
UC Irvine
UC Irvine Previously Published Works

Title
A kinematic wave theory of capacity drop

Permalink
https://escholarship.org/uc/item/9hh6x9q9

Authors
Jin, Wen-Long
Gan, Qi-Jian
Lebacque, Jean-Patrick

Publication Date
2015-11-01

DOI
10.1016/j.trb.2015.07.020
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9hh6x9q9
https://escholarship.org
http://www.cdlib.org/


A kinematic wave theory of capacity drop

Wen-Long Jin ∗, Qi-Jian Gan †and Jean-Patrick Lebacque ‡

August 10, 2015

Abstract

Capacity drop at active bottlenecks is one of the most puzzling traffic phenomena, but a
thorough understanding of its mechanism is critical for designing variable speed limit and ramp
metering strategies. In this study, within the framework of the kinematic wave theory, we
propose a simple model of capacity drop based on the observation that capacity drop occurs
when an upstream queue forms at an active bottleneck. Different from existing models, the
new model still uses continuous fundamental diagrams but employs an entropy condition
defined by a discontinuous boundary flux function, which introduces a traffic state-dependent
capacity constraint. For a lane-drop area, we demonstrate that the model is well-defined,
and its Riemann problem can be uniquely solved. After deriving the flow-density relations
upstream and downstream to a bottleneck location, we find that the model can replicate the
following three characteristics of capacity drop: the maximum discharge flow-rate can be
reached only when both upstream and downstream traffic conditions are uncongested, capacity
drop occurs when the bottleneck is activated, and some steady traffic states cannot be observed
at both locations. We show that the new model is bistable subject to perturbations in initial
and boundary conditions. With empirical observations at a merging bottleneck we also verify
the three characteristics of capacity drop predicted by the new model. Through this study, we
establish that the new model is physically meaningful, conceptually simple, computationally
efficient, and mathematically tractable. We finally discuss future extensions and potential
applications of the new model.

Keywords: Capacity drop characteristics; Kinematic wave theory; Continuous fundamental dia-
gram; Discontinuous entropy condition; Riemann problem; Stability.
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1 Introduction
Since the 1990s, the so-called two-capacity or capacity-drop phenomenon of active bottlenecks,
in which ‘‘maximum flow rates decrease when queues form’’, has been observed and verified at
many bottleneck locations (Banks, 1990, 1991b; Hall and Agyemang-Duah, 1991). For example,
at a merge bottleneck, when the total demand of the upstream mainline freeway and the on-ramp
exceeds the capacity of the downstream mainline freeway, a queue forms on the mainline freeway,
and the discharge flow-rate drops below the capacity of the downstream mainline freeway. Such
‘‘capacity drop’’ has also been observed at tunnels, lane drops, curves, and upgrades, where the
bottlenecks cannot provide sufficient space for upstream vehicles (Cassidy and Bertini, 1999; Chung
et al., 2007). Capacity drop also occurs at bottlenecks caused by work zones (Krammes and Lopez,
1994; Dixon et al., 1996; Jiang, 1999) as well as accidents/incidents (Smith et al., 2003).

A drop in the downstream bottleneck’s discharge flow-rate can further reduce the discharge
flow-rates of impacted upstream off-ramps and the total discharge flow-rate of the whole corridor
and, therefore, prolong vehicles’ travel times (Newell, 1993; Daganzo, 1999). That the capacity
of a road network may drop substantially when it is most needed during the peak period has been
a baffling feature of freeway traffic dynamics (Papageorgiou and Kotsialos, 2002). Hence to
prevent or delay the occurrence of capacity drop has been an important motivation and theoretical
foundation for developing ramp metering, variable speed limits, and other control strategies (Banks,
1991a; Papageorgiou et al., 1991, 1997; Cassidy and Rudjanakanoknad, 2005; Papageorgiou et al.,
2005, 2007).

Since 1960s, it has been observed that the flow-density relation, i.e., the fundamental diagram,
can be a discontinuous function or multi-valued with a reverse-lambda shape (Edie, 1961; Drake
et al., 1967; Koshi et al., 1983; Payne, 1984; Hall et al., 1992). This is different from traditional
fundamental diagrams derived from car-following models in steady states, in which the flow-rate
is a continuous function of the density. In (Hall and Agyemang-Duah, 1991; Hall et al., 1992), it
was shown that discontinuous fundamental diagrams generally arise inside the bottleneck area and
suggested that the discontinuity is associated with the capacity drop phenomenon. In the literature,
many models of capacity drop have been based on the assumption of discontinuous fundamental
diagrams. For example, in (Lu et al., 2008, 2009), an attempt was made to describe capacity drop
with discontinuous fundamental diagrams within the framework of the LWR model (Lighthill and
Whitham, 1955; Richards, 1956).

However, a discontinuous fundamental diagram is challenged both theoretically and empirically.
Theoretically, a discontinuous flow-density relation is non-differentiable at the discontinuous
point (usually the critical density) and leads to infinite characteristic wave speeds (Li and Zhang,
2013). Clearly this contradicts the fact that information travels at a finite speed along a traffic
stream. Empirically, even though many studies confirm the existence of discontinuous fundamental
diagrams inside a bottleneck area, e.g., Figure 4 of (Hall et al., 1992), Cassidy (1998) demonstrated
that, in near-stationary states, bivariate fundamental diagrams are still continuous at a location
upstream to a bottleneck with capacity drop, but densities in some ranges cannot be observed.

Kinematic wave theories, e.g., the LWR model and the Cell Transmission Model (CTM)
(Daganzo, 1995), have been powerful tools to analyze and simulate the queue formation, propagation,
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link 1 link 2

Figure 1: A lane-drop bottleneck

and dissipation processes through shock and rarefaction waves connecting different steady states.
They have been widely used in designing ramp metering and other control strategies (Gomes and
Horowitz, 2006). To the best of our knowledge, however, there has been no systematic theory of
capacity drop with continuous fundamental diagrams.

In this study we propose a new model of capacity drop to reconcile continuous fundamental
diagrams with capacity drop. For an active lane-drop bottleneck, as shown in Figure 1, we attempt
to replicate the observation that ‘‘maximum flow rates decrease when queues form’’ with the
continuous CTM formulation of the kinematic wave theory developed in (Jin et al., 2009; Jin,
2012b), in which the junction flux function in terms of upstream demands and downstream supplies
is used as an entropy condition to pick out unique, physical solutions. In particular, from CTM we
can see that an upstream queue forms when the upstream demand is larger than the downstream
supply. Then we introduce a new flux function based on the observation that upstream congestion
and capacity drop occur immediately after the upstream demand exceeds the downstream supply.
Here the new flux function is a discontinuous function in upstream demand and downstream supply.
This is different from traditional flux functions, which are generally continuous (Daganzo, 1995;
Lebacque, 1996; Jin and Zhang, 2003b; Ni and Leonard, 2005; Lebacque and Khoshyaran, 2005;
Jin, 2010; Tampère et al., 2011; Jin, 2012b). With the new model we aim to reproduce the following
characteristics of capacity drop: (i) when both upstream and downstream locations are uncongested,
the discharge flow-rate can reach the downstream capacity; (ii) capacity drop occurs when the
bottleneck is activated; i.e., when the upstream location is congested but downstream not, the
discharge flow-rate drops below the downstream capacity; and (iii) some steady traffic states cannot
be observed at both upstream and downstream locations, and the observed flow-density relations
are discontinuous.

In the literature, there have been many studies on capacity drop. This study has a number of
distinctive features.

• In contrast to existing kinematic wave models of capacity drop (Lu et al., 2008, 2009), the
new model still uses continuous fundamental diagrams for the upstream and downstream
links and is therefore devoid of unrealistic infinite information propagation speeds.1 However,

1A characteristic wave, whose speed equals the derivative of flow-rate in density, can be considered as the
information propagation wave of a small disturbance around a constant traffic density. Thus a discontinuous fundamental
diagram leads to an infinite information propagation speed around the density where the flow-rate jumps.
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discontinuous flow-density relation can arise inside the bottleneck area where we can observe
mixed congested and uncongested traffic states.

• The new model is still of the first order as the LWR model. In (Carlson et al., 2010; Parzani
and Buisson, 2012), higher-order continuum models were shown to replicate capacity drop,
but the capacity in higher-order models may be different from the generally used value in
steady states (Zhang, 2001).

• The new model is phenomenological, different from (Leclercq et al., 2011), where the capacity
drop magnitude was endogenously calculated by considering merging vehicles as moving
bottlenecks. We assume that the magnitude of capacity drop is given or calibrated for a
bottleneck. Such a model is much simpler and more suitable for system-level control and
management applications.

• The new model is conceptually simple, computationally efficient, and mathematically
tractable. In particular, the new junction flux function can be readily incorporated in various
models of network traffic flow, including CTM, Link Transmission Model (Yperman et al.,
2006; Yperman, 2007; Jin, 2015), and Link Queue Model (Jin, 2012c), to analyze and simu-
late impacts of capacity drop on traffic dynamics. Therefore, the new model is quite useful
for analyzing and developing new traffic control strategies.

The rest of the paper is organized as follows. In Section 2, we present a new model for
capacity drop at a lane-drop bottleneck and demonstrate that it is well-defined under Riemann initial
conditions. In Section 3, we discuss the analytical properties of the new model and demonstrate the
model replicates the three characteristics of capacity drop. In Section 4, we present an empirical
study to validate the new model. In Section 5, we make some concluding remarks.

2 A kinematic wave model of capacity drop at a lane-drop bot-
tleneck

For a road with a lane-drop bottleneck, shown in Figure 1, the upstream link 1 has n1 lanes and the
downstream link 2 has n2 < n1 lanes. For the purpose of simple analyses, we omit the dynamics
inside the transition region from n1 lanes to n2 lanes and assume that the lane-drop bottleneck is at
x = 0. In reality, the exact bottleneck location can vary from time to time.

We denote total traffic density, speed, and flow-rate by k(x, t), v(x, t), q(x, t) respectively, which
are all functions of location x and time t. The number of lanes at x is denoted by n(x). Hereafter we
will omit (x, t) from these variables unless necessary. Then the LWR model of traffic flow on the
road shown in Figure 1 can be defined by the following rules:

R1. The constitutive law of continuous media: q = kv.

R2. The location-dependent fundamental diagram (Greenshields, 1935): v = V (n,k) and q =
kV (n,k) = Q(n,k).
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R3. The continuity equation: ∂k
∂ t +

∂q
∂x = 0.

R4. The existence of weak solutions: discontinuous shock waves can develop from continuous
initial conditions.

R5. The entropy condition: unique, physical solutions of the LWR model should satisfy an entropy
condition.

The first three rules lead to the following inhomogeneous LWR model

∂k
∂ t

+
∂Q(n,k)

∂x
= 0, (1)

which is a non-strictly hyperbolic conservation law (Temple, 1982; Isaacson and Temple, 1992).
Among the five rules, R1,R3, and R4 are generic for all continuum dynamics, but R2 and R5 are
system specific. For a traffic system, R2 is determined by static characteristics, i.e. flow- and
speed-density relations in steady states, and R5 by dynamic car-following, lane-changing, merging,
diverging, and other driving behaviors.

In (Jin and Zhang, 2003a), the inhomogeneous LWR model (1) was solved as a resonant
nonlinear system. In (Daganzo, 2006), a variational principle was proposed to uniquely solve (1).
In (Jin et al., 2009), it was shown that the boundary flux function, which was initially introduced in
CTM (Daganzo, 1995), can be used as an entropy condition. In these studies, fundamental diagrams
are continuous on all links, but capacity drop has not been modeled within the framework.

In this study, we still model capacity drop at a lane-drop bottleneck with the inhomogeneous
LWR model, (1). Here we still employ continuous fundamental diagrams for both the upstream and
downstream links. An example is the following triangular fundamental diagram, which has been
derived from car-following models and verified by observations (Munjal et al., 1971; Haberman,
1977; Newell, 1993):

Q(n,k) = min
{

v∗k,
1
τ
(n− k

k∗
)

}
, (2)

where v∗ is the free-flow speed, τ the time-gap, k∗ the jam density per lane, and kc(n) = nk∗
1+τv∗k∗

the total critical density of n lanes. Then the total capacity is C(n) = Q(n,kc(n)). A traffic state is
called strictly under-critical (SUC), critical (C), or strictly over-critical (SOC) if k <, =, or > kc(n),
respectively. A UC state can be either SUC or C, and an OC state can be either SOC or C. In this
fundamental diagram, the flow-rate is a continuous function in the density, but the relation varies
with the number of lanes. With the triangular fundamental diagram, the characteristic wave speed
Qk equals v f or − 1

τk∗ , which is always finite. Thus the new model of capacity drop is devoid of
infinite information propagation speeds in reverse-lambda like discontinuous fundamental diagrams.

2.1 A discontinuous entropy condition
Then, following the kinematic wave theory in (Jin et al., 2009), we introduce a discontinuous
boundary flux function in upstream demands and downstream supplies as an entropy condition. But
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this model is phenomenological and approximate since (i) the capacity drop magnitude is given,
and (ii) capacity drop occurs immediately following the upstream congestion and exactly at the
lane-drop location, x = 0.

We denote traffic demand and supply at (x, t) by d(x, t) and s(x, t), respectively. For a continuous
flow-density relation Q(n,k), which is unimodal in k, traffic demand and supply are respectively its
increasing and decreasing branches (Engquist and Osher, 1980; Daganzo, 1995; Lebacque, 1996):

d = D(n,k)≡ Q(n,min{kc(n),k}),
s = S(n,k)≡ Q(n,max{kc(n),k}),

where kc(n) is the critical density for n lanes. Since Q(n,k) is unimodal in k, D(n,k)/S(n,k) is a
strictly increasing function in k. If we define the congestion level by γ = d/s, then traffic density is
a function of γ

k = K(n,γ), (3)

such that D(n,k)/S(n,k) = γ . In this sense, a traffic state can be uniquely determined by the demand
and supply pair. In addition, a traffic state is SUC, C, or SOC if d < s =C(n), d = s =C(n), and
s < d =C(n), respectively.

Based on the definitions of traffic demand and supply, in (Jin et al., 2009) it was shown that the
following flux function is a valid entropy condition for the inhomogeneous LWR model (1):

q(x, t) = min{d(x−, t),s(x+, t)}, (4)

where d(x−, t) and s(x+, t) are the upstream demand and downstream supply, respectively, at x.
That is, the LWR model, (1), coupled with (4) has unique weak solutions with given initial and
boundary conditions (Holden and Risebro, 1995). In addition, (4) is consistent with the traditional
entropy conditions by (Lax, 1972), (Ansorge, 1990), and (Isaacson and Temple, 1992). From (4)
we can see that a queue forms on the upstream link when the upstream demand is greater than the
downstream supply. Furthermore, if the downstream link is uncongested; i.e., when the lane-drop
area is an active bottleneck, the maximum throughput of the lane-drop bottleneck is the capacity of
the downstream link: q(0, t) =C2 = Q(n2,kc(n2)). Therefore (4) cannot model the capacity drop
phenomenon. 2

Since capacity drop arises with a queue on the upstream link 1, it is associated with the traffic
dynamics in the transition region around x = 0 between the two links, and it is reasonable to modify
the entropy condition, (4), to capture this dynamic feature. That is, capacity drop is triggered when
the upstream demand is greater than the downstream supply and there is an upstream queue. Thus
we still apply (4) as the entropy condition for traffic inside the upstream link 1 and downstream link
2, but introduce the following new entropy condition for the transition region at x = 0:

q(0, t) =

{
d(0−, t), d(0−, t)≤ s(0+, t)
min{s(0+, t),C∗}, d(0−, t)> s(0+, t) (5)

2In (Jin, 2013), it was shown that systematic lane changes can reduce C2, which can be computed from the number
of lanes, n1 and n2, the average duration of each lane change, and the length of the lane-changing region. However,
such a capacity reduction phenomenon is different from capacity drop, as they have different features; i.e., (4) with
capacity reduction caused by lane changes cannot capture the aforementioned three characteristics of capacity drop.
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where d(0−, t) is the upstream demand, s(0+, t) the downstream supply, and C∗ the dropped capacity.
Here we assume that C∗ <C2, and the capacity-drop ratio is defined by

∆ = 1−C∗
C2

.

Based on the observation that the maximum flow-rate for the bottlenecks can reach 2300 vphpl in
free-flow traffic (Federal highway administration, 1985; Hall and Agyemang-Duah, 1991), capacity
drop magnitudes have been quantified for different locations. Generally, the magnitude of capacity
drop is in the order of 10%, even 20% (Persaud et al., 1998; Cassidy and Bertini, 1999; Bertini
and Leal, 2005; Chung et al., 2007), and such a drop is stable, although interactions among several
bottlenecks can cause fluctuations in discharge flow-rates (Kim and Cassidy, 2012).

Theorem 2.1 The junction model in (4) is continuous in both the upstream demand d(0−, t) and
the downstream supply s(0+, t). But the junction model in (5) is discontinuous when ∆ > 0; i.e.,
the boundary flux q(0, t) is a discontinuous function in both the upstream demand d(0−, t) and the
downstream supply s(0+, t).

Proof. It is straightforward to show that the junction model in (4) is continuous in both the upstream
demand d(0−, t) and the downstream supply s(0+, t).

For a given downstream supply s(0+, t)>C∗, if we increase the upstream demand d(0−, t) from
0 to C1 > s(0+, t), then from (5) the junction flux is given by

q(0, t) =

{
d(0−, t), d(0−, t)≤ s(0+, t)
C∗, d(0−, t)> s(0+, t)>C∗

which jumps at d(0−, t) = s(0+, t). Similarly, for a given upstream demand C2 > d(0−, t)>C∗, if
we increase the downstream supply s(0+, t) from 0 to C2, then from (5) the junction flux is given by

q(0, t) =

{
C∗, s(0−, t)< d(0−, t)
d(0−, t), s(0+, t)≥ d(0−, t)

which jumps at s(0+, t) = d(0−, t). Therefore, the junction model in (5) is a discontinuous function
in both the upstream demand and downstream supply. �

If we introduce an indicator function, Id(0−,t)>s(0+,t), which equals 1 if d(0−, t)> s(0+, t) and 0
otherwise, then (5) can be re-written as

q(0, t) = min{d(0−, t),s(0+, t),C2(1−∆ · Id(0−,t)>s(0+,t))}.

We can see that the new flux function, i.e., entropy condition, is consistent with the following
macroscopic rules:

1. The flux is maximized: maxq(0, t).

2. The flux is not greater than the upstream demand or the downstream supply: q(0, t)≤ d(0−, t),
and q(0, t)≤ s(0+, t).

7



3. When the upstream link is congested; i.e., when the upstream demand is higher than the
downstream supply, the flux is not greater than the dropped capacity: q(0, t) ≤C2(1−∆ ·
Id(0−,t)>s(0+,t)).

Therefore the new entropy condition is equivalent to the following optimization problem:

maxq(0, t), (6)

s.t.,

q(0, t) ≤ d(0−, t),
q(0, t) ≤ s(0+, t),
q(0, t) ≤ C∗, when d(0−, t)> s(0+, t).

Thus we obtain a new LWR model with capacity-drop effect: (1) with (4) at x 6= 0 and (5) at
x = 0. The model differs from the traditional LWR model only in the entropy condition at x = 0.
We have the following observations regarding the boundary flux function in (5):

1. When the upstream demand is not greater than the downstream supply, (5) is consistent with
(4), and the new LWR model has the same kinematic wave solutions as the traditional one.

2. However, when the upstream demand is greater than the downstream supply and the down-
stream supply is greater than C∗, capacity drop occurs, and the discharge flow-rate is bounded
by C∗.

3. The flux function (5) is discontinuous in both the upstream demand and the downstream
supply. This is different from many existing flux functions used in CTM (Tampère et al.,
2011; Jin, 2012b).

4. The new LWR model with (5) is purely phenomenological with an exogenous parameter, C∗
or ∆, and the driving behaviors and related mechanisms for capacity drop cannot be explained
by the model. The model can only be used to describe kinematic waves caused by capacity
drop at the lane-drop bottleneck.

2.2 The Riemann problem
In this subsection, we show that the LWR model (1) is still well-defined with the new entropy
condition (5) at x = 0 by demonstrating that the Riemann problem has a unique solution with the
following initial condition:

k(x,0) =

{
k1, x < 0;
k2, x≥ 0.

As for other systems of hyperbolic conservation laws, solutions to the Riemann problem for (1) at
the capacity-drop bottleneck are of physical, analytical, and numerical importance: physically, they
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can be used to analyze traffic dynamics caused by capacity drop; analytically, (1) is well-defined if
and only if the Riemann problem is uniquely solved Bressan and Jenssen (2000); and numerically,
they can be incorporated into the Cell Transmission Model Daganzo (1995); Lebacque (1996).

Here we solve the Riemann problem by following the analytical framework in (Jin et al., 2009;
Jin, 2012a): (i) the problem is solved in the demand-supply space, with initial conditions:

U(x,0) =

{
(d1,s1), x < 0;
(d2,s2), x≥ 0. (7)

(ii) in the Riemann solutions on each link, a stationary state arises on a link along with a shock
or rarefaction wave, which connects the stationary state and the initial state and is determined by
a separate Riemann problem for the homogeneous LWR model; (iii) the stationary state should
be inside a feasible domain, such that the shock or rarefaction wave propagates backward on the
upstream link 1 and forward on the downstream link 2, and the boundary flux q(0, t) equals the
stationary flow-rate; (iv) the weak solution space is enlarged to include a filmy interior state on
each link at x = 0, which occupies no space (of measure zero); (v) the entropy condition, (5) or
(6), is applied on the interior states; and (vi) we prove that the stationary states and, therefore, the
Riemann problem are uniquely solved.

In the demand-supply space, the initial conditions on the upstream and downstream links are
denoted by U1 = (d1,s1) and U2 = (d2,s2), respectively, where di = D(ni,ki) and si = S(ni,ki)
for i = 1,2. In the Riemann solutions, upstream stationary and interior states are U∗1 = (d∗1 ,s

∗
1)

and U0
1 = (d0

1 ,s
0
1) respectively, and downstream stationary and interior states are U∗2 = (d∗2 ,s

∗
2)

and U0
2 = (d0

2 ,s
0
2) respectively. Then the kinematic waves on upstream and downstream links

are determined by RP(U1,U∗1 ) and RP(U∗2 ,U2) respectively, which are the Riemann problems
for the traditional, homogeneous LWR model. That is, RP(U1,U∗1 ) is the Riemann problem for
∂k
∂ t +

∂Q(n1,k)
∂x = 0 with k(x,0) =

{
k1, x < 0
k∗1, x > 0 , where k∗1 = K(n1,d∗1/s∗1), and with the traditional

Lax entropy condition based on characteristics or the entropy condition in (4). Since kinematic
wave speeds of RP(U1,U∗1 ), RP(U∗1 ,U

0
1 ), RP(U0

2 ,U
∗
2 ), RP(U∗2 ,U2) have to be non-positive, positive,

negative, and non-negative, respectively, we have the following feasible stationary and interior
states (Jin et al., 2009):

1. The upstream stationary state is SOC, if and only if q < d1 and U∗1 =U0
1 = (C1,q); it is UC

iff q = d1, U∗1 = (q,C1), and s0
1 > d1.

2. The downstream stationary state is SUC if and only if q < s2 and U∗2 =U0
2 = (q,C2); it is OC

iff q = s2, U∗2 = (C2,q), and d0
2 > s2.

We use (6) as an entropy condition in interior states:

max
U∗1 ,U

∗
2

q, (8)

s.t.

q ≤ d0
1 ,

q ≤ s0
2,

q ≤ C∗, if d0
1 > s0

2.
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The solution of the optimization problem is given by

q =

{
d0

1 , d0
1 ≤ s0

2
min{s0

2,C∗}, d0
1 > s0

2
(9)

which is consistent with (5).
In the following theorem, we show that the stationary states are uniquely solved with (8).

Furthermore, since one can calculate the boundary flux and the shock or rarefaction waves on both
links from the unique stationary states, the Riemann problem is uniquely solved.

Theorem 2.2 For the Riemann problem of (1) with (4) at x 6= 0 and (6) at x = 0, the stationary
states U∗1 and U∗2 and, therefore, the kinematic waves on links 1 and 2 exist and are unique. That is,
the optimization problem (8) has a unique solution in q, U∗1 , and U∗2 . In particular,

q =

{
d1, d1 ≤ s2
min{s2,C∗}, d1 > s2

, (10)

which is the same as (5). Therefore, the new flux function (5) is invariant in the sense of (Lebacque
and Khoshyaran, 2005; Jin, 2012a).

The proof of Theorem 2.2 is given in Appendix A. Similar to the inhomogeneous LWR model
without capacity drop, the capacity-drop model can have two waves on the two links simultaneously;
in contrast, the homogeneous LWR model can only have one wave solution for the Riemann problem.
However, the capacity-drop model with (6) at x = 0 is different from the non-capacity-drop model
with (4) at x = 0 when C∗ < s2 ≤ C2 and s2 < d1 ≤ C1: in the capacity drop model, q = C∗,
U∗1 = (C1,C∗), U∗2 = (C∗,C2), a backward shock or rarefaction wave forms on the upstream link,
and a forward shock or rarefaction wave forms on the downstream link; but in the non-capacity
drop model, q = s2, U∗1 = (C1,s2), U∗2 = (C2,s2), a backward shock or rarefaction wave forms on
the upstream link, and a forward rarefaction or no wave forms on the downstream link. That is,
when capacity drop occurs, the flow-rate is dropped, and the downstream traffic becomes strictly
under-critical.

Consider the example shown in Figure 2, where the initial upstream and downstream states are
at A and B, respectively, C∗ < s2 <C2, and s2 < d1 <C1. In solutions to the capacity-drop model
shown in Figure 2(a), the stationary states on the upstream and downstream links become A′ and B′,
respectively; the boundary flux becomes C∗, which is smaller than the flow-rate of B; a backward
shock wave forms on the upstream link, and a forward shock wave forms on the downstream link.
In solutions to the model without capacity drop shown in Figure 2(b), the stationary state on the
upstream link becomes A′′, but the stationary state on the downstream link is the same as the initial
state B; the boundary flux equals the flow-rate of B; a backward shock wave forms on the upstream
link, but there is no wave on the downstream link.

3 Analytical properties of the new capacity drop model
In this section, we analyze properties of the LWR model (1) with the discontinuous entropy
condition (5) at the lane-drop bottleneck. We show that the model replicates the three characteristics
of capacity drop and that the model is bistable.
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A

A'
B

B'

(a) (b)

A
A"B

Figure 2: Kinematic wave solutions of (1) with an initial upstream condition at A and an initial
downstream condition at B: (a) with capacity drop; (b) without capacity drop

3.1 Upstream and downstream flow-density relations in steady states
In this subsection, we consider the following traffic statics problem on a road section x ∈ [−X ,Y ]
with a lane-drop at x = 0. Initially the road section is empty with k(x,0) = 0. The upstream demand
is constant, d(−X−, t) = d0, and the downstream supply is also constant, s(Y+, t) = s0. We are
interested in finding stationary states in the road network (Jin, 2012d).

In steady states, both the upstream and downstream links carry uniform traffic3, and we assume
that their densities are k1 and k2, respectively. Then the corresponding demands and supplies are
(d1,s1) and (d2,s2), respectively. We denote the flow-rate in the network by q, which is constant at
all locations. Then using (5) at the lane-drop location and (4) at the origin and destination, we have

q = min{d0,s1}, (11a)

q =

{
d1, d1 ≤ s2
min{s2,C∗}, d1 > s2

(11b)

q = min{d2,s0}. (11c)

In addition, from the definitions of supply and demand we have

C1 = max{d1,s1}, (11d)
C2 = max{d2,s2}. (11e)

From the five equations above and the evolution of traffic dynamics 4, we can find the following
steady-state solutions of (d1,s1) and (d2,s2) in three traffic regimes: 5

3Here we do not consider stationary states with zero-speed shock waves on a link as in (Jin, 2012d).
4The evolution of traffic dynamics can be analyzed with shock and rarefaction waves, but the detailed analysis is

omitted.
5Without loss of generality, we assume that d0 ≤C1 and s0 ≤C2.
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A

A'

(a) With capacity drop (b) Without capacity drop

Figure 3: Stationary flow-density relations of upstream and downstream links in a lane drop area:
thinner solid curves for the downstream link, thicker solid curves for the upstream link, and steady
traffic states on the dotted curves cannot be observed

SUC-UC. When d0 ≤ s0 ≤ C2, q = d0, (d1,s1) = (d0,C1), and (d2,s2) = (d0,C2). In this case, both
links are uncongested, and the bottleneck is not activated.

SOC-SOC. When d0 > s0 and s0 ≤C∗, q = s0, (d1,s1) = (C1,q), and (d2,s2) = (C2,q). In this case, both
links are congested, and congestion propagates from the downstream link.

SOC-SUC. When d0 > s0 and s0 >C∗, q =C∗, (d1,s1) = (C1,q), and (d2,s2) = (q,C2). In this case, link
1 is congested, but link 2 not. That is, the lane-drop bottleneck is activated, and capacity drop
occurs.

Then from the relationship between congestion level and density, we can find corresponding
densities and therefore fundamental diagrams in stationary states on both upstream and downstream
links, shown in Figure 3(a): the flow-density relations in the SUC-UC regime are given by the left
curves; the flow-density relations in the SOC-SOC regime are given by the right curves; in the
SOC-SUC regime, the upstream link is at the congested state A, and the downstream link at the
uncongested state A′.

From Figure 3(a) we have the following observations: (i) The maximum discharge flow-rate
occurs in the SUC-UC regime and equals the downstream capacity, C2. (ii) The bottleneck is
activated in the SOC-SUC regime, and the discharge flow-rate is at the reduced rate of C∗. (iii)
Traffic states on the dotted curves cannot be observed, even though the original fundamental
diagrams are continuous. The difference between the two flow-density relations also highlights the
importance of the locations where data are collected (Hall and Agyemang-Duah, 1991).

By comparison, the flow-density relations in steady states without capacity drop are shown in
Figure 3(b), from which we can also observe three regimes:

SUC-UC. When d0 ≤ s0 ≤ C2, q = d0, (d1,s1) = (d0,C1), and (d2,s2) = (d0,C2). In this case, both
links are uncongested, and the bottleneck is not activated.
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SOC-SOC. When d0 > s0 and s0 <C2, q = s0, (d1,s1) = (C1,q), and (d2,s2) = (C2,q). In this case, both
links are congested, and congestion propagates from the downstream link.

SOC-C. When d0 > s0 and s0 = C2, q = C2, (d1,s1) = (C1,q), and (d2,s2) = (C2,C2). In this case,
the bottleneck is activated, but there exists no capacity drop.

In addition, steady traffic states with q >C2 cannot be observed on the upstream link. Therefore,
we can see that the new entropy condition, (6), is necessary and sufficient to replicate the capacity
drop phenomenon. However, it is not necessary for unobservable traffic states.

Note that the existence of unobservable traffic states may attribute to the hypothesis of ‘‘discon-
tinuous’’ fundamental diagrams in the literature, e.g., Figure 15 of (Drake et al., 1967), and Figure
6 for shoulder lane in (Hall et al., 1986). In these figures, flow-density relations were approximated
by discontinuous fundamental diagrams, but can also be approximated by continuous fundamental
diagrams with unobserved traffic states.

3.2 Stability subject to perturbations in initial and boundary conditions
In this subsection, we study the stability of the capacity-drop model, (1) with (5) at x = 0, subject to
perturbations to initial conditions. In particular, we consider solutions of the following perturbed
Riemann problem (Liu, 1987; Mascia and Sinestrari, 1997):

k(x,0) =


k1, x <−L
k0, −L < x < 0
k2, x > 0

(12)

where a perturbation k0 is applied on the upstream road section between −L and 0. We expect that
results will be similar if we apply a perturbation on the downstream link. Note that the LWR model
(1) with entropy condition (4) is always stable with respect to perturbations to initial conditions.

We denote the demand and supply corresponding to ki by (di,si) (i = 0,1,2). One can show
that, when d1 < min{C∗,s2} or d1 > s2, solutions with initial condition (12) are the same as those
with initial condition (7) at a large time t > 0. In the long run, capacity drop always occurs when
d1 > s2 and does not occur when d1 < min{C∗,s2}, whether there is perturbation or not. That is,
under these initial conditions, the LWR model (1) with entropy condition (5) is stable subject to
perturbations k0.

However, as shown in Figure 4, when C∗ < d1 ≤ s2, solutions to the perturbed Riemann problem
can be different from those to the un-perturbed Riemann problem. In the un-perturbed Riemann
problem, both links carry free flow with a flow-rate q = d1, and capacity drop does not occur: a new
state (point B’ in the figure) propagates downstream along with a shock wave on the downstream
link. However, if a small perturbation leads to an intermediate state U0 (point A’ in the figure)
with d0 > s2, capacity drop occurs with a new state (C1,C∗) on the upstream link (point A’’ in the
figure), a backward shock or rarefaction wave connecting U0 to (C1,C∗) initiates at x = 0, and a
forward or backward shock wave connecting U1 to U0 initiates at x =−L. When the downstream
wave connecting U0 to (C1,C∗) catches up the upstream one connecting U1 to U0, a new shock wave
connecting U1 to (C1,C∗) forms and propagates upstream. On the downstream link, a new state
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Figure 4: Kinematic wave solutions of (1) with an initial upstream condition at A and an ini-
tial downstream condition at B in the capacity-drop model: (a) without perturbations, (b) with
perturbations

(point B’’ in the figure) propagtes downstream along with a shock wave. In this case, a sufficiently
large perturbation to the initial condition can result in totally different solutions. However, if the
perturbation is too small such that d0 ≤ s2, capacity drop still does not occur. Therefore, the LWR
model (1) with entropy condition (5) is bistable in this case.

When the road with a lane drop in Figure 1 carries free flow with a flow-rate greater than C∗,
traffic breakdown and capacity drop can also be induced by fluctuations in both upstream demand
and downstream supply. We demonstrate the process in Figure 5. If initially the upstream link
carries a uniform, free flow traffic at (d1,C1) (point A in Figure 5) and the downstream link carries
a uniform, free flow traffic at (d1,C2) (point B in Figure 5), where C∗ < d1 ≤C2.

1. If a platoon of vehicles from the upstream link, which has a high density with a demand
greater than C2 (point A′ on Figure 5(a)), reaches the lane-drop bottleneck, then vehicles
queue up on the upstream link, capacity drop is activated, and traffic on the upstream link
breaks down and becomes (C1,C∗) (point A′′ in Figure 5(a)). Correspondingly, traffic on the
downstream link becomes (C∗,C2) (point B′ in Figure 5(a)). The throughput drops from d1 to
C∗.

2. If a downstream congested queue, which has a supply smaller than d1 (point B′ in Figure
5(b)), propagates to the lane-drop area, then vehicles queue up on the upstream link, capacity
drop is activated, and traffic on the upstream link breaks down and becomes (C1,C∗1) (point
A′ in Figure 5(b)). Correspondingly, traffic on the downstream link becomes (C∗,C2) (point
B” in Figure 5(b)). The throughput drops from d1 to C∗.

In both cases, even if the fluctuations are instantaneous but sufficiently large, the induced capacity
drop will be sustained. This again confirms the bistability property of the traffic system.

The analyses of fluctuations in both initial and boundary conditions further confirm that the
new kinematic wave model replicates the two main characteristics of capacity drop: (i) capacity
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Figure 5: Activation of capacity drop: (a) A high-density platoon on the upstream link; (b) A
congested queue on the downstream link

drop occurs with an upstream queue, and (ii) the discharge flow-rate drops once it is activated. In
addition, as observed in real world (Persaud et al., 1998, 2001), the capacity drop as well as traffic
breakdown can be induced by random fluctuations in upstream and downstream conditions even
when the upstream is uncongested but carries a flow-rate higher than the dropped capacity, C∗.

Due to the bistability of the traffic system subject to fluctuations in both initial and boundary
conditions, control methods should be sufficiently robust to avoid the activation of capacity drop by
sudden increase in upstream demand or drop in downstream supply.

4 An empirical observation of capacity drop and flow-density
relations at a bottleneck

In this section we present an empirical observation of the flow-density relation located at the
merging section between I-405 South and Jeffrey Rd in Irvine, CA. Figure 6 shows the extended
study site covering the freeway section between Jeffrey Rd and Sand Canyon Ave. Vehicle detector
stations (VDS’s) are installed at the freeway mainline and on-/off-ramps. In this study, we use data
from the following VDS’s: (i) VDS 1201171 and VDS 1201165 in the upstream location, (ii) VDS
1209189 in the middle location, and (iii) VDS 1201145 in the downstream location. The locations
of these VDS’s are also provided in Figure 6. Note that here the bottleneck location is between the
upstream and middle detectors. Also note that, since we cannot find data for an active lane-drop
bottleneck, we use a merge bottleneck to approximate a lane-drop bottleneck. This is a reasonable
approximation, since the on-ramp lane can be considered as an additional mainline lane.

From PeMS (http://pems.dot.ca.gov/) we retrieve 30-second raw data from 5:00 AM
to 10:00 PM in 34 weekdays from February to May in 2012, during which all detectors are healthy
and have observation rates greater than 95%. Following (Cassidy, 1998), we identify near-stationary
states at the three locations. By assuming a free-flow speed of 65 mph, we obtain the g-factors
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Figure 6: A section of the I-405 South freeway

as 21 ft for the upstream detector and 18 ft for the middle one and then convert occupancies into
densities using k = occ∗5280/g, where k is the density and occ is the occupancy. Then we show the
observed flow-density pairs in near-stationary states for upstream and middle detectors in Figure 7,
where the circles are for the upstream location, and the asterisks for the middle location. In addition,
we use different colors for traffic states in three different regimes: SUC-UC when both upstream
and middle locations are uncongested (or free flow), SOC-SUC when the upstream location is
congested, but the downstream not, and SOC-SOC when both upstream and middle locations are
congested. In Figure 7, we also plot the approximate triangular traffic flow fundamental diagrams
as well as two dots A and A’.
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Figure 7: Flow-density relations in near-stationary states at the upstream and middle detectors

From Figure 7, we have the following observations consistent with those predicted in Figure
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3(a): (i) There are three regimes of traffic conditions at the upstream and downstream location of
a lane-drop or merging bottleneck, and the flow-rates are always equal. Note that the off-ramp
flow-rates at Sand Canyon Ave are not available, and the flow-rates at the downstream location
are consistently lower than those at the middle location. (ii) The maximum discharge flow-rate is
about 9500 vph when all three locations are uncongested. (iii) When the bottleneck is activated,
the upstream is congested at A and the downstream uncongested at A’, and the average discharge
flow-rate is about 8500 vph, with a capacity drop magnitude of 10.5%. In this case traffic at the
downstream location is also uncongested, as shown in the figure. (iv) Some traffic states cannot
be observed at these three locations, and the flow-density relation is discontinuous. This further
confirms the validity of the assumptions and conclusions of the new capacity drop model.

5 Conclusion
In this paper, we proposed a phenomenological model of capacity drop within the framework of
kinematic wave theories. Here the fundamental diagrams are still continuous, and, thus, the new
model is devoid of the fallacy of models based on discontinuous fundamental diagrams. But, for
capacity drop occurring at a lane drop location, we introduced a new entropy condition, in which
the boundary flux is discontinuous in the upstream demand and downstream supply and reduced to
a dropped capacity when the upstream demand is higher than the downstream supply. We showed
that the model is well-defined for the Riemann problem. We further demonstrated that the new
model replicates the three characteristics of capacity drop: (i) the maximum discharge flow-rate
equals the downstream capacity in the SUC-UC regime; (ii) the capacity drops when the bottleneck
is activated; i.e., the discharge flow-rate drops in the SOC-SUC regime; and (iii) some steady states
are unobservable at the upstream and downstream locations, and the observed flow-density relations
appear to be discontinuous at these locations. The three characteristics are further verified by
empirical observations at a merge bottleneck, which is used to approximate a lane-drop bottleneck.
These theoretical and empirical results verify that the shape of a fundamental diagram depends
on the location of observations relative to the bottleneck (Hall and Agyemang-Duah, 1991). For
the purpose of comparison, we compared the LWR model with and without capacity drop and
concluded that the new flux function can replicate the capacity drop phenomenon.

In this study, we showed that the traffic system is bistable with capacity drop subject to
perturbations in initial and boundary conditions, since traffic breakdown and capacity drop can
be triggered by sufficiently large perturbations in initial and boundary conditions. This is a very
important insight for analysis and design of a variable speed limit control system at a freeway
lane-drop bottleneck (Jin and Jin, 2014a,b). In the future, we will be interested in extending the new
model of capacity drop for general merge bottlenecks and evaluating and developing traffic control
strategies, including variable speed limits and ramp metering, to delay or avoid the occurrence of
capacity drop.

Many existing junction models in the literature can be extended by introducing fixed capacity
constraints. For example, one can revise (4) by introducing a reduced capacity as,

q(x, t) = min{d(x−, t),s(x+, t),C̄},
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where C̄ is smaller than both upstream and downstream capacities and can be caused by various
stationary or moving bottlenecks. Note that, however, this model is different from the capacity
drop model in (5): (i) the junction flux is still continuous in the upstream demand and downstream
supply by following arguments in the proof of Theorem 2.1; and (ii) this model cannot capture
the first or second characteristics of capacity drop. Therefore, fixed capacity constraints cannot
describe the capacity drop phenomenon. In addition, mathematically speaking, this new model is
fundamentally different from existing ones, which have continuous junction flux functions, as it
is well known that differential equations with discontinuous right-hand sides are fundamentally
different from those with continuous right-hand sides. Furthermore, both location- and time-
dependent capacity constraints have been incorporated into the Hamilton-Jacobi equation of the
LWR model in (Daganzo, 2005; Mazaré et al., 2011), either through the variational principle or the
Hopf-Lax formula. But demand and supply were not defined in these studies, and location- and
time-dependent capacity constraints cannot replicate the three characteristics of the capacity drop
phenomenon, which contains state-dependent capacity constraints. That said, however, the capacity
drop model in (5) can be incorporated into the Link Transmission Model, in which demand and
supply are defined based on the Hopf-Lax formula (Jin, 2015).

The new model is phenomenological and lacks microscopic mechanism related to driving
behaviors at an active bottleneck, since (i) the magnitude of ∆ is exogenous and has to be calibrated
for each study site; (ii) capacity drop occurs at one point, as shown in Figure 1, but a transition
region of 1-2km long can usually be observed around an active bottleneck with capacity drop
(Cassidy and Bertini, 1999; Cassidy and Rudjanakanoknad, 2005); and (iii) capacity drop occurs
immediately after the upstream is congested, but in reality only after a number of vehicles queue up
on the shoulder lane and lane changes disrupt traffic on all lanes (Cassidy and Rudjanakanoknad,
2005). In the literature, there have been many studies on the behavioral mechanism of capacity drop.
It was observed that, when an active bottleneck stabilizes, there is an acceleration zone around the
bottleneck (Banks, 1991b), and it was conjectured that the reduced flow is a consequence of the
way drivers accelerate away from the queue (Hall and Agyemang-Duah, 1991; Papageorgiou et al.,
2008). In (Cassidy and Rudjanakanoknad, 2005), it was observed that the occurrence of capacity
drop at a merging bottleneck is associated with an extensive queue on the shoulder lane upstream
to the merging point, sharp declines in vehicle speeds, and increases in lane-changing activities.
However, it was pointed out that lane changing alone might not explain the capacity drop. Even
though there have been many studies on capacity drop caused by heterogeneous drivers (Daganzo,
2002; Chung and Cassidy, 2004), pedestrians (Jiang et al., 2002), buses (Zhao et al., 2007), or
accidents (Knoop et al., 2008), the causes and mechanism of capacity drop at active bottlenecks
remain to be clarified. In (Persaud et al., 1998, 2001), traffic breakdown and capacity drop were
found to be related to the upstream traffic demand randomly. The occurrence and magnitude of
capacity drop have been successfully replicated in microscopic or hybrid simulations (Tampere et al.,
2005; Treiber et al., 2006; Laval and Daganzo, 2006; Carlson et al., 2010; Leclercq et al., 2011). In
the future, we will be interested in finding the relationship between the capacity drop magnitude
and the road geometry, vehicles’ acceleration rates, and traffic conditions and incorporating it the
kinematic wave model to analyze traffic dynamics inside the transition region during the transition
period. Such a behavioral model can be used to further develop control and design strategies for
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critical road bottlenecks.
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Appendix A. Proof of Theorem 2.2
Proof. From the feasibility conditions on stationary and interior states, we can see that q≤ d1 and
q≤ s2. Therefore, q≤min{d1,s2}. We first solve the flow-rate in the following four cases.

1. When d1 ≤ min{s2,C∗}, we assume that q < d1. Thus we have U∗1 = U0
1 = (C1,q) and

U∗2 =U0
2 = (q,C2). Thus d0

1 =C1 > s0
2 =C2. However, from (9) we have that q =C∗, which

contradicts q2 < d1 ≤C∗. Thus in this case q = d1.

2. When C∗ < d1 ≤ s2 ≤C2 <C1, we consider the following three scenarios:

• First, if q = d1 ≤ s2 < C1, we have U∗1 = U0
1 = (q,C1). If d1 < s2, then U∗2 = U0

2 =
(q,C2); if d1 = s2, then U∗2 = (C2,q), and U0

2 is between (C2,q) and (q,C2). In this case
d0

1 ≤ s0
2, which satisfy (9). Thus q = d1, U∗1 = (q,C1), and U∗2 = (q,C2) (d1 < s2) or

U∗2 = (C2,q) (d1 = s2) satisfy (9).

• Second, if q < d1 ≤ s2 and q 6=C∗, we have U∗1 =U0
1 = (C1,q) and U∗2 =U0

2 = (q,C2),
which lead to d0

1 =C1 > s0
2 =C2. However from (9) we have q =C∗, which contradicts

q 6=C∗. Thus it is impossible to have that q < d1 and q 6=C∗.

• Third, if q =C∗ < d1 ≤ s2, we have U∗1 =U0
1 = (C1,q) and U∗2 =U0

2 = (q,C2). Thus
d0

1 = C1 > s0
2 = C2, which satisfies (9). Thus q = C∗, U∗1 = (q,C1) and U∗2 = (q,C2)

satisfy (9).

Therefore, both q = d1 and q =C∗ satisfy (9). However, from (8), the unique solution of the
boundary flux is q = d1 >C∗.

3. When d1 > s2 and s2 ≤C∗, if q < s2, then U∗1 =U0
1 = (C1,q) and U∗2 =U0

2 = (q,C2), which
lead to d0

1 =C1 > s0
2 =C2. However from (9) we have q =C∗, which contradicts q < s2 ≤C∗.

Thus q = s2.

4. When d1 > s2 >C∗, we consider the following three scenarios:

• First, if q > C∗ and q < s2 < d1. Then U∗1 = U0
1 = (C1,q), and U∗2 = U0

2 = (q,C2),
which lead to d0

1 =C1 > s0
2 =C2. However from (9) we have q =C∗, which contradicts

q >C∗.
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• Second, if q >C∗ and q = s2 < d1. Then U∗1 =U0
1 = (C1,q), U∗2 = (C2,q), and d0

2 > q.
Since d0

1 =C1 >C2 ≥ s0
2, from (9) we have q = min{s0

2,C∗} ≤C∗, which contradicts
q >C∗.

• Third, if q <C∗ < s2 < d1. Then U∗1 =U0
1 = (C1,q), and U∗2 =U0

2 = (q,C2), which lead
to d0

1 =C1 > s0
2 =C2. However from (9) we have q =C∗, which contradicts q <C∗.

Therefore, q =C∗.

In all of the four cases, the boundary flux is uniquely solved by

q =

{
d1, d1 ≤ s2
min{s2,C∗}, d1 > s2

Note that (9) cannot be used to pick out a unique solution in q when C∗ < d1 ≤ s2. Therefore, (9) is
a necessary condition, but not sufficient. In contrast, (8) is both necessary and sufficient.

From the feasibility conditions on the stationary states, U∗1 = (d1,C1) when q = d1, and U∗1 =
(C1,q) otherwise. Similarly, U∗2 = (C2,s2) when q = s2, and U∗2 = (q,C2) otherwise.6 That is, the
stationary states are uniquely solved. With the stationary states, we can solve the traditional LWR
model to find shock or rarefaction waves on each link. �
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