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An	Abstract	Model	of	Historical	Processes	
Michael	Poulshock	
Drexel	University,	Thomas	R.	Kline	School	of	Law	

Abstract	
A	theoretical	model	is	presented	which	provides	a	way	to	simulate,	
at	a	very	abstract	 level,	power	struggles	 in	 the	social	world.	 In	 the	
model,	 agents	 can	 benefit	 or	 harm	 each	 other,	 to	 varying	 degrees	
and	with	differing	levels	of	influence.	The	agents	interact	over	time,	
using	 the	 power	 they	 have	 to	 try	 to	 get	 more	 of	 it,	 while	 being	
constrained	in	their	strategic	choices	by	social	inertia.	The	outcomes	
of	the	model	are	probabilistic.	More	research	is	needed	to	determine	
whether	the	model	has	any	empirical	validity. 

Introduction	and	Motivation	
When	we	 look	back	over	 the	history	of	humanity,	regardless	of	 the	time	period,	
place,	 or	 culture	 that	 we	 examine,	 we	 find	 agents	 engaged	 in	 power	 struggles.	
These	 agents	might	 be	 states	 jockeying	 for	 primacy	 in	 the	 international	 arena.	
They	might	be	groups	or	factions	grappling	for	control	of	some	market	or	political	
apparatus.	 They	 might	 be	 individuals	 competing	 for	 supremacy	 within	 some	
institution	or	spatial	region.	At	all	of	these	various	levels,	across	all	of	history,	the	
existence	of	power	struggles	like	these	has	been	invariant,	presumably	a	function	
of	the	fact	that	throughout	all	of	human	history,	there	have	been	humans	present.	
	 What	 do	we	mean	 by	 “power	 struggles”?	 Simply	 put,	 they	 are	 conflicts	 that	
arise	due	to	the	tendency	of	agents	to	use	whatever	power	they	have	to	get	more	
of	 it.	 In	 other	words,	 they	 are	 struggles	 over	 power	 itself.	When	 struggling	 for	
power,	agents	must	decide	who	to	cooperate	with,	and	whom	to	harm,	allocating	
whatever	power	is	at	their	disposal	and	taking	into	consideration	the	anticipated	
actions	 and	 reactions	 of	 their	 competitors.	 They	 tend	 to	 seek	 a	 combination	 of	
both	 absolute	 and	 relative	 power.	 As	 articulated	 by	 the	 political	 theorist	 Hans	
Morgenthau	 (1954)	 power	 is	 “that	 untamed	 and	 barbaric	 force	which	 finds	 its	
laws	 in	 nothing	 but	 its	 own	 strength	 and	 its	 sole	 justification	 in	 its	 own	
aggrandizement.”	
	 This	paper	presents	a	model	of	power	struggles.	It	ignores	many	of	the	things	
that	affect	real	world	conflict	dynamics,	like	culture,	technology,	the	environment,	
ideology,	 geography,	 migration,	 institutions,	 disease,	 and	 resource	 scarcity.	
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Instead,	 it	 focuses	 on	 the	 fluid	 dynamics	 of	 a	 single	 thing:	 power.	 It	 seeks	 to	
answer	the	question:	Given	an	initial	configuration	of	relationships	among	agents,	
each	of	whom	has	a	starting	amount	of	power,	how	will	the	system	tend	to	evolve	
in	time?	Or:	If	all	we	knew	about	a	social	situation	were	the	relative	powers	of	the	
actors	and	 the	network	 topology	of	 the	alliance	structure,	 to	what	degree	could	
we	anticipate	 future	 states,	 given	some	minimal	 set	of	assumptions?	The	model	
illustrates	how	the	struggle	 for	power	 in	and	of	 itself	might	give	 rise	 to	conflict	
and	alliance	dynamics	that	resemble	those	that	we	see	 in	the	real	world.	Future	
work	will	refine	the	model	and	attempt	to	apply	it	to	historical	situations	in	order	
to	gauge	its	empirical	utility;	at	the	moment,	it	is	merely	hypothetical.	

Foundational	Ideas	
We’ll	 begin	 by	 stating	 the	 foundational	 ideas	 underlying	 the	model.	 First,	 some	
definitions:	An	agent	is	an	individual	actor	or	a	collection	of	individuals	acting	in	
concert,	 such	as	a	civilization,	nation,	 firm,	etc.	Power	 is	a	quantity	reflecting	an	
agent’s	 ability	 to	 affect	 the	 power	 of	 other	 agents.	 Benevolence	 is	 an	 agent’s	
expenditure	of	power	 that	 increases	 the	power	of	another	agent.	Malevolence	 is	
an	agent’s	expenditure	of	power	that	decreases	the	power	of	another	agent.	And	a	
tactic	is	the	way	an	agent	allocates	its	power,	both	benevolently	and	malevolently,	
towards	other	agents.	
	 We	postulate	the	following:	

1. Reciprocal	benevolence	increases	the	power	of	each	agent.	
2. Power	used	malevolently	has	more	impact	than	power	used	

benevolently.	
3. Agents	seek	power	in	both	an	absolute	and	relative	sense:	they	want	to	

increase	the	amount	of	power	that	they	have,	but	they	also	want	more	
power	than	others.	

4. Agents	interact	indefinitely,	but	at	any	point	in	time	they	must	make	
tactical	decisions	in	the	face	of	(inherent,	exogenously	generated)	
uncertainty	about	the	future.		

5. The	larger	the	change	in	an	agent’s	tactics,	the	less	likely	it	is,	due	to	
social	inertia.	

6. Agents	are	rational	in	the	sense	that	they	act	in	their	own	self-interest	
and	assume	that	others	do	likewise.	

In	 this	 paper,	 we	 make	 the	 additional	 assumption	 that	 agents	 have	 perfect	
information:	they	each	know	everything	that	every	other	agent	knows.	
	 We	 will	 use	 these	 notions,	 discussed	 in	 more	 detail	 below,	 to	 generate	
simulations.	 The	 idea	 behind	 a	 simulation	 is	 that	 you	 start	 with	 some	 initial	
configuration	 or	 state,	 along	 with	 rules	 that	 alter	 the	 state,	 and	 then	 you	
repeatedly	apply	those	rules	and	see	what	happens.	Here,	there	are	two	distinct	
layers	of	simulation	that	occur.	At	a	high	level,	we	will	generate	a	series	of	frames,	
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or	states,	that	can	be	played	in	sequence	like	a	film.	Our	ultimate	goal	is	to	watch	
those	films.	But	in	order	to	generate	each	individual	frame,	a	separate,	lower-level	
simulation	must	occur	to	explore	possible	futures	at	that	particular	point	in	time.	
We	will	describe	the	lower-level	simulation	and	then	explain	how	results	from	it	
are	composed	to	form	the	higher-level	one.	But	we	first	need	to	describe	the	core	
abstraction	of	the	model,	which	defines	how	agents	interact	with	each	other	and	
what	they	want.	

The	Core	Model	
The	 model	 is	 presented	 here	 in	 mathematical	 form.	 A	 source	 code	
implementation	 in	 the	 Mathematica	 programming	 language	 is	 available	 at	
www.github/mpoulshock/AMHP.		

Basic	Mechanism	
We	 use	 a	 network,	 or	 graph,	 structure	 to	 model	 agents	 and	 their	
interrelationships.	Each	node,	or	 agent,	has	a	 characteristic	 called	power,	which	
quantifies	 its	 ability	 to	 influence	 events.	 Power,	 also	 referred	 to	 as	 size,	 is	
represented	in	this	model	as	a	number	s,	where	it	is	always	the	case	that	

	
𝑠 ≥ 0	 	 	 	 	 	 	(1)	

	
The	larger	the	number,	the	greater	the	agent’s	power.	Zero	power	means	that	the	
agent	has	no	influence,	even	over	itself,	and	is	effectively	dead.	
	 An	agent	 can	direct	 its	power	positively	or	negatively	 towards	other	 agents.	
Using	 it	 positively	 entails	 giving	 it	 to	 another	 agent.	 However,	when	 one	 agent	
gives	 a	positive	amount	of	power	 to	 another,	 the	amount	 received	by	 the	other	
agent	is	increased	by	a	factor	of	𝛽,	where	

	
𝛽 > 1	 	 	 	 	 	 (2)	

	
This	 benevolence	 multiplier	 reflects	 the	 idea	 that,	 regardless	 of	 what	 has	 been	
given,	it	has	more	value	to	the	recipient	than	it	did	to	the	giver.	This	derives	from	
postulate	 (1):	 if	 reciprocal	benevolence	 increases	 the	power	of	 each	party,	 then	
unilateral	benevolence	 increases	 the	power	of	 the	recipient.	The	 increase	 factor	
can	be	 thought	of	as	possibly	corresponding	 in	 the	real	world	 to	 the	benefits	of	
exchange	and	the	division	of	labor.	For	example,	if	S	sells	B	a	pound	of	apples	for	
$1,	we	can	assume	that	to	B	the	apples	were	more	valuable	than	$1,	and	that	to	S	
the	$1	was	more	valuable	than	apples	(Sowell	2011).	The	benevolence	multiplier	
allows	 agents	 in	 the	 model	 to	 achieve	 mutual	 benefit	 (growth	 in	 power)	 by	
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cooperating	with	each	other.	Power	used	towards	benevolence	is	expressed	as	a	
positive	number.	
	 The	 transfer	 of	 negative	 power,	 or	 malevolence,	 is	 similarly	 subject	 to	 a	
malevolence	multiplier,	𝜇,	where	
	

𝜇 > 𝛽	 	 	 	 	 	 (3)	
	
That	is,	when	an	agent	uses	power	negatively,	for	every	unit	of	power	it	expends,	
it	causes	a	reduction	in	the	recipient’s	power	by	𝜇.	This	captures	the	idea	that	it	is	
easier	 to	 destroy	 value	 than	 to	 create	 it,	 as	 expressed	 in	 postulate	 (2)	 above.	
Exactly	how	much	easier	 is	 left	undefined,	as	one	of	 the	model’s	parameters.	To	
the	 extent	 that	 this	 model	 has	 real	 world	 correspondence,	 it	 may	 be	 that	 an	
empirical	 value	 for	 𝜇	 bears	 some	 relationship	 to	 the	 concept	 of	 entropy,	 since	
destruction	 is	 ultimately	 about	 increasing	 disorder.	 Power	 used	 towards	
malevolence	is	expressed	as	a	negative	number.	
	 An	 agent	 can	 never	 use	 more	 power	 than	 it	 has.	 That	 is,	 the	 sum	 of	 the	
absolute	value	of	an	agent’s	outgoing	allocations	to	other	agents	must	equal	 the	
agent’s	total	power.	A	tactic	vector	𝝉	represents	an	agent’s	allocation	of	its	power,	
where	for	each	element	

	
𝝉) ∈ [−1,1]	 	 	 	 	 (4)	

	
and	
	

𝝉)/
)01 = 1	 	 	 	 	 	(5)	

	
where	 n	 is	 the	 number	 of	 agents.	 The	 tactic	 vector	 expresses	 an	 agent’s	
relationships	 as	 positive	 and	 negative	 percentages	whose	 absolute	 values	must	
sum	to	one.	It	can	be	thought	of	as	a	kind	of	a	foreign	policy	describing	the	agent’s	
conduct	towards	other	agents.	An	example	of	a	legal	tactic	vector	where	there	are	
three	agents	is	
	 	 0.7, −0.1, 0.2 	
	
The	 jth	 index	 of	 a	 tactic	 vector	 represents	 the	 percentage	 of	 its	 power	 that	 an	
agent	allocates	towards	itself.	This	is	not	subject	to	any	multiplier.	
	 All	 of	 the	 agents’	 tactic	 vectors	 together	 form	 a	 tactic	 matrix,	 T.	 Here’s	 an	
example:	
	



Poulshock:	Historical	Processes.	Cliodynamics	8:1	(2017)	

	 5	

	
				0.7 0.1 0
−0.1 0.8 0
			0.2 0.1 1

	

	
Each	column	 in	 this	matrix	represents	a	 tactic	vector	and	satisfies	equation	 (5).	
The	 matrix	 diagonal	 represents	 the	 amount	 of	 power	 that	 the	 agents	 are	
allocating	to	themselves.	
	 The	agents’	sizes	are	stored	in	a	size	vector,	s,	for	example	
	
	 0.3, 1, 0.6 	
	
To	ensure	consistent	results	from	one	simulation	run	to	the	next,	we’ll	adopt	the	
convention	of	normalizing	the	initial	tactic	vector	so	that	the	largest	agent	has	a	
size	of	1.	
	 The	tactic	matrix	and	the	size	vector	together	comprise	the	state.	The	state	can	
be	visualized	as	a	graph	in	which	the	node	sizes	show	the	power	of	the	agents	and	
the	 directed	 edges,	 varying	 in	 thickness,	 show	 the	 agents’	 tactical	 allocations.	
Figure	1	shows	an	example	using	the	size	vector	and	tactic	matrix	above.	Green	
represents	positive	(benevolent)	transfers	and	red	negative	(malevolent)	ones.	
	

	
Figure	1.	Example	state	graph.	
	
The	 state	 is	 updated	 in	 time	 steps,	 with	 all	 players	 moving	 simultaneously.	 At	
each	step,	power	is	transferred	among	the	agents	according	to	their	tactic	vectors	
and	 as	 it	 flows	 around	 the	 network,	 the	 power	 of	 each	 agent	 increases	 or	
decreases.	An	agent’s	updated	power	 is	 the	sum	of	 the	power	coming	to	 it	 from	
other	agents,	subject	to	the	appropriate	multiplier,	plus	the	power	that	it	kept	to	
itself.	We	can	represent	this	updating	procedure	mathematically	as	
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𝒔 𝑡 = 𝐓	°	𝐌 B	𝒔 0 	 	 	 	 (6)	
	

where	°	 represents	 the	Hadamard	product	 (element-wise	matrix	multiplication)	
and	M	 is	 a	 matrix	 representing	 the	 benevolence	 and	 malevolence	 multipliers	
defined	as		
	

𝑚D) =
1, 𝑖 = 𝑗
𝛽𝜏D) ≥ 0
𝜇𝜏D) < 0

	 	 	 	 (7)	

	
Another	way	to	express	equation	(6),	using	the	prior	state	rather	than	the	initial	
state,	is	
	
	 𝒔 𝑡 + 1 = 𝐓	°	𝐌 B	𝒔 𝑡 	
	
It’s	important	to	add	that	in	equation	(6),	for	every	element	of	s,	𝒔D ≥ 0,	due	to	the	
constraint	 imposed	 by	 equation	 (1).	 If,	 as	 a	 result	 of	 updating,	 an	 agent’s	 size	
becomes	less	than	or	equal	to	zero,	they	are	considered	dead	and	assigned	a	size	
of	zero.	The	existence	of	negative	sizes,	besides	being	meaningless,	would	cause	
subsequent	 update	 operations	 to	 behave	 counterintuitively.	 Using	 the	 example	
data	above,	and	assuming	that	𝛽 = 1.2	and	𝜇 = 3,	 the	new	size	vector	produced	
by	equation	(6)	would	be	
	

			0.7 0.1 0
−0.1 0.8 0
			0.2 0.1 1

°
			1 1.2 1.2
			3 			1 1.2
1.2 1.2 			1

∙
0.3
			1
0.6

=
0.33
0.71
0.79

	

	
Though	 abstract,	 the	 formalism	 of	 this	 model	 provides	 a	 flexible	 way	 of	
expressing	 a	 variety	 of	 interrelationships.	 Actions	 can	 be	 constructive	 or	
destructive,	 and	 in	 varying	 degrees.	 Relationships	 need	 not	 be	 symmetrical,	 as	
they	 frequently	 are	 not	 in	 real	 life.	 And	 some	 agents	 have	more	 influence	 than	
others.	A	variety	of	situations	can	be	modeled	this	way.	
	 We	 have	 described	 the	 model’s	 core	 data	 structures	 and	 how	 the	 state	 is	
updated	 from	 one	 time	 step	 to	 the	 next.	 Now	we	 turn	 to	 the	 question	 of	what	
agents	seek.	

Utility	
At	each	time	step,	each	agent	can	adjust	its	tactic	vector.	These	choices	can	lead	to	
a	wide	 variety	 of	 possible	 states,	 and	 agents	 need	 a	way	 to	 evaluate	whether	 a	
given	state	 is	better	or	worse	 for	 them	 than	any	other	 state.	 So	what	do	agents	
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want?	 We	 define	 three	 notions	 of	 utility	 that	 will	 reflect	 agents’	 preferences.	
Later,	we	will	use	these	various	utility	functions	to	evaluate	possible	moves.	

Positional	Utility.	The	first	utility	 function,	positional	utility,	defines	the	way	that	
agents	seek	to	maximize	power.	They	do	not	merely	want	to	maximize	their	own	
power.	They	instead	maximize	a	utility	function	approximated	by	
	
	 𝒖D ≈

𝒔N
O.P

𝒔Q
OR

QST
	

	
where	𝒖D 	is	the	utility	to	the	ith	agent.	
	 Basically,	two	things	matter	to	agents:	they	want	to	be	powerful	in	an	absolute	
sense,	 and	 they	want	 to	 dominate	 other	 agents	 by	 being	 powerful	 in	 a	 relative	
sense	 (Wendt	 1992).	 These	 two	 desires	 are	 in	 tension:	 to	 dominate,	 they	may	
have	to	shrink	by	causing	others	to	shrink	even	more;	to	grow	in	size,	they	may	
have	 to	 cease	 dominating.	 The	 utility	 function	 encodes	 these	 conflicting	
objectives.	This	is	easier	to	see	when	the	right	side	of	the	utility	function	is	split	
into	two	components:	
	
	 𝒖D ≈

𝒔N
O

𝒔Q
OR

QST
𝒔D 	

	
	 The	 first	 component	 on	 the	 right	 side	 of	 this	 equation	 reflects	 dominance:	
specifically,	the	ratio	of	an	agent’s	market	share	(their	proportion	of	all	power	in	
the	 system)	 squared	 to	 the	 total	 of	 each	 agent’s	 market	 share	 squared.	 In	
economic	 terms,	 this	 expresses	 each	 agent’s	 contribution	 to	 the	 Herfindahl-
Hirschman	 Index,	 which	 is	 a	 measure	 of	 competition	 within	 a	 given	 market	
(Rhoades	 1993).	 This	 component	 embodies	 the	 idea	 that	 the	 smaller	 and	more	
divided	 one’s	 competition,	 the	 better	 off	 one	 is.	 (By	 way	 of	 comparison,	 John	
Mearsheimer	 (2001)	 asserts	 that	 states	 in	 the	 international	 system	 seek	 to	
maximize	their	market	share	of	power.)	
	 The	 second	 component	 of	 the	 equation	 above	 provides	 an	 incentive	 for	
absolute	 growth.	 The	 square	 root	 of	 size	 is	 taken	 in	 order	 to	 reflect	 the	
diminishing	 marginal	 utility	 of	 acquiring	 power,	 since	 one	 additional	 unit	 of	
power	 is	more	valuable	 to	a	small	agent	 than	 to	a	 large	one.	 (This	 is	a	common	
facet	 of	 economic	 utility	 functions.)	 This	 could	 be	 generalized	 to	 a	 cube	 or	nth	
root,	such	that	

	
𝒖D =

𝒔N
U

𝒔Q
OR

QST
	 	 	 	 (8)	
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where	the	utility	exponent	𝛼	is	in	the	range	
	

𝛼 ∈ [2, 3]	 	 	 	 	 (9)	
	
As	𝛼	decreases,	relative	power	is	incentivized	and	agents	become	more	apt	to	use	
violence	to	cut	other	agents	down	to	size,	so	they	can	hoard	market	share.	As	𝛼	
increases,	 they’re	 more	 prone	 to	 pursue	 absolute	 growth,	 which	 requires	
cooperation	(mutual	benevolence).	We	could	allow	𝛼	to	vary	for	each	individual,	
which	might	better	reflect	the	heterogeneity	of	the	social	world.	However,	for	the	
sake	of	simplicity,	we’ll	assume	that	this	parameter	is	the	same	for	all	agents.	
	 This	 utility	 function	has	 a	 few	other	 desirable	 properties	worth	mentioning.	
First,	 agents	 that	 are	 the	 same	 size	 have	 the	 same	 payoff,	 dead	 agents	 have	 a	
payoff	of	zero,	and	the	largest	agents	will	have	the	largest	payoff.	Adding	agents	
with	 a	 size	 of	 zero	 to	 the	 population	 doesn’t	 affect	 the	 payoffs	 to	 the	 existing	
agents.	 Further,	 when	 there	 are	 two	 agents	 whose	 sizes	 differ	 by	 a	 constant	
amount,	 their	 payoffs	will	 tend	 to	 converge	 as	 their	 sizes	 increase	 by	 the	 same	
amount	 (e.g.	 the	 payoffs	 to	 agents	 with	 𝒔 = 100, 101 	 will	 be	 closer	 together	
than	 those	 with	 𝒔 = 1, 2 ).	 Finally,	 the	 utility	 function	 is	 smooth	 and	 well-
behaved,	except	when	all	agents	have	a	size	of	zero,	in	which	case	there’s	no	one	
left	to	care.	

Expected	 Utility.	 It	 cannot	 be	 the	 case	 that	 agents	 are	 free	 to	 choose	whatever	
tactics	they	like.	In	the	real	world,	the	past,	or	more	specifically	the	present,	binds	
their	options.	For	example,	a	country	could	not	one	day	suddenly	alter	its	entire	
foreign	policy,	even	if	taken	over	by	a	madman.	Processes	like	trade	agreements,	
peace	 talks,	mergers	and	acquisitions,	and	divorces	all	 take	 time,	because	social	
relationships	 have	 a	 kind	 of	 stickiness	 that	 resists	 rapid	 change.	 This	
phenomenon	 is	 called	 social	 inertia	 (Roedenbeck	 2011;	 Ramasco	 2006;	 Guhl	
1968).	Per	postulate	(5),	social	inertia	makes	it	less	likely	that	agents	will	be	able	
to	 effect	 dramatic	 tactical	 changes.	 Faraway	 tactics	 are	 simply	 unlikely	 to	 be	
reached;	ones	more	similar	to	the	current	tactic	are	more	plausible.	
	 So	 the	 rewards	 that	 an	 agent	would	ordinarily	 get	 from	 its	 positional	 utility	
have	 to	be	 reduced	 if	 those	positions	are	 the	 result	of	unlikely	 tactical	 changes.	
Following	a	convention	in	economic	modeling,	we’ll	 let	 the	expected	value	of	an	
event	equal	its	value	times	the	probability	of	it	happening.	And	we’ll	assume	that	
all	 agents	 assume	 that	 all	 other	 agents	 assume	 this;	 so	 there	 is	 communal	
acknowledgement	of	the	external	constraint	posed	by	postulate	(5)	and	its	effect	
on	everyone’s	rewards.	
	 Accordingly,	an	agent’s	expected	utility	p	from	a	position	will	be	the	position’s	
utility	to	the	agent	times	the	probability	of	getting	to	the	current	tactic	matrix	𝐓B	
from	the	previous	one	𝐓BW1:	



Poulshock:	Historical	Processes.	Cliodynamics	8:1	(2017)	

	 9	

	
𝒑D = 𝒖D	q(| 𝐓B, 𝐓BW1 |[)	 	 	 	 (10)	

	
Here	||·||	is	the	Frobenius	norm,	a	measure	of	the	Euclidean	distance	between	the	
two	tactic	matrices,	and	
	

q 𝑥 = erfc( a
b c

)		 	 	 	 (11)	

	
The	 q	 function	 approximates	 the	 likelihood	 of	 the	 tactical	 distance	 being	
traversed,	 and	 therefore	 of	 the	new	position	being	 reached.	 This	 function	 gives	
the	 tail	 probability	 of	 the	 half-normal	 distribution,	 just	 as	 the	 statistical	 Q-
function	gives	the	tail	probability	of	the	normal	distribution	(Weisstein	2017).	In	
a	half-normal	distribution,	only	nonnegative	values	of	x	are	possible,	and	it’s	used	
here	 because	 tactical	 distance	 is	 never	 negative.	 (The	 erfc	 function	 is	 the	
complementary	error	function.)	The	variable	𝜎	is	used	as	a	model	parameter	that	
controls	the	intensity	of	social	inertia:	when	𝜎	is	close	to	zero,	inertia	is	high;	as	𝜎	
increases,	inertia	decreases.	
	 What	 this	means	 is	 that	 the	 greater	 the	 tactical	 distance	 to	 a	 state	 from	 the	
prior	one,	the	 less	 likely	that	state	 is	to	be	reached.	And	that	 likelihood	is	based	
on	the	shape	of	a	bell	curve,	so	that	shorter	distances	are	much	more	likely	than	
longer	 ones.	 The	 shape	 of	 the	 bell	 curve,	 and	 therefore	 the	 intensity	 of	 social	
inertia	in	the	model,	can	be	adjusted	by	altering	𝜎.	
	 Summarizing,	expected	utility	is	the	power	that	an	agent	can	expect	to	have	at	
a	particular	 future	state,	 taking	 into	account	 the	 likelihood	of	 that	state	actually	
being	reached	in	a	world	afflicted	by	social	inertia.	

Intertemporal	utility.	The	third	type	of	utility	is	intertemporal	utility.	It	takes	into	
account	 the	 fact	 that	 the	 interaction	 among	 the	 agents	 goes	 on	 indefinitely	 and	
that	 at	 any	 given	 moment	 a	 cloud	 of	 uncertainty	 hangs	 over	 the	 future,	 per	
postulate	(4).	The	fact	that	there	is	a	future	at	all	is	significant,	as	it	opens	up	the	
possibility	of	reciprocity	because	agents	can	expect	future	rewards.	The	fact	that	
the	 future	 is	 uncertain	means	 that	 rewards	 in	 the	near	 term	are	more	 valuable	
than	those	farther	in	the	future	(Ratliff	1996).		
	 We	define	the	intertemporal	utility	P	of	a	strategy	as	the	total	rewards	that	an	
agent	will	receive	over	future	time	steps,	subject	to	discounting	such	that	rewards	
in	the	near	future	are	weighted	more	heavily	than	those	in	the	distant	future:	

	
𝑷D = (1 − 𝛿) 𝛿B𝒑D(𝑡)g

B01 	 	 	 (12)	
	
where	𝛿	is	the	discount	factor	and	
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𝛿 ∈ (0, 1)		 	 	 	 (13)	

	
When	 𝛿	 increases,	 future	 rewards	 are	 given	 more	 weight	 and	 agents	 can	 be	
thought	 of	 as	 having	 more	 patience,	 enabling	 greater	 cooperation.	 Conversely,	
when	 𝛿	 decreases,	 agents	 are	 more	 short-sighted	 and	 eager	 for	 immediate	
rewards.	The	 term	 (1−𝛿)	normalizes	 the	 result	 so	 it	 can	be	 compared	with	 the	
payoffs	from	individual	time	steps.	(Ratliff	1996)	
	 Intertemporal	utility,	 then,	 tells	agents	what	payoffs	 they	will	 receive	 from	a	
sequence	 of	moves,	 not	 just	 from	 the	next	 immediate	move.	 It	 allows	 agents	 to	
take	the	future	into	their	strategic	calculations	and	to	consider	various	long-term	
scenarios	and	decide	which	they	prefer.	

Generating	Simulations	
Thus	far,	we	have	described	the	mechanics	of	how	agents	interact	and	the	nature	
of	 the	 rewards	 that	 they	seek.	 In	 this	 section,	we	describe	how	 those	 rules	give	
rise	 to	a	dynamic	 simulation	 that	unfolds	over	discrete	 time	steps.	We	will	 first	
explain	 the	 lower-level	 simulation	 that	 generates	 individual	 frames,	 before	
moving	 on	 to	 define	 reels,	 which	 are	 the	 high-level	 simulations	 that	 we	 are	
interested	in	observing.	An	unusual	feature	of	this	simulation	concept	is	that	for	
any	initial	state,	we	can	examine	numerous	possible	futures	and	their	associated	
probabilities.	

Generating	Frames	
From	any	 given	 state,	we	need	 a	way	 of	 determining	 the	 next	 state.	 In	 the	 real	
world,	 strategic	 agents	 consider	 their	 own	 possible	 moves	 and	 those	 of	 their	
competitors,	and	engage	in	an	if	I	do	that,	she’ll	do	that...	kind	of	exercise.	Similar	
to	the	way	a	chess	player	imagines	various	game	permutations	before	making	an	
actual	 move,	 the	 agents	 in	 this	 model	 engage	 in	 speculation	 about	 what	 to	 do	
before	 actually	 moving	 on	 to	 the	 next	 frame.	 With	 our	 bird’s	 eye	 view	 of	 the	
system,	we	will	perform	a	Monte	Carlo	simulation,	generating	numerous	random	
sequences	of	tactic	matrices,	or	lines	of	play,	and	then	eliminating	the	lines	which	
are	irrational.	We	use	the	remaining,	rational	lines	of	play	to	determine	what	the	
agents	are	 likely	to	do	on	their	next	move,	and	we	end	up	with	a	set	of	possible	
next	frames	and	associated	probabilities	for	each.	

Identifying	 rational	 lines	 of	 play.	 We	 have	 asserted	 that	 agents	 are	 rational	
(postulate	 (6))	 and	we	will	 appeal	 to	 a	 notion	 of	 rationality	 established	 in	 the	
field	 of	 game	 theory.	 The	 idea	 is	 that	 agents	 will	 take	 future-oriented	
intertemporal	 rewards	 if	 they	are	better	 than	what	each	agent	 is	 guaranteed	 to	
get	if	there	were	no	future	and	all	that	mattered	were	the	expected	utility	of	the	
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next	 immediate	 move.	 Game	 theorists	 typically	 illustrate	 this	 idea	 using	 the	
Prisoner’s	Dilemma,	a	toy	game	in	which	the	players’	best	responses	result	in	an	
apparently	 suboptimal	 outcome	 because	 there	 is	 no	 incentive	 for	 cooperation	
(Axelrod	1985).	 In	 contrast,	when	 the	Prisoner’s	Dilemma	 is	played	 repeatedly,	
cooperation	 becomes	 possible	 because	 players	 are	 able	 to	 anticipate	 future	
rewards	and	punishments	(see	Ratliff	1996).	We	will	use	this	concept	to	identify	
rational	 lines	 of	 play	 among	 our	 agents.	 (For	 a	 summary	 of	 contrasting	 uses	 of	
game	theory	in	networks	of	power,	see	Neuhofer	2015.)	
	 We	proceed	in	two	stages.	First,	we	identify	the	best	outcome	that	each	agent	
is	guaranteed	to	receive	on	the	next	move.	This	is	known	as	the	minimax	vector.	
To	compute	it,	we	select	random	possible	tactics	for	each	agent	and	then	identify	
each	agent’s	best	responses	to	the	other	agents’	tactics.	Here,	the	best	response	is	
the	 one	 that	 results	 in	 the	 highest	 expected	 utility	 p.	 If	 there	 are	 any	 tactic	
matrices	 that	 comprise	 all	 agents’	 best	 responses,	 these	 are	 the	 stage	 Nash	
equilibria.	There	can	be	one,	more	than	one,	or	sometimes	zero	such	equilibria.	If	
there	are	more	than	one,	we	look	for	each	agent’s	lowest	expected	utility	among	
the	 equilibria.	 The	 result	 of	 this	 first	 step,	 the	minimax	 vector,	 is	 a	 size	 vector	
representing	 the	minimum	power	each	agent	 is	guaranteed	 to	have	on	 the	next	
move	(Fudenberg	1986).	
	

	
Figure	2.	A	 line	of	play	 is	a	 sequence	of	 states	generated	 from	a	 list	of	 random	
tactic	matrices.	At	each	step,	agents’	sizes	are	updated	by	applying	equation	(6).	
	
We	 then	 look	 for	 lines	 of	 play	 that	 make	 everyone	 better	 off	 than	 the	 stage	
minimax	vector.	For	a	particular	line	of	play,	we	generate	a	sequence	of	random	
tactic	matrices,	play	out	each	of	them,	and	compute	the	intertemporal	utility	P	of	
the	 sequence.	 Any	 line	 of	 play	 in	which	 an	 element	 of	 the	 intertemporal	 utility	
vector	 is	 less	 than	 the	 corresponding	 element	 of	 the	 minimax	 vector	 can	 be	
eliminated	as	 irrational.	No	rational	agent	would	play	 their	 respective	moves	 in	
that	line	because	they’d	do	worse	than	they	would	by	playing	a	move	that	leads	to	
a	stage	Nash	equilibrium.	In	game	theory,	this	idea	is	known	as	the	folk	theorem	
(Fudenberg	1986).	We	want	to	keep	only	those	lines	of	play	where,	for	each	agent	
	

𝑃D 	>	𝑚𝑖𝑛𝑖𝑚𝑎𝑥D 	 	 	 	 	 (14)	
	

After	 eliminating	 the	 irrational	 lines	 of	 play,	 we	 are	 left	 with	 those	 that	 are	
plausible,	in	the	sense	that	rational	agents	would	select	them	over	the	short-term	



Poulshock:	Historical	Processes.	Cliodynamics	8:1	(2017)	

	 12	

stage	Nash	moves.	 In	other	words,	we	have	 found	sequences	of	moves	 in	which	
the	first	move	of	each	sequence	is	a	plausible	candidate	for	the	next	frame.	

Determining	the	likelihood	of	various	next	states.	We	have	identified	rational	lines	
of	 play	 and	 in	 each,	 the	 first	move	 is	 a	 contender	 for	 being	 the	next	 frame.	We	
now	want	to	know	the	likelihood	of	each	of	these	contenders.	
	 We	 can	determine	 the	 likelihood	of	 a	 line	 of	 play	 based	 on	 the	 total	 tactical	
distance	that	it	covers.	Due	to	social	inertia,	the	longer	the	distance,	the	less	likely	
the	line	of	play.	And	the	probability	of	a	line	of	play	is	the	probability	that	the	first	
move	 along	 it	will,	 in	 fact,	 be	 played.	 The	 idea	 is	 that	 agents	 contemplate	 their	
various	options	and	then	must	choose	their	next	step	into	the	haze	of	the	future.	
We	 define	 the	weight	w	 of	 a	 next	 frame	 as	 being	 inversely	 proportional	 to	 the	
total	(intertemporally	discounted)	distance	of	its	line	of	play:	
	

𝑤(𝐓1) = q 1 − 𝛿 𝛿B||𝐓B, 𝐓BW1
g
B01 ||[ 			 	 (15)	

	
This	equation	follows	a	similar	pattern	as	(12).	The	weightier	a	frame,	the	more	
plausible	it	is.	
	 Depending	on	the	number	of	 lines	of	play	that	we	have	randomly	generated,	
there	 could	 be	many	 rational	 first	moves	 (tactic	matrices).	We	 can	 bring	 some	
coherence	 to	 this	 mass	 of	 information	 by	 clustering	 similar	 tactic	 matrices	
together.	 There	 are	 quite	 a	 few	ways	 to	 do	 this,	 but	 perhaps	 the	 simplest	 is	 to	
round	the	elements	of	each	tactic	matrix	to	a	desired	multiple.	
	 Clustering	 allows	 us	 to	 accumulate	 the	 overall	 probability	 of	 each	 possible	
next	frame.	We	define	the	probability	ℙ	of	transitioning	from	𝐓m	to	a	possible	next	
frame	𝐓1,n	 as	 the	 total	 of	 all	 weights	 associated	 with	𝐓1,n ,	 divided	 by	 the	 total	
weights	for	all	next	frames	that	were	generated:	

	
ℙ 𝐓m|𝐓1,n = 	 o(𝐓T,p)

o(𝐓T,·)
		 	 	 	 (16)	

	
The	 more	 frequently	 a	 frame	 appears	 in	 the	 sample	 of	 Monte	 Carlo-generated	
(rational)	lines	of	play,	the	more	likely	it	is.	And	the	greater	its	weight,	the	more	
likely	 it	 is.	 As	 more	 lines	 of	 play	 are	 randomly	 generated,	 the	 probability	
estimates	for	the	various	possible	frames	converge	to	stable	values.	
	 To	 recap,	 we	 have	 explained	 how	 to	 produce	 a	 frame—actually,	 numerous	
possible	 frames—from	 a	 prior	 one.	 First,	 we	 generate	 random	 lines	 of	 play	
(sequences	of	tactic	matrices)	into	the	imagined	future.	Of	these,	we	select	those	
that	are	rational,	 in	 the	sense	 that	 the	 long-term	rewards	 to	each	agent	surpass	
any	guaranteed	short-term	gain.	We	 then	estimate	 the	 likelihood	of	each	 line	of	
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play	based	on	its	tactical	variation,	and	finally	we	cluster	the	first	states	on	those	
paths	to	estimate	the	likelihood	that	each	of	those	states	will	be	the	next	frame.	
	 This	simulation	concept	is	probabilistic:	state	A	will	not	invariably	give	rise	to	
state	 B;	 instead,	 the	model	 yields	 a	 probability	 of	 transitioning	 from	A	 to	 B.	 So	
from	 any	 starting	 frame,	 we	 end	 up	 with	 a	 spectrum	 of	 possible	 subsequent	
frames.	

Generating	Reels	
A	reel	is	a	series	of	frames	that	can	be	played	like	a	film.	We	can	generate	a	reel	by	
repeating	the	process	described	in	section	4.1	for	every	new	frame.	Starting	from	
an	 initial	 state,	 we	 build	 a	 tree	 of	 possible	 next	 frames,	 applying	 the	 above	
procedure	 to	 every	 leaf	 state,	 going	 as	 deep	 into	 the	 future	 as	 we	 like.	 This	
process	generates	a	chain	of	states	and,	between	any	two	states,	the	likelihood	of	
transitioning	from	one	to	the	next.	We	end	up	with	a	probability	tree	where	each	
path	from	the	origin	is	a	reel	(see	Figure	3).	The	overall	structure	is	not	a	single	
reel,	but	a	family	of	reels	all	spinning	out	from	the	initial	state.	This	tree	structure	
allows	us	to	see	a	variety	of	possible	futures	and	to	gauge	the	ultimate	likelihood	
of	each.	
	

	
Figure	3.	Each	square	is	a	state	and	edges	show	the	probabilities	for	transitioning	
from	one	state	to	the	next.	Each	path	from	the	initial	state	(top)	to	a	leaf	state	is	a	
reel.	 The	 transition	 probabilities	 are	 computed	 from	 the	 lower-level	 simulation	
using	equation	(16).	
	
We	can	calculate	the	likelihood	that	a	particular	reel	R	will	occur,	given	an	initial	
state,	as	
	

ℙ 𝐑 = 	 ℙ(𝐓B|𝐓Bs1)
Btpu
B0m 		 	 	 	 (17)	
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Here	 we	 multiply	 the	 probabilities	 of	 each	 frame	 transition	 along	 the	 reel,	
following	the	multiplication	rule	for	independent	events.	For	example,	in	Figure	3,	
the	likelihood	of	the	rightmost	path	occurring	would	be	.1	x	.5	=	.05.	
	 Probabilistic	 outcomes	 are	 important	 because	 the	 social	 world	 is	 non-
deterministic.	 Any	model	 that	 asserted	 that	 a	 particular	 outcome	was	 the	 only	
possible	one	would	be	implausible.	Here,	the	probabilistic	nature	of	the	outcomes	
is	not	 the	 result	of	 the	 random	nature	of	 the	Monte	Carlo	 simulation;	 instead	 it	
arises	from	postulate	(5),	which	provides	a	way	to	gauge	the	likelihood	of	events	
by	the	degree	to	which	they	breach	social	inertia.	

Discussion	and	Future	Work	
By	exploring	 the	 implications	of	 some	 fairly	 straightforward	 foundational	 ideas,	
we	 have	 defined	 a	 probabilistic	 simulation	model,	 represented	more	 or	 less	 by	
the	 numbered	 equations	 above,	 in	 which	 agents	 capable	 of	 inflicting	 harm	 on	
others	seek	to	maximize	their	own	power.	This	model	provides	a	framework	for	
reasoning	about	power	struggles	and	possibly	for	projecting	their	outcomes.	
	 Does	 the	 real	world	work	 this	way?	 Certainly,	 the	 basic	 assumptions	 of	 this	
model	 align	 with	 intuitive	 notions	 of	 power	 and	 its	 pursuit.	 Historical	 agents	
continually	rearrange	their	relationships	in	order	to	prosper,	dominate,	and	avoid	
being	dominated,	and	these	rearrangements	simultaneously	cause	changes	to	the	
wider	 network	 and	 are	 reactions	 to	 it	 (see	 Emerson	 1962;	 Baldwin	 1978).	 The	
universality	of	power	 struggles	 at	many	 levels	of	 the	 social	world	 suggests	 that	
they	may	be	generated	by	a	single	underlying	process.	So	it	doesn’t	seem	insane	
to	wonder	whether	the	model	has	any	empirical	merit.	
	 To	test	it,	we	would	need	to	initialize	simulation	runs	with	historical	scenarios	
and	see	whether	the	outcomes	resemble	reality.	We	could	also	test	the	model	on	
patterns	 commonly	 seen	 in	 power	 struggles	 and	 assess	 whether	 the	 outcomes	
meet	expectations	 for	how	 those	 situations	 typically	unfold.	This	would	 require	
tinkering	with	the	model	parameters	(α,	β,	μ,	δ,	and	σ)	to	see	what	ranges	lead	to	
the	most	plausible	behavior.	We	should	not	expect	perfect	fidelity,	as	the	model’s	
simplistic	 assumptions—perfect	 information,	 perfect	 rationality,	 perfect	
computational	ability,	and	perfectly	homogeneous	agents—obviously	do	not	hold	
in	the	real	world.	Several	aspects	of	this	experimental	effort	merit	comment.	
	 First,	 regarding	 the	 subjects	 of	 our	 investigations,	 one	 would	 expect	 that	
agents	that	are	aggregates	of	many	individuals—for	example,	nations—would	be	
more	 likely	 to	 conform	 to	 the	 idealization	of	 the	model.	The	same	holds	 true	of	
power	 struggles	 that	 develop	over	 longer	 time	 scales.	We	 also	have	 to	be	wary	
about	 applying	 the	model	 to	 historical	 eras	 in	whose	 interpretation	we	 have	 a	
vested	 interest.	 The	 farther	 we	 look	 from	 our	 own	 historical	 myths	 and	
ideologies,	the	more	objectively	we	can	appreciate	the	role	that	raw	power	plays	
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in	 history.	 Often	 the	 power	 dynamics	 of	 a	 particular	 era	 are	 evident	 only	 in	
hindsight,	as	it	takes	time	to	develop	a	sufficiently	revealing	historical	record.	
	 Second,	 quite	 a	 lot	 of	 computation	 is	 required	 as	 the	 number	 of	 agents	
increases	 and	 as	 the	 horizon	 of	 the	 future	 lengthens.	 For	 nontrivial	 historical	
situations,	it	may	prove	difficult	to	scale	this	model	up.	
	 Third,	we	need	to	determine	whether	and	how	power	in	the	model	is	reflected	
in	 measurable	 real	 world	 quantities.	 The	 ancient	 debate	 about	 the	 nature	 of	
power	may	never	be	fully	resolved	(Parsons	1963).	Power	is	traditionally	viewed	
as	one	agent’s	ability	to	force	another	to	do	something	that	it	wouldn’t	otherwise	
do	(see	Parsons).	Here	we	take	a	more	abstract	approach	and	conceive	of	power	
as	an	agent’s	ability	to	harm	or	benefit	another	agent,	where	every	action	taken	
comes	at	a	cost.	Whatever	it	is,	power	is	context-dependent	and	the	definition	we	
use	 has	 to	 permit	 a	 fungibility	 between	 benevolence	 and	 malevolence:	 capital	
needs	to	be	convertible	into	violence	and	vice	versa.	In	the	international	context,	
many	measures	of	national	power	are	available	(Höhn	2011).	
	 Finally,	we	might	consider	extending	the	model	to	include	other	variables,	like	
resource	 scarcity,	 the	 location	 and	 movement	 of	 agents	 in	 space,	 the	 role	 of	
institutions	in	constraining	and	channeling	power,	and	information	asymmetries,	
the	last	of	these	being	of	particular	interest	as	a	relaxation	of	the	assumption	we	
made	above	pertaining	to	perfect	information.	

Data	Structures	and	Variables	
For	convenience,	we	list	the	model’s	core	data	structures	and	variables.	
	
	 	 Table	1.	Core	data	structures	and	variables	in	model	

Symbol	 Meaning	
n	 Number	of	agents	
s	 Size	(power)	vector	
τ,	T	 Tactic	vector,	matrix	
M	 Multiplier	matrix	
t	 Time	step	

	
Below	are	parameters	that	can	be	tuned	when	searching	for	correspondence	with	
real	world	behavior.	These	five	parameters	are	related	to	the	first	five	postulates.	
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	 	 Table	2.	Tunable	parameters	

Symbol	 Meaning	 Range	 Postulate	

β	 Benevolence	multiplier	 (1,	𝜇)	 1	

μ	 Malevolence	multiplier	 (𝛽,	∞)	 2	

α	 Utility	function	exponent	 [2,	3]	 3	

σ	 Coefficient	of	social	inertia	 (0,	1)	 4	

δ	 Discount	factor	 (0,	∞)	 5	
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