (although 
this may result in part from less fishing effort and 
reporting). For snapper, who typically spawn in the 
spring and summer at higher latitudes (Wakefield et al. 
2015, Graba-Landry et al. 2022), sufficient spawning 
temperatures are necessary for a successful spawning 
event, and should temperatures be below the 
threshold, spawning will not occur (Wakefield et al. 
2015). Studies across Australia suggest a period of 
consistent temperatures exceeding 17–18 °C are 
necessary for spawning for snapper (Saunders et al. 
2012, Wakefield et al. 2015). Therefore, while new 
recruits may survive at 15 °C, their fitness may be 
compromised. Current mean summer SSTs in Tasmania 
range between 16.62 °C (W)–19.12 °C (NEN) and 
suggest potential for spawning in the north. However, 
under future predictions SSTs in all regions (except the 
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west coast) exceed 17.33 °C followed by autumns which 
exceed 15 °C in all regions, which may be sufficient to 
enable adequate spawning, settlement and therefore 
recruitment of snapper in most regions of Tasmania 
under future warming.

For King George whiting, as spawning generally 
occurs in the autumn, when temperatures and day 
length decrease (Ham and Hutchinson 2003), warmer 
winters will therefore be beneficial particularly for 
larval and juvenile stages, thereby enabling successful 
recruitment and overwintering of these critical life-
history stages in Tasmania. Current (i.e. 2018) average 
winter temperatures in the north and east coast of 
Tasmania (as far south as Bicheno; 41° 52’ 58” S, 148°, 
19’ 51.6” E) range from 13.3–13.7 °C (Copernicus 
Marine Monitoring Service 2018). However, under 
future warming (RCP8.5 scenario), winter temperatures 
are predicted to increase by as much as 3 °C in the 
north-east regions of Tasmania, with predicted winter 
temperatures ranging from 16.8–17.7 °C. Given that 
current emissions scenarios are headed towards 
RCP6.0 and RCP8.5 (IPCC 2019), successful spawning 
and recruitment of King George whiting in the east 
and southeast of Tasmania is likely.

Adding local habitat predictors to improve 
SDMs

Adding local environmental habitat predictors in 
SDMs has been suggested to improve the model’s 
predictive accuracy but these improvements are often 
difficult to quantify (Hazen et al. 2021). By calculating 
the distance to a key habitat for King George whiting—
seagrass, from open access mapped data, we were 
able to include proximity to seagrass as a predictor 
in the King George whiting SDM. Furthermore, by 
rasterizing these distances by grid cell we were able to 
stack this variable with the oceanographic variables to 
make spatial predictions in habitat suitability. Through 
model selection and validation we have demonstrated 
that using a local environmental predictor is not 
only possible but improves predictive accuracy and 
skill. Seagrass habitat provides protection from both 
physical disturbance (Bostrom and Mattila 1999) and 
predation (Flynn and Ritz 1999, Hindell et al. 2000, 
2002), and increases food availability (Connolly 1994, 
Edgar 1999, Jenkins et al. 2002), therefore creating 
important nursery areas for many juvenile fishes 
(Jackson et al. 2001), including King George whiting 
(Jenkins et al. 1995).

Caveats / areas for consideration
In our current SDM we assumed the presence 

of seagrass to be static under future change, and 
we acknowledge that is a limitation of our current 
model given that vegetated marine habitat are 
themselves likely to undergo future climate-driven 
range shifts (Babcock et al. 2019). However, using 
regional habitat predictors such as proximity to 
seagrass is encouraged, as this increases the predictive 
capacity of SDMs (Kaplan et al. 2016). Some seagrass 
populations have already undergone a redistribution, 
specifically, contracting at the warm-edge of their 

range, or extending at the cold-edge of their range 
(Duarte et al. 2018). Given the temperate locality of 
Tasmania, future warming may lead to range extensions 
of temperate seagrasses which are currently limited 
to the North, and North-East coasts (i.e., Posidonia 
australis and Amphibolis antarctica, Rees 1993), or 
increase performance for seagrass communities at 
the centre or cold-edge of their distribution (e.g. 
Zostera mulleri, Heterozostera tasmanica, Halophila 
australis, Rees 1993), which may be beneficial for 
future recruitment of King George whiting. Therefore, 
the next logical step in building a more comprehensive 
SDM is to include projected spatial change in habitat 
types, in addition to projected climate change. In 
addition to this step, accounting for potential biases 
in sampling data, such as accounting for recreational 
fishing effort, in the generation of pseudo-absence 
points for the SDM would further increase the 
confidence in the model results. Lastly, while the 
SDMs of our two species predict an increase in 
habitat suitability within the Tasmanian domain under 
future climate change, our models only account for 
predicted changes to sea surface temperature and 
as such they do not account for other environmental 
changes associated with climate change, which may 
dampen predicted increases to habitat suitability. More 
complex models which include predicted changes to 
ocean biogeochemistry, which affect an organism’s 
performance (i.e. pCO2, salinity, and oxygen) may 
provide more comprehensive predictions of habitat 
suitability. Furthermore, as SST data and predictions 
are temporally aggregated (i.e. by season), our 
estimates do not account for the potential maximum 
and minimums which may occur during the spawning 
season, which may further enable successful spawning 
and recruitment. Lastly, successful settlement and 
juvenile growth is also largely influenced by food and 
resource availability (Murphy et al. 2013), which was 
not accounted for in our SDMs.

Future directions for citizen science at the 
range edge

We have demonstrated that a fundamental 
component in collecting data on range-extending 
species is collaboration across many sectors both 
within and outside of the citizen science space. For 
example, collaboration between Redmap and the 
Tassie Fish Frame Collection Program was fundamental 
in enhancing the success of both initiatives. 
Collaboration bolstered data collection (fish frame 
donations, photos, geographic information), helped 
both programs reach a broader audience and extended 
science communication about range-extending species 
in Tasmania to a broader audience. Furthermore, 
citizen science observation at the species’ range 
edges facilitated the development for the SDMs that 
produced improved predictions of habitat suitability 
at these distributional limits. Due to the very nature of 
being at the range edge, understanding the potential 
establishment or future shifts of these range-extending 
species will require ongoing monitoring (Graba-
Landry et al. 2022), and would therefore require 
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continued engagement with the citizen science 
community (Pecl et al. 2019b). Further scope to engage 
across a suite of citizen science programs would be 
beneficial for collecting data for range extending 
species beyond the recreational fishing community 
(though we acknowledge Redmap observers are 
approximately 50% divers and 50% fishers). Rapid 
advances in technology allows for anyone with an 
interest to be able to sensor their environment and 
collect data (Bonney et al. 2014). Although there is 
an Australian-wide citizen science project register, an 
online hub specific to marine citizen science programs 
would be useful for the general public to engage and 
provide information irrespective of their interests or 
abilities (i.e. photography, diving, fishing, education, 
clean-ups). Such a central hub would not only reach 
a wider audience but allow for different institutions 
and initiatives to collaborate and identify gaps within 
their own program which could be supplemented 
within programs elsewhere (Bonney et al. 2014). We 
advocate for cross-pollination across different citizen 
science initiatives to limit redundancy between similar 
initiatives, provide the opportunity to share resources, 
and ultimately maximize community outreach and data 
collection efforts (Bonney et al. 2014) for quantifying 
and predicting the distributions of species at their 
range edges.
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