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FASERν at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for
the first time and study their cross sections at TeV energies, where no such measurements currently exist.
In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS,
480 m from the interaction point, and collected 12.2 fb−1 of proton-proton collision data at a center-of-
mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first
neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino
measurements at current and future colliders.

DOI: 10.1103/PhysRevD.104.L091101

I. INTRODUCTION

There has been a long-standing interest in detecting
neutrinos produced at colliders [1–6], but to date no collider
neutrino has ever been directly detected. Proton-proton
(pp) collisions at a center-of-mass energy of 14 TeV during
LHC Run-3, with an expected integrated luminosity of
150 fb−1, will produce a high-intensity beam of Oð1012Þ
neutrinos in the far-forward direction with mean interaction
energy of about 1 TeV. FASERν [7] is designed to detect
these neutrinos and study their properties. The detector was
approved in December 2019, will be installed 480 m
downstream of the ATLAS interaction point (IP) in
2021, and will take data starting in 2022. Deployment
on the beam collision axis maximizes the flux of all three
neutrino flavors and allows FASERν to measure their
interaction cross sections in the currently unexplored
TeV energy range. For electron and tau neutrinos, these
measurements will extend existing cross section measure-
ments to significantly higher energies. For muon neutrinos,
they will probe the gap between accelerator measurements
(Eν < 360 GeV) [8] and IceCube data (Eν > 6.3 TeV) [9].
Following the FASERν approval, the SND@LHC experi-
ment [10] designed to measure neutrinos at the LHC in a
complementary rapidity region to FASERν was approved
in 2021.
In 2018, we performed a pilot run in the LHC tunnel to

measure background and demonstrate neutrino detection at
the LHC for the first time. Although the pilot detector
lacked the ability to identify muons, given its depth of only
0.6λint, much shorter than the 8λint of the full FASERν
detector, these data have aided reconstruction tool develop-
ment and proven the feasibility of neutrino measurements
in this experimental environment. Here we report the
detection of neutrino interaction candidates in the pilot
run data.

II. THE PILOT RUN IN LHC RUN-2

In 2018, we installed a 29-kg pilot detector in the TI18
tunnel, 480 m from the ATLAS IP, to measure neutrino
interactions. With respect to the ATLAS IP, the TI18 tunnel
is symmetric to TI12, where FASERν will be located in
LHC Run-3. Previously, we reported charged particle flux
measurements made with other emulsion detectors installed

in the TI12 and TI18 tunnels in 2018 [11]. Here we focus
on the pilot detector.
The pilot detector is divided into a 14-kg module with

101 1-mm-thick lead plates and a 15-kg module with 120
0.5-mm-thick tungsten plates, each containing the corre-
sponding number of emulsion films [12], as shown in
Fig. 1. These emulsion films and target plates were spare
parts of the NA65/DsTau experiment [13]. Each module
was vacuum-packed to preserve the alignment between
films and placed in a 21-cm-deep acrylic chamber. The
transverse dimensions of the plates and films are 12.5 cm
wide and 10 cm high.
The beam collision axis in TI18 was mapped out by the

CERN survey team with mm precision. The two modules
were placed side by side with the collision axis passing
between them. The estimated uncertainty of the detector
position is �1 cm in both dimensions transverse to the
collision axis. An integrated luminosity of 12.2 fb−1 with
an uncertainty of 2% measured by the ATLAS experiment
[14,15] was collected during four weeks of data taking
from September to October with pp collisions at 13-TeV
center-of-mass energy. The beam half-crossing-angle was
about 150 μrad vertically upward, which moves the colli-
sion axis at the FASER location upward by ∼7 cm. The
detector temperature was stable at 17.94 °C with a standard
deviation of 0.07 °C [16]. Temperature stability is important
to avoid displacement of the emulsion films and metallic
plates and to ensure good alignment. The entire lead
module and 15% of the tungsten module were used in
the following analysis; the remaining spare films in the
tungsten module had data quality problems.

FIG. 1. Structure of the pilot emulsion detector. Metallic plates
(1-mm-thick lead or 0.5-mm-thick tungsten) are interleaved with
0.3-mm-thick emulsion films. Only a schematic slice of the
detector is depicted.

HENSO ABREU et al. PHYS. REV. D 104, L091101 (2021)

L091101-2

https://doi.org/10.1103/PhysRevD.104.L091101
https://doi.org/10.1103/PhysRevD.104.L091101
https://doi.org/10.1103/PhysRevD.104.L091101
https://doi.org/10.1103/PhysRevD.104.L091101


III. SIMULATION

Neutrinos produced in the forward direction at the LHC
originate from the decay of hadrons, mainly pions, kaons,
and D mesons. Light hadron production is simulated using
the EPOS-LHC [17], QGSJET-II-04 [18], SIBYLL 2.3C [19,20],
and DPMJET-III 2017.1 [21,22] simulation tools, as imple-
mented in the CRMC [23] package, while heavy hadron
production is simulated using SIBYLL 2.3C, DPMJET-III 2017.1,
and PYTHIA 8.2 [24,25] with the Monash tune [26]. Long-
lived hadrons are then propagated through the forward
LHC beam pipe and magnetic fields using a dedicated
simulation [27] implemented as a RIVET module [28] using
the geometry and beam optics for Run-2 as modeled by
BDSIM [29]. We use 13-TeV collision energy and a beam
half-crossing-angle of 150 μrad vertically upward. The
hadrons are decayed at multiple locations along their
trajectory according to decay branching fractions and
kinematics provided by PYTHIA 8.2, and the spectra of
neutrinos passing through the pilot detector are tabulated.
We then use GENIE [30,31] with the configuration outlined
in Ref. [7] to simulate neutrino interactions.
The dominant source of background to neutrino inter-

actions in the pilot run is inelastic interactions of neutral
hadrons produced in muon photonuclear interactions
upstream of the detector. The flux and spectrum of muons
have been estimated by the CERN sources, targets, and
interactions group, which performed FLUKA simulations
[32,33]; 108 pp collisions were simulated, and muons were
propagated to the location when the beam collision axis left
the concrete lining of the LHC tunnel (409 m from the IP) by
the FLUKA simulation. The estimated muon flux as a function
of energy at the 409-m position is shown in Fig. 2. The
expected uncertainty on the FLUKA flux is of the order of 50%.
The muons were further propagated through 67 m of rock to
reach close to the pilot detector by a GEANT4 simulation [34].
The expected muon fluxes at the pilot detector position are
9.4 × 103μ− and 3.9 × 103μþ=cm2=fb−1 for Eμ>100GeV,

and 1.5 × 104μ− and 9.3 × 103μþ=cm2=fb−1 for
Eμ > 10 GeV.
To simulate background hadron production and inter-

actions, GEANT4 simulations of muons passing through the
last 8 m of rock before reaching the pilot detector were
performed. Neutral hadrons produced in the last 2 m in
front of the pilot detector are the most relevant, because
those produced further upstream are absorbed in the rock
before reaching the detector. The average rock density
around CERN is measured to be about 2.5 g=cm3 [35]. To
reproduce this density, the rock was modeled as a mixture
of 41% CaCO3 and 59% SiO2. 109 negative muons and 109

positive muons were simulated. Kaons and neutrons are the
relevant secondary neutral hadrons produced, with a small
contribution from Λ baryons. Table I shows the production
rates of neutral hadrons per incident muon for negative
muons and positive muons. Muon-induced neutral hadrons
have a steeply falling energy spectrum; a 10-GeVminimum
energy threshold is applied to the simulation, since lower-
energy hadrons cannot satisfy the vertex reconstruction
criteria used in our analysis. Neutral hadron interactions
with the pilot detector were simulated by GEANT4 using the
FTFP_BERT and QGSP_BERT physics lists, which cor-
respond to different high-energy hadronic models [36].

IV. DATA ANALYSIS

The data analysis is based on the readout of the full
emulsion films by the hyper-track selector (HTS) system
[37] with a readout speed of 0.45 m2=h=layer. The HTS
identifies track segments (“microtracks”) in the top and
bottom emulsion layers of each film. A “base track” is
formed by linking the two microtracks on a film. Each base
track provides a 3D coordinate, 3D vector, and energy
deposit (dE=dx) estimator.
Data processing is broken up into subvolumes with a

maximum size of 2 × 2 cm2 × 25 emulsion films. A
preliminary alignment between each two consecutive films
(position shifts and gap) is obtained using recorded tracks.
To further improve the tracking resolution, an additional
alignment calibration is applied by selecting tracks crossing
many plates. Track reconstruction then links base tracks on

FIG. 2. The muon flux as a function of energy at 409 m from
the IP, as estimated by FLUKA. Muons entering 1 × 1 m2 around
the collision axis are shown.

TABLE I. The production rates of neutral hadrons per incident
muon with an energy threshold of 10 GeV. The difference
between μ− and μþ is mainly due to the difference in the energy
spectra.

Negative muons Positive muons

KL 3.3 × 10−5 9.4 × 10−6

KS 8.0 × 10−6 2.3 × 10−6

n 2.6 × 10−5 7.7 × 10−6

n̄ 1.1 × 10−5 3.2 × 10−6

Λ 3.5 × 10−6 1.8 × 10−6

Λ̄ 2.8 × 10−6 8.7 × 10−7
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different films by correlating their positions and angles.
The track density in the data sample, some 105=cm2 in a
small angular space of 10 mrad, is relatively high compared
to other emulsion experiments. A dedicated tracking
algorithm for high density environments [13] is therefore
employed on top of the software framework developed for
the OPERA experiment [38].
The majority of the tracks observed in the detector are

expected to be background muons and related electromag-
netic showers. These background charged particles were
analyzed using ten emulsion films in the lead module. The
position resolution in this dataset is 0.5 μm and the angular
resolution is 0.2 mrad. The observed angular distribution is
peaked in the direction of the ATLAS IP. The angular spread
of the peak is 2.3 mrad horizontally and 1.1 mrad vertically.
The spatial distribution was uniform within the detector
volume. Track detection efficiency was determined from the
single film efficiency measured for tracks penetrating ten
plates. The estimated track detection efficiency for this flux
measurementwas (88� 5)%.After the efficiency correction,
the charged particle flux within 10 mrad of the angular peak,
which is dominated by energetic muons, is ð1.7� 0.1Þ ×
104 tracks=cm2=fb−1 normalized by luminosity. This result

is consistent with the values previously reported by other
detectors [7,16] and close to the FLUKA prediction of
2.5 × 104 tracks=cm2=fb−1 for Eμ > 10 GeV.
For the neutrino analysis using reconstructed tracks

passing through at least three plates, vertex reconstruction
was performed by searching for converging patterns of
tracks with a minimum distance within 5 μm. Converging
patterns with five or more tracks were then identified as
vertices, rejecting the photon background. Collimation cuts
were applied to these vertices to select high-energy inter-
actions and suppress neutral hadron backgrounds: (1) The
number of tracks with tan θ ≤ 0.1 with respect to the beam
direction is required to be five or more, and (2) the number
of tracks with tan θ > 0.1with respect to the beam direction
is required to be four or less. Vertices are categorized as
charged or neutral based on the presence or absence,
respectively, of charged parent tracks. A looser track
selection is used for the charged parent track search with
a higher track detection efficiency of 99.8þ0.1

−0.3%: The
background from charged vertices being reconstructed as
neutral vertices is therefore negligible. The estimated
selection efficiencies for neutrino signal and neutral hadron
background vertices are shown in Table II. Signal classi-
fication is not performed in this analysis, and interactions of
all neutrino flavors are combined in the data.
The fiducial volume is defined by removing seven films

upstream, five films downstream, and 5 mm from the sides
of the detector, corresponding to an 11-kg target mass.
Within this volume, 18 neutral vertices passed the vertex
selection criteria. Figure 3 shows two selected neutral
vertices in lead, with 11 and nine associated charged
particles, respectively.
The expected number of neutrino signal vertices after all

selections is 3.3þ1.7
−0.9 , dominated by muon neutrino inter-

actions. The uncertainty reflects only the range of predic-
tions obtained from different Monte Carlo simulations. The
expected numbers of neutral hadron background vertices are
11.0 (FTFP_BERT) and 10.1 (QGSP_BERT). Since the

FIG. 3. Event displays of two of the neutral vertices in the yz projection longitudinal to the beam direction (left) and in the view
transverse to the beam direction (right).

TABLE II. Efficiencies for selecting interaction vertices for the
signal and background. The background efficiencies are esti-
mated for interactions of neutral hadrons with energy > 10 GeV.
The statistical uncertainties are below 0.001 for all cases.

Background

Signal FTFP_BERT QGSP_BERT

νe 0.490 KL 0.017 0.015
νe 0.343 KS 0.037 0.031
νμ 0.377 n 0.011 0.012
νμ 0.266 n̄ 0.013 0.013
ντ 0.454 Λ 0.020 0.021
ντ 0.368 Λ̄ 0.018 0.018
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difference of the two physics lists is not significant,
FTFP_BERT is used in the following analysis.
To validate the interaction features for the multivariate

analysis described later, charged vertices (vertices with
charged parent tracks attached), which simulation studies
show also originate from muons, were analyzed. Although
our muon flux measurement is close to the FLUKA pre-
diction, no estimate of the uncertainty of the muon energy
spectrum is available. The expected number of charged
vertices satisfying the selection criteria is 115.4 (40.4
charged hadron interactions and 75.0 muon interactions)
compared to the 78 charged vertices observed in the data.
Since the pilot detector lacked the ability to identify

muons, which could allow a clean separation of neutrino
charged-current and neutral hadron vertices, we introduced
the following multivariate approach as a much less power-
ful, but necessary, alternative. A multivariate discriminant
based on a boosted decision tree (BDT) algorithm has been
developed to distinguish neutrino signal from neutral
hadron background in the neutral vertex sample. The
BDT was implemented using the Toolkit for Multivariate
Data Analysis [39] and trained with Monte Carlo events
passing the vertex selection criteria. To define input
variables for the BDT analysis, we selected high-energy
interactions and checked the momentum balance of par-
ticles in the transverse plane. Using track angles with
respect to the collision axis (θ), the following variables
were defined: (1) the number of tracks with tan θ ≤ 0.1
with respect to the beam direction, (2) the number of tracks
with 0.1 < tan θ ≤ 0.3 with respect to the beam direction,

(3) the absolute value of the vector sum of transverse angles
calculated considering all the tracks as unit vectors in the
plane transverse to the beam direction (asum); (4) for each
track in the event, we calculate the mean azimuthal angle
between that track and all others, in the plane transverse to
the beam direction, and then take the maximum value in the
event (ϕmean); (5) for each track in the event, we calculate
the ratio of the number of tracks with azimuthal opening
angle ≤ 90° and > 90° in the plane transverse to the beam
direction, and then take the maximum value in the event (r).
The expected distributions of the input variables for the
neutrino signal and for the neutral hadron background
compared with the data are shown in Fig. 4.
The charged vertices mentioned above can be used to

validate the modeling of the BDT input variables in
simulated data. Figure 5 shows that the BDT inputs for
simulated charged hadron and muon interactions agree well
with the charged vertex data.
The BDT estimator values for the data and simulated

neutral vertices are compared in Fig. 6. Here, the normali-
zation of the signal and background distributions is freely
fitted to the data, resulting in the best fit values of 6.1 and
11.9 events, respectively. The vertices shown in Fig. 3
correspond to the first and second largest BDT values.
An excess of events over the background expectation is
observed at high BDT estimator, which is in agreement
with the background-plus-signal hypothesis. A hypothesis
test using the ROOSTATS tool implemented in the CERN
ROOT framework [40] is carried out on the binned BDT
estimator distribution. The background-only hypothesis is
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disfavored with a statistical significance of 2.7σ. The
expected significance is estimated with pseudo experiments
with the signal expectation of 3.3 events to be 1.7σ.
A systematic uncertainty related to the shape of the BDT

distribution for neutrino events was estimated by varying
the generator used for neutrino production and redoing the
analysis. This resulted in a small (< 0.2 events) change in
the fitted neutrino yield.
Systematic uncertainties on the shape of the background

BDT distribution were also evaluated by varying the shape
of the muon energy distribution, by varying the modeling
of the photonuclear interactions in the rock that produce the
background neutral hadrons from the incoming muons, and
varying the physics lists for the hadron interactions. These
effects can change the energy and type of the neutral hadron
interacting in the detector and therefore can influence the
shape of the BDT distributions. The muon distribution was
scaled up and down by a factor (1þ E=3 TeV) distorting
the spectrum as a function of energy, and the analysis
repeated. Fitting the data with the updated background
BDT shapes changed the fitted neutrino yield by 0.1 events.
In addition, the analysis was repeated using FLUKA to
model the production of neutral hadrons instead of GEANT4;
this leads to a change in the fitted neutrino yield of 0.1

events. Also, the analysis was repeated using the physics
list QGSP_BERT to model the hadron interactions instead
of FTFP_BERT; this leads to a change in the fitted neutrino
yield of 0.1 events.

V. CONCLUSIONS AND OUTLOOK

A search for neutrino interactions is presented based on a
small emulsion detector installed at the LHC in 2018. We
observe the first candidate vertices consistent with neutrino
interactions at the LHC. A 2.7σ excess of neutrinolike
signal above muon-induced backgrounds is measured.
These results demonstrate FASERν’s ability to detect
neutrinos at the LHC and pave the way for future collider
neutrino experiments.
We are currently preparing for data taking in LHC Run-3.

With a deeper detector and lepton identification capability,
FASERν will perform better than the pilot run detector.
In addition, the FASER spectrometer will measure the muon
flux, reducing uncertainties on background estimates. In the
2022–2024 run, we expect to collect∼10; 000 flavor-tagged
charged-current neutrino interactions.
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