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Data sharing policies

• Research Councils of the UK
• European Union
• U.S. Federal research policy
• Australian Research Council
• Individual countries, funding 

agencies, journals, universities
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Open Data Practices

• Deposit datasets in a data archive
• Link datasets to journal article or publication
• Publish data documentation

– Research protocols
– Codebooks
– Software
– Algorithms

• Cite data and software
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Data creation and reuse: The Ideal
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http://www.lib.uci.edu/dss/images/lifecycle.jpg

Borgman, C. L. (2019). The Lives and After Lives of Data. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.9a36bdb6

Pasquetto, I. V., Randles, B. M., & Borgman, C. L. (2017). On the Reuse of Scientific Data. Data Science Journal, 16. https://doi.org/10.5334/dsj-2017-008

https://doi.org/10.1162/99608f92.9a36bdb6
https://doi.org/10.5334/dsj-2017-008
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https://doi.org/10.1038/nature.2016.20617
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Publications <–> Data

Publications are arguments 
made by authors, and data 
are the evidence used to 
support the arguments. 

C.L. Borgman (2015). Big Data, Little Data, No Data: 
Scholarship in the Networked World. MIT Press 7



Publications <–> Data: Mapping

• Article 1
• Article 2
• Article 3
• Article 4

• Article n

• Dataset time 1
• Dataset time 2
• Observation time 1
• Visualization time 3
• Community collection 1
• Repository 1
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Data are representations of 
observations, objects, or 
other entities used as 
evidence of phenomena for 
the purposes of research or 
scholarship. 

C.L. Borgman (2015). Big Data, Little Data, No Data: Scholarship in the 
Networked World. MIT Press

http://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85327



Center for Embedded Networked Sensing
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• NSF Science & Tech Ctr, 2002-2012
• 5 universities, plus partners
• 300 members
• Computer science and engineering
• Science application areas

Slide by Jason Fisher, UC-Merced, 
Center for Embedded Networked Sensing (CENS)Menti 353774



Science <–> Data
Engineering researcher: 
“Temperature is temperature.”

CENS Robotics team
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Science <–> Data
Engineering researcher: 
“Temperature is temperature.”

Biologist: “There are hundreds of 
ways to measure temperature.
‘The temperature is 98’ is low-value 
compared to, ‘the temperature of the 
surface, measured by the infrared 
thermopile, model number XYZ, is 98.’ 
That means it is measuring a proxy for a 
temperature, rather than being in contact 
with a probe, and it is measuring from a 
distance. The accuracy is plus or minus .05 
of a degree. I [also] want to know that it 
was taken outside versus inside a 
controlled environment, how long it had 
been in place, and the last time it was 
calibrated, which might tell me whether it 
has drifted.." CENS Robotics team
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Comparative data reuse: 
calibrate, control, “ground truth”
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UCSC Genome Browser – Search example 
(CAPZB gene)

UCSC Genome Browser – Zoom IN

Pasquetto, I. V. (2018). From Open Data to Knowledge Production: Biomedical Data Sharing and Unpredictable 
Data Reuses (Ph.D. Dissertation, UCLA). Retrieved from https://escholarship.org/uc/item/1sx7v77r

https://escholarship.org/uc/item/1sx7v77r


Integrative Data Reuse:
Hypothesis Testing and Statistical Analysis
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Aligner software pairs “reads” 
using reference assemble genome

Data processing tool summarizes 
BAM information to compute 

likelihood of each possible genome

In-house script takes the ratio of 
mutant and allele frequencies to 

find the highest peak

R studio calculates elative 
frequency and generate plotting 

graphs

Annotation tool predicts 
consequences of gene function

Variants are annotated by gene 
names, variant impact, and type of 

variant

“RAW” DATA

RESULTS
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Comparative Data Reuse  <–>  Integrative Data Reuse

Goal “Ground truthing:” calibrate, 
compare, confirm 

Analysis: identify patterns, 
correlations, causal 
relationships 

Example Instrument calibration, 
sequence annotation, review 
summary-level data

Meta-analyses, novel 
statistical analyses

Frequency Frequent, routine practice Rare, emergent practice

Interpretation Interactional expertise, 
“knowledge that”

Contributory expertise, 
“knowledge how,” tacit 
knowledge

Pasquetto, I. V., Borgman, C. L., & Wofford, M. F. (in review). Uses and reuses of scientific data: The data creators’ advantage. Harvard Data Science Review.



Data Stewardship: The Reality

16

Mount Wilson Solar 
Observatory, 2017

NASA, Cape Canaveral, 
http://www.loc.gov/pictures/resource/hhh.fl04
83.photos.319101p/

Getty Research Institute

http://www.information-age.com/cloud-
computing-pharmaceutical-industry-123462676/ http://www.datamartist.com/data-migration-part-1-introduction-to-the-data-migration-delema

http://gsa.rice.edu/

Graduate students

https://med.nyu.edu/our-community/life-
nyu-school-medicine/life-postdoc

Post-doctoral fellows



Data Stewardship: The Ideal
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https://wwwdb.inf.tu-dresden.de/opendatasurvey/
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Wilkinson, et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 
http://dx.doi.org/10.1038/sdata.2016.18



Open Science and the Role of Common Evidence

• Whose science?
– Community practices
– Investigators’ hypotheses, theories, models, methods, code…

• Whose data?
– Global, comparative, fungible
– Local, integrative, specific

• Whose evidence?
– Common, cumulative, collaborative
– Data creators’ advantage
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