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One of the most conspicuous biodiversity patterns 

is the geographical variation in species richness. 

Its proper description and assessment form the 

basis of informed conservation actions (Willig et 

al. 2003, Knight et al. 2006). However, explaining 

the causes of geographical species richness pat-

terns remains elusive (Mittelbach et al. 2007). 

These patterns result from the differential coexis-

tence of species in different regions of the globe, 

in turn determined by the properties of species’ 

geographical ranges such as size, shape, location 

and overlap (Gotelli et al. 2009). Traditionally, cor-

relative approaches have identified climate vari-

ables describing geographical variation in species 

richness, assuming that climatic gradients underlie 

biodiversity gradients (Field et al. 2009). More 

recently, alternative approaches favour the inclu-

sion of processes determining species’ geographi-

cal ranges within a mechanistic modelling frame-

work to assess the potential causes of mac-

roecological patterns. Following this approach, 

biodiversity gradients can be studied by simulating 

the dynamics of ranges under different combina-

tions of underlying variables (Colwell et al. 2009).  

 In most of these approaches, species rich-

ness has been the sole response variable, with the 

predictive power of different models being as-

sessed using various goodness-of-fit statistics 

comparing observed versus expected richness val-

ues (Gotelli et al. 2009). However, evaluating sin-

gle predictions (i.e. one response variable) based 

on correlates of empirical patterns represents 

only weak testing of mechanisms (McGill 2003). 

Alternatively, comparing different patterns be-

tween observed and modelled data, such as range

-size frequency distributions (Rangel et al. 2007), 

mean range size of species assemblages (Hawkins 

and Diniz-Filho 2006), nestedness (Ulrich et al. 

2009) or the variation in beta diversity (Tuomisto 

2010) can be used to compare results among dif-

ferent models, providing more comprehensive 

tests of potential underlying mechanisms (Stevens 

et al. 2013). 

 Response variables from any biological sur-
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vey can be summarized in species x sites matrices, 

with entries representing attributes of species 

over sites (Bell 2003). For instance, such a matrix 

can record the occurrence of a given species in a 

given site, either as binary (occurrence) or quanti-

tative (abundance) data. At broad spatial scales, 

abundance data are seldom available; thus mac-

roecological studies typically rely solely on species 

occurrences at a collection of sites or grid cells, 

obtaining presence–absence matrices (PAMs). The 

two most basic variables for macroecology and 

conservation biogeography, species richness of 

sites and range sizes of species, can be easily cal-

culated from such a PAM. However, even when 

both variables come from the same basic informa-

tion (presence–absence data), they are usually 

treated separately and a satisfactory link between 

species richness and range size has not yet been 

reached (Borregaard and Rahbek 2010). Arita et 

al. (2008) developed a framework to forge this link 

by defining composite variables simultaneously 

considering species richness and range size. They 

also introduced Range–Diversity (RD) plots to de-

pict and evaluate the inherent relationship be-

tween these variables, enabling researchers to 

link patterns of diversity and distribution when 

testing biogeographical hypotheses and conduct-

ing conservation assessments (Borregaard and 

Rahbek 2010, Arita et al. 2012). 

 In my PhD dissertation I applied and ex-

tended this recently developed theoretical frame-

work to analyze geographical patterns of biodiver-

sity, simultaneously linking diversity (species rich-

ness) and distribution (geographical range). More 

specifically, I applied it to explore geographical 

associations among species (co-distribution) and 

similarity among sites (co-diversity) to infer their 

potential causes, and extended it to inform con-

servation assessments based on species richness 

and range size. The thesis was divided into three 

main chapters with the following objectives: 1) 

describe the species-richness frequency distribu-

tion (SRFD) and internal structure of species’ 

ranges, using the New World leaf-nosed bats 

(Phyllostomidae) as a case study (Villalobos and 

Arita 2010); 2) evaluate co-distribution and co-

diversity patterns in this bat family under a null 

modelling approach (Villalobos et al. 2014); and 3) 

apply the conceptual and analytical tools devel-

oped during my PhD for conducting conservation 

assessments, using the diversity–distribution rela-

tionship of the Mexican avifauna as an example 

(Villalobos et al. 2013a). 

 For chapters 1 and 2, I built a database of 

geographical information based on the continen-

tal (non-insular) distribution of phyllostomid bat 

species. Distributional maps (extents of occur-

rence) were built using ArcGIS with data from the 

primary literature up to 2007 and from the Nature 

Serve database (Patterson et al. 2007). I gener-

ated the presence–absence matrix by overlying an 

equal-area grid (0.5° cell resolution) onto the dis-

tributional maps. In chapter 1, I explored each 

species’ ‘diversity field’ (the set of species-

richness values of sites within the range of a given 

species) and applied two null models that stochas-

tically simulated scattered and cohesive ranges, 

respectively. In chapter 2, I investigated both co-

distribution among phyllostomid species and co-

diversity among phyllostomid assemblages (sites). 

For this chapter, I explicitly evaluated the relative 

contributions of climate and niche conservatism in 

shaping co-distribution and co-diversity patterns. I 

did this by generating different scenarios derived 

from stochastic null models simulating contrasting 

forms of range construction, namely range growth 

controlled by climate and the inheritance of geo-

graphical location and climatic preferences (i.e. 

niche conservatism) among closely related spe-

cies. By-species and by-sites RD plots (Arita et al. 

2008) were built to depict co-distribution and co-

distribution patterns, respectively. Variance-ratio 

tests (Schluter 1984, Arita et al. 2012) were used 

as descriptive parameters summarizing such pat-

terns, and for statistical inference based on con-

trasting observed parameters against those gener-

ated by the null models. 

 In chapter 3, I wanted to extend the range–

diversity framework to inform and compare 

among different conservation assessments. There-

fore, I needed more detailed data, not only on 

distribution but also on previously conducted con-

servation assessments on a regional scale. Thus, I 

decided to use the relatively well known Mexican 
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avifauna to apply the novel range–diversity frame-

work. I obtained maps of terrestrial and resident 

bird species from the Mexican Commission for 

Biodiversity (CONABIO) and created the presence–

absence matrix by overlying an equal-area hex-

agonal grid (256 km² per cell) onto these maps. I 

repeated the analyses including only those species 

endemic to Mexico. I then examined spatial con-

gruence between species richness and rarity of 

Mexican birds using a by-sites RD plot, describing 

the assemblages (in terms of per-site range size) 

to determine whether sites harbouring high num-

bers of species were inhabited by restricted-range 

or more widespread species. I used a quantile ap-

proach to define subsets of sites with different 

combinations of richness and range-size values. A 

‘richness–rarity’ quartile represented those sites 

lying above the third quartile of species richness 

(i.e. cells with highest proportional richness) and 

below the first quartile of range size values (i.e. 

cells with lowest mean range size). 

 Chapter 1 (Villalobos and Arita 2010) intro-

duced the concept of ‘diversity field’ to analyze 

the internal structure of species’ geographical 

ranges and represented the first analysis of SRFDs 

and their statistical properties in a major taxon 

(bat family Phyllostomidae) and individual species. 

Phyllostomid bats showed a strong pattern of 

positive geographical association among species 

that differed from null-model expectations. Most 

of these bats coexist with a higher number of 

other phyllostomids than the average richness 

within the continent. A detailed description of co-

distribution and co-diversity patterns for this fam-

ily of bats was done in Chapter 2 (Villalobos et al. 

2014), under a null modelling approach and using 

variance ratios to evaluate the patterns’ statistical 

significances. The effect of range cohesion 

through climatic conditions and niche conserva-

tism among species was identified, as well as the 

influence of other factors such as domain bounda-

ries and continent size and shape in creating ana-

logue statistical signals between observed and 

modelled patterns (richness variation, positive co-

distribution and co-diversity). Significant devia-

tions from expected patterns suggested the influ-

ence of additional historic and adaptive mecha-

nisms (speciation, extinction, dispersal) contribut-

ing to a stronger geographical association among 

species and a resulting similarity among sites oc-

cupied by phyllostomid bats. 

 Range–diversity plots and the ‘diversity 

field’ and ‘dispersion field’ concepts (Borregaard 

and Rahbek 2010) can be readily applied to iden-

tify geographical patterns of biodiversity relevant 

to biological conservation planning (Villalobos et 

al. 2013a). Studying the diversity–distribution rela-

tionship in the Mexican avifauna, under the ‘by-

sites’ approach, I discovered a negative relation-

ship between species richness and mean per-site 

range size. That is, species-rich sites tend to be 

occupied by birds with relatively restricted ranges 

(rare species). A similar pattern was found for en-

demic birds, although I also identified species-

poor sites occupied by geographically restricted 

birds. Also, I identified a set of sites with both at-

tributes (high richness and restricted ranges: rich-

ness and rarity), whose representation within pri-

ority sites turned out to be low. Additionally, I de-

tected a set of restricted species coexisting with 

few other birds. These species, and the aforemen-

tioned sites for endemic birds, could easily be 

omitted from conservation plans formulated only 

from species richness patterns (so-called hot-

spots), highlighting the relevance of considering 

both aspects of biodiversity (richness and rarity) 

when planning for conservation. 

 Biogeography and macroecology aim to de-

scribe and understand spatial patterns of biodiver-

sity and their results can provide primary informa-

tion for conservation assessments and planning 

(Whittaker et al. 2005, Villalobos et al. 2013b). 

However, many biogeographical and mac-

roecological studies still focus on single response 

variables and do not consider the multifaceted 

nature of biodiversity. In my thesis, I showed how 

the use of primary biogeographical information 

(presence–absence) and the simultaneous consid-

eration of species richness and geographical distri-

bution allow more informative description of bio-

diversity patterns, potentially providing stronger 

inference on causal processes. Additionally, such a 

multiple-pattern approach, coupled with stochas-

tic simulation models including specific processes, 
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can help investigate the relative influence of these 

processes. Applying this approach, I found that 

geographical association among species and simi-

larity among sites of the bat family Phyllostomi-

dae are driven by a combination of factors beyond 

simple geometric and geographical constraints 

and not limited to climatic conditions or historical 

contingency. I also showed that integrating differ-

ent biodiversity features better describes complex 

biogeographical patterns and helps conduct in-

formed conservation assessments.  

 Finally, I would like to point out that all pat-

terns and approaches described and developed in 

my thesis can be easily extended to other taxo-

nomic groups and geographical regions, facilitat-

ing the comparison among different data sets. I 

hope these methods will provide a more compre-

hensive understanding of geographical patterns of 

biodiversity and contribute to conservation of that 

biodiversity. 
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