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Atomic electron tomography in three and four dimensions 
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University of California, Los Angeles, CA 90095, USA.  

2. Department of Physics, Korea Advanced Institute of Science and Technology 
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Atomic electron tomography (AET) has become an increasingly important 

tool for atomic scale structural characterization in three and four dimensions. It 

provides the ability to correlate structures and properties of materials at the single 

atomic level. With recent advances in data acquisition methods, iterative 3D 

reconstruction algorithms, and post-processing methods, AET can now determine 

the 3D atomic coordinates and chemical species with sub-Angstrom precision, 

and further reveal their atomic scale time evolution during dynamical processes. 

Herein, we summarize the recent progress in developing AET through selected 

highlights of recent findings on the determination of 3D coordinates in materials 

and capturing how the atoms rearrange during early nucleation at 4D atomic 

resolution. 

Keywords: Atomic electron tomography (AET), transmission electron 

microscopy (TEM), scanning transmission electron microscopy (STEM), and 4D 

atomic resolution. 

 

I. Introduction 

Recent years have witnessed an increasing demand of developing novel 

nanomaterials and nanostructures for applications in catalysis,1-5 electronics,6-8 

energy conversion and storage,9-11 quantum materials,12-14 high performance 

metals,15-17 biosensing and target delivery.18-20 To custom and tailor their 
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functional properties, it is prerequisite to determine their 3D atomic structures 

including crystal defects and disorders, such as grain boundaries, dislocations, 

interfaces and point defects. Furthermore, optimizing material synthesis and 

fabrication is essential in designing devices with desired properties, and to 

achieve this, determination of the 3D structure is not enough. It is required to 

measure their atomic-scale dynamics during the sample fabrication process and 

under working condition of the device. 

Transmission electron microscopy is routinely capable of imaging atomic 

structures, but only provides 2D projection views of 3D crystalline samples. 

Scanning probe microscopy can image surface structures at atomic resolution, but 

is blind to sub-surface structures. Among several powerful 3D imaging and 

structural determination methods including crystallography,21-22 coherent 

diffractive imaging,23-25 cryo-electron microscopy,26-28 and atom probe 

tomography,29-30 electron tomography has proven to be an important tool to image 

the 3D structure of heterogeneous biological and physical samples with 

nanometer resolution.31-33 By using crystallinity and other prior knowledge as 

constraints, electron tomography has been applied to image the 3D structure of 

various nanostructures with atomic resolution from a single or few projection 

images.34-40 However, because of making a few assumptions, this is not a general 

method to determine the 3D crystal defects and disordered structures. This major 

obstacle was overcome by the demonstration of AET in 2012, enabling to achieve 

2.4 Å resolution without assuming crystallinity for the first time.41 In 2015, AET 

was further advanced to determine the 3D coordinates of individual atoms in 

materials with a precision of 19 picometer.42 The transformation from electron 

tomography at nanometer resolution43-52 to AET capable of identifying 3D atomic 

positions in materials represents a quantum leap from qualitative to quantitative 

material characterization. Subsequently, AET has been applied to study crystal 

defects such as grain boundaries, dislocations, stacking faults, point defects and 

strain tensors with unprecedented 3D detail.41-42,53-56 The experimental atomic 

coordinates have also been used as direct input to ab initio calculations to 
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correlate 3D atomic structures and the physical, chemical and electronic 

properties of materials at the single-atom level.55  

In this article, we review the experimental and computational aspects of 

AET, including data acquisition, image denoising and alignment, 3D image 

reconstruction, atom tracing, classification and refinement. We illustrate recent 

developments in determining the 3D atomic coordinates and chemical 

order/disorder of nanomaterials. We also highlight the first experimental 

observation of early nucleation dynamics with 4D AET (i.e. space + time).56 

Finally, we discuss the future challenges and opportunities of this powerful 

method for material characterization in the 21st century. 

 

II. From pictures to 3D atomic coordinates: quantitative electron microscopy 

in 3D and 4D  

II.1 Acquisition of tomographic tilt series 

Electron tomography reconstructs 3D structural information from a tilt 

series of 2D electron microscopy images usually acquired at many different 

viewing angles.33,57-60 The resolution of an electron tomography reconstruction is 

set by the tilt range, the number of tilt angles, the dose applied to the sample, and 

the resolution of 2D projected images. Enormous efforts have been employed to 

improve the resolution limit and stability of electron microscopy since its 

invention,61-63 and aberration corrected electron microscopy can now routinely 

achieve sub-Angstrom resolution with much-improved image contrast.64 Although 

AET was first demonstrated on conventional electron microscopy,41,54 aberration 

corrected electron microscopy has significantly facilitated the data acquisition for 

AET. To reduce the diffraction contrast and the multiple scattering effects, 

annular dark field (ADF)-STEM has usually been used to acquire tomographic tilt 

series. As the sample damage is the main issue in data acquisition, the following 

approaches have been implemented to mitigate the radiation damage, including (i) 

choosing appropriate operating voltages; (ii) deposition of a thin protective layer 

(e.g. carbon film) over the specimen; (iii) finding the maximum tolerable electron 

dose for a specific sample; (iv) reducing the unnecessary dose on a sample as 
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much as possible; (v) taking multiple images at each angle and then aligning them 

to improve the signal-to-noise ratio. 

II.2 Image pre-processing 

Before the AET reconstruction, proper image post-processing must be 

done to remove any undesired effects such as image distortion due to drift, scan 

coil distortion, and noise. The multiple images (typically 3 – 10) acquired at each 

tilt angle are used to estimate and correct the specimen drift.42,55-56,65 The scanning 

coil related distortions are corrected by applying a non-linear, microscope-specific 

correction matrix obtained by analyzing a reference specimen with known lattice 

parameters.42,55-56,66 The signal to noise ratio of each image is further improved by 

applying advanced denoising techniques.67 Next, each tilt series is aligned to a 

common tilt axis using two approaches. Parallel to the tilt axis direction, the 

images are aligned to each other with sub-pixel accuracy by the common-line 

method.68,69 Perpendicular to the tilt axis direction, the alignment is achieved by 

the center of mass (CoM) method.41-42,54-56 The CoM of each image is located and 

the image is shifted so that the CoM coincides with the origin. This procedure is 

repeated until all the images are aligned. These methods have been successful for 

achieving high-accuracy alignment of electron tomography tilt series.41-42,54-56 

II.3 Advanced iterative reconstruction algorithms 

AET tilt series has two intrinsic issues: i) the missing wedge problem (i.e. 

the tilt range beyond 75 cannot usually be measured),58 and ii) a limited number 

projection images due to the radiation damage.70 Conventional tomographic 

methods such as filtered (or weighted) back projection33,71 cannot produce good 

quality reconstructions due to the incomplete data. Over the years, several 

iterative algorithms have been developed to alleviate this incomplete data 

problem.72-74 One method, termed GENeralized Fourier Iterative REconstruction 

(GENFIRE), has recently proven to be effective in reconstructing 3D atomic 

structure from a limited number projects with a missing wedge.55,56,75,76 

GENFIRE first assembles a 3D reciprocal grid from the experimental 2D 

projections using oversampled to increase the gridding accuracy. The algorithm 
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then iterates on the 3D grid between real and reciprocal space to search for a 

global solution that is consistent with the measured data (reciprocal space) and 

general physical constraints such as positivity and support (real space). The 

GENFIRE algorithm is described in Figure 1a. 

II.4 Post-processing of reconstructions: Atom tracing, species classification, 

and refinement 

The 3D atomic positions and species can be determined from the 

reconstruction. Figure 1b shows a cross-sectional view of a typical AET 

reconstruction of an FePt nanoparticle. The positions of local maxima within the 

volume represent the positions of each atom in the nanoparticle. By applying a 

local maxima tracing algorithm, the 3D atomic coordinates can be precisely 

determined.42,55-56 Atoms with larger atomic number (Z) will show higher 

intensities than those of lower Z elements for ADF-STEM tomography. The 

chemical species of each traced atom is classified based on the relative intensity 

contrast between different chemical species known to exist in a sample. Figure 1b 

shows that there are local maxima with relatively stronger intensity (Pt atoms) and 

weaker intensity (Fe atoms). Figure 1c shows the histogram of 5 × 5 × 5 voxels 

integrated intensities from the reconstruction volume for all traced atoms. Two 

Gaussian-shaped peaks are observed with some overlap. Most of the atoms can be 

clearly classified as Fe or Pt atoms based on their intensity. However, there are 

some ambiguous atoms at the overlapping region which need to be further 

classified. To separate these ambiguous atoms, an unbiased atom classification 

method can be used.55 By comparing the volume profile of every traced atom with 

the averaged volume profile of each chemical species, all atoms can be iteratively 

re-classified until a self-consistent average volume profile is reached. This 

method provides consistent classification results regardless of the initial starting 

configuration.55,56 The obtained 3D atomic model (both atomic coordinates and 

chemical species) can be further refined by minimizing the error between the 

measured and simulated projections along the experimental tilt angles.42,55-56 

 

III. Advances in atomic electron tomography 
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III.1 3D atomic imaging of nanostructures 

3D atomic imaging of complex nanostructures with crystal defects such as grain 

boundaries, stacking faults, dislocations and chemical distribution has been 

demonstrated with the acquisition of an atomically resolved tilt series and 

subsequent tomographic reconstruction. By combining ADF-STEM and an 

iterative reconstruction algorithm called equal slope tomography (EST), Scott et 

al. have first demonstrated that AET can image a gold nanoparticle at 2.4 Å 

resolution without assuming crystallinity.41 Figure 2a shows four major crystal 

grains, and individual atoms are observed in some regions in the nanoparticle. A 

similar approach was applied to study dislocations in a platinum nanoparticle. 

Chen et al. enhanced the signal-to-noise ratio of the reconstruction using 3D 

Fourier filtering.54 Figure 2b shows a 5.3 Å thick internal slice of the nanoparticle. 

A zigzag pattern, the characteristic feature of a screw dislocation core are visible 

in the enlarged views. 

Haberfehlner et al. demonstrated atomic resolution electron tomography 

on silver/gold core/shell nanoclusters using fewer numbers of projections and the 

SIRT reconstruction algorithm.77 From the reconstruction obtained by thirty-one 

STEM projections taken between 72o and -70o, the 3D morphology and 

composition of a cluster containing gold- and silver-rich regions can be identified 

without using any prior information and with minimal filtering (Figure 2c). By 

searching for confined maxima, they found the atomic positions localized within 

the cluster volume. This 3D information provides insight on the growth and 

deposition process of the nanocluster. 

Using the ab initio single-nanoparticle reconstruction method, Park et al. 

for the first time determined the 3D structures of platinum nanocrystals in 

graphene liquid cells at near atomic resolution.78 Figure 2d shows the 3D 

reconstruction of a Pt nanoparticle and the cross-sectional view along the vertical 

plane with tentative atomic positions indicated. This experiment provides means 

to understand the structure and stability of nanocrystals in liquid. 

III.2 Pinpointing atom locations and chemical order in three dimensions 
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The first demonstration of precise (±19 pm precision) 3D atomic structural 

determination of thousands of individual atoms via AET was reported in 2015 by 

Xu et al.42 They measured the full atomic coordinates of 3769 atoms which form 

the first nine atomic layers of a tungsten needle tip sample (Figure 3a). 

Furthermore, the atomic displacement field and the full 3D strain tensor was 

calculated with a resolution of 1 nm3 and a precision of 10-3, respectively. Density 

functional theory calculations and molecular dynamics simulations verified that 

the observed strain originates from the tungsten carbide formed at the surface of 

the tip and diffusion of carbon several layers inside the needle.   

Another important breakthrough has been made for measuring the 

chemical order/disorder atomic structure of transition metal based alloy 

compounds. Yang et al. applied AET to precisely determine the 3D coordinates 

(±22pm precision) and chemical species (99% accuracy) of an FePt 

nanoparticle.55 The internal chemically ordered grain structure was fully 

characterized. A rich structural variety of grain boundaries, anti-phase boundaries, 

anti-site point defects and swap defects were observed (Figure 3b-c). The 

experimentally measured coordinates and chemical species were directly input to 

DFT calculations. The spin and orbital magnetic moments were successfully 

determined for individual atoms within an L10 phase grain, showing variations 

depending on local atomic coordinates and chemical ordering. Furthermore, local 

magnetocrystalline anisotropy (MAE), the main property of interest for magnetic 

device applications, can also be calculated, which showed direct correlation with 

the local order parameters (Figure 3d). This work demonstrates not only the 

capabilities of AET to precisely determine full 3D atomic coordinates and 

chemical species of complex nanomaterials but also AET can be combined with 

quantum mechanical calculations to reveal the physical properties at the atomic 

scale. This paves a new way to advance our understanding of structure-property 

relationships of functional materials.  

III.3 Capturing atom motion in 4D 

While the 3D static atomic structure of materials is important to 

understand their functionality, there exists significant interest to reveal the 
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structure and dynamics of materials at 4D atomic resolution to study processes 

such as nucleation and growth. Using FePt nanoparticles as a model system, Zhou 

et al. have recently studied the dynamics of of early stage nuclei in an ex-situ AET 

experiment (Figure 4).56 Selected FePt nanoparticles were first annealed at 

520 °C in vacuum for 9 min, and tilt series were measured of each at room 

temperature. Then the nanoparticles were further annealed (520 °C) and measured 

at room temperature for 2-3 different annealing times. For all measured tilt series, 

3D atomic models were obtained and analyzed using the same reconstruction 

method. Figure 4a shows the atomic models of the same nanoparticle with an 

accumulated annealing time of 9 min, 16 min and 26 min, respectively. The atoms 

on and near the surface rearrange to form L10 phases while the Pt-rich core of the 

nanoparticle stays nearly the same (Figure 4b) which is evident when comparing 

the same internal atomic layers along the [010] direction (Figure 4c). By tracking 

the common nuclei in the particle, they found that early-stage nuclei are 

irregularly shaped, each has a core of one to a few atoms with the maximum order 

parameter, and the initiation of nucleation mainly occurs on the surface of the 

nanoparticles. The nuclei can undergo growth (Figure 4d), fluctuation (Figure 4e-

g), dissolution(Figure 4h), merging and/or division (Figure 4f-g), depending on 

the order parameter gradient distribution as well as thermodynamics and kinetics. 

These results not only show a never-before-seen view of nucleation but also 

indicate that a theory beyond classical nucleation theory is needed to describe 

early-stage nucleation at the atomic scale. This experiment adds a new dimension 

(time) to AET (i.e. 4D AET), capturing atomic motion in materials in four 

dimensions, which is currently not accessible by any other experimental methods. 

4D AET will potentially serve as a powerful tool in studying many fundamental 

problems such as phase transitions, atomic diffusion, grain boundary dynamics, 

interface motion, defect dynamics and surface reconstruction. 

IV. Summary and outlook 

With the recent development of electron microscopy, data analysis procedure, 

advanced iterative reconstruction algorithms, atom tracing and refinement 

methods, AET has made several breakthroughs. Now, we are in the era of 
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precisely determining the 3D positions of individual atoms in materials and 

probing their dynamics at 4D atomic resolution. Several examples of AET in 3D 

and 4D were summarized in this review. The future research frontiers of AET 

bring up more challenges and opportunities in solving fundamental problems such 

as disorder structures, electron beam sensitive structures and in situ 3D atomic 

dynamics. Several novel techniques could be employed to further improve the 

capabilities of AET, such as ptychography,79-81 atomic elemental mapping,82-83 

4D-STEM,84-85 dose-efficient STEM,86 low-dose modality imaging schemes with 

either advanced direct electron detectors87 or cryogen temperature environment,88-

89 and in situ atomic imaging microscopy.90-91 On the algorithm and method side, 

new method,92 new reconstruction algorithm93 and machine learning could further 

extend the applicability of AET to 2D materials, heterostructures, thin films and 

other material systems. With a combination of novel imaging modes and 

advanced reconstruction algorithms, we anticipate AET will play a key part in 

solving many fundamental problems in materials science, nanoscience, condensed 

matter physics and chemistry. 
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Figure Captions 

 

Figure 1. (a) An illustration of the GENFIRE algorithm. Adapted from Reference 

75. © 2017, Springer Nature. (b) A cross-sectional view of a GENFIRE 

reconstruction volume from an FePt nanoparticle. Each local maxima represents 

the position of individual atoms, and Fe and Pt chemical species can be 

https://arxiv.org/abs/1807.03886
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distinguished from the intensity contrast. (c) Histogram of the identified local 

intensity peaks. An unbiased atom classification method was applied to separate 

these peaks, and classified 23,804 atom candidates into 9,588 Fe (middle panel) 

and 14,216 Pt (bottom panel) atom candidates. Adapted from Reference 55. © 

2017, Springer Nature. 

 

Figure 2. 3D atomic imaging of nanostructures using electron tomography. (a) 

3D imaging of a gold nanoparticle at 2.4 Å resolution without assuming 

crystallinity or using averaging. Top shows the volume renderings of the 3D 

reconstruction of a gold nanoparticle and their Fourier transforms (insets) along 

the two- and threefold symmetry directions. Bottom shows the surface renderings 

of the 3D reconstruction with icosahedron model inset along the same symmetry 

directions. Adapted from Reference 41. © 2012, Springer Nature. (b) 3D imaging 

of dislocations in a platinum particle at atomic resolution. (left) 5.3 Å thick 

internal slice (two atomic layers) of the nanoparticle reconstructed by AET. (right) 

3D volume and surface renderings of an enlarged view of the core of a screw 

dislocation with the Burgers vector (b) of 21 ½[011]. Adapted from Reference 54. 

© 2013, Springer Nature. (c) 3D reconstructions of a Ag-Au nanocluster. The 

volume-rendered 3D view shows atomic structure and composition of the cluster; 

Adapted from Reference 77. © 2015, Springer Nature. (d) Volume-rendered and 

cross-sectional views of the 3D structure of individual nanoparticle in liquid at 

near-atomic resolution. Adapted from Reference 78. © 2015, American 

Association for the Advancement of Science. 
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Figure 3. (a) Experimentally determined 3D positions of individual atoms in a 

tungsten needle sample revealed by electron tomography. The 3D atomic model 

of the sample consists of nine atomic layers along the [011] direction, labelled 

with dark red, red, orange, yellow, green, cyan, blue, magenta and purple from 

layers 1–9, respectively. Adapted from Reference 42. © 2015, Springer Nature. 

(b) Experimentally determined complex grain structure of an FePt nanoparticle 

via AET. The nanoparticle consists of two large L12 grains, three small L12 grains, 

three small L10 grains and a Pt-rich A1 grain. (c) 3D atomic positions overlaid on 

the 3D reconstructed intensity (color scale at bottom) illustrating anti-site point 

defects (arrows): a Pt atom occupying an Fe atom site (left), an Fe atom 

occupying a Pt atom site (right). (d) 3D iso-surface rendering of the calculated 

local MAE (left) and L10 order parameter differences (right) obtained from an L10 

ordered grain within the nanoparticle. Adapted from Reference 55. © 2017, 

Springer Nature.  
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Figure 4. Capturing 4D atomic motion with AET. (a) 3D atomic models (Fe in 

red and Pt in blue) of an FePt nanoparticle with an accumulated annealing time of 

9 min, 16 min and 26 min, respectively. (b) The Pt-rich core of the nanoparticle 

(shown here) remained the same for the three annealing times. The light and dark 

grey projections below the models show the whole nanoparticle and the core, 

respectively. (c) The same internal atomic layer of the nanoparticle along the 

[010] direction at the three annealing times, where a fraction of the surface and 

subsurface atoms had rearranged to form L10 phase (ellipses). (d-h), 

Representative growing (d), fluctuating (e-f), dissolving nuclei (g) with an 

accumulated annealing time of 9 min, 16 min and 26 min, respectively. The 

atomic models show Fe (red) and Pt (blue) atoms with an order parameter ≥0.3, 

and the 3D contour maps show the distribution of an order parameter of 0.7 (red), 

0.5 (purple) and 0.3 (light blue). Adapted from Reference 56. © 2019, Springer 

Nature.   
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