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THE GIFI SYSTEM OF DESCRIPTIVE MULTIVARIATE ANALYSIS

GEORGE MICHAILIDIS AND JAN DE LEEUW

ABSTRACT. The Gifi system of analyzing categorical data through nonlinear varieties of classical
multivariate analysis techniques is reviewed. The system is characterized by the optimal scaling
of categorical variables which is implemented through alternating least squares algorithms. The
main technique of homogeneity analysis is presented, along with its extensions and generalizations
leading to nonmetric principal components analysis and canonical correlation analysis. A brief
account of stability issues and areas of applications of the techniques is also given.

Key words and phrases.Optimal Scaling; Alternating Least Squares; Multivariate Techniques; Loss Functions;
Stability.
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1. A Geometric Introduction to Homogeneity Analysis

Homogeneity analysis, also known as multiple correspondence analysis, can be introduced
in many different ways, which is probably the reason why it was reinvented many times over the
years (for details see Section 2). In this paper we motivate homogeneity analysis in graphical
language, since complicated multivariate data can be made more accessible by displaying their
main regularities in pictures (e.g. scatterplots).

Consider the following, fairly typical, situation that arises in practice in various fields in the
physical, social and life sciences. Data onJ categorical variables have been collected forN ob-
jects or individuals, where variablej 2 J = f1; 2; : : : ; Jg has`j categories (possible values). The
use of categorical variables is not particularly restrictive, since in every data application a contin-
uous numerical variable can be thought of as a categorical variable with a very large number of
categories. Given such a data matrix, one can represent all the available information by a bipartite
graph, where the first set ofN vertices corresponds to the objects and the second set of

P
j2J `j

vertices to the categories of theJ variables. Each object is connected to the categories of the vari-
ables it belongs to; thus, the set ofN

P
j2J `j edges provides information about which categories

an object belongs to, or alternatively which objects belong to a specific category. Thus, theN ver-
tices corresponding to the objects all have degreeJ , while the

P
j2J `j vertices corresponding to

the categories have varying degrees, equal to the number of objects in the categories. We can then
draw this graph and attempt to find interesting and useful patterns in the data. In Figure 1.1 the
bipartite graph of a toy example corresponding to a4�3 contingency table with 7 objects is given.
However, except for very small data sets (both in terms of objects and variables) such a represen-
tation is not very helpful. A better approach would be to try to find a low dimensional space in

Categories of 
first variable

Categories of 
second variable

Objects

FIGURE 1.1. A Toy Example

which objects and categories are positioned in such a way that as much information as possible is
retained from the original data. Hence, the goal becomes to construct a low-dimensional joint map
of objects and categories in Euclidean space (R

p ). The choice of low dimensionality is because
the map can be plotted and the choice of Euclidean space stems from its nice properties (projec-
tions, triangle inequality) and our familiarity with Euclidean geometry. The problem of drawing
graphs in a manner that they are easy to understand and present has attracted a lot of attention in
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the computer science literature [25]. There are different approaches of drawing such maps and dif-
ferent ways of finding them; a particular set of criteria defines the former [23, 24]and the specific
algorithm employed determines the latter.

LetX be theN�pmatrix containing the coordinates of the object vertices inR
p , andYj; j 2 J

the `j � p matrix containing the coordinates of the`j category vertices of variablej. We call
X the object scores matrix andYj ’s the category quantifications matrices. If we assign random
values toX and theYj ’s and plot the vertices and the corresponding edges we will typically get a
picture similar to the one shown in Figure 1.2 for the mammals dentition data set that is analyzed
later on in subsection 1.1. It can be seen that very little has been gained by this 2-dimensional
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FIGURE 1.2. An arbitrary two dimensional graph plot of the mammals data set
(x=objects, *=categories)

representation. The picture has too much ’ink’ and no interesting patterns have emerged. A more
informative picture would emerge if the edges are short, or in other words if objects are close to the
categories they fall in, and categories are close to the objects belonging in them [24]. Hence, our
goal becomes of making agraph plotthat minimizes the totalsquaredlength of the edges. This
criterion is chosen because it leads to an eigenvalue problem, and thus is nicely rlated to many
classical multivariate analytic techniques.

The data are coded by usingindicatormatricesGj, with entriesGj(i; t) = 1; i = 1; : : : ; N; t =
1; : : : ; `j

1 if object i belongs to categoryt, andGj(i; t) = 0 if it belongs to some other category.

1In the paper we employ the following notational conventions. Upper case letters are used for matrices (e.g.A),
and lower case letters for vectors (e.g.a). The(s; t)th element of a matrix is denoted byA(s; t), thesth row byA(s; :)
and thetth column byA(:; t). Analogously, thesth element of a vector is denoted bya(s). Finally,u denotes a vector
comprised of only ones, andIp the identity matrix of orderp.
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The matrixG = (G1; : : : ; GJ) is simply theadjacencymatrix of the bipartite graph. The average
squared edge length (over all variables) is then given by

�(X;Y1; : : : ; YJ) = J�1
JX

j=1

SSQ
�
X �GjYj

�
= J�1tr

�
X �GjYj

�
0
�
X �GjYj

�
;(1.1)

where SSQ(H) denotes the sum of squares of the elements of the matrixH. We want to minimize
(1.1) simultaneously overX and theYj ’s. The loss function (1.1) is at the heart of the Gifi system
[32], and the entire system is mainly about different versions of the above minimization problem.
By imposing variousrestrictionson the category quantificationsYj and in some cases on the coding
of the data, different types of analysis can be derived.

In order to avoid the trivial solution corresponding toX = 0, andYj = 0 for everyj 2 J, we
require in addition

X 0X = NIp;(1.2)

u0X = 0:(1.3)

The second normalization restriction basically requires the graph plot to be centered around the
origin. The first restriction standardizes the squared length of the object scores (to be equal to
N ), and in two or higher dimensions also requires the columns ofX to be in addition orthogonal.
Although this is computationally convenient, in many respects is not completely satisfactory, a fact
already noted by Guttman [49].

Let us examine the solution to our minimization problem (1.1) subject to the normalization
constraints (1.2) and (1.3). AnAlternating Least Squares(ALS) algorithm is employed. In the first
step, (1.1) is minimized with respect toYj for fixedX. The set of normal equations is given by

DjYj = G0

jX; j 2 J;(1.4)

whereDj = G0

jGj is the`j � `j diagonal matrix containing the univariate marginals of variablej.
Hence, we get that

Ŷj = D�1
j G0

jX; j 2 J:(1.5)

In the second step of the algorithm, (1.1) is minimized with respect toX for fixedYj ’s. The normal
equation is given by

JX =
JX

j=1

GjYj;(1.6)

so that

X̂ = J�1
JX

j=1

GjYj:(1.7)

In the third step of the algorithm the object scoresX are column centered by settingW =
X̂ � u(u0X̂=N), and then orthonormalized by the modified Gram-Schmidt procedure [38]X =
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p
NGRAM (W ), so that both normalization constraints (1.2) and (1.3) are satisfied. The ALS

algorithm cycles through these three steps until it converges (for more details see Section 2.2).

Equation (1.5) expresses the so-called first centroid principle [3] (a category quantification is
in the centroid of the object scores they belong to it), while equation (1.7) shows that an object
score is the average of the quantifications of the categories it belongs to. Hence, this solution
accomplishes the goal of producing a graph plot with objects close to the categories they fall in and
categories close to the objects belonging in them. It should also be noted that the use of indicator
matrices makes the above ALS procedure equivalent to the method of reciprocal averaging (which
can already be found in the works of Fisher [30] and Guttman [49]). This solution is known in the
literature ([32, 19, 17]) as the Homals solution (homogeneity analysis by means of alternating least
squares). and has been implemented in computer software in various platforms (program Homals
in SPSS [88], Bond and Michailidis in Lisp-Stat [7]).

Once the ALS algorithm has converged, by using the fact thatŶ 0

jDjŶj = Ŷ 0

jDj(D
�1
j G0

jX̂) =

Ŷ 0

jG
0

jX̂, we can write the loss function as

(1.8) J�1
JX

j=1

tr
�
X̂ �GjŶj

�
0
�
X̂ �GjŶj

�
= J�1

JX

j=1

tr
�
X̂ 0X̂ + Ŷ 0

jG
0

jGjŶj � 2Ŷ 0

jG
0

jX̂
�
=

J�1
JX

j=1

tr
�
X̂ 0X̂ � Ŷ 0

jDjŶj
�
= J�1

JX

j=1

tr
�
NIp � Ŷ 0

jDjŶj
�
= Np� J�1

JX

j=1

tr
�
Ŷ 0

jDjŶj
�
:

The sum of the diagonal elements of the matricesŶ 0

jDjŶj is called thefit of the solution. Further-
more, thediscrimination measuresof variablej in dimensions are given by

�2js � Ŷ 0

j (:; s)DjŶj(:; s)=N; j 2 J; s = 1; : : : ; p:(1.9)

Geometrically, the discrimination measures give the average squared distance (weighted by the
marginal frequencies) of the category quantifications to the origin of thep-dimensional space. It
can be shown that (assuming there are no missing data) the discrimination measures are equal to
the squared correlation between an optimally quantified variableGjŶj(:; s) in dimensions, and the
corresponding column of object scoresX̂(:; s) (see chapter 3 in [32]). Hence, the loss function can
also be expressed as

N
�
p� 1

J

JX

j=1

pX

s=1

�2js
�
= N

�
p�

pX

s=1

s
�
;(1.10)

where the quantitiess = J�1
PJ

j=1 �
2
js; s = 1; : : : ; p called theeigenvalues, correspond to the

average of the discrimination measures, and give a measure of the fit of the Homals solution in the
sth dimension.

We summarize next some basic properties of the Homals solution.
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� Category quantifications and object scores are represented in a joint space (see Figure 1.4 for
the mammals dentition data set).

� A category point is the centroid of objects belonging to that category, a direct consequence
of (1.5) (see Figure 1.3 for two variables from the mammals dentition data set).

� Objects with the same response pattern (identical profiles) receive identical object scores
(follows from (1.7)) (see Figure 1.7). In general, the distance between two object points is
related to the ’similarity’ between their profiles.

� A variable discriminates better to the extent that its category points are further apart (follows
from (1.9)).

� If a category applies uniquely to only a single object, then the object point and that category
point will coincide.

� Category points with low marginal frequencies will be located further away from the origin
of the joint space, whereas categories with high marginal frequencies will be located closer
to the origin (follows from (1.5)).

� Objects with a ’unique’ profile will be located further away from the origin of the joint space,
whereas objects with a profile similar to the ’average’ one will be located closer to the origin
(direct consequence of the previous property).

� The category quantifications of each variablej 2 J have a weighted sum over categories
equal to zero. This follows from the employed normalization of the object scores, since
u0DjŶj = u0DjD

�1
j G0

jX̂ = u0G0

jX̂ = u0X̂ = 0.
� The Homals solutions arenested. This means that if one requires ap1-dimensional Homals

solution and then a secondp2 > p1 dimensional solution, then the firstp1 dimensions of the
latter solution are identical to thep1-dimensional solution.

� The solutions for subsequent dimensions areordered. This means that the first dimension
has the absolute maximum eigenvalue. The second dimension has the also the maximum
eigenvalue subject to the constraint thatX(:; 2) is uncorrelated toX(:; 1), and so forth.

� The solutions for the object scores are uncorrelated (follows from (1.3)). However, the so-
lutions for the quantifications need not necessarily be uncorrelated; in fact, their correlation
patterns might be rather unpredictable.

� The solution isinvariant underrotationsof the object scores and of the category quantifi-
cations. To see this, suppose we select a different basis for the column space of the object
scoresX; that is, letX] = X �R, whereR is a rotation matrix satisfyingR0R = RR0 = Ip.
We then get from (1.5) thatY ]

j = D�1
j G0

jX
] = ŶjR. Thus, the axes of the joint space can not

be uniquely identified.

1.1. An Illustration: Mammals Dentition Example. In this section we discuss the results we
obtained by applying the Homals algorithm to the mammals dentition data set. The complete data
together with the coding of the variables are given in Appendix A. The main question is whether
the technique managed to produce a fairly clean picture and uncover some interesting features of
this data set.
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FIGURE 1.3. Star plots of variables bottom incisors (BI) and bottom molars (BM)
from the mammals dentition example

A two dimensional analysis gives an adequate fit, with eigenvalues .73 and .38 for the two
dimensions respectively. The graph plot of this solution is given in Figure 1.4. We immediately
notice that the objects and the categories have been arranged in such a way so that the amount
of ink on the graph is minimized. Moreover, several patterns have emerged. In order to study
those patterns more closely we turn our attention to the arrangement of only the category vertices
on the map (see Figure 1.5). It can be seen that they form 4 groups. In the upper right corner
we can find the categories BM1, TM1, TC2, BC2, TI4, BI3, BI4, TP5 and BP5. Thus, objects
located in this area of the map are associated with these categories. In the upper left corner we find
the categories BP1, BP2, TP1, TP2, TP3, BI2, and TI2, while in the center the categories TC1,
BC1, TM2, BM2, BI1, TI3, BP3, BP4 and TP4. However, the latter group can be split further
into subgroups. For example, we see that the categories TP4 and BP4 are close together, thus
suggesting that objects with 3 top premolars, usually have 3 bottom premolars as well; similarly,
for the subgroup TC1, BC1, TM1 and BM1, we have that animals with 0 top and bottom canines
have more than 3 top and bottom molars. Finally, in the lower and slightly to the left area of the
map we find a group of objects mainly characterized by the categories TI1 and BI5. At this point,
it would be interesting to include in the picture the objects themselves (see Figure 1.6) along with
their respective frequencies (see Figure 1.7). We see that the objects are located in the periphery
of the map, which is a consequence of the first centroid principle. Moreover, the majority of the
objects form three separate clusters located in the upper right, upper left and lower left areas of
the picture. For example in the lower left area we find the following animals: elk, deer, moose,
reindeer, antelope, bison, mountain goat, muskox, and mountain sheep. Similarly, in the upper
right area we find among others various types of squirrels (ground, gray, fox), and rats (kangaroo,
pack, field mouse, black, etc), and in the upper right animals such as jaguar, cougar, lynx, but
also various types of seals (fur, sea lion, grey, elephant, etc). Finally, in the middle upper part of
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the picture we find a group of various types of bytes. Hartigan [51] using a tree type clustering
algorithm found many similar groupings (e.g. beaver and squirrels, weasel and otters, deer and elk,
various types of bats). However, it is worth noting that the clustering algorithm classified the hairy
tail mole together with the opposum, instead of the bats, and the pack rat with the armadillo instead
of the squirrels. This is due to the nature of the particular algorithm, which is quite sensitive to the
order of the presentation of the objects and to the selected variables used at different levels of the
tree. On the other hand, the Homals algorithm positions the objects by taking into consideration
the similarity of the entire tooth profile.
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FIGURE 1.4. A two dimensional graph plot of the mammals data set produced by
Homals (x=objects, *=categories)

As mentioned above, a variablediscriminatesbetter to the extent that its category points are
further apart in the derived map. The discrimination measures, shown in Figure 1.8, indicate that
the variables TC, BC, TM and BM discriminate exclusively along the first dimension, while the
remaining variables discriminate equally well on both dimensions. Reexamining Figure 1.5, we see
that categories TC1, BC1, TM2 and BM2 are to the left of the origin, while categories TC2, BC2,
TM1 and BM1 are to the right of the origin. This implies that this set of variables does a primary
splitting of the objects into two groups, while the other set of variables does further splittings
especially along the second dimension. It is also interesting to examine the plots of the original
versus the transformed scales given in Figure 1.9. Obviously, such plots are totally uninteresting
for binary variables, and therefore are ommitted. However, for the remaining variables they reveal
nonlinear patterns in both dimensions. In some cases, the patterns are monotone (e.g. variables TI
in both dimensions, and BP in the first dimension) suggesting an implicit ordering in the original
scale, while in others the pattern is not very clear.
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FIGURE 1.5. Category Quantifications

2. Other Aspects of Homogeneity Analysis

In this section we study various aspects of homogeneity analysis. More specifically, we pro-
vide some alternative ways of introducing the technique and study its connection to an eigenvalue
problem. We briefly review how to handle missing data in this framework and more elaborate
coding schemes of the data. Finally, we discuss how homogeneity analysis is related to other
techniques proposed in the literature that deal with categorical variables.

2.1. Some Alternative Introductions of Homogeneity Analysis.Homogeneity analysis has been
motivated and introduced in the previous section in pure graphical language. The basic premise
was that complicated multivariate data can be made more accessible by displaying their main reg-
ularities and patterns in plots. What the technique accomplished was to scale theN objects (map
them into a low dimensional Euclidean space) in such a way that objects with similar profiles were
close together, while objects with different profiles were relatively apart. However, the technique
can be introduced from a different starting point.

Another possibility to introduce homogeneity analysis is through linearization of the regres-
sions. Consider a column of the object scoresX(:; s) asN data values on thex-axis. Let the
category quantifications in the samesth dimension of theseN data points correspond to they-axis
values. The regression line ofx ony has slope equal to 1. The reason is that the category quantifi-
cationsy are averages ofx-values within that category (follows from (1.5)). Remarkably enough,
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FIGURE 1.6. Category Quantifications and Object Scores (ommitting mammals
which have identical dentition to the one shown on the graph)

the regression ofy on x is also perfectly linear with slope given by the eigenvalues. This is be-
cause the object scoresx are proportional to the averages of the category quantifications applying
to an object (follows from (1.7)). Therefore, the Homals solution could be defined on the basis of
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FIGURE 1.8. Discrimination Measures

this property; it is the solution where object scores are proportional to category means, and where
category quantifications are proportional to object means.
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FIGURE 1.9. Optimal Transformations of some of the variables (Left: dimension
1, Right: dimension 2)

A third possible interpretation of the Homals solution is in terms of a principal components
analysis of the quantified data matrix. It can be shown [17] that the sum of squared correlations
between the optimal quantified variablesGjY (:; s) and the vectorX(:; s) is maximized.

2.2. Homogeneity Analysis as an Eigenvalue and a Singular Value Decomposition Problem.
One of the reasons why squared edge length is appealing is that it makes the minimization problem
an eigenvalue problem. To see this substitute the optimalŶj = D�1

j G0

jX for givenX in the loss
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function (1.1), to get

�
�
X; ?
�
= J�1

JX

j=1

tr
�
X �GjD

�1
j G0

jX
�
0
�
X �GjD

�1
j G0

jX
�

(2.1)

= J�1
JX

j=1

tr
�
X 0X �X 0GjD

�1
j G0

jX
�
;

where the asterisk has replaced the argument over which the loss function is minimized. Let
Pj = GjD

�1
j G0

j denote the orthogonal projector on the subspace spanned by the columns of the

indicator matrixGj. LetP? = J�1
PJ

j=1 Pj be the average of theJ projectors. Equation (2.1) can
be rewritten as

�
�
X; ?
�
= J�1

JX

j=1

tr
�
X � PjX

�
0
�
X � PjX

�
= J�1

JX

j=1

tr
�
X 0X �X 0PjX

�
:(2.2)

This together with the normalization constraints (1.2) and (1.3) gives that maximizing (2.2) comes
to maximizing tr(X 0LP?LX), whereL = I � uu0=u0u is a centering operator that leavesLX in
deviations from its column means. The optimalX corresponds to the firstp eigenvectors of the
matrixLP?L. We can then write the minimum loss as follows:

�
�
?; ?
�
= N

�
p�

pX

s=1

�s
�
;(2.3)

where�s; s = 1; : : : ; p are the firstp eigenvalues ofP?. Therefore, the minimum loss of ho-
mogeneity analysis is a function of thep largest eigenvalues of the average projectorP?. An-
other derivation starts by combining theJ indicator matricesGj into a superindicator matrix
G = [G1j : : : jGJ ] and the marginal frequencies intoD =

LJ
j=1Dj. The solution for the opti-

malX can then be obtained (see [32]) by the singular value decomposition of

J�1=2LGD�1=2 = U�V;(2.4)

where the left-hand side is the superindicator matrix in deviations from column means and cor-
rected for marginal frequencies. The optimalX corresponds to the firstp columns of the matrixU
(the firstp left-singular vectors). Notice that the complete eigenvalue and singular value solutions
haveq =

PJ
j=1 `j � J dimensions. The advantage of employing the ALS algorithm is that it only

computes the firstp << q dimensions of the solution, thus increasing the computational efficiency
and decreasing the computer memory requirements.

2.3. Missing Data. The present loss function makes the treatment of missing data a fairly easy
exercise. Missing data can occur for a variety of reasons: blank responses, coding errors etc. Let
Mj; j 2 J denote theN � N binary diagonal matrix with entriesMj(ii) = 1 if observationi
is present for variablej and0 otherwise. DefineM� =

PJ
j=1Mj. Notice that sinceGj is an
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incomplete indicator matrix (has rows with just zeros), we have thatMjGj = Gj; j 2 J. The loss
function then becomes

�(X;Y1; : : : ; YJ) = J�1
JX

j=1

tr
�
X �GjYj

�
0

Mj

�
X �GjYj

�
;(2.5)

subject to the normalization restrictionsX 0M�X = JNIp andu0M�X = 0. The Ŷj ’s are given
by (1.5), while the object scores bŷX = M�1

�

PJ
j=1GjYj. In the presence of missing data, it is

no longer the case thatu0DjYj = 0 (the category quantifications are not centered), because in the
weighted summation with respect to the row scores ofX, some of the scores are skipped. This
option is known in the literature [32] asmissing data passiveor missing data deleted, because
it leaves the indicator matrixGj incomplete. There are two other possibilities: (i)missing data
single category, where the indicator matrix is completed with a single additional column for each
variable with missing data, and (ii)missing data multiple categories, where each missing observa-
tion is treated as a new category. The missing data passive option essentially ignores the missing
observations, while the other two options make specific strong assumptions regarding the pattern
of the missing data.

2.4. Alternative Coding Schemes.The coding scheme considered so far is the so calledcrisp
codingof the indicator matrix. The main advantages it presents are: it is simple and computation-
ally efficient (due to the sparseness of the indicator matrix), it allows for nonlinear transformation
of the variables, it is very robust even when coding noisy data, and the number of parameters (cat-
egories) per variable is generally small. Its disadvantages are: in many data analytic situations the
determination of the categories is arbitrary, when coding interval data there is uncertainty about the
allocation of values near the category boundaries, and for some data subsequent intervals are func-
tionally related. Many alternatives have been suggested in the literature (for a thorough account
see [99]), but the most commonly used alternative coding scheme is calledfuzzy coding, a gener-
alization of the strict logical coding of the indicator matrix. Instead of having a single 1 indicating
a specific category, with zeros everywhere else, a whole set of nonnegative values adding up to 1
can be assigned to each object. In some cases these values can even be considered probabilities
that the object lies in the respective categories. The main advantage of this scheme is that when a
value lies near the boundary between categories, it may be allocated to both categories in appro-
priate amounts. The main disadvantage of any more general coding scheme is the computational
burden it introduces to the ALS procedure. Finally, various ways of handling missing data have
been proposed (see [47]).

2.5. Comparison to Other Techniques. In this section we attempt to relate homogeneity analysis
to other widely used multivariate techniques, such as correspondence analysis, multidimensional
scaling etc.
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2.5.1. Relationship with Correspondence Analysis.A special case of homogeneity analysis is
the analysis of a crosstable that represents the association of two categorical variables. In this case
the rows and columns of the table correspond to the categories of the two variables. Fisher’s [30]
eye color and hair color data set represents a prototypical example. Fisher described his objective
as finding systems of row scores and column scores that maximize the correlation coefficient of
the two variables, and also provided other interpretations of these scores in terms of analysis of
variance, discriminant analysis and canonical correlation analysis. However, if one switches from a
one-dimensional solution to a higher dimensional solution, it is then possible to regard the systems
of row and column scores as coordinates in a certain space and an elegant geometric interpretation
can be given. The French approach to correspondence analysis is mainly characterized by the
emphasis on geometry [3, 10, 70, 47]. In the French literature the analysis of a crosstable is
called correspondence analysis (”analyse des correspondences”) and the analysis of a collection of
indicator matrices, which is equivalent to homogeneity analysis, multiple correspondence analysis
(”analyse des correspondences multiple”).

Let F be anI � J contingency table, whose entriesfij give the frequencies with which row
categoryi occurs together with column categoryj. Letr = Fu denote the vector of row marginals,
c = F 0u the vector of column marginals andn = u0c = u0r the total number of observations.
Finally, letDr = diag(r) be the diagonal matrix containing the elements of vectorr andDc =
diag(c) the diagonal matrix containing the elements of vectorc. The�2-distances between rowsi
andi0 of tableF is given by

�2(i; i0) = n
JX

j=1

�
fij=ri � fi0j=ri0

�2

cj
:(2.6)

Formula (2.6) shows that�2(i; i0) is a measure for the difference between the profiles of rows
i and i0. It also shows that since the entries of the table are corrected for the row marginals,
proportional rows obtain zero distances. In addition, remaining squared differences between entries
are weighted heavily if the corresponding column marginals are small, while these differences do
not contribute much to the�2-distances if the column marginals are large. Finally, due to the role of
the column marginals, the distances between the rows change when new observations are added to
the crosstable. In a similar manner,�2-distances can be defined between columns of the crosstable.

The objective of correspondence analysis is to approximate the�2- distances by Euclidean
distances in some low dimensional space. In order to derive the coordinatesX of the row cate-
gories of tableF in the new Euclidean space, we consider the singular value decomposition of the
matrix of the observed frequencies minus the expected frequencies corrected for row and column
marginals

D�1=2
r

�
F � E

�
D�1=2

c = U�V 0;(2.7)

whereE = rc0=n. The optimal scoresX are then given (after normalization) by

X = n1=2D�1=2
r U;(2.8)
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so that,X 0DrX = nI andu0DrX = 0. It is worth noting that this solution places the origin of
the space in the weighted centroid (sinceu0DrX = 0) and represents the coordinates in weighted
principal axes positions (sinceX 0DrX = nI).

Consider now the superindicator matrixG = [G1j : : : jGJ ] of J indicator matricesGj. Define
alsoDr = JI, Dc = D �LJ

j=1Dj andn = NJ . Correspondence analysis of the superindicator
matrixG resorts to the singular value decomposition of the matrix

J�1=2
�
G� J

JN
Guu0

�
D�1=2 = J�1=2LGD�1=2 = U�V;(2.9)

which is identical to (2.4). This result shows that homogeneity analysis could also be viewed
as approximating the�2-distances between the rows of the superindicator matrix. This special
situation is due to the fact that the row marginals of the superindicator matrix are all equal to
J . Subsequently the characteristic row weights in correspondence analysis are eliminated, and
hence we deal with an unweighted origin (u0X = 0) and unweighted principal axes (X 0X =
NIp). Obviously this does not hold in the presence of missing values that are coded as zeros,
thus rendering unequal row marginals. Finally, it is worth noting that the special relationship
between homogeneity and correspondence analysis holds only in case rows are analyzed, despite
the fact that correspondence analysis is a symmetric technique regarding the treatment of rows and
columns. The problem arises, when considering column differences of the superindicator matrix,
from the fact that the unequal column marginals enter into the picture.

2.5.2. Relationship with Multidimensional Scaling. In multidimensional scaling (MDS) the ob-
jective is to approximate given measures of association� = f�ijg, often calleddissimilaritiesor
proximities, between a set of objects by distancesD(X) = f�ij(X)g between a set of points in
some low-dimensional space. In multivariate analysis the object of the analysis is a multivariate
data matrixZ and the distance approach chooses the association between the rows of the data ma-
trix as the prime target of the analysis. This implies that each row ofZ is regarded as aprofileand
the dissimilarities�(Z) are derived among the profiles. It is easy then to see that any multivariate
analytic technique can be regarded as a MDS method by correctly specifying the kind of dissimilar-
ity measure involved in it. In MDS, since the dissimilarities are approximated in a low-dimensional
space, a loss function is used to measure the difference between� and the low-dimensionalD(X).
In practice, squared dissimilarities�2 are used, because of the additivity implied by Pythagoras’
theorem. A typical loss function in MDS is given by

�(X) = trL��2 �D2(X)
�
0L��2 �D2(X)

�L;(2.10)

which shows that squared dissimilarities are approximated by squared distances. A moment of
reflection shows that if we consider as squared dissimilarity measures the�2-distances of the rows
of the superindicator matrixG (see previous subsection), then homogeneity analysis can be re-
garded as a MDS technique. The primary difference between homogeneity analysis and a general
MDS technique is that the homogeneity analysis solution is obtained at the expense of stronger
normalization conditions and a metric interpretation of the data.
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2.5.3. Relationship with Cluster Analysis. As we have seen in the previous subsection homo-
geneity analysis provides with an approximation of the�2-distances of the rows of the superindi-
cator matrixG by low dimensional Euclidean distances. The�2-distances are a measure of the
dissimilarities between objects, based on the classification given in the data. The data indicate
which categories are shared by many objects, and also how many objects belong to each category.
These two pieces of information are contained inG and inD (the matrix of univariate marginals for
all variables). In homogeneity analysis classification follows from interpreting the configuration
of object points in thep-dimensional space. Or to put differently, we are looking to identify clouds
(clusters) of object scores and characterize them. In that sense, homogeneity analysis resembles a
cluster technique.

van Buuren and Heiser [91] have developed a technique called Groupals, that simultaneously
allocates the object points to only one ofK groups and optimally scales the variables. Hence, the
clustering and transformation problems are treated simultaneously. An alternating least squares
algorithm is proposed to solve this problem. Groupals can be regarded as a forced classification
method with optimal scaling features. A problem that often arises in practice is that the algorithm
converges to local minima, a property inherited from the combinatorial nature of the problem.

2.5.4. Relationship with Discriminant Analysis and Analysis of Variance. Homogeneity anal-
ysis can be stated in discriminant analysis and analysis of variance terms. Suppose for the time
being that the matrix of object scoresX is known. Each categorical variablej 2 J defines a par-
titioning of these object scores. This means that we can decompose the total varianceT of X in a
betweenB and a within (group)W component. We now wish to scale the objects (find the optimal
X) in such a way thatW will be as small as possible, while keepingT equal to a constant (the
identity matrix for example).

This leads to a trivial solution: all objects in the first category of the variable get the same
score, all objects in the second category get another score, and so on. The location of the points
X is arbitrary but they satisfyW = 0 andB = T = I. However, in the presence of more than
one variables, a trivial solution for one is not a trivial solution for another variable. Hence, we
have to seek a compromise solution to the problem. For givenX let us defineT�, B� andW�,
which are averages over allJ variables. Clearly for all variables the total variance ofX is the
same. The objective becomes to find a configurationX so thatW� becomes minimum, subject to
the constraintT� = T = I. This is another way of defining homogeneity analysis.

In homogeneity analysis terminology we have the total variance given byT � X 0X = NIp,
the variance between categories ofX given byX 0PjX for variablej (with Pj = GjD

�1
j G0

j), and
the variance within categories ofX given byX 0(IN � Pj)X for variablej. Thus, homogeneity
analysis maximizes the average between categories variance, while keeping the total variance fixed.
Consequently, the main difference between discriminant analysis and homogeneity analysis is that
in the former we have a single categorical variable andX must be of the formUV , with U known
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and weightsV unknown. In homogeneity analysis the number of variablesJ is greater than one
andX is completely unknown (orU = I).

2.6. Other Approaches to Analyzing Categorical Data.As we have seen homogeneity analysis
is primarily a data descriptive technique of (primarily) categorical data and its origins can be traced
back to the work of Hirschfeld [56], Fisher [30] and especially Guttman [49], although some ideas
go further back to Pearson (see the discussion in de Leeuw [18]). The main objective is to scale (as-
sign real values to) the categories so that a particular criterion is optimized (e.g. the edge length loss
function (1.1)). The technique has been rediscovered many times and is also known as (multiple)
correspondence analysis [3], dual scaling [78, 79], quantification theory [54] and also simultaneous
linear regression, centroid scaling, optimal scoring, biplot, each name emphasizing some particular
aspect of the technique. For example the French group around Benz�ecri paid particular attention
to contingency tables and emphasized the geometrical aspects of the technique, while Nishisato’s
derivation stems from analysis of variance considerations (see subsection 2.5.3), and Guttman was
trying to apply principal component analysis to categorical data. However, in spite of the fact that
the various approaches have a common starting point, most of them have passed the stage of basic
formulation and moved towards their own unique advancement. Hence, we have Nishisato’s efforts
to apply dual scaling techniques to a wider variety of data such as multiway data matrices, paired
comparison, rank order, successive categories, and sorting [80]. On the other hand, a lot of work
has been done by the French group on extending and generalizing correspondence analysis beyond
simply examining the interaction of row and column variables, by assuming stronger underlying
mechanisms that generated the data [27, 28, 29, 98]. The Gifi group by considering generaliza-
tions of the loss function (1.1) and by placing restrictions on the category quantifications attempts
to incorporate other popular multivariate techniques in the system, while retaining the focus on the
graphical representations of the data and the exploratory nature of the techniques (for more details
see sections 3-4). Thus, we see the various groups/approaches branching out, diverging from their
starting point and exploring new directions. However, a common point that all of them retain is
that the methods/techniques are usually not introduced by way of an estimation problem based on
a model involving parameters and error terms. Rather, one directly poses an optimization problem
for some type of loss function, while statistical inference takes a back seat [9]. Nevertheless, there
have been many attempts to transform correspondence analysis of contingency tables into a model
based approach appropriate for formal inference. In this line of research we have association mod-
els and correlation models [40, 41, 44, 33, 34, 42, 43, 15] and their extensions to handle ordinal
data [85, 35, 82]. On another line we have the development of latent structure models for analyzing
a single or a set of multidimensional contingency tables [68, 39, 50, 13, 14]. Finally, it is worth
mentioning that the ideas of optimal scaling of the variables can be found in the ACE methodology
[8], in the ALSOS system [103] and in recent developments in discriminant analysis [52, 53].
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3. Nonlinear Principal Component Analysis

In the Gifi system nonlinear PCA is derived as homogeneity analysis with restrictions [17].
The starting point for this derivation is the loss function given in (1.1). However,rank-one restric-
tionsof the form

Yj = qj�
0

j; j 2 J;(3.1)

are imposed on the multiple category quantifications, withqj being a`j-column vector ofsingle
category quantifications for variablej, and�j a p-column vector of weights (component load-
ings). Thus, each quantification matrixYj is restricted to be of rank-one, which implies that the
quantifications inp dimensional space become proportional to each other. The introduction of the
rank-one restrictions allows the existence of multidimensional solutions for object scores with a
single quantification (optimal scaling) for the categories of the variables, and also makes it possible
to incorporate the measurement level of the variables (ordinal, numerical) into the analysis. This is
impossible in the multiple quantification framework (homogeneity analysis) presented in section
1. First, consider a multiple treatment of numerical variables. In this case, the quantification of the
categories must be the same as the standardized a priori quantification. This implies that multiple
numerical quantifications contain incompatible requirements. Second, consider a multiple treat-
ment of ordinal variables. This requirement is not contradictory in itself; however, the different
quantifications must have the same order as the prior quantifications, thus resulting in being highly
intercorrelated. It follows that such an option does not have much to offer.

To minimize (1.1) under the restriction (3.1), we start by computing theŶj ’s as in (1.5). We
then partition the Gifi loss function as follows:

(3.2)
JX

j=1

tr
�
X �Gj[Ŷj + (Yj � Ŷj)]

�
0
�
X �Gj[Ŷj + (Yj � Ŷj)]

�
=

JX

j=1

tr
�
X �GjŶj

�
0
�
X �GjŶj

�
+

JX

j=1

tr
�
Yj � Ŷj

�
0

Dj

�
Yj � Ŷj

�
:

We impose the rank-one restrictions on theYj ’s and it remains to minimize

JX

j=1

tr
�
qj�

0

j � Ŷj
�
0

Dj

�
qj�

0

j � Ŷj
�
;(3.3)

with respect toqj and�j. We do this by going to another ALS loop (alternate overqj and�j),
which gives for fixedqj ’s

�̂j =
�
Ŷ 0

jDjqj
�
=
�
q0jDjqj

�
; j 2 J:(3.4)

and for fixed�j ’s

q̂j = Ŷj�j=
�
� 0j�j

�
; j 2 J:(3.5)
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At this point we need to take into consideration the restrictions imposed by the measurement level
of the variables. This means that we have to project the estimated vectorq̂j on some coneCj. In
case of ordinal data the relevant coneCj is the cone of monotone transformations given byCj =
fqjjqj(1) � qj(2) � : : : qj(lj)g. The projection to this cone is solved by a weightedmonotone
regression in the metricDj (the weights) (see de Leeuw [16] and references therein). In case of
numerical data the corresponding cone is a ray given byCj = fqjjqj = j + �jsjg, wheresj is a
given vector; for example, the original variable quantifications. The projection to this cone amounts
to a linear regression problem. However, it can be seen that there is no freedom for choosingqj
different thansj, and sôqj becomes irrelevant. Finally, in case of nominal data the cone is theR

lj

space and the projection is done by simply settingqj = q̂j. We then set̂Yj = q̂j�̂
0

j and proceed
to compute the object scores. This solution that takes into consideration the measurement level of
the variables is referred in the literature ([32], [17]) as the Princals solution (principal component
analysis by means of alternating least squares). It can be shown that if all variables are treated as
single numerical the Princals solution corresponds to an ordinary principal component analysis on
thesj variables appropriately standardized (e.g.u0Djsj = 0 ands0jDjsj = 1), that is calculate the
eigenvalues and the eigenvectors of the correlation matrix of thesj variables [17] (see also chapter
4 in [32]). Hence, we have a technique that is invariant under all nonlinear transformations of the
variables, and in the special case in which we allow for linear transformations only we get back to
ordinary principal components analysis. The Princals model allows the data analyst to treat each
variable differently; some may be treated as multiple nominal and some others as single nominal,
ordinal or numerical. Moreover, with some additional effort (for details see [75]) one can also
incorporate in the analysis categorical variables of mixed measurement level, that is variables with
some categories measured on an ordinal scale (e.g. Likert scale) and some on a nominal scale (e.g.
categories in survey questionnaires corresponding to the answer ”not applicable/don’t know”). In
that sense, Princals generalizes the Homals model.

Therefore, the complete Princals algorithm is given by the following steps:

Step 0: InitializeX, so thatu0X = 0 andX 0X = NIp.
Step 1: Estimate the multiple category quantifications byŶj = D�1

j G0

jX; j 2 J.

Step 2: Estimate the component loadings by�̂j = (Ŷ 0

jDjqj)=(q
0

jDjq
0

j); j 2 J.

Step 3: Estimate the single category quantifications byq̂j = Ŷj�j=(�
0

j�j); j 2 J.
Step 4: Account for the measurement level of thejth variable by performing a monotone or linear

regression.
Step 5: Update the multiple category quantifications by settingŶj = q̂j�̂

0

j; j 2 J.

Step 6: Estimate the object scores byX̂ = J�1
PJ

j=1GjYj.
Step 7: Column center and orthonormalize the matrix of the object scores.
Step 8: Check the convergence criterion.

In principle, to obtain the minimum over all monotone or linear transformations of theqj ’s, steps
2-5 should be repeated until convergence is reached for the criterion given by (3.3). However, since
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the value of the loss function will be smaller after a single iteration of the inner ALS loop, inner
iteration upon convergence is not necessary in practice. The above algorithm is implemented in
the Fortran program from the University of Leiden called Princals and also in the corresponding
program in SPSS [88].

Remark 3.1. On the single options.The most common options in treating variables in Princals
are single ordinal and single numerical. The single nominal treatment of a variable makes little
sense. A nominal treatment of a variable implies that the data analyst has no a priori idea of how
categories should be quantified. If that is the case, then there is no reason in requiring the same
quantification onp dimensions. If the data analyst has some prior knowledge, she will be better off
by employing one of the other two single options.

We proceed to define the notions ofmultiple andsingle loss. The Gifi loss function can be
partitioned into two parts, as follows:

JX

j=1

tr
�
X �GjŶj

�
0
�
X �GjŶj

�
+

JX

j=1

tr
�
q̂j�̂

0

j � Ŷj
�
0

Dj

�
q̂j�̂

0

j � Ŷj
�
:(3.6)

Using (1.10), the first term in (3.6) can be also written asN
�
p�PJ

j=1

Pp
s=1 �

2
js

�
, which is called

themultiple loss. The discrimination measure�2js is called themultiple fitof variablej in dimension

s. Imposing the normalization restrictionq0jDjqj = N , and using the fact that̂Y 0

jDjqj�
0

j = N�j�
0

j

(from (3.4)), the second part of (3.6) can be written as
JX

j=1

tr
�
Ŷ 0

jDjŶj �N�j�
0

j

�
= N

� JX

j=1

pX

s=1

(�2js � �2js)
�
;(3.7)

which is called thesingle loss. The quantities�2js; s = 1; : : : ; p are calledsingle fit, and correspond
to squared component loadings (see chapter 4 in [32]).

From equation (3.6) it can be seen that if a variable is treated as multiple nominal it does not
contribute anything to the single loss component. Furthermore, two components are incorporated
in the single loss part: first the rank-one restriction, that is the fact that single category quantifica-
tions must lie on a straight line in the joint space, and second the measurement level restriction,
that is the fact that single quantifications may have to be rearranged to be either in the right order
(ordinal variables) or equally spaced (numerical variables). For the mammals dentition data set
the latter would imply that the plots containing the transformed scales (see Figure 1.9) would only
show straight lines with the categories arranged in an increasing or decreasing order for ordinal
variables and additionally equally spaced for numerical variables. Of course, one can immediately
see that for binary variables these distinctions are of no essence.

Remark 3.2. Nonlinear Principal Components Analysis and Eigenvalue Problems.In section 2.2
we showed that homogeneity analysis under the loss function (1.1) corresponds to an eigenvalue
problem, and an ALS algorithm was primarily used for computational efficiency purposes. For
the problem at hand an ALS procedure becomes a necessity, because except from the special case
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where all the variables are treated as single numerical, the problem does not admit an eigenvalue (or
a singular value) decomposition. The latter fact also implies that in some cases the ALS algorithm
might converge to a local minimum (see chapter 4 in [32]).

Remark 3.3. Missing Data.In the presence of missing data (3.2) becomes

JX

j=1

tr
�
X �GjYj

�
0

Mj

�
X �GjYj

�
=(3.8)

JX

j=1

tr
�
X �Gj(Ŷj + (Yj � Ŷj))

�
0

Mj

�
X �Gj(Ŷj + (Yj � Ŷj))

�
=

JX

j=1

tr
�
X �GjŶj

�
0

Mj

�
X �GjŶj

�
+

JX

j=1

tr
�
Yj � Ŷj

�
0

Dj

�
Yj � Ŷj

�
:

This shows that missing data do not affect the inner ALS iteration loop where the single category
quantifications and the component loadings are estimated.

3.1. An Example: Crime Rates of U.S. Cities.The data in this example give crime rates per
100,000 people in seven areas -murder, rape, robbery, assault, burglary, larceny, motor vehicle
theft- for 1994 for each of the largest 72 cities in the United States. The data and their categorical
coding is given in Appendix B. In principal, we could have used homogeneity analysis to analyze
and summarize the patterns in this data. However, we would like to incorporate into the analysis
the underlying monotone structure in the data (higher crime rates are worse for a city) and thus
treated all the variables as ordinal in a nonlinear principal components analysis. In Figure 3.1 the
component loadings of the seven variables of a two dimensional solution are shown. In case the
loadings are of (almost) unit length, then the angle between any two of them reflects the value of
the correlation coefficient between the two corresponding quantified variables. It can be seen that
the first dimension (component) is a measure of overall crime rate, since all variables exhibit high
loadings on it. On the other hand, the second component has high positive loadings on rape and
larceny and negative ones on murder, robbery and auto theft. Moreover, it can be seen that murder,
robbery and auto theft are highly correlated, as are larceny and rape. The assault variable is also
correlated, although to a lesser degree, with the first set of three variables and also with burglary.

In Figure 3.2 some of the variable transformations are shown. It can be seen that some vari-
ables such as murder and robbery (not shown here) received linear transformations, while some
others (e.g. assault, larceny) distinctly nonlinear ones. Finally, in Figure 3.3 the variable quantifi-
cations along with the object scores are depicted. Notice that all the quantifications lie on straight
lines passing through the origin, a result of the imposed rank-one restriction (3.1). On the right of
the graph we find the cities with high crime rates on all seven areas (Tampa, Atlanta, Saint Louis,
Miami), and on the left cities with few crime incidents (Virginia Beach, Honolulu, San Jose, El
Paso, Raleigh, Mesa, Anaheim). In the lower part of the graph and somewhat to the left there is a
cluster of cities that have few rapes and larcenies, but are somewhere in the middle with respect to
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the other crime areas (New York, Philadelphia, Los Angeles, Long Beach, Houston, San Francisco,
Jersey City) and in the lower right cities cities with many murder, robbery and auto theft incidents
(Detroit, Newark, Washington DC, Oakland, New Orleans, Chicago, Fresno). On the other hand,
cities in the upper right part of the graph are characterized by large numbers of rapes, larcenies and
burglaries (Oklahoma, Minneapolis, Baton Rouge, Kansas City, Burmingham), while cities in the
center are somwhere in the middle with respect to crime (e.g. Denver, Dallas, Las Vegas, Phoenix,
Boston, Cleveland, Seattle to name a few). Finally, in the upper left we find a cluster of cities
that have higher numbers of larceny and rape incidents (Colorado Springs, Lexington, Anchorage,
San Antonio, Akron, Aurora). It should be mentioned that the nature of the original data (numer-
ical variables) makes it possible to run an ordinary principal components analysis (equivalent to
treating all the variables as single numerical in the present framework), and many of the patterns
discussed above would be present. The use of nonlinear transformations sharpened some of the
findings, and reduced the effect of some outlier observations.

4. Extension to Multiple Sets of Variables

Hotelling’s [60] prime goal was to generalize multiple regression to a procedure in which the
criterion set contained more than one variable. He proposed a replacement of a set of criterion
variables by a new composite criterion that could be predicted optimally by the set of predictor
variables. His objective, formulated asymmetrically, was to maximize the proportion of variance
in the composite criterion that was attributable to the predictor set. In a subsequent paper Hotelling
[61] retained the idea of partitioning the variables into sets, but formulated a more symmetric
account of the technique. More specifically, he wanted to study the relationship between two sets
of variables after having removed linear dependencies of the variables within each of these two
sets. Hence, any variable may contribute to the analysis in as much as it provides independent
information with respect to the other variables within its own set and to the extent that it is linearly
dependent with the variables in the other set. The relationship between the two sets was channeled
through a maximum correlation, labeled the canonical correlation, between a linear combination
(called canonical variables) of the variables in the first set and a linear combination of the variables
in the second one. If the data analyst is interested in more than a single solution, a second pair
of canonical variables orthogonal to the first one is to be found, exhibiting the second largest
correlation, and the procedure is repeated until ap dimensional solution is determined. Hotelling’s
procedure is known in the literature as canonical correlation analysis [36].

Starting with Steel [89] various attempts have been made and approaches suggested to gener-
alize Hotelling’s procedure toK sets of variables. In the two set problem, the canonical correlation
serves as the single criterion. In aK set problem there exist1=2K(K � 1) canonical correlations
between the optimal set of canonical variables that can be collected in aK �K correlation matrix
R. The generalizations deal with different criteria that can be formulated as functions of the matrix
R. The most common ones (discussed in the book by Gittins [36] that deals exclusively with this
subject) are:
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1. Minimize the determinant ofR, or equivalently minimize the product of the eigenvalues of
R, proposed by Steel [89].

2. Maximize the sum of the correlations inR, proposed by Horst [58, 59].
3. Maximize the largest eigenvalue ofR, also proposed by Horst [58, 59].
4. Maximize the sum of squares of the eigenvalues ofR, proposed by Kettenring [65].
5. Minimize the smallest eigenvalue ofR, also proposed by Kettenring [65].
6. Maximize the largest eigenvalue ofR, proposed by Carroll [12].

The last criterion is equivalent to maximizing the sum of correlations between each canonical
variable and an unknown coordinate vectorx [32]. The introduction of the comparison vectorx,
brings this criterion close to formulations of homogeneity analysis presented above. This criterion
is also discussed in the works of Saporta [84], de Leeuw [19], and van der Burg et al. [96].

In the Gifi system the last criterion is considered; therefore, a generalization of the familiar
loss function (1.1) is employed. The index setJ of theJ variables is partitioned intoK subsets
J(1); : : : ; J(k); : : : ; J(K). The Gifi loss function is given by

�
�
X;Y1; : : : ; YJ

�
= K�1

KX

k=1

SSQ
�
X �

X

j2J(k)

GjYj
�
;(4.1)

subject to the constraintsX 0X = NIp andu0X = 0. Equation (4.1) implies that all variables within
each setJ(k); k = 1; : : : ; K are treated asadditive. The latter implies that optimal transformations
of a variablej within a setJ(k) depends on the optimal transformations of the remaining variables
of setJ(k). This calls for a correction for the contribution of the other variables, and is reflected
in the following ALS algorithm.

Step 1: For givenX the optimalYj is given by

Ŷj = D�1
j G0

j

�
X � Vkj

�
; j 2 J;(4.2)

whereVkj =
P

j2J(k)GjYj �GjYj; k = 1; : : : ; K; j 2 J.
Step 2: For givenYj ’s, the optimalX is given by

X̂ = K�1
KX

k=1

X

j2J(k)

GjYj:(4.3)

Step 3: The object scores are column centered and orthonormalized in order to satisfy the normaliza-
tion constraints.

Equations (4.2) and (4.3) illustrate the centroid principle, which is at the heart of the Gifi system.
Category quantifications are centroids of the object scores corrected for the influence of the other
variables in the set, and object scores are averages of quantified variables. In the presence of rank-
one restrictions for the category quantifications (i.e.Yj = qj�

0

j; j 2 J) an inner ALS iteration
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loop must be employed for estimating the single category quantificationsqj and the component
loadings�j (see section 3). The restricted minimization problem given by (4.1) is known in the
literature as the Overals problem, the ALS algorithm as the Overals algorithm and the Fortran
computer program that implements the algorithm as the Overals program [100]. The reason for
these particular names is that if we consider a single variable per set, (4.1) reduces to (1.1), the
ordinary loss function for homogeneity analysis. Therefore, Homals and Princals are special cases
of Overals. Moreover, if there are only two sets of variables we enter the realm of canonical
correlation analysis. In fact, with two sets of variables and all variables treated as single numerical,
Overals becomes equivalent to ordinary canonical correlation analysis. Finally, if there are two
sets of variables, the first containing many single numerical variables, and the second a single
categorical variable, Overals can be used to perform canonical discriminant analysis.

Remark 4.1. Overals as an Eigenvalue Problem.Following analogous steps to those considered
in section 2.2, it can be shown that the minimum loss function is given by

�
�
?; ?
�
= NK

�
p�

pX

s=1

�s
�
;(4.4)

where�s; s = 1; : : : ; p are the eigenvalues of the matrixLP?L, with P? = K�1
PK

k=1 Pk and
Pk =

P
j2J(k)GjD

�1
j G0

j. Therefore, the minimum loss is a function of thep largest eigenvalues
of the average projector of theK subspaces spanned by the columns of the matrices

P
j2J(k)Gj.

4.1. An Example: School Climate. The data for this example come from the National Educa-
tion Longitudinal Study of 1988 (NELS:88). Recently, there has been a lot of interest among
researchers and policy makers on the importance of the school learning environment and the influ-
ence of individual and peer behaviors on student performance. For example goal six of the National
Education Goals Panel [77] states that by the year 2000 ”every school in America will be free of
drugs and violence and will offer a disciplined environment conducive to learning.” Because in
many situations learning is constrained in anatmosphere of fear and disorderliness, student behav-
ior influences school atmosphere and the climate for learning (whether it takes the form of violence
and risk taking activities such as bringing weapons to school or using alcohol and drugs) or a low
commitment to academic effort (such as poor attendance, lack of discipline or study habits) [11].
These student behaviors also play a key role in determining student success in school and beyond
(see [63] and references therein), as well as the way students, teachers and administrators act, re-
late to one another and form their expectations and to a certain extent beliefs and values [1, 81].
Thus, this particular set of variables from NELS:88 addresses issues directly related to the school
culture and climate, as seen from the students’ point of view.

The variables were divided into three setsJ(1) = (A� C); J(2) = (D � I); J(3) = (J;K).
The first set characterizeds attendance patterns of students, the second set deals with issues that af-
fect the overall school environment, and the third with attitudes of students towards their teachers.
The generalized canonical correlations for the two dimensional solution are .65 and .36 respec-
tively, and the mulitple correlations of the three sets with each canonical variable (dimension) are
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.67, .86, .75 for the first dimension and .45, .69 and .58 for the second one. The multiple correla-
tions are a measure of the amount of variance of the canonical variable explained by the particular
set. It can be seen that the second set does the best job, followed by the third and the first set in
both dimensions.

The component loadings of the variables are shown in Figure 4.1. The loadings of all vari-
ables are pretty high on the first dimension (canonical variable), with the exception of variable B
(student absenteeism). On the other hand, variables E (robbery), H (drugs), I (weapons), and J
(physical abuse of teachers) load positively on the second component, while variables A (tardi-
ness), D (physical conflicts), F (vandalism), G (alcohol), and K (verbal abuse of teachers) load
negatively on the second canonical variable. Hence, the first canonical variable can be interpreted
as an overall measure of school climate, while the second one distinguishes between students that
experience a rough and potentially dangerous school environment (upper half), with those that
experience a simply rough environment.

By examining the category points plot (see Figure 4.1) we expect to find the students attending
schools where the overall climate is perceived to be poor in the right part of the picture and in
particular in the lower right, those that believe the climate at their school is good at the lower left,
those going to schools with some sort of problems somewhere in the middle, and those going to
schools with problems described by variables A, D, F, G and K in the upper middle part of the
picture. In Figure 4.1 the object scores are ploted, together with their frequencies and the category
points (lie on the red lines). The object point with the large spike on the left end corresponds
to the profile consisting of only 4’s; that is these students (approximately11% of the sample)
indicated that none of the areas covered by the 11 variables is a problem in their school. On the
other hand, the big spike on the right end of the picture corresponds to the other extrem profile
of only 1’s; hence, close to2% of the students attend pretty rough schools. It can also be seen
that approximately40% of the object scores are concentrated on the lower left part, indicating that
these areas are at most a minor problem in the respective schools.

5. Stability Issues

The techniques presented so far aim at the uncovering and representation of the structure of
categorical multivariate data. However, there has been no reference to any probabilistic mecha-
nism that generated the data under consideration. The focus of these techniques is in providing
a low dimensional representation of the original high dimensional space (where presumably the
dependencies and interdependencies in the data are much easier to describe and characterize). As
Kendall points out ”many of the practical situations which confront us are not probabilistic in the
ordinary sense ... It is a mistake to try and force the treatment of such data into a classical statistical
mould, even though some subjective judgment in treatment and interpretation may be involved in
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the analysis” (see [64], p. 4). Nevertheless, one may always pose the question of whether the pat-
terns in the various plots are real or mere ”chance” effects. Thus, the goal in this section is to give
a brief overview of the question ofstabilityof the representation. The concept of stability is central
in the Gifi system and is used in the following sense: data analysis results are stable when small
and/or unimportant changes ofinput lead to small and unimportant changes in the results (output)
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(see [32] p. 36). By reversing this definition, we get that in the Gifi system a result can be charac-
terized asunstablein those instances where small and unimportant changes in the input result in
significant changes in the output. In our analysis, we consider as input the data set at hand -objects
and variables-, the coding of the variables, the dimensionality of the solution, the measurement
level of the variables, the type of technique employed -Homals, Princals-, and as output category
quantifications, object scores, discrimination measures, eigenvalues, component loadings etc. It
should be noted that while in other types of data analysis the output usually consists of a small
number of point estimates and their standard errors (e.g. regression analysis), for the techniques
under consideration there exists a whole series of output.

The most important forms of stability are:

(a) Replication Stability.If a new data set is sampled and apply the same technique to this new
set, then the results should not change dramatically.

(b) Statistical Stability. It refers to the stability of the analysis whenever no new data set is
formally sampled.
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(c) Stability under Data Selection.Variations in the data are considered, by omitting either ob-
jects from the data set or variables from subsequent analysis. The former corresponds to
rejection of outliers andresamplingtechniques. In this framework, resampling techniques
can be thought of as a form of replication stability, but without formally sampling a new data
set.

(d) Stability under Model Selection.Small changes in the model should result in small changes
in the results obtained.

(e) Numerical Stability. It refers to the influence of rounding errors and of computation with
limited precision on the results given by the techniques.

(f) Analytic and Algebraic Stability.If the data structures and possible representations have
enough mathematical structure, then formal expressions of the input-output analysis can be
drawn from considering perturbations of the input.

(g) Stability under Selection of Technique.Application of a number of different techniques to
the same data set, aiming at answering the same question, results in approximately the same
information.

In this section, we would focus primarily on stability under data selection. However, we are also
going to look briefly into analytic and algebraic stability. It should be noted that issues of numerical
stability have been addressed during the presentation of the various models (e.g. normalization
issues etc).

The distinction betweeninternal andexternalstability may provide a better understanding of
the concept of stability [47] as used in the Gifi system. External stability refers to the conventional
notions of statistical significance and confidence. In the conventional statistical framework, the
aim of the analysis is to get a picture of the empirical world and the question is to what extent the
results do indeed reflect the real population values. In other words, the results of any of our mod-
els are externally stable in case any other sample from the same population produces roughly the
same results (output). Consequently, the confidence regions of the output parameters are relatively
small. Internal stability deals with the specific data set at hand. The models produce a simple rep-
resentation of the data and reveal associations between the variables. An internally stable solution
implies that the derived results give a good summary of that specific data set. We are not interested
in population values, because we might not know either the population from which the data set was
drawn or the sampling mechanism; in the latter case, we might be dealing with a sample of conve-
nience. Possible sources of instability in a particular data set are outlying objects or categories that
have a large influence on the results. Internal stability can be thought of as a form of robustness.

Both external and internal stability play a role in the practice of data analysis. It is often the
case that a data analyst wants to get insight in the structure of the population, particularly whenever
the data set has been collected by a well defined sampling mechanism. In such cases, external
stability of the results allows the practitioner to draw firmer conclusions about the structure of the
underlying population. On the other hand, when a data analyst is only interested in the structure
of the specific data set, internal stability ensures the invariance of the sample solution. When
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dealing with external stability a ’new’ sample should be drawn and the technique applied to it. The
word ’new’ may mean (i) a truly new sample from the population, (ii) a fictitious ’new’ sample,
common in classical statistical analysis of stability [22], (iii) a ’new’ perturbed sample created by
resampling with replacement from the sample at hand. In case of a fictitious ’new’ sample, the
data analyst attempts to assess stability of the technique by examining what would have happened
if a truly ’new’ sample was drawn from the underlying population. When dealing with internal
stability, only the third possibility is available.

The notions of external and internal stability are directly linked with the notions of descriptive
and inferential use of the models introduced in the previous sections. The main distinction between
these two notions is whether the models are (i) exclusively used to reduce the complexity of the
data and uncover their basic structure, or (ii) used to draw conclusions and generalize them from the
sample to the population (see the debate between de Leeuw [22] and Molenaar [76] and references
therein, see also Leamer [69] for some provocative thoughts on the subject from the Bayesian
viewpoint). The former approach is closer to the exploratory data analytic school, while the latter
closer to the dictates of classical statistics. Moreover, it is easy to see that the inferential use of
the models agrees with the concept of external stability, while the descriptive use with that of
internal stability. We believe that both approaches are useful and informative whenever used in
the appropriate context. For example, when dealing with a data set from a well designed study
-correctly identified population, proper sampling mechanism, proper collection of the data set,
so that another sample can be drawn in the future- it is reasonable to be interested not only in
examining the structure of that particular data set, but also in generalizing the findings to the
population. Stability of the results is crucial in this exercise, because if the solution is not stable
-small changes in the input lead to large and/or important changes in the output (results)- then the
second part of the exercise -generalization from the sample to the population- becomes irrelevant.
On the other hand, sometimes it is not possible to specify with great accuracy the population
from which the sample was drawn, or the sampling mechanism used to collect the sample, or we
might be interested just in the structure of that particular data set. In this frame of reference, the
descriptive approach is the appropriate or relevant one, and stability is associated with the concept
of internal stability. The data set regarding multivariate analysis books in chapter 1 in the Gifi book
[32], and samples of convenience are typical examples of this type.

In the remainder of this section we will address stability issues related to merging merging
categories, omitting a variable from the analysis and the bootstrap. The first two topics have been
briefly addressed in [32], while the third one has been examined in [32, 73, 20, 95, 72].

5.1. Merging Categories. Merging categories can be formalized algebraically by introducing in-
dicator matricesGCj

; j 2 J of dimensioǹ j � kj, with kj � `j, to replaceGj byGjGCj
. In case

kj = `j, we get thatGCj
� I`j and nothing changes. The orthogonal projector on the subspace

spanned by the columns ofGjGCj
becomes~Pj = GjGCj

(G0

Cj
DjGCj

)+G0

Cj
G0

j; j 2 J, where
A+ denotes the Moore-Penrose (generalized) inverse of matrixA. By using perturbation results
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for eigenvalue problems (see for example [62]), it can be shown that merging two categories with
approximately the same quantifications hardly changes the eigenvalues (and hence the overall fit
of the solution) when the number of variables is not too small. On the other hand eliminating a
very low frequency category (by merging it with some other category) improves, in general, the
graphical representation of the solution.

5.2. Eliminating a Variable in Homogeneity Analysis. It can be shown that the importance of
a variable for a dimensions can be expressed as�2js � s; s = 1; : : : ; p, that is the discrimina-
tion measure of that variable minus the average of the discrimination measures of all variables on
dimensions (the eigenvalue). The latter implies that if a variable with a relatively small discrimi-
nation measure is eliminated from the analysis the overall fit of the solution (eigenvalue) will not
be affected much. Results for eigenvectors (object scores) are less complete, and it seems that a
general pattern is hard to establish.

5.3. Permutation Methods. Although we emphasized the exploratory nature of the techniques
described in this paper, nevertheless we would like to determine whether the structure observed
in the data is ”too pronounced to be easily explained away as some kind of fluke”, to paraphrase
Freedman and Lane [31]. Permutation tests can help to study the concept of ”no structure at all.”
The idea behind using such tests is that they represent a nice way of formalizing the notion of no
structure. The random variation is introducedconditionally on the observed data, which implies
that we do not have to assume a particular model that generated the data, thus making them useful
in nonstochastic settings as well [31]. Each new data set is generated by permuting the values the
objects are assigned for each variable, resulting in destroying the original profiles of the objects.
Then, the technique of interest is applied to the newly generated data and the eigenvalues of the
solution computed. For small data sets in terms of both objects and variables (e.g. J=2) it is
possible to derive the permutation distribution of the eigenvalues by complete enumeration of the
possible cases. However, for all other cases one has to resort to Monte Carlo methods [21].

We present next the results of such a test for the mammals dentition example. The two panels
of Figure 5.1 give the freqency distribution of the first and second eigenvalues of the homogeneity
analysis solution over 1000 replications. It can immediately be seen that the observed eigenvalues
of .73 and .38 in the original data are way to the right, thus suggesting that the informal null
hypothesis of absence of structure is false and hence the patterns in the data (e.g. various groupings
of the mammals) are real.

5.4. Replication Stability and the Bootstrap. The previous two subsections have provided some
analytic results on the stability of the eigenvalues of the Homals solution. However, very little is
known (and analytic results seem very hard to get) for category quantifications, objects scores,
component loadings etc. On the other hand recent advances in resampling techniques -particularly
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FIGURE 5.1. Permutation Frequency Distribution of the Eigenvalues of the Homo-
geneity Analysis Solution of the mammals dentition example

the bootstrap [26]- offers an interesting and useful alternative to study stability issues for the tech-
niques presented in this paper.

We develop the method in a general context (for a comprehensive account see also [95]).
Suppose we haveJ categorical variables. Each variable takes values in a setSj (the range of the
variable [32]) of cardinalitỳ j (number of categories of variablej). DefineS = S1 � : : :SJ to
be theprofile space, that has cardinalitỳ =

QJ
j=1 `j. That is the spaceS = f(s1; : : : ; sj); sj 2

Sj; j 2 Jg contains theJ-tuples of profiles. LetS be a`�PJ
j=1 `j binary matrix, whose elements

S(h; t) are equal to 1 if thehth profile contains categoryt, and 0 otherwise; that isS maps the
space of profilesS to its individual components. Let alsoGS be aN � ` indicator matrix with
elementsGS(t; h) = 1 if the tth object (individual etc) has thehth profile inS, andGS(t; h) = 0
otherwise. The superindicator matrixG = [G1j : : : jGJ ] can now be written asG = GSS. Hence,
there is a one-to-one correspondence between the ordinary indicator matricesGj and the space of
profilesS.

LetP be a probability distribution onS. Since the spaceS is finite,P corresponds to a vector
of proportionsp = fphg with

P`
h=1 ph = 1. In the present framework, it is not difficult to see

that each observed superindicator matrixG corresponds to a realization of the random variable�
that has a multinomial distribution with parameters(N; p). The output (category quantifications,
discrimination measures, object scores, component loadings etc) of the techniques introduced in
the previous sections can be thought of as functions�(�).
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From a specific data set of sizeN we can drawNN sets also of sizeN , with replacement. In
our case, each subset corresponds to a matrixGS. The basic idea behind bootstrapping techniques
is that we might as well have observed any matrixGS of dimensionN � ` consisting of the
same rows, but in different frequencies, than the one we observed in our original sample. So,
we could have observed a superindicator matrixGm, associated with a vector of proportionspm,
which is a perturbed version of�. The output of our techniques would then naturally be a function
�(pm). Suppose that we have a sequence ofpm’s and thus of functions�(pm). Then, under some
regularity conditions on the�(:) (Hadamard or Fr�echet differentiability [87]) it can be shown that
�(pm) is a consistent estimator of�(�) and thatP�(�(pm) � zjpm) is a consistent estimator of
P (�(p) � zjp) [71, 86], whereP� denotes the conditional probability givenpm. The previous
discussion indicates that the appropriate way to bootstrap in homogeneity analysis is to sample
objects with replacement, or in other words, sample rows of the data matrix.

Remark 5.1. Bias Correction and Construction of Cnfidence RegionsTwo of the main issues in
the theory of bootstrap are: (i) how to produceunbiasedbootstrap estimates and (ii) how to con-
structconfidence regionswith the correct coverage probability� [26]. The main problem in the
present context is that by construction the parameters of the techniques (eigenvalues, category
quantifications, etc) are multidimensional, and moreover the dimensions are correlated with each
other. Regarding bias correction two possible solutions proposed by Markus [72] are: (i) to ad-
just each bootstrap point bŷ��cb = �̂�b � 2(�̂� � �̂), and (ii) to adjust bŷ��cb = 2�̂ � �̂�b , where

�̂�b corresponds to thebth bootstrap point,̂� to the sample estimate, and̂�� to the mean of theB
bootstrap points. The first one defines bias as a shift of the estimate with respect to the population
value, while the second as a reflection with respect to the original sample value. Regarding the
problem of constructing confidence regions, several approaches have been suggested in the litera-
ture. Weinberg et al. [101] constructed ellipses based on the bootstrap variance-covariance matrix.
They assumed that the sampling distribution is normal and the construction of confidence regions
is based onF values. A similar approach can be found in Takane and Shibayama [90]. Heiser
and Meulman [55] suggested to construct ellipses by performing a singular value decomposition
of the matrix of bootstrap points that are in deviations from their means. This procedure results
in a spherical representation that determines the circle covering the(1 � �) � 100% points with
the shortest distance to the centroid. Subsequently, the circle is transformed into an ellipse. This
construction avoids any link to the normal distribution. Markus [72] uses the convex hull of the
scatter of the bootstrap points to construct the confidence regions. She then discards the�� 100%
of the outer vertices of the hull, and the resulting hull is considered to be the desired confidence
region (this algorithm is discussed in [46]; see also [45]). This method resembles the percentile
method for estimating bootstrap confidence intervals [26].

5.5. Results of Previous Studies.There have been several studies that have used bootstrap meth-
ods to assess the stability of nonlinear multivariate techniques -homogeneity analysis, correspon-
dence analysis, canonical correlation analysis- [32, 95, 73]. The most comprehensive one is the
monograph by Markus [72]. In this section we will attempt to briefly summarize the results of
these studies.
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(1) The most important finding from a computational point of view is that to obtain valid results
a large number of bootstrap replications is required (over 1,000).

(2) The bootstrap confidence regions give on average the right coverage probabilities. However,
for categories with low marginal frequencies the coverage probabilities might be under- or
overestimated.

(3) Bias correction is beneficial to the coverage probabilities of eigenvalues but rather harmful to
that of category quantifications, discrimination measures and component loadings. It seems
that the translation method is the most appropriate for bias correction.

(4) Marginal frequencies of about 8 seems to be the absolute minimum to ensure valid confidence
regions. In light of this finding, merging categories appears to be not only overall beneficial,
but necessary in many situations.

(5) Both ellipses and peeled convex hulls produce valid confidence regions. However, this re-
sult heavily depends on a number of parameters, such as sample size, number of bootstrap
replications, category marginal frequencies. In case of small sample sizes, the behavior of
confidence regions becomes erratic.

(6) There are no results regarding the stability of patterns for ordinal and/or numerical variables
(ordering of categories), and also in the presence of missing data.

In Figure 5.2 we present the bias corrected bootstrap means of some of the optimal transforma-
tions, along with�2 standard error bands of the category quantifications of the mammals dentition
data set, based on 1,000 bootstrap replications. The bootstrapped means and standard errors (in
parentheses) of the eigenvalues in dimensions 1 and 2 are .738 (.035) and .386 (.027), respectively.

It can be seen that the fit of the solution in both dimensions is particularly stable, thus indi-
cating that the patterns observed in the data set are real. Regarding the category quantifications
we see that the first dimension exhibits a far more stable behavior than the second one. However,
for the variables that discriminate along the second dimension (TI, BI) the results are satisfactory .
Moreover, we see that categories with low marginal frequencies (e.g. BI1) exhibit more variation
than categories with larger frequencies, thus confirming the results of previous studies.

6. Concluding Remarks

In this paper a brief account of some varieties of multivariate analysis techniques, known as
the Gifi system, is given. The central themes of the system are the notion of optimal scaling of
categorical data and its implementation through alternating least squares algorithms. The starting
point of the system is homogeneity analysis, a particular form of optimal scaling. The use of var-
ious types of restrictions allows homogeneity analysis to be molded into various other types of
nonlinear multivariate techniques. These techniques have been extensively used in data analytic
situations. In the Gifi book [32] the entire chapter 13 is devoted to applications covering the fields
of education, sociology and psychology. Also, in their books Greenacre [47] and Benz�ecri [4] give
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FIGURE 5.2. Bootstraps

a wide variety of applications of multiple correspondence analysis in the fields of genetics, social
psychology, clinical research, education, criminology, linguistics, ecology, paleontology and mete-
orology. Other applications of the techniques include marketing [57], zoology [94], environmental
studies [93], medicine [95] and food science [97]. However, the Gifi system has evolved beyond
homogeneity analysis and its generalizations; hence, new techniques have been developed for path
models [32], time series models [92], linear dynamical systems [5] etc. In closing, it should be
mentioned that the Gifi system is part of a still quite active research program.
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7. Appendix A - Dentition of Mammals

The data for this example are taken from Hartigan’s book [51]. Mammals’ teeth are divided
into four groups: incisors, canines, premolars and molars. A description of the variables with their
respective coding is given next.

TI: Top incisors; 1: 0 incisors, 2: 1 incisor, 3: 2 incisors, 4: 3 or more incisors
BI: Bottom incisors; 1 : 0 incisors, 2: 1 incisor, 3: 2 incisors, 4: 3 incisors, 5: 4 incisors
TC: Top canine; 1: 0 canines, 2: 1 canine
BC: Bottom canine; 1: 0 canines, 2: 1 canine
TP: Top premolar; 1: 0 premolars, 2: 1 premolar, 3: 2 premolars, 3: 2 premolars, 4: 3 premo-

lars, 5: 4 premolars
BP: Bottom premolar; 1: 0 premolars, 2: 1 premolar, 3: 2 premolars, 3: 2 premolars, 4: 3

premolars, 5: 4 premolars
TM: Top molar; 1: 0-2 molars, 2: more than 2 molars
BM: Bottom molar; 1: 0-2 molars, 2: more than 2 molars

In the following table the frequencies of the variables are given.

Categories
Variable 1 2 3 4 5
TI 15.2 31.8 13.6 39.4
BI 3.0 30.3 7.6 43.9 15.2
TC 40.9 59.1
BC 45.5 54.5
TP 9.1 10.6 18.2 39.4 22.7
BP 9.1 18.2 15.2 36.4 21.2
TM 34.8 65.2
BM 31.8 68.2

TABLE 7.1. Mammals teeth profiles (in %, N=66)
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Mammals Dentition Data

Mammal Mammal
Opposum 45224422 Fox 44225512
Hairy Tail Mole 44225522 Bear 44225512
Common Mole 43214422 Civet Cat 44225511
Star Nose Mole 44225522 Raccoon 44225521
Brown Bat 34224422 Marten 44225511
Silver Hair Bat 34223422 Fisher 44225511
Pigmy Bat 34223322 Weasel 44224411
House Bat 34222322 Mink 44224411
Red Bat 24223322 Ferrer 44224411
Hoary Bat 24223322 Wolverine 44225511
Lump Nose Bat 34223422 Badger 44224411
Armadillo 11111122 Skunk 44224411
Pika 32113322 River Otter 44225411
Snowshoe Rabit 32114322 Sea Otter 43224411
Beaver 22113222 Jaguar 44224311
Marmot 22113222 Ocelot 44224311
Groundhog 22113222 Cougar 44224311
Prairie Dog 22113222 Lynx 44224311
Ground Squirrel 22113222 Fur Seal 43225511
Chipmunk 22113222 Sea Lion 43225511
Gray Squirrel 22112222 Walrus 21224411
Fox Squirrel 22112222 Grey Seal 43224411
Pocket Gopher 22112222 Elephant Seal 32225511
Kangaroo Rat 22112222 Peccary 34224422
Pack Rat 22111122 Elk 15214422
Field Mouse 22111122 Deer 15114422
Muskrat 22111122 Moose 15114422
Black Rat 22111122 Reindeer 15214422
House Mouse 22111122 Antelope 15114422
Porcupine 22112222 Bison 15114422
Guinea Pig 22112222 Mountain Goat 15114422
Coyote 24225522 Muskox 15114422
Wolf 44225512 Mountain Sheep 15114422

8. Appendix B - Crime Rates in US Cities in 1994

The data for this example are taken from table No. 313 of the 1996 Statistical Abstract of the
United States. The coding of the variables is given next:
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Murder: 1: 0-10, 2: 11-20, 3: 21-40, 4: 40+
Rape: 1: 0-40, 2: 41-60, 3: 61-80, 4: 81-100, 5: 100+
Robbery: 1: 0-400, 2: 401-700, 3: 701-1000, 4: 1000+
Assault: 1: 0-300, 2: 301-500, 3: 501-750, 4: 751-1000, 5: 1001-1250, 6: 1251+
Burglary: 1: 0-1000, 2: 1001-1400, 3: 1401-1800, 4: 1801-2200, 5: 2200+
Larceny: 1: 0-3000, 2: 3001-3500, 3: 3501-4000, 4: 4001-4500, 5: 4501- 5000, 6: 5001-5500,

7: 5501-7000, 8: 7000+
Motor Vehicle Theft: 1: 0-500, 2: 501-1000, 3: 1001-1500, 4: 1501-2000, 5: 2000+
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Crime Rates Data

City City Code City City Code
New York (NY) NY 2132212 Los Angeles (CA) LA 2233222
Cicago (IL) Chi 3*43332 Houston (TX) Hou 2222322
Philadelphia (PA) Phi 3231112 San Diego (CA) SD 1112222
Phoenix (AZ) Pho 2212442 Dallas (TX) Dal 3422332
Detroit (MI) Det 3543433 San Antonio (TX) SAn 2211341
Honolulu (HI) Hon 1111231 San Jose (CA) SJ 1212111
Las Vegas (NV) LV 1322322 San Francisco (CA) SF 1132232
Baltimore (MD) Bal 3443442 Jacksonville (FL) Jac 2422441
Columbus (OH) Col 2521432 Milwaukee (WI) Mil 2321232
Memphis (TN) Mem 3522522 Washnigton, DC DC 3233342
El Paso (TX) ElP 1212131 Boston (MA) Bos 2423233
Seattle (WA) Sea 1222352 Charlotte (NC) Cha 2323441
Nashville (TN) Nas 1423342 Austin (TX) Aus 1211241
Denver (CO) Den 2311322 Cleveland (OH) Cle 3522312
New Orleans (LA) NOr 3432432 Fort Worth (TX) FWo 3422342
Portland (OR) Por 1423353 Oklahoma City (OK) Okl 1512552
Long Beach (CA) LB 2122322 Tucson (AZ) Tuc 1312352
Kansas City (MO) KS 3533542 Virginia Beach (VA) VBe 1111121
Atlanta (GA) Atl 3544553 Saint Louis (MO) StL 3344553
Sacramento (CA) Sac 2222433 Fresno (CA) Fre 2222433
Tulsa (OK) Tul 1312322 Miami (FL) Mia 3244553
Oakland (CA) Oak 3433432 Minneapolis (MN) Min 2532542
Pittsburgh (PA) Pit 2321222 Cincinatti (OH) Cin 1522331
Toledo (OH) Tol 1521432 Buffalo (NY) Buf 3433522
Wichita (KS) Wic 1311442 Mesa (AZ) Mes 1112332
Colorado Springs (CO)Cos 1311131 Tampa (FL) Tam 2534553
Santa Ana (CA) SA 3121112 Arlington (VA) Arl 1212231
Anaheim (CA) Ana 1122222 Corpus Cristi (TX) CCr 1312351
Louisville (KY) Lou 2221311 St Paul (MN) StP 1412321
Newark (NJ) New 3344533 Birmingham (AL) Bir 3524552
Norfolk (VA) Nor 2321231 Anchorage (AK) Anc 1312131
Aurora (CO) Aur 1213231 St Petersburg (FL) SPe 1424441
Riverside (CA) Riv 2223422 Lexington (KY) Lex 1212231
Rochester (NY) Roc 3321541 Jersey City (NJ) JC 2132412
Raleigh (NC) Ral 1112331 Baton Rouge (LO) BRo 3324552
Akron (OH) Akr 1412221 Stockton (CA) Sto 2222432

9. Appendix C

Description of variables:
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A: Student tardiness a problem at school
B: Student absenteeism a problem at school
C: Students cutting class a problem at school
D: Physical conflicts among students a problem at school
E: Robbery or theft a problem at school
F: Vandalism of school property a problem at school
G: Student use of alcohol a problem at school
H: Student use of illegal drugs a problem at school
I: Student possession of of weapons a problem at school
J: Physical abuse of teachers a problem at school
K: Verbal abuse of teachers a problem at school

The four possible answers to each of the variables are:

1: Serious
2: Moderate
3: Minor
4: Not a problem

Categories
Variable 1 2 3 4
A 2708 6264 7685 6591
B 2611 6356 7508 6773
C 3435 4032 5862 9919
D 3724 5774 7425 6325
E 3178 3462 6918 9690
F 3392 3536 6759 9561
G 3508 3414 5057 11269
H 3281 2412 4786 12769
I 2642 2180 5335 13091
J 1811 666 2294 18377
K 2633 3258 6150 11207
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