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Abstract 

 
High resolution synoptic sampling and analysis for understanding groundwater-surface 

water interactions in lowland rivers 
 

by Henry Pai 
 

Doctor of Philosophy in Environmental Systems 
University of California, Merced, 2015 
Professor Thomas C. Harmon, Chair 

 
Distributed groundwater discharges to the surface water (GW-SW discharge) in 

river systems remain difficult to measure across spatiotemporal scales yet are an 
important metric to understand with respect to nonpoint source constituent loading to 
rivers and downstream aquatic systems.  The work focuses on a long reach (~38 river 
km) along the lower Merced River (LMR) in Central California, a reach in which GW-SS 
discharges are perennial.  Coupled with elevated GW well concentrations for specific 

conductance (SC) and nitrate (NO
3

-
), the loading of these constituents to the river and 

transport downstream are of particular interest.  This study presents a method for high 
resolution, in situ synoptic sampling for SW SC and nitrate, and applies a simple mass-
balance, mixing model to estimate distributed GW-SW discharge on 1-km intervals.  SW 
data collection spanned from 2010-2012 covering a wide range of flows (1.3 to 31.6 m3  
s-1).  To assess the distributed GW-SW discharge, we assumed SC to be conservative and 
attributed changes in SW SC behavior to nonpoint source loading.  We addressed model 
parameterization considerations in terms of spatial resolution discrepancies between the 
high resolution, synoptic sensor data and relatively sparse available GW well data, and 
also tested model sensitivity to GW source characteristics (GW sampling screen depth 
and timeframe).  For spatial interpolations requiring a large number of wells (inverse 
distance weighting method with 12 wells), we found large differences in GW-SW 
discharge estimates, and attributed this to well data availability issues.  Additionally, 
GW-SW distributed discharge estimates also showed noticeable variability between GW 
spatial parameterization methods.  Cumulative GW-SW discharge estimates agreed 
reasonably with observed differential flows between two gauging stations.  Distributed 
GW-SW discharge results clearly identify a zone of higher GW-SW discharge related to 
elevated hydraulic gradient and supported from previous studies.  While SW SC 
expectedly diluted with increased SW flows, GW-SW discharge did not consistently 
decrease as anticipated, indicating more complex GW-SW interactions requiring further 
investigation.  The SC-based distributed GW-SW discharge estimates were used to 
parameterize a reactive nitrate loading model using a similar mass-balance method, 
incorporating a first-order decay term to explain denitrification.  We scaled the unitless 
decay term using local discharge estimates, and we varied the decay term to achieve the 
best model fit (i.e., lowest RMSE) to observed river nitrate concentrations.  When we 
censored GW nitrate concentrations less than method detection limits, for GW 
parameterization, the best fit model agreed well with observed SW nitrate concentrations.  



xviii 
 

The unitless decay term estimated for each synoptic event generally underestimated 
previous studies along a local GW flowpath, but showed a similar trend with a regional 
study for different flow regimes (higher nitrate loss for low flows).  The methods and 
analysis presented in this work provide a practical and rapid assessment tool for 
estimating longitudinal GW-SW discharge and potential reactive constituent loading at 
resolutions of interest to land management/change studies, aquatic ecosystem 
sustainability, and maintaining water quality standards for human consumption. 
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1. Introduction 

1.1. Motivation 

Human impacts on biogeochemical cycles (i.e. carbon, nitrogen, phosphorous, 
etc.) in the environment can be profound.  Byproducts from industrial processes and 
practices continue to make their way into the natural aquatic systems, under the 
assumption that dilution will reduce risks to acceptable levels.  However, accumulated 
effects over time and space can combine with poor understanding of physical transport 
and biochemical interactions leading to unforeseen and costly consequences.  Thus, it is a 
perpetual challenge to understand risks of action or inaction in regard to chemical 
distributions, residence times, and potential feedbacks within the every-changing 
environment [1]. 

In the aquatic environment, we often classify human impacts through point and 
nonpoint source pollution.  An example of point source can be a pipe or canal effluent 
directly leading to a river or ocean.  Often the effluent is treated and diluted to achieve 
regulatory standards, but still contains some pollutants.  Nonpoint sources, such as 
agricultural fertilizers and fugitive urban runoff, can either flow directly to surface water 
(SW) systems in a distributed fashion or percolate into groundwater (GW) aquifer 
systems and eventually emerge in a fresh SW body or ocean coastal margins [2–4].  
Mitigation of point source pollution problems is costly but well understood, and mainly 
involves effective treatment technologies to remove or destroy contaminants prior to 
discharging it into the environment.  Nonpoint source pollution, because of its distributed 
nature, is more difficult to mitigate because it generally requires changes in land 
management practices [5,6].  Land use policy changes can have significant impact on 
people’s livelihood and the economy, and can be difficult to enact without strong 
evidence of both the need and the potential effectiveness of the proposed policy. 

A major challenge with nonpoint source pollution is to adequately characterize it 
over large spatial domains such that the connection between land use and pollution can be 
clearly assessed.  Measurement of water stage and movement (flows) and water quality 
(concentrations, temperatures) at adequate spatial coverage remain challenges and costs 
can easily become prohibitive at the watershed scale [7].  In highly engineered SW 
systems, rivers have been channelized for better flood control and other management 
considerations.  This has resulted in better estimates of water volumetric flow.  However, 
such systems have effectively sacrificed floodplain access, while dams have dampened 
storm flow intensity and timing.  One negative consequence of this human dominated 
system is that it can make the connections between GW and SW more difficult to 
delineate, which renders the challenge of understanding and mapping nonpoint source 
pollution still more challenging.  For assessing the GW flow and transport side of the 
nonpoint source pollution problem, these difficulties are compounded by inadequate 
spatial coverage in horizontal and vertical domains in most watersheds. 

1.2. General Approach 

Better methods to characterize constituent transport and reaction rates will assist 
in strategies to mitigate negative human impacts on freshwater systems and clarify risks 
of freshwater degradation.  This dissertation focuses on improving our understanding of 
surface water (SW)-groundwater (GW) interaction longitudinally along a lowland, 
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human-impacted river system, where GW-SW flow exchange and pollutant loading are 
both difficult to measure and difficult to scale.  We develop a high spatial resolution 
measurement method for multiple ambient chemical tracers (pollutants) within the river 
and link SW concentration changes to localized GW-SW exchange by using a steady-
state mixing model.  The ambient tracers of interest in this work are specific conductance 
(SC), a proxy for total dissolved solids (or salts) associated with agricultural and 

industrial processes, and nitrate (NO
3

-
), where elevated concentrations can largely be 

associated with fertilizer use and livestock waste in our setting.  We connect measured 
river (SW) nitrate and salinity concentrations to GW using existing groundwater well 
data to parameterize our mixing model.  Then, we test the model with the two tracers, one 
conservatively (SC) and the other non-conservatively (NO3 with a first-order decay rate).  
The results in our study for the lower Merced River located in the Central Valley, CA are 
promising, and demonstrate the potential to explicitly delineate nonpoint source pollution 
as it moves from land surface to the aquifer and is subsequently transported to river 
systems. 

While previous studies have presented techniques for assessing GW-SW 
exchange, they have often focused on isotope parameterization (requiring sample 
collection and relatively high laboratory costs) [8] or been limited with spatial resolution 
[9].  Our method, while dependent on differences in GW and SW concentrations and 
consistent discharge from GW to SW, exemplifies ease of data collection and potential 
characterization of GW-SW exchange in a human-impacted watershed.  Unfortunately, as 
is the case with like many watershed characterizations, limitations on available GW GW 
spatial and temporal data resolution can limit the effectiveness of a study.  Despite that 
potential limitation, we believe using existing wells and associated data can be a practical 
method to characterizing GW transport to the SW in systems similar to ours.  The novel 
aspects of our work include (i) the ease in data collection, (ii) scale of GW-SW exchange 
characterization, and (iii) the resolution of transport characterization from aquifer to river 
as a measurement-analysis package.   Such collection and analysis has potential to 
improve watershed-scale GW-SW exchange model validation, to localize potential GW-
SW exchange zones encouraging increased spatial and temporal monitoring, and 
encourage better practices to prevent chemical transport with often unknown and 
potentially costly downstream effects. 

1.3. Dissertation Overview 

The dissertation is organized into 3 major body chapters in the form of submitted 
journal articles.  Presenting in this fashion leads to some redundancy in methods and site 
description as I analyze the same large datasets from multiple synoptic sampling events, 
for different purposes.  We attempted to tailor the chapters to be more specific in the 
methods and site description to each scientific objective for the chapters that are 
described briefly here.  To add details not allowed by typical journal limitations, we 
added supplemental figures along with the journal format figures of each chapter. 

Chapter 2 focuses on data collection and aggregation and GW-SW discharge 
parameterization methods using specific conductance (SC) as a conservative tracer.  This 
chapter differs from Chapter 3 in that it focuses more on justification for SC as an 
ambient tracer and on parameterization methods that justify the observational resolution 
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differences between SW (upscaling) and GW (downscaling).  These differences are, in 
effect, a prevailing theme of the methods in this dissertation and until now, to our 
knowledge, have not been adequately addressed in GW-SW mixing models.  As we 
anticipated, downscaling sparser GW well SC and focusing on more realistic source 
attributions of the GW (shallow and more recent) caused large variability in model 
results.  This could not be avoided without undertaking a massive GW sampling program, 
including the installation of numerous riparian zone observation wells. 

Chapter 3 analyzes the best model results from the conservative ambient tracer 
(SC) survey data, and provides further discussion and analyses.  The work has been 
published [10] and the chapter is presented in largely unaltered form.  The 1-km 
distributed model independently identify a previously assessed GW-SW discharge zone 
and performed reasonably with differential flow estimates between 2 gauging stations 
along our stretch, excluding comparisons when an unmeasured point source visibly 
affected SW SC concentrations.  While the behavior of SW SC with flow clearly showed 
dilution with increasing upstream flow, GW-SW discharge did not behave similarly.  
Without higher temporal resolution for GW wells fluctuations from potential residual 
bank storage, or nearby GW pumping information, the model can only elucidate so much 
to complex dynamics between upstream flow, local GW conditions, and other localized 
heterogeneities.  The validation itself, however, is an argument that higher resolution SW 
data that are increasingly being measured remotely or autonomously can provide 
reasonable results between GW-SW interactions. 

Chapter 4 builds on Chapter 3, but extends to the case of reactive ambient tracer 

in the form of nitrate (NO
3

-
).  We present more specific background on nitrate state and 

measurement methods.  We also present a mixing model scaling term for nitrate 
reduction (as a first-order decay process) with the distributed GW-SW discharge, 
discussed from previous chapters.  In effect Chapters 2 and 3 define the methods 
surrounding GW discharge (flow) estimates, while Chapter 4 describes reactive transport.  
If the previous GW-SW discharge model performed poorly, then the transport model 
would also perform poorly.  However, the model showed reasonable results when 
censoring low concentration nitrate wells, indicating potential hotspot for nitrate 
reduction, and underestimates nitrate reduction compared with other studies [11,12], with 
the caveat that decay rate itself can vary by orders of magnitude. 

The conclusions chapter summarizes major findings and potential future 
directions.  The combined study of flow and transport at this resolution and scale is of a 
sort that a few others have undertaken for GW-SW interactions.  We present an approach 
that is relatively easily replicated, relatively cost-effective aside from initial sensor 
investments, and potentially reproducible across different reaches of large river networks.  
Future considerations involve collecting higher temporal resolution signatures for 
ambient tracers of interest (in both SW and GW systems) and GW surface elevation data, 
in a cost-effective manner.  Such data coupled with the high resolution synoptic surveys 
can bring rich understanding and characterization of GW-SW interaction of river systems 
and their biogeochemical roles for transport of the interested tracers.  
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2. Developing a high resolution longitudinal river synoptic sampling method for 

delineating groundwater discharges in a lowland, gaining river 

2.1. Abstract 

Linking groundwater-surface water (GW-SW) interactions across spatial scales 
remains challenging due to spatiotemporally varying processes affecting both GW and 
SW flow.  While river GW-SW exchange is important for water budgeting, there is also 
increased interest in localized impacts on freshwater ecosystems, such as identification of 
favorable conditions for habitat restoration and other applications.  As in-situ and 
remotely-sensed water quality data collection methods become more robust, high 
resolution SW quality data products are becoming more readily available.  However, 
these approaches still lack physically quantitative explanations for observed spatial 
distributions in flow and water quality.  In this work, we develop a method for high 
frequency water quality data collection and analysis to support GW-SW discharge 
mapping.  We use sample data sets collected along a 38-km river gaining reach of the 
Lower Merced River (LMR).  First, the data are collected synoptically using a kayak with 
GPS and water quality sensors.  Next, the data are temporally assimilated and spatially 
transformed to a linear river distance.  We then explain localized responses in the high 
resolution SW data (e.g., local changes in the longitudinal gradient of water quality 
parameters, such as specific conductance, SC, and nitrate concentrations) by discretizing 
the river line and associating GW discharges to the local water quality changes in every 
discretization cell.  While GW quality data are readily available from multiple agencies, 
the data are sparse in time and space compared to the collected SW data, and this work 
considers multiple methods of assigning near-field GW quality data to the river line.  The 
resulting framework is proposed for a reduced-form physical model with options to adjust 
discretization size, SW piecewise trend estimation methods, and linking GW with 
spatiotemporal considerations.  Overall, this novel protocol developed for collecting and 
analyzing SW quality data enables the exploration of GW-SW linkages in large scale, 
lowland rivers with unprecedented spatial resolution. 

2.2. Introduction 

Rivers integrate watershed processes occurring along natural- and human-
influenced pathways.  The associated constituent transport within the watershed system 
eventual impacts downstream water quality with respect to aquatic ecosystems and 
services they provide [1].  However, challenges arise in accounting for point and 
nonpoint source water and constituent river fluxes [2–4] and constituent in-stream 
processes [5,6].  Such fluxes and processes demand multiple spatiotemporally distributed 
parameters in the framework of calibrating distributed hydrologic or watershed models 
[7] or even for simplified reduced-form model representation of such systems [8,9].  In 
this work, we collect high resolution surface water (SW) quality data and propose a 
parameterization approach for a reduced-form river SW model with particular emphasis 
on groundwater (GW) quality influences on SW. 

Characterizing watershed responses and drivers at disparate spatiotemporal 
resolutions is an ongoing area of active research.  As noted for physically-based, 
watershed-scale models, the temporal data availability and its poor spatial resolution limit 
our ability to model integrated GW-SW systems.  Hence, such process-based models 
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require an additional layer of sensitivity and uncertainty analysis if they are to support 
meaningful applications [10].  Higher resolution temporal and synoptic sampling 
approaches are needed to support distributed models, as they have demonstrated the 
capacity to resolve varying spatial SW quality behavior under different flow and 
environmental conditions [11–14].  These promising outcomes are motivating advances 
to mobile in-situ multi-sensor platforms [12,13,15].   

Relating longitudinal SW quality behavior to GW influences remains a challenge 
due to the unknown distributed nature of GW-SW exchanges.  While GW-SW exchange 
is driven by hydraulic head gradients between GW and SW, influences affecting actual 
GW flowpaths to SW occur across different spatial scales, ranging from larger-scale 
channel curvatures to local bedforms and sediment permeability heterogeneities [16–18].  
For sites of known GW recharge pathways, studies associated higher GW constituent 
concentrations to respective increases in SW concentrations [19,20].  For a site with 
elevated GW nitrate concentrations and along a losing stream, (when SW discharges to 
surrounding sediments), a multi-scale experiment examined found minor changes in 
nitrate over the whole reach, (indicating little GW-SW discharge), but noticeable nitrate 
increases at likely zones of GW upwelling points [21].  This finding points to the 
complexity of GW-SW nonpoint source pollutant behavior.  When GW and SW tracer 
concentrations are similar, careful considerations attributing SW increases due to 
evaporation rather than GW inflow need to be considered [22]. 

In this work, we focus on the observational and analytical methods for linking 
high resolution synoptic SW surveys with relatively sparse institutional spatiotemporal 
GW data to parameterize a discretized, reduced-form model for gaining river reaches, 
similar to previous studies [20].  We examine several methods of handling differences in 
spatial scales between SW and GW constituent data with model resolution.  We tested 
combinations of different parameterization schemes for GW and SW characteristics and 
linked the parameterization schemes to varying GW-SW discharge estimates.  To our 
knowledge, this analysis linking GW-SW interaction using ambient SC conditions and 
pre-existing wells is novel, and the considerations presented lay out framework for 
potential further similar analysis of spatial GW-SW exchange. 

2.3. Methods and Model Scenarios 

We created high resolution longitudinal maps of various water quality sensors 
from GPS-tagged multi-parameter sensors on a motor-powered kayak platform.  The SW 
data assimilation required time-synchronization between logger clocks and multiple 
linear piecewise regression methods assisted to effectively account for nonlinear spatial 
SW behavior.  The actual discretization of models incorporating the SW data should 
dictate spacing for piecewise regressions.  Where GW data are sparse in comparison to 
SW data, considerations of applying distance proximity to both the river location and 
model cell should be considered.  Aggregation of well data to each model segment 
becomes a potential method of sensitivity in itself.  In this work, we considered different 
GW and SW treatments of specific conductance (SC) when parameterizing a distributed 
mass-balance model, disregarding potential interactions of SC and potential media 
between actual wells and SW, hence, the reduced-model description. 
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2.3.1. Specific Conductance as a Tracer and Measurement 

Specific conductance is a common ambient tracer within the environment.  For 
aqueous solutions, the electrical current is measured at a fixed length between a cathode 
and anode.  While metallic conductance is a measure of transport of valence electrons, in 
aqueous solutions, this is a measure of ion migration.  When an electrical potential is 
applied, the cations migrate toward the cathode and anions migrate towards the anode 
[23].  For freshwater systems, common dissolved ions are Ca2+, Mg2+, Na+, K+, HCO3

-, 
CO3

2-, SO4
2-, NO3

-, and Cl- [24,25].  The bulk solution measurement of SC is empirically 
related to the concentration of total dissolved ions, or solids (TDS), by multiplying the 
conductance by a constant ranging from 0.55-0.75 for most natural waters [26].  While 
SC is treated conservatively, there is a potential for daily fluctuations [27].  The main 
advantage for monitoring SC is the simple sensing techniques with low cost, 
commercially available sensor products.  In contrast, measurement of individual ions 
requires field sample collection and laboratory analysis by ion chromatography [28] or 
ion selective electrodes that can be prone to interferences [29] and other problems. 

In this work, we measured SC using a multi-parameter sonde (Hydrolab MS5) 
from Hach Environmental.  Our sonde is equipped with temperature, depth, dissolved 
oxygen, and SC sensors.  The SC sensor uses 4 electrodes with an open cell to allow 
water to flow between the electrodes.  We calibrated the sensor the day prior to field-
sampling using the manufacturer-recommended one-point calibration to a potassium 
chloride solution.  The manufacturer reported SC sensor accuracy is ± (0.5% of reading + 
1 µS cm-1) and incorporates temperature correction constants described in the U.S. 
Geological Survey Water-Supply Paper 2311, a common standard for freshwater systems 
[23,30]. 

2.3.2. Site Groundwater and Surface Water Conditions 

Along the lower Merced River (LMR) corridor located in Central Valley, CA, the 
adjacent geology is dominated by Quaternary alluvium deposits with loamy soil texture, 
and transitions to predominantly dune sand deposits with sandy loam texture further from 
the corridor [31].  Regionally, the shallow aquifer is underlain by the Corcoran clay layer 
ranging from 28 to 85 m below ground surface [32].  We created an interpolated GW 
surface elevation map and SC surface (Figure 2.1), using California Department of Water 
Resources (CA DWR) [33] and State Water Resources Control Board (SWRCB) [34] 
online data, respectively.  The interpolated maps were generated using the default 
inverse-distance weighted method within the ArcGIS software platform.  A noticeably 
elevated water table along the north LMR from river km 23-33 [31] corresponds with a 
lower percentage of coarse-grain texture at shallower depths [32] as seen in Figure 2.1a.  
The depth to GW table is shallower north of the LMR, agreeing with total GW pumpage 
estimates showing heavier extraction south of the Merced River [32].  Though GW 
inflow into the LMR generally sustains baseflow [35], an identified GW preferential 
flowpath to the LMR upstream of Highline Canal (river km 26), supported by the 
described elevated water table, has been the site of numerous field [36,37] and modeling 
[38,39] studies for GW-SW discharge and nutrient transport.  For GW SC, an apparent 
hotspot for elevated SC concentrations corresponds with lined industrial wastewater 
retention ponds seen in Figure 2.1b.  Surrounding land use along the LMR is dominated 
by agriculture with some nearby municipalities [31], where crop fertilizer application, 
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dairy operations, and septic systems can leach nitrates and potentially increase SC [40–

42].  GW dissolution of sediment minerals can also naturally affect SC concentrations. 

 
Figure 2.1. Interpolated contours of groundwater surface elevations for Spring 2012 

showing regional hydraulic gradient (E to W) with local N-S gradients toward the LMR (a); 

and groundwater specific conductance (SC) contour map for the same region (GW data 

aggregated from 1950-present) showing elevated SC levels between river km 40 and 33, and 

in the lower end of the study ready (downstream of river km 20) (b). (The inverse distance 

weighting (IDW) method was used for the interpolations and generated in ArcGIS).  The 

figure is reproduced from Pai et al [43] and the original well data are from the CA DWR 

and GAMA online repositories [34]. 

The LMR flow is controlled upstream by dams used for flood control, 

hydroelectricity, and storage for irrigation.  Exchequer Dam was originally constructed 

1926 with an expansion of capacity in 1976 (New Exchequer Dam).  There are two 

smaller diversion dams (McSwain and Crocker-Huffman) to delivery canals.  The 

Merced River drains to the San Joaquin River and the Sacramento-San Joaquin Delta.  

The mean annual streamflow for 1941 to 2004 was 19.4 m
3 
s

-1 
but varies with 

precipitation and snowmelt in the Sierra Nevada mountains, where the Merced River 

originates.  Artificial variability was created for the Vernalis Adaptive Management Plan 

releasing water from New Exechequer Dam to both attract and transport salmon 

population during October and May [31], respectively.  During our study (2010-2012), 

there was a wet water year (WY2011) leading to increased dam release. 

For our study, river km 0 corresponds to the Merced-San Joaquin River 

confluence and increases upstream with river path distance (see Figure 2.1b).  Within our 

study reach there were 3 visible drainage canals: Livingston Canal (river km 36), 

Highline Canal (river km 26), and Lower Stevinson Lateral (river km 8).  Also, there are 
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two gauging stations, Merced River at Cressey (station ID: CRS) and near Stevinson 
(MST) seen in Figure 2.1a, measuring SW SC, river stage, and associated flow from 
rating curves. 

2.3.3. Surface Water Sampling and Data Preparation 

Synoptic sampling surveys collected SW data SC using the Hydrolab Model MS5 
and GPS telemetry (Valeport Midas Surveyor Echo Sounder, 210 MHz, GPS ± 4 m 
accuracy).  The MS5 was housed within a polyvinyl chloride (PVC) for protection with 
drilled holes to allow for flow.  The SC sensor and PVC were immersed slightly below 
water surface to prevent snags.  A battery-powered trolling motor attached to a tandem 
kayak transported the sensor payload down a 38-km reach of the LMR.  Surveys started 
early in the morning and took 5 to 7 h to complete.  We maintained a path along the 
thalweg (center) of the river, occasionally having to deviate to avoid woody debris and 
for battery-exchange stops.  We conducted 17 surveys from a period from 3/31/2010 to 
3/23/2012 over a range of CRS reported daily flows (1.3 to 150 m3s-1) managed from 
upstream dam releases.  All sensor platforms collected data at one sample per minute or 
higher frequency, with the highest collection frequency of 6 samples per second for GPS 
data. 

Assimilating data from different loggers and providing spatial context for river 
distances requires 3 major steps seen in Figure 2.2.  First, geotagging the collected water 
quality data from the MS5 with a different frequency GPS involved taking the minimum 
absolute time difference between the water quality sensor and GPS, using a Python (2.7) 
script.  Then, we estimated river distance from spatial coordinates that were extracted 
from a traced thalweg line in Google Earth.  Using an R-script spatial statistics package 
called spatstat [44], we mapped the water quality tracer point data to the closest location 
on the thalweg line, and then calculated the river distance from confluence of the 
mapped, or projected, data.  Major filtering conditions included in this study were 
necessary due to inadvertent SC spikes (from battery-exchange stops at approximately 
river km 20 and 26.5 or SW inlets), signal drops (from sensor lifting out of water to avoid 
potential snags), unknown shifts, and periods of noisy data.  Because this study focuses 
on linking GW sources, collected data downstream of a major SW SC spike at the Lower 
Stevinson Lateral (river km 8) were filtered.  Other potential major SW inputs, Highline 
Canal (river km 26) and Livingston Canal (river km 36), did not noticeably change SW 
SC concentrations.  We created a buffer excluding data 600 m up- and downstream of the 
battery exchange stops.  Other filters were manually applied. 
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Figure 2.2. Flow diagram of initial SW data preparation which included spatial data 

assimilation {1}, projecting spatial coordinates to river coordinate system {2}, and probable 

filtering considerations {3}. 

To prepare SW data for potential discretization needed for models or additional 
longitudinal analysis, we added river distance breakpoints (between user-determined river 
segments) to longitudinal data and perform user-defined methods of regression within the 
breakpoints.  In this study, we examined the use of three piecewise regression methods.  
First, we tested the ordinary least squares (OLS) method to estimate linear regressions by 
minimizing residuals with all observed data within each km discretization independently, 
(finding the best fit for river km 1, then different then finding the best fit for river km 2, 
etc.).  The OLS method would provide satisfactory fits to the observed SW data, but not 
necessarily describe GW-SW discharge.  We also tested a nonparametric regression 
method, Sen’s slope estimator, taking the median of all uniquely ranked pairwise of 
slopes [45].  This method would be useful for minimizing potential point source 
phenomena or other SC spikes that bypassed the filtering protocol.  Again, each km 
discretization would be evaluated independently from one another.  Last, we explored 
using a piecewise linear regression using the R-package, segmented, that forces 
concentration values at the breakpoints to connect smoothly (no data gap or jump).  This 
approach eliminates potential continuities (unrealistic step increases) in the estimates 
which are likely to occur using the other two methods.  The algorithm attempts to 
minimize residuals given this condition of breakpoint continuity, and is updated with 
every additional breakpoint  [46].  While this method forces connectivity, best fits may be 
sacrificed for an individual discretization segment. 

2.3.4. Groundwater Data Preparation 

Due to the sparse (relative to collected SW data) and uneven distribution of GW 
SC data seen in Figure 2.1b, establishing the groundwater concentration distribution 
along the river (used to estimate fluxes) was challenging and we examined several 
approaches.  We considered 1-km river segments and tried (1) assigning the 
concentration of the closest well, (2) the average concentration of the 3 closest wells, and 
(3) using the interpolated concentration (inverse distance weighting, IDW) from a raster 
surface developed from the well data (see Figure 2.1b) to link GW with SW data 
characteristics.  We applied a 5-km exclusionary buffer around the river when 
considering the closest or average of 3 closest wells.  One potential weakness for linking 
the closest GW well to multiple river segments is if the closest well sees dilution effects 
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from river mixing.  A weakness for using IDW interpolation using the 12 closest wells 
(default ArcGIS setting), was for potentially unrealistic smoothing of GW SC data. 

The available GW data were also temporally sparse.  For both Merced and 
Stanislaus counties, 1246 of the 2600 wells with unique names had only one sample from 
1950 to 2014.  We held GW SC values constant for the duration for the synoptic runs.  
We averaged SC data from wells that had replicate data (more than two samples on the 
same day).  For wells with multiple time samples (excluding replicates), we considered 
two approaches for handling the data.  The more direct approach involved averaging the 
whole time period.  The other considered samples closest to the synoptic sampling range 
(3/31/2010 to 3/23/2012).  If there were multiple samples within the relevant date range, 
values were averaged.  If there were no samples with date range, the closest samples to 
the date range were averaged. 

Other considerations for preparing GW well data included potential temporal 
trends and differences with respect to well screen depths.  While no noticeable temporal 
trend was seen in GW SC (Figure 2.3), increasing trends in nitrate concentrations have 
been documented in the region [40].  We examined periods from 1950 to present (almost 
all available well SC data) and from 1980 to present, when the confidence intervals for 
regional nitrate concentration did not consistently increase [40].  The tradeoff for 
excluding older water quality data was the potential for even fewer wells for linking GW 
to river segments, as discussed before.  With respect to well-screen depth considerations, 
nitrate concentrations were notably different between shallow and deep wells, below the 
confining Corcoran clay layer [40].  For available Merced and Stanislaus county SC data 
from the SWRCB [34], we defined shallow conditions as above the confining layer, as 
differentiated by sampling responsibilities from different agencies or studies [47].  The 
shallow conditions (or filter) excluded any datasets from agency or study data that had 
data only below the confining layer, but included datasets that overlapped both above and 
below the confining layer.  For data from the US Geological Survey National Water 
Information System (USGS-NWIS), we cross-referenced well depth information [48] and 
filtered out well depths below 85 m, the deepest range of the clay layer. 
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Figure 2.3. Well GW SC values plotted less than 5000 µS cm

-1
 for Merced and Stanislaus 

counties.  The two scenarios, 1950 on and all depths (Scenario 1) and 1980 on and shallow 

depths (Scenario 2), are highlighted.  The data fail to show a clear trend with either 

scenario.  The well data were aggregated from GAMA [34] and USGS-NWIS [48]. 

2.3.5. Linking GW-SW Discharge and Parameterization Scenarios 

We build from previous work taking a simple mass balance approach to link GW 
discharge, Qg (m3s-1), to SW [20,22].  To create a distributed GW-SW model, we 
discretized the mass balance model to take advantage of the high resolution SW-collected 
data.  We apply this model to many potential scenarios involving parameterization 
preparation for both SW and GW data.  To simplify the mass balance flow equation, we 
assume negligible SW inflow, evaporation outflow, and aggregate GW inflow as a 
singular input. 

�� = �� + Qg (2.1)

where Qd is downstream flow computed by the model and Qu is upstream flow initially 
supplied by the CRS gauging station.  The model assumes steady state upstream and 
groundwater conditions.  Additionally, linking potential GW discharge to the SW 
requires distinct differences in GW and SW tracer concentrations [22] and discussed 
previously in the site setting.  Without noticeable concentration differences, no inference 
of GW-SW exchange can be inferred.  The accompanying tracer mass balance model is: 

���� = ���� + QgCg (2.2)

where downstream and upstream concentrations, Cd and Cu (µS cm-1), are parameterized 
from collected SW SC data and Cg is parameterized from available GW SC data.  A 
schematic shows the discretized form of Equation (2.2) in Figure 2.4a showing the mass 
fluxes per segment and likely wells parameterizing the GW-SW flux in a hypothetical 
river corridor (Figure 2.4b).  Substituting Equation (2.1) into (2.2), we arrive at the final 
GW discharge, Qg, relationship: 

Qg =
����� − ���

Cg − �� . (2.3)
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Figure 2.4.  Schematic diagram of Equation (2.2) in a discretized form (a) for a river 

corridor with a hypothetical well distribution (b), parameterizing segment loads (QgiCgi). 

 Given that the LMR is considered a net gaining reach [35] with  higher GW SC 
than SW SC, we anticipate the model to exhibit positive GW inflow (gaining) from 
model parameterizations.  While computed SW losses are possible (negative Qg) due to 
negative SW SC gradients, we attribute negative Qg to unaccounted sources of low SC.  
Because negative Qg is not associated with SW loss, we set Qg to zero when computed.  
Additionally, this reduced-form model simplifies potential localized GW-SW exchange 
within a given river segment.  Potential physical drivers of GW-SW exchange, such as 
regional hydraulic gradients (Figure 2.1a), local sediment heterogeneities, channel 
tortuosity, and bed topography [16], are not distinguished within this model. 

We tested the model formulation under multiple parameterization schemes.  
Given the multiple methods of preparing and discretizing SW and GW SC parameters 
previously presented, we tested all combinations of spatial and temporal 
parameterizations to examine the variability between schemes.  Initially, we focused on 
SW piecewise trend regressions and GW spatiotemporal projections to the model.  We 
then focused on two scenarios including all GW data from 1950 on and all depths versus 
from 1980 on and shallow depths.  The scenarios are summarized in Table 2.1.  As a 
metric to examine results across multiple flows, we propose taking the average of the 
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percentages of total reach groundwater inflows with recorded upstream daily flows, 
%��
������.  We expected GW SC parameterization methods would have the largest effect on 
GW-SW discharge due to the sparse nature of available data, particularly close to the 
river corridor. 

Table 2.1. Multiple methods to treat collected SW and available GW SC data (by different 

agencies online).  Abbreviations for methods are found in parentheses. 

SW linear 

regression methods 

GW spatial 

methods 

GW temporal 

methods 
Other GW considerations 

Ordinary least 

squares (lin) 
Closest (sp_clo) Closest (t_clo) 

1950 on, all depths 

(Scenario 1) 

Sen's slope (sen) 
Average of 3 

closest wells (avg3) 

Average over period 

(t_avg) 

1980 on, shallow depths 

(Scenario 2) 

Segmented (seg) 
IDW of 12 closest 

wells (idw12) 
    

 

2.4. Results and Discussion 

After filtering SW SC irregularities and truncating downstream results of river km 
8 due to noticeable SC concentration increase from the Lower Stevinson Lateral, we split 
the SW SC in 1-km river segments to perform piecewise linear regressions and examine 
non-linear behavior within larger study reaches.  The three SW regression methods 
discussed in Table 2.1 are depicted as lines for 4 representative flows in Figure 2.5.  For 
the most part, the SW regression methods agree well with each other.  Potential 
deviations consistently occur at the battery exchange stop locations (river km ~20 and 
26.5), where filtering removed data 600 m buffer up- and downstream (1.2 km total) of 
those locations.  The missing data potentially weakened regressed slope estimates at the 
stops.  Unexplained SW SC spikes (11/22/2011) that withstood our filtering protocol and 
other abrupt changes in SW SC at lower flows created noticeable deviation between 
regression methods. Flows greater 31.6 m3 s-1 (4 of the 17 synoptic sampling runs) 
exhibited little noticeable SW SC change are not included in further analysis.  The end 
points for the piecewise linearly regressed lines parameterized Cu and Cd for each 1-km 
river segment.  The ordinary least squares and Sen’s linear regression estimates 
potentially create unrealistic SW SC discontinuities between the river segments, while the 
segmented piecewise slope estimate enforces connectivity, a more realistic scenario. 
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Figure 2.5. Four representative flows with different piecewise trend methods (lines) plotted 

over the observed SW SC (circles) with observed filtered SC at battery exchange locations 

(triangles). 

For GW SC parameterization to model river segments, we examined 3 spatial 

methods with the 2 aforementioned scenarios considering well data period and depth, 

summarized in Table 2.1.  Figure 2.6 depicts 2 of the spatial methods (sp_clo and avg3) 

along the LMR (river km 0 to 40 shown) for the 2 scenarios, (1950 on and all well depths 

in Figure 2.6a; 1980 on and shallow depths in Figure 2.6b).  The well density for 

Scenario 2 drastically decreased and unique well assignments to the distributed model 

would likely be greatly affected by this approach.  The wells used for IDW spacing were 

not included in Figure 2.6 as the 12 closest wells would likely encompass a large fraction 

of all the wells depicted, especially for Scenario 2.  We analyzed both scenarios for 

further sensitivity analysis. 
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Figure 2.6. Available GW SC well locations for available data for (a) Scenario 1 and (b) 

Scenario 2, described previously in Table 2.1.  Black dots and circles indicate wells used to 

parameterize GW-SW discharge model. 

For all synoptic sampling runs of interest, we examined how the different SW and 

GW parameterization schemes affect %��
������, the averaged percentages of cumulative GW-

SW discharge estimates to respective daily upstream flows for all sampling events 

(Figure 2.7).  For Scenario 2, the interpolated IDW GW parameterization scheme (idw12) 

estimates an unusually large percentage of GW inflow.  This is likely due the 

interpolation scheme including wells further from the river than Scenario 1 resulting in 

less accurate representation of localized SC concentrations.  Imposing spatial constraints 

on IDW or lowering number of considered wells would likely be a good consideration.  

Viewing the sp_clo GW parameterizations, the well data reduction seen in scenario 2 also 

increased %��
������ from Scenario 1.  These increases suggest that low concentration SC 

wells, likely due to hyporheic mixing, were included in Scenario 2 while other nearby 
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wells were excluded.  The avg3 GW parameterization exhibited the least variation 
between the scenarios. 

 
Figure 2.7. Sensitivity plot examining the average percentage of GW inflow to upstream 

daily flow, %��
�������, for all synoptic sampling runs.  The SW trend methods (x-axis), 

combination of GW spatiotemporal assignment methods (y-axis), and 2 scenarios (all 

described in Table 2.1) are shown. The average GW percentage inflows are labeled below 

each circle whose radius is proportional to the percentage. 

The considerations between GW spatial parameterizations (sp_clo, avg3, and 
idw12) and temporal schemes (t_avg and t_clo) also exhibited noticeable patterns in 
%��
������.  When considering the closest temporal GW SC parameterization (t_clo), %��

������ 
values are larger than or equal to period-averaged parameterization (t_avg), with higher 
percentage differences estimated when coupled with sp_close parameterization than with 
avg3.  This suggests that spatially close wells near the LMR during our sampling period 
likely saw a decrease in well SC relative to the averaged periods (1950 on for Scenario 1; 
1980 on for Scenario 2).  A likely cause is an increase in upstream dam releases during 
the wet water year (WY2011) forcing subsequent GW-SW flux changes (from gaining to 
losing) and mixing of lower concentration SW SC with nearby sampled wells.  Such 
phenomenon agree with previous studies along the LMR [49,50,36].  From a long term 
perspective, gradual decrease in GW surface elevation from increased well extractions 
could also cause directional flux changes or decreased GW-SW discharge leading to 
similar mixing effects described above.  Spatially, the closest well parameterization 
(sp_clo) consistently estimated higher %��

������, with exception to the Scenario 2, idw12 case 
described previously.  Again, the high GW to upstream flow percentage is likely due to 
low GW well SC concentration with associated GW-SW mixing and spatially sparse 
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wells, associating multiple segment parameterizations of Cg with the low well SC 
concentration(s). 

By comparison, SW regression parameterization methods caused less %��
������ 

variation.  Sen’s slope estimation method did consistently underestimate %��
������ compared 

to ordinary least square and segmented piecewise linear regression methods.  Given 
thorough filtering methods, we believe that the median slope selection method (sen) 
would likely underestimate segment slopes that general upward trends as seen in the 
observed LMR SC concentrations.  For instance on the synoptic sampling run on 
7/28/2011 (Figure 2.5), such nonlinear river segment behavior is noticeable for river km 
17 and 36, and likely to occur for several segments at low flow conditions, when whole 
reach slopes are larger.  Overall, the SW parameterization methods had less impact than 
GW parameterization methods.  We expected this as GW SC parameterization methods 
focused on downscaling sparser well measurements to the denser 1-km river. 

To view local sensitivities between spatial GW parameterization methods for all 
sampling events, we created individual sample plots (Figure 2.8) for distributed GW-SW 
discharge while holding temporal methods constant (i.e., sp_clo + t_clo; avg3 + t_clo; 
idw12).  The GW SC concentrations, Cg, for every river segment are located in the final 
plot and assumed to be invariant over all the sampling runs.  The greatest range of 
spatially assigned Cg values (500-1500 µS cm-1) between parametrization methods 
clearly occurs along downstream segments from river km 8-18, where higher GW SC 
wells near the San Joaquin River likely elevate the interpolated scheme (idw12) 
concentrations (Cg).  Likewise, this decreases estimated GW-SW discharge inferred from 
Equation (2.3) and likely contributes to the lower estimated %��

������ for the idw12 case 
relative to sp_clo and avg3 cases.  For some sample dates (8/9/2010, 8/11/2011, 
3/31/2010), downstream distributed discharges (river km 8-10) show large differences 
between parameterization schemes.  This is likely due to the higher local SW SC slopes 
specific to those sampling dates and seen in supporting Figure 2.9.  Another large spike 
in local Qg occurs on 11/22/2011 that is unseen for other sampling dates.  The estimated 
anomaly is also due to SW behavior, specifically the unfiltered SW SC spike seen in 
Figure 2.5.  For Scenario 1, additional sensitivity analysis for GW temporal methods 
(Figure 2.10) and SW regression selection methods (Figure 2.11) generally showed less 
effect on distributed GW-SW discharge estimates. 
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Figure 2.8. Discretized sensitivity plots for the 3 methods of spatial GW parameterization 

methods, while not varying other parameterizations (Scenario 1, lin SW parameterization, 

t_clo GW temporal parameterization).  The vertical dashed lines connecting the dots 

delineate data at every river km.  Red squares denote locations without data.  The last plot 

shows the different GW SC values, Cg, assigned to 1-km segments that were used for all 

synoptic sample runs. 
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Figure 2.9.  Plot of all SC for the observed synoptic sampling and gauging stations (CRS 

and MST) with time.  CRS exhibited small fluctuations supporting steady state upstream 

conditions.  However, MST shows noticeable trends for some of the sampling sessions.  MST 

was missing data for 3/23/2012. 
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Figure 2.10. Discretized sensitivity plots for the 2 methods of temporal GW 

parameterization methods, while not varying other parameterizations (Scenario 1, lin SW 

parameterization, avg3 GW spatial parameterization).  The vertical dashed lines connecting 

the dots delineate data at every river km.  Red squares denote locations without data.  The 

last plot shows the different GW SC values, Cg, assigned to 1-km segments that were used 

for all synoptic sample runs. 
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Figure 2.11. Discretized sensitivity plots for the 3 methods of SW piecewise regression 

election methods, while not varying other parameterizations (Scenario 1, avg3 GW spatial 

parameterization, t_clo GW temporal parameterization).  The vertical dashed lines 

connecting the dots delineate data at every river km.  Red squares denote locations without 

data.  The top right plot shows the different GW SC values, Cg, as black horizontal lines, 

assigned to 1-km segments that were used for all synoptic sample runs. 

2.4.1. Summary and Considerations 

The results of this work present both collection methodology and analysis of high 
resolution SW quality data along a lowland river of known GW discharge to the SW and 
significant differences between GW and SW ambient SC concentrations, (i.e., elevated 
GW SC).  Attributing longitudinal and localized SW SC changes to GW inputs required 
spatial and temporal methods to parameterize a distributed mass-balance model.  Greater 
influence is seen when applying different methods to downscale the sparser GW data set 
(in both space and time).  The key findings are that defining attributes of the well source 
data and associated filtering (Scenario 1 versus Scenario 2) and that well spatial 
parameterization methods (sp_clo, avg3, and idw12) created the largest variabilities in 
both cumulative (Figure 2.7) and distributed GW-SW discharge estimates (Figure 2.8). 
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Such sensitivities to GW SC assignment encourage further research in methods to 
measure GW well concentrations at higher resolutions than currently available.  While 
similar studies have often installed piezometers [51], there are practical limitations of 
installation and property access.  Less invasive methods such as electromagnetic and 
resistivity array systems towed behind boats generate local depth maps of SC and could 
provide further justification GW SC spatial assignment we used in our study [52].  
Finally, increased used of more advanced geostatistics for GW quality spatial 
interpolations could also be applied for further sensitivity analyses [53,54]. 

Applying this method and analysis to other gaining rivers should consider steady 
state assumptions, mixing characteristics for model discretization schemes, and 
differences in GW and SW SC concentrations.  While we assumed our system to be 
steady for SW SC and flow, the idealization simplifies minor temporal variations (see 
supporting Figures 2.8 and 2.11 for station SC concentrations and flows respectively).  
The figures depict relatively steady upstream conditions at the gauging station, CRS, but 
slight temporal trends at the downstream station, MST.  A likely unsteady case for 
11/11/2011 (Figure 2.9) shows increasing flow (Figure 2.12) corresponding with 
increasing SC concentration with time (less SW dilution).  This case could potentially 
elevated GW-SW discharges from the abrupt decrease in SW flows and residual bank 
storage.  Discretization of our system also assumed well-mixed conditions likely to be 
true for our river dimensions.  While vertical mixing generally occurs quickly in river 
systems, higher flow conditions causing stage and associate river width increases will 
have to account for longer lengths to attain full lateral mixing for discretization purposes 
[55].  Finally, the low differences between ambient tracer (SC) concentrations between 
the GW and SW would render this analysis ineffective and would likely not see the SW 
concentration gradients we observed in this work. 

Overall, this work provides a framework for synoptic sampling and analysis 
considerations to estimate GW-SW discharge.  The resulting distributed estimates from 
1-km to multi-km scales provide a potential tool for assessing nonpoint source impacts of 
interest to maintaining general watershed sustainability.  This is of particular interest in 
human-impacted watersheds, where nonpoint source loading from the GW can affect 
potential SW quality and ecosystems.  Coupled with land-use change information and 
better spatial and temporal GW well data, these synoptic analyses would provide a better 
picture of human watershed impacts leading to better-informed land management 
practices. 
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Figure 2.12. Plot of observed SC and flow at the gauging stations (CRS and MST).  For the 

most part steady conditions were observed with exception to 11/1/2011.  MST was missing 

flow data on 7/28/2011 and 8/11/2011. 
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3. High resolution synoptic salinity mapping to identify groundwater-surface 

water discharges in lowland rivers 

Adapted with permission from Environmental Science and Technology, 2015, 49 (8), pp 
4842–4850 DOI: 10.1021/es504483q, Copyright © 2015 American Chemical Society.  

3.1. Abstract 

Quantifying distributed lateral groundwater contributions to surface water (GW-
SW discharges) is a key aspect of tracking nonpoint-source pollution (NPSP) within a 
watershed. In this study, we characterized distributed GW-SW discharges and associated 
salt loading using elevated GW specific conductance (SC) as a tracer along a 38 km reach 
of the Lower Merced River in Central California. High resolution longitudinal surveys 
for multiple flows (1.3-150 m3 s-1) revealed river SC gradients that mainly decreased with 
increasing flow, suggesting a dilution effect and/or reduced GW-SW discharges due to 
hydraulic gradient reductions.  However, exceptions occurred (gradients increasing with 
increasing flow), pointing to complex spatiotemporal influences on GW-SW 
dynamics.  The surveys revealed detailed variability in salinity gradients, from which we 
estimated distributed GW-SW discharge and salt loading using a simple mixing model. 
Modeled cumulative GW discharges for two surveys unaffected by ungauged SW 
discharges were comparable in magnitude to differential gauging-based discharge 
estimates and prior GW-SW studies along the same river reach.  Ungauged lateral inlets 
and sparse GW data limited the study, and argue for enhancing monitoring efforts.  Our 
approach provides a rapid and economical method for characterizing NPSP for gaining 
rivers in the context of integrated watershed modeling and management. 

3.2. Introduction 

Spatiotemporal variability of groundwater discharges to surface water (GW-SW 
discharges) can contribute significantly to the dynamics of natural and anthropogenic 
chemical loading along a river. Effective and economical characterization of these 
discharges is needed to support distributed watershed modeling and the development of 
best management practices [1–3]. For example, subsurface contamination (nonpoint-
source pollution, NPSP) in the form of nitrate and other salts, organic matter and 
pesticides is widespread in intensively agricultural watersheds [4–6]. A better 
understanding of distributed GW-SW discharges would support policy-making with 
regard to the spatial and temporal connections between land use and the water quality in 
such watersheds [7,8]. In this work, we explore high resolution synoptic salinity (specific 
conductance) sensing as a means for rapidly delineating longitudinal changes in a river 
controlled by groundwater discharges over scales of interest to decision-makers. 

There has been significant research on groundwater discharges (in the presence 
and absence of chemical loads) over a variety of spatial scales [9–11]. Point scale 
measurement techniques include gradient-flux based approaches that employ direct 
seepage measurements [8,12] as well as head differential measurements, transient heat 
[8,9,13–15] and chemical tracer monitoring [7,16,17]. At sub-reach and smaller spatial 
scales, these approaches have revealed complex spatiotemporal variability in both the 
magnitude and direction of GW-SW fluxes. The variability is generally attributed to 
permeability variability in the river bed and adjacent groundwater media, with 
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temperature-viscosity effects also playing a role [7,8,18]. Given these observations, 
scaling up these approaches to the watershed scale would likely be a labor intensive 
proposition. 

Characterization of distributed GW-SW discharges over large scales is often 
focused on baseflow contributions or chemical loading from watershed management 
units. Differential gauging together with water quality sampling can be used to estimate 
gain/loss and associated pollutant loading over a reach, providing it constitutes a 
significant fraction of the streamflow (~10% or more [19,20]). However, this approach is 
relatively labor intensive for ungauged reaches. Tracer dilution tests and end member 
mixing of ambient tracers, including isotopes, are also useful approaches for 
understanding the contributions of groundwater and the sources of pollution in rivers 
[19,20], but may require expensive analytical efforts. Lastly, distributed temperature 
sensing (DTS) [14,20–23] and remote sensing (e.g., thermal infrared imaging) 
approaches [24–26] have seen increasing use in delineating  GW-SW exchanges. 

This work focuses on synoptic in-stream sampling campaigns for assessing 
distributed groundwater discharges and salt loads. Manual geochemical sampling 
campaigns of this type have been used to identify and map discharge zones along rivers 
[27–30].  In this work we use a rapid, high resolution synoptic in-stream sensing to create 
a detailed segment-by-segment estimate of salt loading over a wide range of flow 
conditions. We tested this approach on a regulated river in an agriculturally dominated 
watershed, examining nonuniform salinity gradients over a wide range of flow and stage 
and over several seasons.   

3.3. Sampling and Analysis 

We developed specific conductance (SC) profiles as a proxy for salinity in a 
series of 1 day synoptic sampling campaigns along a lowland river reach, using a GPS-
synchronized SC sensor mounted on a kayak.  With a moving trend analysis, we 
identified river segments significantly gaining in SC and repeated the profiling campaign 
over a range of flow rates to identify longitudinal trends in salt loading. Using aggregated 
historical groundwater salinity data, we parameterized a distributed mixing model and 
developed estimates for the longitudinal distribution of salt load over the range of river 
conditions. 

3.3.1. Study Setting 

We tested our synoptic sampling approach on a 38 km reach of the Lower Merced 
River (LMR) in Central California’s San Joaquin Valley. The Valley’s steppe biome is 
characterized by cool, moist winters and hot, dry summers. The average annual 
precipitation (32 cm) contributes negligibly to surface flow. Instead, flow is dependent on 
precipitation and snowpack in the upper watershed and regulated by a series of reservoirs. 
Reservoir operations are closely coupled to water year type on the LMR, and our study 
period included a wet year (WY2011) between two below-average years (WYs 2010 and 
2012). In wet years, flood releases result in flows spanning 2 orders of magnitude (1.3 to 
150 m3 s-1), while in drier years the range is less extensive (1.3 to 20 m3 s-1).  Land use 
along the LMR is dominated by agriculture, some municipal land uses (2 towns totaling 
about 17,000 in population), and relatively narrow natural riparian buffers. 
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Regional geology is dominated by quaternary deposits with dune sand occupying 
the upstream section and transitioning to alluvial deposits downstream [31]. We 
interpolated available data from the California Department of Water Resources (CA 
DWR) [32] and State Water Resources Control Board (SWRCB) [33] for groundwater 
elevation and SC levels, respectively, to approximate the regional piezometric surface 
(Figure 3.1a) and SC contours (Figure 3.1b).  The piezometric surface exhibits a pattern 
consistent with the geology of the region and the pumping rates associated with the area's 
agricultural and urban land uses. The water mound appearing on the northeastern area of 
the river reach (Figure 3.1 and Figure 3.2) coincides with a lens of finer sediment 
(Corcoran clay) located at depth ~50 m between approximately river km 23-33 [34]. 
From there, the piezometric surfaces show regional groundwater movement toward both 
the Merced and San Joaquin Rivers. The larger pumping rates of the south side and the 
northeast portion of our study reach are evidenced by the lower groundwater elevations in 
those regions [34]. Characterizing groundwater SC levels was more challenging due to 
the scarcity of recent observations.  Available data suggested that salinity levels have not 
changed markedly over the past several decades (Figure 3.3). We therefore aggregated 
historical data (1950 to present) to create a salinity map for the region (Figure 3.1b).  The 
map shows that salinity increases down the watershed, with the exception of a localized 
upstream region of higher SC from river km 33-40, adjacent to a set of lined industrial 
wastewater retention ponds. 

The study reach presents the characteristics of a baseflow-dominated system 
(channel slope between 5 × 10-5 and 5 × 10-4, sinuosity ratio of 1.75, river penetration 
greater than 20%, and width to depth ratios at bankfull conditions less than 60) [35]. 
Previous work on GW-SW interactions along the middle segments of the study reach 
(USGS National Water-Quality Assessment (NAWQA) Program) demonstrated that, 
while LMR baseflow conditions are sustained by GW discharges, local transitions from 
net gaining to losing conditions occurred as stage surpassed a threshold [8,16,36,37]. 
These researchers measured point-scale specific discharge, (volumetric GW-SW 
discharge divided by the seepage meter area), to the river ranging from -1.1 × 10-7 to 5.9 
× 10-7 m s-1 for stages associated with flow rates less than about 8 m3 s-1 [8].  This range 
corresponds to volumetric discharges of -0.003 to 0.015 m3 s-1 per river km, assuming a 
wetted perimeter of 25 m.  Groundwater modeling results for water-year 2000 along the 
Lower Merced River estimated a total volumetric discharge of 0.20 m3 s-1 for an 8-km 
segment within our study reach (roughly river km 23-31) [38]. 

 



32 

 

 
Figure 3.1. Interpolated contours of groundwater surface elevations for Spring 2012 (for 

other periods see Figure 3.2) showing regional hydraulic gradient (E to W) with local N-S 

gradients toward the LMR (a); and groundwater specific conductance (SC) contour map 

for the same region (GW data aggregated from 1950-present) showing elevated SC levels 

between river km 40 and 33, and in the lower end of the study ready (downstream of river 

km 20) (b). (The inverse distance weighting (IDW) method was used for the interpolations).  

The contours were generated from data availably online from the CA DWR [32] and the 

GAMA program [33]. 
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Figure 3.2. Interpolated groundwater surface elevation using the inverse distance weighting 

(IDW) method for the well data collected by the Stanislaus and Merced Counties during the 

2010-2012 period. By assuming connection between the groundwater and surface water, we 

calculated an average horizontal hydraulic gradient for upper, middle, and lower areas of 

the study site using the groundwater surface elevation of wells (within an approximate 5 km 

buffer) and the estimated river stage at the point of interest.  The data presented are from 

the CA DWR [32]. 
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Figure 3.3. Salinity coefficient of variation (CV) for all wells within a 5 km buffer along the 

river.  Only wells having 5 or more observations are shown (64 unique wells total).  54 of the 

64 (84%) of the wells had a CV of less than 0.3. 

3.3.2. Synoptic Sampling 

We tested the synoptic data against CA DWR data (sub-hourly to hourly river 
stage, flow, and SC levels) from two gauging stations, Merced River at Cressey (station 
ID: CRS) and near Stevinson (MST), located near the upper and lower limits of the 
surveyed reach, respectively. We assessed the longitudinal SC gradient 17 times over a 
range of seasons and flow rates. River conditions included spring flood control/pre-
irrigation, summer irrigation, and fall post-irrigation flows (Figure 3.4). Flow conditions 
were assumed as stable for most of the sampling events, although there were stage 
changes for some of the higher flow events (the maximum change was 3.7 cm on 11/1/11 
at a flow of 13.8 m3 s-1 occurring about 1 day after a significant reduction in reservoir 
releases, and was during the late stages of a flow recession event).  Other observed stage 
changes during surveys were less than 1.2 cm for flows below 13 m3 s-1, and 0.9 to 2.4 
cm for the four highest flows.  These stage changes are discussed further below in the 
context of the transient flow behavior during surveys. 

Surveys employed a tandem kayak equipped with time-synchronized multi-
parameter water quality sensors (Hydrolab Model MS5), GPS telemetry (Valeport Midas 
Surveyor Echo Sounder, 210 MHz, GPS ± 4 m accuracy) for tracing the survey path, and 
a battery-powered trolling motor.  Lagrangian sampling would have required 
approximately 15 h (an average travel time for the reach estimated from CRS and MST 
hydrograph peaks) due to low velocity in the lower half of the reach (< 0.5 m/s).  The 
motorized kayak traveled faster than the river water velocity, with surveys requiring 5 to 
7 h depending on the flow conditions. All surveys were started in the morning and 
finished by mid-to-late afternoon. We assumed that the distributed salinity inputs were 
steady during each survey and therefore insensitive to travel velocity. We maintained a 
course along the thalweg, and stopped at river km 20 and 26.5 for battery exchanges. SC 
measurements near stoppage points exhibited high variability due to slow flows, 
vegetation and bed disturbances during landing.  
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Figure 3.4. Flow (blue line) and stage (black) at (a) upstream (CRS) and (b) downstream 

(MST) gauging stations on the LMR study reach, where red pointers denote synoptic 

sampling events.  Vertical and horizontal data gaps are due to rating curve adjustments and 

missing data, respectively.  The dashed grey line is reported flood stage for MST (not 

available for CRS). 

 
Figure 3.5. Unfiltered specific conductivity values with the sampling dates and daily 

upstream flow values denoted in the legend.  The dashed vertical lines indicate the major 

SW inlets.  The last inlet (Lower Stevinson Lateral around river km 8) showed significant 

disturbance to SC values on multiple runs and data downstream from the inlet were filtered 

(i.e., analysis was stopped at river km 8).  Two additional spikes around river km 20 and 26 

were from transition locations where the kayak required battery replacement causing 

sediment disturbance and corresponding SC spikes.  To filter the spikes, a 600 m buffer 

both upstream and downstream of the transition locations was applied.  Finally, we 

manually filtered SC data when the sensor values exhibited high variance (e.g., 9/20/11, 

river km 20 to 18) due to known investigator error (sensor out of water) and sensor 

cleaning, and for two unexplained shifts (2/17/11 for river km 18 to 14 and 7/28/11 at river 

km 14 and beyond). 

We filtered observations within 600 m upstream and downstream of those locations, 
(further filtering is described in Figure 3.5).  We logged SC at a rate of 0.017 to 0.2 Hz (1 
to 12 samples min-1), and GPS coordinates at 6 Hz. We used the echo-sounder’s event-
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flagging mechanism to designate surface discharges into the river (lateral canals, effluent 
pipes) during the surveys. 

To determine the appropriate scale for characterizing local salinity gradients, we 
used a moving linear regression analysis to estimate the slope of the SC trace data for 
segment sizes ranging from 200 m to the entire synoptic study section (38 km).  We 
chose a 1 km segment size for further analysis since our lower SC sampling rate (0.017 
Hz) averaged 12 observations per segment for flows up to 31.6 m3 s-1, a sufficient 
observation count to estimate slopes.  Most surveys averaged higher sample counts per 
segment.  For instance, combined high frequency sampling rates (0.2 Hz) with low flows 
yielded around 80 observations per km.  Higher flows (> 84.8 m3 s-1) for the lower 
sampling rate had fewer observations per segment, but exhibited negligible overall SC 
gradients.   

 Three ungauged lateral surface water discharges (two canals and one treated 
wastewater effluent) existed within the study reach. Two typically caused minor 
perturbations in the survey results, but were overshadowed by the large number of 
surrounding sampling points.  However, the final one (the Lower Stevinson Lateral at 
river km 8, just upstream of MST) caused large step increases in SC for most of the 
surveys and potentially signifies flow perturbations, causing us to eliminate this location 
and all lower sections of the LMR from the study (Figure 3.5).  Other minor drains and 
outlets were seldom active during the sampling events and, when active, exerted 
negligible effects on the SC gradient. 

3.3.3. GW-SW Salt Load Model 

We used a simple mass balance to model flow and salt mixing in a river segment.  
The model assumes stable flow conditions for each sampling event.  Neglecting surface 
discharges, and evaporation effects, which are small here relative to flows, the mass 
balance to account for flow increasing longitudinally via groundwater discharges in a 
river segment is as follows: 

�� = �� + Qg (3.1)

where Qd, Qu and Qg (m
3 s-1) are the down-, upstream, and groundwater discharge for a 

river segment.  Assuming the segment is well-mixed, we can estimate the salt loading for 
a segment as: 

QgCg = ���� − ���� (3.2)

where Cd, Cu, and Cg (mg TDS L-1) are the down-, upstream, and groundwater total 
dissolved solids concentrations in the segment (assuming TDS = SC·0.65) [39,40]. The 
term on the left side of Equation (3.2) can be treated as a lumped mass loading rate or, 
given knowledge of local groundwater salinity levels, can be used to estimate net local 
groundwater discharge rates (or vice versa) but does not differentiate patterns at the sub-
segment scale [19,41].   

We believe this model is appropriate for the Lower Merced River as it is a 
predominantly gaining river in its lower reaches [34] with elevated surrounding GW SC 
conditions. Assuming such conditions, longitudinal increases in SW SC are expected and 
the mixing model can be applied. While groundwater surface elevations suggest more 
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complex GW-SW interactions with potential gains on the north side and losses on the 
south side along the river reach (see Figure 3.1a), this model aggregates sub-segment 
spatial variation of GW-SW discharges to estimate bulk segment GW-SW discharge. The 
model, however, cannot identify losing segments (negative Qg), which would indicate 
low SC inflow or potential in-stream processes [42].  Therefore, segment-estimated 
negative Qg values were set to zero.   

We expected the assumption of complete mixing to be valid for sufficiently long 
river segments.  Vertical mixing is expected to occur over distances of roughly 50-100 
times the river depth [43,44].  The average depth of the LMR ranged from about 0.5 to 3 
m during the study period, and thus this model is expected to be relatively insensitive to 
vertical mixing limitations for river segments greater than 300 m in length. Transverse 
mixing is roughly two to three times slower than vertical mixing in the same river [45], 
suggesting that our 1000 m sampling segment size was adequate.    

To characterize the salt-loading term (QgCg) in a discretized manner, we 
developed a spatially distributed version of the above mixing model where Cg values 
were assigned as the observed SC from the interpolated SC field from Figure 1b (several 
methods tested, see Table S1).  Using the independent estimates for Cg, we estimated Qg 
by assigning the flow boundary conditions using CRS station data, and solving Equations 
(3.1) and (3.2).  To assess the model performance, we compared cumulative groundwater 
discharge with differential gauging station estimates derived from daily mean station 
flow values, assuming a constant travel time estimate of 15 hours between CRS and MST 
stations for the varying flows.  We necessarily limited the comparison to the two 
sampling events (3/23/12 and 3/31/10) for which the MST station was unaffected by the 
nearby lateral canal input. 

3.4. Results and Discussion 

The high resolution synoptic surveys yielded 13 SC profiles for flows ranging 
from 1.3 to 31.6 m3 s-1 (Figure 3.6) with observed SC concentrations ranging from 24 to 
197 µS cm-1. Greater flows resulted in flat SC profiles due to dilution effects and were 
not considered further.  To test the consistency of the surveying, we examined three SC 
profiles captured at similar flow rates (6.4-6.6 m3 s-1) in summer 2011 and spring 2012. 
The three profiles exhibited the same overall SC change (approximately 80 µS cm-1) and 
slope (approximately 3 µS cm-1 km-1). In addition, their starting and ending SC values 
agreed with upstream (CRS) and downstream (MST) monitoring data (not shown). This 
comparison demonstrated a degree of reproducibility of the method, except for local 
variations in the SC gradients which were evident in the profiles (Figure 3.6).  It is worth 
noting that two unaccounted for spikes in SC (river km 34-35 and 27-28) withstood our 
filtering protocol for the 11/22/11 survey.  We did not observe active surface drains in 
association with these spikes, and further investigation revealed that they may have been 
the result of disturbed sediments during unplanned stops in the survey. 
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Figure 3.6. Thirteen synoptic survey results for the LMR showing zero-adjusted SC (change 

from initial SC measurement) over the roughly 38 km study reach for the dates and average 

flow rates shown. Data gaps denote filtered data at river km 20 and 26.5 (landing points for 

battery exchanges), and below river km 8, the approximate location of a large point source 

(drainage canal).  The 3/31/10 survey started further downstream (river km 26), and the 

initial zero-adjusted SC value was estimated using the survey with the nearest flow 

(2/17/12). 

The reach-averaged gradient in SC mainly decreased with increasing flow (Figure 
3.6).  However, a major exception was observed for one of the lower summer flows 
tested (3.6 m3 s-1, 8/9/10). While similar flows in the subsequent summer (1.3 and 4.5 m3 

s-1 7/28/11 and 8/11/11) exhibited the largest reach-averaged SC gradients in this study, 
the 8/9/10 survey yielded a smaller SC gradient than other surveys completed at flows 
less than 13.8 m3 s-1. This finding suggested that additional factors could have affected 
the river SC gradient for the anomalous survey. The most likely cause of the lower SC 
gradient in summer 2010 (a dry water year) was the lower hydraulic gradients along the 
river relative to those of summer 2011 (a wet water year) (Figure 3.2).  It is also worth 
noting that overbank flow occurred during the high flows of spring 2011. Thus, a more 
speculative explanation for the lower gradient in summer 2010 is that floodplain 
inundation and subsequent recession may have mobilized salts, rendering them more 
available to the river through recirculation or leaching in summer 2011. 

Like the overall SC changes discussed above, most of the local (1 km segment) 
SC slopes decreased with increasing flow (left to right in Figure 3.7). For higher flows, 
local slope estimates and their spatial variation decreased, as dilution attenuated the 
transitions between river segments. In all cases, the local SC slopes varied along the 
length of the river reach, an observation we attribute to local groundwater discharge and 
salinity variation. The greatest slope changes occurred below about river km 26-28, 
which is near the area associated with the aforementioned regional groundwater 
mounding and prior investigations related to agricultural GW-SW discharges.  It should 
be noted that the anomalously high negative SC slope for river km 34-35 in the 11/22/11 
survey (red cell in Figure 3.7) is most likely the result of bias imparted by an unexplained 
SC spike occurring late in the segment.  For the downstream spike of the same survey 
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(river km 26-27), additional SC observations within the segment were sufficient to 
overcome the spike (i.e., the resulting slope estimate was less biased). 

 
Figure 3.7. Summary of slope classifications based on linear regression of SC observations 

with distance within 1 km river segments for 13 synoptic surveys on the LMR.  

Positive/negative slope values indicate SC increasing/decreasing in the downstream 

direction.  ND (blank areas) denotes segments for which data were filtered due to noisiness 

from stoppages for battery exchanges and partial surveys (surveys started/stopped 

late/early due to equipment problems).  On the right axis, open circles denote battery 

exchange locations, and filled circles denote the location of SW lateral canals (only the last 

at river km 8 influenced SW SC). 

The distributed GW discharge (Qg) estimates derived from the model results are 
summarized in Figure 3.8 and depict variable gaining segments along the reach, which is 
in accord with regional hydrogeologic assessments [37].   Over the entire study reach, the 
estimated GW inflow generally decreased with higher flows but this trend was less 
consistent than the analogous trend of longitudinal SC slope changes discussed above.  A 
plausible explanation can be attributed to local spatiotemporal variation in GW hydraulic 
gradients with river stage, potentially from local pumping and/or changing upstream flow 
conditions, affecting magnitude and flowline patterns. 
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Figure 3.8. Model-based distributed Qg estimates ordered by increasing flow.  Red squares 

indicate sections of the river with no synoptic data to parameterize the model.  The blue 

horizontal lines in the top right plot indicate the Cg (units on secondary axis) used to 

parameterize the model. 

The two modeled cumulative Qg estimates for surveys unbiased by the lateral 
canal (3/31/10 and 3/23/12) agreed reasonably well with estimates based on differential 
gauging (see all survey results in Figure 3.9, Figure 3.10, Table 3.1, and Table 3.2).  The 
best match was for the 3/31/10 survey (modeled Qg 0.79 m3 s-1, differential Qg 0.95 m3   
s-1).  The fact that the starting point for the 3/31/10 survey was downstream of the typical 
location suggests slight underestimation of the model-based Qg for this case.  The match 
between model- and differential gauging-based Qg values was not as good for the 3/23/12 
survey (0.99 m3 s-1 versus 0.34 m3 s-1, respectively).  The portion of flow attributed to 
estimated groundwater discharges is relatively small (< 15%; see Table 3.1). Therefore, 
the discrepancies in both cases could be due to errors in gauging station rating curves, 
minor transient flow behavior, and travel time uncertainties, making it difficult to 
conclusively assess Qg by the differential gauging approach. In addition, the uncertainty 
in groundwater salinity levels (see Study Setting) is likely to have biased the model-based 
estimates.  This point is illustrated by the different RMSE values achieved for the various 
groundwater salinity estimate methods (Table 3.2).  In Figure 3.9, Figure 3.10, and Table 
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3.1, the lateral-biased results were included to provide greater context for the two 
unbiased results.  In addition, because the lateral-bias occurs late in the survey, the 
underlying local Qg estimates (discussed below) may still be reasonable despite the poor 
overall flow balance. 

 
Figure 3.9. Comparison of differential gauging station estimates, ∆Qs, (black line, based on 

average daily flows at CRS and MST stations) with model-estimated Qg (green and red 

symbols). Red and green symbols are for surveys affected and unaffected by ungauged flow 

from the Lower Stevinson Lateral (approximate location river km 8).  The travel time used 

to calculate the differential gauging estimates was 15 hours, based on hydrograph peak 

analysis between the two gauging stations. Large variations in differential gauging-based 

∆Qs estimates reflect sensitivity to flow changes with respect to travel time between the 

gauging stations. 

 
Figure 3.10. Comparison of modeled Qg and daily differential flow gauging estimates, 

∆Qs,values (from Figure 3.9). The red symbols indicate surveys for which the Lower 

Stevinson Lateral had observable ungauged inflow to the Lower Merced River. Green 

symbols indicate surveys for which there were no observable SC influences from the same 

lateral. 
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Table 3.1.  Comparison between modeled Qg and observed differential gauging station 

values (∆Qs).  Bold values are for surveys for which there were no observable SC influences 

from lateral canals (i.e., for bold cases, observed ∆Qs is more representative of the observed 

Qg).   

Date 
Daily CRS 

flow (m
3
 s

-1
) 

Modeled Qg 

(m
3
 s

-1
) 

Daily 

observed ∆Qs  

(m
3
 s

-1
) 

Modeled Qg 

to daily MST 

flow (%) 

Observed ∆Qs 

to daily MST 

flow (%) 

7/28/11
* 

1.33 0.21 ND -- -- 

8/9/10 3.60 0.40 2.52 6.59 41.28 

8/11/11 4.50 1.44 ND -- -- 

3/23/12 6.40 0.99 0.34 14.63 4.98 

9/7/11 6.54 0.93 3.79 8.99 36.69 

2/17/12
* 

6.57 1.01 -0.29 16.10 4.65 

3/31/10
* 

7.39 0.79 0.95 9.44 11.38 

11/22/11 11.47 1.15 -0.33 10.29 3.00 

9/20/11 12.88 0.48 5.35 2.62 29.38 

11/1/11 13.79 0.82 7.89 3.81 36.67 

10/4/11 16.25 0.65 3.59 3.27 18.09 

6/7/11
* 

25.12 0.84 4.16 2.86 14.21 

6/23/11 31.57 0.65 -1.12 2.16 3.71 

ND = No data available for downstream gauging station (MST). 
* = Incomplete survey runs. 

Table 3.2. Root mean squared error (RMSE) between modeled and observed SW-GW 

discharge, Qg, for two sampling dates (3/31/10 and 3/23/12) that were not affected by the 

Lower Stevinson Lateral (green symbols in Figures S4 and S5). Four spatial methods 

(nearest, average of 3 closest wells, inverse distance weighting of 3 closest wells, and 

applying interpolated GW SC surface) were used to assign SC to the distributed mixing 

model. The observed Qg are daily estimates accounting for a constant 15 hour travel time. 

Chosen GW SC, Cg, description 
Qg RMSE values for two sampling dates 

(m
3
 s

-1
) 

Nearest well 1.0823 

Average of nearest 3 wells 0.8378 

Inverse distance weighted of nearest 3 wells 0.8460 

Interpolated SC surface 0.4738 

 
In relative terms, the distributed GW discharge results indicate weak gains in the 

upper third, strong gains in the middle third, and weak to moderate gains in the lower 
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third. The consistently gaining middle zone’s estimated discharges correspond with the 
regional groundwater mound and the presence of the underlying Corcoran clay unit (see 
Figure 3.1a and Figure 3.2), and with previous groundwater-surface water modeling 
results for a study within the zone [38]. More specifically, our modeled cumulative Qg for 
river km 23-31 ranged from 0.10 to 0.75 m3 s-1 with an average of 0.36 m3 s-1, which is 
comparable to a separate modeling study estimating 0.20 m3 s-1 over the same reach [38].   

Lastly, we estimated the distributed salt load along the LMR by taking the product 
of the model-based groundwater discharges (Qg) and the associated local groundwater 
salinity concentration (Cg).  The cumulative salt loading curves (Figure 3.11) exhibit 
similar behavior for most of the surveys, but do not correlate well with flow (for reasons 
similar to those expressed above in regard to the Qg estimates). As with the GW 
discharge, most surveys result in only modest salt load estimates for the upper segments 
and relatively high salt load estimates beginning after river km 30.  Downstream of river 
km 20, the estimated loading behavior varies (increases at an equal to or greater rate for 4 
surveys, increases at lesser rate for five surveys, and levels off for 1 run).  This variable 
behavior is likely related to the more variable groundwater conditions in the lowest 
elevation portion of the study reach (Figure 3.2).  While there are relatively few 
observation wells in this zone, it is likely that the hydraulic gradient in this zone 
fluctuates in magnitude and direction in the lowlands between the two downstream 
regions.  It is interesting to note that surveys closely following significant recession 
events (flows 6.5, 13.8, and 25.1 m3 s-1) exhibit similar behavior down to river km 23, 
pointing to the potential relationship between residual bank storage and the associated 
increase in near-river hydraulic gradient and salt loading. 

 
Figure 3.11. Cumulative salt or TDS loading (kg s

-1
) for the 13 synoptic surveys, calculated 

from modeled local groundwater discharges (Qg) and observed salinity levels (Cg). The 

3/31/10 survey began at river km 26.  The filtered values at river km 27-28 caused the line 

break.  Filtered values did not cause a break around river km 20 because there were still 

enough observations in adjacent segments to build a regression. 

3.4.1. Limitations 

There are three main limitations to the outcomes reported in this work. First, and 
most importantly, the simplistic mixing model used here assumes stable flow conditions 
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and negligible ungauged lateral inflows and diversions.  Post-survey analyses called both 
of these assumptions into question, in spite of our efforts to perform surveys under 
relatively stable conditions.  Flow changes within our study reach required over 15 h to 
propagate through the reach.  Such changes were evident from modest stage changes (but 
significant flow changes) during the course of several of our surveys.  Ungauged lateral 
inputs were few and visibly small during our surveys except for the lower-most located 
just upstream of the MST gauging station.  Given the relatively modest modeled 
groundwater gains for the study reach (< 15% of river flow), the ungauged lateral inputs 
were an important source of error to the differential gauge estimates for groundwater 
inputs.  Regardless, based on the reasonable results developed from the two unaffected 
survey results and agreed with previous work [8,38], we believe that the spatial 
distribution reported here is accurately supported by the observed salinity distribution 
along the study reach.  

A second limitation stems from the lack of higher granularity groundwater 
elevation and water quality data (Figure 3.1 and Figure 3.2). With respect to temporal 
groundwater data, only seasonal data were available and more for the north side of the 
LMR than the south side. Hence, we were forced to average data over long time spans in 
order to independently estimate the salt concentration contribution to the distributed 
loading model. Spatial coverage was also limited, and we were able to distinguish mainly 
the regional piezometric surface. We could not delineate local gradients due to the small 
number of wells near (~1 km or less) the river. While our results represent a good 
approximation of the distributed salt loads along the LMR, they would be enhanced by 
better groundwater data near the river. 

Lastly, because we measured only SC, we were unable to distinguish between 
anthropogenic NPSP and natural origin(s) of the salinity. There are many potential 
anthropogenic salinity sources in the LMR region, including historical and current 
agricultural, food processing operations, dairies, and irrigation drains. There are also 
potential natural sources that include upwelling of deep saline groundwater [46]. As 
noted in the study setting, one segment within our study area (Figure 3.1) served for a 
NAWQA special study of agricultural chemicals and water quality [8,16,36]. The 
application here could be supplemented with more specific measurements, such as 
targeting specific ions or stable isotopes [47], to provide more information about the 
nature of the sources. 

3.4.2. Implications 

This work clearly delineates distributed salt loads on a km-scale resolution along 
a lowland river.  Based on our analysis and interpretation, these loads are the result of 
groundwater discharges governed by the regional gradients and influenced by local 
variations in those gradients in and around the riparian zone.  Understanding the 
connection between distributed GW discharges and the natural and anthropogenic 
activities causing them has major implications in terms of the sustainability of aquatic 
biodiversity and the growing human population depending upon river ecosystems. The 
spatial and temporal variation of distributed GW discharges along rivers is caused by 
processes spanning multiple scales. At regional to local scales, flow paths and residence 
time for water and nutrients are governed by hydrogeologic conditions that are often 
heavily influenced by human activities such as large-scale groundwater extraction (e.g., 
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for municipalities and agriculture), irrigation, modified recharge potential (e.g., by land 
use change), and application of fertilizers, herbicides, and other chemicals [48–50]. Local 
hydraulic gradients and fluxes in turn, affect the state of the riparian zone at the hillslope 
scale depending on the morphology, evapotranspiration, and underlying sediment 
structure of that zone [36,51]. Similar to larger scale human activities, local groundwater 
extraction and irrigation events can change the magnitude and direction of local hydraulic 
gradients, and thus the connectivity between riparian groundwater and the hyporheic 
zone, and the stream. Lastly, the hyporheic zone-to-stream connection is balanced by the 
riparian zone groundwater conditions on one side, and the stream conditions (stage, 
velocity, and water quality) on the other. These stream conditions are dictated by natural 
phenomena (climate, hydrology, geomorphology) but can be dominated by human 
controls (e.g., dams, as in the present work). Such occurrences can strongly affect 
hyporheic zone chemistry and temperatures and consequently aquatic ecosystem health. 
For instance, reduced upwelling of warmer hyporheic flows during winter months may 
result in near-freezing conditions at spawning beds jeopardizing egg survival rates [52] 
and in lesser availability of nutrients necessary for rearing of post-emergent salmon [53]. 
A better understanding of this complex flow and reactive transport pathway and its 
connection to human activities will enable us to better inform stakeholders in the creation 
of resource management policies, particularly for groundwater extraction, agricultural 
practices, and buffer zone restoration and conservation. 

A related but more specific area of environmental policy of relevance to this work 
is that associated with regulation of maximum allowable loads from a watershed (e.g., 
TMDLs). These loads are typically assigned on a watershed basis with knowledge of the 
main human activities therein. However, our work strongly suggests that a more 
aggressive approach for monitoring and mapping distributed contributions to the TMDL 
(or similar regulatory instrument) is plausible.  Using the approach we have described, 
distributed load contributions could be assigned to land use practices more precisely than 
is currently done. Of course, there are limitations to the approach as it currently stands 
(see limitations section).  However, as sensors for various water quality parameters of 
concern become more diverse, and local groundwater data (level and water quality) 
become more available and up-to-date, water quality managers and decision-makers 
should strongly consider adopting high resolution synoptic water quality surveys into 
their portfolio of tools.  It is conceivable in the near term that such surveys could be 
carried out effectively (and more safely) with autonomous aquatic or aerial vehicles. 

3.4.3. Summary and Conclusions 

In this work, a high resolution, SW synoptic sampling system measuring a 
conservative tracer, SC, is used to estimate distributed GW-SW discharge.  The SW 
concentration gradient coupled with available GW SC and upstream flow parameterize a 
steady-state, distributed mass balance model, similar to previous studies largely based on 
data from injected chemical and/or isotopic tracers.  In our unique setting, elevated 
ambient GW SC concentrations and previous studies examining a preferential GW 
flowpath to the SW provide an opportunity to examine longitudinal GW-SW discharge 
behavior in a gaining river reach without adding a tracer.  The model-estimated GW-SW 
discharge produced reasonable estimates for the whole reach (validated by differential 
gauging) and locally (validated by previous local estimates of the preferential GW-SW 
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discharge).  While clear SW SC dilution can be seen with increasing SW flows, any 
anticipated decrease in GW-SW discharge or TDS loading with larger SW flows are not 
as clearly seen.  These results highlight difficulties commonly found in hydrologic 
modeling, where sparse spatial and temporal sampling may miss complex characteristics 
affecting GW-SW exchange such as residual bank storage effects after SW flow 
reduction.  Selective deployment of GW sensing methods can better characterize these 
spatially or temporally varying phenomena on GW-SW exchange.  In spite of GW data 
limitations that were beyond the scope of this study, our synoptic approach clearly 
produced rapid, inexpensive multi-scale SW maps that can be used to delineate GW-SW 
discharges in terms of nonpoint source pollution.  The reported high resolutions data sets 
and their interpretation on the scale of this study (40 km) are the first of their kind in the 
literature. 
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4. Synoptic multi-tracer sampling for groundwater-surface water nitrate 

loading and dynamics along a lowland river 

4.1. Abstract 

Elevated nitrate concentrations in water supplies are a concern for human health 
and aquatic ecosystems.  Nitrate transport in the watershed is difficult to track due to 
challenges in characterizing denitrification processes spatially.  In this work, we analyze 

ambient specific conductance (SC) and nitrate (NO
3

-
) as tracers using high-resolution 

longitudinal synoptic in-situ sensing along the lower Merced River (38 river km) in 
central California.  With available surrounding GW SC, we first calibrate a distributed 
GW-surface water (SW) discharge model for a conservative solute using 13 synoptic 
sampling events at daily flows ranging from 1.3 to 31.6 m3s-1.  We then applied the GW-
SW distributed discharge estimates to a similar distributed nitrate loading model, adding 
a first-order decay term representing shallow aquifer denitrification.  We assumed the 
denitrification term to be inversely proportional to estimated local GW-SW discharge and 
adjusted the decay rate and representative volume to best-fit observed SW nitrate data.  
When wells reporting less than the detection limits (typically around 0.5 mg L-1 NO3-N) 
were censored from further analysis the best-fit model results were in good agreement 
with the observed river distribution across the synoptic surveys (RMSE = 0.06-0.98 mg 
L-1).  The reach-estimated dimensionless denitrification term varied from 0 to 0.432, 
which is lower than previous local results for a segment of the study reach (0.92) and 
regional results (0.17-1.06).  This work provides proof-of-concept for a relatively low 
cost approach characterizing nitrate nonpoint source pollution and groundwater 
denitrification patterns at the watershed scale for a consistently gaining river reach. 

4.2. Introduction 

Worldwide terrestrial ecosystems have steadily seen increases in nitrogen loading 
corresponding with increasing human fertilizer use, confined animal feed operations 

(CAFOs), and NOx emissions [1].  Nitrate (NO
3

-
) is a labile species that is commonly 

transferred from soils to groundwater (GW) and surface water (SW), and can accumulate 
to potentially toxic levels in rural drinking water wells [2].  Elevated nitrate levels are 
also linked to eutrophication of freshwater ecosystems which can result in harmful algal 
blooms and hypoxia  [3–5]. While natural attenuation of nitrogen species occurs through 
biological nitrification-denitrification processes, limits on removal efficiency have 
spurred research focused on (1) best management practices for fertilizer application and 
other nitrogen loading on the environment [6,7], and (2) the transport and fate of nitrogen 
in the environment.  Such practices and reactive transport pathways are dependent on 
site-specific watershed conditions that take into account denitrification processes in 
multiple aquatic environments such as shallow aquifer and riverine environments [8–12].  
In the agriculturally dominated regions of California, changes in crop type and practices 
and production increases have resulted in non-uniform application and subsequent 
leaching from nitrogen sources to the GW that is of growing concern [13].  For this work, 
we specifically examine longitudinal nitrate loading and potential denitrification from the 
shallow aquifer to the lower Merced River (LMR) system located in the Central Valley, 
CA. 
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Understanding nitrogen cycling along rivers and shallow aquifers continues to be 
challenging, although we know that both hydrologic units have large potential for 
denitrification [1].  Within the subsurface, biogeochemical conditions affecting redox 
conditions and subsequent denitrification can vary locally with reactivity of 
heterogeneous sediments, which can be difficult to characterize at the watershed scale  
[11,14,15].  Additional transport processes such as convection, dispersion, sorption, and 
associated travel times within the GW or SW complicate accurate descriptions of reactive 
nitrogen transport [11,16,17].  Interstitial river SW flow within sediments at GW-SW 
interfaces creates a complicated mixing zone between potential GW and SW nitrate 
sources, commonly known as the hyporheic zone (HZ).  Nitrogen transformations 
(nitrification and denitrification) within the HZ depend on residence time and oxygen 
depletion where denitrification is likely to occur along oxygen-depleted deeper substrates 
or shallow microzones of low oxygen [17–20].  Additionally, high suspended sediment 
concentrations within the SW water column has been shown to cause increased 
denitrification where potential low-oxygen microsites exist within or around sediment 
particles [21].  For SW systems, the varying diurnal and seasonal light conditions which 
drive photosynthetic oxygen production is considered inversely related with 
denitrification activity [22,23].  These complications make local field estimates of 
denitrification difficult to scale spatially through the watershed. 

To address such complexity within river network systems, transport models for 
river networks and watershed scales have ranged from statistical relationships [16,24] to 
more deterministic multi-parameter models combining flow, transport, and chemical 
kinetics [25].  The statistical models often depend on SW river travel time and volumetric 
flow variables, but have been adjusted to account for both point and nonpoint source 
contributions to the SW system [26].  These models have been applied to regional 
characterizations for constituent loading and discretizing the models to subdomains 
produced better model estimates with the tradeoff of increased coefficient uncertainties 
[27,28].  In contrast, process-based or deterministic watershed transport models are 
typically first calibrated for flow then chemical kinetics.  Such models may require 
exhaustive calibration exercises targeting numerous spatially distributed parameters 
associated with flow, subsurface material properties, and chemical kinetics.  In practice, 
the magnitude of this calibration problem may limit the extent and spatial resolution at 
which these models can reasonably be applied [11,29,30].  Less complex models, such as 
mass balance or geographical information systems (GIS)-based models, simplify 
processes by incorporating assumptions and associated analytic solutions, attempting to 
address processes at larger spatial scales than the more complex models [9,31]. 

Assessing nitrogen cycling, including within denitrification component, within 
environmental systems encompasses multiple methods focusing on mass balance of 
chemical species (e.g. N2, NO3, etc.) and isotopic composition along reactive transport 
pathways. Observations and accompanying models for nitrogen removal are often 
described using simplified (e.g., first order) kinetics.  This approach lumps a large range 
of potential pathways that are associated with geochemical properties of the system (e.g. 
mineralogy, redox potential, pH, temperature, etc.), which are challenging to estimate 
over large spatial scales [15,32].  Determining the denitrification rate, which can vary 
over orders of magnitude within GW flowpaths, requires an age or travel time of the 
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water using other isotopic or neutral chemical tracers.  Additional measurements often 
include environmental redox conditions noted above that affect rate behavior.  An 
overview of the measurement methods and considerations is provided by Groffman et al. 
[33].  Many of the measurements require sample collection and subsequent laboratory 
analyses, which are costly, particularly for isotopic analyses.  Recent advances in the 
development of in situ spectrophotometers allow high temporal resolution studies 
analyzing diurnal fluctuations on some nitrogen species, like nitrate [23].  Increasingly, 
these sensors are transported with mobile vehicles creating high spatial resolution maps 
and detecting unseen variability [34], likely due to the localized nature of nitrogen 
cycling [35]. 

In this work, we take advantage of the recent developments in UV sensing 
technology to examine longitudinal nitrate loading to the lower 38-km reach of a lowland 
river surrounded by predominantly agricultural land use.  We incorporate mobile delivery 
of an in-situ UV-visible (UV-Vis) spectrometer and water quality sonde to measure 
nitrate and specific conductance (SC) respectively, at high frequency.  The synoptic data 
sets and analytical framework provide a rapid and practical approach for measuring 
longitudinal geochemical behavior.  We attribute SW nitrate concentration gradients to 
distributed GW-SW discharge and potential denitrification capacity along the GW 
flowpath to the river, within the hyporheic zone, or within the water column.  To our 
knowledge, such aggregation of high-resolution and analysis has not been conducted and 
provides a unique spatially distributed perspective of potential nitrogen transformations 
along an agriculturally impacted watershed system. 

4.3. Methods 

We characterized nitrate loading into the Lower Merced River by combining 

available GW SC and NO
3

-
 data from wells and corresponding high spatial resolution SW 

data from the in situ sensor.  The sampling strategy is similar to Chapters 2 and 3 with 
additional focus on nitrate sensing and analysis, as the data originated from the same 
synoptic sampling runs.  These GW and SW SC data parameterize a steady-state, 
distributed mixing model for nonpoint source loading, validated with differential gauging 
station discharge and previous modeling studies [36].  We build off this model using 
considerations (e.g., well depth, well sampling date difference) detailed within Chapter 2.  
In this chapter, we apply an additional first-order denitrification term affecting the well 
NO3 data representing the lumped nitrate reduction occurring between the GW well, 
within aquifer sediments, through the HZ, and within the river SW where our in situ 
measurements are made.  We relate the GW-SW volumetric discharge to the travel time 
needed for estimating actual denitrification.  River measurements for this study were 
completed from 2010-2012, over a range of flows (1.3-31.6 m3s-1) around a wet water 
year (WY2011). 

4.3.1. Measuring Nitrate 

The two river constituents of interest to this study are SC and nitrate.  Measuring 
specific conductance (SC) is a relatively standard method of measuring total dissolved 
solids within the aquatic environment and was described in further detail in Chapter 2. 

To measure nitrate, common methods include wet chemistry analysis, ion 
selective electrodes, and emerging spectrophotometers focusing on the ultraviolet (UV) 
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part of the spectrum with particular focus on the range of wavelengths 190-370 nm [37].  
For high resolution surface water studies, wet chemistry analysis becomes impractical as 
multiple field samples are required, prone to irregular sampling storage techniques per 
sample, and cost per sample.  Ion selective electrodes, while generally less expensive, can 
be prone to interferences from other ions and sensitive to drift [37].  Spectrophotometers 
are initially expensive but reliability for in situ sensing shows promise though there are 
potential optical interferences. 

In this work, we use a spectrophotometer (s::can spectro::lyser, Vienna, Austria) 
measuring the UV-visible (UV-Vis) spectrum (200-750 nm) and with an optical path 
length of 35 mm.  The spectrophotometer uses a Xenon source lamp emitting dual beams, 
a measurement and reference beam, to account for potential lamp output variations.  At 
the end of both beam paths, a photodiode array collects the attenuated or absorbed 
spectrum at a resolution of 2.5 nm wavelength intervals.  The measurement beam path is 
attenuated by constituents within the water sample and lamp variations are corrected with 
the reference beam.  The resulting absorbance at specific wavelengths for a particular 
species can then be linearly related to concentration as stated by Lambert-Beer’s law 
[37,38].  The optical path length for the measurement beam can vary for 
spectrophotometers.  For our device, the longer path length is suitable for freshwater 
applications as shorter path lengths are more common for waters with high turbidity 
which attenuates the beam and a major source of interference [37].  While local 
calibrations have been used to improve general sensor calibration [39], we relied on the 
manufacturer-offered global freshwater calibration and spot samples were verified with 
ion chromatography (C. Butler, personal communication, May 18, 2015). 

4.3.2. Nitrate Groundwater and Surface Water Setting 

The SC conditions and hydrogeology for the region were described in detail in 
Chapters 2 and 3.  We briefly describe the site hydrology in the context of GW to SW 
discharge.  We then examine the hydrogeological conditions and their potential effects on 
nitrate GW well concentrations from the nearby aquifer and hyporheic zone.  Additional 
SW nitrate considerations for potential inputs (e.g. atmospheric, etc.) and transformations 
are also discussed. 

This study collected data along a consistently gaining stretch of the LMR located 
in Central Valley, CA.  The LMR is an impounded tributary for the San Joaquin River 
(SJR), which provides 13% of the inflow into the Sacramento-San Joaquin Delta and San 
Francisco Bay [40].  The confluence of the LMR with the SJR identifies river km 0 and 
increases upstream the Merced River.  Along this study reach, the last 38 river km 
stretch, a localized GW flowpath to the river (~ river km 23-31) with elevated GW-SW 
discharge, as noted in Chapter 3, has been a site for numerous GW-SW interaction 
studies [36,41,42]. The site provides a unique setting for assessing connectivity with 
agricultural land use, the dominant land coverage for the region and considered as a 
nonpoint source contributor to the SW.  Surrounding  GW well data are available online 
through the Groundwater Ambient Monitoring and Assessment (GAMA) program and 
maintained by the California State Water Resources Control Board [43].  For SW 
conditions, the California Department of Water Resources (DWR) has two SW gauging 
stations along our study reach.  The upstream station is located at river km 46 near 
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Cressey (station id: CRS), and the downstream station is located at river km 8 near 
Stevinson (MST).  A noticeable SW input is located at river km 8 just upstream of MST. 

In GW systems, nitrate reduction is governed by residence time of the water and 
redox conditions governing nitrogen transformations. For this study, higher regional 
denitrification potential represented by anoxic (or reduced) well conditions was 
noticeable along the valley trough, coinciding with the SJR, and to a lesser extent along 
the tributary corridors, including the LMR.  Otherwise, regional anoxic well conditions 
were small in proportion (9.5% of the total regional wells) suggesting low denitrification 
potential in the wells more than 1 km from the rivers [15].  A local study along the LMR 
supported higher denitrification potential closer to rivers and within the HZ, affecting 
waters with simulated GW residence times of up to 30 years.  The older GW was 
simulated to maintain legacy or natural nitrate levels in low amounts [44].  For transport 
restricted to the subsurface at the same site along the LMR, including effects of mixing 
and dispersion on model-estimated denitrification rates differed by over an order of 
magnitude compared to observed rates [11].  The combination of low regional 
denitrification potential in wells with increased fertilizer use and subsequent leaching to 
the aquifer likely caused increasing trends for GW well nitrate concentrations, with 
noticeable concentration differences between shallow and deep wells [45].  A recent view 
of an interpolated NO3 concentration surface for the shallow aquifer is shown in Figure 
4.1. 

 
Figure 4.1. Interpolated regional GW NO3 concentrations made by ArcGIS default IDW 

settings and plotted in R.  The interpolation was based on shallow (< 85 m) and recent (1980 

to present) well data from GAMA [43] and the US Geological Survey National Water 

Information System (USGS-NWIS) [46] and removed points below the highest method 

detection limit (NO3 ≤ 2.2 mg L
-1

; i.e. all well locations in the figure without the red circle). 

For the LMR, potential nitrate input pathways other than GW include atmospheric 
nitrogen deposition, given the relatively poor air quality of the region, and instream 
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biological processes.  The rate of total nitrogen atmospheric deposition to the SJR Basin 
estimated from a measurement station in Davis, CA ranged from 0.41 to 1.24 g m-2 yr-1.  
Recent study data showed inter-annual variability from 1985-2004, but unclear trends 
[47].  Spatially, the contribution of atmospheric nitrogen addition relative to fertilizer and 
manure application is small for the lowland portion of the SJR (and contributions for the 
LMR are likely similar) [40].  Generally, however, the effect atmospheric nitrogen on 
downstream nitrate remains uncertain likely due to in-stream processes [48].  In-stream 
biological processes include denitrification, nitrification, and assimilation, but were 
largely found to have small effects on NO3 variability in the SJR [23].  Like atmospheric 
deposition, influences from such biological activities were small relative to point (e.g., 
canals) sources and GW contributions [23].  In our study, we examine the longitudinal 
NO3 loading from GW to the SW of the LMR and reduction capacity.  We ignore the 
potential atmospheric source of nitrogen, arguing that the surface area of the stream is 
relatively small, and that direct runoff from the watershed is minimal on the LMR. 

4.3.3. Synoptic Sampling Strategy 

The sampling strategy is similar to Chapters 2 and 3 (NO3 and SC data collected 
concurrently) and is briefly reviewed here emphasizing the nitrate measurements.  We 
continuously logged water quality data using in situ sensors, a multi-parameter sonde 
(Hydrolab MS5) for SC, temperature, and dissolved oxygen (DO) at rates ranging from 5 
s to one minute for different surveys.  We also logged nitrate concentrations using the 
submersible UV-Vis spectrophotometer (s::can spectro::lyser) every minute.  Both were 
housed in perforated polyvinyl chloride (PVC) tubes for protection.  The sensors were 
suspended from the sides of a motor-propelled tandem kayak so that the sensors were 
immersed.  The in situ sensor data were localized with a high frequency (6 samples per s) 
GPS echo sounder from the Valeport (Midas Surveyor Echo Sounder).  We transported 
the sensor suite along the LMR thalweg (river km 2-38) completing the synoptic surveys 
within 5-7 hrs, including 2 intermediate stops (river km 20 and 26.5) for battery swaps 
powering the kayak motor.  These stops were filtered from further analysis due to sand 
disturbance influences on SC and NO3 measurements.  Since the focus of this study is for 
nonpoint source loading (GW to SW discharge), we also filtered data downstream of 
river km 8, where the Lower Stevinson Lateral had noticeable SW SC effects.  For nitrate 
filtering alone, we removed zero readings for concentration from the spectrophotometer.  
We conducted the surveys 17 times from 2010-2012 to examine longitudinal gradients 
identified with our in situ sensors, where the water year for 2011 (WY2011) was wetter 
than 2010 and 2012.  As reported in Chapters 2 and 3, 13 of the 17 surveys showed 
noticeable gradients for lower flow regimes (CRS daily flows ranging from 1.3 to 31.6 
m3 s-1).  Greater flows resulted in overly diluted conditions to use in the analysis.  We 
used the same 13 surveys for further models and analysis in this chapter. 

4.3.4. Model and Analysis 

Given available GW well SC and NO3 data and our corresponding in situ synoptic 
surveys, we developed exploratory steady state mixing models to first estimate 
distributed GW-SW discharge using SC (assumed to be conservative) and applied the 
distributed discharge to a NO3 (assumed to be non-conservative) loading and mixing 
model accounting for potential nitrate reduction.  Chapters 2 and 3 covered the GW-SW 
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discharge model with SC at a 1 km resolution and are briefly described here in the 
context of the NO3 reactive transport model. 

Initially, we applied the distributed GW-SW discharge model, as described in 
Equation (2.3), and found the lowest RMSE between the modeled and observed 
cumulative GW-SW discharge estimates.  We used the parameterization schemes 
described in Chapter 2 (see Table 2.1) to Scenario 2 (describing well data from 1980 to 
present and shallow well screen depths), which better describes GW sources reaching the 
LMR in this study.  We chose 1980 as a date boundary where confidence intervals of 
nitrate concentrations presented in a previous regional study did not show consistent 
upward trend despite continuing median concentration increases [45].  The nitrate 
concentration increase in the two surrounding counties (Merced and Stanislaus) was 
plotted in Figure 4.2 for conformational purposes.  The observed cumulative GW-SW 
discharge was estimated from differential flow between the two nearby gauging stations 
along the LMR, CRS and MST, assuming 15-hr travel time (as described in Chapter 3).  
The parameterization scheme producing the best agreement (RMSE) between modeled 
and observed cumulative GW-SW discharge was used in subsequent reactive transport 
modeling for well parameterization consistency. 

 
Figure 4.2. Well GW NO3 values under 300 mg L

-1
 plotted for Merced and Stanislaus 

counties.  The two scenarios, defined from Table 2.1, are presented.  The data show 

noticeable upward trend with time under either scenario.  The well data were aggregated 

from GAMA [43] and USGS-NWIS [46]. 

We next used the distributed GW-SW discharge estimates, Qg, to define a nitrate 
reduction term, the first order decay rate often used in denitrification models [32], 
expressed as: 

Cgn = Cgn0exp	�−	
� (4.1)

where Cgn is the GW NO3 concentration at the foot of the flowpath as GW discharges and 
expressed in mg L-1, Cgn0 is the initial NO3 concentration at the head of the flowpath to 
the river (defined in our study by the GW parameterization methods utilizing available 
well nitrate concentration data), k is the first order decay coefficient [T-1], and t is the 
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time over which that denitrification occurs, i.e., the travel time in the GW flowpath.  We 
substituted the following unitless decay term, kt, into Equation (4.1): 

	
 = 	��
Qg

 (4.2)

where V is the hypothetical volume the water travels through (from well to river) and ϕ is 
the sediment porosity for which the value of 0.38 was used from a previous GW 
modeling study [11].  Similar terms regarding GW flows and velocities were used in 
other transport studies for the region [9]. 

Our mixing model for the river examines the GW-SW discharge at the GW-SW 
interface specifically.  From Chapter 2 (Equation 2.2) and Equations (4.1) and (4.2), this 
bcomes: 

����� = ����� + QgnCgn0 exp− 	��
Qgn

� (4.3)

where Qd is model-estimated downstream flow from the SC mixing model, Qu is the 
upstream flow where the initial cell is estimated from the upstream gauging station 
(CRS), Cun is upstream NO3 concentration where the initial value is the first measured 
value, and Qgn is a length-scaled GW-SW discharge.  Because the estimated 1-km 
distributed GW-SW discharge (Qg) was assumed to be uniform per km cell (see Equation 
(2.3)) the resulting rescaled distributed GW-SW discharge (Qgn) was evaluated by 
multiplying Qg with the distance between consecutive measurements and dividing by 1 
km.  The model expressed in Equation (4.3) was evaluated at every observed location 
from the synoptic sampling runs, where only the first upstream cell uses observed values 
(first Cun value).   

The main fitting parameter for this model was the lumped parameter, kV, which 
we constrained between 0 to 0.01 m3 s-1.  We tested kV in discrete increments (0.0001 m3 
s-1) from 0 to 0.001 m3 s-1 and larger increments (0.0005 m3 s-1) from 0.001 to 0.01 m3 s-1.  
The resulting model-estimated nitrate concentrations, Cdn, were then compared with 
observed.  We evaluated the best fit for individual synoptic sampling model runs using 
RMSE between model (Cdn) and observed SW nitrate.  The model denitrification 
outcomes (best fitting kt values) were then compared with those from previous work 
focusing on GW nitrate reactive transport modeling (0.92 assuming 20 yr travel time 
[11]) and with a regional statistical model examining total nitrogen loss in multiple 
streams and rivers (0.17-1.06 assuming 15 hr travel time for the LMR [40]).  To examine 
loading loss, we subtracted the last term on the right of Equation (4.3) from loading 
assuming no loss (QgnCgn0) and divided the difference by the no-loss loading term to 
create the fractional loss expression: 

1 − exp−	��
Qgn

� . (4.4)

This term was evaluated at the whole reach scale to estimate kt and at 1-km resolution. 
 Although we believe the modeling results here provide a reasonable 
approximation of a complex, spatially distributed environmental system, it is important to 
recognize the model simplicity and potential limitations.  The sources of upstream flow 
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(Qu) were assumed to be steady per synoptic sample run and GW conditions (GW surface 
elevation and GW SC and NO3 concentrations) were assumed to be steady for all the 
synoptic sampling events.  The model is limited because of the focus on GW-SW 
discharge and does not capture reaches showing simultaneous gains or losses (e.g., 
hyporheic exchanges or local hydraulic gradients), also described in Chapter 3.  For 
nitrate kinetics, the model would not be able to differentiate biogeochemical processes 
occurring within HZ from surrounding aquifer processes further from the LMR.  More 
complex models of the GW-SW would have to be undertaken.  For example, the effect of 
hydrodynamic dispersion was not included as the model does not describe transport 
within the subsurface explicitly.  While advection and dispersion mechanisms would be 
relatively straightforward to incorporate, parameterizing such a model in the spatially 
distributed manner that this problem calls for would be challenging and would add 
substantially to the uncertainty of the results. 
 A key model consideration was treatment of well NO3 concentrations, particularly 
relative to the highest method detection limit (MDL).  For samples collected over time, 
methods of nitrate measurement have varied within the time with different detection 
limits.  Including low concentrations for time trend or frequency analysis has been 
subject to research in itself [49].  For our exploratory purposes, we examined both 
including and disregarding the values below the highest method detection limit (2.2 mg 
L-1 of NO3 or 0.5 mg L-1 NO3-N, nitrate as nitrogen) for initial analysis.  Shallow wells 
with nitrate concentrations below the highest method detection limit (MDL) can be seen 
circled in red in Figure 4.1.  We anticipated that including low concentrations would lead 
to model under-predicting loading, while excluding the low concentrations would lead to 
model over-prediction if there is nitrate reduction occurring. 

4.4. Results and Discussion 

Results from the sensitivity analysis pertaining to parameter assignment 
approaches are summarized in Table 4.1.  We wanted the parameterization scheme 
exhibiting the lowest RMSE between modeled and observed cumulative GW-SW 
discharge for Senario 2 (lin, avg3, t_avg).  This scenario more accurately described GW 
nitrate conditions and sources for our study [45].  For this scheme, the lowest RMSE for 
Scenario 2 (0.61 m3 s-1) was appreciable, nearly equal to the observed Qg (0.64 m3 s-1

, 

averaged from 2010-3-31 and 2012-3-23 events seen in Table 3.1), but reasonable given 
rating curve accuracy.  Differences in RMSE were small between the SW piecewise 
linear regression and GW temporal methods.  Noticeable differences between GW spatial 
methods are focused on well data availability for Scenario 2 (shallow screen depth and 
more recent well samples), and associated downscaling with the remaining wells.  For 
further analysis, we will focus on the parameterization scheme (lin, avg3, t_avg) for wells 
sampled from 1980 on and with shallow well screen-depths (Scenario 2). 
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Table 4.1. RMSE between modeled and observed cumulative GW-SW discharge for 2 

different synoptic sampling runs (0.95 m
3
 s

-1
 on 2010-3-31 and 0.34 m

3
 s

-1
 on 2012-3-23 and 

found in Table 3.1).  The RMSE is ordered by lowest value for Scenario 2 (1980 on and 

wells shallower than 85 m).  The abbreviation scheme for the parameterization methods are 

listed in Table 2.1 and briefly described in parentheses. 

SW piecewise linear 

regression methods 
GW spatial methods 

GW temporal 

methods 

Scenario 2 

RMSE   

(m
3
 s

-1
) 

lin (least square 

regression) 
avg3 (average of 

closest 3 wells) 
t_avg (averaged over 

scenario) 
0.610 

sen (Sen's slope) avg3 t_avg 0.613 

seg (R-pkg 

segmented) 
avg3 t_avg 0.624 

lin avg3 
t_clo (average within 

synoptic period or 

closest date) 
0.625 

sen avg3 t_clo 0.628 
seg avg3 t_clo 0.638 

sen 
sp_clo (closest single 

well) 
t_avg 1.097 

lin sp_clo t_avg 1.136 
seg sp_clo t_avg 1.195 
sen sp_clo t_clo 1.242 
lin sp_clo t_clo 1.292 
seg sp_clo t_clo 1.351 

seg 
idw12 (inverse 

distance weight of 

12 closest wells) 
- 2.017 

sen idw12 - 2.081 
lin idw12 - 2.190 

 
A major data preprocessing question before applying the reactive transport model 

was whether to include NO3 concentration values below the highest method detection 
limit (MDL) for estimating Cgn0 (i.e., the analytical method detection limit).  Figure 4.3 
shows Cgn0 when including values below the MDL (grey dots) and for excluding (black 
line) using the same parameterization scheme as the GW-SW discharge model for 
consistency.  We see clear Cgn0 differences from river km 17-27 due to wells reporting 
below the MDL south of the LMR (around river km 20) and near the LMR (around river 
km 28) seen in Figure 4.1.  Due to previous studies finding low regional denitrification 
[15,45], we feel these wells can be safely excluded as either isolated well locations with 
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favorable denitrification conditions [15] or as HZ wells exhibiting the nitrate reduction 
we are attempting to capture in our model.  The resulting case is equivalent to excluding 
wells reporting nitrate concentrations below the MDL, seen in black in Figure 4.3, and 
will be used for further model analysis. 

 
Figure 4.3. Distributed nitrate concentrations, Cgn0, used in the model expressed in Equation 

(4.3) based on the average of the 3 closest wells GW NO3 parameterization scheme.  The 

grey dots indicate inclusion of well readings below the highest detection limit (2.2 mg L
-1

 

NO3 or 0.5 mg L
-1

 NO3-N).  The solid black line excludes those low well NO3 concentration 

readings.  The well data were aggregated from GAMA [43] and USGS-NWIS [46]. 

With the estimated distributed GW-SW discharge rescaled for the reactive 
transport model as Qgn and the appropriate Cgn0 parameterization, we estimated the NO3 
concentrations in the LMR, Cdn, from Equation (4.4) assuming no nitrate reduction (kt = 
0 or kV = 0 m3 s-1).  The ratios between the modeled and observed along the whole study 
reach for all flows are plotted in Figure 4.4.  Overall, the model tends to overestimate the 
observed concentrations (ratios > 1) indicating potential nitrate reduction is occurring 
along the reach and at multiple flow regimes.  The high flow regime, Qu > 14 m3 s-1 
denoted in the lightest shade of grey, seems to be the most consistent ratios but also the 
flow regime showing the least potential nitrate reduction [40].  Other flow regimes (< 7 
and 7-14 m3 s-1) show wider ratio variance and often had larger modeled to observed 
ratios than the high flow regime, suggesting higher nitrate reduction is occurring.  
Spatially, the model shows higher ratios upstream (river km > 27) indicative of the Cgn0 
parameterization seen in Figure 4.3. 
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Figure 4.4. Longitudinal ratios of modeled to observed LMR NO3 concentrations for all 

synoptic sampling runs with no nitrate reduction (kt = 0).  The model results are for the Cgn 

concentrations defined by the black line in Figure 4.3.  The model does show good 

correlation (Pearson’s r) suggesting the estimated GW-SW discharge derived from SC 

loading are likely correlated.  Further delineation between synoptic events by upstream 

flow regimes (Qu) is depicted by dot shades. 

To account for potential nitrate reduction, we varied kV for all synoptic runs to 
minimize RMSE between modeled and observed NO3 concentrations in the LMR.  The 
results of this analysis are shown in Figure 4.5, where the best fits are denoted as the 
green lines, and the observed data are shown as black dots.  Generally, as surface flows 
increased, RMSE values decreased and are more clearly shown in Figure 4.6.  The 
decrease is likely due to the influence of SW dilution dominating potential local 
deviations.  Excluding synoptic sampling events showing no nitrate reduction as the best 
fit, the mid-range flow regime ranging from 7-14 m3 s-1 showed higher rates (0.229-
0.432) of nitrate reduction defined by the unitless decay term, kt.  This term result is 
noticeably larger than the high flower regime (> 14 m3 s-1) exhibiting kt values 0.053-
0.068.  The low regime (< 7 m3 s-1) showed less nitrate reduction (kt) but showed larger 
degree of variability (0.037-0.164) than the high flow regime.  While these results 
generally underestimate previous studies for the decay term (kt) [11,40], these results do 
support previous work which found less nitrogen loss for flows for the high flow regime 
(kt = 0.17 assuming a 15 hr travel time) than lesser flows (kt = 1.06). 
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Figure 4.5. Individual plots per sampling event of modeled (lines) versus observed (black 

dots) NO3 concentrations considering potential nitrate reduction (kV ≠ 0 m
3
 s

-1
).  The lowest 

RMSE between modeled and observed is shown in green while the sensitivity range for kV 

(0-0.01 m
3
 s

-1
) is shown in transparent grey.  The lowest RMSE (mg L

-1
), associated kV 

values and reach kt values, and cumulative reach GW-SW discharge (Qg) are presented in 

the top right of each plot below the daily upstream flow (with which the plots are ordered) 

and date.  The presented results are for the GW well NO3 parameterization (Cgn) scheme 

that excluded well NO3 concentrations below the highest detection limit (< 2.2 mg L
-1

 NO3). 

Localized longitudinal deviations from the modeled best fit and observed LMR 
nitrate concentrations are described for the constrained range of denitrification rates (kV) 
and are also seen in Figure 4.5.  The localized deviations potentially biased the best fit 
model estimate of the reach estimated denitrification term (kt) to underestimate actual 
nitrate reduction.  A noticeable deviation or “spike” that occurs consistently across 
different flows occurs around river km 20-24, where the observed concentrations exhibit 
an increasing gradient upstream and then consistently decreases near river km 20.  This 
spiking in observed longitudinal gradient is seen across multiple upstream daily flows (< 
6.5 m3 s-1) as well as in some higher flow regimes.  To compensate for occasions when 
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this observed spike is large, the best fit model tends to overestimate upstream (~river kms 
24-36) concentrations and clearly seen for synoptic runs occurring on 2011/7/28, 
2011/8/11, and 2011/9/7.  The cause of the spiking behavior is unknown.  It could stem 
from an unidentified point source or from preferential groundwater flows with elevated 
nitrated concentrations.  However, the consistent decrease in the gradient suggests the 
presence of a relatively low nitrate input downstream of the elevated nitrate input.  
Further field investigations would be required to identify the true source. 

 
Figure 4.6.  Plot showing RMSE between the modeled and observed nitrate concentrations 

per sampling event at given daily upstream river flows reported at CRS (downloaded from 
California Data Exchange Center [50]). 

Interestingly, downstream LMR nitrate concentration behavior (river km < 20) 
exhibits a range of different responses, decreasing, increasing, and relatively stable, 
which do not show clear seasonal or flow-related patterns.  When SC data are available 
(Figure 3.6), the concavity of the nitrate curves also generally mimics SC behavior with 
the exception of the 2012/3/23 run where SC concentrations increase but NO3 levels 
decrease.  The decreases in downstream concentrations occur during the time period 
following the last noticeable upstream pulse (around early September of 2011 and seen in 
Figure 3.4), indicating potential residual bank storage of low nitrate concentration from 
upstream releases from the previous months and year, and eventual reconnection with the 
SW.  It is worth noting, however, that some runs after this pulse did show stable or slight 
increases in NO3 concentration (2011/11/22, 2011/9/20, and 2011/10/4). 

The plots in Figure 4.7 describe the distributed NO3 GW loading to the SW (grey 
bars) and associated fraction loss (blue dashes).  These parameters are evaluated at a 1-
km resolution, where the mass loading term is expressed as the last term on the right in 
Equation (4.3), and the fraction loss is expressed in Equation (4.4).  The view of 
distributed NO3 loading generally tracks well with the distributed GW-SW discharge (Qg) 
in Figure 2.7 or 3.8.  Exaggerated loading spikes upstream (river km > 33-36) correspond 
with lesser spikes of GW-SW discharge coupled with elevated GW nitrate concentrations 
(Figure 4.3).  Higher nitrate loading from ~river kms 20-30 support elevated GW-SW 
discharge findings discussed in previous chapters and studies [36].  Over the same region 
(river km 20-30), the fractional loss tends to be smaller for other longitudinal locations 
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within the respective survey events, showing the effects of the higher groundwater 
discharge on the exponential term expressed in Equation (4.4).  Conversely, low GW-SW 
discharge (and low loading on the river segment), but non-zero, greatly decreases the 
exponential term in Equation (4.4) causing high fractional loss.  Areas of no GW-SW 
discharge, we set to zero fractional loss. 

 
Figure 4.7. View of distributed NO3 loading per km (grey bars) and fraction loss of NO3 

estimated from the first order decay term (blue dashes and from Equation (4.4)) for best fit 

model results shown with green line in Figure 4.5.  Loading above the axis limit (10 g s
-1

) has 

the loading rate labeled next to the bar.  Red squares indicate parts of the reach without 

any available data (filtered or boundaries of analysis).  Areas of no GW-SW discharge, we 

set the fraction loss to zero. 

4.4.1. Additional Considerations 

The results presented here have several limitations.  First, our analysis aimed at 
estimating nitrate removal rates assumes that all denitrification occurs along the 
groundwater pathway.  Our in situ nitrate sensing approach aggregates all types of nitrate 
removal dynamics from the groundwater well to the river, including the water column 
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nitrogen processes between measurement points.  We decided that aquifer denitrification 
near the river-aquifer interface was the likely cause of nitrate mass-balance deficits based 
on results from previous studies.  These studies have shown that, within the regional 
groundwater, the anaerobic conditions (favorable for denitrification) were found to be 
more prevalent closer to the river corridors [15].  Previous local denitrification modeling 
studies along a GW flowpath to the LMR further support this assumption [11].  
Regarding potential nitrate removal within the river water column itself, biological 
processes (i.e., assimilation, nitrification, and denitrification) within the SW column 
downstream within the San Joaquin River exhibited low to negligible effects on diurnal 
nitrate concentration variability [23]. 

Another limitation specific to our model calibration of nitrate removal rates is the 
characterization of local travel times within the unitless denitrification term in Equation 
(4.2).  In this study, complexities governing travel time within the subsurface (i.e., 
sediment heterogeneity, spatially varying GW surface elevations) and within the 
interstitial exchange at the GW-SW interface (i.e., channel morphology) are either 
aggregated within our method’s discharge estimates (Qgn) uniform hydrogeologic 
characterization (porous media porosity), or adjusted for in our calibration term lumping 
denitrification rate with drainage volume, kV.  Previous studies have characterized travel 
time distributions at the local hyporheic exchange scale using injected tracers [17], using 
groundwater transport model parameter sensitivity analysis (e.g., hydraulic 
conductivities, dispersion coefficients) at the groundwater flowpath scale [9,11], and for 
in-stream (SW) flows in relation to stream nutrient spiraling [8,40].  Estimates of regional 
of nitrogen removal [40] scaled to LMR travel time and the local denitrification along 
GW flowpath [11] had higher estimates for the unitless denitrification term that our 
studies across different flow regimes (see kt values in Figure 4.5). 

The final (and major) limitation is associated with the sparsity of groundwater 
wells in relation to the discretized 1-km longitudinal model.  Due to regional nitrate 
concentration trends and depth differentiation [45], we chose recent sampled well nitrate 
(1980 to present) and shallow well screens (less than 85 m).  The resulting sparse well 
distribution (see Figure 4.1) led to differences in well assignment performance for GW-
SW discharge using specific conductance as a conservative tracer (see Table 4.1).  Figure 
4.3 shows longitudinal segments of constant nitrate concentrations indicating the 
application of common wells for multiple consecutive discretization boundary conditions 
(Cgn0 assignments).  The potential to use subsurface geochemical relationships between 
nitrate concentrations and specific conductance was explored but did not show a 
sufficiently strong correlation, as seen in Figure 4.8b. 

The results presented for denitrification were reasonable based on prior findings 
in the region.  This finding suggests that the novel synoptic sensing approach proposed in 
this work has the potential to change the way rivers and land use changes are monitored 
and interpreted.  However, the multiple limitations discussed in this section point to the 
need for more work on the method and supporting data sets.  For instance, the results 
could be greatly improved with additional groundwater data along the river reach but 
outside the hyporheic zone.  Such data collection would more likely be performed by the 
relevant county and state water agencies.  Improvements in the understanding of the 
mechanisms and rates of nitrate removal could also greatly improve the outcomes of this 
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work and the potential of the synoptic sampling approach.  Such improvements would 
require intensive tracer studies and isotopic investigations more likely to be performed by 
researchers and/or USGS personnel. 

 
Figure 4.8. Scatter of observed and available NO3 to SC concentrations for both synoptic 

SW (a) and GW wells (b) respectively.  A stronger correlation is visible in the synoptic SW 

data.  The synoptic asynchronous data were paired by closest points with max distance 

difference of 15 m.  The well data were paired by same well name, well county, and sample 

date. 

4.4.2. Summary and Conclusions 

In this work, a multi-parameter SW data collection system and analytic 
framework linking GW-SW discharge with denitrification in a spatially explicit manner 
have been demonstrated.  The distributed mass balance model describing GW-SW 
interactions, using ambient tracers as boundary conditions, extends from previous 
methods using injected chemical and/or isotopic tracers.  Our prior estimates of GW-SW 
discharge (Chapter 3) were used as boundary conditions for our river mixing model.  
However, in this chapter, a reaction term was introduced to account for potential 
denitrification.  Optimizing the model for these denitrification rates, we obtained rate 
values consistent with those from more localized investigations on the same river, 
validating our approach.  As with the salinity issues (Chapter 3), sparsity of GW nitrate 
data was also the main factor limiting our interpretation of the results for nitrate.  
Nonetheless, the nitrate mapping from this work points to clear connections between 
land-use and SW quality on a realistic scale that has not been studied to date. 
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5. Conclusions 

5.1. Main Outcomes 

This dissertation focuses on advancing our understanding of groundwater (GW)-
surface water (SW) discharges and nonpoint source pollution in lowland, agriculturally 
dominated rivers.  It presents a novel high resolution SW data collection and analysis 
approach with multiple ambient tracers using distributed GW-SW mixing models.  The 
approach is demonstrated on the Lower Merced River (LMR) in Central California, and 
carried out over a wide range of flow and stage conditions.  The main outcomes and 
findings stemming from this work are as follows: 

i) Development of a high resolution synoptic sampling method for assessing 
nonpoint source pollution discharges for salinity, nitrate and, by extension, other 
constituents measurable by continuous sensing 

ii) Creation and validation of an analytical tool for translating nonpoint source 
discharges into GW discharges using regional GW quality data 

iii) Extension of these analytical tools to reactive pollutants like nitrate in form of a 
novel technique for assessing distributed denitrification patterns at the watershed 
scale 

iv) Elucidation of the GW-SW interactions along the Lower Merced River in terms of 
connections between land management activities and underlying hydrogeology 
(e.g., Corcoran Clay unit) 

We exploited in situ sensing technology to create high resolution longitudinal 
description of SW tracers and applied a simple mixing model to describe GW-SW 
discharge, given available GW tracer data for the conservative tracer SC.  A major 
challenge to apply the mixing model was to resolve spatial and temporal resolution 
differences between the dense synoptic SW data and sparser GW well data (Chapter 2).  
We presented methods to account for both SW and GW systems, examining different 
piecewise linear regressions to upscale SW data and simple spatial downscaling methods 
involving single or multiple nearby wells.  We also considered the appropriate source of 
GW that would reach the SW (i.e., shallow GW above the confining layer and age).  In 
our study, applying the more realistic source effectively excluded well data inhibiting 
downscaling substantially and improved the model outcomes.  While previous studies 
have largely examined spatial differences alone and GW interpolations independently, 
there appears to be no comparable work rescaling regional GW data to a higher 
resolution, distributed GW-SW mixing model. 

We further validated our results, assuming only nonpoint source pollution 
(distributed small sources), through favorable comparisons with nearby gauging station 
data and previous modeling studies for a sub-reach located within our larger study reach 
(Chapter 3).  This enabled us to discuss effects of environmental conditions (such as 
upstream flow and bank storage of recession events) on distributed (1-km) GW-SW 
discharge estimates.  While the SW experienced the anticipated dilution with increased 
upstream flow, GW-SW discharge was varied inconsistently with flow, both over the 
whole reach and locally.  This would suggest that sediment heterogeneity, varying GW 
hydraulic gradients, and unaccounted for GW pumping near the LMR may be additional 
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drivers for GW-SW discharge.  Higher temporal resolution GW surface elevation data 
would be required to explore these possibilities. 

The validation of synoptic sampling for describing GW-SW discharge and 
potential localization of higher zones of GW-SW discharge should be of interest to 
aquatic ecologists where GW-SW exchange is of particular interest in affecting 
temperature and oxygen conditions and for transport of other constituents that are of 
interest downstream to regulators. 

Finally, we applied the results from the distributed GW-SW flow model to a non-
conservative, NPSP loading model for NO3, commonly a byproduct of agricultural 
practices, using a similar mixing model.  We added a first order decay term to describe 
potential nitrate losses in the GW, hyporheic zone (HZ), and in-stream processes 
(Chapter 4).  We incorporated the distributed discharge in estimating the unitless decay 
term, and calibrated our model by varying a coupled variable defining the unmeasured 
decay rate and the volume the GW flows through.  The major physical consideration was 
treatment of low concentration well (below the highest detection limit), indicative of a 
potential hotspot for denitrification, and we decided to exclude low concentrations from 
our analyses.  Building from this consideration, we estimated local NO3 reduction effects, 
scaled by the distributed discharge term.  The reach nitrate reduction, expressed by the 
unitless decay term, underestimated previous studies, with the caveat that our estimation 
was at different scales than those studies, but saw similar unitless decay term behavior 
across different flow regimes with a previous regional study.  The model allows for local 
variable estimates for the nitrate reduction term due to its dependence on the distributed 
GW-SW discharge, and would require further field evaluations to verify potential nitrate 
processes and their relationship to GW-SW discharge. 

5.2. Practical Implications 

This work provides estimates of distributed GW-SW discharge, constituent 
loading, and potential capacity of the GW-SW system to affect reactive species (nitrate) 
at multiple scales.  For water quality purposes, the methods presented can estimate reach 
loads for conservative and reactive constituents that are of concern to environmental 
policy-makers and regulated by maximum loads for watershed basins.  As analytical and 
in situ sensor technology improves, the same methodology can be used to analyze 
multiple constituents of interest.  For assessing sustainability of aquatic ecosystems, 
characterizing GW-SW connection is important across scales, particularly in human-
impacted watersheds.  Human impact on GW supplies and associated transport varies 
across scale from large-scale activities, like groundwater extraction, irrigation, and land 
use change, to similar activities occurring at smaller scales.  These activities can also vary 
by season and SW availability, often determined by dam storage capacity and preceding 
precipitation conditions.  Hence, a relatively efficient approach for linking human 
behavior (land use activity) to nonpoint source pollution would be valuable to regulatory 
agencies and environmental policy-makers as they strive to create more sustainable 
practices. 

5.3. Future Recommendations 

In order to enhance and extend the impact of this work, field campaigns aimed at 
verification of local GW discharges and chemical fluxes should be undertaken.  With 
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riparian corridor access and installation of multiple monitoring piezometers, the collected 
GW and SW tracer data (e.g., chemical constituent, temperature, or isotope) and water 
surface elevations would enable the better estimation of local GW velocities (and related 
discharges), residence times, and chemical kinetics.  The methods and analysis we 
presented would also be enhanced with the additional in-field GW data collection.  For 
instance, spatial and temporal interpolation of GW characteristics could be better verified 
with higher resolution data.  Additionally questions focused on residual bank storage 
from SW flow pulses could also be better addressed with higher temporal resolution GW 
surface elevation data (hours-days). 

The simulation model parameterization could be improved with field tests (e.g., 
pumping tests in available wells) to help characterize nearby aquifer characteristics (e.g., 
hydraulic conductivities) and better defining potential areas of preferential flows.  
Additional bathymetric mapping at appropriate river stage conditions would also map bed 
topography affecting HZ mixing, residence times, and associated chemical kinetics.  The 
resulting physical models with better locally characterized shallow aquifer characteristics 
and HZ processes would also be able to estimate and potentially verify the distributed 
GW-SW discharges and chemical fluxes we present in this work. 

 




